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CHAPTER 1.,
INTRODUCTION

l.1 The Problem

It is the intent of this investigation to prepare a
statistical model as an analog to a physical process by
employing a random sampling techniqué which has come to
be known as the Monte Carlo method. The physical process
is the slowing down of neutrons by collisions with atomie
nuclei where one type of nucleus can absorb. A parameter
of absorptive moderating systems known as the resonance
escape probability (REP) is of interest to reactor physi-
cists and can be estimated from data produced by the
statistical model.

The physical system to be considered consists of
Th(N03)4 dissolved in water to provide a finite homoge-
neous water moderated reactor in the form of a rectangular
parallelipiped. A neutron source is produced at the center
of one face by a beam of deuterons striking a deuteron
target. The neutrons so produced have an energy of about
2.9 Mev. A tritium target can also be used producing
neutrons of about 14 Mev. The (d,t) reaction provides
larger neutron fluxes than the (d,d) reaction making possi-

ble better counting statistics for experiments.



The neutron cross section of a thorium nucleus mani-
fests several resonances and varies rather rapidly with
neutron energy for energies between 10 ev. and 1000 ev.

The resonance escape probability is a measure of the ability
of a neutron to escape being absorbed while its energy is
degraded by the moderation process to an energy below 10 ev.

A system, such as the one considered here, which has
many types of nuclides present, some of which can absordb
neutrons, is too complicated to solve analytically. From
an asymptotic approximation for the slowing down density,
q(&), an expression for the resonance escape probability
can be written in the form

Doy JEOG_EE(E') aE?!
25 g o (B2 (E") B

p(E) = e (1.1)

where 2> éE’) = the macroscopic absorption cross
section at E'.

Eng') = the total macroscopic cross section at E'.

(@) = an average logarithmic energy decrement
for a mixture of nuclides.

0‘; = total scattering cross section for all
the nuclides.

Eo = the source energy.

B = the number of thorium atoms per unit volume.



Equation (1.1) ie well discussed by Meghreblian and
Holmes (12) along with versions for simpler systems. They
define

p(E) = %%J-)-

0

whenece (1.1) results for

E—" j%? g.z;i///EZ;sti

« 310y
1 -

A, -1)%
i I +1

gi = 1 +
i

Ai = the atomic mass number of the 1th

target atom.
It is more convenient for our purposes to use a slightly
dif ferent definition for p(E). We will define p(E) to be
the ratio of the number of neutrons that reach energy E
(which is in our case 10 ev.) from the resonance energy
region to the nuwber that enter that region from above
1000 ev. The resonence escape formulag are discussed more

completely in section 5.1 and reference (12).



1.2 The Method

The Monte Carlo procedure when applied to physical
phenomena becomes essentially a "theoretical experiment"
in the sense that a hypothetical set of physical occur-
rences are imagined whose outcomes are decided determin-
istically or probabilistically from fairly well established
physical theories, The "experiment" comes from allowing
a series of many events to occur. The theoretical aspect
comes from the use of physical theories to provide the
distributions for the sampling procedures. The events
considered in this paper are collisions betiween neutrons
and atoms of the reactor system. In all such events the
energy of the neutron relative to the atoms is high enough
so that molecular collisions do not occur and hence a
neutron interacts only with member nuclei separately.

The fundamental theorem of the Monte Carlo method
for a continuous variable is as follows:

Let £(x) be a real, positive, single valued,
continuous function of the variable x defined on the

interval -=< x <o guch that

o0

Jf(x)dx = 1,

- 0O

It Nr is a random variable uniformly distributed on
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the interval 0 < Nr < 1, then the equation

An
N, = }' f{x)dix (1.2)

bk @]

implies thet Xn is a2 random variable with frequency

function () £(x ).

A proof of this theorem appears in appendix I,

For the discrete case, where there are n mutually
exclusive events available one of which is denoted by E1
with probability p;» We say that event Em occurs if for a

selection of Nr we have

= >
Z pi < Nr < Pi (1.3)
=1 i=1

where Hr is again a random numger uniformly distributed on
the interval O <N < 1 and 25 p; = 1. References (2),
(9) and (10) provide good discussions of the Monte Carlo
method and its applications.

It is not always easy to invert the integral in

equation (1.2) so various tricks have been employed to

(1) Frequency function is often referred to as probability
density function (9).



avoid excessive labor. One such trick is known as the
rejection technique end is discussed by Kahn (9).

To apply equation (1.3) one subdivides the interval
O to 1 into subintervals whose lengths correspond to the Py
of the events Ei' When a selection of Nr provides a value

that lies in the mth

subinterval, equation (1.3) is satis-
fied and we say that event Em occurs.,

Large capacity high speed computers are needed in
order to handle most Monte Carlo problems. The Virginia
Polytechnic Institute has an IBM=-650 on which we programmed
the Monte Carlo model for the thorium resonance escape
probability.

