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Stochastic Modeling & Simulation of Reaction-Diffusion Biochemical

Systems

Fei Li

(ABSTRACT)

Reaction Diffusion Master Equation (RDME) framework, characterized by the discretization

of the spatial domain, is one of the most widely used methods in the stochastic simulation of

reaction-diffusion systems. Discretization sizes for RDME have to be appropriately chosen

such that each discrete compartment is “well-stirred” and the computational cost is not too

expensive.

An efficient discretization size based on the reaction-diffusion dynamics of each species is

derived in this dissertation. Usually, the species with larger diffusion rate yields a larger

discretization size. Partitioning with an efficient discretization size for each species, a mul-

tiple grid discretization (MGD) method is proposed. MGD avoids unnecessary molecular

jumpings and achieves great simulation efficiency improvement.

Moreover, reaction-diffusion systems with reaction dynamics modeled by highly nonlinear

functions, show large simulation error when discretization sizes are too small in RDME

systems. The switch-like Hill function reduces into a simple bimolecular mass reaction when

the discretization size is smaller than a critical value in RDME framework. Convergent Hill

function dynamics in RDME framework that maintains the switch behavior of Hill functions

with fine discretization is proposed.

Furthermore, the application of stochastic modeling and simulation techniques to the spa-

tiotemporal regulatory network in Caulobacter crescentus is included. A stochastic model

based on Turing pattern is exploited to demonstrate the bipolarization of a scaffold protein,

PopZ, during Caulobacter cell cycle. In addition, the stochastic simulation of the spatiotem-

poral histidine kinase switch model captures the increased variability of cycle time in cells

depleted of the divJ genes.
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Chapter 1

Overview

Reaction-diffusion systems, such as biochemical cell cycle regulation models [42, 106], ecosys-

tems [34] and pattern formation models [105, 59, 111], widely exist in nature. Classic studies

have been exploiting deterministic differential equations (PDEs and ODEs) to model the

reaction dynamics of these systems. Deterministic models are powerful tools to study qual-

itative evolution and bifurcation dynamics of reaction-diffusion systems.

Differential equation modeling approaches assume the concentrations of all species in a

reaction-diffusion system are continuous and evolve deterministically. However, in reality

biological systems are always subject to external noise from signal stimuli and environmental

perturbations. Furthermore, the size of a cellular system is so small that species populations

in a cell are discrete and limited [107, 86]. For instance, the volume of a Caulobacter cell is

roughly 1 fL ∗ at division and contains about 300 molecules of a particular protein species (if

its concentration is 500 nmol/L). Moreover, the number of mRNA molecules for each protein

at any time is likely to be about 10 [107]. With such small numbers of mRNAs and proteins,

molecular fluctuations at the protein level are expected to be around 25% [86]. Such large

fluctuations in protein levels may significantly affect the properties of the cell cycle control

system. In addition, experimental data at single-cell level demonstrates considerable vari-

∗femto- (f) is a unit prefix in the metric system denoting a factor of 10−15. 1 fL = 10−15 L.

1
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Table 1.1: Cell Sizes and Protein Populations of Several Typical Species

Cell Cycle Time Cell Size Population of a Signaling Protein

(minutes) (µm3) (molecules/cell)

E. coli 20 ∼ 40 0.5 ∼ 5 10 ∼ 1000

S. cerevisiae 70 ∼ 140 20 ∼ 160 500 ∼ 30000

Hela 900 ∼ 1800 500 ∼ 5000 104 ∼ 106

ability from cell to cell. Table 1.1 shows some characteristic features of bacteria, yeast and

human cells.

Therefore, stochastic models and simulation algorithms have been proposed to capture the

intrinsic noise in cellular reaction-diffusion systems [44, 2, 112, 84]. The stochastic mod-

eling strategies can be categorized into two theoretical frameworks: the continuous-space

discrete-time particle-based framework, such as the Smoluchowski model [114], and the time-

continuous compartment-based framework, such as the Reaction-Diffusion Master Equation

(RDME) [32, 83] framework. In the particle-based framework, molecules are modeled as

Brownian particles that diffuse in continuous-space domain. In each small time step, a

chemical reaction fires if the next reaction time is less than the time step. The positions

of all diffusive molecules are updated according to Brownian dynamics. For a bimolecular

reaction, when two reactant molecules are within a distance of “reaction radius” [20, 57],

the bimolecular reaction fires with a fixed propensity density or instantaneously (reaction

propensity approaches infinity) [114]. Higher order reactions, such as trimolecular reactions,

are considered unrealistic and are not studied in particle-based models. Particle-based frame-

work resolves the exact positions of molecules and is mathematically fundamental. Though,

particle-based framework requires high computation costs for large systems.
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RDME framework is characterized by the discretization of spatial domains, with the as-

sumption that molecules are “well-stirred” within each compartment. Chemical reaction

dynamics in each compartment are governed by Chemical Master Equations (CMEs) [77, 37]

and diffusion is modeled as random walk of the species molecules between neighboring com-

partments. Compartment-based models are coarse-grained and better suited for large scale

simulations [27]. Typically, the spatial discretization size of a reaction-diffusion system has

to be appropriately chosen such that within each compartment, molecules are “well-stirred”

and the computational cost is not too expensive. There have been many research studies on

the discretization strategies, such as the uniform 1-D discretization [60, 10] adaptive meshes

and unstructured meshes [5] for non-uniform 1-D discretization.

In a “well-stirred” compartment, it is not necessary to track the detailed positions of every

molecule. A “well-stirred” biochemical system can be defined by the instantaneous popu-

lations of various species alone. Chemical reaction dynamics of a “well-stirred” system are

fully governed by Chemical Master Equations (CMEs). CME is a set of ODEs that gives

one equation for every possible combination of species populations. Therefore, it is both

theoretically and computationally intractable to solve CMEs for most practical biochemical

systems due to the huge number of possible system states. Stochastic simulation methods

are then exploited to construct realizations of state trajectories.

Gillespie’s Stochastic Simulation Algorithm (SSA) [36] is one of the most widely used sim-

ulation methods for stochastic simulations of “well-stirred” systems. There exist several

implementations of SSA, such as direct method [36], first reaction method [36], next reac-

tion method [33], optimized direct method [14] and the constant-time SSA [101]. SSA is

computationally intensive for most practical models. Much effort has been focused on the

simulation efficiency improvement. Furthermore, researchers have developed several approx-

imation algorithms for particular biochemical systems, such as τ -leaping method [39, 41],

quasi-steady-state SSA [93] and slow scale SSA [12]. Also, the merging of stochastic sim-

ulation with deterministic modeling for multiscale systems brings up a hybrid SSA/ODE

method [43, 70].
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In the compartment-based framework, discretization yields “well-stirred” compartments.

The improvement over SSA can also be applied to stochastic simulations of reaction-diffusion

systems. In addition, novel improvements have been proposed in the effort to alleviate the

computational cost on molecular random walks. The binomial tau-leap spatial stochastic

simulation algorithm [72] combines the idea of aggregating diffusive transitions with the pri-

ority queue structure. Additionally, a novel formulation based on the finite state projection

(FSP) method [82], called diffusive FSP (DFSP) method [22], has been developed for efficient

and accurate simulation of diffusive processes.

Traditional discretization sizes of RDME have upper and lower bounds. It has been well

established that the discretization size should be smaller than mean free paths of all reactant

molecules for each compartment to be considered “well-stirred” [4]. Furthermore, it has been

proved that when discretization sizes approach zero in high dimensional domains, simulation

of bimolecular reactions leads to great errors. As a result, RDME becomes divergent and

yields unphysical results [52, 26, 45].

This dissertation focuses on the mathematical analysis of stochastic models and the devel-

opment of efficient stochastic simulation algorithms for reaction-diffusion systems. A math-

ematical formula of efficient discretization size in RDME framework is derived in Chapter 3.

This formula usually yields larger discretization sizes for species with larger diffusion rates.

Discretizing the spatial domain for each species based on its corresponding discretization

size, a multiple grid discretization (MGD) method is proposed in Chapter 4. Experiments

with a toy model and a Turing pattern based model demonstrate that MGD greatly improves

the simulation efficiency with a controllable relative error tolerance.

Moreover, numerical analysis of Hill function reaction laws in reaction-diffusion systems

demonstrates that the switching behavior of Hill dynamics reduces into a simple bimolec-

ular reaction dynamics when the spatial discretization size is small enough. Furthermore,

following the work of convergent Reaction Diffusion Master Equation (CRDME) [53], a con-

vergent Hill function simulation scheme in the microscopic RMDE framework is presented



Chapter 1. Overview 5

in Chapter 5.

In addition to the theoretical analysis, stochastic modeling and simulation of regulatory

networks in Caulobacter crescentus cell cycle are included in Chapter 6 and Chapter 7. A

stochastic model of the histidine kinase regulatory network model during the Caulobacter

crescentus cell cycle is addressed in Chapter 6. The stochastic model takes into account

molecular fluctuations of the regulatory proteins in space and time during early stages of the

cell cycle of wild-type Caulobacter cells. Moreover, stochastic simulations match with the

experimental observations of increased variability of cycle time in cells depleted of the divJ

gene. In addition, stochastic simulations suggest that a small fraction of the mutants cells

do complete the cell cycle normally in the scenarios of divK gene overexpression.

In addition, experimental results show that the cytoplasm of Caulobacter crescentus not only

changes with time, but also is elaborately organized in space during the cell cycle process [18].

The spatiotemporal cell cycle control of Caulobacter has attracted much attention in the

research of location regulation in prokaryotic cells. A scaffold protein, PopZ, in Caulobacter

becomes bipolar and promotes the localization of several other regulatory proteins during its

cell cycle. A Turing pattern mechanism is exploited to study the bipolarization of PopZ. A

stochastic model, presented in Chapter 7, demonstrates the PopZ polarization and captures

the variability in the cell length and time when PopZ becomes bipolar.



Chapter 2

Stochastic Simulation of

Reaction-Diffusion Systems

Classic studies on chemical reaction dynamics often use deterministic differential equations

(ODEs and PDEs) to model molecular concentration changes of spatiotemporal biological

systems. Traditional chemical dynamical models assume that species concentration is a

continuous variable and evolves deterministically. The evolution of molecular concentration

ui for species Si, i = 1, 2, . . . , N , is formulated as

∂ui
∂t

= Di∆ui + fi(u1, u2, . . . , uN), (2.1)

where Di indicates the diffusion constant of species Si and the chemical reaction function fi

is inferred from reaction dynamics. The Laplace operator ∆ denotes the sum of all unmixed

second partial derivatives in Cartesian coordinates:

∆u =
n∑
i=1

∂2

∂x2
i

u. (2.2)

The traditional chemical reaction dynamics are valid when all species present with enormous

number of population. However, a cellular system is so small that the molecular populations

of particular protein species are limited to magnitude of several hundreds or thousands [74,

6



Chapter 2. Stochastic Simulation of Reaction-Diffusion Systems 7

28, 97]. “Concentration” changes are no longer continuous and population discreteness

and stochasticity may play critical roles. Therefore, deterministic equations (2.1) are not

applicable to model the chemical kinetics of such small systems. The ultimate approach to

depict the time evolution of chemical reaction systems is to meticulously track the molecular

positions and populations for all chemical species [40].

When a chemical system is “well-stirred”, all the molecules of the same species are spatially

indistinguishable and it is not necessary to track their detailed positions. A “well-stirred”

system can be defined by the instantaneous molecular populations of various species alone.

When diffusion is not fast enough such that the chemical system is not “well-stirred”, molec-

ular motion and spatial information can not be neglected. In general, stochastic modeling

methods [44, 2, 112] to model reaction-diffusion systems can be categorized into two distinct

frameworks. One is the continuous-space particle-based framework, such as the Smolu-

chowski model [114]. In the Smoluchowski model, each molecule has a precise location. Dif-

fusion is modeled as the spatially continuous Brownian motion of individual molecules [26].

In each step, the Smoluchowski model checks whether a reaction fires during a small time

period. The Smoluchowski framework precisely tracks the position of every molecule and

is better to represent the microscopic physics of reaction-diffusion systems. However, when

the numbers of species populations and reaction channels are large, the Smoluchowski model

becomes impractical and hard to keep track of every molecule and every reaction channel.

The second class of models is often referred to as the compartment-based framework [32, 83],

which is characterized by the discretization of the spatial domain. One example is the

Reaction Diffusion Master Equation (RDME), where molecules in each discrete compartment

are considered “well-stirred”. Diffusion is modeled as random walk of species molecules

between adjacent compartments. Within each “well-stirred” compartment, chemical reaction

dynamics are described by Chemical Master Equations (CMEs) [77, 37]. RDME framework

is preferred in the modeling of large reaction-diffusion systems [31].

In addition to these two typical frameworks, a hybrid model, integrating compartment-
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based method with molecular-based method has been developed [31]. In this framework,

molecular-based model is used for localized regions where accurate and microscopic details

are important and compartment-based framework is used where accuracy can be trade for

simulation efficiency.

In this chapter, a brief review of the mathematical background on stochastic simulation

of “well-stirred” chemical reaction systems and the two stochastic simulation frameworks

for the reaction-diffusion systems is presented. Furthermore, an assessment regarding the

limitations and future development of stochastic modeling and simulation is included.

2.1 Stochastic Simulation Algorithms

Consider a well-stirred biochemical system of N species {S1, S2, . . . , SN} interacting through

M reaction channels {R1, R2, . . . , RM} within a constant volume Ω. The instantaneous state

of the chemical system is determined by the state vector X(t) ≡ [X1(t), X2(t), . . . , XN(t)]T ,

where Xi(t) is the number of molecules for species Si at time t. The state vector defines the

biochemical system at each time point and the state changes only when a chemical reaction

fires. Each chemical reaction channel Rj is characterized by the propensity function aj(x)

and the state change vector νj . The propensity function aj(x) is defined as

aj(x)dt ≡ probability that one Rj reaction occurs

in the next infinitesimal time interval [t, t+ dt),

given X(t) = x.

(2.3)

The state change vector νj ≡ [ν1j, ν2j, . . . , νNj]
T gives the molecular population changes of

every species Si, induced by one Rj reaction. The matrix ν = [ν1,ν2, . . . ,νM ] is also referred

to as stoichiometric matrix.

Once the propensity functions and stoichiometric matrix are determined, Chemical Master
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Equation (CME) [77, 37] completely depicts the dynamics of the biochemical system:

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

(
aj(x− νj)P (x− νj , t|x0, t0)− aj(x)P (x, t|x0, t0)

)
, (2.4)

where P (x, t|x0, t0) denotes the probability that the system state X(t) = x, given X(t0) = x0.

CME is a set of ODEs that gives one equation for every possible states. As the number

of the species increases, the dimension of CME increases exponentially [117]. Therefore,

it is both theoretically and computationally intractable to solve CME for most practical

systems due to the huge number of possible states. Stochastic simulation methods are then

proposed to construct numerical realizations of X(t). With enough trajectory realizations,

the distribution of the state vector vector at different time can be obtained.

One of the most important simulation methods is Gillespie’s Stochastic Simulation Algorithm

(SSA) [35, 36], which is essentially a Monte Carlo method. Gillespie’s SSA follows the

same probability functions that rule CME (2.4). In each step, Gillespie’s SSA answers two

questions: when will the next reaction fire and which reaction will fire. The key to SSA is

the probability function p(τ, j|x, t), which is defined as:

p(τ, j|x, t)dt ≡ the probability, given X(t) = x, that the next reaction

will occur in the infinitesimal time interval

[t+ τ, t+ τ + dτ), and will be an Rj reaction.

(2.5)

This probability function is the joint probability density function of the next reaction time

τ and the next reaction index j, given that the system is in state x. With the principles of

probability theory, the exact formula for this joint probability density is given by

p(τ, j|x, t) = aj(x)e−a0(x)τ , (2.6)

where

a0(x) ≡
M∑
j=1

aj(x), (2.7)
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denotes the total reaction propensity of all reaction channels. Equation (2.6) is the math-

ematical basis of SSA approaches. It implies that the time τ to the next reaction is an

exponential random variable with mean and standard deviation 1/a0(x), while the reac-

tion index j is a statistically independent integer random variable with point probability

aj(x)/a0(x).

There are several Monte Carlo procedures for generating samples of τ and j according to

their distributions. The simplest is the so called “direct method” [35, 36, 40], which generates

two uniformly distributed random numbers r1 and r2 in the unit interval (0, 1), and takes

τ =
1

a0(x)
ln(

1

r1

),

j = the smallest integer satisfying

j∑
j′=1

aj′(x) > r2a0(x).

(2.8)

The biochemical system is then updated according to X(t+ τ) = X(t) + νj. This process is

repeated until the simulation end criterion is reached.

An equivalent implementation to “direct method” is the so called “first reaction method”

(FRM) [35, 36]. With probability theory, it is easy to formulate the probability for one Rj

reaction to fire in time interval [t+ τ, t+ τ + dτ) as

pj(τ)dτ = aj(x, t) · e−aj(x,t)τdτ, (2.9)

if no other reactions alter the reactant population of reaction Rj. The first reaction method

generates a “potential reaction time” for each reaction channel and fires the reaction that

has the smallest firing time. In accordance with the reaction probability equation (2.9), the

reaction time for reaction channel Rj can be formulated as

τj =
1

aj(x)
ln(

1

rj
), (j = 1, 2, . . . ,M), (2.10)

with each rj a uniform random variable in (0, 1). First reaction method (FRM) is as rigorous

as the direct method, though, FRM is much less efficient than the direct method. FRM

generates M random reaction times and calculate M logarithms in each step, while the

direct method only requires one random variable and one logarithm operation.
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A reformulation of SSA, which significantly improves the simulation efficiency for large bio-

chemical systems, is Gibson and Bruck’s next reaction method (NRM) [33]. Next reaction

method introduces a dependent graph to record the influence of one reaction channel over

other reaction channels. Moreover, the absolute potential reaction times for all reaction

channels are maintained in a priority queue. Hence, the time and index of the next reaction

is always available at the top of the priority queue. If the reaction propensities of some

reactions are not affected by one firing of the top reaction, the same expected reaction times

forward to the next step. Next reaction method devises a clever formula to update the ex-

pected reaction time for those reactions whose propensities are changed by firing of the top

reaction. With these elaborate design, the next reaction method is significantly faster than

the first reaction method and is even faster than the direct method for some simple systems.

“Optimized Direct Method” (ODM) [14] adopts the dependent graph in NRM and rear-

ranges reaction channel indices according to reaction firing frequencies. The dependent

graph avoids unnecessary propensity calculations. Furthermore, with the reaction channel

indices rearranged, where the more frequently firing reaction channels are indexed before

the less frequent ones, the average search steps for the firing reaction channel is minimized.

“Optimized Direct Method” starts off with several sample runs to collect the average firing

frequency, according to which the reaction channels are reindexed. With these improve-

ments, “Optimized Direct Method” becomes one of the most efficient SSA implementation

strategies.

In order to dynamically adjust reaction channel indices, sorting direct method (SDM) [75]

is proposed. In SDM, the reaction channel index decreases by one whenever a reaction

fires. This reindexing strategy makes the reaction indices converge to an optimized one

after certain simulation time. This tactic not only eliminates the requirement of preruns as

in ODM, but also accommodates the relative propensity changes that may develop as the

simulation proceeds.

More recently, logarithm direct method (LDM) [65] and constant-time SSA [101] are de-
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veloped. LDM applies binary search over the partial sum of reaction propensities and is

often more efficient than direct method for very large systems. Constant-time SSA uses a

particular random variate generation (RVG) algorithm known as composition and rejection.

Constant-time SSA assumes that the ratio of the maximum reaction propensity pmax to the

minimum reaction propensity pmin is bounded. In the composition stage, it groups reactions

by cascading reaction propensity segments pmin, 2pmin, 4pmin, . . . , 2Npmin. For a practical

system, pmax/pmin ratio is bounded and the number of groups is also bounded. Therefore,

random selection of a reaction group can be considered a constant time operation. Once a

group is selected, on average, selection of the firing reaction within each group requires less

than two iterations of “rejection” procedures, since all the reaction propensities in group

g are between 2gpmin and 2g+1pmin. Constant-time SSA proves to be competitive even for

small networks, and performs significantly faster as the size of a biochemical system grows

larger.

Despite such improvement, SSAs are computationally intensive for many realistic problems,

particularly when one has to run the simulation many times to collect ensemble data. Alter-

native to pursuing exact SSAs, several efficient approximation simulation strategies, which

gain efficiency improvement by trading off certain simulation accuracy, have been developed.

