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Control of a Chaotic Double Pendulum Model for a Ship Mounted Crane

Tseng-Hsing Hsu

(ABSTRACT)

An extension of the original Ott-Grebogy-Yorke control scheme is used on a simple double

pendulum. The base point of the double pendulum moves in both horizontal and vertical

directions which leads to rather complicated behavior. A delay coordinate is used to recon-

struct the attractor. The required dimension is determined by the False Nearest Neighbor

analysis. A newly developed Fixed Point Transformation method is used to identify the

unstable periodic orbit (UPO). Two different system parameters are used to control the mo-

tion. Minimum parameter constraints are studied. The use of discrete values for parameter

changes is also investigated. Based on these investigation, a new on-off control scheme is

proposed to simplify the implementation of the controller and minimize the delay in applying

the control.
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Chapter 1

Introduction

1.1 Motivation

The study of chaos leads to new understanding of nonlinear systems. Currently researchers

try to utilize various characteristics of nonlinear systems to their advantage instead of avoid-

ing them. The Ott-Grebogy-Yorke (OGY) control scheme [40] is one method used to control

chaotic behavior.

What separates the OGY scheme from the others is its versatility. The other advantage of

this scheme is that exact knowledge of the system is not required. Researchers have used

the scheme on various systems with good success. The range of application includes biology

(Garfinkel et al. [17]), electronics (Hunt [24]), and lasers ( Gills et al. [18], Reyl et al. [50]).

One area that has not received much attention is the mechanical system. Except for studies

on a magnetoelastic ribbon by Ditto et al. [12], a kicked double rotor [5], and a simple

pendulum [61], there is hardly anything done in this area. A good candidate for research in

this direction is the double pendulum. On one hand, the system is simple yet exhibits chaos

under certain excitations. On the other hand, the system can be used as a model for the

ship-mounted crane. It is possible that the research can eventually lead to practical use.
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The ship mounted crane is a complicated system. The heave and roll of the ship in the

sea have a great effect on the pendulation. The effects of the heave and roll can be even

worse when the frequencies match those of the parametric or primary resonance of the crane.

Under these condition, even a small heave or roll will have a large effect on the pendulation.

The Maryland rigging proposed by Grebogy et al. [19] and the passive control scheme by

Lacarbonara [29] perform well under normal non-chaotic conditions. Both of these schemes

work on a system that can be modeled as a double pendulum. If the OGY control scheme

can be used on the double pendulum, it can be beneficial in two respects. First, though not

feasible to use it under all conditions, it can certainly be used to supplement the previously

mentioned control schemes and to extend the range of operations to control chaotic motion.

Second, OGY only requires small changes in the system parameters. The two control schemes

mentioned already have some mechanisms built in so that certain system parameters are

available to be used in the OGY control scheme. That is to say no system alteration is

required. All that is needed is to add a second control scheme to the controller so that the

OGY scheme kicks in when a pre-set condition is met.

It is the purpose of the proposed study to investigate the effectiveness and feasibility of

applying the OGY control scheme to a mechanical system, specifically a double pendulum

with a horizontally and vertically oscillating base point. By establishing the effectiveness

and feasibility of the OGY scheme on the double pendulum, it can then give indications if

it is possible to implement this control scheme on ship-mounted cranes.

1.2 Outline

This dissertation is organized as follows:

• Chapter 2 is the literature review. A short review of the development of chaos is

presented. The OGY control scheme and pertinent papers are listed along with some

different schemes. Various methods to analyze the experimental data are reviewed.
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• In chapter 3, the equations of motion for the double pendulum under study are derived.

The frequencies of the excitation used in the study are calculated using a multiple-scale

perturbation method. The algorithm for extracting unstable periodic orbits and control

are also explained in this chapter.

• Chapter 4 presents the results of the control.

• Chapter 5 is the conclusion with suggestions for future work.
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Chapter 2

Literature Review

2.1 Chaos

The study of chaotic behavior in a deterministic system began as early as the turn of this

century. Although Poincaré [46] did not specifically call the behavior chaos, he realized that

he could not predict the behavior of three gravitationally attracting bodies despite knowing

the exact equations that describe their motion. In the decades after Poincaré published

his paper, progress has been made in the qualitative aspects of nonlinear systems. On the

quantitative side, approximate schemes were devised to tackle weakly nonlinear system with

success. See the book of Nayfeh and Mook [37] for more references. However, these schemes

failed to address quantitatively the problem of general nonlinear systems.

Things changed dramatically with the introduction of the computer. All of a sudden sci-

entists were given the tool to numerically study previously intractable nonlinear systems.

With the ability to quantitatively study nonlinear systems comes the unexpected conflict

with long held beliefs obtained from the study of linear systems. In 1963, while trying to

simulate the behavior of weather pattern, Lorenz [32] discovered that a small deviation in

initial conditions can lead to dramatically different results in some nonlinear systems. After
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Lorenz’s discovery, a flood of research was done on finding chaos in various nonlinear systems.

Holmes [22] used the Duffing-type equation to study the behavior of a buckled beam. And

he showed that chaos is possible from the result obtained from an analog computer. Moon

and Holmes [34] observed chaotic behavior from a magnetoelastic buckled beam experiment.

Ueda [63] discovered chaotic behavior in a nonlinear electric circuit. In 1981, McLaughlin

[33] numerically studied the chaotic behavior of a parametrically forced pendulum. Most

introductory books on nonlinear dynamics have a list of chaos observed in various systems

(e.g. Moon [35] and Rasband [49]). The books by Devaney [10] (for discrete systems) and

by Guckenheimer and Holmes [20] (for continuous systems) offer excellent introductions to

the study of chaos.

While chaos is characterized as a phenomenon that is sensitive to minor differences in initial

conditions, the quantitative way to describe it lies in the exponential separation of two

initially close orbits. The measure of how fast these two trajectories separate from each

other is the Lyapunov exponent. If a system has a positive Lyapunov exponent, it is chaotic.

When the equations for the system under study are known, it is relatively easy to calculate the

exponent. But in the real world, most data sets are obtained from systems whose equations

are unknown. It is then necessary to develop a way to calculate the Lyapunov exponents from

a data set without the benefit of knowing the underlying equations for the system. Wolf [64]

is one of the first to propose an algorithm to do this. In the same paper, he also provided a

way to calculate Lyapunov exponents from equations for the system. Later, Sano and Sawada

[54] as well as Eckmann et al. [15] proposed ways to calculate the whole Lyapunov exponent

spectrum from a data set. The problem with these algorithms is that they need a good data

set. That is to say the data set should be big enough so that each point has a close enough

neighboring point. And a good estimation of the embedding is essential for these algorithms

to have an accurate estimation of the exponents. More recently, Rosenstein, Collins, and

de Luca [52] and Kantz [25] independently proposed similar algorithms to calculate the

maximum Lyapunov exponent.

