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GLOBAL OPTIMIZATION OF TRANSMITTER PLACEMENT

FOR INDOOR WIRELESS COMMUNICATION SYSTEMS

by

Jian He

(ABSTRACT)

The DIRECT (DIviding RECTangles) algorithm [23], a variant of Lipschitzian methods

for bound constrained global optimization, has been applied to the optimal transmitter

placement for indoor wireless systems. Power coverage and BER (bit error rate) are

considered as two criteria for optimizing locations of a specified number of transmitters

across the feasible region of the design space. The performance of a DIRECT implementation

in such applications depends on the characteristics of the objective function, the problem

dimension, and the desired solution accuracy. Implementations with static data structures

often fail in practice because of unpredictable memory requirements. This is especially critical

in S4W (Site-Specific System Simulator for Wireless communication systems), where the

DIRECT optimization is just one small component connected to a parallel 3D propagation ray

tracing modeler running on a 200-node Beowulf cluster of Linux workstations, and surrogate

functions for a WCDMA (wideband code division multiple access) simulator are also used

to estimate the channel performance. Any component failure of this large computation

would abort the entire design process. To make the DIRECT global optimization algorithm

efficient and robust, a set of dynamic data structures is proposed here to balance the memory

requirements with execution time, while simultaneously adapting to arbitrary problem size.

The focus is on design issues of the dynamic data structures, related memory management

strategies, and application issues of the DIRECT algorithm to the transmitter placement

optimization for wireless communication systems. Results for two indoor systems are

presented to demonstrate the effectiveness of the present work.
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Chapter 1: INTRODUCTION

Optimal transmitter placement provides high spectral efficiency and system capacity

while reducing network costs, which are the key criteria for wireless network planning [5]. As

the complexity and popularity of modern wireless networks increases, automatic transmitter

placement provides cost savings when compared to the traditional human process of site

planning. Automatic design tools are being developed to offer efficient and optimal planning

solutions. Besides [11], [20], and [28], S4W (Site-Specific System Simulator for Wireless

system design) is among the few known wireless system tools for in-building network design.

It is being developed jointly by the Mobile & Portable Radio Research Group (MPRG) and

the Problem Solving Environment (PSE) research group at Virginia Polytechnic Institute

& State University. An optimization loop in S4W is proposed to maximize the efficiency

of simulated channel models and surrogate functions are proposed to reduce the cost of

simulations. Transmitter placement optimization is one specific problem that can be solved

by S4W . An example of an S4W model consisting of a propagation model, a wireless

system model, and an optimizer is given in [34]. The underlying optimization algorithm is

known as DIRECT (DIviding RECTangles), a direct search algorithm proposed by Jones

et al. [23] as an effective approach to solve global optimization problems subject to simple

constraints. The present thesis work includes research work published in [1], [18], [19], and

[33].

1.1 Application Background

Figure 1.1. Durham Hall, fourth floor.

In general, transmitter placement optimization is aimed at ensuring an acceptable level

of wireless system performance within a geographical area of interest (Figure 1.1 shows an

indoor environment for the present study) at a minimum cost. [11] considers the major

performance factor to be the power coverage, defined as the ratio of the number of receiver

locations with received power above an assumed threshold to the total number of receiver

locations. This nonsmooth function leads to the rank based methods used by [11]. In [20]

and [31], the objective function is based on several weighted factors, such as covered area,
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interference area, and mean signal path loss. [6] proposes a QoS (Quality of Service)-based

penalty function resulting in an unconstrained optimization problem. In the present work,

two performance metrics form objective functions for optimal transmitter placement. The

metrics are continuous penalty functions defined in terms of power levels (i.e., power coverage)

and bit error rates at given receiver locations within the covered region. Both objective

functions are devised to minimize the average shortfall of the estimated performance metric

with respect to the corresponding threshold. 3D ray tracing is used as a deterministic

propagation model to estimate power coverage levels and impulse responses within the

region of interest for transmitter locations sampled by the optimization algorithm [29][30].

Surrogates for the Monte Carlo WCDMA simulation are used to estimate the BERs (bit

error rates) for the second optimization criterion. Both the surrogates and the WCDMA

simulation utilize the impulse responses estimated by the ray tracing model. Since 3D

ray tracing and WCDMA simulation are computationally expensive, MPI-based parallel

implementations are used in the present work.

1.2 Algorithm Introduction

DIRECT was named after one of its key steps—dividing rectangles. It is a pattern search

method that is categorized as a direct search technique by Lewis et al. [24]. Generally

speaking, “pattern search methods are characterized by a series of exploratory moves

that consider the behavior of the objective function at a pattern of points” [24], which are

chosen as the centers of rectangles in the DIRECT algorithm. This center-sampling strategy

reduces the computational complexity, especially for higher dimensional problems. Moreover,

DIRECT adopts a strategy of balancing local and global search by selecting potentially

optimal rectangles to be further explored. This strategy gives rise to fast convergence with

reasonably broad space coverage. These features have motivated its successful application

in modern large-scale multidisciplinary engineering problems [2], [4], and [35].

Nevertheless, DIRECT does have limitations as pointed out by Jones [22]. Some

applicability concerns include: (1) the space-partitioning strategy in practice limits the

algorithm to low-dimensional problems (≤ 20), although Baker et al. [3] have solved realistic

29-dimensional problems, and (2) the stopping criterion—a limit on function evaluations is

not convincing. The difficulty of implementing space partitioning in high dimensions lies in

the efficiency of maintaining partitioning information. To address this efficiency issue, the

present work proposes a data structure to store such information in a way that balances

efficient access with memory requirements. Moreover, alternate choices for the stopping

criterion are offered, which provide more freedom for a wide variety of applications.

Unpredictable memory demand is a practical problem due to different characteristics

of the objective functions, problem dimensions, and desired solution accuracy. Many
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implementations of DIRECT (e.g., [2], [8], and [15]) rely on allocating a large static two-

dimensional array to store the current state of the space partitioning. This can lead to failure

of the code if the array is insufficient to hold the necessary information due to exceeding

one or the other of the dimensions. To overcome this problem, some implementations will

reallocate the array to be larger if necessary. Even with this modification there remains a

significant amount of overhead in both execution time and space required. The problem

is that a few columns of the array will require an unusually large amount of space. Thus,

some form of dynamic data structure is required for at least these relatively few columns.

To reduce the execution overhead and adapt to varying memory requirements, a set of

dynamic data structures are proposed here. They are extensible and flexible in dealing with

information generated by the space partitioning process in high dimensions. The dynamic

memory implementation proposed here is implemented for a single processor, but it should

provide considerable flexibility for future parallelization of the DIRECT algorithm.

1.3 Organization

Chapters are organized as follows. Chapter 2 begins with an overview of the DIRECT

algorithm followed by the proposed modifications. Chapter 3 details the design aspects

of the dynamic data structures and related memory management strategies. Important

implementationconsiderations involved in numerical computing and computational geometry

are also discussed. In Chapter 4, numerical results and performance analyses for four sample

objective functions are presented. Chapter 5 addresses issues related to the transmitter

placement optimization problem for indoor wireless systems, involving the parallel 3D ray

tracing modeling, the parallel WCDMA simulation, the surrogate fitting, and the objective

formulation. Optimization results for optimizing transmitter locations in terms of both

power coverage and bit error rate are presented and analyzed at the end of Chapter 5.

Finally, Chapter 6 summarizes some key contributions of the present work and suggests

directions for future research.
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Chapter 2: DIRECT ALGORITHM

DIRECT is aimed at solving global optimization problems (GOP) subject to simple

bounds. The general problem statement is [26]

min
x∈D

f0(x) (2.1)

D = {x ∈ D0 | fj(x) ≤ 0, j = 1, . . . , J},

where D0 =
{
x ∈ En | ` ≤ x ≤ u

}
is a simple box constraint set. The objective function

and constraints fj , j = 0, . . . , J, must be Lipschitz-continuous on D0, satisfying

|fj(x1)− fj(x2)| ≤ Lj‖x1 − x2‖, ∀x1, x2 ∈ D0. (2.2)

This assumption means that the rates-of-change of the objective function f0 and constraints

f1, . . . , fJ are bounded.

Traditionally, this class of problems was solved by the Lipschitz optimization method,

which had been considered as a practical and deterministic approach to many science

and engineering problems for several decades. Unlike some other methods (e.g., concave

minimization), the Lipschitz global optimization method requires only a few parameters.

This is the major reason why it is an ideal system model for “black box” or “oracle” systems,

which can only generate corresponding function values for a given collection of arguments,

but can not provide any more analytical information on the system [26]. Furthermore,

the convergence of Lipschitz-based global optimization algorithms can be easily proved by

assuming the knowledge of a Lipschitz constant [23]. However, as a coin has two faces, this

assumption of a Lipschitz constant carries disadvantages. First of all, the Lipschitz constant

of a particular function is usually unknown or hard to estimate in practice. Although

an overestimated Lipschitz constant is still valid for the application of Lipschitz global

optimization (LGOP) methods, it results in slow convergence and complicates computation

in higher dimensions. These practical problems motivated Jones et al. [23] to develop a new

Lipschitz-based optimization algorithm—DIRECT—that is guaranteed to converge to the

global optimum without the knowledge of the Lipschitz constant.

2.1 Overview

DIRECT evolved from the one-dimensional Piyavskii-Shubert algorithm and was further

extended from one dimension to multiple dimensions by adopting a center-sampling strategy.

Its corresponding 1-D description contrasted with Piyavskii-Shubert’s algorithm can be found

in [23]. Here, only the multidimensional DIRECT algorithm, which is of more interest for

large-scale applications, is described. Also, constraints other than bound constraints are

not considered here. Thus henceforth assume D = D0.
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DIRECT’s behavior in multiple dimensions can be viewed as taking steps in potentially

optimal directions within the entire design space. The potentially optimal directions are

determined through evaluating the objective function at center points of the subdivided

boxes. The multivariate DIRECT algorithm can be described by the following six steps

[23].

Given an objective function f and the design space D = D0:

Step 1. Normalize the design space D to be the unit hypercube. Sample the center point

ci of this hypercube and evaluate f(ci). Initialize fmin = f(ci), evaluation counter

m = 1, and iteration counter t = 0.

Step 2. Identify the set S of potentially optimal boxes.

Step 3. Select any box j ∈ S.

Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the maximum side length. Let δ equal

one-third of this maximum side length.

(2) Sample the function at the points c± δei for all i ∈ I , where c is the center of the

box and ei is the ith unit vector.

(3) Divide the box j containing c into thirds along the dimensions in I, starting with

the dimension with the lowest value of wi = min{f(c + δei), f(c − δei)}, and

continuing to the dimension with the highest wi. Update fmin and m.

Step 5. Set S = S − {j}. If S 6= ∅ go to Step 3.

Step 6. Set t = t+1. If iteration limitor evaluation limit has been reached, stop. Otherwise,

go to Step 2.

[23] provides a good step-by-step example visualizing how DIRECT accomplishes the

task of locating a global optimum. Steps 2 to 6 form a processing loop controlled by two

stopping criteria— limits on iterations and function evaluations. Starting from the center

of the initial hypercube, DIRECT makes exploratory moves across the design space by

probing the potentially optimal subspaces. “Potentially optimal” is an important concept

defined next [23].

Definition 2.1. Suppose that the unit hypercube has been partitioned into m (hyper)

boxes. Let ci denote the center point of the ith box, and let di denote the distance from

the center point to the vertices. Let ε > 0 be a positive constant. A box j is said to be

potentially optimal if there exists some K̃ > 0 such that for all i = 1, . . . , m,

f(cj)− K̃dj ≤ f(ci)− K̃di, (2.3)

f(cj)− K̃dj ≤ fmin − ε|fmin|. (2.4)
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Figure 2.1. Illustration of potentially optimal boxes on convex hull with ε test

from [22]. Note that f∗ = fmin − ε|fmin|. Potentially optimal boxes are on the

lower-right convex hull.

Figure 2.1 represents the set of boxes as points in a plane. The first inequality (2.3)

screens out the boxes that are not on the lower right of the convex hull of the plotted points,

as shown in Figure 2.1. Note that K̃ plays the role of the (unknown) Lipschitz constant.

The second inequality (2.4) prevents the search from becoming too local and ensures that

a nontrivial improvement will (potentially) be found based on the current best solution. In

Figure 2.1, fmin is the current best solution, but its associated box is screened out of the

potentially optimal box set due to the second inequality (2.4). This is illustrated by the

dotted line in Figure 2.1.

2.2 Modifications

As a comparatively young method, DIRECT is being enhanced with novel ideas and

concepts. Jones has made a couple of modifications to the original DIRECT in a recent

paper [22]. In Step 4 of 2.1, the modified version only trisects in one dimension with the

longest side length instead of in all identified dimensions in set I as above. The dimension

to choose depends upon a tie breaking mechanism (e.g., random selection or priority by

age). Baker [2] proposes an “aggressive DIRECT”, which discards the convex hull idea of

identifying potentially optimal boxes. Instead, it subdivides all the boxes with the smallest

objective function values for different box sizes. The change results in more subdivision tasks

generated at every iteration, which helps to balance the workload in a parallel computing
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environment. Gablonsky et al. [16] studied the behavior of DIRECT in low dimensions and

developed an alternative version for biasing the search more toward local improvement by

forcing ε = 0.

The implementation of DIRECT considered here is mostly based on the original version.

Some modifications with respect to the stopping rules and box selection rules are proposed here

to offer more choices for different types of intended applications. Two new stopping criteria

are (1) minimum diameter (terminate when the best potentially optimal box’s diameter is

less than this minimum diameter) and (2) objective function convergence tolerance (exit

when the objective function does not decrease sufficiently between iterations). The minimum

diameter of a hyperbox represents the degree of space partition, and therefore is a reasonable

criterion for applications requiring only some depth of design space exploration, such as

conceptual aircraft design [35]. The objective function convergence tolerance was inspired by

some experimental observations in the later stages of running the DIRECT algorithm, when

the objective function convergence tolerance test avoids wasting a great number of expensive

function evaluations in pursuit of very small improvements. In terms of box selection rules,

two modifications are proposed. First, an optional “aggressive switch” is proposed to turn

on/off convex hull processing as first used in [2]. Secondly, ε is taken as zero by default, but

also can be assigned a value on input tailored to the application. Comparisons of DIRECT

performance with the “aggressive” switch on/off, and with ε tuning will be presented in

Chapter 4.

A final observation here is that Jones’ original description of DIRECT used the word

“rectangle” rather than the more commonly accepted terms “box” or “hyperbox.” In the

following, the step of identifying potentially optimal boxes is often referred to as convex

hull processing.
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Chapter 3: DYNAMIC IMPLEMENTATION

Recall that the motivation for this implementation is to handle efficiently the unpre-

dictable amount of storage and information required by the space partition. The main

problem to be solved is how to store the large collection of boxes, typically viewed as a set

of separate columns making up the points shown in Figure 2.1. The key operations are to

find the element in a column with least value, to remove this least-valued element, and to

add new elements to a column. Thus each column can be viewed abstractly as a priority

queue.

Typical implementations for DIRECT simply allocate a large two-dimensional array

to store the boxes as organized in Figure 2.1. Each column of the array corresponds

to the set of boxes with a given diameter. This approach has the advantage of being

simple, and matching well with the memory access patterns that work efficiently in parallel

implementations. However, the actual performance for this implementation is poor for two

reasons. First, there can be a large number of distinct box diameters at various times during

the execution of the algorithm. This translates to a potential (but changing) need for many

columns. Second, specific columns can get unusually large numbers of boxes at various

times, translating into a potential (but changing) need for many rows. These behaviors are

both transient and unpredictable. Thus, a dynamic data structure is needed.

In practice, only a few of the columns become large at any given time. The large

memory requirements of the computations involved (of which the box processing is only a

small part) argue against careless use of dynamic memory allocation, since, for example, a

list implementation that spreads the contents of a column widely through virtual memory

will result in poor use of the memory cache.

The proposed implementation is a simple modification to the columns to provide

flexibility in their length. Initially a two-dimensional array of fairly large size (depending

on the dimension of the problem) is allocated in the usual way. Depending on the size and

nature of the problem, this array might hold all boxes in the partitioning. Certainly, for

most columns all elements in the column will remain in the array. However, the array is

dynamic in that it can grow in either of two ways. First, if the array provides insufficient

columns, new blocks of columns will be allocated as needed. Second, should a given column

outgrow the space available in the array, a new chunk of space is allocated to that column.

Within a column, the points can be maintained in sorted order, removing the top

(lowest) value as needed, and adding new values when needed. As necessary, a chunk of

additional space is added or removed from the column. Within a column, shifting operations

on boxes in time O(m) are required to keep their function values sorted. A more efficient

approach is to implement each column with a heap data structure, which is a typical priority

queue that replaces shifting operations with sift down operations in time O(log2 m).
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Functionally, the Fortran 90 derived data type dynamic structures can be classified

into two groups: box structures and linked list structures. The box structures (BoxMatrix,

BoxLink, and HyperBox) are responsible for holding boxes. The linked lists (setInd, setDia,

and setFcol) are built out of linked vectors (real vector and int vector), and manage

the allocated memory for the box structures. Their use is illustrated by Figures 3.1 and

3.3.

The row dimension of the initial BoxMatrix is

nr =

{
max{10, 2n}, if n ≤ 10;
17 + dlog2 ne , otherwise;

and the column dimension is nc = 35n, where n is the problem dimension. These formulas

are based on empirical observations of box sequence lengths and the number of distinct

diameters extant during runs of many different test problems with n from 2 to 50. An

attempt was made to balance memory utilization within the initial BoxMatrix with the

need to minimize the number of new BoxLinks and BoxMatrixs allocated. This balance is

extremely problem dependent, but typically the above formulas result in all but a few very

long box sequences fitting in the initial BoxMatrix, and only occasionally are additional

BoxMatrixs required, depending on the problem and stopping criteria.

3.1. Box Structures

Figure 3.1 shows the two dimensional chain structure of the box structures group. It

consists of three derived data types: BoxMatrix, BoxLink, and HyperBox. HyperBox is the

basic unit for constructing BoxMatrix and BoxLink. It contains all the necessary information

about a hyperbox, namely, the objective function value at the box center, the coordinates

of the center point, the side lengths in all dimensions, and the box size (diameter squared).

Without further organizing the information listed above, some well-known methods for

finding the convex hull can be applied. In [23], Graham’s scan method is recommended

because it is one of the most efficient algorithms, finding the convex hull of a set of m

arbitrary points in time O(m log2 m). In the present implementation, a different approach

is taken to shrink the initial set with m points to a much smaller set of vertices exclusively

around the low edge of the convex hull as depicted in Figure 3.2.

As already described, all hyperboxes of a given diameter are sorted according to the

center points’ function values. The actual sorted list is made up of a column from a

BoxMatrix, perhaps followed by some number of BoxLinks as shown in Figure 3.1. When a

column in the initial BoxMatrix named M is full, a BoxLink is allocated and connected at the

end of the column as a sibling link, which holds a one-dimensional array of HyperBoxes

with the same number of HyperBoxes as a column in M. A BoxLink is extended in the

same fashion when it becomes full. All boxes of the same size find their places in this box

9
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Figure 3.1. Box structures comprised of HyperBoxes.

sequence, consisting of a column of M followed by an unlimited number of box links. Figure

3.1 illustrates the use of these box structures during execution of the DIRECT algorithm,

when column one in M of the first BoxMatrix has become full, thereafter having been linked

with two more BoxLinks, which are associated with each other by referencing their next and

prev pointers. Notice that M has the same number of hyperboxes in a column as a BoxLink

does, which unifies the procedures for box insertion both in M and BoxLink. Inserting a

new box into a box sequence requires three steps. First, locate the segment of the sequence

that the box’s function value falls within, either the column in M or one of the sibling

box links. Second, apply a binary search to the function values in the located segment to

find the appropriate position at which to insert the new box. Third, shift the remaining

elements in the column down by one position, possibly causing an additional BoxLink to

be allocated.

While caching performance encourages maintaining adjacent elements of a column in

adjacent memory locations, the same is not true of adjacent columns of the array. Further,

during processing it may happen that a given column becomes empty (that is, all boxes
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Figure 3.2. Scatter plot pattern.

of a given diameter may be split) and another column may need to be created (as boxes

of new diameters are created by the splitting process). Because it would be costly to sort

box sequences with respect to box sizes by rearranging the columns of M, columns are not

kept sorted by box size. However, it is necessary to find the column (if any) that stores the

boxes of a given size. A linked list structure (described in more detail in the next section) is

used to maintain the box sizes in logical decreasing order. Physically, the columns in M are

treated as independent cells that can be popped up for any boxes with a new size. In some

sense, M acts as a memory pool of recyclable cells. When cells are used up, a new BoxMatrix

is allocated and connected as the child link at the end of the chain of BoxMatrices, so

that the memory pool can be filled up again using new cells from M in the newly allocated

BoxMatrix. As an instance, Figure 3.1 shows a chain of two BoxMatrices. In this specific

example, a BoxMatrix allocates M with m rows and n columns of Hyperboxes. The column

indices of the second BoxMatrix begin with n+1 to be distinguished from indices in the first

BoxMatrix. Cell recycling is handled by the linked list data structures, discussed below.