Tau-leaping method [39, 41] speeds up stochastic simulation by leaping over many reactions

in one time step. Tau-leaping method chooses a small τ value such that over time step τ , no

reaction propensity changes significantly. At each time step, tau-leaping method [39] samples

the firing number of reaction channel Rj by Poisson random variable generator of mean and

variance aj(x)τ . In order for tau-leaping to be practical, many elaborate procedures for

quickly determining time step τ have been proposed [38, 39, 40, 13, 15].

For real chemical systems, reactions often fire on vastly different time scales. An exact

stochastic simulation spends most of time on simulating fast reacting events, which is frus-

tratingly inefficient since fast reacting events are often of much less significance than slow

reacting events. The quasi-steady-state assumption on high-population variables [93] and
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the partial equilibrium assumption on fast (high propensity) reactions [12] have been applied

on stiff systems to accelerate the simulation.

Moreover, several hybrid methods that merge the simulation methods of stochastic SSA and

deterministic ODE based on multiscale features of real biochemical systems have been pro-

posed [43, 95, 12]. Haseltine and Rawlings [43] propose to partition a biochemical system into

groups of slow and fast reactions. The partitioning criterion is determined by two thresh-

olds, i.e. propensity threshold and population threshold, set by users before simulation. A

reaction is considered to be fast if its propensity is greater than the propensity threshold and

the populations of its reactants are greater than the population threshold. In Haseltine and

Rawlings’s hybrid method, fast reactions are governed by ODEs or CLEs and slow reactions

are simulated by Gillespies direct method. A similar strategy is adopted by Salis [95, 96]

where fast reactions are approximated by CLEs and slow reactions are simulated by Gib-

son and Brucks next reaction method [33]. Cao proposes to partition a biochemical system

based simply on species population numbers [12]. For species whose population numbers

are less than a threshold, all related reactions are simulated by SSAs, while other reactions

are simulated by tau-leaping method. An aggressive partition strategy, where only reactions

with low populations as well as low propensities are simulated by SSA methods, while others

are modeled by ODEs, is also proposed [70].

With the aggressive partition strategy, all reaction channels are grouped into two subsets:

Sfast for “fast” reactions and Sslow for “slow” reactions. Let ai(x, t) be the propensity of the

ith reaction channel in Sslow, τ be the jump interval of the next stochastic reaction, and j

be its reaction index. The improved hybrid algorithm solves for τ and j as follows.

Algorithm Improved SSA/ODE Hybrid Method

1. Generate two uniform random numbers r1 and r2 in U(0, 1).

2. Integrate the ODE system and solve for τ ,∫ t+τ

t

atot(x, t)dt+ log(r1) = 0, (2.11)
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where atot(x, t) is the total propensity of slow reactions Sslow .

3. Determine j as the smallest integer satisfying

j∑
j′=1

aj′(x, t) > r2atot(x, t). (2.12)

4. Update X(t) according to the state change vector of the jth reaction in Sslow .

5. Go to step 1 until stopping condition is reached.

Solving equation (2.11) is an important step, particularly when slow reaction propensities

change appreciably over time according to fast reaction dynamics. The integration in equa-

tion (2.11) is easy to be formulated as a differential equation, by adopting a variable z,

dz

dt
= atot(x), (2.13)

with the initial condition at τ = 0,

z(t) = − log(r1).

At every simulation step, starting from time t, the differential equation (2.13) is numerically

integrated until z(t+τ) = 0. Then, τ gives the solution for equation (2.11). This integration

can be performed by a standard ODE solver with root-finding, such as LSODAR [46, 92].

2.2 Stochastic Simulation of Reaction-Diffusion Sys-

tems

Diffusion is the result of random migrations of molecules. There are two ways to study

diffusion: either a phenomenological approach by Fick’s law or a physical study through

Brownian motion. Fick’s law [29, 30] relates the diffusive flux to the concentration gradient

and further predicts the concentration change caused by diffusive flux. The diffusion equation

by Fick’s law reads
∂u(x, t)

∂t
= D∆u(x, t), (2.14)
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where D is the diffusion constant, u(x, t) is the molecular concentration at position x and

∆ is the Laplace operator.

A century after the discovery of Brownian motion, Einstein formulated the mathematical

expression of Brownian motion [24]. With the mathematical formula of Brownian motion,

Einstein is the first to realize that the mean displacement of a Brownian particle is in-

significant, instead, the basic quantity character of Brownian motion is the mean square

displacement.

Suppose a Brownian particle starts at the origin of a Euclidean coordinate system. Then the

solution to Equation (2.14) gives the probability density of the displacement at any time t,

f(x, t) =
1

(
√

4πDt)d
e−
‖x‖2
4Dt , (2.15)

with d the dimension of the spatial domain concerned. Equation (2.15) shows that the

displacement at time t is a normal distribution with mean zero, while the arithmetic mean

of the squares of displacement is given by

〈‖x(t+ ∆t)− x(t)‖2〉 = 2dD∆t. (2.16)

Based on different modeling schemes for diffusion, different modeling techniques for reaction-

diffusion systems have been developed. The next part briefly addresses the two major

stochastic simulation frameworks for reaction-diffusion systems.

2.2.1 Particle-based Framework

The particle-based framework fastidiously keeps track of the positions of every molecule.

The trajectory of an individual molecule is computed according to the displacement distri-

bution (2.15) of Brownian particles. At a small time step ∆t, the position of each molecule
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is update by

x(t+ ∆t) = x(t) +
√

2D∆tξx,

y(t+ ∆t) = y(t) +
√

2D∆tξy,

z(t+ ∆t) = z(t) +
√

2D∆tξz,

(2.17)

where ξx, ξy and ξz are independent random variables sampled from standard normal distri-

bution with zero mean and unit variance.

For each possible reaction channel, the firing time for the next reaction is sampled according

to equation (2.10). If the firing time of reaction Rj is less than the time step ∆t, then a Rj

reaction fires before another molecular position update. For a zeroth or first order reaction,

the reaction propensity calculation is similar as in “well-stirred” systems.

For bimolecular reactions, two reactant molecules fire a reaction with constant propensity

λ when the distance of two reactant molecules fall into a reaction radius ρ̄. This reaction

model is often referred to as the ρ̄− λ model [26].

Consider a bimolecular reaction with reactant species A and B, producing a new species C.

A+B
k−→ C. (2.18)

The molecules of A and B diffuse freely with diffusion constant DA and DB, respectively.

When a molecule of A diffuses to the ball of radius ρ̄ centered in a B molecule, the bimolecular

reaction fires with propensity λ.

Suppose a coordinate system with the origin being the center of the ball. c(r) denotes the

equilibrium concentration of species A at distance r from the origin. With only one molecule

of A, the concentration is essentially the probability density of occurrence for molecule A at

position r. The concentration c(r) can be profiled as [69]
d2c

dr2
+

2

r

dc

dr
= 0, r ≥ ρ̄,

d2c

dr2
+

2

r

dc

dr
− cλ

DA +DB

= 0, r < ρ̄,

(2.19)
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with the boundary condition at infinity as

lim
r→∞

c(r) = c∞. (2.20)

At the ball boundary r = ρ̄, species concentration c is continuous and differentiable. Thus,

differential equation (2.19) yields a unique solution

c(r) =


c∞ +

a1

r
, r ≥ ρ̄,

2a2

r
sinh

(
r

√
λ

DA +DB

)
, r < ρ̄,

(2.21)

with the constant variables

a1 = c∞

(√
(DA +DB)/λ tanh

(
ρ̄
√
λ/(DA +DB)

)
− ρ̄
)
,

a2 = c∞
√

(DA +DB)/λ
(

2 cosh
(
ρ̄
√
λ/(DA +DB)

))−1

.

(2.22)

The flux across the ball boundary of reaction radius is

Φ = 4πρ̄2(DA +DB)
∂c

∂r

∣∣∣∣
r=ρ̄

= 4π(DA +DB)c∞

(
ρ̄−

√
(DA +DB)/λ tanh

(
ρ̄
√
λ/(DA +DB)

))
.

(2.23)

The flux across the boundary of reaction radius represents the bimolecular reaction rate in

the microscopic perspective. Equivalently, the classic study of chemical reaction dynamics

concludes that the reaction rate of a bimolecular reaction is given by a reaction rate constant

k multiplied by the species concentration far away from the molecular center, c∞. Therefore,

the reaction rate constant k for bimolecular reaction is formulated by

k = 4π(DA +DB)
(
ρ̄−

√
(DA +DB)/λ tanh

(
ρ̄
√
λ/(DA +DB)

))
. (2.24)

In the case λ → ∞, where the two reactant molecules react instantaneously when they fall

into the distance of reaction radius ρ̄, Equation (2.24) reduces to

k = 4π(DA +DB)ρ̄. (2.25)
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On the other hand, if λ is small enough such that λ� (DA +DB)/ρ̄2, Equation (2.24) can

be simplified as k ≈ 4πρ̄3λ/3, which can be rewritten as

λ ≈ k

4πρ̄3/3
. (2.26)

Equation (2.26) indicates that the bimolecular reaction rate λ is the macroscopic reaction

rate constant k divided by the volume of reaction ball, when the reaction ball is sufficiently

large.

Particle-based frameworks consider high order reactions physically unrealistic and are not

applicable to systems with high order reactions. Furthermore, it is important to realize

that the time step ∆t in molecular-based models must be small enough such that λ∆t� 1

for all the chemical reactions. By the typical parameter values for protein interactions in

biological systems, the time step ∆t has to be significantly less than a nanosecond [26]. To

get around the small time step limit, event-driven algorithms are developed. The Green’s

Function Reaction-Diffusion (GFRD) algorithm [112] uses a maximum time step until a

single reaction fires. In GFRD, Smoluchowski equations for molecular diffusion are solved

analytically using Green’s functions, and the system advances to the time point when a

reaction event occurs. GFRD is often up to 5 orders of magnitude faster than conventional

Smoluchowski schemes for real biologically systems [113].

2.2.2 Compartment-based Framework

Assume in a spatial domain Ω of one dimension, there exist N species {S1, S2, ..., SN},

interacting through M reaction channels {R1, R2, . . . , RM}. In compartment-based frame-

work, spatial domain Ω is partitioned into K small compartments, {V1, V2, . . . , VK}, with

the assumption that molecules within each compartment are “well-stirred”. After space

discretization, each compartment has a length h. Species populations, as well as the re-

actions, have a local copy for each compartment at a given time. The state of the one

dimensional reaction-diffusion system at any time t is represented by a state vector X(t) =
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{X1,1(t), X1,2(t), . . . , X1,K(t), . . . , Xnk(t), . . . , XN,K(t)}, where Xn,k(t) is the molecule popu-

lation of species Sn in compartment Vk at time t.

Chemical reaction dynamics in each well-stirred compartment are governed by CMEs [77,

37] and simulated by SSAs. Diffusion is modeled as random walk between neighboring

compartments. Define di,k,k′(x)dt as the probability that given Xi,k(t) = x, one molecule of

species Si at compartment Vk diffuses into compartment Vk′ in the infinitesimal time interval

[t, t + dt). If k′ = k ± 1, then di,k,k′(x) =
Di

h2
x, where Di is the diffusion rate constant of

species Si. Otherwise, di,k,k′ = 0. The state change vector µk,k′ is a vector of length K with

−1 in the k-th position and 1 in the k′-th position and 0 everywhere else.

With reaction-diffusion propensity functions and state change vectors all determined, RDME

completely depicts the dynamics of the reaction-diffusion system. Similar to CME, RDME

is a set of ODEs that gives one equation for every possible state. Therefore, it is both theo-

retically and computationally intractable to solve RDME for practical biochemical systems.

Monte Carlo type stochastic simulation methods are proposed to construct numerical real-

izations and derive the probabilities of each state vector at different time. A popular method

to construct state trajectories of a RDME system is to simulate each diffusive jumping and

chemical reaction event explicitly.

The direct adaption of Gillespie’s stochastic simulation algorithm (SSA) [35, 36] yields the

inhomogeneous Stochastic Simulation Algorithm (ISSA). Moreover, many techniques for

accelerating SSAs can also be applied to the ISSA. For example, next subvolume method

(NSM) [25] utilizes the priority queue structure originally proposed in the next reaction

method for SSA. Package MesoRD [44] implements NSM and has been widely used. Binomial

tau-leap spatial stochastic simulation algorithm [72] uses a similar technique by combining

the idea of aggregating diffusive transitions with a priority queue. Additionally, a novel

formulation based on the finite state projection (FSP) method [82], called diffusive FSP

(DFSP) method [22] has bee developed for efficient and accurate simulation of diffusive

processes.
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2.3 Reaction-Diffusion Master Equation in Microscopic

Limit

Discretization sizes for RDME should be carefully chosen, such that each compartment can be

considered “well-stirred”. Intuitively, with finner discretization, RDME yields more accurate

simulation results with less simulation errors. Moreover, RDME requires that bimolecular

reactions only occur among molecules in same compartments. Therefore, for bimolecular

reactions, molecules of two reactant species must jump into same compartments in order to

fire a reaction. With more discrete compartments, it takes more steps for two molecules to

encounter each other in a discrete spatial domain. On the other hand, a small discretization

size yields small average jumping time of each step. The average jumping steps and time for

one molecule to reach a fixed point in discrete spatial domain have been well studied [80, 79],

as described in theorem 2.27.

Theorem 2.1. Assume an infinite periodic lattice containing N points, of which one is a

trap at xA. A molecule U starts randomly from a point in the lattice except the trapping

point xA. At each step, U moves to the nearest neighbors only. Then the average number of

steps 〈n〉 for molecule U to reach the trapping center at xA for the first time is

〈n〉 =



N(N + 1)/6, for 1D domain,

π−1N ln(N) + 0.1951N +O(1), for 2D domain,

1.5164N +O(N1/2), for 3D domain,

(2.27)

where N is the number of lattices on the spatial domain.

Suppose the diffusion constant of molecule U is given as D and the periodic lattice space

is of a regular shape. According to Theorem 2.1, the mean time τD that molecule U first

reaches the trapping center at xA can be derived immediately [45]. Corollary 2.1 gives the

mean time for a molecule to reach a trapping center in a periodic domain.
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Corollary 2.1. Let 〈τD〉 be the average time before molecule U first reaches the trapping

point at xA in the periodic lattice (as in Theorem 2.27). Then,

〈τD〉 ≈



L2

12D
, for 1D domain,

L2

2πD
ln(

L

h
) + 0.1951

L2

4D
, for 2D domain,

1.5164
L3

6Dh
for 3D domain,

(2.28)

where L is the lateral length of the square or cubic domain and h is the lattice size.

Corollary 2.1 shows the average first passage time in a periodic lattice converges when the

lattice size approaches zero in one dimensional discrete domain. In two or three dimensional

domains, the average first passage time becomes divergent when lattice sizes approach zero.

For practical reaction-diffusion systems, non-flux reflective boundary conditions are mostly

applied. Following the research work of Corollary 2.1, Theorem 2.2 gives a Mathematical

formula for first collision time of three freely diffusion molecules in one dimensional discrete

space with non-flux boundaries [64].

Theorem 2.2. In a lattice containing N points in a finite one dimensional spatial domain

of length L, there exist three molecules with uniformly distributed random starting positions.

At each step, the three molecules move to the nearest neighbors only. The diffusion constants

for the three molecules are Du, Dv and Dw respectively and, without loss of generality,

Du ≥ Dv ≥ Dw. Then the average time for the three molecules to firstly meet in any same

point is given by

〈τ〉 =
L2

2πD̂
log(N) + 0.140

L2

Dv +Dw

+
L2

4πD̂

(
2(γ + log(

2

π
))− log(0.125 +

η

4
)
)
, (2.29)

with

D̂ =
√
DuDv +DuDw +DvDw,

and

η =
D2
u

D̂2
, γ = lim

n→∞

( ∞∑
n=1

1

n
− log n

)
≈ 0.5772.
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Theorem 2.2 further shows even in one dimensional space, mean trimolecular collision time

approaches infinity in the microscopic limit (h→ 0). The three molecule may never be able

to meet nor fire an trimolecular reaction when lattice sizes are small enough.

Therefore, the average trimolecular reaction time in any dimensional discrete domain and

the average bimolecular reaction time in two or three dimensional domain do not converge

when discretization size approaches microscopic limit. Detailed studies have proven that in

the microscopic limit, all bimolecular reactions are eventually lost when the discretization

size approaches infinitely small in three dimensional domain [52, 45]. For traditional RDME

frameworks, there must be a lower bound for the discretization sizes.

The dilemma with RDME framework rises because bimolecular/trimolecular reactions occur

only within the same discrete compartment. Much effort to adjust RDME framework for

bimolecular reactions in high dimensional discrete domains has been devoted. A mesh-

dependent rate formula for discretization sizes smaller than the lower bound of traditional

RDME discretization sizes has been proposed [26]. With the reaction propensity correction

formula [26], the reaction propensity for bimolecular heteroreaction A + B
ka−→ C, when

discretization sizes are smaller than the traditional lower bound of RDME discretization

sizes, is given by

a(i, t) = A(i, t)B(i, t)
(DA +DB)ka

(DA +DB)h3 − βkah2
, (2.30)

where i indicates the compartment index and β is a constant that is precomputed and stored

in a lookup table. However, the propensity correction is only valid for discretization sizes

larger than a critical value hcrit, estimated as

hcrit = β∞
ka

DA +DB

, (2.31)

where ka is the macroscopic bimolecular reaction rate constant and β∞ ≈ 0.25272 is a unitless

constant. Correction for propensity functions when h < hcrit is impossible.
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Figure 2.1 demonstrates the upper and lower bounds for traditional RDME discretization

sizes and the boundary size when reaction propensity correction is impossible.

Figure 2.1: The schematic representation for discretization sizes h of RDME framework.

The traditional RDME has a upper bound hmax and lower bound hmin. Reaction propensity

correction is possible for discretization size in range (hmin, hcrit). If the discretization size is

smaller than the critical value hcrit, no local correction is possible.

In order to use RDME in microscopic limit, a convergent RDME scheme (CRDME) [53],

which combines the conventional RDME with the Smoluchowski scheme, is developed. In

CRDME, molecules in a discrete compartment interact with other molecules in any nearby

compartments, as long as the minimum distance between the two compartments is shorter

than Smoluchowski reaction radius. The reaction propensity of bimolecular reactions in

CRDME is a non-increasing function of the distance between the two compartments con-

taining reactant molecules. The reaction propensity decreases to zero for all pairs of com-

partments whose distance is greater than the reaction radius. In numerical simulations,

CRDME method leads to convergent survival time distribution and mean reaction time for

bimolecular reactions in three dimensional domains as the discretization size approaches zero.

Furthermore, CRDME retains many benefits of RDME and many improvement strategies in

RDME is applicable to CRDME.



Chapter 3

Efficient Discretization Size

The RDME framework is characterized by discretization of spatial domain. Discretization

sizes for reaction-diffusion systems must be appropriately chosen such that each compart-

ment is “well-stirred”. It has been demonstrated by Kuramoto [60] that the “well-stirred”

assumption is equivalent to
τr
τd
� 1, (3.1)

where τr is the mean free time with respect to reactions and τd denotes the mean free time

with respect to diffusion.

For a reaction-diffusion system in one dimension, the mean life time of a molecule undergoing

a first order degradation reaction with reaction rate constant kd is τr = 1/kd. Diffusion can be

considered as a first order reaction with jumping rate constant d = D/h2 in each direaction,

where D is diffusion rate constant and h is the discretization size. Therefore, the mean free

time with respect to diffusion is formulated as τd = h2/D. Kuramoto’s criterion (3.1) for

this simple reaction-diffusion system in one dimension is rewritten as

τr
τd

=
D

kdh2
� 1, (3.2)

or equivalently,

h�
√
D

kd
. (3.3)

24
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Kuramoto’s criterion (3.1) presents a scenario that if diffusion is fast enough for a molecule

to reach every compartment in the spatial domain within its life time τr, the concentration

fluctuation in the one dimensional domain is negligible, as in “well-stirred” systems.

Equation (3.3) gives a sufficiently large upper bound for general reaction-diffusion systems

with first order reactions. In this chapter, a mathematical formula of discretization size

for general reaction-diffusion systems is derived. This discretization size, referred to as the

efficient discretization size, reduces the computational cost with a controllable relative error

tolerance.