When the system under study is simple or the equations of motion are known, it is easy
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to determine the actual dimension of the system. In reality, most experiments can only

observe a small number of variables instead of the whole system. In 1980, Packard et al. [42]

proposed the idea of using time-delay coordinates to reconstruct a phase portrait from a time

series. Takens [62] (reprinted in Ott et al. [41]) independently published a mathematical

proof of the validity of using time-delay coordinates to reconstruct the phase portrait in

1981. A more accessible account of the time-delay coordinate embedding can be found in

the book by Ott et al. [39]. It is a significant step in the study of chaos. Armed with this

technique, researchers can now study a nonlinear system even when the exact equations of

motion are unknown.

Takens [62] also showed that if dA is the dimension of the attractor, then a reconstructed

attractor using a time-delay coordinate with dimension dE can retain all the topological

properties of the original attractor if dE > 2dA. This is a sufficient condition and can be

used to determine an upper bound on the dimension. It was still necessary to determine the

minimum dimension required to properly represent the original attractor using time-delay

coordinates. As pointed out in the paper by Kennel, Brown, and Abarbanel [27], the strange

attractor of the Lorenz equations has a box counting dimension dA = 2.06. According to the

theorem by Takens, the embedded dimension dE = 5 will represent the attractor for sure.

But as it happens, dE = 3 will also do it if the coordinate x(t) is used as the observable.

In the same paper, Kennel, Brown, and Abarbanel proposed the idea of using False Nearest

Neighbors (FNN) to determine the minimum dimension required. Abarbanel et al. later

published a review paper [2] that gave a more in depth look at the analysis of observed data

in general. More recently, the books by Abarbanel [1] and Kantz and Schreiber [26] provide

systematic approaches to experimental time-series analysis.
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2.2 Control of Chaos

After much research where chaos was found in various nonlinear systems, researchers started

to think about using this newly found phenomenon in applications. In 1989, Hübler and

Lüscher [23] proposed a non-feedback control scheme. Their scheme does control; however

their scheme usually requires a large perturbation to the system and a knowledge of the

model equations for the system.

In 1990, Ott, Grebogy, and Yorke [40] proposed a new feedback-control scheme. It is usually

referred to as the OGY control scheme. Their scheme is different from that of Hübler and

Lüscher. It is based on the observation that there are unstable periodic orbits embedded in

the strange attractor. By giving a suitable feedback, it is possible to nudge the system onto

the stable manifold of a chosen unstable periodic orbit and thus converge to that orbit. This

feedback scheme has the advantage that it requires only a small perturbation of accessible

system parameters, it can control more than one mode and it does not require knowledge of

the exact equations of the system. But there are some shortcomings as well. Most notably,

the transient before control is established is usually long and the scheme is not robust with

respect to noise when the positive eigenvalue of the unstable periodic orbit is large.

The first application of OGY in an experimental setup came in 1990. Ditto et al. [12] used

it on a magnetoelastic ribbon. With the initial success of the feedback control scheme, a

flood of research was done on controlling chaos. Romeiras et al. [51] applied the scheme

to a periodically impulsively kicked mechanical system. Hunt [24] modified the OGY al-

gorithm and developed an “occasional proportional feedback” (OPF) control scheme. In

1992, Dressler and Nitsche [14] modified the OGY scheme to obtain better control when

time delay coordinates are used. Garfinkel et al. [17] used the scheme to stabilize cardiac

arrhythmias in rabbit ventricles. Roy et al. [53] used it to control a multimode laser. Petrov

[45] applied the OGY scheme to a chemical reaction. Pyragas [47] proposed a continuous

feedback-control scheme to overcome some of the shortcomings of the OGY scheme in 1992.

The Pyragas scheme was used in an experimental setup in 1993 [48]. In 1992, Shinbrot,
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Grebogi, and Yorke [57] developed a method to target the chaotic orbit toward a desired

state in a much shorter time than the natural evolution of the system. Later Kostelich et

al. [28] proposed a procedure to do higher dimensional targeting. Lai, Ding, and Grebogi

[30] extended the OGY method so that it can be used to control Hamiltonian systems which

may have complex eigenvalues. Alsing, Gavrelides, and Kovanis [3] trained a neural network

to apply OGY on chaotic systems. In a 1994 paper, Alvarez-Ramı́rez [4] used a non-linear

feedback scheme to shorten the transient time. Barreto and Grebogy [7] extended the OGY

scheme to use multiple available system parameters to shorten the transient time. In 1997,

Boccaletti et al. [8] developed an adaptive targeting scheme. Shroer et al. [55] proposed the

idea of using a targeting scheme to control a ship-mounted crane in 1997. But there have

been no follow up papers that actually applied this scheme to the ship-mounted crane. The

review article of Shinbrot [56], although a little outdated, has a more comprehensive account

of the progress of the control scheme up to 1995.

In order to use the OGY control scheme, the unstable periodic orbit embedded in the strange

attractor has to be identified. The straightforward way to do this is to look at the recurrent

neighborhood. The idea is that if an orbit started at x0 comes back to a predefined neigh-

borhood of x0 after time T , then x0 has a periodic orbit with period T (see [31] and [16]) The

method requires a long data set to be able to more accurately determine the Unstable Peri-

odic Orbit (UPO). It is also important to determine an optimal neighborhood size. In 1996,

So et al. [59] proposed to utilize a transformation on the data such that the transformed data

set will be concentrated around the UPO. It is then possible to identify the location of the

UPO by taking a histogram of the transformed data. The original paper deals with finding

the UPO of period 1. In theory it can be applied to finding UPO of period n by taking every

n-th point in the original data set. The straightforward extension will not work well in the

presence of noise or large Lyapunov exponents. In a later paper, So et al. [58] extended the

method to be able to identify higher period UPO. So et al. [60] used this method to locate

UPO in data obtained from neuronal systems. Later, Bak et al. [6] identified UPO in the

data from nuclear-fusion experimentation by using the recurrent-neighborhood method as

8



well as So’s method.

