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(Abstract)

Several methods have been developed to capture shock waves in
turbomachinery flows, such as Moore's pressure correction procedure and
Denton's time marching procedure. The time marching procedure is
traditionally wused for transonic flow calculations, whereas the pressure
correction method is better suited for incompressible and subsonic flows.
However, the focus of this research is on the Moore pressure correction flow
code, the Moore Elliptical Flow Program (MEFP), to calculate shock waves in
transonic compressor fans.

A new pressure interpolation method, the 2M formula, is developed to
improve the shock capturing capabilities of the MEFP flow code. The 2M
formula is a two Mach number dependent formula, with Mach numbers M; and
Mi+1. The previously used pressure interpolation method, the M&M formula, is
a one Mach number dependent formula, using the maximum of M;j and Mj4+1.
In the development of the 2M formula, J.G. Moore's stability criterion is
applied to the pressure correction equation such that the center point

coefficient is greater than the sum of the other positive coefficients.



The 2M method is compared with the M&M formula for three test cases,
1-D flow in a converging-diverging nozzle, 2-D supersonic flow in a cascade of
wedges, and choked flow in a 2-D L030-4 compressor blade row. Both formulae
are tested for capturing normal shocks in the nozzle case and oblique shocks
in the cascade of wedges. The flow in the L030-4 compressor cascade exhibits a
weak bow shock and a strong normal shock in the passage.

In order to compare the 2M formula and the M&M formula for the nozzle
case, a Fortran program is written for 1-D inviscid flow such that the solution
procedure is similar to the MEFP flow code. The supersonic cascade of wedges
is tested with the inviscid 3-D MEFP code, while the L030-4 compressor blade
case uses the 3-D MEFP code with the full momentum equation for turbulent

flow.
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Nomenclature

agQ, a1, a2 coefficients of pressure interpolation equation
A area

A, B variables defined for stability analysis of agp, a; and ap
c speed of sound

CFPj pressure correction factor

p density

peff effective density

i grid index in flow direction

M Mach number

m mass flowrate

dm change in mass flowrate
Me,i,» Merror,i continuity error

p. P static pressure

Peff effective pressure

Pexit exit pressure

Py total pressure

Pio inlet total pressure

R ideal gas constant

T static temperature

St time step

u, U x component of velocity vector
u velocity vector

8V change in volume

ix



constant to adjust effective pressure in region of
high gradients

small change
ratio of specific heat capacites

sum of the laminar and turbulent viscosities



1.0 Introduction

Computational Fluid Dynamics (CFD) codes have contributed
significantly to the area of fluid dynamics for the past 25 years. These codes
are used as powerful tools in predicting and analyzing fluid flows for
engineering design. Today, computational fluid dynamics is viewed as a third
dimension of fluid dynamics with pure experiment and pure theory as the
other two dimensions, shown in Fig. 1.1 [1]. CFD codes basically provide a
numerical description of the fluid flow of interest by solving governing
equations of three fundamental principles: (1) conservation of mass; (2)
Newton's second law (momentum); and (3) conservation of energy [1].

Turbomachinery and aerospace related industries use CFD codes to
predict and analyze fluid flows over airfoils, around fuselages, and within
components of a gas turbine engine. Wendt [1] describes some specific
applications of CFD codes such as: (1) analyzing shock waves for flow fields
over the space shuttle; (2) calculating unsteady, oscillating flows through
supersonic engine inlets; (3) predicting the flow field over an automobile
towing a trailer; and (4) studying flows through supersonic combustion ramjet
engines. Thus, CFD codes are used in a variety of situations to predict flow
phenomena such as shock waves, expansions, wakes or vortices in the fluid
flow.

The work in this thesis focuses mainly on the finite volume approach,
particularly the time marching and pressure correction methods, for solving
the fundamental flow equations. Both of these finite volume methods are
described in section 2.2. Typically, the time marching procedure is

traditionally used for transonic flow calculations, whereas the pressure
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Fig. 1.1 The relationship of computation fluid dynamics
with pure experiment and pure theory (1)



correction method is better suited for incompressible and subsonic flows [2].
However, the work presented here uses a pressure correction code to study
flows in transonic fans.

The primary objective of this research is to demonstrate and improve
the shock capturing capability of the Moore pressure correction flow code [3],
Moore Elliptical Flow Program (MEFP). An application of this flow code is to
analyze flows, specifically with shock waves, in transonic fans for several
blade geometries. In order to calculate shock waves properly, special attention
is placed on the shock location, losses, and sharpness. Along with shock
capturing improvements, the new version of the MEFP code is tested.

A new shock capturing method, the 2M formula, is developed using a
two Mach number dependent pressure interpolation formula, with Mach
numbers M;j and Mj4+1. The previously used pressure interpolation method, the
M&M formula [3], is dependent on one Mach number, the maximum Mach
number of Mj and Mj+1. This 2M formula, implemented in the MEFP code, is
then tested on a 1-D converging-diverging nozzle (section 5.0), a 2-D cascade
of wedges (section 6.0), and a 2-D L030-4 compressor blade (section 7.0). The 1-
D nozzle test has subsonic flow in the inlet, choked flow of M=1 at the throat,
and a normal shock wave in the diverging part of the nozzle. The cascade of
wedges is a 2-D test where a supersonic flow of M=1.6 produces an oblique
shock off the leading edge, a reflected second oblique shock, a Prandtl-Meyer
expansion region, and a third oblique shock off the trailing edge of the blade.
The LO30 compressor blade is tested to study shock capturing and the
stagnation region near the round leading edge, where large changes in Mach
number occur in very few grid steps. For each test case, the results from the

2M method are compared with the previously used M&M formula. The



development and stability analysis of the 2M pressure interpolation method is

described in section 4.0.



2.0 Literature Review

Since the focus of this research is improving shock capturing using a
pressure interpolation procedure, a fundamental understanding of both
pressure correction methods and shock capturing methods is necessary. The
advantages and types of pressure correction methods are described in section
2.1. Section 2.2 then reviews two types of shock capturing methods, Denton’s
density update time marching procedure [4] and Moore and Moore's pressure

correction procedure [3].

2.1 Pressure Correction Methods

In pressure correction methods [5], the pressure is calculated from the
continuity equation and the ideal gas equation gives the density. Whereas, for
time marching methods, the density is found from the unsteady continuity
equation and the ideal gas equation gives the pressure. Pressure correction
methods are considered to be efficient, accurate, and flexible. They require
few iterations for low Mach number flows and can handle highly non-
uniform grid spacing, both orthogonal and non-orthogonal. In addition, a
wide range of cell aspect ratios can be used, thus allowing very complex
geometries to be analyzed. Even though pressure correction methods are
better suited for incompressible and subsonic flows, they are still very
accurate in analyzing both incompressible and compressible flows for all
Mach numbers. The compressible flow calculations however, require more

iterations than incompressible flows to converge towards a solution.



There are three traditional pressure correction methods [5], which
include parabolic, elliptic, and partially parabolic. The parabolic calculation
procedure, the most limited of the three methods, is a one-pass space marching
calculation where the pressure distribution in the primary flow direction is
known to within a 1-D correction. This method is suitable for subsonic flows
with no back flow. In contrast, the elliptic method, the most general of the
three, can handle subsonic flow including back flow. The elliptic method
calculates the velocity and pressure using the full 3-D solution of the
momentum and pressure correction equations. The partially parabolic method,
a combination of the other two, is a one-pass space marching calculation such
that only the pressure is evaluated using the full 3-D pressure correction
equation. This method can handle subsonic flows, however back flows are not
possible.

These traditional pressure correction methods are basically limited to
subsonic flows and need to be modified in order to solve transonic and
supersonic flow problems. In the MEFP code, a transonic pressure correction
procedure is used for shock capturing. This transonic method calculates the
velocity and pressure using the full 3-D momentum and pressure correction
equations, just as the elliptic method does. Several test cases for all four of
these pressure correction methods are described in reference [5].

The equations used in the MEFP code for steady viscous compressible

flow are shown below.

continuity, Vepu=0 (1)
momentum, pu*Vy - VeuVy = V'pﬁT -Vp (2)
and equation of state, p=pRT (3)



The 1-D converging-diverging nozzle and cascade of wedges tests use the
inviscid part of the momentum equations. However, the L030-4 compressor
blade case uses the full momentum equation with p as the sum of the laminar
and turbulent viscosities.

The basis of pressure correction methods is to turn the continuity
equation into a pressure correction equation. This transformation involves
satisfying the continuity equation with a current velocity, u, and a correction

to the velocity field, du, as shown in equation 4.

Vep+dw=0 (4)

The correction to the velocity field is related to the pressure correction

distribution, 8p, through a momentum correction equation.