3.1 Efficient Discretization Size

Consider a simple reaction-diffusion model within a one dimensional spatial domain of size L.

Species A freely diffuses with the diffusion rate constant D in the one dimensional domain. A

transforms into an inactive species B with a reaction rate constant kd. Species B stays where

it is generated. Therefore, the location of B demonstrates the location where the chemical

transformation reaction fires. Suppose the one dimensional space domain is discretized into

K small compartments of size h each. The reaction-diffusion model is formulated as follows

for this simple model.

(1) Ai
kd−→ Bi, for i = 1, 2, . . . , K,

(2) Ai
d−→ Ai+1, for i = 1, 2, . . . , K − 1,

(3) Ai
d−→ Ai−1, for i = 2, . . . , K,

(3.4)

with Ai being species in the ith cell and the diffusive propensity constant d = D/h2. The

propensity functions in each compartment i for reaction-diffusion system (3.4) can be for-
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mulated as

a
(i)
1 (Ai) = kdAi,

a
(i)
2 (Ai) = D

h2
Ai,

a
(i)
3 (Ai) = D

h2
Ai,

(3.5)

where Ai denotes the population of A at the ith compartment.

For spatially inhomogeneous systems, discretization in space results in a set of “well-stirred”

homogeneous compartments. “Well-stirred” homogeneous assumption implies that any two

molecules of same species in one compartment should have close probability distributions

before a chemical reaction fires, such that they are indistinguishable.

Suppose initially two molecules are located at positions x = 0 and x = h in a one dimensional

domain. After diffusing for a short time period t, the probability distributions of molecular

positions can be solved from the following diffusion equations:

∂ui
∂t

= D
∂2ui
∂x2

, i = 1, 2, (3.6)

with initial conditions: u1(x, 0) = δ(0),

u2(x, 0) = δ(h),

where δ(x) is Dirac delta function with
∫∞
−∞ δ(x)dx = 1. Solutions to Equation (3.6) are

u1(x, t) =
1√

4πDt
e−

x2

4Dt ,

u2(x, t) =
1√

4πDt
e−

(x−h)2

4Dt .

(3.7)

In probability theory, Kullback-Leibler divergence (K-L divergence) is a non-symmetric mea-

sure of the difference between two probability distribution functions. For probability distri-

bution functions P and Q, the K-L divergence is defined as

DKL(P ||Q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx, (3.8)
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where p(x) and q(x) denote the probability density functions of P and Q. Thus the difference

of the two distributions u1, u2 can be formulated as:

DKL(u1||u2) =

∫ ∞
−∞

u1(x) ln
u1(x)

u2(x)
dx

=

∫ ∞
−∞

1√
4πDt

e−x
2/(4Dt) ln

1√
4πDt

e−x
2/(4Dt)

1√
4πDt

e−(x−h)2/(4Dt)

dx

=

∫ ∞
−∞

1√
4πDt

e−x
2/(4Dt)(

h2

4Dt
− 2hx

4Dt
)dx

=
h2

4Dt
.

(3.9)

Equation (3.9) implies that within a fixed time period, a large discretization size h results in a

large diffusion difference. During the time scale of chemical reactions τr, diffusion probability

distribution difference between the two molecules should be small enough in order for the

two molecules to be considered “well-stirred”. Assuming a difference threshold of 5%, an

analytic solution for the initial separation distance of the two molecules is

hc =
√

0.2Dτr. (3.10)

Distance (3.10) gives the maximum distance that two molecules can be considered “well-

stirred” within the time scale of chemical reactions, which is defined as the “efficient dis-

cretization size”.

In the reaction-diffusion model (3.4), the time scale of the chemical reaction is estimated as

the mean life time of reactant A, which is τr = 1/kd. Therefore, the efficient discretization

size for model (3.4) is

hc = 0.45

√
D

kd
. (3.11)

Equation (3.11) provides a formula of efficient discretization sizes, where the K-L divergence

is as large as 5%. To be conservative, the divergence threshold may be chosen as 1%, which

leads to safer simulation and heavier computational cost. The discretization size with respect
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to the conservative threshold is then given by

h2
c

4D/kd
= 0.01, or hc = 0.2

√
D

kd
. (3.12)

Equations (3.11) and (3.12) are close to Kuramoto’s boundary h �
√
D

kd
. A discretization

size smaller than hc might provide fine spatial information but yield higher computational

cost. A larger h leads to larger simulation errors since it breaks the local “well-stirred”

assumption. Note that when the diffusion rate constant D is large enough, Equation (3.11)

and Equation (3.12) yield hc � 0. If hc > L, the model domain can be considered as

“well-stirred”.

For a general system, a species may be involved in many reactions. Equation (3.11) and

(3.12) can still be applied, although τr will be the mean life time with respect to all chemical

reactions regarding this species. Furthermore, the adaption of the efficient discretization size

for general cases in two and three dimensional domains is rather straightforward.

3.2 Numerical Results

To examine the formula of efficient discretization size, a simple numerical experiment on

the reaction-diffusion model (3.4) is presented here. Initially there is only one molecular

A located in the center of a one dimensional domain. When a chemical reaction fires, A

transforms to species B and stays where the reaction fires. The distribution difference of

molecular position of B, compared with the analytical solution, indicates the simulation

accuracy.
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3.2.1 Analytical Solution

Mathematical formulas for the toy model (3.4) in one dimensional domain 0 ≤ x ≤ L is

formulated as

∂A(x, t)

∂t
= D

∂2A(x, t)

∂x2
− kA(x, t),

∂B(x, t)

∂t
= kA(x, t),

(3.13)

with initial conditions

A(x, 0) = δ(
L

2
), B(x, 0) = 0, (3.14)

and non-flux boundary conditions for molecule A

∂A(x, t)

∂x

∣∣∣∣
x=0

= 0,
∂A(x, t)

∂x

∣∣∣∣
x=L

= 0. (3.15)

With separation of variables method, the solution to A(x, t), 0 ≤ x ≤ L, t > 0 is

A(x, t) =
( 1

L
+

2

L

∞∑
n=1

cos(
nπ

2
) cos(

nπx

L
)e−λnDt

)
e−kt, (3.16)

with the eigenvalus λn = (nπ
L

)2, n = 1, 2, 3 . . ..

The solution to B can be calculated by integrating A over t. In order to get the probability

density of molecule B after the reaction fires, integration of t until t→∞ is performed. The

final probability density of B is formulated as

Bpdf (x) =

∫ ∞
0

kA(x, t)dt

=

∫ ∞
0

k
( 1

L
+

2

L

∞∑
n=1

cos(
nπ

2
) cos(

nπx

L
)e−λnDt

)
e−ktdt

=
1

L
+
∞∑
n=1

2k

L(λnD +K)
cos(

nπ

2
) cos(

nπx

L
).

(3.17)

The analytical solution (3.17) is used as a reference result of the reaction-diffusion model (3.4).
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3.2.2 Accuracy Estimation of Stochastic Simulation Results

By Equation (3.11), the efficient discretization size yields hc ≈ 0.04 for the reaction-diffusion (3.4).

Figure 3.1 shows plots of the probability densities of molecular position of B with different

discrete sizes. The simulation results demonstrate that the distribution density with the

efficient discretization size by formula (3.11) is almost the same as the analytical solution.
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Figure 3.1: Probability densities of molecular position of species B after the reaction fires in the

one-dimension model (3.4). Parameters: total length L = 1.0, kd = 0.1, and D = 0.001. The

efficient discretization size yields lc ≈ 0.04. The plot is generated from 1,000,000 runs of stochastic

simulations.

Figure 3.2 shows the mean square errors of the stochastic simulation results, compared with

the analytical solution (3.17). The mean square error of the simulation result with the

efficient discretization size is small enough to be neglected and almost the same as the result

with much smaller discretization sizes. Though, smaller discretization sizes require much

more computational cost.
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Figure 3.2: The mean square errors of stochastic simulation with different discretization

sizes, compared with the theoretical solution (3.17).

3.3 Conclusions

The “Well-stirred” homogeneous assumption states that in each compartment any two

molecules of the same species have close probability distributions before a chemical reac-

tion fires. An efficient discretization size must be a length as large as possible, separated by

which two molecules are indistinguishable before a reaction fires. Furthermore, a formula of

the efficient discretization size that gives the “largest” discretization within a certain sim-

ulation error is formulated. Trade off between accuracy and efficiency can be achieved by

manipulate the K-L divergence threshold. Larger discretization sizes yield better simulation

efficiency, and introduce larger simulation errors.

The efficient discretization size by formula (3.11) is easy to compute for systems with only

simple chemical reactions. For spatially inhomogeneous systems, the computation for ef-

ficient discretization sizes becomes complicated, since species at different location tend to

have different discretization sizes by formula (3.11). The adaptive mesh of non-uniform dis-

cretization [5] is an option for efficient space discretization strategy. In addition, calculating

the efficient discretization size with spatially mean population level is a simple alternative,
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as long as the simulation error is under control. Furthermore, though this formula is derived

for spatial models in one dimensional domain, the same idea can be extended to two and

three dimensional reaction-diffusion systems.



Chapter 4

Multiple Grid Discretization Method

A typical biological system often contains multiple species and reactions. The reaction rates

and diffusion rates may vary over a wide range. With the formula of efficient discretiza-

tion sizes (3.11), introduced in Chapter 3, a larger diffusion rate constant usually yields a

larger discretization size. Traditional RDME framework discretizes a spatial domain into

compartments by the same discretization size for all species. To accomplish an accurate

simulation, the smallest efficient discretization size of all species must be used. However,

small discretization size leads to heavy computational cost, especially when there exists some

fast diffusive species.

In this chapter, a multiple grid discretization method, where each species uses its own efficient

discretization size, is developed. If a larger discretization size is applied for fast diffusive

species and a relatively finer discretization size for slow species, the diffusive jumps between

adjacent compartments may greatly decrease, with better simulation efficiency achieved. In

this chapter, a multiple grid discretization method is explained in detail. The application

of multiple grid discretization method to a toy model and a Turing pattern based model

demonstrates the simulation efficiency improvement. Finally, this chapter is concluded with

an assessment of the multiple discretization method.

33
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4.1 Multiple Grid Discretization Method

Consider a biochemical reaction-diffusion system in one dimension withN species {S1, . . . , SN}

interacting through M reactions {R1, . . . , RM}. The spatial domain Ω is partitioned differ-

ently for different species, corresponding to each efficient discretization size by formula (3.11).

Let {K1, K2, . . . , KN} and {h1, h2, . . . , hN} denote the discretization bin numbers and bin

lengths for species {S1, . . . , SN} respectively. Xi,k(t) denotes the population of species Si in

the kth compartment at time t. The vector of all Xi,k’s makes the state vector.

For a large reaction-diffusion system, each species may have a different discretization size,

which yields a complicated RDME system. To reduce the complexity, a larger discretization

size may round to a integer multiple of small discretization sizes. Moreover, several species

may approximately share a same discretization size. Figure 4.1 demonstrates a simple space

discretization with multiple grid discretization (MGD) method.

Ki

Kj

1

1 2 3

u

3u-2 3u-1 3u

Si

Sj

Figure 4.1: Multiple grid discretization of a reaction-diffusion system in one dimensional do-

main of length L. The reaction dynamics of species Si gives an efficient discretization size hi

with Ki compartments, while species Sj has an efficient discretization size hj, corresponding

to Kj compartments. For simplicity, the multiple grid discretization size hi = 3hj.

Compared to traditional RDME, simulations by multiple grid discretization method (MGD)

need limited corresponding modifications. With MGD partitioning, diffusion is still modeled

as random walk across neighboring compartments, except that step sizes for different species

may be different. The propensity calculations and population updates for chemical reactions

need careful attention, since the reactants and products may have different compartment

indices. The key assumption of spatial discretization is that molecules in any compartment

are homogeneous, which is equivalent to that molecules in the same compartment are ran-
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dom located. When a product molecule is generated, the index of the corresponding product

compartment is calculated according to the random positioning of reactant molecules within

the corresponding reaction compartment. For bimolecular reactions as long as the com-

partments of the two reactants overlap with each other, the two species participate potential

reactions. The reaction propensities with reactant species in different indexed compartments

are calculated, based on the assumption that species population in each compartment should

be homogeneous.

Table 4.1: Propensity functions for some typical chemical reactions of the multiple grid

discretization as in figure 4.1

Reactions Prob. Const. Propensity a Population Update

∅ ksyn−−→ Si,u c1 = ksynhi ai,u = c1 Xi,u = Xi,u + 1

Si,u
kdeg−−→ ∅ c2 = kdeg ai,u = c2Xiu Xi,u = Xi,u − 1

Si,u
k3−→ Sj,3u c3 = k3 ai,u = c3Xi,u Xi,u = Xi,u − 1

Xj,3u = Xi,3u + 1

Si,u + Sj,3u
k4−→ Sk,3u c4 = k4/(3hj) aj,3u = c4Xi,uXj,3u Xi,u = Xi,u − 1

Xj,3u = Xi,3u − 1

Xk,3u = Xk,3u + 1

aXi,u denotes the population of Species Si in compartment indexed u.

The propensity calculation for zeroth-order reactions and first-order reactions in multiple grid

discretization is the same as those in traditional RDME. Extra attention must be paid to the

propensity calculation of higher order reactions. Consider the propensity of heterogeneous

molecules reactions, say, one molecule of Sj in the u-th compartment to react with species Si

in the 3u-th compartment, as in figure 4.1. Since Si in the u-th compartment is homogeneous,

it is reasonable to think of the reaction as Sj molecules in the 3u-th compartment only collide
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with “a portion of” Si that overlaps with Sj’s compartment. And the effective collision is

proportional to the size of the overlap of the two compartments. For other high order

reactions, the similar argument would be applicable. Table 4.1 illustrates several propensity

functions for some typical reactions, where the discretization size of species Si happens to

be three times larger than that of species Sj, as in figure 4.1.

With multiple grid discretization, the number of diffusive events significantly decrease, which

yields lower computational cost. Note that the chemical reaction propensity and the total

number of firings for each chemical reaction are not affected, which retains the simulation

accuracy.

4.2 Numerical Results

In this section, the multiple grid discretization method is applied to a simple toy model

and a Turing pattern based PopZ bipolarization model in Caulobacter crescentus [105]. The

statistical results show that the multiple grid discretization method achieves great efficiency

improvement.

4.2.1 MGD on A Simple 1D Toy Model

In a simple bimolecular reaction-diffusion system in one dimensional domain of size L,

molecules of species A and B diffuse freely and the bimolecular reactions of A and B produces

a new species C. Initially, there is one molecule of A and one molecule of B in the center of

the one dimensional domain. To demonstrate the advantage of multiple grid discretization,

let A diffuse much slower than B, such that the efficient discretization sizes of species A

and B by Equation (3.11) differ significantly. According to the multiple grid discretization

method, the spatial domain is partitioned into Ka compartments for species A and Kb com-

partments for species B and Ka > Kb. Product C stays at its place of birth, which can be
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used as an indicator for the reaction firing events. The chemical reactions are described as

in equation (4.1)

Ai +Bj
kb−→ Ci, 1 ≤ i ≤ Ka, 1 ≤ j ≤ kb, if compartment i of species A

overlaps with compartment j of species B,

Ai
da−→ Ai+1, i = 1, 2, . . . , Ka − 1,

Ai
da−→ Ai−1, i = 2, 3, . . . , Ka,

Bj
db−→ Bj+1, j = 1, 2, . . . , Kb − 1,

Bj
db−→ Bj−1, j = 2, 3, . . . , Kb.

(4.1)

The mean life time of a molecule is determined by the reaction dynamics regarding all

chemical reactions the molecule involves in. Hence, the mean life time of molecule A can be

calculated by

τA =
1

kb[B]
, (4.2)

where [B] is the population density (concentration) of species B at each spatial location

before a reaction fires. The simple calculation by formula (4.2) and (3.11) yields h
(c)
A = 0.01

and, similarly, h
(c)
B = 0.1.

Figure 4.2 shows the population density plots of product C in the spatial domain with the

multiple grid discretization method and the uniform discretization method, compared with

deterministic simulation results. Figure 4.2 shows that the spatial population distribution of

species C with the multiple grid discretization method matches well with the deterministic

result and the stochastic result with smaller uniform discretization sizes.

Table 4.2 lists simulation time and the mean square error (MSE) of stochastic simulation

results with different discretization methods, compared with the deterministic simulation

result. The statistics shows that the multiple grid discretization method takes a small simu-

lation time while maintaining a small simulation error compared to deterministic simulation
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Figure 4.2: Population density of species C in the one dimensional spatial domain after time

t = 5.0. Parameters: total length L = 1.0, kA = 10.0, DA = 0.005, and Db = 0.5. Initially, there

is one molecule of A and one molecule of B in the center of the one dimensional domain. The

efficient discretization sizes are h
(c)
A = 0.1 and h

(c)
B = 0.01. The plot is generated from 100,000 runs

of stochastic simulation.

results.

4.2.2 Stochastic Model of PopZ Polarization

An intriguing feature of Caulobacter crescentus is that it exhibits an asymmetric division in

each cell cycle [42]. The asymmetric division produces two morphologically and functionally

distinct daughters: one stalked cell that anchors to its place of birth and one swarmer

cell which swims away from its birth place to avoid intraspecies competition. The stalked

daughter cell begins its next cell cycle immediately, while the swarmer daughter cell is unable

to enter the S phase until it differentiates into a stalked cell.

PopZ is a scaffold protein in Caulobacter that is responsible for anchoring the chromosome
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Table 4.2: Comparison of stochastic simulation with different discretization strategies

hA hB Time (seconds)a Mean Square Error

0.01 0.01 18.465 0.24

0.1 0.1 0.600 56.12

0.01 0.1 0.642 0.21

aThe time for 100,000 stochastic simulation runs.

origin and promoting the localization of several regulatory proteins. PopZ, short for Polar

Organizing Protein-Z, locates at the stalk pole of the swarmer cell and begins to accumulate

at the swarmer pole when the chromosome segregation is initiated. In the effort to develop

a mathematical model of spatiotemporal regulatory network in Caulobacter screscentus, the

first step is to identify the PopZ polymerization and polarization mechanism. Recently,

Subramanian [105] proposed a Turing pattern based spatiotemporal model to explain the

localization of PopZ during the cell cycle. The Turing pattern based model [105] generates

multiple foci when the space domain grows larger. In the cell cycle model, PopZ localizes

at the stalked pole in swarmer cells and when the cell size grows larger, another PopZ focus

appears at the other end, yielding a bipolar pattern. For more details, refer to Chapter 7.

For the purpose of demonstrating the multiple grid discretization method, the cell growth is

neglected. With the fixed cell length model, only one PopZ focus is formed in the cell. The

mathematical model of PopZ localization is given by [105]

∂[M ]

∂t
= Dm

∂2[M ]

∂x2
+ ksm − kdm[M ]− kdnovo[M ]− kauto[M ][P ]2 + kdepol[P ],

∂[P ]

∂t
= Dp

∂2[P ]

∂x2
+ kdnovo[M ] + kauto[M ][P ]2 − kdepol[P ]− kdp[P ],

(4.3)

where [M ] denotes the “concentration” level for PopZ monomers and [P ] for PopZ polymers.
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Table 4.3: Parameters of PopZ localization model. The parameter unit is estimated in

population number.

parameter value parameter value

Dm 250 Dp 0.01

ksm 160 kdm 0.25

kdnovo 350 kauto 0.00024

kdepol 1.0 kdp 0.075

Table 4.3 lists the parameter values for Subramanian’s PopZ polarization model, scaled

for each compartment. Figure 4.3 shows the deterministic result of the spatiotemporal

model (4.3) of fixed cell length. Colors in the map indicate population levels, where red

color means a high population level while blue denotes a low population level. Given a biased

initial condition where a small induction is initiated in the right end, the deterministic model

shows a strip at the right end of the domain.

From the deterministic model (4.3), a stochastic model of only simple chemical reactions

is built up. With the multiple grid discretization (MGD) method, the spatial domain is

partitioned into compartments of size hm for PopZ monomers and hp for PopZ polymers. In

each compartment, the reaction channels and propensity functions are given in Figure 4.4,

where mi denotes the population of PopZ monomers in the i-th compartment and pj for the

population of PopZ polymers in the j-th compartment.