With all the hyperboxes linked logically in the scatter plot pattern as in Figure 3.2,

Jarvis’s march (or gift wrapping) method is applied starting from the box sequence with

the biggest size, and eventually identifies all the potentially optimal boxes to be further

subdivided for the next iteration. Pseudo code for finding the convex hull follows. Let the

first box in column j have radius dj and center value fj . (Recall that box sequences are

indexed by decreasing box diameters).
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i := index of first (largest diameter) box column

k := index of second box column

while i has not reached the column with fmin do

begin

s̄ := −∞
while k has not reached the column with fmin do

begin

s :=
fi − fk
di − dk

if s > s̄ then

s̄ := s

t := k

end if

move k to the next box column index

end

screen out the columns between i and t

if ε 6= 0 then

if s̄ <
fi − (fmin − ε|fmin|)

di
then

screen out the columns from t through the column with fmin

break

end if

end if

move i to t and move k to the column index next to i

end

3.2 Linked List Structures

The linked list data structures play an important role in maintaining the logical scatter

plot pattern and recycling memory cells. They are doubly linked lists constructed with two

derived data types. setInd and setFcol are of the type int vector, which contains a

one-dimensional array of integer elements and two pointers—next and prev—for tracing

back and forth. setDia differs only in containing real elements defined in real vector.

Each linked list starts out with only one link initialized corresponding to the first BoxMatrix.

The number of elements in the one-dimensional array is equal to the number of columns n

in M of a BoxMatrix. Except for the first column used by the normalized hyperbox at Step

1 of the DIRECT algorithm, the other column indices are pushed into setFcol for later

usage. When a new BoxMatrix is added at the end of the existing BoxMatrix chain, each

of the three linked lists is also expanded with a newly allocated link for manipulating the

12
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Figure 3.3. Linked list structures. Insertion of a new box size (0.8) has four steps:

(a) request a free column index (17) from the stack top of setFcol by popping the

stack, (b) locate the insertion position (2) in setDia and insert the new diameter

(setDia is shown after the insertion), (c) add the column index to setInd at the

insertion position (shown), and (d) add the box at the beginning of the requested

column (17) in M.

new BoxMatrix. For example, in Figure 3.3, each linked list data structure has two links

corresponding to the two BoxMatrices in Figure 3.1.

From the viewpoint of memory management, these three linked lists collaborate with

each other recycling the memory cells allocated for BoxMatrix structures. Every time a new

box size is produced from box subdividing, the box with this size requests a free column

index from the (stack) top of setFcol. Similar to locating the position at which to insert

a new box into a box sequence (illustrated in pseudo code in Section 3.1), an appropriate

position will be found for this new box size in setDia, which is kept in descending order

of box sizes. Finally, the requested column index is added in setInd at the corresponding

position. The process is reversed when a box size no longer exists after the last box with

this size has been subdivided. As a result, the released column index is pushed back to the

stack—setFcol. Figure 3.3 illustrates insertion of a new size.

For faster execution, sorting is not involved in the strategy for maintaining a logical

scatter plot pattern of hyperboxes. Instead, binary search is used in locating the inser-

tion positions in sorted box size sequences. Some heap sifting operations are needed for

inserting/deleting boxes in a particular column of boxes in M and its box links, if any, while

shifting boxes among columns is avoided by keeping column indices sorted (by decreasing

box sizes) in setInd.
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The last important implementation issue is related to floating point comparisons involved

in box insertion. For portability, the module REAL PRECISION from HOMPACK90 ([36])

is used to define 64-bit real arithmetic. All equality tests between two real values are done

in the following manner: given two real values r1 and r2, r1 and r2 are considered equal if

they satisfy
|r1 − r2|
|r2|

≤ 4nu, (3.1)

where 4nu is the estimated round-off error based on the problem dimension n. This is very

important when comparing sizes of boxes in high dimensions after a number of iterations,

since round off error will make mathematically equal diameters slightly different. The same

principle is followed when comparing objective function values for inserting a box to a box

sequence.

14



Chapter 4: TEST CASES AND PERFORMANCE STUDIES

The DIRECT algorithm as described here has been applied to several standard test

functions. Among them, the Griewank function and quartic function [7] are chosen here

to study the behavior of the DIRECT algorithm and evaluate the performance of this

implementation.

The n-dimensional Griewank function [7]

f(x) = 1 +
n∑

i=1

xi
2

d
−

n∏

i=1

cos

(
xi√
i

)
, (4.1)

where d > 0 is a constant to adjust the noise, has a unique global minimum at x = 0, and

numerous local minima (see Figure 4.1). The larger the value of d, the deeper the minima

values are. The numerical results here are for an initial box [−40, 60]n and d = 500.
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Figure 4.1. One-dimensional Griewank function with parameter d = 500 (left),

and one-dimensional noisy quartic function (right).

The second test function is an n-dimensional quartic function with a random noise

variable defined by [7]

f(x) =
n∑

i=1

[2.2(xi + ei)
2 − (xi + ei)

4], (4.2)

where ei is a uniformly distributed random variable in the range [0.2, 0.4]. Such a random

function tests the algorithm’s ability to locate the global optimum in the presence of noise.

Figure 4.1 shows a one-dimensional plot of one instance of the quartic function. The quartic

function is considered in the box [−2, 2]n, n ≥ 2; the global minimum occurs at a vertex of

this box.

With respect to the proposed modifications of the DIRECT algorithm, four groups of

experiments were conducted.
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4.1. ε Test

The ε test was designed to explore the sensitivity of DIRECT to the parameter ε [23].

Eight different ε values have been tested for evaluating the performance of DIRECT as

shown in Table 4.1. For each test function, the stopping rule of a limit on the number

of evaluations was set to ensure comparability between test cases in terms of the amount

of work. 2000 and 300 evaluations were used for the Griewank function and the quartic

function, respectively. Due to characteristics of the two functions, different performance

measures were chosen. Table 4.1 shows that |fmin| is used for the Griewank function, which

has its unique global minimum f̃ = 0 at x̃ = 0. Obviously, the closer fmin gets to f̃ , the

better the DIRECT algorithm performs. As for the quartic function, the random noise

variable ei makes it hard to find the true global optimum near the boundary. However,

the global minimum falls around the vector x̃ = (2, . . . , 2) at the boundary. Therefore, an

alternative measure for convergence is taken as

δx̃ =
||xmin − x̃||
||x̃|| , (4.3)

where xmin is the computed optimal vector.

From the experimental results shown in Table 4.1, the DIRECT algorithm’s behavior

is different for the two test functions. For the Griewank function, a smaller ε gives a closer

|fmin|, while a larger ε seems to work better for the quartic function in terms of the smallest

δx̃. [16] conducted similar experiments and observed that the choice of the ε value depends

on the characteristics of objective functions, such as the dimension of the problem n and

the number of local and global minima.

Table 4.1. ε test results for stopping rule of a limit on the number of function

evaluations (2000 for the Griewank function and 300 for the quartic function) for

n = 2.

Griewank Function Quartic Function
ε value evaluations |fmin| evaluations δx̃

0.01 2007 1.75E-006 301 7.38E-03
0.001 2013 1.75E-006 303 9.20E-03
0.0001 2001 2.16E-008 301 4.95E-02
0.00001 2031 2.16E-008 305 1.23E-02
0.000001 2043 2.66E-010 301 1.64E-02
0.0000001 2027 2.66E-010 305 2.77E-02
0.00000001 2023 3.29E-012 303 2.76E-02
0.0 2071 0.00 307 2.05E-02
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4.2. “Aggressive switch” Test

This test was intended for observing the effect of the “aggressive switch”, which was first

implemented in [2] to adapt to a parallel computing environment. Basically, the “aggressive”

switch determines whether DIRECT performs the convex hull processing or not. With the

switch on, it bypasses the procedure of finding the boxes on the lower right convex hull.

Instead, it subdivides all boxes with the lowest function values in box sequences. Figure 4.2

compares the natural logarithms of the number of evaluations with the switch on and off

for both functions as the problem dimension N increases from 2 to 28. The stopping rule

is the limit on the number of iterations. As the problem dimension N grows, the number

of evaluations is increasing with the switch either on (dotted) or off (solid). With the

aggressive switch on, many more evaluation tasks are generated in each iteration. In a serial

computing environment, aggressive switch off is preferred in order to reduce the workload

of space partitioning. However, the switch is desired to be on to balance the workload for

massively parallel multiprocessors. In that context, the switch on also speeds up locating

the global optimum. Detailed experimental results and analyses can be found in [2].
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Figure 4.2. Dimension N vs. loge(Nevl) with aggressive switch off (solid) and on

(dotted). Nevl is the number of function evaluations.

4.3. Performance Tests

Efficiency is one of the critical performance issues that the present implementation

tends to emphasize. It involves several aspects, including the speed in locating the global

minimum, the storage required, and the algorithm performance in the presence of noise.

Figure 4.3 shows the history of fmin for the 20-dimensional Griewank function and the

quartic function. Both of them stop when the box holding the current fmin has reached

the allowed minimum diameter, which is estimated to be at the round off level within the

bounded design space. The similar trend, sharply decreasing at the beginning and leveling
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off at the end, motivates the implementation of the new stopping rule—objective function

convergence tolerance—

τf =
f̃min − fmin

1.0 + f̃min

, (4.4)

where f̃min represents the previous computed minimum. The algorithm stops when τf

becomes less than a user specified value. It avoids wasting function evaluations for small

improvements, which are plotted as dotted tails in Figure 4.3. The definition of objective

function convergence tolerance (4.4) differs from the percent error in [23], which is based on

the knowledge of the true global optimum of the objective function, while τf measures the

convergence with the current best estimate of the optimum. This is a reasonable stopping

criterion for large-scale engineering design problems. Note that the stopping criterion (4.4)

results in premature termination if τf ≈ 0 early in the iterations. Such a failure is easily

recognized, though, by the size of the final box containing the minimizing point.
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Figure 4.3. Change in computed fmin as DIRECT progresses for the Griewank

function and the quartic function with objective function tolerance = 0 (dotted)

and 0.0001 (solid), for n = 20, ε = 0.

The required storage is directly related to two factors—the number of distinct diameters

Nd and the length of box sequences Lb, which determine the memory occupied by the box

structures BoxMatrices and BoxLinks. An interesting observation here is that ε plays a

role in reducing the number of distinct diameters Nd. Figures 4.4 and 4.5 show the change

in Nd with ε = 0 and ε = 0.0001. The case with ε = 0 produces more distinct diameters

since it always subdivides the box with fmin, which also is the smallest one among all boxes

on the lower right convex hull. In contrast, ε = 0.0001 skips the leftmost part of the lower

right convex hull as illustrated in Figure 2.1, thereby reducing the chances of generating

new distinct diameters.

The changes in the maximum and average lengths of box sequences were tracked as

DIRECT progressed. Figure 4.6 shows that the maximum box sequence length increases
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Figure 4.4. Change in number of distinct diameters Nd as DIRECT progresses

for n = 20, ε = 0.
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Figure 4.5. Change in number of distinct diameters Nd as DIRECT

progresses for n = 20, ε = 0.0001.

dramatically compared with the average one. Only a few box sequences are very long. This

is the reason for using BoxLinks to extend the box sequences instead of only allocating

BoxMatrices with a great number of rows, which would waste memory for short box

sequences.

The extent to which the allocated memory is used depends on the problem, ε, and

the stopping criteria. Figures 4.7 and 4.8 show the allocated and used memory, and how

the relationship varies. For small numbers of iterations, much of the allocated memory can

remain unused, but for large numbers of iterations (1000s), almost all the allocated memory

can be used.

The next experiment tests the performance of DIRECT in the presence of different

noise levels. In the sense of [7], the Griewank function is a quadratic function with noise

added by including a cosine function. The noise level can be controlled by the parameter d.

In Figure 4.9, the global minimum f̃ = 0 of the Griewank function can be located within

2000 evaluations until d becomes greater than 1200. More function evaluations would be

needed for higher noise levels. The δx̃ of the quartic function has increasing fluctuations as

19



0 50 100 150 200
Iteration

0

500

1000

1500

2000

2500

3000

Lb

Griewank Function

0 20 40 60 80
Iteration

0

250

500

750

1000

1250

1500

Lb

Quartic Function

Figure 4.6. History of maximum (solid) and average (dotted) box sequence lengths

for n = 20, ε = 0.
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Figure 4.7. The number Nbox of hyperboxes allocated (dotted) compared to the

number of hyperboxes actually used (solid), as the iteration progresses, for n = 20,

ε = 0.
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Figure 4.8. The number Nbox of hyperboxes allocated (dotted) compared to the

number of hyperboxes actually used (solid), as the iteration progresses, for n = 20,

ε = 0.0001.

the noise level α increases, reflecting the impossibility of locating the minimum with small
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Figure 4.9. Test results for varying parameter values (parameter d for Griewank

function and noise level α for the quartic function (ei ∈ [0.3− α, 0.3 + α])) for

stopping rule of a limit on number of the function evaluations (2000 for the Griewank

function and 300 for the quartic function) with n = 2, ε = 0.

Table 4.2. Comparison of static and dynamic implementations with BoxMatrix

column dimension nc = 2n, problem dimension n, L iterations, ε = 0.

Baker [2] Gablonsky [15] dynamic structures
Problem n L time memory time memory time memory

Griewank 2 50 172 10264 34 2224 85 1040
Griewank 5 50 199 11504 34 2352 73 1024
Griewank 10 50 310 15424 51 2648 110 1616
Griewank 15 50 639 18280 88 3232 192 2744
Griewank 20 50 * * 170 4464 397 6080
Griewank 50 70 * * * * 6161 82664
Quartic 2 50 108 10240 26 2176 25 520
Quartic 5 50 151 11488 31 2240 27 528
Quartic 10 50 441 15432 36 2472 58 1160
Quartic 15 50 1260 18336 54 2992 125 2176
Quartic 20 50 * * 82 3872 240 4560
Quartic 50 90 * * * * 6572 86656

signal to noise ratios.

4.4. Comparison with Static Allocation Programs

Table 4.2 compares two static data structure implementations of the DIRECT algorithm,

[2] and [15], with the dynamic data structure implementation proposed here. The test

problems are the same two used throughout this section. Execution time is reported in

milliseconds, and the memory usage reported is the maximum working set size in pages

(1 page = 512 bytes). This number precisely reflects the virtual memory required by the

program during execution. Not surprisingly, static implementations can execute much faster,

until paging of the large static structures dominates the time. As Table 4.2 shows, the
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difference in memory requirements can be substantial. Of course, if a DIRECT code is being

used inside a larger scientific computation, there is no contest in terms of robustness. The

dynamic code described here will always return with something useful, whereas a statically

allocated code will simply fail when it exhausts its memory allocation. The results in Table

4.2 used BoxMatrix column dimension nc = 2n, which produced better results than the

earlier mentioned value of nc = 35n derived from a large ensemble of experiments. An

asterisk in the table indicates that the code failed with an execution exception.
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Chapter 5: S4W DESIGN OPTIMIZATION

This chapter briefly describes the other three major components for solving the optimal

transmitter placement problem for indoor wireless communication systems. They are

propagation modeling (5.1), channel modeling (5.2), and the objective function formulation

(5.3). The optimizationexperiments with the present DIRECT implementation are presented

in 5.4.

5.1 Ray Tracing Propagation Model

Received impulse responses are approximated with a 3D ray tracing propagation model

that is based on geometrical optics. Electromagnetic waves are modeled as rays that are

traced through reflections and transmissions through the walls. Beams [10] are shot from

geodesic domes drawn around transmitters. Each beam is a triangular pyramid formed

by the point location of the transmitter and one of the triangles on the surface of the

dome. Essentially, the spherical wavefront is triangulated and the 3D sphere is split into

pyramidal beams. Following the argument in [30], all such beams are disjoint and have

nearly the same shape and angular separation. Only the central ray of each beam is

traced to identify reflection locations. However, the whole beam is used for ray-receiver

intersection tests. Once an intersection with a receiver location is detected, a ray will be

traced back from the receiver to the transmitter through the sequence of reflections and

transmissions (penetrations) encountered by the beam. The illustration of this process in

2D is given in Figure 5.1. Figure 5.2 depicts a fast intersection test of a beam with a

grid of receiver locations. Neither diffraction nor scattering are modeled for computational

complexity reasons, although these phenomena play an important role in propagation [27].

Octree space partitioning [17] and image parallelism with dynamic scheduling [12] are used

to reduce simulation run time.

Although material parameters and incidence angles affect losses in a wireless channel, a

constant 6 dB reflection loss (same as in [29]) and a constant 4.6 dB transmission (penetration)

loss (the loss for plaster board in [9]) are assumed. The power contribution of each ray,

in dBW, is calculated according to the model developed in [30]:

Pj = P (d0)− 20 log10(d/λ)− nLr −mLt, (5.1)

where Pj is the power of the j-th ray, d is the total distance traveled by the ray, P (d0)

is the transmitter power at a reference distance d0 from the transmitter, n and m are the

numbers of reflections and transmissions, Lr = 6 dB and Lt = 4.6 dB are reflection and

transmission losses, and λ is the wavelength.

The ray tracer has been validated and calibrated with a series of measurements in

the corridor of the fourth floor of Durham Hall, Virginia Tech. An ultrawideband sliding

23



Imaginary Source 2

Wall 2

Wall 1

Transmitter

Imaginary Source 1

Receiver

Figure 5.1. 2D beam tracing: a beam (shadowed region) is traced from the

transmitter location to the receiver location through two reflections, and then a

ray (bold line) is traced back.

Receiver Grid

Transmitter

Figure 5.2. Beam intersection with a receiver grid: only the locations inside of the

bounding box of the projection of the beam onto the grid (shadowed region) are

tested for intersection with the beam pyramid.

correlator channel sounder [27] operating at 2.5 GHz and outfitted with omnidirectional

antennas was used to record impulse responses at six separate locations. The sliding

correlator utilized an 11-bit, 400 MHz pseudo-noise spreading code for a time domain
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multipath resolution of 2.5 nanoseconds and a dynamic range of 30 dB. Simulated power

delay profiles were post-processed and compared to the measured ones location by location.

Comparing ray tracer output with a physical channel requires accounting for antennas

and resampling the signal to match the sampling rate of the measurement system. The same

conversion sequence was used for both validation against measurements and interfacing with

the WCDMA simulation. The received E-field envelope of ray j (in V/m) that arrived at

time tj isEj =
√
η100.1Pj , where Pj is the output of the ray tracer (in dBW) and η = 120π Ω

is the impedance of free space [27]. To account for antenna directivity, an omnidirectional

antenna pattern must be applied to all Ejs. The electric field that would be registered at

time tj by a hypothetical measurement system with infinite bandwidth resolution is

E ′j = EjGtGr cos Θt cos Θr , (5.2)

where Θt and Θr are ray transmission and reception elevation angles relative to the horizon,

and Gt and Gr are maximum transmitter and receiver antenna gains, respectively. Further,

the discrete impulse response must be convolved with a Gaussian filter and sampled at

uniform time intervals of width δ. The measurement system output samples with δ = 1 ns

while the WCDMA simulation used chip width δ ≈ 260 ns. The measured electric field Em
k

of bin k centered at time kδ is

Emk = C

Q∑

j=1

E ′je
iφj

∫ tj−kδ+δ/2

tj−kδ−δ/2

e−τ
2/(2σ2)dτ, (5.3)

where Q is the number of rays, σ is the half-width of the Gaussian pulse (1.25 ns for

measurements), and C is a scale factor that fits this generic equation to a particular system.

Since most of the energy in the Gaussian pulse should fall into one time interval of width δ,

assume that

C

∫ δ/2

−δ/2

e−τ
2/(2σ2) dτ = 1. (5.4)

The complex factor eiφj accounts for ray interference. Phase angles φj were determined

from transmitter wavelength λ, total ray path length dj , and number of reflections n (a 180

degree phase shift per reflection was assumed). Another interpretation of (5.3) is that every

time bin registers a weighted average of the energies of all predicted rays, where the weight

decreases exponentially as the time difference of the ray and the bin increases. Finally,

Pmk = |Emk |2/η gives the measured power of bin k, in watts.

Figure 5.3 shows measurements and predictions for one location with relatively strong

multipath. As can be seen from the graph, the predictions are within 3–5 dB of the

measurements, which is similar to the results achieved by earlier research [30]. The difference

can be explained by device positioning errors (devices were positioned with±3 cm precision,
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Figure 5.3. Measurement vs. prediction of channel impulse response.

which is crude given that the wavelength was 12 cm) and imprecise modeling of reflections.