2.3 Software Tools

A large part of the studies of nonlinear data depend on the use of a computer. Over the

years, many programs have been developed by serious researchers and hobbyists. Some of

these programs plot strange attractors, and some of them can only be used as teaching

tools because of their limited scope. But there are also software tools available that are

useful enough to be used in research. One such program is the AUTO package [13] which is

used to study bifurcations. Wolf made available a program to calculate the Lyapunov expo-

nents using the algorithm proposed in his paper [64]. The TISEAN package from Hegger,

Kantz, and Schreiber [21] can be used to study the optimal time-delay, proper embedded

dimension, Lyapunov exponents etc. This paper also describes the algorithm used in the

package and source codes are distributed along with the execution files. The Nonlinear

Dynamics Toolbox (NDT) from Georgia Tech is quite new but versatile. The drawback of

NDT is that it is only available as execution files without source code. It is then impossible

to figure out the algorithm used without a thorough manual and it is also impossible to

modify the code to fit the system under study. Some software eventually becomes com-

mercial. The INSITE package is an implementation of the algorithm presented by Parker

and Chua ([43] and [44]). The implementation of the algorithm in Abarbanel’s book [1]

can be obtained through a license. A good starting point for the various software avail-

able is the Nonlinear Science FAQ (Frequently asked Questions) on the World Wide Web

(http://amath.colorado.edu/appm/faculty/jdm/faq.html). Whenever one of these software

package is used in this research, it is identified.

9



Chapter 3

Formulation

In this chapter, the equations of motion for the system under study are derived. The natural

frequencies of the linearized free motion are calculated. The method of multiple scales [36]

is then used to determine the frequency of the excitation which will produce the maximum

effect. The false-nearest-neighbor procedure is discussed and used later to determine the

dimension required to properly reconstruct the attractor using time-delay coordinate em-

bedding. Methods to extract UPO from a data set are introduced and an algorithm of the

high-dimensional OGY control is explained.

3.1 Nonlinear Equations of Motion

The system under study is illustrated in figure 3.1. The motion of the base point is:

x = A cosω1t

y = B cosω2t .
(3.1)
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Figure 3.1: The setup of the system

11



The coordinates of the masses are therefore:

x1 = A cosω1t+ l1 sin θ1

y1 = B cosω2t+ l1 cos θ1

x2 = A cosω1t+ l1 sin θ1 + l2 sin θ2

y2 = B cosω2t+ l1 cos θ1 + l2 cos θ2

(3.2)

and the velocities are:

ẋ1 = −Aω1 sinω1t+ l1 cos θ1θ̇1

ẏ1 = −Bω2 sinω2t− l1 sin θ1θ̇1

ẋ2 = −Aω1 sinω1t+ l1 cos θ1θ̇1 + l2 cos θ2θ̇2

ẏ2 = −Bω2 sinω2t− l1 sin θ1θ̇1 − l2 sin θ2θ̇2 .

(3.3)

The Lagrangian of the system is:

L =
m1 +m2

2
(A2ω2

1 sin
2 ω1t+B2ω2

2 sin
2 ω2t)

+ (m1 +m2)l1θ̇1(Bω2 sinω2t sin θ1 − Aω1 sinω1t cos θ1)

+m2l2θ̇2(Bω2 sinω2t sin θ2 −Aω1 sinω1t cos θ2)

+
m1 +m2

2
l21θ̇

2
1 +

m2

2
l22θ̇

2
2 +m2l1l2θ̇1θ̇2(cos θ1 cos θ2 + sin θ1 sin θ2)

+ (m1 +m2)g(B cosω2t+ l1 cos θ1) +m2gl2 cos θ2 .

(3.4)

The equations of motion can be derived from equation 3.4 by using

d

dt
(
∂L
∂θ̇i

)− ∂L
∂θi

= 0 (3.5)

where i = 1, 2. The equations of motion obtained are the following:

(m1 +m2)l
2
1θ̈1 + (m1 +m2)l1(Bω2

2 cosω2t sin θ1 − Aω2
1 cosω1t cos θ1)

+m2l1l2θ̈2 cos(θ1 − θ2) +m2 sin(θ1 − θ2)θ̇
2
2 + (m1 +m2)gl1 sin θ1 = 0 (3.6)

m2l1l2 cos(θ1 − θ2)θ̈1 +m2l2(Bω2
2 cosω2t sin θ2 −Aω2

1 cosω1t cos θ2) +m2l
2
2θ̈2

−m2l1l2 sin(θ1 − θ2)θ̇
2
1 +m2gl2 sin θ2 = 0 . (3.7)
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Let the friction at the base point be proportional to θ̇1 and the friction in the middle be

proportional to θ̇2 − θ̇1. Putting the effect of friction into equations 3.6 and 3.7, the final

equations of motion become:

(m1 +m2)l
2
1θ̈1 + (m1 +m2)l1(Bω2

2 cosω2t sin θ1 − Aω2
1 cosω1t cos θ1) + α1θ̇1

+m2l1l2θ̈2 cos(θ1 − θ2) +m2 sin(θ1 − θ2)θ̇
2
2 + (m1 +m2)gl1 sin θ1 = 0 (3.8)

m2l1l2 cos(θ1 − θ2)θ̈1 +m2l2(Bω2
2 cosω2t sin θ2 −Aω2

1 cosω1t cos θ2) +m2l
2
2θ̈2

+ α2(θ̇2 − θ̇1)−m2l1l2 sin(θ1 − θ2)θ̇
2
1 +m2gl2 sin θ2 = 0 (3.9)

where α1 and α2 are the coefficients of friction at the corresponding joints. Let

ω =

√
g

l2
τ = ωt

l1
l2

= l
m2

(m1 +m2)
= m

ω1

ω
= ω̃1

ω2

ω
= ω̃2

α1

m2l
2
2ω

= µ1
α2

m2l
2
2ω

= µ2 (3.10)

A

l2
= δ

B

l2
= η

d

dτ
(·) = (·)′ .

Substituting equations 3.10 into equations 3.8 and 3.9, the non-dimensional equations of

motion are

θ′′1 +
m

l
cos(θ1 − θ2)θ

′′
2 + µ1

m

l2
θ′1 +

m

l
sin(θ1 − θ2)(θ

′
2)

2 +
1

l
sin θ1

+
η

l
ω̃2

2 cos ω̃2τ sin θ1 − δ

l
ω̃2

1 cos ω̃1τ cos θ1 = 0 (3.11)

l cos(θ1 − θ2)θ
′′
1 + θ′′2 + µ2(θ

′
2 − θ′1)− l sin(θ1 − θ2)(θ

′
1)

2 + sin θ2

+ ηω̃2
2 cos ω̃2τ sin θ2 − δω̃2

1 cos ω̃1τ cos θ2 = 0 . (3.12)
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The undamped, unforced linear natural frequencies of the system are obtained by first re-

moving the damping and excitation from equations 3.11, 3.12 and then linearizing them

around 0. The resulting equations of motion are:

θ′′1 +
m

l
θ′′2 +

1

l
θ1 = 0

lθ′′1 + θ′′2 + θ2 = 0 .