Céu = -Vp (5)

The coefficient C 1is wusually taken from the full discretized momentum
equations. For example, it might be the local mass flowrate per unit area
divided by the grid spacing, pu/Ax. Combining equations 4 and 5 transforms

the continuity equation into a pressure correction equation.

Ve (p/C)Vp = -V epu = continuity error (6)



2.2 Shock Capturing Methods

Several CFD methods have been developed in order to capture shock
waves. Two of these codes are discussed here in detail: Denton’s density update
time marching method [4] and Moore and Moore’s pressure correction method
[3]. The main differences in the two codes are the sequence in which flow
properties are updated and the direction in which the flow property changes
are taken, either to the upstream node or downstream node. An outline of the

two procedures is given below.

Densi Time Marching Meth
1. the density is updated from the continuity error and the density change

is sent to the downstream node, i+1, as in Fig. 2.1a

2. the pressure is updated from the new density using the ideal gas
equation
3. an effective pressure is calculated using an interpolation scheme with

the new pressures
4, the velocity is updated from the momentum equation using the new

effective pressure

Pr T rrection  Meth

1. the pressure is updated from the continuity error and the pressure
change is sent to the upstream node, i, as in Fig 2.1b

2. the velocity is updated from the momentum equation using the new

pressure



i i+1

op

AN

Fig. 2.1a Denton's control volume i to i+1,
density change sent downwind

i+1

oP

o *

Fig. 2.1b Moore and Moore's control volume i to i+1,
pressure change sent upwind

Fig. 2.1 Control volumes for Shock Capturing Methods



3. an effective pressure is calculated using an interpolation procedure
with the new pressures
4. an effective density is updated from the new effective pressure using

the ideal gas equation

For both methods, the direction of the property changes and the order
in which the flow properties are updated are critical to maintaining stability

in the code. Each code will now be discussed in further detail.

D it Upd Ti Marchi Method
In Denton's [4] time marching code, the density change is sent to the

downstream node as shown in Fig. 2.1a such that

dpi+1 = me jdt/8V (1)

where the continuity error, me,, is calculated as

Mej = PiviAj - Pi+1Ui+1Aj+1 (2)

The pressure is then calculated from the ideal gas equation using the
new density. For stability purposes, a correction factor, CFPj, is used to correct
the downwinded pressure to a value closer to the true pressure, Pj, as in
equation 3. This correction factor is basically an approximation to the
pressure difference between points i and i+1, thus the pressure used in the
momentum equation is an approximation to the true pressure. An exact

pressure difference using the true pressures would induce unstable results. It

10



should be noted that the pressure is the only flow property evaluated at the

upstream point, 1.

Peff,i = Pi+1 + CFPj (3)

Denton uses two methods to calculate the pressure correction factor,
shown in Fig. 2.2 [6]. The first method, equation 4, is a simple average of the
pressures at node points i-1 and i+1. Equation 5 is an alternate method where a

parabolic interpolation is used on the pressures at node points i-1 and i+2.

CFPj = a(Pi-1 - Pi+1)/2 (4)

or CFPj = a(Pj-1 - Pi+2)/3 (5)

Both correction factors, equations 4 and 5, are second order accurate
when o = 1 and first order accurate when o < 1. It is desirable to make the
value of a slightly lower than 1 to introduce numerical damping to the
solution. This damping, with a typically between 0.8 to 0.9, is an attempt to
reduce overshoots and undershoots across shock waves.

An alternative method is to calculate o based on the density
gradient as in equation 6; however, this evaluation of o can only be used
during an increase in density. Using equation 6, « will automatically decrease

across a shock wave, i.e. sufficient damping will be introduced to the solution.

o = 1- (pi+1- Pi-1/pi (6)

11



Pressure

Meridional Distance, m

Fig. 2.2 Denton's Calculation of Effective Pressure [6]

12



Denton attempted several other pressure-density relationship schemes
before developing his present time marching code. These pressure-density
relations are briefly described in Appendix A. The main differences in the
schemes are basically which direction the density change is taken and how
the pressure is corrected. Scheme A is stable for supersonic flows, whereas
scheme B is stable for subsonic flows and reverse flows. Combining these two
methods, a discontinuity occurs in the solution around the transonic region,
Mach = 1. Thus, a single method is desired which is stable for all Mach

numbers and has good shock capturing capabilities.

Pressure Correction Method
In the pressure correction method, Moore and Moore [3] send the
pressure change to the upstream node, as shown in Fig. 2.1b. Expressed in

terms of an explicit pressure correction procedure [7],

8Pj = (me i8t)RTi/8V (7)

Again, a correction factor is used to evaluate an effective pressure. The

one point inconsistency in equation 8 is to assure stability.

Peff,i+1 = Pi + CFPj+1 (8)
The pressure correction factor is calculated as

CFPj+1 = aQ(Pi+1 - Pj) + a1(Pi+1 - Pi-1)/2 + a2(Pj+1 - Pi-2)/3 9)

13



where the interpolation equation (9) is second order accurate when
ag+ai+a2=1 (Appendix B). The Mach number dependent interpolation
equations for aQ, a] and a3 are given below, such that the maximum Mach
number of M; and Mj4+1 is used. Equations 10 and 11, graphed in Fig. 2.3 (3],

were chosen and are lower than the actual limiting stability criteria.

For M < 2.0 (10)
ag = (0.8/3)(4/M2-1)

a;=10- 2

ap = 0.

For M > 2.0 (11)
ag = 0.

ay = 4M2

ap =10 -2

These Mach number dependent equations are referred to as the M&M formula
[3]. Appendix C describes several other pressure interpolation attempts by

Moore and Moore.

The density at node point i+1 can now be calculated with the new

effective pressure at point i+l.

pi+1 = Peff,i+1/RTj+1 (12)

14
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D it C i Method

Moore, J.G. [7] also developed a density correction method, such that the
solution procedure is similar to the pressure correction method. However, the
density correction method calculates an effective density instead of an
effective pressure. For this method, the pressure at i is found using an upwind

effective density.

Pi = Peff,iRTi (1 3)

The effective density is calculated as

peff,i = pPi+l + a0(pi - pi+1) + a1(pi - pi+2)2 + a2(pi - pi+3)/3 (14)

The coefficients aQ, a] and a2 are different from the ones used for the pressure

correction method, but again the equation is second order accurate when aQ +

a] + a2 =1.

16



3.0 Summary of 1-D version of MEFP

In order to test the 2M formula on a 1-D converging-diverging nozzle, a
Fortran program is written such that the solution procedure is similar to the
MEFP transonic calculation method. Figure 3.1 shows the nozzle geometry and
the grid in the flow direction, i. For this nozzle example, both pressure
interpolation methods are used, the 2M formula and the M&M formula. Section
5.0 compares the results from both methods with theoretical values. The full
procedure of this 1-D Fortran program, including the main equations used
(written in Fortran coding), is provided in Appendix D.

The MEFP solution procedure basically satisfies the continuity and

momentum equations using a perfect gas assumption with constant total

temperature.
continuity, Vepu=0 (1)
momentum, pu*Vu=-Vp (2)

When discretized in 1-D over a grid step from i-1 to i, equations 1 and 2 are

expressed as the following.

continuity, (puA); - (puA);.1 =0 (3)
momentum, (P“)i-l/z(“i'“i-l) = - (pj - Pj-1) (4)
mm f lution Pr I

The input parameters for the Fortran code include a nozzle back
pressure and Mach numbers to set up the nozzle geometry and grid. The areas

along the nozzle are determined directly from isentropic relations and the

17
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specified Mach numbers. Pressure, temperature, and velocity values at the

nozzle inlet and exit are initialized using isentropic relations, except for the

exit pressurc which is specified. A linear relationship is then used to initialize

the values along the nozzle. Density is calculated with the ideal gas equation.

After initializing the variables, the solution procedure is as follows.

(1).

(2).

(3).

(4).

(5).

(6)

(7.

The mass flowrate, evaluated at the nozzle inlet, is used to update the
velocity field from continuity with the density held fixed.

A discretized form of the one dimensional momentum equation is solved
between node points i-1 and i to find the change in velocity at i, 8Uj. For
this evaluation, the change in velocity at i-1 is assumed to be zero,

8Uj.1 = 0.

Coefficients for the pressures in the transonic pressure correction
equations are formed by substituting pressure correction expressions
for 8Uj and &pj into the continuity equation.

An effective pressure is calculated using either the M&M formula or the
2M formula and the density is then evaluated from this effective
pressu}c.

The pressure correction equations are solved using the continuity

errors calculated from the velocity, updated from momentum in step 2,
and the density, updated in step 4.

This pressure correction is then used to update the density, velocity, and
pressure along the nozzle.

The inlet velocity is recalculated using the new inlet static pressure and

isentropic relations.

19



(8). This new inlet velocity is then used as in step 1 to update the mass

flowrate and velocities.