The efficient discretization sizes are calculated with Formula (3.11). Because of the spatially

different populations of species P, it is tempting to use different discretization sizes at different

positions along the one dimensional domain. To simplify the simulation, spatially uniform

discretization is applied for each species. The efficient discretization sizes are calculated
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Figure 4.3: The spatioltemporal population level of the deterministic model (4.3). Colors

indicate population level, where red color means high population while blue denotes low

population level.

using the largest population at the PopZ focus to keep the simulation accuracy. Based

on the reaction rate constants and diffusion constants, the efficient discretization sizes for

species M and P are given in table 4.4.

Figure 4.5 shows the typical stochastic simulation result of the space-discrete PopZ model

in Figure 4.4. It is interesting to see that the stochastic simulation results show two types of

PopZ population focus. Stochastic effect leads to the unbiased PopZ polarization location

no matter where the initial induction stays at the beginning.

Figure 4.6 shows the number of firings of chemical reactions and diffusive jumps during the

250 minutes model time. The number of firings of the diffusive transition is significantly

reduced with a larger discretization size, with great efficiency improvement. Table 4.5 lists

the detailed firing numbers of each reaction and diffusive jump, as well as the total simulation

time for each simulation run with different discretization strategies.

The statistics in Table 4.5 shows that the multiple grid discretization method with efficient
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i∅ −→ Mi, a1 = ksmhm,

Mi −→ ∅, a2 = kdmmi,

Mi −→ Mi+1, a3 =
Dm

h2
m

mi,

Mi −→ Mi−1, a4 =
Dm

h2
m

mi,

Mi −→ Pj, a5 = kdnovomi,

Mi + 2 Pj −→ 3 Pj, a6 =
kauto
hmhp

mip
2
j ,

Pj −→ Mi, a7 = kdepolpj,

Pj −→ ∅, a8 = kdppj,

Pj −→ Pj+1, a9 =
Dp

h2
p

pj,

Pj −→ Pj−1, a10 =
Dp

h2
p

pj,

Figure 4.4: The stochastic reaction model and the reaction propensities for the PopZ local-

ization in a single compartment i.

discretization sizes reduces the stochastic simulation time greatly. Larger discretization sizes

lead to smaller diffusion propensities, which further shorten the simulation time.

4.3 Discussion & Conclusion

A novel multiple grid discretization method for efficient stochastic simulation of multiscale

reaction diffusion systems is introduced in this chapter. With the multiple grid discretiza-

tion method, each species is assigned an efficient discretization size, which reduces diffusive
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Table 4.4: The efficient discretization sizes for PopZ monomers and polymers

KL divergence 5% 1%

M 0.07 0.03

P 0.04 0.02
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Figure 4.5: The spatiotemporal population evolution of PopZ polymer in the stochastic

simulation. The stochastic simulation results demonstrate that PopZ focus polarizes in

either end of the cell.

transitions between neighboring compartments. Decreasing of diffusive jumps greatly im-

proves the simulation efficiency over the traditional RDME method. Though this chapter

is discussed with reaction-diffusion models in one dimensional space, the adaption to two

dimensional models and three dimensional models is rather straightforward.

The multiple grid discretization method focuses on the simulation efficiency improvement

with error-controllable discretization sizes. Further investigation on compartment-based Tur-

ing model simulations shows that multiple grid discretization method changes the parameter

regime for pattern formation [11]. It is discovered that the parameter regimes of MGD for
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Table 4.5: Firing numbers of reaction/diffusion events and simulation CPU time for different

discretization strategies

Discretization Size

M size 0.01 0.04 0.07 0.20

P size 0.01 0.02 0.03 0.05

null→ M 4.0E4 (0.0%) 4.0E4 (0.0%) 4.0E4 (0.1%) 4.0E4 (0.5%)

M→ null 7.1E1 (0.0%) 7.2E1 (0.0%) 7.2E1 (0.0%) 7.2E1 (0.0%)

Mi → Mi+1 7.1E8 (46.7%) 4.4E7 (38.7%) 1.5E7 (38.0%) 1.4E6 (18.7%)

Mi → Mi−1 7.1E8 (46.7%) 4.4E7 (38.7%) 1.5E7 (38.0%) 1.4E6 (18.8%)

M→ P 1.0E5 (0.0%) 1.0E5 (0.1%) 1.0E5 (0.3%) 1.0E5 (1.3%)

M + 2 P→ 3 P 4.4E5 (0.0%) 4.4E5 (0.4%) 4.4E5 (1.1%) 4.5E5 (5.8%)

P→ M 5.0E5 (0.0%) 5.0E5 (0.4%) 5.0E5 (1.3%) 5.0E5 (6.6%)

P→ null 3.8E4 (0.0%) 3.8E4 (0.0%) 3.8E4 (0.1%) 3.8E4 (0.5%)

Pi → Pi+1 5.0E7 (3.2%) 1.2E7 (10.8%) 4.3E6 (10.6%) 1.8E6 (24.1%)

Pi → Pi−1 5.0E7 (3.2%) 1.2E7 (10.7%) 4.3E6 (10.5%) 1.8E6 (23.7%)

CPU time (seconds) 1551.4 61.2 18.4 4.2
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Figure 4.6: The firings of reaction and diffusion events with different discretization strategies.

Left: uniform discretization with discretization size h = 0.01 for both species M and P. Right:

multiple grid discretization with the efficient discretization sizes of 5% relative error. It is

apparent that the firing number of the diffusive jumps significantly decreases.

pattern formation is different from the parameter regimes of the deterministic PDE model,

also different from the parameter regimes of the regular uniform discretization method. This

discovery signals a warning against the further simulation of the Turing based model with

multiple grid discretization method.



Chapter 5

The Hill Function Dynamics in

Reaction-Diffusion Systems

In addition to simple mass law reaction rates, many highly nonlinear phenomenological

reaction rate laws have been used in mathematical modeling of biological systems. For

example, the Michaelis-Menten and Hill functions are widely used in biological models to

model fast responses to signals in regulatory control. Most of the time, theoretical biologists

are not interested in the detailed mechanisms behind these phenomenological reaction rate

laws, either because the detailed mechanisms are not clear or not important.

The stochastic simulation of Caulobacter crescentus reveals a misbehavior of Hill function

dynamics in reaction-diffusion systems. Numerical analysis with a toy reaction-diffusion

gene regulation model in Section 5.3 shows that when discretization sizes are small enough,

the switch behavior of Hill dynamics becomes a linear function of the input signal and

the discretization size. Section 5.4 provides a remedy for the discretization of reaction-

diffusion systems with Hill function rate laws. The numerical analysis and experiment results

demonstrate Hill function dynamics in reaction-diffusion systems lead to convergent results

only if signaling species have impact within a fixed length domain, rather than just within

the same RDME compartment. This fixed length is referred to as the Hill function reaction

46
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radius, a critical signaling distance threshold below which the system breaks down. Finally,

this chapter is concluded with an assessment of nonlinear dynamics in RMDE and future

development.

5.1 Hill Function Dynamics in Reaction-Diffusion Sys-

tems

The Hill function, as well as the Michaelis-Menten function, is widely used in modeling

of enzyme kinetics. In molecular biology, enzymes catalyse the conversion of biochemical

substrates into products, while remaining basically unchanged. The enzyme kinetics reaction

is usually described as

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P. (5.1)

With the conservation law and the “quasi-steady state” assumption, the enzyme kinetics

reaction rate function, referred to as the Michaelis-Menten function, is formulated as

d[P ]

dt
= Vmax

[S]

KM + [S]
, (5.2)

with Vmax = k2[E]0 the maximum reaction rate and Km = k−1+k2
k1

the Michaelis constant.

In gene regulation models, several transcription factor (TF) molecules often bind with a

piece of DNA promoter sequence and control the gene expression. The binding reaction can

be simply expressed as

DNA + nTF
k1−−⇀↽−−
k−1

DNA− nTF
k2−→ gene expression. (5.3)

In realistic biological models, the binding of the n transcription factor molecules to DNA

does not take place all at once but rather in a succession of steps. Using the equilibrium

assumption and conservation laws, the reaction equation of the transcription factor regulated

DNA expression can be written as

d[P ]

dt
= Vmax

[TF ]n

Km
n + [TF ]n

, (5.4)
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with Vmax the maximum reaction rate, Km the Michaelis constant and n the Hill coefficient.

5.2 Caulobacter Cell Cycle Modeling

Caulobacter crescentus attracts interest as an example of asymmetric cell division. When a

Caulobacter cell divides, it produces two functionally and morphologically distinct daughter

cells. The asymmetric cell division of Caulobacter crescentus requires elaborate temporal

and spatial regulations [66, 67, 104, 106].

CtrA, one of the four essential “master regulators” of the Caulobacter cell cycle [17, 18,

48], oscillates temporally and spatially and drives a series of modular functions during the

cell cycle. In swarmer cells, CtrA is phosphorylated by a two-component phosphorelay

system (CckA and ChpT). Phosphorylated CtrA (CtrAp) binds to the chromosomal origin

of replication (Cori) and inhibits the initiation of chromosome replication [91]. During

the swarmer-to-stalked transition, CtrAp gets dephosphorylated and degraded, allowing the

initiation of chromosome replication. For more details, refer to Chapter 6.

In order to study the regulatory network in Caulobacter crescentus, a deterministic model

with six major regulatory proteins is developed [104, 106]. The deterministic model provides

robust switching between swarmer and stalked states. Figure 5.1 (left) demonstrates the

total population change during the Caulobacter crescentus cell cycle with this deterministic

model. In the swarmer stage (t = 0 − 30 min), the CtrA is phosphorylated at a high

population level, which inhibits the initiation of chromosome replication. During swarmer-

to-stalk transition (t = 30 − 50 min), the CtrAp population quickly drops to a low level,

allowing the consequent initiation of chromosome replication in the stalked stage.

In stochastic simulation of the spatiotemporal model of this regulatory network, the phos-

phorylated CtrA (CtrAp) population switch from high in swarmer stage to low in stalked

stage is not as sharp as expected, shown in Figure 5.1 (right). On the other hand, the DivL

population level from the stochastic simulation seems similar to that from the deterministic
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simulation. A simple analysis suggests the Hill function dynamics, which model the up reg-

ulation of CckA kinase activity by DivL, might be the culprit. Further investigation leads to

the discovery of the Hill function limitation at fine discretizations, as analyzed in the next

section.
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Figure 5.1: The population oscillation of CtrAp during the Caulobacter crescentus cell cycle.

The left figure shows the deterministic model simulation result and the right figure shows

the stochastic model simulation result. In the swarmer stage (t = 0− 30 min), the CtrA is

phosphorylated and at a high population level, which inhibits the initiation of chromosome

replication. During swarmer-to-stalk transition (t = 30 − 50 min), the CtrAp population

quickly switches to a low level, allowing the consequent initiation of chromosome replication

in the stalked stage.

5.3 Hill Function Dynamics in Reaction-Diffusion Sys-

tems

To simplify the analysis, a toy gene regulation model of a reaction-diffusion system in one

dimension is constructed. As demonstrated in figure 5.2, in the toy model, a transcription

factor (TF) is constantly synthesized and degraded. The transcription factor (TF) further
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Figure 5.2: A simple gene regulation model of Hill function dynamics in one dimensional

domain. Transcription factor (TF) is constantly synthesized and upregulates the DNA ex-

pression.

upregulates the DNA expression.

Assume the spatial domain of size L is equally partitioned into K compartments with size h =

L/K. The chemical reactions and reaction propensities in each compartment are formulated

as

∅ → TFi, a1 = ks · h,

TFi → ∅, a2 = kd · Ei,

∅ TFi−−→ mRNAi, a3 = ksyn · h
E4
i

(Km · h)4 + E4
i

,

mRNAi → ∅, a4 = kdeg · Pi,

TFi → TFi±1, a5 = 2
Dtf

h2
Ei,

mRNAi → mRNAi±1, a6 = 2
Drna

h2
Pi,

(5.5)

where Ei denotes the population of transcription factor TF and Pi denotes the population of

mRNA in the ith compartment. The parameters ks, kd are the synthesis, degradation rates,

respectively, for transcription factor, and similarly ksyn, kdeg are those for mRNA synthesis.

Km is the Michaelis constant in the Hill function.

In the one-dimensional domain, the transcription factor is constantly synthesized and de-

graded. At the equilibrium state, the distribution of the total population of transcription
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factor is estimated by the Poisson distribution (see Appendix A for details),

PE(n) ≈ αn

n!
e−α, (5.6)

where α = ks
kd
L denotes the mean of the total number of mRNA molecules in the domain.

For an individual compartment (bin), consider the probability P
(i)
E (n) that an individual bin

i contains n molecules of transcription factor. At the equilibrium state, transcription factor

is homogeneously distributed in the system. The probability that each molecule of TF stays

in a certain bin i is given by p = 1/K. The probability that, of all the TF molecules in the

domain, none is in bin i is approximated by

P
(i)
E (0) = PE(0) + PE(1)

(
1− 1

K

)
+ PE(2)

(
1− 1

K

)2
+ . . .+ PE(N)

(
1− 1

K

)N
≈

N∑
n=0

e−α
αn

n!

(
1− 1

K

)n
≈ e−α/K .

(5.7)

The other probability terms are not important in the analysis.

With the distribution of the TF molecular population, the mean reaction propensity for the

synthesis of mRNA in the ith bin is

〈a(i)
syn〉 = ksynh

N∑
n=0

n4

(Km · h)4 + n4
P

(i)
E (n). (5.8)

Notice that when n = 0, the Hill function is zero, and when the discrete bin size h is small,

the Hill function approaches one quickly as n → ∞. For example, when Km · h ≤ 0.5 the

Hill function n4

(Km·h)4+n4 ≥ 0.94 for n ≥ 1. Therefore, upper and lower bounds for the mRNA

synthesis propensity, when km · h ≤ 0.5, are

0.94ksynh
N∑
n=1

P
(i)
E (n) ≤ 〈a(i)

syn〉 ≤ ksynh
N∑
n=1

P
(i)
E (n). (5.9)

Hence, when the discretization size h is small enough, the propensity for the mRNA synthesis
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reaction can be approximated as

〈a(i)
syn〉 ≈ ksynh

N∑
n=1

P
(i)
E (n)

= ksynh(1− P (i)
E (0))

≈ ksynh(1− e−α/K).

(5.10)

When the discretization size is small and K is large, the mean reaction propensity can be

further approximated as

〈a(i)
syn〉 ≈ ksyn · h · α/K. (5.11)

Notice that α/K is the mean population of TF in ith bin. The Hill dynamics of the mRNA

synthesis is now reduced to a linear function of the TF population in ith bin.

Furthermore, from (5.11) the mean population of mRNA in the bin i is

〈P (i)〉 ≈ ksyn · h
kdeg

α

K
, (5.12)

and the total mRNA population in all K bins is

〈P 〉 ≈ ksyn · L
kdeg

ks · L
kd

1

K

=
ksyn
kdeg
· α · h.

(5.13)

Equation (5.13) shows that the total population of mRNA is a linear function of the mean

population of TF α and the discretization size h = L/K. With finer discretization, less

mRNA is produced. Figure 5.3 shows the histogram and the mean value of the mRNA pop-

ulation with different discretization sizes. The histograms show that with finer discretization,

the population histograms shift further to the left.

The log-log plot shows that when the discretization size is small enough, the total mRNA

population is a linear function of discretization size. The slope of the log-log plot is about

1.0 at small discretization size h. Moreover, the simulation result shows that when the mean
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TF population is less than the constant Km in the Hill function (Km > α), the population of

mRNA P increases slightly before the Hill function dynamics breaks at small discretization

sizes. Note that the Hill function dynamics show a concave shape with respect to TF

population when the TF population is smaller than the Michaelis constant Km. Therefore,

it is reasonable that the mRNA population in this reaction-diffusion model increases slightly

when the Michaelis constant Km is larger than the mean TF population α.

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

population

p
ro

b
a

b
il

it
y

 

 

h = 0.002

h = 0.005

h = 0.01

h = 0.02

h = 0.05

10
−3

10
−2

10
−1

10
0

10
1

10
2

h

m
e

a
n

 p
o

p
u

la
ti
o

n

 

 

K
m

 = 10

K
m

 = 25

K
m

 = 50

Figure 5.3: The histogram (left) and mean (right) population of mRNA with different dis-

cretizations. Parameters: De = 1.0, ks = 2.5, kd = 0.1, ksyn = 5.0, kdeg = 0.05, system

size L = 1.0. For the histogram figure, Km = 25.0. The log-log plot shows the mean total

mRNA population under different discretizations and different parameter values.

To get the linear relation, the numerical analysis above makes two approximations
n4

(Km · h)4 + n4
≈ 1, for n ≥ 1,

e−α/K ≈ 1− α/K.
(5.14)

Assuming an error tolerance of 5%, the two approximations can be simplified toKm · h < 0.5,

α/K < 1/3.

(5.15)

Hence, when the discretization bin number

K > max{2LKm, 3α}, (5.16)
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the Hill dynamics reduce to a linear function.

Equivalently, in order for the Hill function dynamics to work well, the discretization number

K should be less than or equal to this threshold. However, the coarse discretization from

a small K leads to spatial error. Two potential solutions to this discretization dilemma are

proposed next.

5.4 Convergent Hill Function Dynamics with RDME

From the previous analysis, the Hill dynamics in RDME systems fail due to the lack of

intermediate states — the discrete population in each individual bin yields a constant value

(0 or 1) for the Hill function. An intermediate state is generated by a smoothing technique

that averages the population over neighboring bins when calculating the reaction propensity.

To model a RDME system in high dimensions with fine discretization, many studies have

suggested relaxing the same-compartment reaction assumption and allowing the reactions

within neighboring compartments. A natural technique that bridges the discrete and contin-

uous models is to smooth the spatial population by taking the average of neighboring bins.

Consider first smoothing the TF population within the neighboring m bins (including the

bin itself) when calculating the reaction propensity.

Following Section 5.3, the reaction probability for the synthesis of mRNA in the ith bin is

〈â(i)
syn〉 = ksyn · h

N∑
n=0

( (n/m)4

(Km · h)4 + (n/m)4
P

(i)
E (n;m)

)
= ksyn · h

N∑
n=0

( n4

(m ·Km · h)4 + n4
P

(i)
E (n;m)

)
,

(5.17)

where P
(i)
E (n;m) denotes the probability that the m neighboring bins of the ith bin have a

total TF population of n. The interpretation of this equation is that the synthesis reaction

in the ith bin is interacting with the m neighboring bins and the propensity is calculated
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based on the total TF population of all the neighboring bins. By probability theory,

P
(i)
E (0;m) ≈ e−αm/K . (5.18)

As before, only the term P
(i)
E (0;m) is important.

In Equation (5.17), for any fixed integer m ≥ 0, there exists h ≥ 0, such that m ·Km ·h < 0.5

and the Hill function is approximately one. At such a discretization size h, the mRNA

synthesis propensity can be approximated as

〈â(i)
syn〉 ≈ ksyn · h

N∑
n=1

P
(i)
E (n;m)

= ksyn · h(1− P (i)
E (0;m))

≈ ksyn · h(1− e−αm/K)

≈ ksyn · h · α ·m/K.

(5.19)

Again, with a fixed smoothing bin number m, the synthesis reaction propensity becomes

linear in the mean TF population αm/K of the m bins, and the mean population of mRNA

P in the system is

〈P 〉 =
ksyn · L
kdeg

ks · L
kd

m

K
, (5.20)

which is linear in m/K and the mean total TF population α. The linear relation obtains

with h such that m ·Km · h < 0.5,

m · α/K < 0.33.

(5.21)

Figure 5.4 plots the mean population of mRNA in the toy model with the smoothing tech-

nique and m = 5. The experimental results show that smoothing over a fixed number m

of compartments gives a good solution for a certain range of discretization sizes. However,

there always exists a small enough discretization size h such that the Hill function dynamics

reduce to a linear function with respect to the discretization size. Moreover, fixed length
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smoothing, in the scenarios where the Michaelis constant Km is larger than the mean TF

population α, gives a result closer that of the to the deterministic simulation for h not too

small.
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Figure 5.4: The total population of mRNA with different discretization sizes. Parameters:

system size L = 1.0, De = 1.0, ks = 2.5, kd = 0.1, ksyn = 5.0, kdeg = 0.05. For the left figure

Km = 25.0, while for the right figure Km = 50.0.

The previous analysis demonstrates that a sufficiently small discretization size h will break

the Hill dynamics when smoothing over a fixed number of bins, thus the number of bins need

to vary with the discretization size.