(3.13)

From equations 3.13, the natural frequencies of the system are calculated as

ωn1 =

√√√√1 + l −√
1− 2l + l2 + 4lm

2l(1−m)

ωn2 =

√√√√1 + l +
√
1− 2l + l2 + 4lm

2l(1−m)
.

(3.14)

After the natural frequencies of the linearized free-vibration system are identified, it is then

possible to determine the frequencies of the excitation that will produce the maximum effect

on the system. In order to do so, a perturbation method (specifically, the method of multiple

scales) is used to determine these frequencies. The bookkeeping parameter ε, which is a

measure of the amplitude of the motion, is introduced. For the excitation and damping to

show up in the order ε2, it is necessary to do the following substitution:

µ1 = εµ1 µ2 = εµ2

δ = ε2δ η = εη

θ1 = εθ11 + ε2θ12 + · · · (3.15)

θ2 = εθ21 + ε2θ22 + · · ·
τ = T0 + εT1 + ε2T2 + · · · .

Equations 3.15 are substituted into the original non-dimensional equations of motion (equa-

tions 3.11) and the notation Dm
i (·) = ∂(m)

∂T m
i
(·) is used. The terms are then collected according

to the order of ε. The resulting equations are:

Order ε:

D2
0θ11 +

m

l
D2

0θ21 +
θ11

l
= 0

lD2
0θ11 +D2

0θ21 + θ21 = 0

(3.16)
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Order ε2:

D2
0θ12 +

m

l
D2

0θ22 +
θ12

l
= −2D0D1θ11 − 2m

l
D0D1θ21 − mµ1

l2
D0θ11

− ηω̃2
2

l
θ11 cos ω̃2τ +

δω̃2
1

l
cos ω̃1τ

lD2
0θ12 +D2

0θ22 + θ22 = −2lD0D1θ11 − 2D0D1θ21 − µ2(D0θ11 −D0θ21)

− ηω̃2
2θ21 cos ω̃2τ + δω̃2

1 cos ω̃1τ .

(3.17)

The order-ε equations are just the equations for the linearized free-vibration system. The ω̃1

and ω̃2 are chosen such that they will produce secular terms in the order ε2 equations. From

equations 3.16, θ11 and θ21 can be written as

θ11(T0, T1, . . . ) = A(T1, T2, . . . ) exp(iωn1T0) +B(T1, T2, . . . ) exp(iωn2T0) + C.C.

θ21(T0, T1, . . . ) = C(T1, T2, . . . ) exp(iωn1T0) +D(T1, T2, . . . ) exp(iωn2T0) + C.C.
(3.18)

where C.C. represents the complex conjugate. Equations 3.18 are substituted into equa-

tions 3.17. It can then be shown that if ω̃1 and ω̃2 satisfy the following conditions

ω̃1 = ωn1, ωn2

ω̃2 = 2ωn1, 2ωn2, ωn2 − ωn1, ωn1 + ωn2 ,
(3.19)

there will be secular terms on the right-hand side in equation 3.17. For a double pendulum

with m2

m1
= 20 and l2

l1
= 8, the ratio of wn2 to wn1 is approximately 10. So the forcing

frequencies for this study are chosen to be wn1 in the x direction and 2wn1 in the y direction.

3.2 Determining the Dimension Required for the Re-

constructed Attractor

For a system with known equations of motion, it is easy to determine the dimension of the

system. But usually only a few variables can be observed and recorded. It is then necessary to

use the time-delay coordinate to reconstruct the attractors. Each point in the reconstructed

15



attractor has the coordinate zn = (xn−m+1, xn−m+2, · · · , xn−1, xn)
T where xi is the observable

and m is the dimension of the reconstructed attractor. The question now is how many

dimensions to use. If too few dimensions are used, points being in a small neighborhood in

that specific reconstructed space does not mean that they are actually close to each other.

If too many dimensions are used, it will waste a lot of time without improving the result.

There are several proposed methods to determine the minimum required dimension. The

method of false nearest neighbor will be used in this study. The basis for this method is that

in an unfolded attractor (i.e. the attractor reconstructed in high enough dimension), the

neighboring points are truly close to each other. There will not be any points that are close

to each other due to projection from higher dimensions to lower dimensions. The way to

determine if two points in d dimensions are true neighbors is to look at the distance between

these two points in d+ 1 dimensions. The criterion for two points to be false neighbors can

thus be written as:

|xn+1 − x′
n+1|

Rd(zn, z′n)
> RT (3.20)

where Rd(zn, z
′
n) is the distance between zn and z′n in d dimension and RT is the threshold

value for false neighbors. For most systems, the threshold value is about 15. There is a

possible pitfall in this criterion. If the nearest neighbor of a point is actually very far away

from it, then these points will always be considered as true neighbors by the criterion above.

It is necessary then to establish a second criterion to check for this possibility.

|xn+1 − x′
n+1|

RA
> 2 (3.21)

where RA is the ”nominal radius” of the attractor. The exact definition will not affect the

outcome of this criterion. The root mean square (RMS) value of the observable xn is used

in this research. This second criterion will identify a nearest neighbor as false if when going

from dimension d to dimension d + 1, the added component is of the order of the ”nominal

diameter” of the attractor. A nearest neighbor is defined as false if it satisfies either one of

these criteria.
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3.3 Extracting the Unstable Periodic Orbit (UPO) from

Data Sets

One of the most important steps in using the OGY control scheme is to identify the unstable

periodic orbit. For a system with known equations of motion, it is possible to obtain the

UPO by use of a shooting method. Unfortunately, the equations are usually unknown or

only partially known in most cases. The only way to obtain the UPO is then to analyze the

data set. The most straight forward way to do this is to utilize the concept of a recurrent

neighborhood. In short, it is the method of counting the time required for an orbit to return

to a pre-defined small neighborhood of the starting point and to choose that time as its

period. The problem with this approach is that it usually requires a very large data set and

the size of the neighborhood will affect the result of the procedure. So et al. [58] proposed

an alternative method to extract a UPO. The basis for the new method is that by applying

a transformation to the data set, the transformed data set will cluster around the UPO thus

making it possible to identify the UPO by inspecting the histogram of the transformed data.