Thus, all the flow properties are updated and the program starts another
iteration from step 2. At the end of every other iteration, the current density,
velocity, and pressure are averaged with values from the previous iteration
and then wused for the next iteration. This procedure of averaging the

properties helps the program converge to a solution.

20



4.0 Development of a New Shock Capturing Formula

A pressure interpolation method is used to determine the effective

pressure at the point being evaluated, P;. The interpolation formula previously

used, the M&M formula, is dependent on one Mach number, the maximum

Mach number of M; and M;_1. This section shows the development of the new

2M formula and compares it to the M&M formula previously used. The 2M

formula uses two Mach numbers, Mj and M;.1. The main idea for developing
the new pressure interpolation formula was to sharpen the shock, which was
previously captured over three to four grid points with the old pressure

formula.
The continuity equation between grid points i and i+1 can be expressed

in descretized form such that

[Pi+1 + 8pi+11[Uj+1 + 8Uji+1]1Aj+1 - [pj+ 8pil[Uj + 8UjJA; =0 (1)

Rearranging equation 1 gives the following

Pi+1Ai+18Uj+1 - PiA;8Uj + Uit 1Ai+18pi+1 - UiAidpj

= piUjAj - Pi+1Ui+1Ai+1 + 3pidUjA; - 8pi4+18Ujr1Ai41 (2)

The first two terms on the right hand side of equation 2, p;U;A; and
Pi+1Ui+1Ai+1, represent the current continuity error. The last two terms,
0pidUjAj and 8pj4+108Uj4+1A 41, are of order 82; thus, these terms are negligible
when the computation is nearly converged and 3p << p and 8U << U. Therefore,

equation 2 can be rewritten as
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[Pi+18Ui+1 + Ui+19pi+1]Aj+1 - [piUj + UidpilAj = merror,i + small  (3)

The continuity error, merror,j » is the error at i for a control volume from i to

i+1.

The change in velocity is found from the momentum correction

equations as

8U; = (8Pj.1 - dP;)/[0.5(p;U; + pj-1Uj-1)]1 and

8Uj4+1 = (8P - 8P; 1 1)/10.5(pi+1Ui+1 + PiUD] (4)

Substituting 8U; and 8Uj4+1 into equation 3 gives

2pi+1Ai+1[@P; - 8P+ 1)/(Pi+1Ui+1 + piUi)]
- 2piA;i[(8Pji.1 - 8P)/(pi-1Uj-1 + piU]

+ Ui+1Ai+15pi+1 - UjAdpj = merror,j + small (5)

Since PiUiAi = Pi+1Ui+1Ai+1 from continuity and Pi+1Uj+1 +piUj =

Pi+1Ui+1[1 + pijUi/Pi+1Ui+1], the denominators in equation 5 can be expressed as

Pi+1Ui+1 + PiUi = pi+1Ui+1[1 + Aj41/A]] (6)
and  pjUj +pj-1Uj-1 = pilUill + Aj/Aj-1] (7)
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Combining equations 6 and 7 with equation 5 gives

- 2A/U;(1 + Aj/A-1) SP;i_1

+ 2A;+1/Ui+1(0 + Aj1/AD + 2A/Ui(0 + Aj/ALD oP;

- 2Ai4+1/Uj41(1 + Ajy1/A9) P41

- UiAj 8pj

+ Uit1Ai+1 3pi+1

= Merror,i (8)

Since the Mach number is M = U/c, where ¢ is the speed of sound, equation 8

can be rewritten as

- 2A;/Mi(1 + Aj/Aj.1) 3P;.1

+ 2A;+1/Mi1(1 + Aj1/A7) + 2A;/Mi(1 + Aj/Aj-1) oP;

- 2Ai41/Mi41(1 + Aj41/A7) 8Pj41

- czMiAi opi
+c2M;;1A541 3pi+1

= CMerror,i (®)

Equation 9 is the pressure correction equation for the pressure at point

i. The assumption Aj.1=Aj=Aj4+1 was made since we are interested in shock

capturing and the areas directly before and after a normal shock are
considered to be equal. This is a reasonable assumption because a shock wave

is extremely thin, on the order of 10-6 meters. Equation 9 reduces to

- UM;8Pj.1 + (I/Mjy1 + 1/M)SP; - 1/Mj418Pj41

- °2Mi5Pi + °2Mi+159i+1 = € Merror,i (10)
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A gencralized pressure interpolation equation for the effective density
is

pi= Peffi/RT; (11)

with the effective pressure at i represented as

Peff; = Pj_1 + aOi[Pi -Pi11 + ali[Pi - Pi_21/2 (12)

where ag; and aj; are coefficients. The only values considered for ap, and ajp;

are between 0 and 1 with ag + a; < 1. Equation 12 is a second order

interpolation equation for uniform grids when ag + a; = 1 (Appendix B).

The change in density at points i and i+l can be written as

[«
©
-

"

[(1-ag;)8Pj.1 + (aOi +a1;/2)6P; - (a1;/2)8P;.2] /RTj (13)

Opis1 = [(1-a0;,1)8P;j + (a0, 1+21;,1/2)8Pi41 - (a1, 1/2)8Pj 1] /RTis1 (14)

Substituting equations 13 and 14 into equation 10 and using the relation

¥= c2/RT gives

( - 1My +TMir120541  +Miv1231541/2) 8Pj+1
+ (M1 + 1M1 + 1M - YMjag; - YMis1a05,1 - YMja1,/2) dP;
+ (-YMj - /M + YMjag; -Mit1a15,1/2) 8P
+ ( +YMja1;/2) 8Pj_2

= C Merror,i (15)
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Since values for ag and aj must remain between 0 and 1, it is evident

from equation 15 that the

coefficient of dPj,1 is either positive or negative,
coefficient of 8Pj.; is always negative, and the

coefficient of 8P;_p is always positive or zero

In order to determine Mach number limitations for the coefficients ag

and ajp, a stability criterion is applied such that the coefficient of the center

point must be greater than or equal to the sum of the other positive coeffi-

cients. The center point is d3Pj_

Coefcenter = X of all other positive Coef (16)

This criterion can be separated into two conditions:

Coeff. 8P; > Coeff. 8P;_o (17)

Coeff. 8P; > Coeff. 8P;.» + Coeff. 8P, 1 (18)
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4.1 Stability Analysis for ag & aj
In order to determine the stability limits on ap and aj, both criteria,

equations 17 and 18, have to be satisfied. [Each criterion is applied to equation

15.

1st  Criterion: Coeff. 8P; > Coeff. 3P;_2
Applying Coeff. 6P; > Coeff. 5P;_o to equation 15 gives

M1 +1/Mj11 +1/Mj - YMjag;- YMi4130;,1- YMja1;/2 2 Mjagy/2 (19)

Rearranging and collecting terms,

Mj(a1; + a9y + WMj1130;,1 = Mit1 + 1My + I/M;

Subtracting YM; from both sides gives

YMij(ay; + ag; -1 + YMj1130;,; < M1 + UMj1 + 1M - YM; (20)

From this point on, the right hand side of equation 20 will be referred to as A,

such that

A =M1 + I/Mj41 + I/Mj - YV 21

The variable A is a function of M; and M. Figure 4.1 displays a curve which

represents A=0. A is positive everywhere to the left of the A=0 curve and

negative everywhere to the right of the A=0 curve.
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IfA>0
Noting that
ag; +a1;< 1

ie., Mj(a;;+2p;-D<0

the criterion represented by equation 20 is satisfied for A > 0
by choosing ™i+130;4,1 S Mij41 + 1M1 + I/M; - YM;
Thus, ag; .1 < 1+ 1/(Mj112) + UM M) - Mi/Mj g (22)

Equation 22 is a downstream stability limit on ag;, ¢; i.e., it is a limit on ap on

the downstream side of the control volume being analyzed. This limit allows

second order accuracy.

IfA<0
For the condition when A < 0, the criterion represented by equation 20
requires

a0i+ali< 1

If values of ap; and ap; ; are set such that

30; = 3041 =0

then Mija); < Wiy + UM + 1M
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Thus, aj; < Miy1/Mj + /M1 M;) + 1/(¢M;2) (23)

Equation 23 is an upstream stability limit on aj;. This limit reduces the

interpolation procedure to first order accuracy.