Our chief objective is to develop a lonte Carlo model
which will provide a better description of the effect of
rescnance phenomena on the behavior of reactor systems
than has been heretofore possible by znalytical methods,

It is conceded that the Monte Carlo approach is inefficient
when compared to analytical methods but where the latter
fails we turn to the former as a last resort. Analytical
treatments of diffusion and transport phenomena are limited

tu special cuses since there is a lack of knowledge about

the transformation kernels appearing in the integral equations.



While waiting for development of the analytical methods
it becomes necessary to turn to approximation and sampling
procedures. Knowledge obtained in such a manner may lead

to advances in the analytical techniques.



CHAPTER 2.
BACKGROUND AND LITERATURE REVIEW

Monte Carlo investigations of resonance escape prob-
abilities have been done by several groups, who have con-
centrated on heterogeneous systems containing uranium as
the resonance absorber. R. D. Richtmyer and collaborators
(15), (16) developed a model for a heterogeneous symmetri-

U238 fuel rods contained in a

cal array of cylindrical
water moderator,

As will be the case in this paper, Richtmyer considers
neutron-nucleus scattering collisions, absorbing collisions
and rectilinear motion between collisions as the possible
events for description. Proceeding from the last neutron

collision, Richtmyer determines the distance to the next

collision by applying the expression

1(E) = = ME)ln N,

where A(E) = the mean free path at energy E
1(E) = the distance from the last collision
to the next at energy E
N = g random number diétributedvuniformly
on (0,17 and selected by a standard

random number algorithum in the computer.
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The mean free path A(E) is determined from a knowledge

of the total cross section by the relation
ME) = =y
24 B

where S;;(E) = the total macroscopic cross section at
energy E.

His first published resonance escape calculation in 1956 (15)
employed the Doppler broadening function‘¥f(x,t) for the
uranium cross sections while in a later version in collab-
oration with Van Norton snd wolfe (16) he included a second
Doppler broadening function which describes an interference
effect in the eross section. See chapter 5 for definitions
and discussions of these functions.

The Richtmyer code was written for an IBH-T04 which
has considerably more speed and storage than the IBN-650
for which our Monte Carlo was written. He, therefore, has

been able to develop a rather flexible program to include

some variation in geometry and composition of the reactor.
His program employs 2 hexagonal unit cell parallel to the
fuel rods.

Many investigations heve been made of the resonance

integral J[U?EQdE and the effective resonance integral
B
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E

° 2 (R')aE!
Tn “alB')aw 2.1
J, St e

whose forms should be modified to include Doppler - broaden-
ing. A comparison between these investigations and the
present one is difficult but possible provided we can
accept the conditions concerning the resonance structure
necessary for equation (l.1l) to be valid. The origin of
equation (1.1) and the conditions for validity are given
in appendix IV. Dresner (6) has mzde some of the most
extensive investigations of the resonance integral}and
calculations based on his work are presented in section 6.5.
Safanov (of the Rand Corporation) (19) has made an
investigation of resonance escape probabilities for water-
natural uranium homogeneous mixtures with varying amounts
of light and heavy water. The calculations for these
systems are based on the Boltzmann equation with the
diffusion epproximation. A multi-energy group solution
was carried out using 53 energies selected from the numer-

y235 U238, 1he IBM-TOL

ous noncoincident resonances of and
provided solutions of the 53 simultaneous equations. The
energy range 1 ev. to 1000 ev. is used as the resonance

range and this interval required 42 of the groups. The



resonances were fit with histograms with only one block
to a peak rather than a many block histogram or a Breite
Wigner expression. The definition of the resonance escape
probability used by BSafanov is the fraction of those
neutrons living to energies less than 1000 ev, that sur-
vive to energies less than 1 ev, This is essentially the
same definition that we use except our lower energy limit
is 10 ev, Figure 3 of Safanov's paper displays the
resonance escape probability as a function of the ratio of
the number of moles of water to the number of moles of
uranium., Our lionte Carlo with modifications to handle
uranium cross sections should be able to reproduce the
topmost curve of that figure if the two methods are com-

patible .
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CHAPTER 3.
THE MONTE CARLO MODEL

3.1 Qutline of the Model

Referring to the flow diagram exhibited in figure 1

we see
source
placed
zero,

angles
energy

method

that a neutron history begins by a reading of the
parameters into the machine storage. The energy is
in a reference location and count boxes are set to
The sines and cosines of the velocity direction

are computed and stored for future reference. The
dependent mean free path )(E) is determined by the
outlined in section 3.3. The distance to the next

(or first) collision is determined as follows:

The probability of a collision in dx at x, where x

is the

where

distance along a straight line, is given by

f(x)dx = Z e zxdx

/;(x)dx - / Je %Xy = 1
(2] 0

and f£(x) = the probasbility density funetion (p.d.f.) for x.