If F is the mapping function, the transformation used has the following form

ẑ = G(z,R) = [I− S(z,R)]−1 · [F(z)− S(z,R) · z] (3.22)

where I is the identity matrix and S is a matrix function of z and a random tensor R

S(z,R) = ∇F(z) +R · [F(z)− z] . (3.23)

Figure 3.2 illustrates the geometric interpretation of the transformation in one dimension

with R = 0. Given a sequence {zi}, zn+2−zn+1

zn+1−zn
is the slope of the line γ. It is also an estimate

of the Jacobian at zn. From the geometry in figure 3.2, we obtain the following equation

ẑn − zn+1

ẑn − zn =
zn+2 − zn+1

zn+1 − zn ≈ ∇F(zn) . (3.24)

When equation 3.24 is solved for ẑn, the result is

ẑn ≈ zn+1 − zn∇F(zn)
1−∇F(zn+1)

=
F(zn)− zn∇F(zn)
1−∇F(zn+1)

. (3.25)
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R = 0
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Comparing equation 3.25 with equations 3.22 and 3.23. It is clear that the point ẑn is the

image of zn under the map G(z, 0), that is,

ẑn = G(zn, 0) . (3.26)

In the special case R = 0, not only do the fixed points have peaks in the histogram of the

transformed data set, but the point G(z̄) may also have a peak in the histogram of the

tranformed data set if ∇G(z̄) = 0. The addition of a number of random Rs has the effect

of scattering the points that are not fixed points such that they will not have a peak in the

histogram.

The transformation 3.22 has the following properties:

• If z∗ is a fixed point of the mapping function F, then z∗ is also a fixed point of the

transformation G(z,R). (i.e. G(z∗,R) = z∗)

• If z∗ is a fixed point of the mapping function F, then z∗ is a stationary point of the

transformation G(z,R). (i.e. ∇G(z∗,R) = 0)

• The pointwise dimension of the attractor at z is unchanged if z is a regular point. The

dimension will typically be halved under the transformationG if z is a stationary point

of G.

The proof for the first property is straightforward. The paper by So el. al. [58] has a detailed

proof for the second and third properties. In appendix B, the extractions of the UPO from

the logistic map and the Hénon map using the transformation are presented as examples of

this approach.

3.4 Control

One of the first attempts to control a chaotic system was the Ott-Grebogy-Yorke (OGY)

method [40]. The basic principle for this method is that there are infinitely many unstable
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periodic orbits (UPOs) embedded in the strange attractor and eventually the orbit will be

in close neighborhoods of all of them. Once the orbit travels to the neighborhood of the

target UPO, it is then possible to adjust an available system parameter based on a linear

approximation in the neighborhood such that the next iteration will put the orbit on the

stable manifold of the target UPO. In figure 3.3 the original OGY control procedure is

illustrated . Assume that p is a system parameter that can be varied around a nominal value

p0. Let ξF (p0) be the desired unstable periodic point and λs and λu be the corresponding

stable and unstable eigenvalues when p = p0. Let es and eu be the unit vectors in the stable

and unstable directions. The contravariant basis vectors fs and fu are defined by

fs · es = fu · eu = 1 (3.27)

fs · eu = fu · es = 0 . (3.28)

Assume that the periodic point shifts to ξF (p0 + p̄) when p = p0 + p̄. For small p̄, ξF (p0 + p̄)

can be approximated as

ξF (p0 + p̄) ≈ ξF (p0) + p̄g (3.29)

where g = ∂ξF (p)
∂p

|p=p0. In the neighborhood of ξF (p0), the mapping can be approximated as

ξn+1 − ξF (p0 + pn) =M · [ξn − ξF (p0 + pn)] (3.30)

where M can be approximated as

M = λueufu + λsesfs . (3.31)

Substituting equation 3.29 and equation 3.31 into equation 3.30, the equation becomes

ξn+1 − ξF (p0) ≈ png + (λueufu + λsesfs) · [ξn − ξF (p0)− png] . (3.32)

The purpose of the OGY control is to choose pn such that fu · (ξn+1 − ξF (p0)) = 0. Dot

equation 3.32 with fu and solve for pn

pn =
λu

λu − 1

fu · [ξn − ξF (p0)]

fu · g . (3.33)
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As indicated by Dressler and Nitsche ([14], [38]), it is possible to lose control if the time

delay coordinates are used instead of the real state variables. The original OGY also failed

to address the problem of higher dimensional systems with more than one unstable direction.

Ding et al. [11] proposed an extension to the original OGY to accommodate these two

concerns. Assume that the system has a dimension m when using the time delay coordinates.

The coordinate of the n-th point is

zn =




z(1)
n

z(2)
n

...

z(m)
n



=




xn−m+1

xn−m+2

...

xn




. (3.34)

The map for zn will then be

zn+1 = G(zn, pn−m+1, pn−m+2, · · · , pn) (3.35)

where pi is the parameter at iteration i. The Jacobian of the map at z is

A = DzG(zn, pn−m+1, pn−m+2, · · · , pn) . (3.36)

Define a set of m-dimensional column vectors

B(m) = Dpn−m+1G(zn, pn−m+1, pn−m+2, · · · , pn)

B(m−1) = Dpn−m+2G(zn, pn−m+1, pn−m+2, · · · , pn)

...

B(1) = DpnG(zn, pn−m+1, pn−m+2, · · · , pn) .

(3.37)

Assume that z̄ is a fixed point of the system when p = p̄

z̄(p̄) = G(z̄(p̄), p̄, p̄, · · · , p̄) . (3.38)

The mapping near the fixed point can then be written as

zn+1 − z̄(p̄) = A(zn − z̄(p̄)) +B(m)(pn−m+1 − p̄) +B(m−1)(pn−m+2 − p̄) + · · ·+B(1)(pn − p̄)

(3.39)
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where A and B(i) are evaluated at z̄(p̄) and pn−m+1 = pn−m+2 = · · · = pn = p̄. Due to

the nature of the discrete-time series and delay coordinates used here, A and B’s have the

following form.

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

a(m) a(m−1) a(m−2) · · · a(1)




m×m

(3.40)

B(i) =




0

0
...

0

b(i)




m×1

. (3.41)

Now, introduce the state-plus-parameters system which includes zn and the previous para-

meter

Yn =




zn

pn−m+1

pn−m+2

...

pn




(2m−1)×1

. (3.42)

The fixed point for this expanded phase space is then

Ȳ =




z̄(p̄)

p̄

p̄
...

p̄




(2m−1)×1

. (3.43)
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Now equation 3.39 can be rewritten as

Yn+1 − Ȳ = Ã(Yn − Ȳ) + B̃(pn − p̄) (3.44)

where

Ã =




A B(m) B(m−1) B(m−2) · · · B(2)

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · 1

0 0 0 0 · · · 0




(2m−1)×(2m−1)

(3.45)

and

B̃ =




B(1)

0
...

0

1




(2m−1)×1

. (3.46)

Assume thatA has u unstable directions and s stable directions (u+s = m) with eigenvalues

|λ1| > |λ2| > · · · > |λu| > 1 > |λu+1| > |λu+2| > · · · > |λm|. Let ei be the corresponding

eigenvectors. Then λ1, λ2, · · · , λm are also the eigenvalues of Ã with corresponding eigen-

vectors

ki =




ei

0
...

