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We predict that in arrays of quantum dg¢8D superlattice and arrays of one-dimensional quantum wires

(1D superlatticg chaotic transport should be observed in the presence of an ac field and for a wide range of
physical parameters, like the external dc bias, contact charge, doping levels, and disorder in the array. Time-
dependent current oscillations set in the array due to the formation of electric domain walls when sequential
resonant tunneling is the main transport mechanism between adjacent units. Such oscillations can then be
forced into spatiotemporal chaos. A similar phenomenon has been predicted and demonstrated for solid-state
superlattices. However, contrary to the latter case, the domain walls move across a larger number of units in the
superlattice the lower the dimensionality, due to the different spatial distribution of the electric-field across the
array in the three cases.
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Chaotic transport in GaAs/AlAs superlattices has beerdependent current oscillations as in the case of 2D superlat-
theoretically predictedand experimentally demonstrafea  tices. However, contrary to the 2D case, the domain walls
few years ago. It was found that, when the main chargenove across a larger number of units in the array the lower
transport mechanism is sequential resonant tunneling béhe dimensionality. The difference is due to the different spa-
tween adjacent quantum wells, undamped time-dependefigl distribution of the electric-field across the array in the
oscillations of the current appeaBuch oscillations are due three cases. Spatiotemporal chaos can then be induced by an
to the motion and recycling of electric field and charge do-ac field and for a wide range of physical parameters, like the
main walls in the superlatticeDue to the presence of such €xternal bias, contact charge, and doping levels. Inhomoge-
natural oscillations, spatiotemporal chaos can be induced bjeous arrays display qualitatively similiar behavior. Due to

a suitable external oscillating fiefd" the wide range of parameters and insensitivity to disorder,
In recent years, new type of nanostructures, like, e.g.0ur predictions should be readily tested experimentally.
nanotubes, molecular or atomic wirésften globally re- Model We consider as in Ref. 1 an array Kfelements

ferred to as quantum wirgshave received considerable at- (from now on called unit cellswith lattice spacing. (see
tention in view of their possible use as components in futurdig- 1). In this case, however, each unit cell can host either a
electronic application$ While much of the research has fo- Point-charge(0D casg or a line charge densitylD case¢.
cused so far on the new transport issues that arise in sing\¥/e also assume that the main charge transport mechanism is
quantum wires, less work has been devoted to the study dirovided by sequential resonant tunneling. This assumption
transport properties of arrays of quantum wires. The latter
systems constitute a natural step towards integration of (a) |
nanoscale components into functional devices. Since such
systems represent an extension of the well-known concept of
two-dimensional(2D) solid-state superlattic@and sequen-

tial resonant tunneling can be the main transport mechanism
in such structures, it is natural to asKiif natural oscillations

can be observed in superlattices with even lower dimansion-
ality, and, consequentlyji) such oscillations can be forced

1 2 N
into spatiotemporal chaos by an appropriate oscillating field. (b)
fo—s
L
_—

In this paper, we show that the answer to both questions is
positive. In particular, we examine arrays of quantum dots
(OD superlatticg and arrays of one-dimensional quantum
wires (1D superlatticg By array of quantum wires we mean
either a finite series of zero dimensioi@D) structuredsee
Fig. 1(@)] or a series of one dimension@lD) structuregFig.

1(b)] between two bulk electrodes. The 0D superlattice can
be made of, for instance, a series of weakly coupled
molecules’ or a series of nanowire unifsand the 1D super- FIG. 1. Schematic of the two sytems under study. The(8D
lattice a series of, say, nanotuied/e consider both homo- and 1D (b) superlattices are arrays of point elements and line
geneous arrays and inhomogeneous artags arrays with  elements, respectively. There is an excess chayd¢=1,... N)
aperiodic lattice spacing or with variations in electronic and doping chargen, on each object. The array has a contact
structure from one unit of the array to the néxtn homo-  charges and lattice spacing. The right electrode is held at poten-
geneous arrays, electric domain walls form, leading to timetial V compared to the left electrode.
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allows us to treat the charge transport semiclassiéafigr v(ACIDpeaQ.ll Its form is assumed to be the same as in the 2D
each unit cell, there is an excess changéj=1,... N) and case (see also discussion belph'> We define ty,