We imagine another non-discrete random variable y

that has a p.d.f. g(y) such that

gly)dy = £(x)ax where g(y) = 1.
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We then say that the new variable is uniformly distributed

and that
v(1) 1
f gly'lay' = jf(x)dx
() )
1
or y(1) = fZ . P
o

Since f£(x) is a p.d.f., y(x) < 1. We can therefore let

NI‘ = y(1)

i.e., both the random number and the new stochastie
variable y(1) are distributed uniformly on the interval (0,1).
Now we see that a selection of Nr will determine 1.

This brings in the Monte Carlo method of sampling a
uniform distribution g(y) = 1 by selecting a random
number between O and 1. We then have 1 in terms of the

random number.,

1
N, = /Z e~ T%x = 1 -~ 21
0

-T1
e = l-Nr

-Z]1 = ln(l-ﬂr)
1 = =1 1n(2-N])
=
=2 1n(KN,) (3.1)

-
L
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We have, in the latter equation, used the fact that 1 - Hr
has the same distribution as N_ (nemely uniform on the
interval (0,1)) so sampling N, is equivalent to sampling
1- N,

The distance traveled from one position to the next
collision will for each case be found by equation (3.1)
employing a "machine" generated random number Nr.

In order to find the position of the collision one
must know whether or not it is for the first collision.

If it is for the first collision, the following equations

give its coordinates (see figure 5).

x = x + 1sine, cos ¢, (3.2)
z = z,+ lcos®, (3.4)

where X , Y,» Zq» ©,y P, are the initial position and
velocity direction coordinates.,

If the collision is not the first we obtain the position
by the equations

x' = x + 1/(sine' cos @' cos6 + cos@' sind) cos -
sind' sin ' sinqg7 (3.5)
y' = y + 1/(sine’ cos @' cos® + cos@' siné) sing+

sing' sinq>' cosq:7 (3.6)
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z' = z + lcos®!’ (3.7)

where sin@‘, cos®', sin @' and cos@' are determined by
collision physics as discussed in subheadings 3.4 and 3.5.

After the collision position is determined a check
is made whether it is still in the pile or not. If not,
an "out" card is punched on which there is the initial
weight, the final weight, the square of the final weight,
and the numbers of collisions encountered with the various
types of nuclei., If it remeins in the pile at this new
collision position, the type of target atom is determined.
The following prescription is used to make the latter
decision:

Let fTh’ fO’ tH, and rﬁ stand for the probabilities
of striking a thorium, oxygen, hydrogen or nitrogen atom
respectively. Obviously they are conditional probabilities
- conditional on there being a collision (the probability
that there is a collision is one once we have determined 1,

the distance to the next collision). Then we have

fTh + fo + fH + fN = 1
oo Zmy Py \-
and fg = == = —J——— (3.8)
Z é ny O-i

i=1
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4 -1
0 = Zo nOGOL%niUiJ (3.9)
fH = ZH/Z = nﬂgﬁ{él_nio—i} -1 (3.,10)

ty = ZH/Z = n, Oy }i”ni 01} - (3.11)

i=1
where all cross sections are determined for the incident
neutron energy.
Now with a machine genersted random number Nr we

decide on an atom by using the Monte Carlo principle.

0 < Nr < fTh then thorium is the atom
fTh < Nr < fTh+ fo then oxygen is the atom
Tt fo < Nr<:fTh+ fo+ fH then hydrogen is the atom

fTh+ f0+ fH h Nr <1 then nitrogen is the atom.
It is now convenient to treat one of two possibilities:
(1) The collision is not on thorium.

(2) The collision is on thorium,

Case 1

For this case the only possible reaction is elastie
scattering since in the energy range under consideration
(10 ev. to 1000 ev.) the absorption cross sections are
essentially zero for oxygen, hydrogen and nitrogen. The
energy of the neutron following such a collision is selected
again by the device of sampling from the supply of random

numbers using the equation



E. = -El(l - q)nr + E (3.12)

2 1°

This equation is based on the fact that all attainable
energies following an elastic scattering are equally likely.
See section 3.4, "The Collision", for the derivation of

equation (3.12).
Case 2

If the collision occurs with thorium, the new weight*
of the neutron is found by multiplying the pre-~collision

weight by the fraction scattered.

Wy = W Teo

(3.13)
2 1 Oéb + Oéc

where Wl = pre=collision neutron weight

w2 — after-collision neutron weight.

* Weight is used here in a statistical sense. For example,
if n neutrons collide with n absorbers where each colliding
pair has the same relative energy then if N are absorbed
giﬁ will be the fraction that scatter. Rather than give
up @ history when an absorption occurs we assign the above
probability for scattering as a "weight" and continue the
hi Btcry .