0

0




(2m−1)×1

(3.47)

i = 1, 2, · · · , m. As indicated by Ding et al. [11], the (m − 1) vectors that span the null

space of Ãm−1 along with ku+1,ku+2, · · · ,km form the basis of the stable subspace of Ã.
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The goal of the control is to make u parametric perturbations δpn, δpn+1, · · · , δpn+u−1 such

that δYn+u = Yn+u − Ȳ is entirely in the stable subspace of Ã. The contravariant unstable

eigenvectors vi (i = 1, 2, · · · , u) can be obtained by solving

ÃTvi = λivi (3.48)

where ÃT is the transpose of Ã. These contravariant unstable eigenvectors are perpendicular

to the stable subspace of Ã. By choosing δpn, δpn+1, · · · , δpn+u−1 such that

vT
1 δYn+u = 0

vT
2 δYn+u = 0

...

vT
u δYn+u = 0 ,

(3.49)

δYn+u is in the stable subspace of Ã. By combining equation 3.44 and equation 3.49, the

control law for the control parameter pn at time n can be found to be

pn = p̄−
(

λ1

(vT
1 B̃)
vT

1

)
δYn (3.50)

for u = 1 and

pn = p̄−

 u∑

k=1

(λk)
u

(vT
k B̃)

∏u
i=1,i�=k(λk − λi)

vT
k


 δYn (3.51)

for u > 1. Although it is possible to calculate pn+1, pn+2, · · · , pn+u−1, it is preferable to

calculate pn at every iterate n because of the possible presence of system noise.
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Chapter 4

Numerical Result

4.1 Chaos

The system used in this research has the following parameter values: l1 = 4m, l2 = 24m,

m1 = 250kg, and m2 = 5000kg. The non-dimensional parameters used in equations 3.11,

3.12 arem = 5000
250+5000

and l = 4
24
. The non-dimensional friction coefficients are µ1 = µ2 = 0.1.

When the base point oscillations in the horizontal and vertical directions are small, the

system will be oscillating periodically. As the magnitude of the motions of the base point

grows, the system eventually goes into chaos. Figure 4.1 to figure 4.4 are the projections of

the attractor onto various planes for δ = 0.25 and η = 0.45 1.

In figure 4.5, we see the FFT of θ1, θ2, θ̇1, and θ̇2. These figures show that the system is

possibly chaotic. From this point on, the numerical integration will be treated as a black

box for producing data and only θ̇2 will be used as an observable for further study. The first

thing to do with the observed time series is to plot the n-th value against the (n+1)-th value

to see if there is some structure. Figure 4.6 is such a plot for the observable θ̇2 and it seems

1As defined in equations 3.10, δ is the ratio of the amplitude of base point oscillation in the horizontal

direction to the length of the lower part of the double pendulum. η is the ratio in the vertical direction.
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to be some strange-attractor-like structure. To determine if the system is chaotic, it is then

necessary to determine the largest Lyapunov exponent. The algorithm developed by Kantz

[25] is used here. The basic idea of the Kantz algorithm is the following. Choose N points

in the data set {β1, β2, · · · , βN}. For each point βn, select all its neighbors whose distances

from βn are less than ε. Let d(βn, ε,∆n) be the average distance of all the neighbors of βn

as a function of the iteration ∆n. Define the function S(∆n) as

S(∆n) =
1

N

N∑
n=1

ln(d(βn, ε,∆n)) . (4.1)

In the region where S(∆n) exhibits linear increase, the slope of S(∆n) is then an estimate of

the maximum Lyapunov exponent. Figure 4.7 is the result obtained from the program in the

TISEAN package (see R. Hegger, H. Kantz, and T. Schreiber [21]). The slope of the dashed

line is the maximum Lyapunov exponent. In this case, the maximum Lyapunov exponent is

approximately 1.069 which indicates that the system is chaotic.

4.2 Dimension of Embedding

When only one motion observable is available, it is necessary to use the time-delay coordinate

method to reconstruct the attractor. It is important to determine the embedding dimension

required to appropriately reconstruct the attractor. For this study, the method of the false

nearest neighbor is used to accomplish this goal. Figure 4.8 is the result of applying the

false-nearest-neighbor analysis to a data set of 50000 points. From the figure, the percentage

of false nearest neighbors decreases rapidly from an embedded dimension 1 to an embedded

dimension 3. After dimension 3, the rate of decrease levels off and after dimension 5, the

decrease is almost negligible. Instead of going to zero, the percentage remains about 10

percent after dimension 5. There are two possible explanations. The first one is the presence

of noise in the data set. For this study, the data were generated from a numerical experiment.

Noise should not be a factor here. The second possible explanation lies in the false nearest

neighbor method itself. Geometry is the only consideration here. It is possible that in some
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region on the attractor, the unstable eigenvalues are large enough such that even a true

nearest neighbor will not be able to satisfy the criteria. There are two points to consider

when trying to determine the required embedded dimension

• The decrease of the percentage of false nearest neighbors from dimension 3 to dimension

9 is about 10 percent while the decrease is about 20 percent from dimension 2 to

dimension 3.

• The false-nearest-neighbor analysis gives an indication of the global dimension of the

attractor. The OGY control scheme needs the local behavior near an unstable fixed

point. The local dimension near an unstable fixed point is not necessarily smaller than

the global dimension but it usually is.

With these considerations, an embedded dimension of 3 seems to be a good starting point.

4.3 Determining the Fixed Point

Once the embedded dimension is chosen, the next step is to determine the location of a fixed

point. The transform method is used here instead of the close return method. The same data

set is used again. 500 different random Rs are used in the transforms. It is hard to visualize

a general histogram of points in 3 dimensions. Since time-delay coordinates are used in this

study, the fixed point will be on the diagonal line x1 = x2 = x3. Instead of trying to visualize

the general histogram, it is possible to determine the peak by looking at the one-dimension

histogram of x1, x2, and x3 components of all points in the transformed data set that are

near the diagonal. Figure 4.9 is the result. The histogram on top is obtained by applying

the fixed point transformation on the first 2000 points in the data set. The plot at the

bottom is the result by applying the method to the whole data set (50000 points). From the

histograms, it is determined that the point (−2.498,−2.498,−2.498) is a fixed point. The

UPO Analyzer routine in Nonlinear Dynamics Toolbox package (NDT, a software package
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developed by a research group at Georgia Tech) uses the close return method to locate UPO.

It also identifies this point as a fixed point when the whole data set is used. It is not able to

do that from the first 2000 points of the data set. This shows that the fixed point transform

method can identify the fixed point using a shorter data set.