2nd Criterion: Coeff. 3P; > Coeff. 6Pj.2 + Coeff. §P;, 1

Applying equation 18, where Coeff. 8P; > Coeff. 6P; o + Coeff. 6P; 1, to

equation 15 gives

YMis+1 + /My + 1M - YMjag; - YMj4130;, 1 - YMjag4/2

2YMja1;/2 - 1/Mjyq1 + YMje1a0;,1 + YMit1a15,1/2 (24)

Rearranging and collecting terms,

YMj(ag; + a1;) + YMj41(2ap;, 1 + 0.5a1;, 1) s My + 2/Mjy + /M

Again, subtracting yM; from both sides gives

’yMi(aOi+ ali'l) +7Mi+1(2a0i+1+ O.5a1i+1)5 M1 +2/Mjp1 +1/M; -YM; (25)

ILA>0
For the condition when A > 0, the right hand side of equation 25 must

also be greater than zero since the RHS of equation 25 = A + 1/M;;1. Therefore,

again noting that
YMj(a1; +ag; -1 < 0
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equation 25 is satisfied by taking

YMj+1Q2ag;, 1 + 0521, 1) <M1 + 2/Mjyp + /M - YM; (26)
If the condition  aj;,; =1-ag;,, is set, then equation 26 becomes

Mi+1(1.5a0;, 1) < 0.5vMj41 + 2/Mjy1 + 1M - M (27)

From this point on, the right hand side of equation 27 will be referred to as B,

such that
B = 0.5YMj;1 + 2/Mj41 + I/M; - YM; (28)

The variable B is a function of M; and M;, 1, just as A was in the analysis above.

Figure 4.2 displays a curve which represents B=0. B is positive everywhere to

the left of the B=0 curve and negative everywhere to the right of the B=0

curve. Figure 4.3 shows the A=0 curve, B=0 curve, M, 1 = M; line, and M;, 1 =

normal shock(M;j) curve. It is evident from Fig. 4.3 that both A and B are

positive everywhere below Mach 2. For a normal shock, A is positive for an

upstream Mach number up to M; = 2.2 and B is positive up to M;=3.6.

IfB >0

When B > 0, equation 27 reduces to

a0;, 1 < 4/G¥Mi412) +2/(3M; 1 1M;) -2Mj/3M;, 1 + 173 (29)

using 21341 = 1 044
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Equation 29 is a downstream stability limit on ag; ;. This limit allows second

order accurate interpolation.

When B < 0, the condition alj41 = 1 - ag;,q1 cannot be used. Instead
equation 26 is satisfied by taking
a0j41 =0

and a1y, < 2+ 4AMip12 + 2/GMi M) - 2Mi/M 4 (30)

Equation 30 is a downstream stability limit on aj; ;. The interpolation

procedure is then first order accurate.

If A< O

For the condition when A < 0,
a0; = 20j41 =0
was set for the first criterion, equation 23.

Thus, from equation 25,

Mjay; + 0.5vMj+1a15,1 s Mij41 + 2/Mj 1 + 1/M; 31)
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Since equation 31 contains both aj; and aj; ;. two cases were considered:

aj; < a1y, and ay;,g <ap;

For ajp; < a1;,.4

- €, where € is positive. Therefore, equation 31

In this case, aj; = aj;, 4
becomes
YMijaq;, 1 + 0.5vMj1a1;,1 < Mip1 + 2Mjy1 + 1M + YMiE (32)

If the left hand side of equation 32 is less than the right hand side, then it is
true that the left hand side is less than the right hand side minus the term

YM €, since YM ;€ has a positive value. Therefore, YM € can be dropped and

equation 32 reduces to

a1j41 S M1 + 2Mjp 1 + IM)/[0.5vMj41 + M) (33)

Equation 33 is a downstream stability limit on ap;, ;.

For aj; ;1 < aj;

In this case, a = ai. - €, where € is positive. Therefore, equation 31
1 14 p q

i+1

becomes

YMjaq; + 0.5vMj1a); < My + 2/Mp 1 + 1M + 0.5YM, 1€ (34)
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Again, the term 0.5YM € in equation 34 can be dropped.

Thus, a1; < (M1 + 2M1 + IM)/[0.59M41 + M) (35)

Equation 35 is an upstream stability limit on aj;. Equations 33 and 35 result in

first order accuracy.
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4.2 Summary of Stability Limits for ajy & a;

From the 1st criterion, Coeff. 8P > Coeff. 8P;_7 the following equations

were obtained.
For A>0  ag, ;< 1+1/(Mjr12) + VOMi1M;) - Mi/Mj g (22)

For A<0  aj; < M, 1/Mj + UM M) + 1/(yM;2) (23)

and ag; = a9, = 0

From the 2nd criterion, Coeff. 8P; > Coeff. 8Pj 5 + Coeff. 8Pj 1, the

following equations were obtained.

For A > 0

B>0 a0;,1 < 4/(37Mi+12) +2/(3YyMj+1M;) -2M;/3M;41 +1/3 (29)

B<0 a1, < 2+ 4AMip12 + 20Mi M) - 2Mi/M 4 (30)
and ag;, ;=0

For A <0
alj41 < M1 + 2/Mj41 + IM/10.57M 41 + YM|] (33)
and  ap; < (WMj41 + 2/Mj41 + I/M/[0.5YM 41 + M) (35)

and  ap;=ap;,1=0
The regions of A and B are determined by
A =M1 + I/Mj41 + IM; - Y™ (21)

B = 0.5vMj;1 + 2/Mj41 + 1M - M (28)
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Cases where M; = M; .1

For a9

For the case when M; = Mj,, Fig. 4.4 shows two curves of ap; ; as a
function of Mach number. These curves are based on the stability criteria used
for equations 22 and 29. The lower curve, corresponding to equation 29, is
equivalent to the stability limit resulting from the previous stability analysis

[3]. Thus, in the limit that M; = Mj, 1, the stability analysis for the 2M formula

gives the same results as the M&M formula. Valid values of the downstream

limit on ag;,1 are represented by the shaded region in Fig. 4.4.

Eor a;
For the case when M; = M, 1, A is always positive; thus, aj stability

equations 23, 33, and 35 are not considered. Figure 4.5 shows aj, ; as a function

of Mach number from equation 30. Valid values of the downstream limit on

ay;,p are represented by the shaded region in Fig. 4.5.

Cases where M;, 1 is not equal to M;j

In any analysis of nozzles, Mj;1 will not be equa! to M;. Arbitrary

values of 0.2 and 0.5 were used as the change in Mach number, IMj,1 - Mjl, to

determine how ag and aj vary. The variation in ag due to the 2M formulation

is then compared to the ag obtained from the M&M formulation.
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Eor 3¢

Figure 4.6 displays the variation in agp; 4 for a deceleration in Mach

number, such that the upstream Mach number is greater than the downstream

Mach number, M;j > M;j,. Figure 4.7 shows ag; ; for an acceleration, Mj;1 > M;.
Only equation 29 was plotted in Fig. 4.6 and 4.7 because it is the limiting
criterion.  Figure 4.8 has Mj,; = normal shock(M;) for both agp; ; stability
limits, equations 22 and 29, along with the a0i4+1 limit from the M&M

formulation.  Again, the shaded region represents valid ag; +1 values.  From

Figure 4.8, it is evident that equation 22 is the limiting criterion for the case of
a shock. Thus the criterion switches from being equation 29 for equal or small
changes in Mach number, to equation 22 for the larger Mach number changes

corresponding to a normal shock. Figures 4.6, 4.7, and 4.8 show that ag;,1 can

be significantly increased by using two Mach numbers instead of one. The

larger values of a0; 41 will give a better approximation of the pressure

distribution and should sharpen the shock.

For aj
A>0
For the deceleration and acceleration cases considered above, dM = 0.2

and 0.5, A 1is always positive; thus, aj equations 23, 33, and 35 are not

considered. Figure 4.9 shows the variation in aj for a deceleration in Mach

number, M;j > Mj, 1. Figure 4.10 shows aj; ; for an acceleration, Mj, 1 > M;.

Only equation 30 is plotted in Figs. 4.9 and 4.10. Thus, using two Mach numbers

decreases aj;,; during a deceleration in Mach number and increases ajp;, ¢ for
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an acceleration. Since equation 30 is only valid when A > 0 and B < 0, it is

evident from Fig. 4.3 that equation 30 does not apply for a shock case.

A<
For a shock case, A is negative when the upstream Mach number is

greater than M; = 2.2. Figure 4.11 shows equations 23, 33 and 35 for M, =

normal shock(M;). It should be noted that the right hand side of equations 33

and 35 are identical, thus in Fig. 4.11, the line with the filled squares is both a

limit for a1541 (equation 33) and for ag; (equation 35). Even though the aj
curves with M;=Mj 1 are not valid limits, they are plotted for comparison

purposes only. Since the curve for equation 23 lies below that for equation 35,

equation 23 is the limit for aj;. Thus, for a shock, the limit for the upstream
side, ay;, is equation 23 and the limit for the downstream side, aj;, ;. is equation
33.  Again, the criterion switches from being equation 30 for equal Mach
numbers to equation 23 for a shock, thus from being a criterion on aj; ¢ to
being a criterion on ay;- This switching of limiting a; curves corresponds to
the switching of the limiting agp curves described above. Each ap curve

corresponds to an aj curve because both come from the same stability criteria.