The quantity in parenthesis is the fraction scattered.
The thorium cross sections are determined using the express-
ions (4.10) and (4.11) which are derived in appendix II.
The pre-collision energy is examined to determine within
which pesk it lies and whether the tabular values of"yﬁ(x,t)
and X (x,t) are to be used or if the asymptotic calculations
are appropriate.

The history proceeds by going back through case 1 for
a thorium scattering and if the post-collision energy is
below 10 ev. & low energy card is punched with the same
informztion as on the "out" card referred to earlier. 1If
E22> 10 ev., the laws of conservation of momentum and

kinetic energy require that the new direction be given by
B E
1-A\ 71 1+A\ 2
cose' = —5-“§; + ~§~v EI (3.14)

Subsection 3.4 with the subheading "The Collision" describes
the latter egquation and the energy selection in detail.

For the other velocity direction coordinate, ¢ ', a8
defined in figure 5 of section 3.5 we use the assumption of
a uniform distribution for @ ' and therefore use the sampling

technique with the equation

?' = 2TTNr . (3.15)
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After the sines and cosines of @' and P ' sre computed,
the program returns to the computation of & new ) and f{.
The position of the next collision is determined by the
equations (3.5), (3.6), and (3.7). This cycle is continued
until all the source cards have been read.

A data-extraction program is used to sum the weights
of neutrons starting a history, the weights of neutrons
leaving the pile, the weights going to low energy (B < 10 ev.),
and the various collision counts.

The programming details are presented in appendix IV.

3.2 Beginning a Neutron History

The initial information needed to start a history was
obtained from a Monte Carlo model of water moderation for
a pulsed source (21). The neutrons being produced by
H2(H?n)H2 reaction, This program provides on an output
card from the IBM-650 the position, energy, weight, and the
direction of the velocity vector for a neutron the first
time that its energy falls into the 990 ev. energy range
from 10 ev. to 1000 ev,

In an attempt to provide an analytical method for
starting histories, the above data cards were analyzed to

determine radial probability distributions for various



values of the z coordinate which is parallel to the deuteron
beam. The position integrated energy distribution of
"first arrivals" turned out to be uniform between 10 ev,.
and 1000 ev, Sampling the position distributions and the
energy separately seemed to be & good approach, but storing
the additional data and program instructions appesred to
require more storage than was sveilable. The card-read
method therefore was used. This limits the calculation
for a given concentration to about 4300 histories.

Figure 2 indicates that ECZ), the average energy per
slab located at z , is essentially uniform. Tables 1, 2
and 3 show the various data that must be stored in the

machine for future reference.,

3«3 The Mean Free Path

For neutron energies below 1000 ev., we have only two
significant neutron reactions occurring. They are radi-
ative capture (n,Y ) and elastic scattering. Other types
are not energetically possible. The lowest energy levels
of thorium are too high to be excited by these relatively
low energy neutrons. Therefore Eng (the absorption
cross section) is all due to radiative capture and 3=

sec
(the scattering cross section) is due only to elastie
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TABLE. 1

NUCLIDE NUMBER DENSITIES AND CROSSECTION FOF FIVE CONCENTRATIONS

OF THNOs: IN WATER.

Voo e

‘ 21 l 21 21
? N XT10Y N X 16N, X 10" [N _X10 o |6 |
am fom’ A'roms/cquToms/a AToMS _|ATOMS

(=4 ] cM cMm BARNS BARNS BARVNS_ cMm
64.00 1.915 1.5381 41 .51 46.10 6.152 3.8 20.2 9.1 1.145
1.2 45.45 1.580 0.9013 39.64 57.64 3.605 3.8 20.2 9.1 1.348
1.85 35.09 1.415 0.6231 38.91 61.43 2.492 3.8 20.2 9.1 1.411
3.00 25.00 1.272 0. 3991 36.69 | 63.81 1.596 3.8 20.2 9.1 1.443
5.00 16.67 1.166 0.2439 35.42 | 64.99 0.976 3.8 20.2 9.1 1.456
TABLE. 1 USES THE FOLLOWING NOTATION: ? = SOLUTION

DENSITY, C = CONCENTRATION, a = MASS OF
WATER USED FOR SOLUTION, © = MASS OF SALT
DISSOLVED, Nru = NUMBER OF THORIUM ATOMS
PER UNIT VOLUME (Nox. Nu AND N ARE THE
SAME QUANTITY FOR OXYGEN, HYDROGEN AND
NITROGEN RESPECTIVELY) (5x = MICROSCOPIC
CROSSECTION FOR NEUTRON INTERACTION WITH
OXYGEN IN THE THORIUM RESONANCE REGION
(@7 AND @% ARE THE SAME QUANTITIES FOR
HYDROGEN AND NITROGEN) , now = Nox 05~ +m, 77

+ N~ TN

-q&2-
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secattering. The tbtal macroscopic cross section would

then be

2: t = zzab + zz (3.16)

sc
N=
with Zab = g ni@U;b) (3.17)

and 2 = g%% nﬂﬁ(T;c). (3.18)

s¢ =1

Finally the mean free path becomes

) =

- = ! ‘ .
>4 j%_(ni(i O”ab)«n- ni(iagc)) (3.29)
The mean free path is energy-dependent because the
cross sections are energy-dependent. It is therefore
necessary to use the resonant behavior of thorium while
computing )\
As an example if one calculates ) for an "on resonance"
thorium cross section and an "off resonance" value from

peak 3 with n, = 0.6231 x 1021 ad:omea/cm3 there results

Th

)on = ,L,198 cm .