4.4 Control Using Horizonal Oscillation of the Base

Point as the Control Parameter

In order to use the control scheme, it is necessary to obtain the Jacobian at the fixed point

and the sensitivity vector (the differential of the mapping function with respect to the control

parameter). The Jacobian is obtained by collecting points in a predefined neighborhood of

the fixed point (x∗, x∗, x∗). The method of least squares is then used to find the Jacobian.

For dimension d = 3, the Jacobian has the form:

∇F =




0 1 0

0 0 1

a(3) a(2) a(1)


 . (4.2)

After determining the Jacobian, the sensitivity can be obtained in the following manner:

If the orbit at iteration n, xn, is in a predefined neighborhood of the fixed point, change

the control parameter to p = p0 + δpn where p0 is the nominal value of the control pa-

rameter. Iterate once and collect the value xn+1. Change the parameter back to p0 and

iterate twice more to collect xn+2 and xn+3. The sensitivity vector (b(1), b(2), b(3)) can then

be approximately calculated as

b(1) =
δxn+1 − a(1)δxn − a(2)δxn−1 − a(3)δxn−2

δpn

b(2) =
δxn+2 − a(1)δxn+1 − a(2)δxn − a(3)δxn−1

δpn

b(3) =
δxn+3 − a(1)δxn+2 − a(2)δxn+1 − a(3)δxn

δpn

(4.3)
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where δxi = xi − x∗. After acquiring the Jacobian and the sensitivity vector, it is then

possible to apply the control on the system.

For all cases in this section, the maximum allowable change of the control parameter is

5.0 × 10−2. Figure 4.10 shows the result of applying control on the system. The only

restriction on the control parameter is that it has to be less than the maximum allowable

change. For this study, the allowable maximum change of the parameter is 0.05. If the

calculated change is larger than the maximum, then no change is applied. The figure at

the bottom shows the portion of the figure at the top around the fixed point. Figure 4.11

shows the control parameter at each iteration. With the exception of the initial period of

the control, the parameter change used is very small (≈ 2.0× 10−4).

In real physical systems, there are two things that need to be taken into consideration. First,

the system can not apply parameter changes below a certain minimum. Second, the system

may not be able to apply arbitrary parameter change between the maximum allowable change

and the minimum change. Figure 4.12 shows the result of applying control with both the

minimum and maximum restriction. The minimum is 1.0× 10−2 for this case. The plot on

the top is similar to the one in figure 4.10. But the plot at the bottom shows that there is a

small variation around the fixed point due to the restriction of a minimum change of control

parameter. Figure 4.13 shows the control parameter at each iteration under the restriction.

Figure 4.14 shows the control with the restriction that the parameter change can only occur

at certain values that are less than the maximum. Figure 4.15 shows the control parameter

at each iteration under such a restriction. The step size for this case is 1.0× 10−2.

To quantify the effect of the minimum value and discrete value restrictions, the average value

and standard deviation of the observable motion under control are calculated for several

different minimums and step sizes. Table 4.1 gives the average and standard deviation

of the observable motion that is under control. Figure 4.16 is the plot of the values in

table 4.1.The average value does not change much for different minimum or step size. The

standard deviation, on the other hand, increases as the minimum or step size increases. There
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Table 4.1: The Average Value and Standard Deviation of the Observable

Maximum and Minimum Maximum and Discrete

Minimum or Step Size Average Standard Deviation Average Standard Deviation

1.0× 10−3 -2.497916 1.545643× 10−4 -2.497887 1.293553× 10−4

5.0× 10−3 -2.497902 7.299597× 10−4 -2.497875 6.528433× 10−4

1.0× 10−2 -2.497860 1.793826× 10−3 -2.497921 1.301090× 10−3

1.5× 10−2 -2.498080 3.098827× 10−3 -2.498008 1.962033× 10−3

2.0× 10−2 -2.498085 4.418207× 10−3 -2.498225 2.648088× 10−3

2.5× 10−2 — — -2.498343 3.288514× 10−3

3.0× 10−2 — — -2.498567 3.942095× 10−3
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is no number in the table for minimum restriction above 2.0×10−2 because the system could

not be controlled under that condition.

4.5 Control Using Torque on the Lower Part of the

Double Pendulum as the Control Parameter

One of the advantages of the OGY control scheme is that it is not restricted to a certain

control parameter. All the control scheme requires is a system parameter that is available.

In this section, the control is achieved by applying a small torque on the lower part of the

double pendulum. For all cases in this section, the maximum allowable change of the control

parameter is 5.0× 10−2. Figure 4.17 is the control with only a restriction on the maximum.

Figure 4.18 is the plot of the control parameter at each iteration. Figure 4.19 shows the

result of applying control with both the maximum and minimum restriction. The minimum

restriction for the case shown is 5.0× 10−3. Figure 4.20 is the plot of control parameter at

each iteration. Figure 4.21 and figure 4.22 are the control and parameter for the system with

maximum and discrete restrictions. The step size for the discrete restriction is 5.0× 10−3

for this case. Table 4.2 shows the average values and standard deviation of the observable

motion. Figure 4.23 is the plot of the values in table 4.2. Again, the average values remain

essentially the same while the standard deviations increase as the minimum or step size

increases. Comparing the values in table 4.2 with those in table 4.1 under similar restriction

suggests that torque can have a larger effect on the system. This is reasonable because the

displacement of the base point affects the observable motion (θ̇2) indirectly while torque

affects it directly.
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Table 4.2: The Average Value and Standard Deviation of the Observable

Maximum and Minimum Maximum and Discrete

Minimum or Step Size Average Standard Deviation Average Standard Deviation

1.0× 10−3 -2.497917 2.198235× 10−4 -2.497847 2.380706× 10−4

2.5× 10−3 -2.497885 5.962525× 10−4 -2.497878 5.859296× 10−4

5.0× 10−3 -2.498202 2.150118× 10−3 -2.497952 1.174405× 10−3

7.5× 10−3 -2.497955 3.081884× 10−3 -2.498104 1.790461× 10−3

1.0× 10−2 — — -2.498562 2.466325× 10−3
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4.6 The On-Off Control

In the previous two sections, it was shown that it is possible to maintain control by using a

discrete set of control parameter changes. To push this idea to the limit, one can ask if it is

possible to maintain control of the system by using only a minimum number of values for the

parameter change. The simplest way is to use only three values, p0, p0+δp, and p0−δp, where

p0 is the nominal value of the control parameter and δp is a predefined value for the change

of the parameter. This approach is called on-off control here because the controller has only

three states, positive-on, off, and negative-on. This approach has two advantages. First,

it simplifies the implementation of the controller. Second, it minimizes the time required

to activate the control. Figure 4.24 shows the result of applying the on-off control on the

system. The magnitude of the parameter change used for the figure is 5.0×10−3. Figure 4.25

shows the control parameter at each iteration. Figure 4.26 to figure 4.28 show the plots of

θ1, θ2, and θ̇1. These plots indicate that the system is actually under control.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

When the chaos phenomenon was first discovered, there was a lot of excitement about

it. Much of the earlier research concentrated on finding chaos in various systems. When

researchers study nonlinear systems and encounter chaotic behavior, they typically modify

their models to eliminate the chaotic behavior. These modifications are significant. More

recently, researchers gained more insight into chaos and have included chaos in their control

schemes. The OGY control scheme tries to utilize the infinite UPOs embedded in the strange

attractor to stabilize the system. On the other hand, some researchers tried to make their

system more chaotic to get better mixing between fuel and oxygen in an engine. There was

some success in both directions.