a doping chargep, . In the OD casen; andnp, are the excess =L/v(A® ., and the dimensionless time as t/t;,,. We
charge and doping charge, respectively. In the 1D case, define V=V/A®.,(N+1) as the dc bias amplitude be-
and np are the excess line charge density and line chargeveen two unit cells. The dimensionless excess charge den-
doping density. We keep the right contact at a dc bias sity is

compared to the left contact. We also assume that there is a

contact charged between the first unit cell and the left elec- - ni/AmeLA®peac — 0D

trode. The value of such charge can vary from a considerable = N/2meA® oo — 1D. ©®
small fraction of the doping charge in the GaAs/AlAs super- _

lattice caséto a fraction of an electron in the case of mol- The dimensionless doping density, is defined similarly.
ecules in contact with gold electrodeShe main quantity We later include an ac bias of the form

that affects the charge transport is the electrostatic potential ]

®(x) along the transport direction. The latter is a linear func- Ve=VAcsin(wt), @)

tion of the excess charge in the unit cells, their imageyhereA_ is the relative magnitude of the ac bias to the dc

charges, and the charge at the contacts. The electrostatic BQxs \We can then defiree=A.) and the dimensionless driv-
tential can be written as . — ¢
ing frequencyw = wty,,.

N ID(X) Since we are assuming sequential resonant tunneling, we
D(X)=DP°(X)+ >, o i (1)  can evaluate the change in excess charge on each unit cell
i=1 j as
Here, —
dn, — - - -
—oX VX E:(ni—1+nD)U(A¢i—1)_(ni+nD)U(A¢i) (8)
(D°(X)=—=(N+—1)L, 2
with boundary conditions
where o= o ¢1” = — oRrignd IS the surface charge on the o
electrodes, and we assume that the unit cells in the superlat- dn, —
tice are embedded in a dielectric material of permittivity FZO’ ny=2. ©

The derivatived d®(x)]/dn; are due to the excess charge

and their image charges. Since the excess charges and imageFinally, the dimensionless current-densitys the sum of
charges are symmetric about each contact the followinghe electric current and the displacement current,
boundary conditions are satisfi¢see Fig. 1

- = — JA ¢y
D (X) D (X) J=(ny+np)Qu(Ady) ———. (10
an; ~ T on, =0. ®)
FoIN+L Il For the OD caseQl =4xL2%/A, whereA is the area of the unit

We can rewrite Eq(2) in a compact form, valid in all di- cell perpendicular to the current, and we takas 7 (L/4)2.

mensions, by introducing a vectdr® whoseith element is  For the 1D case)=2=IL/A, wherel is the length of the

the potential difference between theH(1)th and theth unit ~ unit cell, and we take\ asIL/2. _
cell in the array In the presence of the ac bias, the total current-derdsity

can be written as
. . -V
AD=An+1——. (4) o N odne
N+1 J=(n+np)Qu(Ad)— > aN,jd—J—awcos(m,
. . i=1 T
A is a matrix whose elements are

(11)
a; :M)(X) — 9P (x) (5) WhereEN'j are the dimensionless matrix elemefftem Eq.
Pooong |, on (5)].2 In the case of inhomogeneous arrays, E&s. (10),

and (11) are slightly modified due to different distances be-

and lis a vector with all elements equal to one. For theyyeen unit cells and/or different energy-level separation from
different dimensionalities of the unit ce®D, 1D, or 2D, A cell to cell.

takes on different forms? Aperiodic lattice spacing affects Current oscillations Let us first study a homogeneous
through the distance between unit cells and how theWiss  array with zero ac field. As an example, we consider 40 unit
divided among the unit cells. cells with dimensionless contact charge-0®.05 and dimen-

For Slmp|ICIty, we define dimensionless units as fo”OWS:Sionless d0p|ng Charge of 005, for all three
The dimensionless potential drop B8¢=AP/ADqr,  dimensionalities* We will discuss later the range of param-
where Ad ., is the potential difference between any two eters for which current oscillations and chaos can be ob-
unit cells that induces resonant tunneling between themserved. We find that, as in the 2D case, current oscillations
while the dimensionless velocity i (A¢)=v(AD)/ and domain walls form for both the OD and 1D cases, as
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even increased in the 2D case, where the electric field is
constant.