Additionally, small multipath components were missed by the ray tracer. These components

are probably due to scattering and diffraction,which were not simulated. Geodesic tessellation

frequency was 700 (9.8 × 106 beams) for calibration because the simulation results for

frequencies above 700 were indistinguishable.

5.2 WCDMA Simulation and Surrogates

The ray tracing propagation model predicts a measured impulse response Pm1 , Pm2 , . . .,

Pmn of a wireless channel (see 5.1). This propagation model does not directly predict the

performance of any particular wireless system that operates in this channel. A meaningful

performance metric is the bit error rate (BER) defined as the ratio of the number of incorrectly

received bits to the total number of bits sent. The power level Pm1 at the receiver location

maps directly to the BER of a narrowband system designed for n = 1. However, estimating

the BER of a wideband system (designed for n > 1) in a mobile wireless environment usually

involves analytically non-tractable problems [14]. This work uses simple least squares and

multivariate adaptive regression splines (MARS [13]) to fit the results of a Monte Carlo

simulation of a WCDMA system. The WCDMA simulation models channel variation due

to changes in the environment as a random process [21]. Notice that channel variation due

to receiver movement is modeled in both the ray tracing and the WCDMA simulations, but

other kinds of variation are modeled only in the WCDMA simulation. This section outlines

the WCDMA simulation and describes the surrogate functions used for optimization.

Figure 5.4 briefly describes the computational steps of the WCDMA simulator. The

source module of the transmitter generates information data to be sent through a wireless

channel. The generated information is processed with a series of digital signal processing

algorithms to reduce the potential channel errors. The wireless channel is modeled as a

linear time varying process in the present work. The channel is characterized by the impulse

response predicted by the ray tracer. Before being sent to the receiver, the channel output
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Figure 5.4. Block diagram of the WCDMA simulator.

is combined with Gaussian noise at the receiver front end. Similarly, the received distorted

signal is processed with a series of digital signal processing algorithms by the receiver, which

thereafter estimates the information bits to be compared with the original information bits

for the BER.

The WCDMA simulation is computationally intensive since a satisfactory BER value

ranges from 10−3 to 10−6. The parallelized WCDMA simulator significantly speeds up the

simulation process, but its run time is still far from practical for optimization problems. The

BER depends on small-scale propagation effects that exhibit large variation with respect

to receiver location. Practical coverage optimization problems involve wavelengths of less

than a foot and areas of thousands of square feet. Four samples per wavelength should be

taken to obtain meaningful aggregate results. Therefore, the BER results of the WCDMA

simulation were approximated by simple models.

Consider a distribution of impulse responses in the environment shown in Figure 1.1,

as measured by the receiver with the carrier frequency 900 HMz, the standard chip width

δ ≈ 260 ns, and a dynamic range (a ratio of the peak power to the noise level) of 12 dB.

Empirically, 49% of the impulse responses have only one multipath component (n = 1),

42% have two multipath components where the first one is dominant (n = 2, Pm1 ≥ Pm2 ),

7% have two multipath components where the second one is dominant (n = 2, Pm1 < Pm2 ),
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and the remaining 2% have three multipath components (n = 3). It turns out that simple

models can approximate the BERs at the majority of the receiver locations. This work

considers the first two cases that account for 91% of the data.

Given a measured impulse response Pm1 , Pm2 , . . ., Pmn , define the relative strength of

the first multipath component

p1 = Pm1 /
∑

1≤i≤n
Pmi (5.5)

and the signal-to-noise ratio (SNR)

S = max
1≤i≤n

{10 log10(Pmi /N0)} (5.6)

(in dB), where N0 is the noise power level (in watts).

The BER b1 of a WCDMA system in the first case (n = 1, p1 = 1) was approximated

by

loge(b1) = −0.251S − 2.258, (5.7)

obtained by a linear least squares fit of the simulated BERs for S = 0, 2, . . ., 30 in steps

of 2 dB (16 points). In other words, the BER of a WCDMA system with a single path is

a simple monotonically decreasing function of the SNR. This observation justifies the use

of power levels to predict system performance when there is no multipath. However, using

the strongest multipath component to predict the BER does not work when n > 1.

The second case (n = 2, p1 ≥ 0.5) was approximated using MARS models. The MARS

models provided a more accurate fit to the data in comparison with the previously used

linear least squares fit ([33]), reducing both the relative and absolute error. The MARS fit

is a sum of products of univariate functions in the form

f(x) = a0 +
M∑

n=1

an

Kn∏

k=1

Bkn
(
xv(k,n)

)
. (5.8)

In this model, the multivariate spline basis functions are denoted by B, and their associated

coefficients by a. This expansion of spline basis functions determines the number of basis

functions, M , as well as product degree and knot locations (number of splits that gave rise

to Bn is denoted by Kn) automatically from the data. In this model, the covariates are

represented by x, where v(k,n) label the predictor variables. MARS models were developed

for three different coding choices: no channel coding, rate 1/3 coding, and rate 1/2 coding.

The latter two cases both use FECC (forward error correction code) to improve the BER

performance. A soft decision Viterbi algorithm is used in decoding the convolutional FECC,

because it produces a smaller BER than the hard decision Viterbi algorithm. The difference
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between these two cases lies in the convolutional code rate. Rate 1/3 coding provides a

better error correction mechanism than the rate 1/2 coding.

The data used to build the no channel coding model consisted of 63 points from a

Cartesian product of S = 0, 1, . . ., 20 and p1 = 0.9, 0.7, 0.5, and 48 points from a Cartesian

product of S = 0, 1, . . ., 15 and p1 = 0.9, 0.7, 0.5 for the channel coding models. Plots

of the fitted models reveal that the BER approaches zero as the SNR increases and that

stronger multipath significantly improves performance for a fixed SNR. The latter needs

some explanation because multipath is often thought of as an impairment that degrades the

system performance. In this work, the SNR is defined in terms of the strongest component

of the impulse response. When the SNRs of two channels that meet the criteria for this

case are the same, the channel with a stronger second component contains more total power

than the channel with a weaker second component. In this case, the benefits of more power

outweigh the disadvantages of multipath.

No Coding

0.6
0.8p1 0

10
20

SNR

0.10.1
BER

0.6
0.8p1

0.10.1
BER

Figure 5.5. The MARS surface plot of no channel coding model.

Both surrogate models were validated with the simulated BER results. In the first

case, the approximate values had an average relative error of 9.7% (0.9% minimum, 19.4%

maximum) for the simulation output at S = 1, 3, . . ., 29. In the second case, the approximate

values had an average relative error of 12.8% and average absolute error of 0.0006 for the

no channel coding model, 14.1% average relative error and 0.0005 average absolute error for

the rate 1/3 coding model, and 19.9% average relative error and 0.0012 average absolute

error for the rate 1/2 coding model. The validation sets for the second case consisted of

42 points for a Cartesian product of S = 1, 2, . . ., 20 and p1 = 0.8, 0.6 for the no channel

coding model, and 32 points for a Cartesian product of S = 1, 2, . . ., 15 and p1 = 0.8, 0.6

for the channel coding models.

Finally, observe that the models for the two cases are not asymptotically matched.

The simulated WCDMA receiver had two rake fingers, one of which was turned on or

off depending on whether or not the second multipath component met the relative power

threshold. Discontinuity can pose problems for the DIRECT optimization algorithm, which

assumes Lipschitz continuity.
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To summarize, this work considers two surrogate models for the BER of a WCDMA

system. The first model was obtained using a least squares fit of the logarithm of the BER

to a combination of channel characteristics. The second model was obtained using a MARS

fit of the BER to a combination of channel characteristics. Empirically, both models cover

91% of the data with about 9.7% average relative error for the least squares model and 15.6%

average relative error and 0.0008 average absolute error for the MARS models. The large

average relative error is misleading since the larger errors occur where the BER is nearly

zero, and the absolute error there is very small. The quality of the MARS approximation

is apparent in Figure 5.5, which shows the MARS spline surface for the no channel coding

model, the points used to construct it (p1 = 0.9, 0.7, 0.5), and the points used to validate

the approximation (p1 = 0.8, 0.6). However, no confident claims can be made because the

distribution of the fitted data is unknown. In particular, these models do not apply for

n > 2. While the spline surrogate is quite good within the range of the fitted data, the

surrogate function needs to be modified to give reasonable values for S < 0. The latter is

crucial for using surrogates to solve the optimization problem with the DIRECT algorithm

described in Chapter 2.

5.3 Objective Formulation

As [23] proved, the DIRECT algorithm is guaranteed to converge globally if the objective

function is Lipschitz continuous. However, the original definitions for both performance

criteria—power coverage and BER (bit error rate) do not satisfy this condition. Similar to

the power coverage criterion introduced in Chapter 1, BER is the ratio of bits that have

errors relative to the total number of bits received in a transmission. Reformulation is

required to eliminate the discontinuity. The following two subsections describe the single

transmitter case and the multiple transmitters case, respectively.

A. Single Transmitter Case

Consider the placement of a single transmitter in a coverage-limited indoor environment,

in which outage is a result of excessively low local mean wanted signal power and fading of

the wanted signal [6]. The ray tracing technique serves as a deterministic way to calculate the

local mean signal power propagating from the transmitter to each receiver on the reception

grid. To optimize the location of the transmitter, the decision variables are the x and y

coordinates (transmitter height z = z0 is fixed, which is a reasonable assumption in indoor

environments). The objective function for the power coverage is the average shortfall of the

received power Pi(x, y, z0) from the threshold Tp:

f(x, y, z0) =
1

m

m∑

i=1

(Tp − Pi(x, y, z0))+, (5.9)

30



where Tp is the given power threshold (in dBm), Pi(x, y, z0) is the power received at the ith

receiver (in dBm) with a single transmitter located at (x, y, z0), and m is the total number

of receivers. The penalty (Tp − Pi(x, y, z0))+ implies that receivers with power above the

threshold do not contribute to f , while receivers with power below the threshold contribute

the difference of the power and the threshold. The goal of the optimization is to minimize

f . The best possible value for f is zero, which corresponds to perfect coverage.

Similarly, the objective function for BER optimization is the average shortfall of the

continuous surrogate BERs bi(x, y, z0) from the specified threshold Tb:

f(x, y, z0) =
1

m

m∑

i=1

(bi(x, y, z0)− Tb)+, (5.10)

where bi(x, y, z0) is the surrogate estimate of BER at the ith receiver from a single transmitter

located at (x, y, z0). The penalty here is for a high bit error rate.

B. Multiple Transmitter Case

To extend the problem to the placement of multiple transmitters, an assumption was

made to validate the objective function reformulation. Transmitters are assumed to operate

at sufficiently different frequencies so that receivers can pick up the strongest signal. In other

words, the indoor environment is only considered as a coverage-limited one, which is different

from the interference-limited environment, where the outage is a result of co-channel signals

dominating or interfering with the wanted signals [6]. Such an environment presents more

complexities and challenges for implementing the WCDMA channel model. Chapter 6 will

discuss this issue in the context of future work.

As in [11], the design variables are the transmitter coordinates

X = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn),

where all zj = z0 are assumed to be fixed, the same as in the single transmitter case.

Permuted coordinates will occur during optimization, since the DIRECT algorithm treats

the function as a black box and has no knowledge of any symmetry relationships. When

system settings are a permutation of an earlier setting, clearly the objective should not be

reevaluated by using expensive ray tracing. A solution is to simply sort coordinates on each

dimension, and buffer current pairs of sorted coordinates and the corresponding function

values. When the permuted coordinates are detected by the optimizer, the function value

will be taken directly from the buffer instead of calling the ray tracer to reevaluate the

function.

With the stated assumption and the design variables above, the single transmitter

location problem is a special case of n transmitter problem with n = 1. The goal is to
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Figure 5.6. Problem solving environment for transmitter placement optimization.

minimize the average shortfall (power coverage or bit error rate) of the n transmitters over

m receiver locations. Let transmitter (k, i), located at (xk, yk, z0), 1 ≤ k ≤ n, generate

the highest peak power level Pki(xk, yk, z0) ≥ Pji(xj , yj , z0), 1 ≤ j ≤ n, at the receiver

location i, 1 ≤ i ≤ m. The objective function is the average shortfall of the estimated

performance metric from the given threshold T , given by

f(X) =





1

m

m∑

i=1

(T − pki)+, coverage,

1

m

m∑

i=1

(pki − T )+, BER,

(5.11)

where pki is the performance metric of transmitter (k, i) evaluated at the ith receiver location.

For power coverage optimization, pki is Pki(xk, yk, z0) and (T − pki)+ is the penalty for a

low power level. For BER optimization, pki is BERki and (pki − T )+ is the penalty for a

high bit error rate.

5.4 Optimization Results

Optimization was done inside a problem solving environment (PSE) as shown in Figure

5.6. Ray tracing was performed on a 200-node Athlon 650 Beowulf cluster of Linux

workstations. The DIRECT optimizer and the user interface ran on a Sun workstation

outside the cluster. Tcl/Tk scripts glued the pieces together and provided a graphical

user interface. Similar to [25], users could select regions for transmitter placement (to be

optimized) and regions to be covered.

Runs for optimizing transmitter placement were executed with respect to the two

performance criteria—coverage and BER. The ray tracer’s tessellation frequency was 100

for coverage and 300 for BER. The former was sufficient to match the peak powers against

measurements, while the latter was required to match the whole impulse responses. Two

different indoor environments were chosen to demonstrate the effectiveness of the optimiza-

tion. The first environment is located on the fourth floor of Durham Hall at Virginia Tech.
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Figure 5.7. Power coverage optimization results for one transmitter. Bounds on

transmitter placement are drawn with dotted lines and the initial (final) position

is marked with a circle (cross) in the center.

It was the first case study for the global optimization technique. Simulations have been

verified with measurement data (see 5.1). The simulation verification with measurement on

the second environment—the second floor of Whittemore Hall—is in progress. The same

environment had been used in both raytracing simulations and measurements in [30], which

considers signal diffractions in the propagation model so that it can match well the measured

and predicted propagation in a variety of indoor environments. (The propagation model

code of [30], while having better physics than the present ray tracing code, is orders of

magnitude slower because of inefficient data structures.)

A. Durham Hall, fourth floor

The results of optimizing a single transmitter location in the case of coverage are shown

in Figure 5.7. It took 41 evaluations (3 minutes, 45 seconds) to reduce the objective function

by 22.2% (from 4.60 dB to 3.58 dB) demonstrating the fast convergence of the DIRECT

algorithm.

Figure 5.8 illustrates power coverage optimization of the locations of three transmitters

to cover eighteen rooms and a corridor bounded by the box in the upper-left corner. 93

function evaluations reduced the objective from 2.77 dB to 2.51 dB, or by 9.4%, in 38

minutes on 40 machines. Figure 5.9 depicts BER optimization of the locations of two

transmitters to cover half of the former region. In Figure 5.9 (a), 56 iterations reduced
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Figure 5.8. Power coverage optimization results for three transmitters. Bounds on

transmitter placement are drawn with dotted lines and their initial (final) positions

are marked with circles (crosses). The dashed line delimits the region to be covered.

the objective function from 8.24e-4 to 1.65e-4 in 3 hours and 26 minutes on 40 machines.

The BER threshold was 10−3, so this improvement corresponds to a 79.9% reduction in the

average BER. From Figure 5.9 (b), it’s observed that the percentage of the receivers with

satisfied BER is growing as the objective function decreases. In both cases, the optimization

loop stops with the minimum diameter required by the problem. System performance was

significantly improved by DIRECT with a reasonable number of evaluations.

Figure 5.10 demonstrates the effectiveness of the new stopping criterion—objective

function convergence tolerance. This figure shows the power coverage optimization results

for two transmitters in the region delimited by dashed lines. The initial locations are marked

as circles. Bounds on transmitter placement are drawn with dotted lines. Two simulations

were done with different objective function convergence tolerances—0 and 0.001. In the

former case, it took 52 iterations to reach the final locations (marked as crosses). In the

latter case, the final locations (marked as triangles) were found after 27 iterations. Using a

nonzero objective function convergence tolerance saved 25 expensive ray tracing iterations.

B. Whittemore Hall, second floor

Similar numerical experiments were conducted for the second environment to compare

the optimization results and performance in terms of power coverage and BER. Figure 5.11
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Figure 5.9. BER optimization results for two transmitters. The region to be

covered is half of that in Figure 5.8

and Figure 5.12 show the results for optimizing the placement for a single transmitter and

three transmitters respectively.

To optimize the single transmitter location, the minimum diameter stopping criterion

was used in both power coverage and BER optimizations. It took 6 more evaluations for the

BER optimization to finish than the power coverage optimization. Since BER simulation

is affected by numerous system and channel parameters such as signal-to-noise ratio, data

rate, modulation type, etc. [14], it is very sensitive to parameter changes caused by changing

transmitter locations. The objective function for BER exhibits more complexity (both
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Figure 5.10. Power coverage optimizationresults for two transmitterswith objective

function convergence tolerance = 0 (dashed) and 0.001 (solid).

multipath components are involved when there are two resolvable paths.) than the one for

power coverage (only the dominant multipath component is considered), therefore it takes

more evaluations to approach the global optimum. It’s also observed in Figure 5.11 that

the final locations are different. Generally, BER optimization results are preferred, since

BER is considered a better performance criterion in the design of mobile communication

systems as pointed out in Chapter 5.2.

In the case of optimizing three transmitter locations, the stopping criterion was the

maximum number of evaluations. Both BER and coverage optimization stopped at the 54th

iteration. The exact same final transmitter locations were reached at the 51st iteration.

Interestingly, the final locations are exactly the same (marked as crosses at the top of Figure

5.12). This indicates a reasonable connection between these two different performance

metrics— power coverage and BER.

Table 5.1 compares the cost and improvement for these four optimization experiments.

The computational cost of ray tracing iterations is the metric. Improvement is defined as

the ratio of reduction in the function value to the initial function value. In both cases, the

BER optimization achieved a better improvement than the power coverage optimization

with almost the same cost. For the single transmitter, the objective function value of the

BER optimization was reduced by 60.7% while the power coverage optimization improved

only by 37.7%. In the case of three transmitters, the objective function was reduced by
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Figure 5.11. Power coverage and BER optimization results for a single transmitter.

Bounds on transmitter placement are drawn with dotted lines and the initial

position is marked with a circle. Final position found by the power coverage

(BER) optimization is marked with a triangle (cross). The dashed line delimits

the region to be covered.

48.9% for the power coverage optimization and by 64.2% for the BER optimization. From

this comparison, the DIRECT algorithm works very cost-effectively for BER optimization

problems. On the other hand, the center-sampling strategy of DIRECT benefits the power

coverage optimizationsby startingat the centers of bounded areas, so that the well-distributed

initial locations only need a little adjustment. This can also explain why the power coverage

optimization gave less improvement.
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Figure 5.12. Power coverage and BER optimization results for three transmitters.

Bounds on transmitter placement are drawn with dotted lines and their initial

(final) positions are marked with circles (crosses). The dashed line delimits the

region to be covered.
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Table 5.1. Cost (number of ray tracing iterations) and improvement (relative

function value reduction) comparison for power coverage and BER optimization

experiments. (Second environment.)

cost improvement
Power coverage 28 37.7%
BER 34 60.7%

(a) single transmitter

cost improvement
Power coverage 54 48.9%
BER 54 64.2%

(b) three transmitters
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Chapter 6: CONCLUSIONS AND FUTURE WORK

DIRECT has demonstrated its effectiveness in solving the global optimal transmitter

placement problem in wireless communication systems. One of the major contributions of

the present work is the design of the dynamic data structures for the DIRECT algorithm.

They not only address efficiently the problem of unpredictable memory requirements in

large-scale engineering optimization, but also simplify key steps of the DIRECT algorithm

for identifying potentially optimal boxes. In addition, the proposed modifications in stopping

criteria and box selection rules have shown great value in adapting DIRECT to varying

types of objective functions and design goals.

Several extensions to the present work are envisioned. First, different ways of combining

the deterministic propagation model with the stochastic wireless system model will require

a parallel implementation of the DIRECT algorithm. Some ongoing research topics include

a MPI-based parallel version using the dynamic data structures (or suitable variants of

them) proposed here. Both a master-slave version (for a moderately parallel system or low

dimensional problems) and a distributed control version (for massively parallel systems and

higher dimensional (n > 30) problems) are likely to find practical applications in wireless

communication systems and other MDO (multidisciplinary design optimization) problems.

Second, incorporating nonlinear constraints has been attempted by several authors (Jones

[22], Torczon), but the issue is by no means satisfactorily resolved. Finally, the surrogate

functions for the BER can be extended to channels with relatively strong multipath and

interference. Moreover, wireless systems with data quality bit error rates (10−6) can be

considered.
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Appendix A: Fortran 90 MODULE REAL PRECISION

The Fortran 90 module REAL PRECISION (from HOMPACK90 [36]) that defines 64-bit

real arithmetic discussed in Chapter 3.2 is listed here.

MODULE REAL_PRECISION ! From HOMPACK90.