Combination of ag and aj

When M; = M;, 1, Fig. 4.12 shows the stability limits of ag and aj. Upto a
Mach number of M; = 2.05, equation 29 is the ap limit and 1-ag is the aj limit at
i+1; thus, the interpolation gives second order accuracy. Above M= 2.05, ag =0
and equation 30 is the aj limit; thus, providing first order accuracy. It should

be noticed that as ag goes to zero, a; goes to one. In addition, at the point where
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ag equals zero the al limit, equation 30, is introduced. Figure 4.13 shows the
limits for a shock case. Up to a Mach number of M; = 2.2, equation 22 is the ag
limit and 1-ag is the ay limit at i+1. Above Mj = 2.2, ag; = ag;,; = 0 and equation

23 is the limit on ay;.

Implementation
The 2M pressure interpolation method replaces the M&M formulation in

the MEFP code. The equations summarized on page 36 are used in the new

coding (Appendix D). The value of 0.075 was added to all Mach numbers, M;j and
Mi4+1, in order to drop ag below 1 at Mach 1 and keep the aj curves continuous.
This addition to the Mach numbers basically shifts the stability curves slightly
to the left; thus, providing a margin of safety in stability.

To implement the 2M formula in the 3-D MEFP code, upstream and
downstream Mach numbers corresponding to each grid point are needed.
These are found by interpolation, at the intersections of the streamline
(through the point) with the upstream and downstream grid surfaces, as

shown in Fig. 4.14.
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Flow
Direction

"Mi+1"

llMi_l’ "

Fig. 414  Locations for evaluation of upstream and
downstream Mach Numbers in 3-D flows
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5.0 Normal Shock Capturing in a 1-D Nozzle

One-dimensional flow in a converging-diverging nozzle, shown in Fig.
5.1, is calculated to test the Fortran program summarized in section 3.0. A grid
in the flow direction is used such that i=1 at the nozzle inlet and i=IMAX at the
nozzle exit. The main purpose of this test is to determine the normal shock
capturing capabilities of the MEFP code using both pressure interpolation
methods, the M&M formula and the 2M formula. This section then compares
the results obtained using both methods with theoretical values. Several back
pressure ratios, Pexit/Pio, are used: 0.85, 0.80, and 0.75, giving shock strengths
of 1.267, 1.455, and 1.578, respectively. The term "shock strength" refers to the
Mach number directly upstream of the shock. These three shock strengths are
typical for turbomachinery flows. To check the 1-D code over a widé range of
Mach numbers, shock strengths of 1.1, 2.5, and 3.5 are also tested. The input

values for each test case and grid geometry are given below.

Iculation Detail
All calculations are for air with vy = 1.4, The area at each grid point is

determined from the isentropic Mach number.

1. For Pexit/Pio = 0.75, 0.80, and 0.85 cases
Number of Axial Grid Points = 41
Grid Setup, 8M = 0.025, where

at inlet i=l; M=
at exit i=41; M=

2. For Mghock = 1.1 case

Number of Axial Grid Points = 41
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Grid Setup, 8M = 0.025, where

at inlet i=l; M=038
at exit i=41; M=1.8
Pexit/Pto = 0.86687
3. For Mghock = 2.5 case
Number of Axial Grid Points = 45
Grid Setup, 8M = 0.05, where
at inlet i=1l; M=038
at exit i=45; M=3.0
Pexit/Pio = 0.47101
4. For Mghock = 3.5 case
Number of Axial Grid Points = 65
Grid Setup, 8M = 0.05, where
at inlet i=l; M=08
at exit i=65; M=40

Pexit/Pio = 0.20285

The change in Mach number, 8M, was doubled to 0.05 for the Mghock =

2.5 and 3.5 cases in order to keep the number of grid points low.

Results

Figures 5.2a, 5.2b, and 5.2c show the theoretical Mach number, pressure,
and total pressure ratio values versus nozzle position for back pressure ratios
of 0.85, 0.80, and 0.75. The Mach number increases linearly, while the
pressure decreases according to the isentropic flow relations, up to the shock.
The total pressure is 1.0 up to the shock, decreases at the shock due to shock
losses, and then remains constant. Corresponding plots for the 2M formula
results are given in Figs. 5.3a, 5.3b, and 5.3c. The calculated Mach number and
pressure distributions are similar to the theoretical plots, except for the 0.75
and 0.85 cases, where a slight overshoot in the Mach number directly

upstream of the shock occurs. This overshoot in Mach number is due to the
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slight undershoot in pressure, shown in Fig. 5.3b. The calculated total
pressures across the shock, in Fig. 5.3c, closely match the theoretical total
pressures, in Fig. 5.2c.

For each of the shock strengths tested, 1.1, 1.267, 1.455, 1.578, 2.5, and 3.5,
the Mach numbers calculated using the M&M formula and the 2M formula are
plotted versus nozzle position, and compared with the theoretical values.
Figure 5.4 is an enlarged plot of the Mghock = 1.1 captured over 4 grid points.
The 2M formula, shown as dashes in Fig. 5.4, sharpens the shock and gives an
overshoot upstream of the shock. A significant improvement is noticed in Fig.
5.5 for the Mghock = 1.267 case. Figures 5.6 and 5.7 are the corresponding plots
for the Mghock = 1.455 and Mghock = 1.578 cases. In all of these examples, the
2M formula captures a sharper shock than the M&M formula.

For the 2.5 shock case, both formulae give similar results, shown in Fig.
5.8. Figure 5.9 shows the 3.5 shock case, where the M&M formula gives a
better estimate of the shock wave. This is due to the M&M formula being
second order accurate for all Mach numbers, while the two Mach number
formula is only second order accurate up to a Mach number of 2.2 (section 4.0).
Thus, from this 1-D flow analysis, it can be concluded that the new method
improves the shock capturing of the MEFP code for weaker shocks (say 1.0 to
2.0), but does not for stronger shocks (say > 2.5).

Table 5.1 summarizes the results of this 1-D nozzle test. For each case,
the Mach number directly upstream and downstream of the shock and the total
pressure ratio across the shock are recorded. The maximum Mach number
upstream of the shock and the downstream Mach number that matches closely
to the theoretical curve are chosen as the Mach numbers directly upstream

and downstream of the shock.
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Results from the M&M formula and 2M
formula compared with theoretical values.

Table 5.1a. Mach number directly upstream / downstream of shock

Pexit/Pto  Theoretical M&M formula 2M formula
0.86687 1.100/0.912 1.054/0.866 1.073/0.888
0.85 1.267/0.803 1.225/0.774 1.244/0.774
0.80 1.455/0.716 1.411/0.680 1.425/0.701
0.75 1.578/0.676 1.530/0.637 1.549/0.657
0.47101 2.500/0.513 2.406/0.495 2.407/0.481
0.20285 3.500/0.451 3.398/0.433 3.324/0.425
Table 5.1b. Total pressure ratio, Pt, exit / Pt, inlet

Pexit/Pto Theoretical M&M formula 2M_formula
0.86687 0.99893 0.99891 0.99891
0.85 0.98475 0.98472 0.98472
0.80 0.94339 0.94335 0.94335
0.75 0.90320 0.90318 0.90318
0.47101 0.49901 0.49889 0.49889
0.20285 0.21295 0.21295 0.21295
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From Figs. 5.4 - 5.9, the shock appears to be captured with both methods
over 3 to 4 grid points, typically centered around the theoretical shock
location. Also, both methods calculate similar shock losses, which match the
theoretical solutions closely. This is at first surprising since the calculated
Mach numbers directly upstream of the shocks are significantly lower than
the theoretical values. But, for 1-D flow, the total pressure ratio is basically a

measure of how well the transonic flow was modelled in the throat region.
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6.0 Oblique Shock Capturing in a Cascade of Wedges

The full 3-D MEFP code is used to test oblique shock capturing in
Denton's supersonic staggered wedge cascade [8], shown in Fig. 6.1. It should
be noticed from Fig. 6.1 that the suction side of the blade remains flat and the
pressure side has two corners. The flow is uniform at the inlet with a Mach
number of 1.6 and is parallel to the suction side of the blade. An oblique shock
occurs at the leading edge due to the flow turning of 5.727° caused by the
wedge. The angle of this shock is at 45° to the incoming flow. The shock is
then reflected off the suction side of the lower blade at an angle of 48.2° as
shown in Fig. 6.1. It then theoretically cancels at the first corner on the
pressure side. At the second corner, a Prandtl-Meyer expansion fan is
produced. A third oblique shock is generated at the trailing edge and acts to
straighten the pressure side flow. The four regions are labeled with their
corresponding Mach numbers, Mjp - My, in Fig. 6.1. The first two oblique
shocks are of primary importance for this test case. The normal Mach
numbers and total pressure losses across each shock are given in Table 6.1. It
should be noticed that the normal Mach numbers for the three oblique shocks
are about the same, Mp ~ 1.13, and thus the shocks should theoretically have
equal total pressure ratios (losses).