Inspired by the convergent-RDME [53], a remedy for the failure of Hill function dynamics in

reaction-diffusion systems is to smooth the population over bins within a certain distance.

From the analysis, a small smoothing length would cause the failure of the Hill function

dynamics and a large smoothing length would degrade the spatial accuracy of the model.

Following the terminology in convergent-RDME [53], the “reaction radius ρ” of Hill function

dynamics is defined as the smallest length that would not result in failure of the Hill function

dynamics, i.e., neither of the two assumptions (5.21) in the previous analysis are valid. From

the criterion for failure of the Hill function dynamics with fixed m (Equation (5.21)), this
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choice is

ρ = mh

= max

{
1

2Km

,
L

3α

}
= max

{
1

2Km

,
1

3ks/kd

}
.

(5.22)

Equation (5.22) shows the Hill function reaction radius of a reaction-diffusion system is a

constant, defined by the chemical reaction rate constants only.

For any discretization size h, the number of compartments to be smoothed over is given by

m = dρ
h
e. (5.23)

Figure 5.5 shows the results for the toy gene regulation model in the reaction-diffusion system

with different discretization sizes and with the convergent smoothing technique (m and h

related by (5.23)).
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Figure 5.5: The histogram and the mean population of mRNA with different discretization

sizes. Parameters: system size L = 1.0, De = 1.0, ks = 0.025, kd = 0.1, ksyn = 0.05,

kdeg = 0.05. For the left figure Km = 25.0, while for the right figure Km = 50.0.
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5.5 Conclusions

Motivated by the misbehavior of DivL-CckA dynamics during the stochastic simulation of

the Caulobacter crescentus cell cycle, an investigation of Hill function dynamics in reaction-

diffusion systems reveals that when the discretization size is small enough, the switch-like

behavior of Hill function dynamics reduces to bimolecular reaction dynamics. A proposed

fixed length smoothing method allows chemical reactions to occur with the reactant molecules

within a distance of fixed length, the “reaction radius”of the Hill function dynamics.

Applying the fixed length smoothing technique to the DivL-CckA Hill function model in

the Caulobacter crescentus cell cycle results in a sharp CtrAp population change during

swarmer-to-stalk transition. Figure 5.6 shows the CtrAp trajectories from the deterministic

model and stochastic model simulation results. The fixed length smoothing technique yields

more CtrAp in the swarmer stage and less CtrAp in the stalked stage, which yields a sharp

CtrAp population change during the swarmer-stalk transition as expected.
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Figure 5.6: The comparison of CtrAp from the deterministic model and the stochastic model

simulation results. Left: CtrAp population trajectory during Caulobacter crescentus cell

cycle. Right: The histogram of the CtrAp population in swarmer cells (t = 30 min). For

model parameters, refer to Chapter 6.

It is known that in high dimensions bimolecular reactions are lost with the RDME in

the microscopic limit [52]. This work shows one-dimensional Hill function dynamics in a
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RDME framework reduce to simple bimolecular dynamics when the discretization size is

small enough. The conjecture is that the problem lies in the RDME requirement that the

reactions only fire with the reactant molecules in the same discrete compartment. Further-

more, this defect in RDME at the microscopic limit is believed to be a common scenario for

all highly nonlinear reaction dynamics. Theoretical biologists have developed many highly

nonlinear reaction dynamics that need special attention when converted to stochastic mod-

els. Future work will continue the investigation of stochastic modeling and simulation of

highly nonlinear reaction dynamics in the RDME framework, including higher dimensions.



Chapter 6

Stochastic Spatiotemporal Model of

Response-Regulator Network in the

Caulobacter crescentus Cell Cycle

The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate

molecular mechanism governing the production, activation and spatial localization of a host

of interacting proteins. In previous studies, Subramanian proposed a deterministic mathe-

matical model for the spatiotemporal dynamics of six major regulatory proteins. A stochastic

version of Subramanian’s model, which takes into account molecular fluctuations of the regu-

latory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter

cells, is presented in this chapter. The stochastic model demonstrates the increased variabil-

ity of cycle time in cells depleted of the divJ gene product, which is observed in single-cell

experiments. The deterministic model predicts that overexpression of the divK gene blocks

cell cycle progression in the stalked stage; however, stochastic simulations suggest that a

small fraction of the mutants cells do complete the cell cycle normally.

60
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6.1 Background
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Figure 6.1: The asymmetric division cycle of Caulobacter cells.

Caulobacter crescentus is an aquatic α-proteobacterium that is widely distributed in fresh-

water lakes and streams [63]. As illustrated in Figure 6.1, Caulobacter cells divide asymmet-

rically [19, 9, 89, 98]. The larger cell, called the stalked cell, is anchored to its substratum by

a stalk and holdfast. The stalked cell is able to initiate chromosome replication and begin

the division-differentiation cycle immediately. The smaller cell, called the swarmer cell, is

equipped with a polar flagellum and several pili, with which it swims away from its place

of birth. The swarmer cell is not competent for chromosome replication and cell division

until it differentiates into a stalked cell. The swarmer-to-stalked transition involves shedding

the flagellum, retracting the pili, and constructing a stalk in their place. The stalked cell

grows primarily in length (slightly banana-shaped) and eventually builds a flagellum at the

“new” pole (the pole derived from the septum at the previous division). After chromosome

replication and segregation is completed, a ring of tubulin-like proteins (FtsZ) constricts and

divides the cytoplasm into two separate compartments [56]. Cytoplasmic compartmental-

ization enables divergent programs of cell differentiation, yielding two distinct progeny: a
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stalked cell and a swarmer cell.

Asymmetric cell division is a common feature of cell proliferation in many types of or-

ganisms [103, 81, 87, 88, 115, 21]. Typical of these situations, the asymmetric division-

differentiation cycle of Caulobacter crescentus involves an elaborate sequence of spatiotem-

porally regulated protein interactions that control chromosome segregation, polar differen-

tiation and regulator localization [62, 3]. Experimentalists have identified four essential

“master regulators” of the Caulobacter cell cycle, namely DnaA, GcrA, CtrA and CcrM,

which determine the temporal expression of approximately 200 genes [17, 18, 48]. These

master transcription regulators oscillate temporally and spatially and drive a series of mod-

ular functions during the cell cycle. The molecular mechanisms governing CtrA functions

have been studied in great detail, but the controls of DnaA, GcrA and CcrM are less well

known.

In swarmer cells, CtrA is phosphorylated by a two-component phosphorelay system (CckA

and ChpT). Phosphorylated CtrA (CtrAp) binds to the chromosomal origin of replication

(Cori) and inhibits the initiation of chromosome replication [91]. During the swarmer-to-

stalked transition, CtrAp gets dephosphorylated and degraded, allowing the initiation of

chromosome replication. CtrA is degraded by an ATP-dependent protease, ClpXP [76, 54],

which is localized to the stalk pole by the unphosphorylated response regulator CpdR. As

the nascent stalked cell progresses through the replication-divison cycle, CpdR is phospho-

rylated by CckA-ChpT, loses it polar localization, and, consequently, loses its ability to

recruit ClpXP protease for CtrA degradation. In addition, CckA-ChpT phosphorylate and

reactivate CtrA [51]. Although the mechanisms connecting CckA to CtrA functions have

been identified, the pathways for CckA localization and regulation are still unclear.

Development of the flagellated pole is controlled by the phosphorylation state of DivK in

response to the histidine kinase DivJ and the bifunctional histidine kinase/phosphatase

PleC [50]. The DivJ-PleC-DivK pathway regulates the phosphorylation status of PleD,

which governs polar development, such as flagellum shedding and stalk biosynthesis. At the
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swarmer-to-stalked transition, PleD is phosphorylated by PleC kinase and localized at the

stalk pole. Localized PleD induces the synthesis of the second messenger, cyclic di-GMP, to

signal stalk development. The non-canonical histidine kinase, DivL [110], promotes CckA

kinase activity. CckA kinase phosphorylates and activates CtrA in the swarmer cell. In the

stalked cell, phosphorylated DivK binds to DivL and inhibits CckA kinase activity. During

the swarmer-to-stalked transition, DivJ phosphorylates DivK. Phosphorylated DivK in turn

binds and inhibits DivL, thereby inhibiting CckA kinase activity. Subsequent dephosphory-

lation and degradation of CtrA allows the initiation of chromosome replication.

As the cell progresses into the previsional stage, PleC accumulates at the new pole. While

the bifunctionality of CckA as a phosphatase and kinase is well known, the potential bi-

functionality of PleC as a histidine phosphatase/kinase in predivisional cells has been under

debate for some time [106]. Experiments [85, 1] show that phosphorylated DivK (DivKp)

up-regulates the kinase form of PleC. By phosphorylating PleD, PleC kinase initiates the

pathway for stalk pole development. This view of PleC as a kinase at the old pole raises a

question of what is happening at the new pole of predivisional cells (the nascent swarmer

pole). The canonical view [110, 73] suggests that in the predivisional cell PleC functions as

a phosphatase at the new pole, where it dephosphorylates DivK and creates a protection

zone for active DivL, active CckA, and CtrA phosphorylation. An alternate view is that

PleC remains a kinase in previsional cells. However, this raises the question of how DivL

is protected form the inhibitory effect of DivKp. Recently, using a mathematical model

(reaction-diffusion equations) of the DivJ-PleC-DivK and DivL-CckA-CtrA network, Subra-

manian et al. [106] provide support for the view that PleC is a kinase at the new pole. Their

simulations show that PleC kinase at the new pole of a predivisional cell can sequester DivKp

from binding to DivL. Free DivL upregulates CckA, thereby promoting phosphorylation of

CtrA and the formation of CtrAp gradient in the predivisional cell. After constriction of the

FtsZ ring, compartmentalization of the predivisional cell separates PleC kinase at the new

pole from DivJ kinase at the old pole. PleC reverts back to a phosphatase. As a consequence,

DivK is dephosphorylated in the swarmer cell compartment, while phosphorylated DivK is
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retained in the stalked cell compartment.

Although cell cycle progression in Caulobacter is robust in respect to protein regulation and

the proper sequence of events, cells exhibit considerable variability in other respects, such

as the times spent in various phases of the cycle and the sizes of cells at the time events

occur [68]. These variabilities in cell cycle progression are attributable in large part to

the fact that the populations of protein species in a single Caulobacter cell are limited in

number and therefore subject to random molecular fluctuations. For example, the volume

of a Caulobacter cell is roughly 1 fL ∗ at division and contains around 300 molecules of a

particular protein species (if its concentration is around 500 nmol/L). Moreover, the number

of mRNA molecules for each protein at any time is likely to be around 10 [107]. With such

numbers of mRNAs and proteins, molecular fluctuations at the protein level are expected to

be ∼ 25% [86]. Such large fluctuations in protein levels may significantly affect the properties

of the cell cycle control system. For example, recent optical microscopy measurements reveal

an intriguing role of DivJ in the control of noise in single Caulobacter cells [100]: the data

show that depleting cells of DivJ causes (in addition to a modest increase of ∼ 16 min in

mean interdivision time) a large increase in the variance of interdivision times (the coefficient

of variation of interdivision times increases from ∼ 11% for wild-type cells to ∼ 26% for divJ-

deleted cells).

Recently, Lin et al. [68], propose a simplified protein interaction network that captures the

noisy oscillations of protein abundances during the Caulobacter cell cycle and accounts for

the observations of the variability of cell cycle periods in wild-type and divJ-deleted cells. Lin

et al.’s model is illuminating, but it suffers some shortcomings: it does not take into account

the effects of fluctuations at the mRNA level or of the spatial distributions of the regulatory

proteins, and it relies on a “non-detailed” simulation of stochastic processes. In this chapter,

a stochastic model avoiding theses shortcomings is developed, by extending the determinis-

tic reaction-diffusion model of Subramanian et al. [106] to a mechanistically detailed, spa-

∗femto- (f) is a unit prefix in the metric system denoting a factor of 10−15. 1 fL = 10−15 L.
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tiotemporal, stochastic model, including mRNA species. Furthermore, the stochastic model

is utilized to demonstrate the effects of divJ deletion and divK overexpression on cell cycle

progression in single Caulobacter cells. Stochastic simulations of the divJ-deletion strain are

consistent with the observations of Lin et al. [68], and simulations of divK-overexpression

strains predict a stochastic phenotype of these cells: although most cells are blocked in the

stalked stage of the cell cycle (as predicted by the deterministic model of Subramanian et

al. [106]), some cells are able to complete the cell cycle normally.

6.2 Method

Figure 6.2: Regulatory network of two phosphorelay systems that play major roles in the cell

division cycle of Caulobacter crescentus. The phosphorylated form of CtrA inhibits the initiation

of chromosome replication in swarmer cells. The phosphorylated form of DivK indirectly inhibits

the phosphorylation of CtrA, through the DivL–CckA pathway. The kinase activity of the enzyme,

PleC, is up-regulated by the product, DivKp, of the kinase reaction.

Figure 6.2 shows the regulatory network of six regulatory proteins during the Caulobac-

ter cell cycle, proposed by Subramanian et al. [106]. PleC acts as a bifunctional histidine

kinase/phosphatase, catalyzing the transformations between DivK and DivKp [104]. Signif-

icantly, DivKp up-regulates the kinase activity of PleC [85]. Figure B.1 (in Appendix B)
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shows the detailed scheme of PleC transformations between phosphatase and kinase, de-

pending on how the various forms of PleC are bound to DivK and DivKp. The activation

of CckA kinase by DivL is described by a Hill function (this is the only aspect of the model

that is not described by mass-action kinetics). CtrA is phosphorylated by CckA kinase, and

dephosphorylated by CckA phosphatase. Linkage between the DivJ-DivK-PleC and DivL-

CckA-CtrA modules is achieved by the binding of DivKp to DivL, which prevents DivL from

upregulating the kinase activity of CckA. The state of CtrA serves as the final output signal

in Subramanian’s model.

The deterministic spatiotemporal model [106] robustly captures the localization and activi-

ties of the regulatory proteins. However, it fails to capture the molecular noise intrinsic to

the reaction network. In order to study noise in protein populations and cell cycle periods, a

discrete stochastic model based on the deterministic model is developed. In addition to the

protein dynamics of the original model, the dynamics of genes (divJ, divK, divL, pleC, cckA,

ctrA) and mRNAs are also taken into account to determine how fluctuations at the level of

nucleic acids affects fluctuating protein levels during the Caulobacter cell cycle. Table B.1 (in

Appendix B) provides a complete list of reactions and propensities for the discrete stochastic

model.

As explained in “Model Details” (Section B.1 in Appendix B), the stochastic model en-

forces several discrete events on the reaction-diffusion equations governing DivJ, DivK, DivL,

PleC, CckA and CtrA. In paticular, “localization indicator functions” (see figure B.2 in Ap-

pendix B) is utilized to force DivJ, PleC, DivL and CckA molecules to become localized to

specific places in the cell in specific stages of the cell cycle, based on experimental observa-

tions on wild-type cells.

Gillespie’s stochastic simulation algorithm (SSA) [35, 36] is one of the most widely used

stochastic simulation methods for “well-stirred” biochemical systems. For reaction-diffusion

(RD) systems, the “well-stirred” assumption is no longer valid and Gillespie’s direct SSA

method cannot be directly applied. A common practice is to discretize the spatial domain
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according to the Reaction Diffusion Master Equation (RDME) framework [32, 52]. The key

assumption of the RDME is that all species in each compartment are well-stirred. In this

case, chemical reactions in each compartment can be simulated by the SSA and diffusion can

be modeled as random walk among neighboring compartments. If the discretization size is

h, the propensity for one molecule to jump to one of its nearest neighbors is given by D/h2,

where D is the diffusion rate constant.

For Caulobacter, the banana shaped cell is modeled as a one dimensional domain along its

long axis, which is discretized into 50 compartments (“bins”), according to the RDME frame-

work. In each compartment, all chemical reactions (listed in table B.1) as well as all diffusive

jumps (listed in table B.2) are simulated by “direct method” of SSA. During cell growth,

the number of bins keeps constant, while the length of each bin increases exponentially with

time. Refer to the supplementary materials for more details about the stochastic model and

the stochastic simulation method.

6.3 Results

6.3.1 PleC Kinase Sequesters DivKp in the Early Predivisional

Stage

In the predivisional stage, active DivL at the new pole upregulates CckA kinase there, which

promotes CtrA phosphorylation at the new pole. At the old pole, DivL is lacking and CckA

is in the phosphatase form, dephosphorylating CtrA at the stalked end of the cell. These

effects create a gradient of CtrA phosphorylation from the new pole toward the old pole of

the early predivisional cell. This gradient is crucial for further asymmetric cell development.

Early in the predivisional stage, PleC becomes localized to the new pole [108].

It is unclear if PleC in the predivisional stage is a phosphatase or a kinase [108, 55] The

deterministic model [106] showed that once PleC becomes a kinase in the stalked cell, it
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remains a kinase even in the predivisional cell. It is only after cytokinesis separates DivJ

and PleC into separate compartments that PleC reverts back to a phosphatase. This result is

counterintuitive, because PleC kinase would be expected to phosphorylate DivK and DivKp

would bind to and inhibit DivL (see Figure 6.2). However, the stochastic simulations also

showed that the DivKp is present in complex with PleC [104, 106]. Therefore, a hypothesis

is suggested that the kinase form of PleC may sequester DivKp away from DivL.

Figure B.3 shows histograms of DivKp and DivL components in the early predivisional stage

(t = 120 min). Most DivKp molecules are complexed with PleC, leaving DivL free to acti-

vate CckA kinase. Furthermore, the stochastic simulations are consistent with expectations

of how protein populations will fluctuate during the division cycle of a wild-type cell, as

in Figure B.4. In the stochastic model, it takes 150 min for a newborn swarmer cell to

proceed through the entire cycle and divide into a stalked cell and swarmer cell pair. In

the swarmer stage of the cell cycle (t = 0 − 30 min), PleC is localized at the old pole and

functions as a phosphatase. DivK is unphosphorylated and DivL is active; hence, CtrA is

phosphorylated, and CtrAp inhibits the initiation of chromosome replication. During the

swarmer-to-stalked transition (t = 30− 50 min), DivJ becomes localized at the old pole and

DivK is phosphorylated. DivKp inhibits DivL; hence, CckA becomes a phosphatase, CtrA is

unphosphorylated, and the cell enters the stalked cell stage. Chromosome replication begins

and the newly replicated chromosome is translocated to the new pole at t = 50 min (see

“Model Details” in Appendix B). PleC is cleared from the old pole in the stalked stage

(t = 50−90 min) and relocates to the new pole in the early predivisional stage (t = 90−120

min).

Stochastic simulations generate temporally varying protein distributions similar to the pre-

dictions of the deterministic model [106] with realistic fluctuations superimposed. Counter

to intuitive expectations, it is not necessary for PleC to be a phosphatase at the new pole in

order to establish high levels of phosphorylated CtrA in the swarmer half of the predivisional

cell. Instead, PleC in the kinase form can sequester DivKp away from DivL, allowing free

DivL to activate CckA kinase, which (indirectly) phosphorylates CtrA at the new pole.
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6.3.2 Compartmentalization Separates the Functionality of DivJ

and PleC

The stochastic model enforces compartmentalization of the cell at t = 120 min by preventing

the diffusion of proteins across the mid-cell line. Compartmentalization marks the transition

from the early predivisional stage (t = 90 − 120 min) to the late predivisional stage (t =

120− 150 min).

After 120 min, compartmentalization separates the activities of DivJ and PleC. Figure B.5

shows the spatiotemporal dynamics of these proteins in the late predivsional stage. In the

stalked cell, DivJ phosphorylates DivK and inhibits CtrA phosphorylation. In the swarmer

cell, there is insufficient DivKp to keep PleC in the kinase form. As PleC transforms to a

phosphatase, DivKp is rapidly dephosphorylated. Consequently, DivL is activated, CckA

becomes a kinase, and CtrAp accumulates in the swarmer cell.

6.3.3 DivK Overexpression Negates Inhibitor Sequestration

In deterministic simulations, PleC at the new pole stays in the kinase form during the early

predivisional stage (t = 90−120 min). PleC kinase binds to and sequesters DivKp, allowing

free DivL to promote CtrA phosphorylation at the swarmer pole. Using the deterministic

model, Subramanian predicted [106] that overexpression of DivK would produce enough

DivKp to inhibit DivL, causing the cell cycle to block in the predivisional stage.