! This is for 64-bit arithmetic.

INTEGER, PARAMETER:: R8=SELECTED_REAL_KIND(13)

END MODULE REAL_PRECISION
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Appendix B: Fortran 90 MODULE VTDIRECT GLOBAL

The Fortran 90 module VTDIRECT GLOBAL that defines the dynamic data structures

discussed in Chapter 3 is listed here.

MODULE VTDIRECT_GLOBAL ! Defines data types, parameters, and

USE REAL_PRECISION ! module procedures used by VTDIRECT.

IMPLICIT NONE

!

!HyperBox: Defines an n-dimensional box.

! val - Function value at the box center.

! c - The center point coordinates.

! side - Box side lengths for all dimensions.

! diam - Box diameter squared.

!

TYPE HyperBox

REAL(KIND = R8) :: val

REAL(KIND = R8), DIMENSION(:), POINTER :: c

REAL(KIND = R8), DIMENSION(:), POINTER :: side

REAL(KIND = R8) :: diam

END TYPE HyperBox

!

!BoxLink: Contains 1-D array of hyperboxes, linked to each column of

! BoxMatrix when needed.

! Line - 1-D array of boxes.

! ind - Index of last box in array ’Line’.

! next - The pointer to the next BoxLink.

! prev - The pointer to the previous BoxLink.

!

TYPE BoxLink

TYPE(HyperBox), DIMENSION(:), POINTER :: Line

INTEGER :: ind

TYPE(BoxLink), POINTER :: next

TYPE(BoxLink), POINTER :: prev

END TYPE BoxLink

!

!P_BoxLink: Contains a pointer to a BoxLink for a column in BoxMatrix.

! p - Pointer to a BoxLink.

!

TYPE P_BoxLink

TYPE(BoxLink), POINTER :: p

END TYPE P_BoxLink

!

!BoxLine: Contains 1-D array of newly sampled hyperboxes.

! Line - 1-D array of boxes.

! ind - Index of last box in array ’Line’.

! dir - Directions in which box centers are sampled.

!

TYPE BoxLine

TYPE(HyperBox), DIMENSION(:), POINTER :: Line

INTEGER :: ind

INTEGER, DIMENSION(:), POINTER :: dir

END TYPE BoxLine

!

!BoxMatrix: Contains 2-D array of hyperboxes.
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! M - 2-D array of boxes.

! ind - An array holding the number of boxes in all the columns in ’M’.

! child - The pointer to the next BoxMatrix with the smaller diameters.

! sibling - The pointer array for all columns, pointing to the next

! BoxLinks with the same diameters.

! id - Identifier of this box matrix among all box matrices.

!

TYPE BoxMatrix

TYPE(HyperBox), DIMENSION(:,:), POINTER :: M

INTEGER, DIMENSION(:), POINTER :: ind

TYPE(BoxMatrix), POINTER :: child

TYPE(P_BoxLink), DIMENSION(:), POINTER :: sibling

INTEGER :: id

END TYPE BoxMatrix

!

!int_vector : A list holding integer values.

! dim - The index of the last element in the list.

! elements - The integer array.

! flags - The integer array holding the status for ’elements’.

! Bit 0: status of convex hull processing.

! Bit 1: update status of a box column.

! next - The pointer to the next integer vector list.

! prev - The pointer to the previous integer vector list.

! id - Identifier of this integer vector list among all lists.

!

TYPE int_vector

INTEGER :: dim

INTEGER, DIMENSION(:), POINTER :: elements

INTEGER, DIMENSION(:), POINTER :: flags

TYPE(int_vector), POINTER :: next

TYPE(int_vector), POINTER :: prev

INTEGER :: id

END TYPE int_vector

!

!real_vector: A list holding real values.

! dim - The index of the last element in the list.

! elements - The real array.

! next - The pointer to the next real vector list.

! prev - The pointer to the previous real vector list.

! id - Identifier of this real vector list among all lists.

!

TYPE real_vector

INTEGER :: dim

REAL(KIND = R8), DIMENSION(:), POINTER :: elements

TYPE(real_vector), POINTER :: next

TYPE(real_vector), POINTER :: prev

INTEGER :: id

END TYPE real_vector

!

!ValList: a list for sorting the wi for all dimensions i corresponding

! to the maximum side length. wi = min f(c+delta*ei), f(c-delta*ei),

! the minimum of objective function values at the center point c +

! delta*ei and the center point c - delta*ei, where delta is one-third of

! this maximum side length and ei is the ith standard basis vector.

! dim - The index of the last element in the list.

! val - An array holding the minimum function values.
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! dir - An array holding the sampling directions corresponding to the

! function values in array ’val’.

!

TYPE ValList

INTEGER :: dim

REAL(KIND = R8), DIMENSION(:), POINTER :: val

INTEGER, DIMENSION(:), POINTER :: dir

END TYPE

! Parameters.

! Argument input error.

INTEGER, PARAMETER :: INPUT_ERROR = 10

! Allocation failure error.

INTEGER, PARAMETER :: ALLOC_ERROR = 20

! Stop rule 1: maximum iterations.

INTEGER, PARAMETER :: STOP_RULE1 = 0

! Stop rule 2: maximum evaluations.

INTEGER, PARAMETER :: STOP_RULE2 = 1

! Stop rule 3: minimum diameter.

INTEGER, PARAMETER :: STOP_RULE3 = 2

! Stop rule 4: minimum relative change in objective function.

INTEGER, PARAMETER :: STOP_RULE4 = 3

! ’flags’ bits for ’setInd’ of type ’int_vector’.

INTEGER, PARAMETER :: CONVEX_BIT = 0

! Bit 0: if set, the first box on the corresponding column is in the convex

! hull box set.

INTEGER, PARAMETER :: UPDATE_BIT = 1

! Bit 1: if set, the box column has been updated in the previous

! iteration.

! Interfaces.

INTERFACE ASSIGNMENT (=)

MODULE PROCEDURE AssgBox

END INTERFACE

INTERFACE insNode

MODULE PROCEDURE insNodeI

MODULE PROCEDURE insNodeR

END INTERFACE insNode

INTERFACE rmNode

MODULE PROCEDURE rmNodeI

MODULE PROCEDURE rmNodeR

END INTERFACE rmNode

CONTAINS

SUBROUTINE AssgBox(x, y)

IMPLICIT NONE

! Copies the contents of box ’y’ to box ’x’.

!

! On input:

! y - Box with type ’HyperBox’.

!

! On output:

! x - Box with type ’HyperBox’ having contents of box ’y’.

!

TYPE(HyperBox), INTENT(IN) :: y

TYPE(HyperBox), INTENT(INOUT) :: x

x%val = y%val

x%diam = y%diam

x%c = y%c
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x%side = y%side

RETURN

END SUBROUTINE AssgBox

SUBROUTINE insNodeR(n, pt, index, Set)

IMPLICIT NONE

! Inserts a real number ’pt’ at the indexed position ’index’ of ’Set’.

!

! On input:

! n - The maximum length of the real array in each node of ’Set’.

! pt - The real number to be inserted to ’Set’.

! index - The position at which to insert ’pt’ in a node of ’Set’.

! Set - A linked list of type(real_vector) nodes.

!

! On output:

! Set - ’Set’ has an added real number and modified ’dim’ component.

!

INTEGER, INTENT(IN) :: n

REAL(KIND = R8), INTENT(IN) :: pt

INTEGER, INTENT(IN) :: index

TYPE(real_vector), INTENT(INOUT), TARGET :: Set

! Local variables.

TYPE(real_vector), POINTER :: p_set ! Pointer to a node of ’Set’.

! Insert ’pt’ into ’Set’.

IF (Set%dim < n ) THEN

! The head node is not full. There are no other nodes.

! Update ’dim’.

Set%dim = Set%dim + 1

IF (index == Set%dim) THEN

! The desired position is at end, so insert ’pt’ at end.

Set%elements(Set%dim) = pt

ELSE

! The desired position is not at end, so shift elements before

! insertion.

Set%elements(index+1:Set%dim) = Set%elements(index:Set%dim-1)

Set%elements(index) = pt

END IF

ELSE

! The head node is full. Check other nodes.

p_set => Set%next

! To shift elements, find the last node which is not full.

DO WHILE(p_set%dim == n)

p_set => p_set%next

END DO

! Found the last node ’p_set’ which is not full.

! Update ’dim’ of ’p_set’. Shift element(s) inside this node, if any.

p_set%dim = p_set%dim + 1

! Loop shifting until reaching the node ’Set’ at which to insert ’pt’.

DO WHILE(.NOT. ASSOCIATED(p_set, Set))

! Shift element(s) inside this node, if any.

p_set%elements(2:p_set%dim) = p_set%elements(1:p_set%dim-1)

! Shift the last element from the previous node to this one.

p_set%elements(1) = p_set%prev%elements(n)

! Finished shifting this node. Go to the previous node.

p_set => p_set%prev

END DO

! Reached the original node ’Set’.

47



IF (index == Set%dim) THEN

! The desired position is at end, so insert ’pt’ at end.

Set%elements(Set%dim) = pt

ELSE

! The desired position is not at end, so shift elements before

! insertion.

Set%elements(index+1:Set%dim) = Set%elements(index:Set%dim-1)

Set%elements(index) = pt

END IF

END IF

RETURN

END SUBROUTINE insNodeR

SUBROUTINE insNodeI(n, pt, index, Set)

IMPLICIT NONE

! Inserts an integer number ’pt’ at the indexed position ’index’ of ’Set’.

!

! On input:

! n - The maximum length of the integer array in each node of ’Set’.

! pt - The integer number to be inserted to ’Set’.

! index - The position at which to insert ’pt’.

! Set - A linked list of type(int_vector) nodes.

!

! On output:

! Set - ’Set’ has an added integer number and modified ’dim’ component.

INTEGER, INTENT(IN) :: n

INTEGER, INTENT(IN) :: pt

INTEGER, INTENT(IN) :: index

TYPE(int_vector), INTENT(INOUT), TARGET :: Set

! Local variables.

TYPE(int_vector), POINTER :: p_set ! Pointer to a node of ’Set’.

! Insert ’pt’ into ’Set’.

IF (Set%dim < n ) THEN

! The head node is not full. There are no other nodes.

Set%dim = Set%dim + 1

IF (index == Set%dim) THEN

! The desired position is at end, so insert ’pt’ at end.

Set%elements(Set%dim) = pt

! Clear the ’flags’.

Set%flags(Set%dim) = 0

ELSE

! The desired position is not at end, so shift elements before

! insertion.

Set%elements(index+1:Set%dim) = Set%elements(index:Set%dim-1)

! Shift the ’flags’.

Set%flags(index+1:Set%dim) = Set%flags(index:Set%dim-1)

! Insert ’pt’.

Set%elements(index) = pt

! Clear the ’flags’.

Set%flags(index) = 0

END IF

ELSE

! The head node is full. There must be other nodes.

p_set => Set%next

! To shift elements, find the last node which is not full.

DO WHILE(p_set%dim == n)

p_set => p_set%next
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END DO

! Found the last node ’p_set’ which is not full.

! Update ’dim’ of ’p_set’. Shift element(s), if any.

p_set%dim = p_set%dim + 1

! Loop shifting until reaching the original node ’Set’.

DO WHILE(.NOT. ASSOCIATED(p_set, Set))

! Shift element(s) inside this node, if any.

p_set%elements(2:p_set%dim) = p_set%elements(1:p_set%dim-1)

! Shift the last element from the previous node to this one.

p_set%elements(1) = p_set%prev%elements(n)

! Shift the ’flags’.

p_set%flags(2:p_set%dim) = p_set%flags(1:p_set%dim-1)

p_set%flags(1) = p_set%prev%flags(n)

! Finished shifting this node. Go to the previous node.

p_set => p_set%prev

END DO

! Reached the original node ’Set’.

IF (index == Set%dim) THEN

! The desired position is at end, so insert ’pt’ at end.

Set%elements(Set%dim) = pt

! Clear the ’flags’.

Set%flags(Set%dim) = 0

ELSE

! The desired position is not at end, so shift elements before

! insertion.

Set%elements(index+1:Set%dim) = Set%elements(index:Set%dim-1)

! Shift the ’flags’.

Set%flags(index+1:Set%dim) = Set%flags(index:Set%dim-1)

! Insert ’pt’.

Set%elements(index) = pt

! Clear the ’flags’.

Set%flags(index) = 0

END IF

END IF

RETURN

END SUBROUTINE insNodeI

SUBROUTINE rmNodeI(n, offset, index, Set)

IMPLICIT NONE

! Removes an integer entry at position ’index’ from the integer array

! in the node at ’offset’ links from the beginning of the linked list

! ’Set’.

!

! On input:

! n - The maximum length of the integer array in each node of ’Set’.

! offset - The offset of the desired node from the first node of ’Set’.

! index - The position at which to delete an integer from the integer

! array in the node.

! Set - A linked list of type(int_vector) nodes.

!

! On output:

! Set - The desired node of ’Set’ has the indexed integer entry removed

! and the ’dim’ component modified.

!

INTEGER, INTENT(IN) :: n

INTEGER, INTENT(IN) :: offset

INTEGER, INTENT(IN) :: index
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TYPE(int_vector), INTENT(INOUT), TARGET :: Set

! Local variables.

INTEGER :: i ! Loop counter.

TYPE(int_vector), POINTER :: p_set ! Pointer to a node of ’Set’.

! Find the desired node.

p_set => Set

DO i = 1, offset

p_set => p_set%next

END DO

IF (index < p_set%dim) THEN

! It’s not the last entry in ’p_set’, so shift elements.

p_set%elements(index:p_set%dim-1) = p_set%elements(index+1:p_set%dim)

! Shift the ’flags’.

p_set%flags(index:p_set%dim-1) = p_set%flags(index+1:p_set%dim)

END IF

IF (p_set%dim < n) THEN

! There are not other elements in next node, so remove the indexed

! entry directly from ’Set’ by updating ’dim’.

p_set%dim = p_set%dim - 1

ELSE

! There might be nodes in which to shift elements.

! Check if any element(s) in next node to shift.

IF (ASSOCIATED(p_set%next)) THEN

p_set => p_set%next

DO

IF (p_set%dim > 0) THEN

! There are elements to shift.

! Shift one element from p_next into its previous node.

p_set%prev%elements(n) = p_set%elements(1)

! Shift elements inside p_next.

p_set%elements(1:p_set%dim-1) = p_set%elements(2:p_set%dim)

! Shift the ’flags’.

p_set%prev%flags(n) = p_set%flags(1)

p_set%flags(1:p_set%dim-1) = p_set%flags(2:p_set%dim)

ELSE

! There are no elements to shift. Update ’dim’ of previous node.

p_set%prev%dim = p_set%prev%dim - 1

EXIT

END IF

! Move on to the next node, if any. If there are no more nodes, update

! ’dim’.

IF (ASSOCIATED(p_set%next)) THEN

p_set => p_set%next

ELSE

p_set%dim = p_set%dim - 1

EXIT

END IF

END DO

ELSE

! There are no more nodes. Update ’dim’ of ’p_set’.

p_set%dim = p_set%dim - 1

END IF

END IF

RETURN

END SUBROUTINE rmNodeI

SUBROUTINE rmNodeR(n, offset, index, Set)
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IMPLICIT NONE

! Removes a real entry at position ’index’ from the real array

! in the node at ’offset’ links from the beginning of the linked list

! ’Set’.

!

! On input:

! n - The maximum length of the real array in each node of ’Set’.

! offset - The offset of the desired node from the first node of ’Set’.

! index - The position at which to delete a real entry from the real

! array in the node.

! Set - A linked list of type(real_vector) nodes.

!

! On output:

! Set - The desired node of ’Set’ has the indexed real entry removed

! and the ’dim’ component modified.

!

INTEGER, INTENT(IN) :: n

INTEGER, INTENT(IN) :: offset

INTEGER, INTENT(IN) :: index

TYPE(real_vector), INTENT(INOUT), TARGET :: Set

! Local variables.

INTEGER :: i ! Loop counter.

TYPE(real_vector), POINTER :: p_set ! Pointer to a node of ’Set’.

! Find the desired node.

p_set => Set

DO i = 1, offset

p_set => p_set%next

END DO

IF (index < p_set%dim)THEN

! It’s not the last entry in ’p_set’, so shift elements.

p_set%elements(index:p_set%dim-1) = p_set%elements(index+1:p_set%dim)

END IF

IF (p_set%dim < n) THEN

! There are not other elements in next node, so remove the indexed

! entry directly from ’Set’ by updating ’dim’.

p_set%dim = p_set%dim - 1

ELSE

! There might be nodes in which to shift elements.

! Check if any element(s) in next node to shift.

IF (ASSOCIATED(p_set%next)) THEN

p_set => p_set%next

DO

IF (p_set%dim > 0) THEN

! There are elements to shift.

! Shift one element from p_next into its previous node.

p_set%prev%elements(n) = p_set%elements(1)

! Shift elements inside p_next.

p_set%elements(1:p_set%dim-1) = p_set%elements(2:p_set%dim)

ELSE

! There are no elements to shift. Update ’dim’ of previous node.

p_set%prev%dim = p_set%prev%dim - 1

EXIT

END IF

! Move on to the next node if any. If there are no more nodes, update

! ’dim’.

IF (ASSOCIATED(p_set%next)) THEN
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p_set => p_set%next

ELSE

p_set%dim = p_set%dim - 1

EXIT

END IF

END DO

ELSE

! There are no more nodes. Update ’dim’ of ’p_set’.

p_set%dim = p_set%dim - 1

END IF

END IF

RETURN

END SUBROUTINE rmNodeR

END MODULE VTDIRECT_GLOBAL
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Appendix C: Fortran 90 MODULE VTDIRect MOD

The Fortran 90 module VTDIRect MOD that declares the subroutine VTDIRect, the

present implementation of the DIRECT algorithm discussed in Chapter 2 is listed here.

MODULE VTDIRect_MOD

USE VTDIRECT_GLOBAL

CONTAINS

SUBROUTINE VTDIRect(N, L, U, X, FMIN, STATUS, OBJ_FUNC, SWITCH, &

MAX_ITER, MAX_EVL, MIN_DIA, OBJ_CONV, EPS)

!

! This is an implementation of the DIRECT global unconstrained

! optimization algorithm described in:

!

! D.R. Jones, C.D. Perttunen, and B.E. Stuckman, Lipschitzian

! optimization without the Lipschitz constant, Journal of Optimization

! Theory and Application, Vol. 79, No. 1, 1993, pp. 157-181.

!

! The algorithm to minimize f(x) inside the box L <= x <= U is as follows:

!

! 1. Normalize the search space to be the unit hypercube. Let c_1 be

! the center point of this hypercube and evaluate f(c_1).

! 2. Identify the set S of potentially optimal rectangles.

! 3. For all rectangles j in S:

! 3a. Identify the set I of dimensions with the maximum side length.

! Let delta equal one-third of this maximum side length.

! 3b. Sample the function at the points c +- delta * e_i for all i

! in I, where c is the center of the rectangle and e_i is the ith

! unit vector.

! 3c. Divide the rectangle containing c into thirds along the

! dimensions in I, starting with the dimension with the lowest

! value of f(c +- delta * e_i) and continuing to the dimension

! with the highest f(c +- delta * e_i).

! 4. Repeat 2.-3. until stopping criterion is met.

!

!

! On input:

!

! N is the dimension of L, U, and X.

!

! L(1:N) is a real array giving lower bounds on X.

!

! U(1:N) is a real array giving upper bounds on X.

!

! OBJ_FUNC is the name of the real function procedure defining the

! objective function f(x) to be minimized. OBJ_FUNC(C,IFLAG) returns

! the value f(C) with IFLAG=0, or IFLAG .NE. 0 if f(C) is not defined.

! OBJ_FUNC is precisely defined in the INTERFACE block below.

!

! Optional arguments:

!

! SWITCH =

! 1 select potentially optimal boxes on the convex hull of the

! (box diameter, function value) points (default).

! 0 select as potentially optimal the box of each diameter with the
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! smallest function value. This is an aggressive selection

! procedure which generates many more boxes to subdivide.

!

! MAX_ITER is the maximum number of iterations (repetitions of Steps 2-3)

! allowed; defines stopping rule 1. If MAX_ITER is present but <= 0

! on input, there is no iteration limit and the number of iterations

! executed is returned in MAX_ITER.

!

! MAX_EVL is the maximum number of function evaluations allowed; defines

! stopping rule 2. If MAX_EVL is present but <= 0 on input, there is no

! limit on the number of function evaluations, which is returned in

! MAX_EVL.

!

! MIN_DIA is the minimum box diameter allowed; defines stopping rule 3.

! If MIN_DIA is present but <= 0 on input, a minimum diameter below

! the roundoff level is not permitted, and the box diameter of the

! box containing the smallest function value FMIN is returned in MIN_DIA.

!