This research has accomplished the following objectives:

1. Applied a newly developed method for locating UPO and further validated its useful-

ness.

2. Applied the higher dimensional extension of OGY control to a system that has not

63



been used before 1.

3. Studied the effect of imposing minimum values for the change of the control parameter.

4. Studied the effect of using only discrete values for the change of the control parameter.

5. Proposed an on-off control scheme based on the higher-dimension extension of the

OGY control method.

This research also shows that the OGY control scheme is not the best method for ship-

mounted cranes. In order to use the OGY scheme, the system has to be in chaos. From

numerical simulations, it is evident that the double pendulum will go over the top under

that situation. Real cranes use cables instead of rigid massless bars and hence are more

complicated. It is definitely possible that regions of chaos exist with relatively small pendu-

lations (≤ π
2
). But it might be better to use other control schemes in that situation. Besides,

the target state of the OGY control is a fixed point on the Poincaré map which is in fact a

periodic motion. The desired control state for a ship-mounted crane is an actual fixed point.

5.2 Future Work

There are two areas for future work, application and performance. Although it is shown that

OGY is not the best control strategy for the ship-mounted crane, there might be systems

that are more suitable for this scheme. It is important to identify these systems and try to

apply the control scheme on them. On the performance side, more study should be made to

shorten the transient before the activation of control. The other issues that should receive

consideration are noise and time-delay for the application of the control. In a real system,

noise will always be present. Studies should be done to determine the effect of noise on

1Christini, Collins, and Linsay [9] applied a quasi-continuous control to a double pendulum. But the

external excitation for the system is a torque at the base point, which leads to simpler equations of motion

than those investigated in this research.
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the control. Since the system will not be able apply the control instantly as in a numerical

simulation, the effect of this delay should also be studied.
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Appendix A

Equations of Motion in First Order

Form

In order to use the IMSL library to integrate these equations, it is necessary to convert

the equations of motion into first order differential equations. This can be accomplished by

defining x′
1 = x3 and x′

2 = x4 and the two equations of motion can be converted to

x′
1 = x3

x′
2 = x4

x′
3 =− 1

l(m cos2(x1 − x2)− 1)
[−ml cos(x1 − x2) sin(x1 − x2)x

2
3 −

m

l
µ1x3

−mµ2 cos(x1 − x2)x3 + δω̃2
1 cos ω̃1τ cosx1 +mµ2x4 cos(x1 − x2)

−mδω̃2
1 cos ω̃1τ cos(x1 − x2) cosx2 − ηω̃2

2 cos ω̃2τ sin x1 − sin x1

−mx2
4 sin(x1 − x2) +m cos(x1 − x2) sin x2

+mηω̃2
2 cos ω̃2τ cos(x1 − x2) sin x2]
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x′
4 =− 1

1−m cos2(x1 − x2)
{−l sin(x1 − x2)x

2
3 + µ2(x4 − x3)

− δω̃2
1 cos ω̃1τ cosx2 − l cos(x1 − x2)[

m sin(x1 − x2)x
2
4

l
+

m

l2
µ1x3

− δ

l
ω̃2

1 cos ω̃1τ cosx1 +
η

l
ω̃2

2 cos ω̃2τ sin x1 +
sin x1

l
]

+ ηω̃2
2 cos ω̃2τ sin x2 + sin x2} .
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Appendix B

Validation of the Fixed Point

Transformation Method

B.1 Logistic Map

The logistic map is defined by the following equation:

xn+1 = f(xn) = rxn(1− xn) .

The fixed points of the logistic map can be calculated by setting xn+1 = xn = x∗ in the

equation and solve for x∗

x∗ = 0,
r − 1

r
.

The Jacobian of the logistic map at x can be obtained by differentiation of the map with

respect to x

df(x)

dx
= r − 2rx .

The Jacobian can also be obtained from the iterated data set using the following approximate

equation:

df

dx
(xn) ≈ xn − xn+1

xn−1 − xn
.
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Figure B.1 shows 1000 iterations of the logistic map with r = 3.92. The fixed point for this

map is x∗ = 0, 0.7448. In figure B.2, the histogram on top is obtained by using the exact

Jacobian in the transformation. The histogram at the bottom uses the Jacobian obtained

from the data set. Both histograms have a peak at x = 0.745.

B.2 Hénon Map

The Hénon map is often used to illustrate chaos in 2-D. One form of the mapping function

F for this map is:


xn+1

yn+1


 = F(xn, yn) =


a+ byn − x2

n

xn


 .

The fixed points of the map F can be obtained by setting xn+1 = xn = x∗ and yn+1 = yn = y∗

and then solve for x∗ and y∗. The fixed points for the Hénon map are

x∗ = y∗ =
−(1− b)±

√
(1− b)2 + 4a

2
.

For a = 1.4 and b = 0.3, the map is chaotic. Figure B.3 shows 5000 iterations of this

map. The fixed points are x∗ = y∗ = −1.5839 and x∗ = y∗ = 0.8839. For this case, time

delay coordinates were used to reconstructed the attractor. Figure B.4 is the result of the

false nearest neighbor analysis and it shows that dimension 2 is required to reconstruct the

attractor. Figure B.5 is the histograms of the transformed data set. The histogram fails to

pick up the fixed point at x∗ = −1.5839, but it does have a peak at 0.884. By inspecting

figure B.3, it is clear that the point x = y = −1.5839 is not on the attractor. Repeated

attempts to start the iteration with points close to x = y = −1.5839 show that even the

first iteration will be far away from it. This leads to the conclusion that x = y = −1.5839

is an isolated fixed point. Any data set of the attractor shown in figure B.3 will not contain

points close to the isolated fixed point. It is then impossible to pick up that fixed point using

either the fixed point transformation method or the close return method.
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Figure B.1: 1000 Iterations of the Logistic Map
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Figure B.2: The Histogram of the Tranformed Logistic Map Data Set
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Figure B.4: False Nearest Neighbor Analysis for Hénon Map
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