Stochastic simulations are consistent, for the most part, with this earlier prediction; although,

due to random fluctuations in the stochastic simulations, some cells overexpressing DivK

are able to complete the cell cycle normally. Figure B.6 shows representative stochastic

simulations of CtrAp for cells with two-fold overexpression of DivK. Figure B.7 shows a

histogram of the total phosphorylated CtrA in the early predivisional stage. This simulation

illustrates how randomness may affect cell fate.
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In Subramanian’s model, the PleC phosphatase-to-kinase transition is thermodynamically

more favorable when DivK is phosphorylated. However, in vitro experiments show that

DivK need not be phosphorylated to up-regulate PleC kinase [85]. It is proposed that the

concentration of unphosphorylated DivK in vivo is less than the level necessary to turn on

PleC kinase activity [106]. Therefore, DivK must first be phosphorylated by DivJ in order

to activate PleC kinase functionality.

Furthermore, Subramanian predict that if DivK is sufficiently overexpressed, DivK will

switch on PleC kinase activity even when DivJ is absent. As a consequence, PleC kinase

further phosphorylates DivK in a positive feedback loop. DivKp then inhibits DivL and the

phosphorylation of CtrA. Thus the cell is blocked in the stalked stage.

Stochastic simulations with eight-fold DivK overexpression are consistent with experiments [85]

and our previous prediction. In the case of eight-fold DivK overexpression, excessive DivK

binds to PleC and turns on PleC kinase activity at the new pole. Furthermore, the phos-

phorylated DivK inhibits CtrA phosphorylation. Therefore, the swarmer stage of the cell

cycle is aborted. Figure B.8 shows that, for both four-fold and eight-fold overexpression of

DivK, the total population of phosphorylated CtrA molecules, on average, remains very low.

Figure B.9 shows histograms of the total CtrAp population at t = 30 min. For eight-fold

overexpression of DivK, CtrAp levels in most cells are too low to support the swarmer stage

of the cell cycle. For four-fold overexpression, some cells may enter the swarmer stage.

6.3.4 DivJ Reduces the Variability in Swarmer-to-Stalked Tran-

sition Time

The level of expression of divJ affects both the mean and variance of cell cycle periods, as

shown by the work of Lin et al. [68]. divJ depletion mutants of Caulobacter have cell cycle

periods that are slightly longer than wild-type cells and variances that are considerably

larger. For stalked cells, the cell cycle period is 61 ± 7.6 min (mean ± standard deviation)



Chapter 6. Histidine Kinase Switch Model in Caulobacter crescentus 71

for wild-type cells and 76 ± 18.7 min for divJ depleted cells. For swarmer cells, the values

are 75± 7.5 min for wild-type cells and 92± 26 min for divJ depleted cells. This subsection

investigates the role of divJ on the regulation of noise with the stochastic model.

In the original stochastic model, the timing of different cell cycle stages is fixed; hence, it is

not suitable for studying fluctuations in cell cycle transition times. To bypass this problem,

this subsection focus only on the stage from birth of a swarmer cell to the swarmer-to-stalked

transition. This is the stage when DivJ starts to accumulate and localize in the cell.

The phosphorylation state of CtrA is an indicator of Caulobacter cell stage and is considered

an “output” of the stochastic model. During the Caulobacter cell cycle, CtrAp level oscil-

lates and drives the cell cycle processes required for chromosome replication, cell development

and division. Figure B.10 shows ten typical trajectories for oscillations of the total popula-

tion of CtrAp molecules during the Caulobacter cell cycle. Despite stochastic fluctuations,

CtrAp populations are characteristically high in the swarmer stage and drop dramatically

at the swarmer-to-stalked transition. The low levels of CtrAp after the transition allow the

initiation of chromosome replication.

Based on this observation, the simulations are started from the end of the swarmer cell

stage (t = 30 min) and run until the CtrAp population level drops below a threshold of 100

molecules, about 10% of the mean value of the total CtrAp population in the swarmer stage.

Below this threshold, the CtrAp level is low enough to allow chromosome replication. This

period is defined as the swarmer-to-stalked transition time.

Figure B.11 shows a histogram of swarmer-to-stalked transition times (when the total CtrAp

population level drops below 100 molecules). The mean swarmer-to-stalked transition time

is ∼ 42 min in wild-type cells, and ∼ 49 min in ∆divJ cells. Meanwhile, the standard

deviation of the swarmer-to-stalked transition time increases sharply from 6 min in wild-type

cells to 15 min in ∆divJ cells. These simulation results are consistent with experimental

observations [68].

Besides the statistics of the swarmer-to-stalked transition time, protein population his-
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Table 6.1: The mean and variance of the swarmer-to-stalked transition times in wild-type

and divJ deletion cells.

SW-to-ST time wild type ∆divJ

mean 42 min 49 min

variance 35 min2 225 min2

COV 14% 29%

tograms of DivKp (Figure B.12), PleC kinase (Figure B.13) and CtrAp (Figure B.14) at

t = 50 min are generated. The histograms clearly show that divJ depleted cells have much

lower levels of DivKp and PleC kinase and much higher levels of CtrAp. The wide span of

CtrAp levels is another indication of the larger variance of the swarmer-to-stalked transition

time.

6.4 Discussion and Conclusion

Subramanian proposed a mathematical model of a bistable PleC switch, for which the PleC

phosphatase-to-kinase transition is flipped by DivJ. In this chapter, a stochastic model of

the spatiotemporal regulation of the histidine kinase phosphorelay mechanism in Caulobacter

crescentus is further developed. The stochastic simulations show that inhibitor sequestration

is an important function of the bifunctional histidine kinase PleC [106]. In the early predivi-

sional stage, the binding of DivKp to PleC kinase at the new pole may prevent DivKp from

binding to DivL and inhibiting DivL’s role in activating CckA kinase. Furthermore, stochas-

tic simulations of divK-overexpressing cells confirm that excessive DivKp can inhibit DivL

at the new pole, thereby inhibiting CtrA phosphorylation and swarmer cell development.
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In addition, the stochastic model captures variability in the time it takes a newborn swarmer

cell to dephosphorylate CtrAp and initiate a new round of DNA synthesis. This transition

is sensitively dependent on the kinase DivJ, which initiates a sequence of events leading

to CtrAp dephosphorylation. Consequently, deletion of the divJ gene lengthens the time

needed for dephosphorylation of CtrAp and completion of the swarmer-to-stalked transition.

Moreover, divJ deletion causes unusually large fluctuations in time needed to execute the

the swarmer-to-stalked transition, as is observed experimentally [68].

Although this spatiotemporal stochastic model successfully accounts for certain aspects of the

Caulobacter cell cycle, it is still very incomplete. This stochastic model focusses only on the

dynamics of the PleC- and CckA-phosphorelay systems. Many other important regulators of

the Caulobacter cell cycle have been ignored or highly abstracted. For instance, this model

ignores (for the time being) the important roles played by proteins such as PopZ, GcrA, FtsZ

and ClpXP, and we have enforced the spatial localization of DivJ, PleC, DivL and CckA

by setting spatial “localization indicators” to 0 or 1 at specific stages of the cell cycle (see

“Model Details” and Figure B.2 in Appendix B). These assumptions, which have served the

purposes in this chapter, will have to be lifted in future editions of the model. In the future,

a more realistic two dimensional Caulobacter cell cycle model of a banana-shaped domain

will be investigated and studied. Stochastic simulations on a two dimensional domain may

lead to significantly different results, based on previous research results [52, 53].



Chapter 7

Stochastic Simulation of PopZ

Bipolarization Model in Caulobacter

crescentus

Asymmetric localization of signaling proteins is crucial to the dimorphic life cycle of Caulobac-

ter crescentus. Experimental biologists have identified that the “landmark” scaffolding pro-

tein, PopZ, determines localization of key cell cycle regulators [49, 94]. PopZ, which is found

at a single pole to begin with, assumes bipolar localization later during the cell cycle. In

addition, PopZ plays a role in segregation and tethering of replicated chromosomes.

However, an important question is to understand how landmark protein PopZ localizes at

the poles. The molecular mechanisms underlying the self-assembly and polarization of PopZ

remain unclear, with competing models proposed to explain its dynamic and cell-cycle depen-

dent localization profile. In previous work, Subramanian proposed an Activator Substrate-

Depletion (A-SD) type Turing mechanism that explained localization of PopZ polymer [105].

The deterministic reaction-diffusion model [105] demonstrates that the dependency of PopZ

bipolar localization on chromosome segregation may be the result of limited dispersal of

slow diffusing popZ mRNA, which makes it necessary for two popZ loci to be close to the
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poles of the cell. In this chapter, a stochastic version of Subramanian’s model is presented.

Stochastic simulations capture the observed variations in the time and cell length at which

PopZ becomes bipolar.

7.1 PopZ Localization in Caulobacter Cell Cycle

Studies in prokaryotic cell cycle regulation discover that Caulobacter crescentus cells be-

come polarized and undergo asymmetric division in each cell cycle [42]. The asymmetric cell

division reveals different protein levels in the two bacterial poles during the cell cycle progres-

sion. Common explanations attribute the protein level bias to membrane curvature [9, 49]

or landmark protein ensnarement [94].

Cell reproduction requires elaborate temporal and spatial coordination of crucial events,

such as DNA replication, chromosome segregation, as well as cytokinesis. The bacterial

cytoplasm in a Caulobacter cell is not only changing with time, but also elaborately organized

in space during the cell cycle [18]. The localization of proteins determines the cell shape [16],

chromosome segregation event [89, 98], chemotaxis, differentiation and virulence [99].

Biologists have identified a proline-rich polar protein, PopZ, which is a potential landmark

protein in Caulobacter crescentus [49, 94]. PopZ, short for Polar Organizing Protein-Z, lo-

cates at the old pole of the swarmer cell and assumes bipolar localization when gene segrega-

tion is initiated in the stalked cell. PopZ is responsible for tethering segregated chromosomes

to the two poles of a Caulobacter cell [8, 23]. In a swarmer cell of Caulobacter crescentus,

the origin of replication, called ori, is located at the old pole. Before DNA replication is

initiated, chromosome is tethered to the old pole by binding the parS centromeric sequence

nearby chromosome ori to PopZ [8]. After DNA replication starts, DNA partitioning protein

ParB binds to parS in the replicated chromosome and migrates toward the new pole where

a second PopZ focus appears. PopZ at the new pole captures parS sequence and tethers the

replicated chromosome to the new pole, generating stable bipolarization for further cell divi-
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sion. Figure 7.1 illustrates the function and localization of PopZ in Caulobacter chromosome

segregation model.

Figure 7.1: Demonstration of PopZ activity during Caulobacter cell cycle. PopZ focuses

at the old pole in swarmer cell and assumes bipolar localization later during the cell cycle.

ParB binds to PopZ at both poles, generating stable bipolarization for further cell division.

In Caulobacter, the devision site is determined by the localization of the cell division protein

FtsZ [42, 90]. FtsZ in the middle cell polymerizes into the so-called Z ring structure, which

hypothetically generates the constrictive forces for cell division [71]. FtsZ polymerization at

the correct time and place is a consequence of chromosome segregation. The moving chromo-

some front carries MipZ, a protein that promotes depolymerization of FtsZ [109, 58]. During

Caulobacter cell cycle, MipZ coordinates with the chromosome segregation dynamics and im-

pels the localization of cell division protein, FtsZ [109]. MipZ is an ATPase that binds with

Caulobacter chromosome near the ori region. During the chromosome segregation, MipZ

traverses to the other end of Caulobacter cell together with the ori at the replicated chromo-

some and inhibits FtsZ polymerization along its trail [109]. As the replicated chromosomes

segregate to opposite poles of the cell, the maximum concentration of MipZ localizes to the

poles. Hence, the maximum concentration of FtsZ is found at the center of the cell, where
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MipZ concentration is the lowest. Interestingly, the FtsZ peak is very sharp, much sharper

than the drop off in MipZ would suggest.

Though the dynamic localization of PopZ is clearly observed and its crucial role in the cell

cycle is well understood, the mechanism behind its localization is still under investigation.

One hypothesis attributes the PopZ localization to action of the actin-like MreB filaments,

because the MreB-inhibition drug, A22, blocks the accumulation of PopZ at the new pole [8].

Furthermore, it is noticed that high doses of A22 retard cell growth [102], whereas lower A22

level, which inhibits MreB filament formation but does not interfere with cell growth, permits

PopZ bipolar localization [61]. Another hypothesis proposes that the DNA replication is

crucial to the new-pole PopZ localization, since novobiocin, an inhibitor of DNA gyrase,

prevents PopZ localization in the new pole [7]. Experiments show that overexpression of

PopZ can lead to cell division defects [23]. PopZ is able to maintain its population level

by forming polymers under a self-organization mechanism, which is believed to be crucial

to the PopZ polarization [23]. More recently, chromosome translocation has been claimed

to be essential to the formation of new-pole PopZ [61]. Any one or a combination of these

mechanisms may contribute to PopZ localization during Caulobacter cell cycles.

7.2 Method

In an effort to to explain the mechanisms behind PopZ bipolarization, a deterministic model

based on Activator Substrate-Depletion (A-SD) type Turing mechanism is proposed [105].

Equation (C.1), in Appendix C, lists the deterministic reaction equations of the PopZ lo-

calization model [105]. The deterministic reaction-diffusion model shows that the location

of the PopZ polymer focus is highly dependent on the spatial location of popZ genes, as a

result of the limited mRNA dispersal. Furthermore, it requires two popZ loci to be present

close to the poles of the cell.

The deterministic spatiotemporal model [105] robustly captures the bipolarization of PopZ.
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However, it fails to capture the molecular intrinsic noise in the regulatory network. In order

to study noise in protein populations and cell cycle periods, a discrete stochastic version of

Subramanian’s model, in coordination with chromosome segregation, is developed to study

PopZ bipolarization, as well as the stochastic variation on the bipolar time. Table C.1, in

Appendix C, provides a complete list of reactions and propensities for the discrete stochastic

model.

The efficient discretization size (Equation (3.10)) yields 25 discrete bins for PopZ monomer

and 100 bins for PopZ mRNA and polymer. The one dimensional domain is discretized

accordingly with the multiple grid discretization method described in Chapter 4.

For Caulobacter, the banana shaped cell is modeled as a one dimensional domain along its

long axis. In each compartment, all chemical reactions, as well as all diffusive jumps (listed

in table C.1), are simulated by the “direct method” of SSA. During cell growth, the number

of bins keeps constant, while the length of each bin increases exponentially with time. Refer

to Appendix C for more details about the stochastic model and the stochastic simulation

method.

7.3 Stochastic Simulation Results

7.3.1 The two-gene model recreates PopZ bipolar distribution pat-

terns

In the wild type cell, one copy of popZ gene stays in the old pole (20% of the cell length

from the end) throughout the cell cycle. At t = 50 min, chromosome segregation starts and

the replicated chromosome translocates across the cell until it reaches the new pole (20% of

the cell length from the new pole end). popZ mNRA is synthesized from the two genes. Due

to the short life time (half life time of ∼ 3 min) and slow diffusion (0.05 µm2/min), mNRA

can not move far from popZ gene site. As the consequence of chromosome segregation and
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slow mRNA diffusion, PopZ shows a unipolar-to-bipolar transition at around t = 75 min.

Figure C.1 shows the trajectory of popZ gene, as well as the spatiotemporal mNRA and

PopZ population pattern during the cell cycle.

Experiments [61] suggest chromosome segregation completes at quite variable times. With

the stochastic simulation results, PopZ bipolarization time is defined as the time point when

20% of the total PopZ molecules present in the swarmer pole (20% of cell by length from the

new pole) of Caulobacter cell. Figure C.2 shows the time and cell length distribution when

PopZ becomes bipolar.

7.3.2 Turing pattern may account for the dynamic localization of

FtsZ

The FtsZ ring is a polymer assembled from tubulin-like subunits and the number of foci

increases with increasing length of the cell [109]. While a single but shifting focus of FtsZ

is present in wild type cells of Caulobacter, multiple foci of FtsZ form in filamentous cells

devoid of MipZ regulator, which shows the characteristic of a Turing pattern [111].

MipZ binds to the chromosome front and resembles the distribution pattern of PopZ. since

the chromosome front ultimately docks with PopZ, In order to probe the downstream effects

of MipZ dynamics on FtsZ, a simplifying assumption is made such that MipZ binds to PopZ

directly and co-localized with it, The equations governing FtsZ and MipZ dynamics, as well

as the reaction propensities are defined in Table C.2.

The stochastic simulation results show that in swarmer cells, MipZ co-localized with PopZ at

the old pole while FtsZ self-assembles at the new pole. When the chromosome segregation

starts, MipZ moves towards the new pole, together with the replicated chromosome, and

depolymerizes FtsZ along its trail. When cell grows and forms bipolar MipZ foci, FtsZ

rapidly shifts to the mid-cell the point of lowest MipZ level, as in Figure C.3. Because the

Turing-pattern based stochastic model of FtsZ localization recreates the FtsZ distributions
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observed in wild type cells, it is contended that Turings mechanism is biologically relevant

and a plausible explanation of FtsZ dynamics in Caulobacter.

7.4 Conclusions

Exactly how PopZ localizes in Caulobacter cells is still under investigation. This chapter

demonstrates the stochastic simulation of a simple Turing pattern based model for PopZ

polymerization and localization. Under this mechanism, PopZ drives its own spatiotemporal

distribution by a self-assembly process. In addition, the stochastic simulation results capture

the variability in time and cell length when PopZ becomes bipolarization. The simulation

results imply that the Turing pattern based model may be a potential explanation of the

PopZ bipolarization in Caulobacter crescentus cell cycle.

On the other hand, the one dimensional domain does not allow a study of the membrane

curvature effect. In addition, the highly nonlinear Turing model would bring new features

into the two dimensional mathematical modeling and stochastic simulation [52, 11]. In the

future, the two dimensional stochastic model for Turing pattern mechanism based PopZ

bipolarization is a potential fruitful research area.



Chapter 8

Outlook

Biological systems are often subject to external noise from environmental signal stimuli, as

well as intrinsic variation of the cell size and population fluctuation of mRNA and proteins.

The development of mathematically legitimate stochastic models and efficient stochastic

simulation algorithms are long term goals for computational biologists.

This dissertation focuses on the numerical analysis of stochastic models and the development

of efficient stochastic simulation algorithms. An efficient discretization for Reaction Diffusion

Master Equation (RDME) framework is formulated in Chapter 3 and furthermore a multiple

grid discretization method that leads to significant simulation efficiency improvement is

proposed in Chapter 4. Chapter 5 reveals that the chemical dynamics of highly nonlinear

reaction models in RDME systems breaks when the discretization size is small. A convergent

Hill function dynamics in RDME framework is proposed for the stochastic simulation of Hill

function reaction-diffusion systems in the microscopic limit.

As the application, stochastic models of the regulatory networks in Caulobacter crescentus

cell cycle have been developed. Chapter 6 presents a stochastic model for the histidine kinase

switch regulatory network model during the Caulobacter crescentus cell cycle. The stochastic

simulation illustrates the intriguing role of divJ gene in the control of the noise in cell cycle
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periods. Chapter 7 exploits a stochastic model, based on Turing pattern mechanism, that

demonstrates the polarization mechanism of the landmark protein PopZ. Moreover, the

stochastic model is able to capture the variability in the cell length and time when PopZ

becomes bipolar.

The future research will continue the work on the development of mathematically legitimate

stochastic models and efficient stochastic simulation algorithms, as well as the application

of stochastic simulation techniques on biological regulatory networks.

8.1 Valid Stochastic Modeling of Nonlinear Dynamics

in RDME Systems

Researches have demonstrated that the discrete-space RDME framework is a mesoscopic

approximation method and the discretization size is critical for the stochastic simulation with

RDME framework [52, 27, 45]. Previous research discovers that highly nonlinear reaction

dynamics in RDME may fail when discretization sizes are too small. The numerical analysis

shows that the failure of RDME in the microscopic limit is a common scenario for highly

nonlinear reaction reaction dynamics.