! OBJ_CONV is the smallest acceptable relative improvement in the minimum

! objective function value ’FMIN’ between iterations; defines

! stopping rule 4. OBJ_CONV must be positive and greater than the round

! off level. If absent, it is taken as zero.

!

! EPS is the tolerance defining the minimum acceptable potential

! improvement in a potentially optimal box. Larger EPS values eliminate

! more boxes from consideration as potentially optimal, and bias the

! search toward exploration. EPS must be positive and greater than the

! round off level. If absent, it is taken as zero. EPS > 0 is

! incompatible with SWITCH = 0.

!

!

! On output:

!

! X(1:N) is a real vector containing the sampled box center with the

! minimum objective function value FMIN.

!

! FMIN is the minimum function value.

!

! STATUS is a return status flag. The units decimal digit specifies

! which stopping rule was satisfied on a successful return. The tens

! decimal digit indicates a successful return, or an error condition with

! the cause of the error condition reported in the units digit.

!

! Tens digit =

! 0 Normal return.

! Units digit =

! 1 Stopping rule 1 (iteration limit) satisfied.

! 2 Stopping rule 2 (function evaluation limit) satisfied.

! 3 Stopping rule 3 (minimum diameter reached) satisfied. The

! minimum diameter corresponds to the box for which X and

! FMIN are returned.

! 4 Stopping rule 4 (relative change in ’FMIN’) satisfied.

! 1 Input data error.

! Units digit =

! 0 N < 2.

! 1 Assumed shape array L, U, or X does not have size N.
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! 2 Some lower bound is >= the corresponding upper bound.

! 3 MIN_DIA, OBJ_CONV, or EPS is below the roundoff level.

! 4 None of MAX_EVL, MAX_ITER, MIN_DIA, and OBJ_CONV are specified;

! there is no stopping rule.

! 5 Invalid SWITCH value.

! 6 SWITCH = 0 and EPS > 0 are incompatible.

! 2 Memory allocation failure.

! Units digit =

! 0 BoxMatrix type allocation.

! 1 BoxLink type allocation.

! 2 int_vector or real_vector type allocation.

! 3 HyperBox type allocation.

!

! MAX_ITER (if present) contains the number of iterations.

!

! MAX_EVL (if present) contains the number of function evaluations.

!

! MIN_DIA (if present) contains the diameter of the box associated with

! X and FMIN.

!

!

IMPLICIT NONE

INTEGER, INTENT(IN) :: N

REAL(KIND = R8), DIMENSION(:), INTENT(IN) :: L

REAL(KIND = R8), DIMENSION(:), INTENT(IN) :: U

REAL(KIND = R8), DIMENSION(:), INTENT(OUT) :: X

REAL(KIND = R8), INTENT(OUT) :: FMIN

INTEGER, INTENT(OUT) :: STATUS

INTERFACE

FUNCTION OBJ_FUNC(C, IFLAG) RESULT(F)

USE REAL_PRECISION, ONLY : R8

REAL(KIND = R8), DIMENSION(:), INTENT(IN) :: C

INTEGER, INTENT(OUT) :: IFLAG

REAL(KIND = R8) :: F

END FUNCTION OBJ_FUNC

END INTERFACE

INTEGER, INTENT(IN), OPTIONAL :: SWITCH

INTEGER, INTENT(INOUT), OPTIONAL :: MAX_ITER

INTEGER, INTENT(INOUT), OPTIONAL :: MAX_EVL

REAL(KIND = R8), INTENT(INOUT), OPTIONAL :: MIN_DIA

REAL(KIND = R8), INTENT(IN), OPTIONAL :: OBJ_CONV

REAL(KIND = R8), INTENT(IN), OPTIONAL :: EPS

! Local variables.

INTEGER :: alloc_err ! Allocation error status.

INTEGER :: b_id ! Box matrix identifier.

INTEGER :: col ! Local column index.

INTEGER :: col_w, row_w ! Factors defining reasonable memory space for

! each box matrix allocation.

INTEGER :: convex ! Switch for processing convex hull boxes.

INTEGER :: eval_c ! Function evaluation counter.

INTEGER :: i, j ! Loop counters.

INTEGER :: iflag ! Error flag for subroutine calls.

INTEGER :: i_start ! Records the start index for searching in a node of

! ’setInd’.

INTEGER :: stop_rule ! Bits 0, 1, 2 being set correspond to stopping rules

! 1 (iteration limit), 2 (function evaluation limit),
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! 3 (minimum box diameter) respectively.

INTEGER :: t ! Loop counter for main loop.

LOGICAL :: do_it ! Sign to process first box in each column of BoxMatrix.

TYPE(BoxLine) :: setB ! Set of newly sampled boxes.

TYPE(BoxMatrix), POINTER :: m_head ! The first box matrix.

TYPE(BoxMatrix), POINTER :: p_b ! Pointer to box matrix.

TYPE(Hyperbox), POINTER :: p_box ! Box for the removed parent box to divide.

TYPE(Hyperbox), POINTER :: tempbox ! Box for swapping heap elements.

TYPE(int_vector), POINTER :: p_start ! Records the start node for searching

! the column with CONVEX_BIT set in

! ’setInd’.

TYPE(int_vector), POINTER :: p_setInd ! Pointer to a node of ’setInd’.

TYPE(int_vector), POINTER :: setFcol ! A linked list. Each node holds free

! column indices in BoxMatrices.

TYPE(int_vector) :: setI ! Set I of dimensions with the maximum side length.

TYPE(int_vector), POINTER :: setInd ! A linked list. Each node holds column

! indices corresponding to different squared diameters in ’setDia’.

TYPE(real_vector), POINTER :: setDia ! A linked list. Each node holds

! current different squared diameters from largest to smallest.

TYPE(ValList) :: setW ! Function values for newly sampled center points.

REAL(KIND = R8) :: dia ! Diameter squared associated with ’FMIN’.

REAL(KIND = R8) :: dia_limit ! Minimum diameter permitted.

REAL(KIND = R8) :: EPS4N ! Tolerance for equality tests.

REAL(KIND = R8) :: epsl ! Epsilon test for potentially optimal boxes.

REAL(KIND = R8) :: fmin_old ! FMIN backup.

REAL(KIND = R8), DIMENSION(N) :: unit_x ! X normalized to unit hypercube.

! Sanity check of input arguments.

STATUS = 0

IF (N < 2) THEN

STATUS = INPUT_ERROR

RETURN

END IF

IF ((SIZE(X) /= N) .OR. (SIZE(L) /= N) .OR. (SIZE(U) /= N)) THEN

STATUS = INPUT_ERROR + 1

RETURN

END IF

IF (ANY(L >= U)) THEN

STATUS = INPUT_ERROR + 2

RETURN

END IF

! Parse optional arguments.

IF (PRESENT(SWITCH)) THEN

IF ((SWITCH < 0) .OR. (SWITCH > 1)) THEN

STATUS = INPUT_ERROR + 5

RETURN

END IF

IF ((SWITCH == 0) .AND. PRESENT(EPS)) THEN

STATUS = INPUT_ERROR + 6

RETURN

END IF

! User specified.

convex = SWITCH

ELSE

! Default: processing boxes only on convex hull.

convex = 1

END IF
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stop_rule = 0

! When MAX_ITER <=0, the number of iterations will be returned on exit.

IF (PRESENT(MAX_ITER)) THEN

IF (MAX_ITER > 0) THEN

! Set bit 0 of stop_rule.

stop_rule = IBSET(stop_rule, STOP_RULE1)

END IF

END IF

! When MAX_EVL <=0, the number of evaluations will be returned on exit.

IF (PRESENT(MAX_EVL)) THEN

IF (MAX_EVL > 0) THEN

! Set bit 1 of stop_rule.

stop_rule = IBSET(stop_rule, STOP_RULE2)

END IF

END IF

! Find the maximum side of the feasible box L <= X <= U.

! Even if user doesn’t specify ’MIN_DIA’, a diameter smaller than

! MAX(U(i) - L(i))*EPSILON(1.0_R8)*N is not permitted to occur.

! When MIN_DIA <=0, the diameter associated with X and FMIN will be

! returned on exit.

dia_limit = MAXVAL(U - L)*EPSILON(1.0_R8)*N

IF (PRESENT(MIN_DIA)) THEN

IF (MIN_DIA > 0) THEN

IF (MIN_DIA < dia_limit) THEN

STATUS = INPUT_ERROR + 3

RETURN

ELSE

! Set bit 2 of stop_rule.

stop_rule = IBSET(stop_rule, STOP_RULE3)

END IF

END IF

END IF

! When OBJ_CONV is present a minimum relative change in the minimum

! objective function value will be enforced.

IF (PRESENT(OBJ_CONV)) THEN

IF ((OBJ_CONV < EPSILON(1.0_R8)*REAL(N,KIND=R8)) .OR. &

(OBJ_CONV >= 1.0_R8)) THEN

STATUS = INPUT_ERROR + 3

RETURN

ELSE

! Set bit 3 of stop_rule.

stop_rule = IBSET(stop_rule, STOP_RULE4)

END IF

END IF

! When EPS is present a test involving EPS is used to define potentially

! optimal boxes. The absence of this test is equivalent to EPS=0.

IF (PRESENT(EPS)) THEN

IF (EPS <= EPSILON(1.0_R8)) THEN

STATUS = INPUT_ERROR + 3

RETURN

ELSE

epsl = EPS

END IF

ELSE

epsl = 0.0_R8

END IF
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! Check if stop_rule has at least at 1 bit set. Otherwise no stopping rule

! has been given.

IF (stop_rule == 0) THEN

STATUS = INPUT_ERROR + 4

RETURN

END IF

! End of argument sanity checks.

! Assign row_w and col_w in terms of N.

IF (N <= 10) THEN

row_w = MAX(10, 2*N)

ELSE

row_w = 17 + CEILING(LOG(REAL(N))/LOG(2.0))

END IF

col_w = 35*N

! Tolerance for REAL number equality tests.

EPS4N = REAL(4*N, KIND=R8)*EPSILON(1.0_R8)

! Allocate ’setI’, ’setB’ and ’setW’.

ALLOCATE(setI%elements(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

ALLOCATE(setI%flags(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

setI%dim = 0

ALLOCATE(setB%Line(2*N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 1 ; RETURN ; END IF

ALLOCATE(setB%dir(2*N),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 1 ; RETURN ; END IF

DO i = 1, 2*N

ALLOCATE(setB%Line(i)%c(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 1 ; RETURN ; END IF

ALLOCATE(setB%Line(i)%side(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 1 ; RETURN ; END IF

END DO

setB%ind = 0

ALLOCATE(setW%val(N),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

ALLOCATE(setW%dir(N),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

setW%dim = 0

! Allocate ’setDia’, ’setInd’, and ’setFcol’ for the first box matrix.

ALLOCATE(setDia)

ALLOCATE(setDia%elements(col_w),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

NULLIFY(setDia%next)

NULLIFY(setDia%prev)

setDia%id = 1

setDia%dim = 0

ALLOCATE(setInd)

ALLOCATE(setInd%elements(col_w),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

ALLOCATE(setInd%flags(col_w),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

setInd%flags(:) = 0

NULLIFY(setInd%next)

NULLIFY(setInd%prev)

setInd%id = 1

setInd%dim = 0
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ALLOCATE(setFcol)

ALLOCATE(setFcol%elements(col_w),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

ALLOCATE(setFcol%flags(col_w),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS=ALLOC_ERROR + 2 ; RETURN ; END IF

NULLIFY(setFcol%next)

NULLIFY(setFcol%prev)

setFcol%id = 1

setFcol%dim = 0

! Allocate p_box.

ALLOCATE(p_box)

ALLOCATE(p_box%c(N),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS = ALLOC_ERROR + 3 ; RETURN ; END IF

ALLOCATE(p_box%side(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS = ALLOC_ERROR + 3 ; RETURN ; END IF

! Allocate tempbox.

ALLOCATE(tempbox)

ALLOCATE(tempbox%c(N),STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS = ALLOC_ERROR + 3 ; RETURN ; END IF

ALLOCATE(tempbox%side(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS = ALLOC_ERROR + 3 ; RETURN ; END IF

! Step 1: Normalization of the search space and initialization of first

! hyperbox.

ALLOCATE(m_head, STAT = alloc_err)

IF (alloc_err /= 0) THEN ; STATUS = ALLOC_ERROR ; RETURN ; END IF

iflag = 0

CALL init(m_head, iflag)

! Check the returned iflag.

IF (iflag == 1) THEN ; STATUS = ALLOC_ERROR ; RETURN ; END IF

! Initialize ’setDia’, ’setInd’ and ’setFcol’.

setDia%dim = 1

setDia%elements(1) = m_head%M(1,1)%diam

! Set the first box as being on convex hull by setting the CONVEX_BIT

! of the ’flags’.

setInd%dim = 1

setInd%elements(1) = 1

setInd%flags(1) = IBSET(setInd%flags(1), CONVEX_BIT)

! Starting from the last column, push free columns to ’setFcol’.

DO i = 1, col_w-1

setFcol%elements(i) = col_w - (i-1)

END DO

setFcol%dim = col_w - 1

! Initialization for main loop.

t = 1

eval_c = 1

MAIN_LOOP: DO

!Step 2: Identify the set of potentially optimal boxes.

! They are the first boxes of all columns with CONVEX_BIT set

! in ’flags’ in ’setInd’.

!

! Initialize ’i_start’ and ’p_start’ in order to search such

! columns in ’setInd’. The first boxes on columns with CONVEX_BIT set

! in ’flags’ are potentially optimal.

i_start = 1

p_start => setInd

! Loop processing any boxes in the columns with CONVEX_BIT set in ’flags’
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! in ’setInd’.

INNER: DO

do_it = .FALSE.

! Find such a box column in linked list ’setInd’ starting

! from position ’i_start’ in the node ’p_start’. If found,

! ’do_it’ will be set TRUE and index ’i’ and node ’p_setInd’

! will be returned.

p_setInd => findcol(i_start, p_start, i, do_it)

IF (do_it) THEN

! Step 3:

! Step 3a: Obtain the ’setI’ of dimensions with the maximum

! side length for the first box on column

! ’p_setInd%elements(i)’, where ’i’ is the index

! in ’setInd’ for the column holding the hyperbox to

! subdivide.

CALL findsetI(m_head, p_setInd%elements(i), setI)

! Step 3b: Sample new center points at c + delta * e_i and

! c - delta * e_i for all dimensions in ’setI’, where

! c is the center of the parent hyperbox being processed,

! and e_i is the ith unit vector. Evaluate the objective

! function at new center points and keep track of current

! global minimum ’FMIN’ and its associated ’unit_x’.

CALL sampleP(p_setInd%elements(i), setI, m_head, setB)

! If the optional argument OBJ_CONV is present, save ’FMIN’ to be

! compared with the updated ’FMIN’ in subroutine sampleF.

IF (PRESENT(OBJ_CONV)) fmin_old = FMIN

CALL sampleF(setB, eval_c)

IF (PRESENT(OBJ_CONV)) THEN

IF (fmin_old /= FMIN) THEN

! ’FMIN’ has been updated.

IF (fmin_old - FMIN < (1.0_R8+ABS(fmin_old))*OBJ_CONV) THEN

STATUS = 4

EXIT MAIN_LOOP

END IF

END IF

END IF

! Step 3c: Divide the hyperbox containing c into thirds along the

! dimensions in ’setI’, starting with the dimension with

! the lowest function value of f(c +- delta * e_i) and

! continuing to the dimension with the highest function

! value f(c +- delta * e_i).

CALL divide(i, p_setInd%id, m_head, setB, setDia, &

setInd, setFcol, p_box, setW, setI, iflag)

IF (iflag /= 0) THEN ; STATUS=ALLOC_ERROR+iflag-1 ; RETURN ; END IF

ELSE

! There are no more columns of boxes to divide for this iteration.

EXIT

END IF

END DO INNER

! Update iteration counter.

t = t + 1

! Check stop rules:

! Stop rule 1: maximum iterations.

IF (BTEST(stop_rule, 0)) THEN

IF (t > MAX_ITER) THEN

STATUS = 1
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EXIT MAIN_LOOP

END IF

END IF

! Stop rule 2: maximum evaluations.

IF (BTEST(stop_rule, 1)) THEN

IF (eval_c >= MAX_EVL ) THEN

STATUS = 2

EXIT MAIN_LOOP

END IF

END IF

! Stop rule 3: minimum diameter.

IF (BTEST(stop_rule, 2)) THEN

IF (sqrt(dia) <= MIN_DIA) THEN

STATUS = 3

EXIT MAIN_LOOP

END IF

ELSE

! Check if minimum diameter has been reached.

IF (sqrt(dia) <= dia_limit) THEN

STATUS = 3

EXIT MAIN_LOOP

END IF

END IF

! Preprocess for identifying potentially optimal hyperboxes of Step

! 3a for the next iteration. Find and process the hyperboxes which

! are on the convex hull if ’convex’ == 1; otherwise, process the first

! box of each column.

IF (convex == 1) THEN

! Processing only the boxes on the convex hull of (box diameter,

! function value) points. Set the CONVEX_BIT in ’flags’, starting

! from the first one in ’setInd’, until reaching the column with ’FMIN’.

p_setInd => setInd

OUTER: DO

DO i = 1, p_setInd%dim

p_setInd%flags(i) = IBSET(p_setInd%flags(i), CONVEX_BIT)

! Check if the column has reached the one with ’FMIN’.

b_id = (p_setInd%elements(i)-1)/col_w + 1

col = MOD(p_setInd%elements(i)-1, col_w) + 1

p_b => m_head

DO j = 1, b_id -1

p_b => p_b%child

END DO

IF (ALL(unit_x == p_b%M(1,col)%c)) EXIT OUTER

END DO

IF (ASSOCIATED(p_setInd%next)) THEN

p_setInd => p_setInd%next

ELSE

EXIT OUTER

END IF

END DO OUTER

! Remove the columns not on the convex hull of potentially optimal

! curve. ’p_setInd’ and ’i’ point to the box with ’FMIN’. Pass them to

! convex for terminating the loop of identifying boxes on convex hull

! when epsl/=0.

CALL findconvex(m_head, epsl, p_setInd, i, setInd)

ELSE
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! Processing all columns of boxes because convex == 0.

! Set CONVEX_BIT of all current columns’ ’flags’ for processing.

p_setInd => setInd

DO WHILE(ASSOCIATED(p_setInd))

p_setInd%flags(1:p_setInd%dim) = &

IBSET(p_setInd%flags(1:p_setInd%dim), CONVEX_BIT)

p_setInd => p_setInd%next

END DO

END IF

END DO MAIN_LOOP

! Preparation for return to the caller.

! Scale ’unit_x’ back to ’X’ in original coordinates.

X = L + unit_x*(U - L)

! Return current diameter of the box with ’FMIN’.

IF (PRESENT(MIN_DIA)) MIN_DIA = sqrt(dia)

! Return the total iterations and evaluations.

IF (PRESENT(MAX_ITER)) MAX_ITER = t - 1

IF (PRESENT(MAX_EVL)) MAX_EVL = eval_c

! Deallocate all the data structures explicitly allocated, including

! box matrices, box links and setI, setB, setW, setInd, setFcol, setDia,

! and p_box.

CALL cleanup()

RETURN

CONTAINS

SUBROUTINE binaryS(p_rset, diam, pos, found)

IMPLICIT NONE

! Using a binary search, matches the squared diameter ’diam’ with an

! element in the node ’p_rset’ of ’setDia’, and returns the position

! ’pos’ if a match is found. If there is no match, returns the right

! ’pos’ at which to insert ’diam’. When ’pos’ is returned as 0, ’diam’

! should be inserted after all others. If ’pos’ is not 0, ’diam’ could be

! inserted at the position ’pos’ of ’p_rset’ depending on ’found’. See

! insMat().

! On input:

! p_rset - A pointer to one of the nodes in ’setDia’.

! diam - The diameter squared to match against.

!

! On output:

! pos - The position in ’p_rset’ for a match or insertion.

! found - Status indicating whether ’diam’ is found in ’p_rest’ or not.

!

TYPE(real_vector), INTENT(IN) :: p_rset

REAL(KIND = R8), INTENT(IN) :: diam

INTEGER, INTENT(OUT) :: pos

LOGICAL, INTENT(OUT) :: found

! Local variables.

INTEGER :: low, mid, up

! Initialization for searching.

found = .FALSE.

! Initialize limits outside bounds of array for binary search.

low = 0

up = p_rset%dim + 1

IF (p_rset%dim > 0) THEN

! Check with the first and the last.

IF (p_rset%elements(1) <= diam) THEN

! ’diam’ is the biggest.
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IF (ABS(p_rset%elements(1) - diam)/diam <= EPS4N) THEN

! ’diam’ is the same as the first one.

found = .TRUE.