Four different grids were used: 43 x 22, 82 x 22, 82 x 42, and 123 x 42 in
order to check the influence of grid refinement on shock capturing. Figure
6.2 shows the full 43 x 22 grid, with 43 grid points in the flow direction and 22
grid points in the blade-to-blade (vertical) direction. For the master grid
geometry, the variable in the flow direction, A, is assigned a value of -1 at the

inlet, 0 at the leading edge, 1 at the first corner, 2 at the second comner, 3 at the
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Table 6.1 Total and normal Mach numbers and total
pressure losses across the oblique shocks

Mach number Normal Mach Numbers Pt/Pti

M1 =16 Min = 1.13137 Pta/Pt1 = 0.997702
M2p = 0.88823

M2 = 1.403 M2n = 1.13399 Pt3/Pt2 = 0.997573
M3p = 0.88633 Pt3/Pt1 = 0.995281

Mg = 1401 My4n = 1.13382 Pt5/Pt4 = 0.997582
Msp = 0.88646 Pt5/Pt] = 0.992874
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trailing edge, and 4 at the exit. The other three grids use the same master
geometry. An enlarged plot of the A = 0 to A = 2 region is shown in Fig. 6.3a
for the 43 x 22 and 82 x 22 grids. Figure 6.3b is an enlarged plot for the 82 x 42
and 123 x 42 grids. In each figure, the theoretical shock locations are sketched
to emphasize the shock direction relative to the control volumes and the
number of grid points in the shock region. The first shock is diagonal to the
control volume whereas the second shock is more parallel to the blade-to-blade
grid lines. For the coarse 43 x 22 grid, the first shock crosses 13 grid lines in
the flow direction, while the second shock only crosses 3 grid lines.

The results obtained using the M&M formula are shown in Figs. 6.4 - 6.6.
The Mach number and total pressure ratio across the wedge are given in Fig.
6.4a for the 43 x 22 grid. The corresponding plots for the 82 x 22 grid, 82 x 42
grid, and the 123 x 43 grid are shown in Figs. 6.4b, 6.4c, and 6.4d. As expected,
the shocks get sharper with grid refinement. Each of these figures shows a
slight expansion, followed by two oblique shocks, an expansion, and a shock
off the trailing edge; thus the flow code calculates all of the regions observed
in Fig. 6.1.

The regions are most clearly distinguished in Fig. 6.4d which shows the
results with the finest grid. The calculated Mach numbers agree quite closely
with the theoretical solution. The Mach number upstream of the first shock is
about 1.6, falling to just above 1.4 after the first shock, and to just below 1.2
after the second shock. It then rises to about 1.4 following the Prandtl-Meyer
expansion.

The total pressure losses across the first two shocks are clearly seen
(Fig. 6.4d), while the calculated loss across the trailing edge shock is somewhat

smaller. These contours also show errors in total pressure starting just
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Fig. 6.4a Mach number and Pt/Pto contours
for 43 x 22 grid
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upstream of the leading edge of the blade and extending along the pressure
surface, and starting near the suction surface after the shock reflection.
These errors are associated with discretization errors at the near-wall grid
points. There are two probable causes for these errors, the approximations
made to run the viscous flow code in inviscid mode, and the handling of the
cusped leading edge as very small blunt leading edge with 2 grid points.

Plots of the Mach number and total pressure ratio along the repeating
boundary of the 43 x 22 grid are provided in Fig 6.5a and compared with the
theoretical values. The corresponding plots for the 82 x 22 grid, 82 x 42 grid,
and the 123 x 43 grid are shown in Figs. 6.5b, 6.5c, and 6.5d. From these figures,
it is evident that the calculated Mach numbers match the theoretical solution
closely. However, it appears that not enough losses are calculated for the first
shock while the second shock gets about the right losses, at least for the finest
grid. This might be due to the direction of the shocks crossing the control
volumes. Since the first two oblique shocks are of primary interest, the
discrepancies of total pressure losses at the trailing edge are not considered.
Table 6.2 summarizes the Mach numbers and total pressure losses after the
first two shocks and the expansion region for each grid case.

Figure 6.6 gives the mass averaged total pressure from the inlet to the
trailing edge. At the trailing edge, A = 3, the theoretical total pressure ratio is
9953, The 43 x 22 grid gives about 90% of the actual losses while the other
cases have only about 70 to 80% of the losses. The order of the curves suggests
that the errors in the loss prediction are not a simple function of grid
fineness. This level of agreement in predicting the loss within the blade row
is reasonable for a cascade with such low losses.

The 2M formula gives results similar to the M&M fcrmula, such that the
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Table 6.2 Repeating Boundary Mach Numbers and Total
Pressure Losses
TAfter 1st Shock After 2nd Shock Expansion

Grid Mach Number Mach Number Mach Number
43 x 22 1.4505 1.1937 1.3782
82 x 22 1.4179 1.1892 1.3817
82 x 42 1.4043 | 1.1883 1.8863
123 x 43 1.3987 | 1.185 1.3717

Ideal T 1.408 1.189 1.401

Grid 1 - Pt/Pto 1 - Pt/Pto 1 - Pt/Pto
43 x 22 0.0016 0.0036 0.0035
82 x 22 0.0012 0.0028 0.0027
82 x 42 0.0017 0.0033 0.0034
123 x 43 0.0013 0.0033 0.0032

ideal 0.0023 0.0047 0.0047
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plots presented above would nearly be identical.  However, the 2M formula

does calculate a higher aQ value, which provides a better approximation of the
effective pressure (section 4.0). Figure 6.7 shows the increase of aQ along the
repeating boundary for the 82 x 22 grid.

To check the program convergence, the mass flowrate, pressure
changes, and velocity changes are graphed with the number of iterations.
The mass flowrate, m, and the variation of mass flowrate divided by the mass
flowrate, dm/m, are plotted in Fig. 6.8. The mass flowrate remains steady after
about 200 iterations for every case except for the 82 x 22 case, which took about
800 iterations to converge. It appears that the dm/m changes decrease over
three orders of magnitude after 500 iterations. Figures 6.9 and 6.10 show the
maximum and rms pressure changes and the maximum and rmms velocity
changes with iteration. Again, the property changes decrease over three
orders of magnitude after 500 iterations; however, the 82 x 22 case appears to
take longer. The 43 x 22 case converges most rapidly with about five orders of

magnitude decrease in pressure and velocity changes.
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7.0 L030-4 Transonic Compressor Blade

The full 3-D MEFP code, with the viscous momentum equation (section
2.1), is used for the L030-4 compressor blade test case. The L030-4 is a
transonic compressor rotor blade section tested in a cascade wind tunnel at the
DFVLR in Cologne, Germany [9]. The turbulent viscosity is evaluated with a
one-ecquation turbulence model, k!/2 - L. Figure 7.1 shows the compressor
blade with a 74 x 23 grid. The test case was run with an inlet Mach number of
1.1, an exit static pressure P2/Pio = 0.68, and an axial velocity density ratio of
1.18. These conditions gave choked flow with a nearly normal passage shock
ending near the trailing edge on the suction surface. The L030-4 is a smooth
profile with rounded leading and trailing edges, unlike the cascade of wedges
which has sharp corners and cusped leading and trailing edges.

Figure 7.2 shows the calculated Mach number distribution for the 2M
and M&M formulae. The darker contour lines are at Mach = 1.0. Although both
of the Mach‘ number figures look similar, the 2M formula gives a slightly
higher maximum Mach number near the suction surface directly upstream of
the passage shock than the M&M formula, 1.60 compared to 1.54. Thus, the 2M
formula captures a sharper shock. Figure 7.3 is a comparison of errors in
satisfying the perfect gas equation using both formulae. The 2M formula
reduces these error regions, particularly at the leading edge and across the

shock at the trailing edge.
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8.0 Conclusions

In an attempt to improve the shock capturing capabilities of the MEFP
pressure correction flow code, a new pressure interpolation method, the 2M
formula, is developed. The 2M formula is a two Mach number dependent
formula, with Mach numbers M;j and Mj4+1, whereas the previously used
pressure interpolation method, the M&M formula, is a one Mach number
dependent formula, using the maximum of M; and Mj4+1. Section 4.0 shows the
development of the 2M formula with a stability analysis for the effective
pressure coefficients, ag and aj. A 1-D version of the MEFP code is written to
help understand the basic numerical procedure and to allow simple testing of
the new pressure interpolation formula. This 1-D code is described in Appendix
D and summarized in section 3.0.