Mathematical biologists have developed many more highly nonlinear reaction dynamics that

need special attention when converted into discrete stochastic models. The research on ap-

propriate discretization sizes for these sophisticated nonlinear reaction dynamics in reaction-

diffusion systems would be a fruitful area.
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8.2 ODE/SSA Hybrid Algorithms on Reaction-Diffusion

System

The scales of species populations and reaction rates in biochemical systems often present

across multiple magnitude of orders. In addition, in the reaction-diffusion systems, the dif-

fusive jumps are often orders of magnitude faster than chemical reactions. Discrete stochastic

simulation of the large population species and “fast” reaction channels is time consuming

and not always necessary. Therefore, the ODE/SSA hybrid method would be very useful in

modeling the reaction-diffusion systems. Preliminary investigation discovers that the popu-

lation of a species in a compartment may become negative when the average population of

one reactant species is small (less than 1) before the reaction fires. The negative population

brings further problem in the propensity and next reaction time calculation. In the future,

researches on the development of ODE/SSA hybrid method for reaction-diffusion systems

will be continued.

8.3 A hybrid framework Merging RDME and Smolu-

chowski Methods

In addition to RDME framework, the microscopic Smoluchowski framework has been an-

other important method in the stochastic simulation of reaction-diffusion systems. Though

it is expensive in computational cost, Smoluchowski framework is better to represent the

microscopic physics for the reaction diffusion system. While, the RDME framework is pre-

ferred when molecule populations get larger [31]. The hybrid method that combines the

compartment-based modeling and the particle-based modeling would be a promising direc-

tion for the efficient and accurate stochastic simulation algorithm development.

Some hybrid models have been proposed in literatures. Flegg et. al. [31] proposes a two-
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regime hybrid model, where the Smoluchowski model is used for localized regions where

accurate and microscopic details is important and RDME framework is used where accuracy

can be traded for simulation efficiency [31]. In addition, the convergent RDME method

(CRDME) [53] is also essentially a hybrid approach that introduces the concept of “reaction

radius” in Smoluchowski framework into the conventional RDME framework.

Smoluchowski framework offers an efficient approach for the population update when a cer-

tain reaction fires, though it is intimidating to enumerate all the reaction channels. With

the RDME framework, it is easy to calculate reaction propensities and determine the next

reaction time. Furthermore, it would achieve better efficiency if the searching time in the

procedure to find the next firing reaction index is reduced.

With the understanding of the compartment-based framework and the particle-based frame-

work, a hybrid compartment/particle framework is straightforward. In a real biochemical

system, the molecule population is usually limited to several thousands. Hence, it is easy to

maintain an additional molecule list for each species which tracks the compartment index of

each molecule. The reaction propensities and the next firing time are determined with the

RDME method. When a diffusive jump or first order reaction occurs, a molecule is randomly

chosen from its list to fire the reaction. With the molecular compartment index, the RDME

framework updates the molecular population in the indexed compartment. Therefore, the

reaction channel searching time is reduced to a constant time complexity and furthermore

simulation time is reduced.

8.4 Application: Stochastic Modeling and Simulation

of Biological Models

As Galileo wrote that the grand book of Nature is written in mathematical language, compu-

tational biologist have successfully developed many mathematical models that qualitatively
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depict the regulation network in the biological systems. In addition to the deterministic

models, stochastic methods prove to be powerful to capture intrinsic noises and variability

in the cellular systems. Furthermore, The application to real biological models is a major

motivation that drives the theoretical analysis forward.



Appendix A

Supplement Materials

A.1 Transcription Factor Population at Equilibrium

In a spatial domain of volume V , a transcription factor (TF) is constantly synthesized

and degraded. Equation (A.1) gives the chemical reactions and propensity functions of the

transcription factor model.

∅ ks−→ TF, a1 = ksV,

TF
kd−→ ∅, a2 = kdTF,

(A.1)

where TF denotes the population of species TF.

The state of the chemical reaction system (A.1) at any time point t is defined by the pop-

ulation of the transcription factor. Let P (n, t) denote the probability that there exist n

molecules of TF in the spatial domain at time t. The Chemical Master Equation of the
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chemical reaction system is

d

dt
P (0, t) = −a1P (0, t) + kdP (1, t),

d

dt
P (1, t) = a1P (0, t)− a1P (1, t)− kdP (1, t) + 2kdP (2, t),

...

d

dt
P (n, t) = a1P (n− 1, t)− a1P (n, t)− kdnP (n, t) + kd(n+ 1)P (n+ 1, t),

...

(A.2)

At the equilibrium state, the differential equations (A.2) all approach zero,

d

dt
P (n, t) = 0, for n ≥ 0.

Let Pn denote the probability that there exist n molecules of species TF at the equilibrium

state for the chemical reaction system (A.1). Then, at the equilibrium state, differential

equations (A.2) yield

−a1P0 + kdP1 = 0,

a1Pn−1 − a1Pn − kdnPn + kd(n+ 1)Pn+1 = 0, for n ≥ 1.

(A.3)

Let α = a1/kd, Equations (A.3) can be further simplified to

P1 = αP0,

Pn =
α

n
Pn−1, for n ≥ 1.

(A.4)

By the normalization constraint,

1 = P0 + P1 + P2 + . . .+ Pn + . . .

= P0 + αP0 +
α2

2!
P0 + . . .+

αn

n!
P0 + . . .

= eαP0.

(A.5)
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Therefore, P0 = e−α and further

Pn =
αn

n!
e−α, (A.6)

which is a Poisson distribution.



Appendix B

Supplement Materials

B.1 Model Details

In Subramanian’s original deterministic model [106], complete depletion of divJ blocks the

phosphorylation of DivK, leading to high levels of free DivL, CckA kinase, and CtrAp, which

inhibits the initiation of chromosome replication. These conclusions do not match with

experiments [68]. To account for their experimental observations, Lin et al. [68] proposed

that other proteins may play a role similar to divJ in phosphorylating DivK. Following their

lead, a basal rate of phosphorylation of DivK is introduced in the absence of DivJ.

For Caulobacter, the banana shaped cell is simplified and modeled as a one dimensional

domain along its long axis. According to the RDME framework, the corresponding one

dimensional reaction-diffusion system is discretize into 50 compartments (“bins”). In each

compartment, all chemical reactions (listed in table B.1) as well as all diffusive jumps (listed

in table B.2) are simulated by “direct method” of SSA.

When a Caulobacter cell grows, new cell wall material is synthesized uniformly along the

long axis. Thus, during Caulobacter cell cycle, the length of each compartment grows expo-
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nentially in time as

dh

dt
= µ · h. (B.1)

The new born swarmer cell of Caulobacter has the length of 1.3 µm. After 150 min cell

growth, it grows to 3.0 µm before cell division, with the growth rate µ = 0.0055 min−1.

The deterministic model [106] uses dimensionless variables for all protein concentrations. To

convert the dimensionless ODEs of the deterministic model to discrete population variables

suitable for simulation by Gillespie’s SSA, the dimensionless concentration variables must

be converted into numbers of protein molecules per cell. Based on accepted biological num-

bers [78], the conversion factor is chosen to be S = 1000 molecules per unit concentration.

With the population variables scaling, the reaction rate must also be adjusted into corre-

sponding values in population numbers. In addition, the conversion of the Hill function to

stochastic model need special attention. Based on the “reaction radius” of the Hill function

dynamics in stochastic simulation, the population of the auxiliary regulator in Hill function

is averaged over five neighboring bins before calculating the propensity.

Before DNA replication starts, there is only one copy of the bacterial chromosome, with

its origin of replication near the old pole. In the stochastic model, this gene is located at

20% of the length from the end of old pole (10 bins to the old pole). By t = 50 min, when

chromosome replication and segregation are complete, a second copy of the chromosome is

introduced near the new pole (20% of the length from the new pole). Experiments [6, 116]

show that there exists only ∼ 3 mRNA molecules per cell on average for each gene, and these

mRNAs can be short lived (half life ∼ 3 min). Based on these estimates, rate constants

for mRNA synthesis and degradation is calculated to be ksyn mRNA = 0.625 min−1 and

kdeg mRNA = 0.25 min−1.

Moreover, because the mechanisms for localization of DivJ, PleC, DivL and CckA are not

yet very well understood, their localizations are deliberately enforced in specific places at

specific times in the cell cycle, based on experimental observations in wild-type and mutant
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cells. The scheme for localizing species S to the ith compartment is given by

Sfi
kb−−−−−−−−−−−→

localization indicator
Si.

The free form of species Sf is synthesized at the location of its mRNA message and subse-

quently diffuses freely within the cell. When the localization indicator is set to 1 at certain

positions, species S becomes bound to those positions, according to the above reaction. When

the localization indicator is set to 0, the species is released from the position. Figure B.2

illustrates the localization indicator settings for the four proteins at different stages of the

cell cycle. In the swarmer stage, PleC is localized at the old pole. At the beginning of the

swarmer-to-stalked transition (t = 30 min), DivJ localizes to the old pole. After a short

colocalization with DivJ, PleC is cleared from the old pole (t = 50− 90 min) and relocates

to the new pole in the early predivisional stage (t = 90 − 120 min). In the swarmer stage

(t = 0− 30 min) and during the swarmer-to-stalked transition (t = 30− 50 min), CckA lo-

calizes uniformly in the cell. CckA relocates to the old pole in the stalked stage (t = 50− 90

min) and becomes bipolar in the early pre-divisional stage (t = 90−120 min). DivL exhibits

uniform localization except in the early pre-divisional stage, when it relocates to the new

pole.

The other two species, DivK and CtrA and their phosphorylated forms, diffuse rapidly within

the cell. Fluorescence microscopy indicates that DivK shuttles from one end of the cell to the

other within around five seconds [73]. With the formula d2 = 2Dt, where d = 1.3µm is the

size of the cell and t = 5 s, the diffusion constant of DivK is calculated as d2

2t
≈ 10µm2 ·min−1.

The same diffusion constant is applied for other free diffusive proteins.
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B.2 Reaction Channels and Propensities

Table B.1: Chemical reactions and propensities in the Response-Regulator Model

Reaction Rate Const. Propensity

∅ divJ−−→ mRNADivJ ksrna = 0.625 a = ksrna · divJ

mRNADivJ → ∅ kdrna = 0.25 a = kdrna ·mRNADivJ

∅ divK−−−→ mRNADivK ksrna = 0.625 a = ksrna · divK

mRNADivK → ∅ kdrna = 0.25 a = kdrna ·mRNADivK

∅ pleC−−→ mRNAPleC ksrna = 0.625 a = ksrna · pleC

mRNAPleC → ∅ kdrna = 0.25 a = kdrna ·mRNAPleC

∅ divL−−→ mRNADivL ksrna = 0.625 a = ksrna · divL

mRNADivL → ∅ degrna = 0.25 a = kdrna ·mRNADivL

∅ cckA−−→ mRNACckA ksrna = 0.625 a = ksrna · cckA

mRNACckA → ∅ kdrna = 0.25 a = kdrna ·mRNACckA

∅ ctrA−−→ mRNACtrA ksrna = 0.625 a = ksrna · ctrA

mRNACtrA → ∅ kdrna = 0.25 a = kdrna ·mRNACtrA

∅ mRNADivK−−−−−−→ DivK ksdk = 25.0 a = ksdk ·mRNADivK

DivK→ ∅ kdDivK = 0.005 a = kdDivK ·DivK

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

DivKp→ ∅ kdDivKp = 0.005 a = kdDivKp ·DivKp

∅ mRNAPleC−−−−−−→ PleCf ksPleC = 50.0 a = ksPleC ·mRNAPleC

PleCf → ∅ kdPleC = 0.05 a = kdPleC · PleCf

PleCf → PleCphos kbpc = 1.0 a = kbpc · PleCf

PleCphos→ PleCf kubpc = 0.5 a = kubpc · PleCphos

PleCphos + DivKp → PleCph1 kbkp:phos = 5.0 a = kbkp:phos/(h·S)·PleCphos·

DivKp

PleCphos + DivK → PleCph2 kbk:phos = 0.05 a = kbk:phos/(h ·S) ·PleCphos ·

DivK

PleCph1 → PleCphos + DivKp kubph1:kp = 5.0 a = kubph1:kp · PleCph1

PleCph2 → PleCphos + DivK kubph2:k = 5.0 a = kubph2:k · PleCph2

PleCph2 → PleCph1 kphph2 = 0.005 a = kphph2 · PleCph2

PleCph1 → PleCph2 kdpph1 = 10.0 a = kdpph1 · PleCph1

PleCph1 + DivK → PleCph2 + DivKp kbk:ph = 0.016 a = kbk:ph/(h · S) · PleCph1 ·

DivK

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

PleCph2 + DivKp→ PleCph1 + DivK kbkp:ph = 1.6 a = kbkp:ph/(h · S) · PleCph2 ·

DivKp

PleCph1 + DivKp → PleCkin11 kbkp:ph1 = 5.0 a = kbkp:ph1/(h · S) · PleCph1 ·

DivKp

PleCph1 + DivK → PleCkin12 kbk:ph = 0.016 a = kbk:ph/(h · S) · PleCph1 ·

DivK

PleCph2 + DivKp → PleCkin12 kbkp:ph = 1.6 a = kbkp:ph/(h · S) · PleCph2 ·

DivKp

PleCph2 + DivK → PleCkin22 kbk:ph = 0.016 a = kbk:ph/(h · S) · PleCph2 ·

DivK

PleCkin11 → PleCph1 + DivKp kubkp:kin11 = 2.5 a = kubkp:kin11 · PleCkin11

PleCkin12 → PleCph2 + DivKp kubkp:kin12 = 1.6e− 4 a = kubkp:kin12 · PleCkin12

PleCkin12 → PleCph1 + DivK kubk:kin12 = 1.6e− 4 a = kubk:kin12 · PleCkin12

PleCkin22 → PleCph2 + DivK kubk:kin22 = 1.6e− 8 a = kubk:kin22 · PleC22

PleCkin11 → PleCkin0 kphkin11 = 2.5 a = kphkin11 · PleCkin11

PleCkin12 → PleCkin2 kphos = 5.0 a = kphos · PleCkin12

PleCkin22 → PleCkin4 kphos = 5.0 a = kphos · PleCkin22

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

PleCkin0 → PleCkin11 kdeph = 5.0 a = kdeph · PleCkin0

PleCkin2 → PleCkin12 kdeph = 5.0 a = kdeph · PleCkin2

PleCkin4 → PleCkin22 kdeph = 5.0 a = kdeph · PleCkin4

PleCkin0 → PleCkin1 + DivKp kubkp:pc = 0.16 a = kubkp:pc · PleCkin0

PleCkin2 → PleCkin3 + DivKp kubkp:pc = 0.16 a = kubkp:pc · PleCkin2

PleCkin2 → PleCkin1 + DivK kubk:pc = 1.6e− 3 a = kubk:pc · PleCkin2

PleCkin4 → PleCkin3 + DivK kubk:pc = 1.6e− 3 a = kubk:pc · PleCkin4

PleCkin1 + DivKp → PleCkin0 kbkp:pc = 5.0 a = kbkp:pc/(h · S) · PleCkin1 ·

DivKp

PleCkin1 + DivK → PleCkin2 kbk:pc = 5.0 a = kbk:pc/(h · S) · PleCkin1 ·

DivK

PleCkin3 + DivKp → PleCkin2 kbkp:pc = 5.0 a = kbkp:pc/(h · S) · PleCkin3 ·

DivKp

PleCkin3 + DivK → PleCkin4 kbk:pc = 5.0 a = kbk:pc/(h · S) · PleCkin3 ·

DivK

PleCkin1 → PleC2p + DivKp kubkp:pc = 0.16 a = kubkp:pc · PleCkin1

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

PleCkin3 → PleC2p + DivK kubk:pc = 1.6e− 3 a = kubk:pc · PleCkin3

PleC2p + DivKp → PleCkin1 kbkp:pc = 5.0 a = kbkp:pc/(h · S) · PleC2p ·

DivKp

PleC2p + DivK → PleCkin3 kbk:pc = 5.0 a = kbk:pc/(h · S) · PleC2p ·

DivK

PleC2p → PleCphos kdeph = 5.0 a = kdeph · PleC2p

PleCkin10p → PleC1p + DivKp kubkp:pc = 0.16 a = kubkp:pc · PleCkin10p

PleCkin01p → PleC1p + DivKp kubkp:pc = 0.16 a = kubkp:pc · PleCkin01p

PleCkin02p → PleC1p + DivK kubk:pc = 1.6e− 3 a = kubk:pc · PleCkin02p

PleC1p + DivKp → PleCkin10p kbkp:pc = 5.0 a = kbkp:pc/(h · S) · PleC1p ·

DivKp

PleC1p + DivKp → PleCkin01p kbkp:pc = 5.0 a = kbkp:pc/(h · S) · PleC1p ·

DivKp

PleC1p + DivK → PleCkin02p kbk:pc = 5.0 a = kbk:pc/(h · S) · PleC1p ·

DivK

PleC1p → PleCphos kdeph = 5.0 a = kdeph · PleC1p

PleCkin3 → PleCkin10p kauto = 5.0 a = kauto · PleCkin3

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

PleCkin2 → PleCpt2 kauto = 5.0 a = kauto · PleCkin2

PleCkin4 → PleCpt4 kauto = 5.0 a = kauto · PleCkin4

PleCpt4 → PleCkin11 kauto = 5.0 a = kauto · PleCpt4

PleCkin10p → PleCkin3 kdauto = 0.16 a = kdauto · PleCkin10p

PleCpt2 → PleCkin2 kdauto = 0.16 a = kdauto · PleCpt2

PleCpt4 → PleCkin4 kdauto = 0.16 a = kdauto · PleCpt4

PleCkin11→ PleCpt4 kdp:kin11 = 0.0755 a = kdp:kin11 · PleCkin11

PleCkin1 → PleCkin01p kdeph = 5.0 a = kdeph · PleCkin1

PleCkin3 → PleCkin02p kdeph = 5.0 a = kdeph · PleCkin3

PleCkin01p → PleCkin1 kphos = 5.0 a = kphos · PleCkin01p

PleCkin02p → PleCkin3 kphos = 5.0 a = kphos · PleCkin02p

PleCkin01p + DivKp→ PleCpt2 kbkp:pc = 5.0 a = kbkp:pc/(h·S)·PleCkin01p·

DivKp

PleCkin02p + DivKp→ PleCpt4 kbkp:pc = 5.0 a = kbkp:pc/(h·S)·PleCkin02p·

DivKp

PleCpt2→ PleCkin01p + DivKp kubkp:pc = 0.16 a = kubkp:pc · PleCpt2

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

PleCpt4→ PleCkin02p + DivKp kubkp:pc = 0.16 a = kubkp:pc · PleCpt4

PleCphos → ∅ kdPleC = 0.05 a = kdPleC · PleCphos

PleCph1 → DivKp kdPleC = 0.05 a = kdPleC · PleCph1

PleCph2 → ∅ kdPleC = 0.05 a = kdPleC · PleCph2

PleCkin11 → DivKp + DivKp kdPleC = 0.05 a = kdPleC · PleCkin11

PleCkin12 → DivKp kdPleC = 0.05 a = kdPleC · PleCkin12

PleCkin22 → ∅ kdPleC = 0.05 a = kdPleC · PleCkin22

PleCkin0 → DivKp + DivKp kdPleC = 0.05 a = kdPleC · PleCkin0

PleCkin2 → DivKp kdPleC = 0.05 a = kdPleC · PleCkin2

PleCkin4 → ∅ kdPleC = 0.05 a = kdPleC · PleCkin4

PleCkin1 → DivKp kdPleC = 0.05 a = kdPleC · PleCkin1

PleCkin3 → ∅ kdPleC = 0.05 a = kdPleC · PleCkin3

PleC2p → ∅ kdPleC = 0.05 a = kdPleC · PleC2p

PleC1p → ∅ kdPleC = 0.05 a = kdPleC · PleC1p

PleCkin02p → ∅ kdPlC = 0.05 a = kdPleC · PleCkin02p

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

PleCkin10p → DivKp kdPleC = 0.05 a = kdPleC · PleCkin10p

PleCkin01p → DivKp kdPleC = 0.05 a = kdPleC · PleCkin01p

PleCpt4 → DivKp kdPleC = 0.05 a = kdPleC · PleCpt4

PleCpt2 → DivKp + DivKp kdPleC = 0.05 a = kdPleC · PleCpt2

∅ mRNADivJ−−−−−−→ DivJf ksDivJ = 12.5 a = ksDivJ ·mRNADivJ

DivJf → ∅ kdDivJ = 0.05 a = kdDivJ ·DivJf

DivJf → DivJ kbdj = 1.0 a = kbdj ·DivJf

DivJ→ ∅ kdDivJ = 0.05 a = kdDivJ ·DivJ

DivJ + DivK → DivJK kbk:dj = 5.0 a = kbk:dj/(h ·S) ·DivJ ·DivK

DivJK → DivJ + DivK kubk:jk = 0.0016 a = kubk:jk ·DivJK

DivJK → DivJKp kphjk = 5.0 a = kphjk ·DivJK

DivJKp → DivJK kdphjkp = 0.16 a = kdphjkp ·DivJKp

DivJKp → DivJ + DivKp kubkp:jkp = 1.0 a = kubkp:jkp ·DivJKp

DivJ + DivKp → DivJKp kbdkp:j = 5.0 a = kbdkp:j/(h · S) · DivJ ·

DivKp

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

DivJK → ∅ kdjk = 0.05 a = kdDivJ ·DivJK

DivJKp → ∅ kdjkp = 0.05 a = kdDivJ ·DivJKp

DivK → DivKp kphdk = 0.05 a = kphdk ·DivK

DivKp → DivK kdphkp = 0.01 a = kdphkp ·DivKp

∅ mRNADivL−−−−−−→ DivLf ksDivL = 12.5 a = ksDivL ·mRNADivL

DivLf → ∅ kdDivL = 0.05 a = kdDivL ·DivLf

DivLf → DivL kbDivL = 1.0 a = kbDivL ·DivLf

DivL→ DivLf kubDivL = 0.1 a = kubDivL ·DivL

DivL→ ∅ kdDivL = 0.05 a = kdDivL ·DivL

DivL + DivKp → DivLKp kbkp:dl = 2.5 a = kbkp:dl/(h · S) · DivL ·

DivKp

DivLKp → DivL + DivKp kubkp:lkp = 0.5 a = kubkp:lkp ·DivLKp

DivLKp→ ∅ kdDivL = 0.05 a = kdDivL ·DivLKp

∅ mRNACckA−−−−−−→ CckAf ksCckA = 12.5 a = ksCckA ·mRNACckA

CckAf → ∅ kdCckA = 0.05 a = kdCckA · CckAf

Continued on next page
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Table B.1 – Chemical reactions and propensities in the Response-Regulator Model