END IF

pos = 1

RETURN

ELSE

IF (p_rset%elements(up-1) >= diam) THEN

IF (ABS(p_rset%elements(up-1) - diam)/p_rset%elements(up-1) &

<= EPS4N) THEN

! ’diam’ is the smallest one. Same as the last one in ’p_rset’.

found = .TRUE.

pos = up-1

ELSE

! ’diam’ is smaller than all in ’p_rset’. Set ’pos’ 0 to insert

! ’diam’ after all others.

found = .FALSE.

pos = 0

END IF

RETURN

ELSE

! ’diam’ falls in between the biggest and the smallest. Apply binary

! search.

DO WHILE((low + 1) < up)

mid = (low + up) / 2

IF (ABS(diam - p_rset%elements(mid))/ &

MAX(diam, p_rset%elements(mid)) <= EPS4N) THEN

! ’diam’ found.

up = mid

EXIT

END IF

IF (diam < p_rset%elements(mid))THEN

low = mid

ELSE

up = mid

END IF

END DO

! Check if it’s found.

mid = up

IF (ABS(diam - p_rset%elements(mid))/MAX(diam, p_rset%elements(mid)) &

<= EPS4N) THEN

! Found it, so assign ’mid’ to ’pos’ in order to insert the

! associated box in the same column as ’mid’.

found = .TRUE.

pos = mid

ELSE

found = .FALSE.

IF (diam > p_rset%elements(mid) )THEN

! ’diam’ is bigger than the one at ’mid’. Set ’pos’ to be ’mid’

! in order to insert ’diam’ before ’mid’.

pos = mid

ELSE

! ’diam’ is smaller than the one at ’mid’. Set ’pos’ to be one

! after ’mid’ in order to insert ’diam’ after ’mid’.

pos = mid + 1

END IF
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END IF

END IF

END IF

ELSE

! ’p_rset’ is empty. Set ’pos’=0 to insert ’diam’ at the end of ’p_rset’.

found = .FALSE.

pos = 0

END IF

RETURN

END SUBROUTINE binaryS

SUBROUTINE checkblinks(col, b, status)

IMPLICIT NONE

! Checks if this column needs a new box link. Creates one if needed.

!

! On input:

! col - The local column index.

! b - The current link of box matrices.

!

! On output:

! b - ’b’ has the newly added box link for ’col’ if needed.

! status - Return status.

! 0 Successful.

! 1 Allocation error.

!

INTEGER, INTENT(IN) :: col

TYPE(BoxMatrix), INTENT(INOUT) :: b

INTEGER, INTENT(OUT) :: status

! Local variables.

INTEGER :: iflag

TYPE(BoxLink), POINTER :: newBoxLink, p_link, p_prev

! Set normal status.

status = 0

! Find the last box link.

NULLIFY(p_prev)

p_link => b%sibling(col)%p

DO WHILE(ASSOCIATED(p_link))

! Keep going until next link is null. Meanwhile, save the pointer of

! the previous link in order to trace back.

p_prev => p_link

p_link => p_link%next

END DO

! ’p_prev’ could point to the last box link if any.

! Check if this box link(or just column part inside of M) of this column is

! full.

IF (ASSOCIATED(p_prev)) THEN

! ’p_prev’ points to the last box link.

IF (p_prev%ind == row_w) THEN

! It’s full. Need a new box link. Allocate a new one.

ALLOCATE(newBoxLink, STAT = alloc_err)

IF (alloc_err /= 0) THEN; status = 1; RETURN; END IF

CALL initLink(newBoxLink, iflag)

IF (iflag /= 0) THEN; status = 1; RETURN; END IF

! Link the new box link to the last one as the next link.

p_prev%next => newBoxLink

! Link the last box link to the new one as the previous link.

newBoxLink%prev => p_prev
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END IF

ELSE

! No box links exist.

IF (b%ind(col) == row_w)THEN

! ’M’ part of column is full. Need a box link.

! Make a new box link linked to it. Allocate a new one.

ALLOCATE(newBoxLink, STAT = alloc_err)

IF (alloc_err /= 0) THEN; status = 1; RETURN; END IF

CALL initLink(newBoxLink, iflag)

IF (iflag /= 0) THEN; status = 1; RETURN; END IF

! This is the first box link that does not have previous link.

NULLIFY(newBoxLink%prev)

! Link it as ’sibling’ of this column.

b%sibling(col)%p => newBoxLink

END IF

END IF

RETURN

END SUBROUTINE checkblinks

SUBROUTINE cleanup()

! Cleans up all data structures allocated by VTDIRect.

!

IMPLICIT NONE

! Local variables.

INTEGER :: i, j ! Loop counters.

TYPE(BoxMatrix), POINTER :: p_b, p_save

TYPE(BoxLink), POINTER :: p_l

TYPE(int_vector), POINTER :: p_seti

TYPE(real_vector), POINTER :: p_setr

! Deallocate box links and box matrices starting from the first box matrix.

! First deallocate all box links associated with each box matrix, and

! finally deallocate the box matrix.

p_b => m_head

! Check all columns with box links which will be deallocated one by one

! starting from the last box link.

DO WHILE(ASSOCIATED(p_b))

! Check all the columns in ’p_b’.

DO i = 1, col_w

IF (p_b%ind(i) > row_w) THEN

! There must be box link(s). Chase to the last one and start

! deallocating them one by one.

p_l => p_b%sibling(i)%p

DO WHILE(ASSOCIATED(p_l%next))

p_l => p_l%next

END DO

! Found the last box link ’p_l’. Trace back and deallocate all links.

DO WHILE(ASSOCIATED(p_l))

IF (ASSOCIATED(p_l%prev)) THEN

! Its previous link is still a box link.

p_l => p_l%prev

ELSE

! There is no box link before it. This is the first box link of

! this column.

DO j = 1, row_w

DEALLOCATE(p_l%Line(j)%c)

DEALLOCATE(p_l%Line(j)%side)

END DO
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DEALLOCATE(p_l%Line)

DEALLOCATE(p_l)

EXIT

END IF

DO j = 1, row_w

DEALLOCATE(p_l%next%Line(j)%c)

DEALLOCATE(p_l%next%Line(j)%side)

END DO

DEALLOCATE(p_l%next%Line)

DEALLOCATE(p_l%next)

END DO

END IF

END DO

! Save the pointer of this box matrix for deallocation.

p_save => p_b

! Before it’s deallocated, move to the next box matrix.

p_b => p_b%child

! Deallocate this box matrix with all box links cleaned up.

DEALLOCATE(p_save%ind)

DEALLOCATE(p_save%sibling)

DO i = 1, row_w

DO j = 1, col_w

DEALLOCATE(p_save%M(i,j)%c)

DEALLOCATE(p_save%M(i,j)%side)

END DO

END DO

DEALLOCATE(p_save%M)

DEALLOCATE(p_save)

END DO

! Deallocate ’setI’, ’setB’ and ’setW’.

DEALLOCATE(setI%elements)

DEALLOCATE(setI%flags)

DO i = 1, 2*N

DEALLOCATE(setB%Line(i)%c)

DEALLOCATE(setB%Line(i)%side)

END DO

DEALLOCATE(setB%Line)

DEALLOCATE(setB%dir)

DEALLOCATE(setW%val)

DEALLOCATE(setW%dir)

! Deallocate nodes of ’setDia’, ’setInd’ and ’setFcol’ starting from

! the last node.

p_setr => setDia

DO WHILE(ASSOCIATED(p_setr%next))

p_setr => p_setr%next

END DO

! Found the last link pointed to by ’p_setr’ of ’setDia’, so deallocate

! links one by one until reaching the head node which has a null ’prev’.

DO

DEALLOCATE(p_setr%elements)

IF (ASSOCIATED(p_setr%prev)) THEN

p_setr => p_setr%prev

ELSE

DEALLOCATE(p_setr)

EXIT

END IF
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DEALLOCATE(p_setr%next)

END DO

p_seti => setInd

DO WHILE(ASSOCIATED(p_seti%next))

p_seti => p_seti%next

END DO

! Found the last link pointed to by ’p_seti’ of ’setInd’, so deallocate

! links one by one until reaching the head node which has a null ’prev’.

DO

DEALLOCATE(p_seti%flags)

DEALLOCATE(p_seti%elements)

IF (ASSOCIATED(p_seti%prev)) THEN

p_seti => p_seti%prev

ELSE

DEALLOCATE(p_seti)

EXIT

END IF

DEALLOCATE(p_seti%next)

END DO

p_seti => setFcol

DO WHILE(ASSOCIATED(p_seti%next))

p_seti => p_seti%next

END DO

! Found the last link pointed to by ’p_seti’ of ’setFcol’, so deallocate

! links one by one until reaching the head node that has a null ’prev’.

DO

DEALLOCATE(p_seti%elements)

DEALLOCATE(p_seti%flags)

IF (ASSOCIATED(p_seti%prev)) THEN

p_seti => p_seti%prev

ELSE

DEALLOCATE(p_seti)

EXIT

END IF

DEALLOCATE(p_seti%next)

END DO

! Deallocate p_box.

DEALLOCATE(p_box%c)

DEALLOCATE(p_box%side)

DEALLOCATE(p_box)

! Deallocate tempbox

DEALLOCATE(tempbox%c)

DEALLOCATE(tempbox%side)

DEALLOCATE(tempbox)

RETURN

END SUBROUTINE cleanup

SUBROUTINE divide(parent_i, id, b, setB, setDia, &

setInd, setFcol, p_box, setW, setI, iflag)

IMPLICIT NONE

! Divides the first box on a column of one of box matrices ’b’, starting from

! the dimension with minimum w to the one with maximum w, where w is

! minf(c+delta), f(c-delta).

!

! On input:

! parent_i - The index in one of nodes of ’setInd’ and ’setDia’ for the column

! holding the parent box to divide. Each element in ’setInd’ has
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! the same index as the one in ’setDia’.

! id - The identifier of the node of type ’setInd’.

! b - The head link of box matrices.

! setB - A set of ’HyperBox’ type structures, each with newly sampled

! center point coordinates and the corresponding function value.

! After dividing, it contains complete boxes with associated side

! lengths and the squared diameters.

! setDia - A linked list of current different squared diameters of box

! matrices. It’s sorted from the biggest to the smallest.

! setInd - A linked list of column indices corresponding to the different

! squared diameters in ’setDia’.

! setFcol - A linked list of free columns in box matrices.

! p_box - A ’HyperBox’ type structure to hold removed parent box to

! subdivide.

! setW - A set of type ’ValList’ used to sort wi’s, where wi is defined as

! minf(c+delta*ei), f(c-delta*ei), the minimum of function values

! at the two newly sampled points.

!

! On output:

! b - ’b’ has the parent box removed and contains the newly formed boxes

! after dividing the parent box.

! setB - Cleared set of type ’BoxLine’. All newly formed boxes have been

! inserted to ’b’.

! setDia - Updated linked list ’setDia’ with new squared diameters of boxes,

! if any.

! setInd - Updated linked list ’setInd’ with new column indices corresponding

! to newly added squared diameters in ’setDia’.

! setFcol - Updated linked list ’setFcol’ with current free columns in ’b’.

! p_box - A ’HyperBox’ structure holding removed parent box to subdivide.

! setW - ’setW’ becomes empty after dividing.

! setI - A set of dimensions with the order of dimensions for dividing. It

! is cleared after dividing.

! iflag - status to return.

! 0 Normal return.

! 1 Allocation failures.

!

INTEGER, INTENT(IN) :: parent_i

INTEGER, INTENT(IN) :: id

TYPE(BoxMatrix), INTENT(INOUT),TARGET :: b

TYPE(BoxLine), INTENT(INOUT) :: setB

TYPE(real_vector),INTENT(INOUT) :: setDia

TYPE(int_vector), INTENT(INOUT), TARGET :: setInd

TYPE(int_vector), INTENT(INOUT) :: setFcol

TYPE(HyperBox), INTENT(INOUT) :: p_box

TYPE(ValList), INTENT(INOUT) :: setW

TYPE(int_vector), INTENT(OUT) :: setI

INTEGER, INTENT(OUT) :: iflag

! Local variables.

INTEGER :: b_id, b_j, i, j, k, status, temp_dir

INTEGER, DIMENSION(2*n) :: sortInd

TYPE(BoxLink), POINTER :: p_l, p_prev

TYPE(BoxMatrix), POINTER :: p_b

TYPE(int_vector), POINTER :: p_i, p_setInd

REAL(KIND = R8) :: temp

! Initialize ’iflag’ for a normal return.

iflag = 0
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! Find the desired node of ’setInd’.

p_setInd => setInd

DO i = 1, id -1

p_setInd => p_setInd%next

END DO

! Clear the CONVEX_BIT of ’flags’ as being processed.

p_setInd%flags(parent_i) = IBCLR(p_setInd%flags(parent_i), CONVEX_BIT)

IF (p_setInd%elements(parent_i) <= col_w) THEN

! This column is in the head link of box matrices.

p_b => b

b_j = p_setInd%elements(parent_i)

ELSE

! Find the box matrix that contains this column.

b_id = (p_setInd%elements(parent_i)-1)/col_w + 1

b_j = MOD(p_setInd%elements(parent_i)-1, col_w) + 1

p_b => b

DO i = 1, b_id-1

p_b => p_b%child

END DO

END IF

! Fill out ’setW’.

DO i = 1, setB%ind, 2

! Add minimum ’val’ of a pair of newly sampled center points

! into ’setW’.

setW%val((i+1)/2) = MIN(setB%Line(i)%val, setB%Line(i+1)%val)

setW%dir((i+1)/2) = setB%dir(i)

END DO

setW%dim = setB%ind/2

! Find the order of dimensions for further dividing by insertion

! sorting wi’s in ’setW’.

DO i = 2, setW%dim

DO j = i, 2, -1

IF (setW%val(j) < setW%val(j-1)) THEN

! Element j is smaller than element j-1, so swap them. Also,

! the associated directions are swapped.

temp = setW%val(j)

k = setW%dir(j)

setW%val(j) = setW%val(j-1)

setW%dir(j) = setW%dir(j-1)

setW%val(j-1) = temp

setW%dir(j-1) = k

ELSE

EXIT

END IF

END DO

END DO

! Sort the indices of boxes in setB according to the dividing order in

! ’setW%dir’. Record the sorted indices in ’sortInd’.

DO i = 1, setW%dim

DO j = 1, setB%ind, 2

IF (setB%dir(j) == setW%dir(i)) THEN

sortInd(2*i-1) = j

sortInd(2*i) = j + 1

END IF

END DO

END DO
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! ’setW%dir’ contains the order of dimensions to divide the parent box.

! Loop dividing on all dimensions in ’setW%dir’ by setting up the new

! side lengths as 1/3 of parent box side lengths for each newly

! sampled box center.

DO i = 1, setW%dim

temp = p_b%M(1,b_j)%side(setW%dir(i))/3.0_R8

DO j = i, setW%dim

setB%Line(sortInd(2*j-1))%side(setW%dir(i)) = temp

setB%Line(sortInd(2*j))%side(setW%dir(i)) = temp

END DO

! Modify the parent’s side lengths.

p_b%M(1,b_j)%side(setW%dir(i))= temp

END DO

! Clear ’setW’ for next time.

setW%dim = 0

! Remove the parent box from box matrix ’p_b’.

p_box = p_b%M(1,b_j)

! Move the last box to the first position.

IF (p_b%ind(b_j) <= row_w) THEN

! There are no box links.

p_b%M(1,b_j) = p_b%M(p_b%ind(b_j),b_j)

ELSE

! There are box links. Chase to the last box link.

p_l => p_b%sibling(b_j)%p

DO i = 1, (p_b%ind(b_j)-1)/row_w - 1

p_l => p_l%next

END DO

p_b%M(1, b_j) = p_l%Line(p_l%ind)

p_l%ind = p_l%ind - 1

END IF

p_b%ind(b_j) = p_b%ind(b_j) - 1

! Heapify this column ’b_j’ of box matrix ’p_b’, if it has been updated

! in the previous iteration.

IF (BTEST(p_setInd%flags(parent_i),UPDATE_BIT)) THEN

CALL heapify(p_b, b_j)

! Clear the UPDATE_BIT of ’flags’.

p_setInd%flags(parent_i) = IBCLR(p_setInd%flags(parent_i),UPDATE_BIT)

ELSE

! Only siftdown operation is needed, because this column ’b_j’ has not

! been changed.

CALL siftdown(p_b, b_j, 1)

END IF

! Update ’setDia’, ’setInd’ and ’setFcol’ if this column is empty.

! Find which node ’setInd’ is associated with by checking ’setInd%id’.

IF (p_b%ind(b_j) == 0 )THEN

! This column is empty. Remove this diameter squared from a corresponding

! node of ’setDia’.

CALL rmNode(col_w, p_setInd%id-1, parent_i, setDia)

! Push the released column back to top of ’setFcol’.

IF (setFcol%dim < col_w) THEN

! The head node of ’setFcol’ is not full.

CALL insNode(col_w, p_setInd%elements(parent_i), &

setFcol%dim+1, setFcol)

ELSE

! The head node is full. There must be at least one more node

! for ’setFcol’. Find the last non-full node of ’setFcol’ to
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! insert the released column.

p_i => setFcol%next

DO

IF (p_i%dim < col_w) THEN

! Found it.

CALL insNode(col_w, p_setInd%elements(parent_i), &

p_i%dim+1, p_i)

EXIT

END IF

! Go to the next node.

p_i=> p_i%next

END DO

END IF

! Remove the column index from a corresponding node of ’setInd’.

CALL rmNode(col_w, 0, parent_i, p_setInd)

END IF

! Modify the diameter squared for the parent box temporarily saved in

! ’p_box’.

p_box%diam = DOT_PRODUCT(p_box%side, p_box%side)

! Update ’dia’ associated with ’FMIN’ which has coordinates in ’unit_x’.

IF (ALL(unit_x == p_box%c)) dia = p_box%diam

! Compute squared diameters for all new boxes in ’setB’.

DO i = 1, setB%ind

setB%Line(i)%diam = DOT_PRODUCT(setB%Line(i)%side, setB%Line(i)%side)

! Update ’dia’ if needed.

IF (ALL(unit_x == setB%Line(i)%c)) dia = setB%Line(i)%diam

END DO

! Add all new boxes in ’setB’ and ’p_box’ to ’b’ according to different

! squared diameters and different function values.

DO i = 1, setB%ind

CALL insMat(setB%Line(i), b, setDia, setInd, setFcol, status)

IF (status /=0) THEN ; iflag = status; RETURN ; END IF

END DO

CALL insMat(p_box, b, setDia, setInd, setFcol, status)

IF (status /=0) THEN ; iflag = status ; RETURN ; END IF

! Clear ’setB’ and ’setI’ for calling divide() next time.

setB%ind = 0

setI%dim = 0

RETURN

END SUBROUTINE divide

FUNCTION findcol(i_start, p_start, index, do_it) RESULT(p_setInd)

IMPLICIT NONE

! Finds the rightmost column (setInd%elements(index)), in the plot of

! (box diameter, function value) points, with CONVEX_BIT of ’flags’ set

! in linked list ’setInd’, which indicates a potentially optimal box to be

! subdivided. When finding this column, it checks the UPDATE_BIT in ’flags’

! of each column. If the column has been updated in the previous iteration

! it heapifies the column.

!

! On input:

! i_start - The index to start searching in node ’p_start’.

! p_start - The pointer to the node at which to start searching.

!

! On output:

! index - The found index in node ’p_setInd’ of the linked list ’setInd’.

! do_it - The returned sign to continue processing or not.
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! i_start - The index at which to resume searching in node ’p_start’

! next time.

! p_start - The pointer to the node at which to resume searching next time.

! p_setInd - The returned node which contains the next box to subdivide.

!

INTEGER, INTENT(INOUT) :: i_start

TYPE(int_vector), POINTER :: p_start

INTEGER, INTENT(OUT) :: index

LOGICAL, INTENT(OUT) :: do_it

TYPE(int_vector), POINTER :: p_setInd

! Local variables.

INTEGER :: i, start

TYPE(int_vector), POINTER :: p_set

TYPE(BoxMatrix), POINTER :: p_b

start = i_start

p_set => p_start

DO WHILE(ASSOCIATED(p_set))

DO i = start, p_set%dim

! Find the first column with CONVEX_BIT set in ’flags’ of ’p_set’.

IF (BTEST(p_set%flags(i), CONVEX_BIT)) THEN

do_it = .TRUE.

index = i

p_setInd => p_set

! Save them to i_start and p_start for resuming searching

! next time.

i_start = i

p_start => p_set

EXIT

ELSE

! If this box column had new boxes added in the previous

! iteration, then call heapify to order the heap elements.

IF (BTEST(p_set%flags(i), UPDATE_BIT)) THEN

p_b => m_head

! Find the box matrix ’p_b’ that holds this column.

DO j = 1, (p_set%elements(i)-1)/col_w

p_b => p_b%child

END DO

! Heapify this column.

CALL heapify(p_b, MOD((p_set%elements(i)-1), col_w)+1)

! Clear the update status bit.

p_set%flags(i) = IBCLR(p_set%flags(i), UPDATE_BIT)

END IF

END IF

END DO

! There are no more box column with CONVEX_BIT set in ’flags’ in this node.