Chotic transport Having found these current oscillation
we can now force them with an additional ac bias. As in the
2D cas€' we fix the ratio between the natural frequency and

the driving frequency to be the golden meafb(1)/2. We
FIG. 2. Charge density accross the () and 1D(b) homoge-  then find chaotic transport for selected values of the relative
neous superlattices as a function @fimensionlesstime. The  field strengtha for both the OD and 1D cases. Figures 3 and
charge density for the 2D superlatti¢e) is also shown for com- 4 (upper panelsshow the Poincarmap of the current for 0D
parison. Light regions indicate charge accumulation. and 1D, respectively, as a function af The current is plot-

shown in Fig. 2, where the charge-density along the super- 0.34
lattice is plotted as a function of time for the three cases. For )
this particular set of parameters ang,= 2ns, the frequency

of the oscillations is~15 MHz for the 2D case;-17 MHz ~
for the 1D case and- 18 MHz for the OD case. The domain =
walls are formed inside the superlattice and move towards §
the opposite conta¢Fig. 2). Depending on the external bias,

however, they can dissolve before reaching the conthds

also evident from Fig. 2 that the domain walls move across a

larger number of unit cells the lower the dimensionality. 2
Consequently, several domain walls can coexist in the super-
lattice at a given time, and their number increases with de-
creased dimensionality. The trend can be easily understood
in terms of the differences in the way the electric field from
the excess charge decays across the unit cells. In the 0D case,
the electric-field drops off as ®7; thus, the excess charge
has little long-range effect. In this case, at any given time, a -6 — 1
domain wall already present in the array has little effect in 0 0.02 0.04 0.06
blocking the formation of a new domain at the contact at the a

same time. Note that, incidentally, the single charge domains F|G. 4. Poincaremap (upper panéland Lyapunov exponents
in this case are also distributed on a larger number of unitlower panel for the homogeneous 1D case. The plot shows current
cells than in the 1D and 2D casese Fig. 2 Inthe 1D case, at time intervals equal tonT, (wherem is an integer versus the
the electric field decays slowdns 1k). This causes the relative ac field biag. Arrows indicate the chaotic regions.

A (arb. units)
)
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ted at intervals of the applied ac bias period, i.e., at intervals Given a set of physical parameters that produce chaotic
mT,, wheremis an integer and, is the ac bias period. We transport, spatial disorder with gaussian distribution of width
find several regions of chaos in both cases, as indicated s small as-0.02. can destroy chaos. However, a change in
the arrows that correspond to positive Lyapunov exponent§€Vice parameters, like, e.g., reducing the contact charge, can
(lower panel in Figs. 3 and)4We have also found that in the reintroduce both current oscillations and chaos for spatial
regions of chaotic transport there is loss of spatial coherenc(ti,'so.rder Of up to~0.1L for bpth broad and sharp velocity
due to chaotic domain-wall dynamics as in the 2D case. profiles. Finally, random variation of the energy levels of

. . . each unit cell up to-0.2A® has essentially no effect on
We conclude this paper by discussing the range of param, s chaotic beh%vior of thepgzkperlattice. y

eters to obtain chaotic transport in OD and 1D superlattices |, conclusion. we predict that spatiotemporal chaos

and the effects of inhomogeneities in the superlattice. If Weshould be observed in arrays of weakly coupled quantum
fix the lattice spacind., to be 1 nm, the permittivity of the wires under appropriate external dc and ac biases when se-
background mediure=10e,3, and no doping charge, we find quential resonant tunneling is the main charge transport
chaotic transport for external electric fields of aboutmechanism. We also find that the domain walls move across
10° V/icm, and contact charges ef0.0le for the OD case @ larger number of units in the array the lower the dimen-
and~0.002/A for the 1D case. Both the electric-field range Sionality. Chaotic regions should be observed for both homo-
and contact charges are quite reasonable for nanosca#ién€ous and inhomogeneous arrays for a wide range of

devices” Within the same range of parameters we find for-P ysical parameters, like the external dc bias, contact charge,

mation of domain walls and chaos for arrays with a numberand doping levels. Such a wide range of parameters should

: . permit an experimental confirmation of our predictions.
of unit cells as small as four for OD, and eight for 1D. Re-
ducing the lattice spacing or electric-field necessary for reso- We acknowledge support from the NSF Grants Nos.
nance reduces the contact charge necessary for the formatigMR-01-02277 and DMR-01-33075, and Carilion Biomedi-
of domain walls. The velocity profile has a sharper shape irtal Institute. Acknowledgement is also made to the Donors
the 1D and OD cases due to the different density of statesf The Petroleum Research Fund, administered by the
compared to to the 2D caseWe find that sharper velocity American Chemical Society, for partial support of this

profiles favor chaotic behavior. research.
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