30 the mean free path for off the peak is about 3.6 times

as large as the value at the peak maximum,



3.4 The Collision

The commoner method of handling the collision routine
is, first, to sample the direction of travel after the
~collision from the known angular distribution of the
elastic collision and then to determine the energy from
conservation laws. The order of this procedure has been
reversed in this paper since for elastic scattering the
energy distribution is simpler to sample from and the
calculation of direction, once the energy is known, is
easy to perform on the "machine". We therefore begin
with the energy determination.

Let E2 = the neutron energy after collision

El = the neutron energy before collision

2
o A=l

= I where A is the atomie mass of the
target nucleus.,

Experiments show the neutron scattering at energies
of less than several Mev is spherically symmetric in the
center of mass system. Therefore the probability of a
neutron proceeding from a collision into solid angle d-o
formed by a conical element of angle © and angular width

do (see figure 3) is uniform, i.e.
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FIG. —3. CENTER OF MASS COLLISION CONE.

-\7\; = THE CENTER OF MASS NEUTRON VELOCITY BEFORE
COLLISION,
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FIG. — 4. POST COLLISION NEUTRON VELOCITIES.
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=  THE NEUTRON VELOCITY IN THE LABORATORY.

THE NEUTRON VELOCITY IN THE CENTER OF MASS.

THE CENTER OF MASS VELOCITY.
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see reference (7) from which we obtain

f%—( T OB (- %_pin{?}

2
dE2
and p(EZ)dE2 = m‘ (3.21)

Since p(Ez) is then energy independent the distri-
bution of E2 is uniform and all values of E2 are equally
likely.

Now let
By
= 3 = Vl
N, =F(E,) jg P(E,)dE;
2
where o(El < E2 < El
N, = (E,-Ep)
r ﬁlzl-~< )

(3.22)
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where N is again a random number (O:f:Nr < 1) to be
selected by the machine.

To complete the collision we need to have @ as a
function of energy where © is the scattering angle in the
laboratory system corresponding to é , the scattering
angle in the center of mass system.

From conservation of momentum and conservation of

kinetic energy we have the equations:
!23 ﬂZE

MV m ol Th °°9f

l 2 ‘

—————

-1
and cos (Tg A2+m ) [}QEL—?]
(A+m) (A+m)

which combine to give for m = 1

B E
cosd® = é%i J;%,- églqjgg (3.23)

where A = target mass given in atomic mass units in

co88 = s M=m + A

the latter equation

m = neutron mass which equals 1 in atomie
mass units

> = neutron energy after collision in the
laboratory system

1 = neutron energy before collision in the

laboratory system.



Figure 4 shows the scattering sangles in the two systems.

3.5 Iracking the Position

The initial space coordinates (x, y, z) and the
velocity direction coordinates (9,<P) which are spherical
coordinates with respeet to the z axis as pole, are supplied
as input data. The initial speed of the neutron is given
indirectly by the neutron energy.

Referring to figure 5, the initial position which
serves as origin for a second coordinate system (x, y, 2)
parallel to (x, y,z) is given by the position vector R.
The initial flight direction is given by (01,¢1). Still
another set of axes (x', y', 2') called the primed system
is formed by making the z' axis a continuation of the
pre-collision flight line ll‘ The x' axis is picked so as
to be in the plane formed by z and z' while y' is perpen-
dicular to that plane. To make the selection unique we
further require that the positive x' axis never intersect
the positive z axis.

Heving calculated A (E) and 1, by equations (3.19)
and (3.1) we can find
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A xl llsinalcos ¢ 1
r =4 y, = 1131n9181n ¢

z =08z = 1ljcosd

.

We now have the first collision position at O' given by
X, = X, +Ax)
Y1 = ¥, t4Y,
Z, = 2, +~'->zl

where R

i

xoi + yo;j + zok .