The 2M formula is compared with the M&M formula for three test cases:

(1). a 1-D converging-diverging nozzle for several back pressures, giving
normal ‘shock strengths of 1.1, 1.267, 1.455, 1.578, 2.5, and 3.5.

(2). a 2-D supersonic staggered cascade of wedges with oblique shocks with
upstream Mach numbers of 1.6, 1.403 and 1.401.

(3). an LO030-4 compressor blade with a round leading edge.

For the nozzle test, the 2M formula appears to capture a sharper shock
than the M&M method for weaker shock strengths of 1.0 to 2.0, but does not
show any improvement for shocks strengths greater than 2.5. This is due to
the M&M formula being second order accurate for all Mach numbers, while

the 2M formula is only second order accurate up to a Mach number of 2.2. Both
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methods capture the shock over 3 to 4 grid points, typically centered around
the theoretical shock location. In addition, both methods calculate shock total
pressure losses which match closely with the theoretical losses.

In the cascade of wedges test, four different grids were chosen: 43 x 22,
82 x 22, 82 x 42, and 123 x 42, in order to test the oblique shock capturing with
grid refinement. Both formulae give similar shock capturing results. The 2M
formula however, calculates a slightly higher aQ value, which provides a
better estimate of the effective pressure. The first shock losses are
underestimated, but the second shock losses are close to the actual losses, at
least for the finest grid. This might be due to the first shock being diagonal to
the control volume whereas the second shock is more parallel to the blade-to-
blade grid lines. In terms of the mass averaged total pressures, it appears that
the 43 x 22 grid gives about 90% of the actual losses while the other cases
calculate only 70 - 80% of the losses. As expected, the oblique shocks
sharpened with grid refinement.

For the LO030-4 compressor blade case, the errors in satisfying the
perfect gas equation due to the pressure interpolation schemes are compared
for the 2M and M&M formulae. The 2M formula reduces these errors,
particularly at the leading edge and across the shock at the trailing edge. The
2M formula also gives a higher Mach number directly upstream of the shock

than the M&M formula, 1.60 compared to 1.54.

ions for further work
(1). The stability analysis can be further developed such that the two Mach

number dependent formula is second order accurate for all Mach numbers.
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This reanalysis should always capture sharper shocks than the M&M formula,
thus further improving the shock capturing capabilities of the MEFP flow code

for all shocks.

(2). The method of characteristics can be used to help gain a better under-

standing of the downstream flow field for the cascade of wedges test.
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Appendix A. Denton's other pressure-density schemes [4]

heme A
Denton sends the density change to the downstream node, as described
in section 2.2, and the pressure is then calculated from the ideal gas equation.
A correction factor is used to correct the downwinded pressure to a value

closer to the true pressure, PA j.

Pj =Pj+1 + CFPj

Now, the pressure correction factor, CFPj, is approximated as

CFPjnew = (1-RF)CFPjld + (RF)CFP;j int.

The relaxation factor, RF, has a typical value of 0.05.

Scheme B

In scheme B, Denton sends the density change to the upstream node

because it was noticed that at low Mach numbers, the pressure is closely

related to the density. The density change and pressure are now

8pi = me iSt/5V

and Pj= piRTj
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The pressure can be calculated directly from the density without any
correction factors. Scheme B is stable for subsonic flows and even reverse

flows.

Scheme C
The advantages of schemes A and B were combined such that the density

change is sent to the downstream node and a density correction factor is used.

Spi+1 = me,idt/dV

and P; = (pi+1+ CFRO;)RT;

Again, the density correction factor, CFROj, is similar to the pressure

correction factor
CFROj new = (1-RF)CFROj old + (RF)CFRO; int.

Scheme C ié stable for all Mach numbers and has good shock capturing
properties; however, it does not permit reversed flow.

A single scheme which would be stable for all Mach numbers and
permit reversed flow was desired. After several unsuccessful attempts, Denton
developed a linear combination of schemes B and C. The density change is

distributed between the upstream and downstream nodes such that

3pj = adp

and dpj+1 = (1-a)dp
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For Mach numbers less than one, a =1, and for Mach numbers greater than or
equal to one, a =0. This distribution of a gave good shock capturing
characteristics in 1-D. However, problems occurred in 2-D because of the
discontinuity at M = 1.

A better approximation for o was found using a linear variation of the

Mach number.

a=0.5[1 + (T - TH/To - T*)]

This distribution of alpha allows stability for all Mach numbers and

with reverse flow. The pressure is now calculated using the pressures, from

schemes B and C, weighted with respect to o.

Pj=[api +(1-o)(pi+1 + CFRO)IRTj

The solution procedure from this scheme produces overshoots and

undershoots across the shock due to a lack in numerical damping.
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Appendix B. Truncation Error of Pressure Interpolation
Equation [3]

The truncation error of the interpolated pressure used to calculate the
density in equation 12 (section 2.2) may be determined using Taylor series

analysis. The interpolated ecffective pressure is given by

Peff,i+1 = Pi + a0(Pi+1 - Pi) + a1(Pi+1 - Pi-1)/2 + a2(Pi+1 - Pi-2)/3

where ap,a], and a2 are coefficients. To determine the accuracy of the

effective pressure, consider the magnitude of Pegfjsq - Pi+1. With grid

spacing h, and expanding about i+l,
Pi.2 =P - 3hP' + 9(h2/2)P" - O(h3)
Pi.1 =P - 2hP' + 4(h2/2)P" - O(h3)
Pi =P- hP'+ Z2)P" - Oh3)
Pi+1 =P
Therefore,
Peffi+1 - Pi+1 =h(ag + a1 + a2 - 1)p' - (h2/2)(a0 + 2a1 + 3ap - 1)p" + O(3)

And if ag+aj+azx=1,

then the difference between Peff and P is of the order of h2, so that Peff is a

second order accurate approximation for P.
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Appendix C. Moore and Moore Pressure Interpolation
Schemes [3]

From section 2.2, an effective pressure at i+l was found using Mach
number dependent interpolation equations. The density at i+1 is then

calculated using the effective pressure. Again, the equations are

Petf,i+1 = Pi + a0(Pi+1 - Pi) + a1(Pij+1 - Pi-1)/2 + a2(Pj+1 - Pj-2)/3

and  pj+1= Peff i+ 1/RTi+1

where agQ,a1, and ap are coefficients. Three other interplation methods are

possible with these limitations set on the coefficients.

1. If ag = a1 = a2 = 0, an ypwind effective pressure interpolation is obtained
such that Peffjs1 = Pi.

2. If ag=a1=0and a2 =1, a 3-point _pressure interpolation procedure
P; + a2(Pij+1 - Pj-2)/3.

occurs where Peff i1

3. If ag=1 and a] = a3 = 0, the ideal gas equation occurs, Peff j+1 = Pi+1,
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Appendix D. 1-D version of MEFP

Appendix D gives a full description of the 1-D version of MEFP. A

summary of this code is outlined in section 3.0.

1.1 B roun

This program was written in order to capture a shock in a 1-D
converging-diverging nozzle and analyze the effects of Mach number and
pressure losses across the shock. The solution method used in this program is
similar to the MEFP transonic calculation procedure, such that discretized
forms of the momentum and continuity equations are satisfied. These
equations make use of an effective density at a point, calculated from the
perfect gas equation with an interpolated static pressure. A pressure
interpolation method is used to determine an effective pressure. The Mach
number, static and total pressures are calculated across the shock for a fixed
inlet stagnation pressure and an exit pressure. Exit pressure ratios, Peyii/Pg.,
of 0.75, 0.80, and 0.85 were used for comparison. A constant total temperature
was assumed for the calculations.

In order to make the equations in the program dimensionless, the

following variables were defined as shown below.

P = P/P,
T =T/To
p =plpo
Y=14
R=10
Cp=35
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1.2 itializati low ri

The Mach number, area, pressure, temperature, velocity, and density
are initialized in subroutine initial. An inlet Mach number of 0.8 and exit
Mach number of 1.8 was used. A change in Mach number, DM, of 0.025 was
chosen to obtain 40 grid steps across the converging-diverging nozzle. The

areas are determined from an isentropic relation to the Mach number.

1-D Flow Nozzle

!
|
RHOI | I | | | I |
I I I I I I I I ! I
— - — — — _I ———————————— S [ -
i=1 i=IMAX

For i= 1, IMAX
= M1 + (i-)DM
= (IMPIA+ (v -1)/2)M;2)/y +1)/21 [+ D/2(v-1)]

The initial pressure, temperature, and velocity at the nozzle's inlet and

exit are calculated from isentropic relations.
= [1+ ((7_1)/2)Mi2][-7/(7-1)]
Uy = [2cp(1 - T]9-
PIMAX = Pexit

TiMAX = PiMax (Y- D/

Ummax = [2¢p(1 - Timax)1%?
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A linear relationship is used to initialize pressure and velocity along the

nozzle. The density is calculated from the perfect gas equation.