! Go to the next one

IF (.NOT.do_it) THEN

p_set => p_set%next

! Reset ’start’ to be 1 for all the following iterations except the

! first one which resumed from ’i_start’.

start = 1

ELSE

EXIT

END IF

END DO

RETURN
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END FUNCTION findcol

SUBROUTINE findconvex(b, epsl, p_fmin, i_fmin, setInd)

IMPLICIT NONE

! In ’setInd’, clear CONVEX_BIT of columns if the first boxes on these

! columns are not on convex hull. Bit CONVEX_BIT with value 0 indicates

! the first box on the column is not one of potentially optimal boxes.

! This is determined by comparing slopes. If epsl is 0, starting from the

! first column, find the maximum slope from the first box on that column

! to the first boxes on all other columns until reaching the box with

! ’FMIN’. Then, starting from the next column with the first box on

! convex hull, repeat the procedure until no more columns before the

! column with ’FMIN’ to check. If epsl is greater than 0, the outer loop

! breaks out when the maximum slope is less than the value:

! (val - (FMIN - epsl))/diam.

!

! On input:

! b - The head link of box matrices.

! epsl - Epsilon test for potentially optimal boxes.

! p_fmin - Pointer to the node holding the column index of the box with

! ’FMIN’.

! i_fmin - Index of the column in the node ’p_fmin’.

! setInd - A linked list holding column indices of box matrices.

!

! On output:

! setInd - ’setInd’ has the modified column indices.

!

TYPE(BoxMatrix), INTENT(IN), TARGET :: b

REAL(KIND = R8), INTENT(IN) :: epsl

TYPE(int_vector), POINTER :: p_fmin

INTEGER, INTENT(IN) :: i_fmin

TYPE(int_vector), INTENT(INOUT), TARGET :: setInd

! Local variables.

INTEGER :: b_id1, b_id2, col1, col2, i, j, k, target_i

LOGICAL :: stop_fmin

REAL(KIND = R8) :: slope, slope_max

TYPE(BoxMatrix), POINTER :: p_b1, p_b2

TYPE(int_vector), POINTER :: p_setInd1, p_setInd2, target_set

! Initialize the first node pointer.

p_setInd1 => setInd

! Initialization for outer loop which processes all columns before

! the column containing ’FMIN’ in order to find a convex hull curve.

stop_fmin = .FALSE.

i = 1

k = 1

DO WHILE((.NOT.stop_fmin).AND.ASSOCIATED(p_setInd1))

! Initialization for inner loop, which computes the slope from the first

! box on the fixed column ’i’ to the first boxes on all the other columns,

! before reaching the column containing a box with ’FMIN’, to locate the

! target column with maximum slope. Mark off any columns in between the

! fixed first column and the target column.

NULLIFY(target_set)

slope_max = -HUGE(slope)

p_setInd2 => p_setInd1

! Fix the first convex hull column as column ’i’ in ’p_setInd1’.

! The second column used to calculate the slope has index ’k’ in

! ’p_setInd2’. ’k’ is incremented up to the column index corresponding
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! to ’FMIN’. Find the box matrix ’p_b1’ and the local column index

! ’col1’.

b_id1 =(p_setInd1%elements(i)-1)/col_w + 1

col1 = MOD(p_setInd1%elements(i)-1, col_w) + 1

p_b1 => b

DO j = 1, b_id1 -1

p_b1 => p_b1%child

END DO

! Check if the first column has reached the column with ’FMIN’. If

! so, break out of the outer loop.

IF (ALL(unit_x == p_b1%M(1,col1)%c)) EXIT

k = i + 1

DO

IF (k > p_setInd2%dim) THEN

! Move to the next node as k increments beyond the maximum

! length for each node of ’setInd’.

p_setInd2 => p_setInd2%next

!Jian: IF ((.NOT.ASSOCIATED(p_setInd2)) .OR. (p_setInd2%dim == 0)) EXIT

IF (.NOT.ASSOCIATED(p_setInd2)) THEN

EXIT

ELSE

IF (p_setInd2%dim == 0) EXIT

END IF

k = 1

END IF

! To compute the slope from the first box on column ’i’ of ’p_setInd1’ to

! the first box on column ’k’ of ’p_setInd2’, find the local column index

! ’col2’ and the corresponding box matrix ’p_b2’.

b_id2 = (p_setInd2%elements(k)-1)/col_w + 1

col2 = MOD(p_setInd2%elements(k)-1, col_w) + 1

p_b2 => b

DO j = 1, b_id2 -1

p_b2 => p_b2%child

END DO

! Use the slope formula (f1 - f2)/(d1 - d2), where f1 and f2 are the

! function values at the centers of the two boxes with diameters

! d1 and d2.

slope = (p_b1%M(1,col1)%val - p_b2%M(1,col2)%val) / &

(SQRT(p_b1%M(1,col1)%diam) - SQRT(p_b2%M(1,col2)%diam))

! Compare the new slope with the current maximum slope. Keep track

! of the target column index and the target node.

IF (slope > slope_max) THEN

slope_max = slope

target_i = k

target_set => p_setInd2

! Check if this target column contains ’FMIN’.

IF (ALL(unit_x == p_b2%M(1,col2)%c)) stop_fmin = .TRUE.

END IF

IF (ALL(unit_x == p_b2%M(1,col2)%c)) THEN

! The second box for computing slope has reached the column with ’FMIN’.

! This pass of inner loop is over. Mark off all nonconvex hull columns

! in between the ’target_i’ of node ’target_set’ and the fixed column

! ’i’ of ’p_setInd1’.

IF (ASSOCIATED(target_set)) THEN

CALL markoff(i, target_i, p_setInd1, target_set)

END IF
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! Break out the inner loop to start next pass.

EXIT

END IF

! Move on to the next column.

k = k + 1

END DO

! Check if epsl/=0. If so, it stops if the found ’slope_max’ from

! the first box is less than the desired accuracy of the solution.

IF (epsl /= 0) THEN

IF ((p_b1%M(1,col1)%val-(FMIN-(ABS(FMIN)+1)*epsl))/ &

SQRT(p_b1%M(1,col1)%diam) > slope_max ) THEN

! Mark off the first boxes on the columns from the column target_i to

! the one with ’FMIN’.

target_set%flags(target_i) = IBCLR(target_set%flags(target_i),&

CONVEX_BIT)

CALL markoff(target_i, i_fmin, target_set, p_fmin)

! Mark off the first box on the colume with ’FMIN’.

p_fmin%flags(i_fmin) = IBCLR(p_fmin%flags(i_fmin), CONVEX_BIT)

EXIT

END IF

END IF

! To start the next pass, the first fixed column jumps to the target column

! just found which is the next column on convex hull.

i = target_i

p_setInd1 => target_set

END DO

RETURN

END SUBROUTINE findconvex

FUNCTION findpt(b, col, i_last, index, p_last) RESULT(p_index)

IMPLICIT NONE

! Find the pointer for the box ’index’ in the column ’col’ of box matrix

! ’b’. If this box ’index’ is in one of the box links, record the pointer

! to the box link holding this box ’index’ in ’p_last’ and compute the

! box position offset ’i_last’. These two records will be used to resume

! chasing the pointers for the heap elements closer to the bottom.

!

! On input:

! b - Box matrix holding the box column ’col’ with the box ’index’.

! col - Column index.

! i_last - Box position offset used in finding the starting box position

! from the box link ’p_last’.

! index - Box index.

! p_last - Pointer to the last box link that has been chased so far.

!

! On output:

! i_last - Updated ’i_last’.

! p_last - Updated ’p_last’.

!

TYPE(BoxMatrix), INTENT(IN), TARGET :: b

INTEGER, INTENT(IN) :: col

INTEGER, INTENT(INOUT) :: i_last

INTEGER, INTENT(IN) :: index

TYPE(BoxLink), POINTER :: p_last

TYPE(HyperBox), POINTER :: p_index

! Local variables.

TYPE(BoxLink), POINTER :: p_l ! Pointer to a box link.
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INTEGER :: i

IF (.NOT.ASSOCIATED(p_last)) THEN

! ’p_last’ has not been set, so start from the first box matrix ’b’.

IF (index <= row_w) THEN

! The box ’index’ is in ’M’ array of ’b’.

p_index => b%M(index,col)

ELSE

! Chase to the box link that this box belongs to.

p_l => b%sibling(col)%p

DO i = 1, (index-1)/row_w -1

p_l => p_l%next

END DO

! Found the box link that holds the box ’index’.

p_index => p_l%Line(MOD(index-1, row_w)+1)

! Set ’p_last’ and ’i_last’.

p_last => p_l

i_last = ((index-1)/row_w)*row_w

END IF

ELSE

! Start from ’p_last’, because it is the last box link that has been

! processed.

p_l => p_last

DO i = 1, (index-i_last-1)/row_w

p_l => p_l%next

END DO

! Found the box link that holds the box ’index’.

p_index => p_l%Line(MOD(index-1,row_w)+1)

! Set ’p_last’ and ’i_last’.

p_last => p_l

i_last = ((index-1)/row_w)*row_w

END IF

RETURN

END FUNCTION findpt

SUBROUTINE findsetI(b, col, setI)

IMPLICIT NONE

! Fills out ’setI’, holding dimensions with the maximum side length

! of the first box on ’col’ in box matrix links ’b’.

!

! On input:

! b - The head link of box matrices.

! col - The global column index of box matrix links.

!

! On output:

! setI - The set of dimensions with the maximum side length.

!

TYPE(BoxMatrix), INTENT(IN), TARGET :: b

INTEGER, INTENT(IN) :: col

TYPE(int_vector), INTENT(INOUT) :: setI

! Local variables.

INTEGER :: b_id, i, j

REAL(KIND = R8) :: temp

TYPE(BoxMatrix), POINTER :: p_b

! Find the box matrix link that ’col’ is associated with.

IF (col <= col_w) THEN

p_b => b

j = col
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ELSE

b_id = (col-1)/col_w + 1

j = MOD(col-1, col_w) + 1

p_b => b

DO i = 1, b_id-1

p_b => p_b%child

END DO

END IF

! Search for the maximum side length.

temp = MAXVAL(p_b%M(1,j)%side(:))

! Find all the dimensions with the maximum side length.

DO i = 1, N

IF ((ABS(p_b%M(1,j)%side(i) - temp)/temp) <= EPS4N) THEN

! Add it to ’setI’.

CALL insNode(N, i, setI%dim+1, setI)

END IF

END DO

RETURN

END SUBROUTINE findsetI

SUBROUTINE heapify(b, col)

IMPLICIT NONE

! Heapify the column ’col’ (local index) of box matrix ’b’.

!

! On input:

! b - Box matrix holding the box column ’col’ to be heapified.

! col - Column index.

! On output:

! b - Box matrix with the heapified box column ’col’.

TYPE(BoxMatrix), INTENT(INOUT), TARGET :: b

INTEGER, INTENT(IN) :: col

! Local variables.

INTEGER :: i

! Heapify the box column starting from the last non-leaf node from bottom up.

DO i = b%ind(col)/2, 1, -1

CALL siftdown(b, col, i)

END DO

RETURN

END SUBROUTINE heapify

SUBROUTINE init(b, status)

IMPLICIT NONE

! Allocates the arrays and initializes the first center point.

! Evaluates the function value at the center point and initializes

! ’FMIN’ and ’unit_x’.

!

! On output

! b - The first box matrix to initialize.

! status - Status of return.

! 0 Successful.

! 1 Allocation error.

!

TYPE(BoxMatrix), INTENT(OUT), TARGET :: b

INTEGER, INTENT(OUT):: status

! Local variables.

INTEGER :: alloc_err, i, iflag, j

! Normal status.

status = 0
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iflag = 0

! Allocate arrays.

ALLOCATE(b%M(row_w, col_w), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; status = 1; RETURN; END IF

ALLOCATE(b%ind(col_w), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; status = 1; RETURN; END IF

! Clear the box counter for each column.

b%ind(:) = 0

! Nullify the child link to the next box matrix.

NULLIFY(b%child)

ALLOCATE(b%sibling(col_w), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; status = 1; RETURN; END IF

DO i = 1, col_w

NULLIFY(b%sibling(i)%p)

END DO

DO i = 1, row_w

DO j = 1, col_w

ALLOCATE(b%M(i,j)%c(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; status = 1; RETURN; END IF

ALLOCATE(b%M(i,j)%side(N), STAT = alloc_err)

IF (alloc_err /= 0) THEN ; status = 1; RETURN; END IF

END DO

END DO

! Initialize the center of the first unit hypercube in box matrix ’b’

! and ’unit_x’ in the normalized coordinate system.

b%M(1,1)%c(:) = 0.5_R8

b%M(1,1)%side(:) = 1.0_R8

unit_x(:) = 0.5_R8

! Evaluate objective function at ’c’.

! Store the function value and initialize ’FMIN’.

iflag = 0

FMIN = OBJ_FUNC(L + b%M(1,1)%c(:) * (U - L), iflag)

! Check the iflag to deal with undefined function values.

IF (iflag /= 0) THEN

! Add a handler in future.

END IF

b%M(1,1)%val = FMIN

! Initialize the diameter squared for this box and ’dia’,

! the diameter squared associated with ’FMIN’.

dia = DOT_PRODUCT(b%M(1,1)%side,b%M(1,1)%side)

b%M(1,1)%diam = dia

! Initialize the ’ind’ for the first column and ’id’ for this box matrix.

b%ind(1) = 1

b%id = 1

RETURN

END SUBROUTINE init

SUBROUTINE initLink(newBoxLink, iflag)

IMPLICIT NONE

! Initializes a new box link.

!

! On input:

! newBoxLink - A new box link.

!

! On output:

! newBoxLink - ’newBoxLink’ with initialized structures.

! iflag - Return status.
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! 0 Normal.

! 1 Allocation failure.

!

TYPE(BoxLink), INTENT(INOUT) :: newBoxLink

INTEGER, INTENT(OUT) :: iflag

! Local variables.

INTEGER :: alloc_err, i

! Initialize ’iflag’.

iflag = 0

! Allocate ’Line’ of the new BoxLink.

ALLOCATE(newBoxLink%Line(row_w),STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

DO i = 1, row_w

ALLOCATE(newBoxLink%Line(i)%c(N),STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

ALLOCATE(newBoxLink%Line(i)%side(N),STAT = alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

END DO

! Nullify pointers ’next’ and ’prev’.

NULLIFY(newBoxLink%next)

NULLIFY(newBoxLink%prev)

! Initialize the counter for boxes.

newBoxLink%ind = 0

RETURN

END SUBROUTINE initLink

SUBROUTINE insBox(box, col, b, iflag)

IMPLICIT NONE

! Inserts ’box’ in column ’col’ of box matrices ’b’. If all positions

! in ’col’ are full, makes a new box link linked to the end of

! this column.

!

! On input:

! box - The box to be inserted.

! col - The global column index at which to insert ’box’.

! b - The head link of box matrices.

!

! On output:

! b - ’b’ has a newly added ’box’.

! iflag - Return status.

! 0 Normal.

! 1 Allocation failure.

!

TYPE(HyperBox), INTENT(IN) :: box

INTEGER, INTENT(IN) :: col

TYPE(BoxMatrix), INTENT(INOUT), TARGET :: b

INTEGER, INTENT(OUT) :: iflag

! Local variables.

INTEGER :: b_id, i, mycol, status

TYPE(BoxLink), POINTER :: p_blink

TYPE(BoxMatrix), POINTER :: p_b

! Initialize ’iflag’ as a normal return.

iflag = 0

! Locate the box matrix in which to insert ’box’.

mycol = col

IF (mycol <= col_w) THEN

p_b => b
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ELSE

b_id = (mycol-1)/col_w + 1

mycol = MOD(mycol-1, col_w) + 1

p_b => b

DO i=1, b_id-1

p_b => p_b%child

END DO

END IF

! Insert the box at the end of column ’mycol’ of box matrix ’p_b’.

IF (p_b%ind(mycol) < row_w) THEN

! There is no box links.

p_b%M(p_b%ind(mycol)+1, mycol) = box

ELSE

! There are box links. Chase to the last box link.

p_blink => p_b%sibling(mycol)%p

DO i = 1, p_b%ind(mycol)/row_w - 1

p_blink => p_blink%next

END DO

p_blink%ind = p_blink%ind + 1

p_blink%Line(p_blink%ind) = box

END IF

! Update ’ind’ of the column (’ind’ of ’p_b’ counts all the boxes in

! this column including the ones in its box links.).

p_b%ind(mycol) = p_b%ind(mycol) + 1

! Add a new box link if needed.

CALL checkblinks(mycol, p_b, status)

IF (status /=0) THEN ; iflag = 1 ; END IF

RETURN

END SUBROUTINE insBox

SUBROUTINE insMat(box, b, setDia, setInd, setFcol, status)

IMPLICIT NONE

! Retrieves all box matrices to find the place at which to insert ’box’.

! Inserts it in the column with the same squared diameter, or a new

! column if the squared diameter is new. In the same column, the smaller

! ’val’, the earlier the position.

!

! On input:

! box - The box to be inserted.

! b - The head link of box matrices.

! setDia - A linked list holding different squared diameters.

! setInd - A linked list holding the column indices corresponding to

! ’setDia’.

! setFcol - A linked list holding free columns of box matrices.

!

! On output:

! b - ’b’ has the newly added ’box’ and updated counters.

! setDia - ’setDia’ has a newly added squared diameter if any and

! updated ’dim’ if modified.

! setInd - ’setInd’ has a newly added column index if needed and

! updated ’dim’ if modified.

! setFcol - ’setFcol’ has a column index removed if needed and updated

! ’dim’ if modified.

! status - Status of processing.

! 0 Normal.

! 1 Allocation failures of type ’BoxMatrix’.

! 2 Allocation failures of type ’BoxLink’.
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! 3 Allocation failures of type ’real_vector’ or ’int_vector’.

!

TYPE(HyperBox), INTENT(IN) :: box

TYPE(BoxMatrix), INTENT(INOUT), TARGET :: b

TYPE(real_vector), INTENT(INOUT), TARGET :: setDia

TYPE(int_vector), INTENT(INOUT), TARGET :: setInd

TYPE(int_vector), INTENT(INOUT), TARGET :: setFcol

INTEGER, INTENT(OUT) :: status

! Local variables.

INTEGER :: b_id, b_pos, i, iflag, j, pos

LOGICAL :: found

TYPE(BoxMatrix), POINTER :: p_b

TYPE(int_vector), POINTER :: p_set, p_setFcol

TYPE(real_vector), POINTER :: p_rset

! Initialization for msearchSet().

pos = 0

found = .FALSE.

NULLIFY(p_rset)

iflag = 0

status = 0

! Locate a node of ’setDia’ into which ’diam’ can be inserted.

p_rset => msearchSet(setDia, box%diam)

CALL binaryS(p_rset, box%diam, pos, found)

IF (found) THEN

! A match is found in ’p_rset’ of ’setDia’.

! Find the corresponding node in ’setInd’ to match ’p_rset’.

p_set => setInd

DO i = 1, p_rset%id-1

p_set => p_set%next

END DO

! Insert ’box’ to the column indexed by ’pos’ in a node of ’setInd’.

CALL insBox(box, p_set%elements(pos), b, iflag)

! Mark the column indexed by ’pos’ in a node of ’setInd’ to be updated.

p_set%flags(pos) = IBSET(p_set%flags(pos), UPDATE_BIT)

IF (iflag /= 0) THEN ; status = 2 ; RETURN ; END IF

ELSE

! No match is found. It’s a new squared diameter.

IF (pos == 0)THEN

! Obtain a free column from ’setFcol’ to insert ’box’ after all

! other columns.

IF (setFcol%dim > 0)THEN

! ’setFcol’ is not empty, so pop a column from the top of ’setFcol’

! nodes.

IF (setFcol%dim < col_w) THEN

! The head node is not full, therefore it must be the top node.

i = setFcol%elements(setFcol%dim)

! Update ’dim’.

setFcol%dim = setFcol%dim - 1

ELSE

! There might be other nodes with element(s).

p_setFcol => setFcol%next

IF (ASSOCIATED(p_setFcol)) THEN

! Chase to the top node of ’setFcol’ with element(s).

DO WHILE(p_setFcol%dim == col_w)

p_setFcol => p_setFcol%next

END DO
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! The top node could be ’p_setFcol’ or its ’prev’.

IF (p_setFcol%dim /= 0) THEN

i = p_setFcol%elements(p_setFcol%dim)

p_setFcol%dim = p_setFcol%dim - 1

ELSE

i = p_setFcol%prev%elements(p_setFcol%prev%dim)

p_setFcol%prev%dim = p_setFcol%prev%dim - 1

END IF

ELSE

! There are no more nodes with elements. Pop a column from the

! head node of ’setFcol’.

i = setFcol%elements(setFcol%dim)

! Update ’dim’.

setFcol%dim = setFcol%dim -1

END IF

END IF

ELSE

! There are no free columns, so make a new box matrix.