If the neutron at this new position is still in the
pile, we proceed to find the position of the next collision.
We have available both 6} and <P§ by application of the
Monte Carlo technique to the first collision. By appli-
cation of equations (3.19) and (3.1) we obtain 1, and then

the primed coordinates become

x! 1zsinGécos(P >
y' | = lzsineésincpé

] ]
Z | 12c0502



Now by a coordinate rotation to the (x,y,z) system

we have
s X, x!
Ay, | = M| y' (3.24)
Az, z!

where M = cos@lcoes(?l - sin(?l sinOlcoscPl

coaOlsinq) 1 cosq) 1 sinOlsin(P 1

-sinGl 0] ooe@l ,
The position of the second collision is then

12 = Il +A12
Yo = ¥ *87;

22 = Zl +A22

A small saving in computer time due to leakage can
be obtained if one waits until out checking starts before
multiplying by 1,. +e, therefore, divide (3.24) vy 1, and
define A dxz/lz, B =Ay2/12, C zAzz/lz, a = x'/12,
b = y'/lz, c = z'/12 to obtain



A a
c el -

The new collision location is then given by

(xz,yz,zz) = (xl + 1,4,y, + 1,B,2, + 120). (3.26)

The direction angles are then given by

00592 = C

v 2
BinOZ = 1-C
cos 1)2 = A/ 2,82

sin @, = B/ 24B

Since most of the leakage neutrons leave through the
entrance face at 2z=0, the calculation for X, and Y, may
often be omitted if z is checked first. Hence, two multi-
plications are often saved, namely lZA and 12B.



CHAPTER 4.
NEUTRON-NUCLEUS CROSS SECTIONS

In order to determine the fraction of the incident
neutron weight that is scattered in a thorium encounter
we must have some physical information to provide the
probabilities of scattering and absorption. A common
procedure is to describe the resonance cross section
peaks by single level Doppler-Broadened Breit-Wigner
equations which seem to apply quite well to thorium
resonances, Cast in this form the cross sections are

given by:

E
G;}h = {;QGBrY/(x,t) + 41TR2 + O';E\!/(x,t) + %ot OBI(X"Z)
(4.1)

o (- %
where y/(x,t) = —(-%—_?f l+ (xy)°/4 dy (4.2)
Y

-(x-y) /4%
t = d. 40
x = %(E—Eo). y = A(5'-5) (4.4) (4.5)
E
% HTB = 43¢—2x 107 (4.6)

Ar? r



¢ - 4r ol _ 2.6x10° [n[r (4.7)
or k2 2 Eo [,2 ¢
o)

is the natural peak resonant absorption maximum cross

section

2
6
G:)B = %--[I—g = g—'m-c—ev. bne (408)

is the natural peak resonant scattering maximum cross

section
O~pot = 4TIR2 (409)

is the hard sphere potential scattering cross section.
The other symbols used are defined as follows:
Eo = Inergy corresponding to the maximum cross
section for the resonance in ev.
R = effective nuclear radius
k = neutron wave number or propagation number
corresponding to energy E
T = +the temperature of the target particles or
moderator nuclei
= neutron level width
radiation level width
= total natural level width

= d’]”—j
i



k = propagation constant for Eo neutron of

o
energy Eo
= % - 21,
h No

The first term in equation (4.1) gives the resonant
absorption cross section for the Doppler-broadened peak,
and the next three terms together comprise the Doppler-

broadened scattering cross section. Therefore we can write:

E
Oop = {g_; 0oV (x,t) (4.10)

for the thorium absorption cross section and

O-SC = 0:)0*; + O_Os (x’t) + Jagot O—;BX(xgt) (4-11)

for the thorium scattering cross section,

The last two terms of the last expression form the
resonant scattering cross section, The last term is often
referred to as the interference term between the hard sphere
(potential) scattering and the resonance scattering. For
a more detailed development of equations (4.1) through
(4.11) refer to appendix II.

The log 0 vs. log E thorium resonance curves that
appear in BNL-325 (reference 8) proved to be inadequate
for the purposes of this paper. L. M. Bollinger (1) provided



the raw data, on which the above were based, in a form
much easier 10 examine. These data were obtained at the
Argonne National Lezboratory with a fast chopper neutron
spectrometer. Figures 6, 7, and 8 show portions of that
data. The resolution for all measurements was about

.09 usec/m which translates tc 0.26 ev. for the lowest
energy pezk which is shown in figure 6. The theoretical
fit at room temperature shown by the solid line is within
the stated resclution as is the case for fits on the other
peaks., The fits referred to were obtained by programming
the IBM-650 to calculate equation (4.1). It is fortuitous
that methods for extracting level parameters from trans-
mission data have been developed that are independent

of the detailed shape of the yield curve. Rosen (16) has
used one such method known as area analysis to provide the
thorium resonance parameters. His results corroborate
those of Bollinger. With no aveilable evidence to refute
the Breit-Wigner peak shape detail we proceeded to apply
equation (4.1) with Rosen's parameters for the lowest
eight peaks. The function X (x,t) was obtained by means
of the relation

X(x,6) = 4t LYEL 4 onyi(x,0) (4.12)

where the derivative was taken graphically.