Fori =1, IMAX

P; = P1 + [PiMmAX - P11[(I-1)/(IMAX-1)]
U; = U + [UtMAX - U1l[d-1)/(IMAX-1)]
Tj=1-Ui2/2Cp

M; = [5(/T; - D103

pi = Pi/Tj

1.3 Yeloci from ntinui
The mass flowrate is calculated at the nozzle inlet. The velocity is then

updated from this flowrate in subroutine fixcont.

m=p1U1Aq

U; = m/[pjAjl Fori =2, IMAX

1.4 Momentum Equation

The one dimensional form of the momentum equation,pU[8U/8x] = -8P/dx,
is discretized to the form,
0.5[piUj + pi-1Uj-11[8U; - 8Uj.1] = -Pj + Pj_1 - 0.5[pjU; + pi-1Ui-11(Uj - Uj-1].
This discretized equation can be written as AM;8U;+AU;8U;.1 =BMOM;. Itis

assumed that 8U;.1 = 0, so that 8U; = BMOM;/AM; The change in velocity, 8Uj, is

used to update velocity, which is described in section 1.7 of this appendix .
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mentum

AM(Q) = p1Uj

Then subroutine inlet is called to update the inlet velocity.
Fori = 2, IMAX

RU = 0.5[pjU; + pj-1Uj-1]

AM; =RU

AU; =-RU

BMOM; = -P; + Pj_1 - RU[U; - Uj_1]

1.5 Pr I rrection E ion

The left hand side of the discretized continuity equation

APU;d8P;.1 + APM;0P; + APD;8P;,1 = BCONT; is calculated in subroutine lhscont.

Continuity
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The pressure correction equations are formed by substituting 3U; = (8P;.
1 - 8P))/AM; and 8pj = 8P;.1/RT; in the continuity equation [pj4+18Uj41 +

Ui+19pi+1]Ai+1 - [PidUj + UjdpilA;j = -pi+1Ui+1Ai+1 + PiUiAj,

Fori = 1, IMAX-1

CDUI = p;Aj/AM;

CDUID = pj41Aj+1/AMj+1
CDRI = UjAi/T;

CDRID = Uj+1Ai+1/Ti+1

APU;j = -CDUI - CDRI

APM; = CDUI + CDUID + CDRID

APD; = -CDUID

At i=1, 8Uj =-8P1/AM1 and 8p1 = 6P1/RT since there is not an upstream

point; therefcre, APU, APM, and APD at the nozzle inlet are defined as:

APU(1) = 0.0
APM(1) = CDUI + CDUID + CDRID - CDRI

APD(1) = -CDUID
1.6 Densi ing In 1 Pr r

The density is updated from the perfect gas equation using an

interpolated pressure in subroutine gasrho.
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The effective pressure is calculated using AZ, Al, and A2 in the form

Peff; = Pj.1 + AZ{[P; - Pj.1] + Al{[P; - Pj_21/2 + A2{[P; - P;_3]/3. However, the
coefficients A1 and A2 are only used if the pressure difference associated with
each coefficient is a positive contribution to evaluating P; from Pj_qy. For
example, if [P; - Pij_1] is positive and [P; - P;_3] is negative as shown in the

figure below, the coefficient A2 would not be used.
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Using the M&M formula, the coefficient AZ is calculated from the

maximum Mach number of the point evaluated, M;, and one point upstream,

M;._1.

Fori = 1, IMAX
Tj=1-U;2/2C,
M; = [5(/T; - 1)]0-3
AMMAX= M;
IF (AMMAX < M;_ 1) AMMAX= M;_;
AZ;=0
Alj= 4/AMMAX2
IF (AMMAX < 2.0) THEN
AZi= (0.8/3)[4/AMMAX2-1]
IF (AZ; > 1) AZi=1

Al;=1-AZ

The 2M formula is an alternative method to solve for the effective
pressure coefficients. The numbers next to the AZ and Al coefficients below

are equation numbers used from section 3.0.

Fori = 1, IMAX
Ti=1-U;212C,
M; = (5(/T; - 1103

AZ(1) =1.
Al1(1) = 1.
Fori =1, IMAX
g=14
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add = 0.075
Mj = M; + add
Mp = M(MINO(i+1,IMAX)) + add
A =gMp + I/Mp + 1/M;j - gMj
= .5gMp + 2/Mp + 1/M;j - gM;

IfA>0
AZ22i41 = 1 + 1/(gMp?2) + 1/(gMpM}) - Mi/Mp
Aljy1=1
IfB>0
AZ29i+1 = 4/(3gMp2) + 2/(3gMpM;) - 2Mi/(3Mp) + 1/3
AZi+1 = AMINI1(AZ22i4+1, AZ29i+1)
Alj41 = 1.
ENDIF
IFB<O
AZi+1=0.
A130i+1 = 2 + 4/(gMp2) + 2/(gMpM) - 2M;j/Mp
Alj4+1 = al30i+1
ENDIF
ENDIF
IfA<O
AZ;=0
AZj+1=0

A123j = (gMp + 1/Mp + 1/Mj)/(gM;)
A133i41 = (8Mp + 2/Mp + I/M/(gMj + 0.5gMp)
A135i = (gMp + 2/Mp + 1/Mj)/(gMj + 0.5gMp)
Alj = AMIN1(A123;, A135{, Alj)
Alj+1 = Al133j41

ENDIF

IfAZi>1 AZj=1
If AZi >0 Alj=1- AZj
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For both formulae, the M&M and 2M, the variable C1 is calculated to
determined if the coefficient Al is to be used. The variable C2 is calculated
only for the M&M formula to determine if the coefficient A2 is to be used. The
coefficient Al is used only if C1 is positive and A2 is used only if C2 is positive.

The equations below are used for the M&M formula and are applicable to the

2M formula with A2 = 0.

Fori = 2, IMAX
Peff; = Pj_1 + AZ;[P; - Pj_1]
IFi>2 Cl1=[P;-Pj_11[P; - Pj.2]
IF C1 > 0.0 Peff; = Peff; + A1;[P; - P;.21/2
A2;=1-AZ; - Al

ELSE
A2;=1-AZ;

ENDIF

IFi>3 C2=[P;-Pj_11[P; - Pj-3]
IF C2 > 0.0 Peff; = Peff; + A2;[P; - P;_31/3.
The effective pressure is bounded by P; and P;_j.

Peff; = AMAXI(Peff; , AMINI1(P; ,P;_1))

Peff; = AMINI(Peff; , AMAXI1(P; ,Pi_1))

pi= Peffi/T;

1.7 Update Velocity using Momentum

In subroutine unew, the velocity is updated such that U; = U; + 8U; The

momentum equations are solved assuming 8Uj.; = 0.

Uj = Uj + BMOM; /AM; For i = 2, IMAX
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1.8 Iculatin ntinyi Error
The right hand side of the discretized pressure correction equation

(continuity) is calculated in subroutine rhscont.

BCONT; = - pi+1Ui+1Ai+1 *+ PiUiA{ Fori = 1, IMAX-1

1.9 1 for Pr I rrection
In subroutine solvepc, a corrected pressure is calculated using a tri-

diagonal matrix algorithm.

Fori = 1, IMAX-1

APM; = APM; - APU;APD; 4

APD; = APD;/APM;

BCONT; = [BCONT; - APU;BCONTj.1l//APM;
PCIMAX=0

For II = 1, IMAX-1

PCij= BCONT; - APD;PC;;1 where i = IMAX - II

1.10 Densi loci nd Pr re from IT Pr I
The density is updated wusing the corrected pressure in subroutine

rhopc.

p1=p1 + PC1/Ty
pi =pi + PCi.1/T; Fori = 2, IMAX

The velocity is updated using the corrected pressure in subroutine upc.

U; = U; + (PCj.1 - PC))/AM; Fori = 1, IMAX
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The pressure is updated using the corrected pressure in subroutine

addpcp.

P; = P; + PG; Fori = 1, IMAX

1.11 Icul M lowr n 1
The inlet velocity is recalculated using the new inlet static pressure,

and a total pressure, Pt = 1, in subroutine inlet.
Uy = [ - Py -DIYy2cp10-5

The mass flowrate is recalculated at the nozzle inlet using the new inlet
velocity, Uj. The velocity is then updated from this flowrate in subroutine

fixcont.
m=p1U1Ay
U; = m/[p;Ajl Fori =2, IMAX

1.12  Aver Val for nvergen

At the end of every other iteration, the current density, velocity, and
pressure are averaged with values from the previous iteration and then used
for the next iteration. This procedure is in subroutine average and helps the

program converge.

p; =0.5[p; + pOLDi] Fori =1, IMAX
Uj = 0.53[U; + UoLp;]

P; = 0.5[P; + POLDi]
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