Reactions Rection rate const. Reaction Propensity

CckAf → CckAphos kbCckA = 1.0 a = kbCckA · CckAf

CckAphos→ CckAf kubCckA = 0.1 a = kubCckA · CckAphos

CckAphos
DivL−−→ CckAkin kck = 10.0, Km = 0.5 a = kck

DivL4

DivL4+(Km·h·S)4

CckAkin → CckAphos kph:ck = 1.0 a = kph:ck · CckAkin

CckAkin → ∅ kdCckA = 0.05 a = kdCckA · CckAkin

CckAphos → ∅ kdCckA = 0.05 a = kdCckA · CckAphos

∅ mRNACtrA−−−−−−→ CtrA ksCtrA = 25.0 a = ksCtrA ·mRNACtrA

CtrA → ∅ kdCtrA = 0.05 a = kphCtrA · CtrA

CtrAp → ∅ kdCtrA = 0.05 a = kdphCtrAp · CtrAp

CtrA
CckAkin−−−−−→ CtrAp kphCtrA = 600.0 a = kdCtrA/(h · S) · CtrA ·

CckAkin

CtrAp
CckAphos−−−−−→ CtrA kdphCtrAp = 600.0 a = kdCtrA/(h · S) · CtrAp ·

CckAphos
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Table B.2: Diffusive reactions and propensities in the Response-Regulator Model

Diffusive Jump Rate Const. Propensity

DivJf
i → DivJf

i+1 Ddj = 10.0 a = Ddj/h
2 ·DivJfi

DivJf
i → DivJf

i−1 Ddj = 10.0 a = Ddj/h
2 ·DivJfi

PleCf
i → PleCf

i+1 Dpc = 10.0 a = Dpc/h
2 · PleCf

i

PleCf
i → PleCf

i−1 Dpc = 10.0 a = Dpc/h
2 · PleCf

i

DivKi → DivKi+1 Ddk = 10.0 a = Ddk/h
2 ·DivKi

DivKi → DivKi−1 Ddk = 10.0 a = Ddk/h
2 ·DivKi

DivKpi → DivKpi+1 Ddk = 10.0 a = Ddk/h
2 ·DivKpi

DivKpi → DivKpi−1 Ddk = 10.0 a = Ddk/h
2 ·DivKpi

DivLf
i → DivLf

i+1 Ddl = 10.0 a = Ddl/h
2 ·DivLfi

DivLf
i → DivLf

i−1 Ddl = 10.0 a = Ddl/h
2 ·DivLfi

CckAf
i → CckAf

i+1 Dck = 10.0 a = Dck/h
2 · CckAfi

CckAf
i → CckAf

i−1 Dck = 10.0 a = Dck/h
2 · CckAfi

CtrAi → CtrAi+1 Dca = 10.0 a = Dca/h
2 · CtrAi

CtrAi → CtrAi−1 Dca = 10.0 a = Dca/h
2 · CtrAi

CtrApi → CtrApi+1 Dca = 10.0 a = Dca/h
2 · CtrApi

Continued on next page
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Table B.2 – Diffusive reactions and propensities in the Response-Regulator Model

Diffusive Jump Rection rate const. Reaction Propensity

CtrApi → CtrApi−1 Dca = 10.0 a = Dca/h
2 · CtrApi

B.3 Result Figures
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Figure B.1: The transformations of PleC kinase and phosphatase when interacting with

DivK and DivKp.
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Figure B.2: Localization indicators for DivJ (upper left), PleC (upper right), DivL (lower

left) and CckA (lower right). The indicator functions = 0 (pink) or 1 (red).
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Figure B.3: Histograms of DivKp and free DivL in the early predivisional stage of the

Caulobacter cell cycle. Up: most DivKp molecules are complexed with PleC histidine kinase.

Bottom: Most DivL molecules are free to activate CckA kinase.
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Figure B.4: A typical stochastic simulation of regulatory proteins during the Caulobacter cell

cycle prior to cytokinesis. Colors indicate the numbers of protein molecules in each bin. DivJ

is synthesized throughout the cell cycle and becomes localized at the old pole after t = 30 min.

Transient co-localization of DivJ and PleC (t = 30 − 50 min) turns PleC into kinase form, before

PleC is cleared from the old pole (t = 50−90 min) and relocates (t = 90−120 min) to the new pole

(the nascent flagellated pole). Upon phosphorylation, DivK localizes to the poles of the cell, where

it binds with PleC histidine kinase. Despite the presence of phosphorylated DivK at the new pole

of the predivisional cell, DivL stays active (free DivL, unbound to DivKp) because PleC kinase

sequesters DivKp and prevents it from binding to DivL. In the swarmer stage, CckA is uniformly

distributed and stays as the kinase form. In the predivisional stage, CckA localizes to both poles.

Reactivation of DivL turns CckA into the kinase form at the swarmer pole, while CckA remains as

a phosphatase at the stalk pole. Consequently, the late predivisional cell establishes a gradient of

phosphorylated CtrA along its length with a high level of CtrAp at the new pole and a low level

at the old pole. Stochastic simulations generate temporally varying protein distributions similar to

the results of the deterministic model [106] with realistic fluctuations superimposed.
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Figure B.5: A typical stochastic simulation of regulatory proteins in the late predivisional

stage of the Caulobacter cell cycle. Colors indicate the numbers of protein molecules in

each bin. The bold black line marks the division plane, which separates the cell into two

compartments. In the lower half (the stalked cell) DivJ is actively phosphorylating DivK,

which inhibits CtrA phosphorylation. In the upper half (the nascent swarmer cell), there

is insufficient DivKp to keep PleC in the kinase form. As PleC transforms to phosphatase,

it dephosphorylates DivKp. Consequently, DivL is activated and CtrAp accumulates in the

swarmer cell.
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Figure B.6: Representative stochastic simulations of cells that overexpress DivK two-fold.

Some cells complete the cell cycle normally (up), while most cells stall in the stalked stage

(bottom).
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Figure B.7: Histogram of total phosphorylated CtrA in the early predivisional stage.

Stochastic simulations show that some cells have a high population of CtrAp, which en-

ables them to complete the cell cycle as a wild-type cell would, while others stay in the stalk

stage and fail to divide.
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Figure B.8: The average level (over 250 stochastic simulations) of total CtrAp in the case of

four-fold DivK overexpression (up) and eight-fold DivK overexpression (bottom).
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Figure B.9: Histograms of CtrAp populations at t = 30 min. With eight-fold DivK overex-

pression, CtrA phosphorylation is greatly reduced in what should be the swarmer stage of

the cell cycle.
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Figure B.10: Typical trajectories of the total numbers of CtrAp molecules during a wild-type

cell cycle. CtrAp populations are high in the swarmer stage and drop dramatically at the

swarmer-to-stalked transition, to allow the initiation of chromosome replication.
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Figure B.11: Histograms of swarmer-to-stalked transition times in wild-type cells and ∆divJ

mutant cells. The mean transition time is ∼ 42 min for wild-type cells and ∼ 49 min for

∆divJ mutant cells. ∆divJ mutant cells show a much larger variance of transition times.

The coefficient of variation of swarmer-to-stalked transition times is 14% for wild-type cells

and 29% for ∆divJ cells, in very good agreement with the COVs observed by Lin et al. [68]

for total cell cycle times. We conclude that depletion of divJ doesn’t stall the swarmer-to-

stalked transition for long, but it causes large fluctuations in the transition time.
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Figure B.12: Histograms of DivKp at t = 50 min in wild-type and ∆divJ cells.
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Figure B.13: Histogram of PleC kinase at t = 50 min in wild-type and ∆divJ cells.
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Figure B.14: Histogram of CtrAp at t = 50 min in wild-type and ∆divJ cells.



Appendix C

Supplement Materials

C.1 Model Details

Subramanian proposed an Activator Substrate-Depletion (A-SD) type Turing mechanism [105]

to explain the mechanisms behind PopZ bipolarization (Equation (C.1)).

∂[popZmRNA]

∂t
= ksyn rna[popZgene]− kdeg mRNA[popZmRNA]− µ[popZmRNA]

+DmRNA
∂2[popZmRNA]

∂x2
,

∂[PopZm]

∂t
= ksyn PopZ [popZmRNA]− kdeg PopZ [PopZm]

−kdnv[PopZm]− kaut[PopZm][PopZp]2 + kdepol[PopZp]

−µ[PopZm] +DPopZm
∂2[PopZm]

∂x2
,

∂[PopZp]

∂t
= kdnv[PopZm] + kaut[PopZm][PopZp]2 − kdepol[PopZp]

−kdeg PopZ [PopZp]− µ[PopZp] +DPopZp
∂2[PopZp]

∂x2
,

(C.1)
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where [PopZm] denotes the concentration level of PopZ monomers and [PopZp] for PopZ

polymers. Cell growth leads to dilute effect and µ is the growth rate along the cell axis.

In the stochastic model of PopZ bipolarization, the banana shaped Caulobacter cell is simpli-

fied and modeled as a one dimensional domain along its long axis. According to the multiple

grid discretization method, the corresponding one dimensional reaction-diffusion system is

discretized into 100 compartments (“bins”) for popZ mRNAs and PopZ polymers. Due to the

high diffusion rate constant, the one dimensional domain is discretized into 25 compartments

for PopZ monomers. In each compartment, all chemical reactions (listed in table C.1), as

well as all diffusive jumps, are simulated by “direct method” of SSA.

When a Caulobacter cell grows, new cell wall material is synthesized uniformly along the

long axis. Thus, during Caulobacter cell cycle, the length of each compartment grows expo-

nentially in time as
dh

dt
= µ · h. (C.2)

The new born swarmer cell of Caulobacter has the length of 1.3 µm. After 150 min cell

growth, it grows to 3.0 µm before cell division, with the growth rate µ = 0.0055 min−1.

Before DNA replication starts, there is only one copy of the bacterial chromosome, with its

origin of replication near the old pole. In the stochastic model, this gene is located at 20% of

the length from the end of old pole. At t = 50 min, chromosome replication and segregation

starts. A second copy of the chromosome translocates from the old pole to the new pole

(20% of the length from the new pole). The replicated gene takes a biased random walk

towards the new pole, with the drift rate vpopZ = 0.08 µm/min.

The stochastic simulation of the PopZ polarization model consists of two stages. A fixed cell

length stage is used to get the initial condition for the cell growth stage. Before the cell growth

starts, PopZ forms a focus in the old pole. Then the cell begins to grow exponentially, with

the rate constant µ = 0.005577 min−1. In the stochastic simulation, the cell size is updated

when one reaction or diffusion event happens. Between two reaction/diffusion events, the

cell size keeps constant, and so do the cell size related reaction propensities. In this model,
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each time step is so small, hence this assumption and approximation are valid.

C.2 Rule Based Modeling in Reaction Diffusion Sys-

tem

With the spatial domain partition, the stochastic model consists of thousands of reaction

channels. It is not only inefficient to perform stochastic simulation on such a huge system,

but also difficult to analyze such a system. As reactions in all compartments are basically the

same, the idea of rule-based modeling technique [47] is applied to the stochastic simulation

of PopZ polarization model.

The rule based modeling was originally developed for the stochastic simulation on interaction

networks of multistate species. Multistate species exist naturally in biological systems, such

as proteins with multiple levels of phosphorylation or with various ligand binding sites [47].

The different binding configurations yield different biochemical species. In the conventional

modeling method, it requires one state variable for each different species, which results

in a large system that is inefficient to perform the stochastic simulation. The rule-based

modeling [47] was thus proposed for these complex multistate protein-ligand interaction

systems. In Hlavacek’s definition, a rule can be an individual reaction or an entire reaction

family [47]. For example, suppose protein R has three binding sites, and a ligand L binds to

the first binding site. A rule might include all reactions that bind a ligand L onto the first

binding site, regardless of the other two site:

Ropen,∗,∗ + L
kb−→ RL,∗,∗ (C.3)

where the subscripts of a species describe the configuration of all its binding site. An asterisk

mark indicates any possible states for a certain site. In the rule-based modeling, one rule is

sufficient to represent a family of reactions, which yields a much smaller system.

In reaction-diffusion systems, reactions in all compartments are fundamentally the same.
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Therefore, the same reaction in all compartments makes one rule. The reaction channels

in PopZ bipolarization model are reorganized into a hierarchical structure, where each rule

groups the same reaction channels in all compartments.

The adaption of SSA to rule-based models needs to answer three questions: when the next

rule fires, which rule fires a reaction, and in which compartment the reaction fires? Following

the argument of SSA, it is easy to determine the next reaction time τ , the rule index j and

the compartment index of the reaction i.

τ =
1

a0(x)
ln(

1

r1

),

j = the smallest integer satisfying

j∑
j′=1

aj′(x) > r2a0(x),

i = the smallest integer satisfying
i∑

i′=1

aj,i′(x) > r2a0(x)−
j−1∑
j′=1

aj′(x).

(C.4)

where r1, r2 are two uniform random variables in (0, 1), andaj,i(x) denotes the propensity

density of the rule j in the i-th compartment. aj(x) =
∑K

i=1 aj,i(x) denote the rule propensity

of the rule j. a0(x) =
∑R

j=1 aj(x) is the total propensity density of all the R rules.

C.3 PopZ Reactions and Simulation Results

Table C.1: Chemical reactions and propensities of PopZ

Reaction Rate Const. Propensity

popZi → popZi−1 vpopZ = 0.08 a =
vpopZ
h
· popZi

popZi → popZi+1 DpopZ = 0.01 a =
DpopZ

h2
· popZi

Continued on next page
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Table C.1 – Chemical reactions and propensities of PopZ (Continued)

Reactions Rection rate const. Reaction Propensity

popZi → popZi−1 DpopZ = 0.01 a =
DpopZ

h2
· genei

∅ popZi−−−→ mRNAi ksyn rna = 0.625 a = ksyn rna · popZi

mRNAi → ∅ kdeg mRNA = 0.25 a = kdeg rna ·mRNAi

mRNAi → mRNAi+1 DmRNA = 0.05 a =
DmRNA

h2
·mRNAi

mRNAi → mRNAi−1 DmRNA = 0.05 a =
DmRNA

h2
·mRNAi

∅ mRNAi−−−−→ PopZmi ksyn PopZ = 40.0 a = ksyn PopZ ·mRNAi

PopZmi → ∅ kdeg popZ = 0.05 a = kdeg PopZ · PopZmi

PopZmi → PopZmi+1 DPopZm = 10.0 a =
Dm

h2
· PopZmi

PopZmi → PopZmi−1 DPopZm = 10.0 a =
Dm

h2
· PopZmi

PopZmi → PopZpi kdnv = 12.0 a = kdnv · PopZmi

PopZmi + 2PopZpi → 3PopZpi kaut = 1.8e− 5 a =
kaut
h2
· PopZmi · PopZp2

i

PopZpi → PopZmi kdepol = 0.1 a = kdepol · PopZpi

PopZpi → ∅ kdeg PopZp = 0.05 a = kdeg PopZp · PopZpi

PopZpi → PopZpi+1 DPopZp = 0.001 a =
DPopZp

h2
· PopZpi

PopZpi → PopZpi−1 DPopZp = 0.001 a =
DPopZp

h2
· PopZpi
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C.4 FtsZ Reactions and Simulation Results

Table C.2: Chemical reactions and propensities of FtsZ

Reaction Rate Const. Propensity

∅ → MipZi ksyn MipZ = 80 a = ksyn MipZ · h

MipZi → ∅ kdeg MipZ = 0.25 a = kdeg MipZ ·MipZi

MipZi → MipZi+1 DMipZ = 10.0 a =
DMipZ

h2
·MipZi

MipZi → mRNAi−1 DMipZ = 10.0 a =
DMipZ

h2
·MipZi

MipZi
PopZi−−−→ MipZbi kbnd MipZ = 0.0125 a = kbnd MipZ/h · PopZi ·MipZi

MipZbi → MipZ kubd MipZ = 0.1 a = kubd MipZ ·MipZi

∅ → FtsZmi ksyn FtsZ = 160.0 a = ksyn FtsZ · h

FtsZmi → ∅ kdeg F tsZm = 0.25 a = kdeg F tsZm · FtsZmi

FtsZmi → FtsZmi+1 DFtsZm = 10.0 a =
DFtsZm

h2
· FtsZmi

FtsZmi → FtsZmi−1 DFtsZm = 10.0 a =
DFtsZm

h2
· FtsZmi

FtsZmi → FtsZpi kdnv FtsZ = 300.0 a = kdnv FtsZ · FtsZmi

FtsZmi
FtsZpi−−−→ FtsZpi kaut F tsZ = 2.5e− 4 a =

kaut F tsZ
h2

· FtsZmi · FtsZp2
i

FtsZpi → FtsZmi kdepol F tsZ = 0.0125 a = kdepol F tsZ/h ·MipZbi · FtsZpi

FtsZpi → ∅ kdeg F tsZp = 0.075 a = kdeg F tsZp · FtsZpi

Continued on next page
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Table C.2 – Chemical reactions and propensities of FtsZ (Continued)

Reactions Rection rate const. Reaction Propensity

FtsZpi → FtsZpi+1 DFtsZp = 0.01 a =
DFtsZp

h2
· FtsZpi

FtsZpi → FtsZpi−1 DFtsZp = 0.01 a =
DFtsZp

h2
· FtsZpi
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Figure C.1: Stochastic simulation result of PopZ polarization model. Up left: One popZ

gene is constantly present at 20% of cell length from the old pole end. The chromosome

replication starts at t = 50 min and the replicated chromosome translocates across the cell

until it reaches the position of 20% cell length from the new pole end. Up right: popZ mNRA

is synthesized from the two genes. Due to the short life time (half life time of 2 ∼ 3 min)

and slow diffusion (0.05µm2/min), mNRA can not move far from popZ gene site. Bottom:

PopZ shows a unipolar-to-bipolar transition at around t = 75 min.
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Figure C.2: Histogram of time (top) and cell length (bottom) when popZ gene segregation

is complete (green) and PopZ becomes bipolar (red).
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Figure C.3: The spatiotemporal pattern of stochastic simulation on FtZ polarization model.

Up: MipZ assembles the distribution of PopZ. MipZ binds to the chromosome front in

swarmer cells. After the chromosome segregation stars, MipZ translocates to the new pole

together with the replicated chromosome. Bottom: In the swarmer cell, MipZ stays in the old

pole and repels FtsZ polymers to the new pole. After the chromosome segregation completes,

FtsZ shifts towards the middle of the cell, where MipZ level is lowest.
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