U (TOTAL CROSS SECTION) IN BARNS

-3Ta-

5000 |—
® BOLLINGER'S DATA
THE SMOOTH CURVES GIVE
THE BREIT-WIGNER FIT
WITH DOPPLER BROADENING.
1000 |-
B X
B X
| |
|
!
X |
100 |

l]lT

X
\ X
x\ \
PEAK 1 X PEAK 2 " —
X,
10
BETTER PEAK BETTER PEAK
1 Y
DATA PEAK DATA PEAK
5 ] | ] ¢ | 1
20 21 22 23 24 25

NEUTRON ENERGY IN E.V.

FIG. — 6

THORIUM RESONANCE PEAKS 1 AND 2.



g (TOTAL. CROSS SECTION) IN BARNS

2000

lYlII!

100 |—

l§ 1 T

40

10

TTTIII

=3Tb-

® BOLLINGER'S DATA

PEAK 4

x Y

1 1 | i ] | |

(-2}
=N

66 67 68 69 70 71 72
NEUTRON ENERGY IN e.v.

FIG. — 7
THORIUM RESONANCE PEAK 4.

73



IN BARNS

.

S
T

x x
B x x
< x X X xy X X
_._,X_ X;J‘;A_L_-X;_~_x_x_x_ xx_ -)(— _x~ ““"“‘"‘“x’“‘——X—‘——"*—"’f“
I x X X Xy X X X
10 |-> x X
5 n | | | I | ] | | | | |
200 300 400 500 600 700 800 900
E IN ev
FIG. — 8, CROSS SECTIONS IN THE UNRESOLVED REGION.

-0 C=



-3

To avoid excessively large machine storage tables of
the functions\V (x,t) and X (x,t), asymptotic eguations

(given below) were used out in the wings of a resonance

2

where x~ >> t. This compressed the tables down to about

twenty entries per peak. The tabular procedure replaces
the analytic functicn by a step function with what amounts

to many steps over the peak, The asymptotic expressions

used were:

2
X(x,t) = Ig—-[i + ai‘x—z—;%l + ooo_] . (4-14)
+x° +X

If more confidence could be placed in the available
thorium cross section data, it would become reasonable to
use smaller increments of x over the peak in order to
approximate more closely the analytic function for the
resonance. One must keep in mind however that this refine-
ment coupled with a machine-~generated source routine may
well overload the IBM-650 storage capacity making access
to a larger machine necessary. Also, there are resonances
of small magnitude above the eight peaks treated, but their
structure is not clear enough to incorporate in this calcu-

lation., An average value was used for these peaks. When



this structure is more accurately analyzed experimentally,
one can easily add the corresponding parameters and
functions to the program provided that sufficient machine
storage is available. The variation of these higher energy
peaks about the chosen average is very small and in most
cagses will contribute very little absorption. After all,
V asymptotic is smaller than X asymptotic so that Tse
(resonance) is the largest contributor to the total cross
section for energies far out in the wings. TFor the larger
t's of these high energy peaks, X(x,t) is larger relative

to \//(x,t) end hence the persistence of U above 0 ot 18

pot
largely due to the interference term of (Téc'



40~

CHAPTER 5.
COMPUTATIONS AND RESULTS

5.1 Resonance Escape

The theory of neutron slowing down processes for &
homogenenus mixture of nuclides with hydrogen as the
primary moderstor leads to an expression for the slowing
down density that contains the factor

{ o oo (B)Z,(B')  4p
€exp _—M

If one defines a resonance escape probability by the

relations
. B
p(E:E)) = g-{g-l-) (5.1)
where q(E) = the slowing down density at energy B
q(Eo) = the number of neutrons leaving the
source at energy Eo per cm3 per sec
N
then p(E,E)) = exp -3--2-:8 L S (5.2)
Sa(E )2, (5") a:
where Ipp = f Z ‘ (5.3)

A more complete discussion of these relations appears in

reference (12).
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If there is no absorption for E z,El, where the

resonance region is defined by E2 L E KL El’ then
P(E.:B.,) = P(E.:E ) = q(EZ) , (5.4)
2°71 2° 70 ETEZT

When hydrogen is present in the mixture the possibility
exists that a neutron can skip the resonance region with
one collision on hydrogen. Definition (5.4) counts such
events in both q(Ez) and q(El). We wish to exclude such
events from our probability ss implied by the definition
offered in the introduction where the number of neutrons
skipping is deleted from both q(Ez) and q(El) by the
phrases "...from the resonance region,.." and "...enter
that region from above 1000 ev.",

The probability excluding "skipping" will be reported
as REP., and REPg for the infinite and finite geometry
cases respectively. The probability including "“skipping"
will be reported as REP! and REPé for the same two geometry
cases,

The following information can be obtained as output
data for a complete calculation:

W, = the sum of the weights attaining low energy

1l
from the resonance energy region
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win = the sum of the weights of the source neutrons
each of which starts with energy in the
resonance region
W = the sum of the neutron weights that leak
through the walls of the container and go
ogut of the pile.
The quantity Wy (the sum of the weights skipping the
resonance region) is obtained from the first stage Monte

Carlo developed by Settles (21), It then follows that

we have
W W, +W
REP, = % REP! = =—8- (5.5),(5.6)
g in g in s
Wl . W1+W8 ( ) ( )
REP,, = REP!Y = 28— (5.7), (5.8
Win~% ' ¥in wo+ 8

Equation (5.8) should come closest to providing a value of

P(EZ:EJ_) = exp {"’ %’; Ieff} .