CALL newMat(b, setDia, setInd, setFcol, iflag)

IF (iflag /= 0) THEN ; status = iflag ; RETURN ; END IF

! Pop a column from the top of ’setFcol’ for use.

i = setFcol%elements(setFcol%dim)

CALL rmNode(col_w, 0, setFcol%dim, setFcol)

END IF

! Found the global column index ’i’ at which to insert ’box’. Convert

! it to a local column index ’b_pos’ and locate the box

! matrix ’p_b’ at which to insert ’box’.

IF (i <= col_w) THEN

p_b => b

b_pos = i

ELSE

b_id = (i-1)/col_w + 1

b_pos = MOD(i-1, col_w) + 1

p_b => b

DO j = 1, b_id -1

p_b => p_b%child

END DO

END IF

! Insert ’box’ to the beginning of the new column ’b_pos’.

p_b%M(1,b_pos) = box

! Locate the nodes in both ’setDia’ and ’setInd’ at which to insert

! the new squared diameter and the column index ’i’ at the end of

! both linked lists (’pos’ is 0).

IF (setDia%dim < col_w)THEN

! There are no more nodes with elements. Assign the head node

! to ’p_rset’.

p_rset => setDia

ELSE

! There are other nodes to check.

p_rset => setDia%next

IF (ASSOCIATED(p_rset)) THEN

! Chase to the end of the linked list.

DO WHILE(p_rset%dim == col_w)

p_rset => p_rset%next

END DO

ELSE
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! There are no more nodes. Assign the head node to ’p_rset’

p_rset => setDia

END IF

END IF

! Found the node ’p_rset’ of ’setDia’ to insert.

CALL insNode(col_w, box%diam, p_rset%dim+1, p_rset)

! Find the corresponding node in ’setInd’ at which to insert the

! column index ’i’.

p_set => setInd

DO j =1, p_rset%id -1

p_set => p_set%next

END DO

CALL insNode(col_w, i, p_set%dim+1, p_set)

! Update ’ind’ of col ’b_pos’ in ’p_b’.

p_b%ind(b_pos) = 1

ELSE

! ’pos’ is not 0. ’p_rset’ points to the right node of ’setDia’ to

! insert the new squared diameter.

! Obtain a free column from ’setFcol’ to insert a new column before the

! column indexed by the returned ’pos’.

IF (setFcol%dim > 0)THEN

! ’setFcol’ is not empty, so pop a column from the top of ’setFcol’

! nodes.

IF (setFcol%dim < col_w) THEN

! The head node is not full, so it must be the top.

i = setFcol%elements(setFcol%dim)

setFcol%dim = setFcol%dim - 1

ELSE

! There might be nodes with free columns.

p_setFcol => setFcol%next

IF (ASSOCIATED(p_setFcol)) THEN

! Chase to the top of ’setFcol’ links.

DO WHILE(p_setFcol%dim == col_w)

p_setFcol => p_setFcol%next

END DO

! The top node could be ’p_setFcol’ or its ’prev’.

IF (p_setFcol%dim /= 0) THEN

i = p_setFcol%elements(p_setFcol%dim)

p_setFcol%dim = p_setFcol%dim - 1

ELSE

i = p_setFcol%prev%elements(p_setFcol%prev%dim)

p_setFcol%prev%dim = p_setFcol%prev%dim - 1

END IF

ELSE

! There are no more nodes with elements. Pop a column from the

! head node of ’setFcol’.

i = setFcol%elements(setFcol%dim)

setFcol%dim = setFcol%dim -1

END IF

END IF

ELSE

! There are no free columns, so make a new box matrix.

CALL newMat(b, setDia, setInd, setFcol, iflag)

IF (iflag /= 0) THEN ; status = iflag ; RETURN ; END IF

! Pop a column for use.

i = setFcol%elements(setFcol%dim)
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CALL rmNode(col_w, 0, setFcol%dim, setFcol)

END IF

! Found the global column index ’i’ at which to insert ’box’.

! Convert it to a local column index ’b_pos’ and locate the

! box matrix ’p_b’ in which to insert ’box’.

IF (i <= col_w) THEN

p_b => b

b_pos = i

ELSE

b_id = (i-1)/col_w + 1

b_pos = MOD(i-1, col_w) + 1

p_b => b

DO j = 1, b_id -1

p_b => p_b%child

END DO

END IF

! Add ’box’ to be the first on column ’b_pos’ of ’p_b’.

p_b%M(1,b_pos) = box

! Insert the new squared diameter at the position ’pos’ in ’p_rset’

! of ’setDia’.

CALL insNode(col_w, box%diam, pos, p_rset)

! Insert the corresponding column index ’i’ at the same position ’pos’

! in a node of ’setInd’.

p_set => setInd

DO j = 1, p_rset%id -1

p_set => p_set%next

END DO

CALL insNode(col_w, i, pos, p_set)

! Update ’ind’ of box matrix ’p_b’.

p_b%ind(b_pos) = 1

END IF

END IF

RETURN

END SUBROUTINE insMat

SUBROUTINE markoff(i, target_i, p_setInd1, target_set)

IMPLICIT NONE

! Marks off columns in between the column ’i’ of ’p_setInd1’ and column

! ’target_i’ of ’target_set’ by clearing the CONVEX_BIT in ’flags’.

!

! On input:

! i - Column index of the first box for computing slope in findconvex.

! target_i - Column index of the second box for computing slope in

! findconvex.

! p_setInd1 - The node of ’setInd’ holding the column ’i’.

! target_set - The node of ’setInd’ holding the column ’target_i’.

!

! On output:

! p_setInd1 - ’p_setInd1’ has changed column indices.

! target_set - ’target_set’ has changed column indices.

!

INTEGER, INTENT(IN) :: i

INTEGER, INTENT(IN) :: target_i

TYPE(int_vector), INTENT(INOUT), TARGET :: p_setInd1

TYPE(int_vector), POINTER :: target_set

! Local variables.

INTEGER :: j

84



TYPE(int_vector), POINTER :: p_set

! Check if any columns in between.

IF (ASSOCIATED(target_set, p_setInd1)) THEN

! If ’target_i’ is next to column ’i’, return.

IF (i == target_i) RETURN

! If no any columns in between, return.

IF (i+1 == target_i) RETURN

END IF

! Clear all CONVEX_BITs in ’flags’ in between.

j = i

p_set => p_setInd1

DO

j = j + 1

IF (j > p_set%dim) THEN

p_set => p_set%next

IF (.NOT.ASSOCIATED(p_set).OR.(p_set%dim==0)) EXIT

j = 1

END IF

! Check if at the target node.

IF (ASSOCIATED(target_set, p_set)) THEN

! If ’j’ has reached ’target_i’, exit.

IF (j == target_i) EXIT

END IF

! Clear the CONVEX_BIT of ’flags’ for column ’j’ of ’p_set’.

p_set%flags(j) = IBCLR(p_set%flags(j), CONVEX_BIT)

END DO

END SUBROUTINE markoff

FUNCTION msearchSet(setDia, diam) RESULT(p_rset)

IMPLICIT NONE

! Finds the right node in ’setDia’ in which to insert ’diam’.

!

! On input:

! setDia - A linked list holding different squared diameters.

! diam - A diameter squared to be inserted in a node in ’setDia’.

!

! On output:

! p_rest - Pointer to the right node of ’setDia’.

!

TYPE(real_vector), INTENT(IN), TARGET :: setDia

REAL(KIND = R8), INTENT(IN) :: diam

TYPE(real_vector), POINTER :: p_rset

! Local variables.

TYPE(real_vector), POINTER :: p_setDia

! Initialize ’p_setDia’.

p_setDia => setDia

DO

IF (p_setDia%dim > 0) THEN

! There are elements to be compared with ’diam’.

IF (diam >= p_setDia%elements(1)) THEN

! ’diam’ is the biggest. Return this node as ’p_rset’.

p_rset => p_setDia

EXIT

ELSE

IF ((diam >= p_setDia%elements(p_setDia%dim)) .OR. &

((ABS(diam - p_setDia%elements(p_setDia%dim)) &

/MAX(diam, p_setDia%elements(p_setDia%dim))) <= EPS4N) ) THEN
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! ’diam’ is within the range of elements in this node.

p_rset => p_setDia

EXIT

ELSE

! ’diam’ is smaller than the last element. Go on to the next

! node, if any.

IF (ASSOCIATED(p_setDia%next)) THEN

p_setDia => p_setDia%next

ELSE

! There are no more nodes. Return this pointer.

p_rset => p_setDia

EXIT

END IF

END IF

END IF

ELSE

! It’s empty. Return this pointer.

p_rset => p_setDia

EXIT

END IF

END DO

RETURN

END FUNCTION msearchSet

SUBROUTINE newMat(b, setDia, setInd, setFcol, iflag)

IMPLICIT NONE

! Makes a new box matrix and its associated linked lists for holding

! different squared diameters, column indices, and free columns.

! Links them to existing structures.

!

! On input:

! b - The head link of box matrices.

! setDia - Linked list holding different squared diameters of

! current boxes.

! setInd - Linked list holding column indices of box matrices.

! setFcol - Linked list holding free columns of box matrices.

!

! On output:

! b - ’b’ has a box matrix link added at the end.

! setDia - ’setDia’ has a node added at the end.

! setInd - ’setInd’ has a node added at the end.

! setFcol - ’setFcol’ has a node added at the end.

! iflag - Return status.

! 0 Normal.

! 1 Allocation failures of type ’BoxMatrix’.

! 3 Allocation failures of type ’real_vector’ or ’int_vector’.

!

TYPE(BoxMatrix), INTENT(INOUT), TARGET :: b

TYPE(real_vector), INTENT(INOUT), TARGET :: setDia

TYPE(int_vector), INTENT(INOUT), TARGET :: setInd

TYPE(int_vector), INTENT(INOUT), TARGET :: setFcol

INTEGER, INTENT(OUT) :: iflag

! Local variables.

INTEGER :: alloc_err, i, j

TYPE(BoxMatrix), POINTER :: new_b, p_b

TYPE(int_vector), POINTER :: n_setFcol, n_setInd, p_setFcol, p_setInd

TYPE(real_vector), POINTER :: n_setDia, p_setDia
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! Initialize iflag for normal return.

iflag = 0

! Allocate a new box matrix.

ALLOCATE(new_b, STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

! Allocate its associated arrays.

ALLOCATE(new_b%M(row_w, col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

ALLOCATE(new_b%ind(col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

! Clear the box counter for each column.

new_b%ind(:) = 0

! Nullify pointers for a child link and box links.

NULLIFY(new_b%child)

ALLOCATE(new_b%sibling(col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

DO i = 1, col_w

NULLIFY(new_b%sibling(i)%p)

END DO

DO i = 1, row_w

DO j = 1, col_w

ALLOCATE(new_b%M(i,j)%c(N), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

ALLOCATE(new_b%M(i,j)%side(N), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 1; RETURN; END IF

END DO

END DO

! Find the last box matrix to link with the new one.

p_b => b

DO WHILE(ASSOCIATED(p_b%child))

p_b => p_b%child

END DO

! Found the last box matrix p_b. Link it to new box matrix ’b’.

p_b%child => new_b

! Set up ’id’ for new_b.

new_b%id = p_b%id + 1

! Allocate new ’setDia’, ’setInd’ and ’setFcol’ for ’new_b’.

! Find the corresponding nodes of ’setDia’, ’setInd’ and ’setFcol’.

p_setDia => setDia

p_setInd => setInd

p_setFcol => setFcol

DO i=1, p_b%id-1

p_setDia => p_setDia%next

p_setInd => p_setInd%next

p_setFcol => p_setFcol%next

END DO

! Allocate a new node for ’setDia’. Initialize its structure.

ALLOCATE(n_setDia, STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

ALLOCATE(n_setDia%elements(col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

NULLIFY(n_setDia%next)

NULLIFY(n_setDia%prev)

n_setDia%id = p_setDia%id +1

n_setDia%dim = 0

! Allocate a new node for ’setInd’. Initialize its structure.

87



ALLOCATE(n_setInd, STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

ALLOCATE(n_setInd%elements(col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

ALLOCATE(n_setInd%flags(col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

n_setInd%flags(:)= 0

NULLIFY(n_setInd%next)

NULLIFY(n_setInd%prev)

n_setInd%id = p_setInd%id + 1

n_setInd%dim = 0

! Allocate a new node for ’setFcol’. Initialize its structure.

ALLOCATE(n_setFcol, STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

ALLOCATE(n_setFcol%elements(col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

ALLOCATE(n_setFcol%flags(col_w), STAT=alloc_err)

IF (alloc_err /= 0) THEN; iflag = 3; RETURN; END IF

NULLIFY(n_setFcol%next)

NULLIFY(n_setFcol%prev)

n_setFcol%id = p_setFcol%id + 1

n_setFcol%dim = 0

! Link them to the end of existing sets.

p_setDia%next => n_setDia

n_setDia%prev => p_setDia

p_setInd%next => n_setInd

n_setInd%prev => p_setInd

p_setFcol%next => n_setFcol

n_setFcol%prev => p_setFcol

! Fill up ’setFcol’ with new columns from the new box matrix.

! Starting from the last column, push free columns to the top of ’setFcol’.

DO i = 1, col_w

setFcol%elements(i) = new_b%id*col_w - (i-1)

END DO

setFcol%dim = col_w

RETURN

END SUBROUTINE newMat

SUBROUTINE sampleF(setB, eval_c)

IMPLICIT NONE

! Evaluates the objective function at each newly sampled center point.

! Keeps updating ’FMIN’ and ’unit_x’.

!

! On input:

! setB - The set of newly sampled boxes with their center points’

! coordinates.

! eval_c - The counter of evaluations.

!

! On output:

! setB - The set of newly sampled boxes with added function values

! at center points.

! eval_c - The updated counter of evaluations.

!

TYPE(BoxLine), INTENT(INOUT) :: setB

INTEGER, INTENT(INOUT) :: eval_c

! Local variables.

INTEGER :: i, iflag, j
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! Loop evaluating all the new center points of boxes in ’setB’.

DO i = 1, setB%ind

! Evaluate the function in the original frame.

iflag = 0

setB%Line(i)%val = OBJ_FUNC(L + setB%Line(i)%c(:) * (U - L), iflag)

! Check ’iflag’.

IF (iflag /= 0) THEN

! Add a handle to deal with undefined function value.

END IF

! Update evaluation counter.

eval_c = eval_c + 1

IF (FMIN > setB%Line(i)%val) THEN

! Update ’FMIN’ and ’unit_x’.

FMIN = setB%Line(i)%val

unit_x(:) = setB%Line(i)%c(:)

END IF

END DO

RETURN

END SUBROUTINE sampleF

SUBROUTINE sampleP(col, setI, b, setB)

IMPLICIT NONE

! On each dimension in ’setI’, samples two center points at the c+delta*ei

! and c-delta*ei. Since it has been normalized, ei equals 1. In ’setB’,

! records all the new points as the centers of boxes which will be formed

! completely through subroutines sampleF and divide.

!

! On input:

! col - The global column index of the box to subdivide.

! setI - The set of dimensions with maximum side length.

! b - The head link of box matrices.

! setB - The empty set of type ’HyperBox’ which will hold newly sampled

! points as the centers of new boxes.

!

! On output:

! setI - The set of dimensions with maximum side length.

! b - The head link of box matrices.

! setB - The set of boxes which contains the newly sampled center points.

!

INTEGER, INTENT(IN) :: col

TYPE(int_vector), INTENT(INOUT) :: setI

TYPE(BoxMatrix), INTENT(INOUT), TARGET :: b

TYPE(BoxLine), INTENT(INOUT) :: setB

! Local variables.

INTEGER :: b_id ! Identifier of the associated box matrix.

INTEGER :: i, k ! Loop counters.

INTEGER :: j ! Local column index converted from the global one ’col’.

INTEGER :: new_i ! Index of new points in setB.

REAL (KIND=R8) :: delta ! 1/3 of the maximum side length.

TYPE (BoxMatrix), POINTER :: p_b ! Pointer to the associated box matrix.

! Find the box matrix that ’col’ is associated with. Store the pointer

! to box matrix in ’p_b’. The local column index ’j’ will be converted from

! ’col’.

IF (col <= col_w) THEN

p_b => b

j = col

ELSE
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b_id = (col-1)/col_w + 1

j = MOD(col-1, col_w) + 1

p_b => b

DO i = 1, b_id-1

p_b => p_b%child

END DO

END IF

! Find the maximum side length by obtaining the dimension in ’setI’.

! Then, extract the maximum side length from the first box on column ’j’ of

! box matrix ’p_b’. Calculate ’delta’, 1/3 of the maximum side length.

delta = p_b%M(1,j)%side(setI%elements(setI%dim))/ 3

! Loop sampling two new points of all dimensions in ’setI’.

! c + delta*ei => newpt_1; c - delta*ei => newpt_2, where ei=1

! for it’s a normalized space.

DO i = 1, setI%dim

new_i = setB%ind + 1

! Copy the coordinates of parent box to the two new boxes

setB%Line(new_i)%c(:) = p_b%M(1, j)%c(:)

setB%Line(new_i + 1)%c(:) = p_b%M(1, j)%c(:)

! Assign changed coordinates to the two new points in ’setB’.

setB%Line(new_i)%c(setI%elements(i)) = &

p_b%M(1, j)%c(setI%elements(i)) + delta

setB%Line(new_i+1)%c(setI%elements(i)) = &

p_b%M(1, j)%c(setI%elements(i)) - delta

! Record the directions with changes in ’setB%dir’ for further

! processing to find the dividing order of dimensions.

setB%dir(new_i) = setI%elements(i)

setB%dir(new_i + 1) = setI%elements(i)

! Update ’ind’ of ’setB’.

setB%ind = setB%ind + 2

! Initialize side lengths of new points for further dividing

! by copying the sides from the parent box.

setB%Line(new_i)%side(:) = p_b%M(1,j)%side(:)

setB%Line(new_i+1)%side(:) = p_b%M(1,j)%side(:)

END DO

! Clear ’setI’.

setI%dim = 0

RETURN

END SUBROUTINE sampleP

SUBROUTINE siftdown(b, col, index)

IMPLICIT NONE

! Siftdown heap element ’index’ through the heap column ’col’ in

! the box matrix ’b’.

!

! On input:

! b - Box matrix holding the box column ’col’ for siftdown.

! col - Column index.

! index - Index of the box to be sifted down.

!

! On output:

! b - Box matrix with the rearranged elements by siftdown.

TYPE(BoxMatrix), INTENT(INOUT), TARGET :: b

INTEGER, INTENT(IN) :: col, index

! Local variables.

INTEGER :: i, j ! Loop counters.

INTEGER :: i_last ! Index of the last box that has been processed
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! in the previous iteration.

INTEGER :: i_last_backup ! i_last’s backup used to go back to i_last,

! which may be updated in the current iteration.

INTEGER :: left, right ! Indices for the left and right children.

TYPE(BoxLink), POINTER :: p_last ! Pointer to the last box link

! that has been processed.

TYPE(BoxLink), POINTER :: p_last_backup ! Pointer backup for ’p_last’.

TYPE(HyperBox), POINTER :: p_i ! Pointer to the heap parent box.

TYPE(HyperBox), POINTER :: p_left, p_right ! Pointers to the left and right

! child boxes.

NULLIFY(p_last)

! Starting siftdown operation from the box ’index’.

i = index

DO

! Find the indices for the left and right children.

left = 2*i

right = 2*i + 1

! If ’i’ is a leaf, exit.

IF (left > b%ind(col)) EXIT

! Find the pointers to the the ith box and its left child. Record the

! pointer ’p_last’ and index ’i_last’ for the currently processed box

! link.

p_i => findpt(b, col, i_last, i, p_last)

p_left => findpt(b, col, i_last, left, p_last)

IF (left < b%ind(col)) THEN

! Backup the pointer ’p_last’ and the index ’i_last’, because they will

! be updated when finding the pointer to the right child. If the right

! child is in the correct place in the heap, restore the pointer

! ’p_last’ and the index ’i_last’.

p_last_backup => p_last

i_last_backup = i_last

p_right => findpt(b, col, i_last, right, p_last)

IF (p_left%val > p_right%val) THEN

p_left => p_right

left = left + 1

ELSE

! Restore ’p_last’ and ’i_last’ to the values before finding

! the pointer for the right child.

p_last => p_last_backup

i_last = i_last_backup

END IF

END IF

! If the boxes are in the correct order, exit.

IF (p_i%val <= p_left%val) EXIT

! Swap the boxs pointed by ’pi’ and ’p_left’.

tempbox = p_i

p_i = p_left

p_left = tempbox

! Continue siftdown operation from the left child of ’i’.

i = left

END DO

RETURN

END SUBROUTINE siftdown

END SUBROUTINE VTDIRect

END MODULE VTDIRect_MOD
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