Bquation (5.7) comes abuut because

W, +(RER, )W
REP, =~ _l_w_..___g ‘
in

Reference to tables 4 and 5 will show the escape

probabilities determined by the Monte Carlo program for



TABLE. 4.

DATA FROM OUTPUT CARDS
Noy, Win = Wiow = Z.Wiow Wout =| N N N N N
21 ol N c H ox TH
X10 ;‘VVIN ZWL.OW ¢ ZWOUT
ATO% C ¢ ¢ ¢
1

1.5381 4317.475 | 3836.553 3787.629 | 258.012 1082 23533 | 18656 3121 674 ﬁ

.9013 4316.475 | 3940.634 3908.280 | 230.550 550 22230 18852 2466 | 362 %’

. 6231 4315,.480 | 4008.910 "3985.000 | 214.129 390 21741 | 18882 2232 | 237

. 3991 4212.490'| 3941.890 3922.120 | 194.750 252 21152 18617 2111 172

. 2439 4316.480 | 4073.150 4062.830 | 198.750 141 21381 19091 2038 | 103

INCREASE Nc
COLLISIONS.

BY

104 OUTPUT CARDS WERE ACCIDENTLY LOST.

5.02 COLLISIONS PER CARD AN ADDITIONAL 104 CARDS AUGHT TO
104 X 5.02 = 523 COLLISIONS SO THAT Nc¢ = 21675
THIS MAINTAINS THE INCREASE OF Nc

THEREFORE WITH

WITH N

21152 —

L



TABLE.

5

PROBABILITY RESULTS

ld

21

N, X10 REP_| REE ReP.| REE | P, P P P | P P
AT()N15/(: M ;

2439 | .9436 | .9892| .9443 | .9893 | .0953 | .8929 | .ooe6 | .0048 | .437 | .4260

.3991 | .9358 | .9811 | .9366 [ .9814 | .0998 | .ss02 | .ot19 | .oost | .441 | .4535

6231 | .9290 | .9775| .9298 | .9778 | .1027 | .se85 | .0179 | .ot09 | .390 | 3945

9013 | .9129 | .9644 | .9140 | .9649 | .1109 | .s480 | .0247 | .ot65 | .4014 | .4130

1.5381 | .8886 | .9451| .8900 | .9458 | .1326 | .7932 | .oa60 | .0286 | .3208 | .3285

qzt-



various thorium number densities. Figure 10 displays these
results graphically.

A five point least squares fit to a straight line was
made for the REPR! curve with the result that

P = REP! = 1 - .036Tn (5.9)

3

where n is the thorium number density in atoms per cm”.
The closeness of the fit can be seen by comparing the ob-
served data points to those calculated by equation (5.9)
as listed in table /3.

To decide whether the data is sufficiently well fit
by a straight line rather than by a higher degree pcly-

nomial a quadratic fit was made giving the equation
P = 1~ .03669n + .005095n° (5.10)

A test to measure improvement employs the F statistie

given by n n
T a2 - I @9
F(K,n-k) = _i=1 1% ~ i=] q¢%i
B 2
i=1_ %
n-k
where 1% = the deviation of the i'P® data point
from the linear curve
(1 = the deviation of the 1% g4ata point

from the quadratic curve
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n = the number of data points

k = the number of degrees of freedom in the
quadratic case

K = the number of degrees of freedom in the
linear case.

For our problem n = 5, k = 2, K = 1, and F(1,3) = 3.85,
From a table of the F distribution we find

Fo(1s3) = 5.54 >3.85

3'05(1,3) = 10,13 > 3,85

P 51(1,3) = 34.12 > 3.85.%
We conclude, therefore, that at all levels of significance
the linear model fits the data znd that the error reduction
due to the quadratic term is insignificant. Equation (5.9)
gives the functional dependence of P on n sufficiently well,

The separate contributions to the reduction of the

resonance escape probability by the effects of leakage and
absorption are displayed for comparison in table 6. The
increase in the leakage effect with larger Doy, is to be
expected since, with the addition of more Th(NO3)4, the

* This notation means that the chance for F > 5.54 is 0.1
or the fraction of the area under the F frequency function

beyond F = 5054’ i-e., oo
for [ £(F)AF =1 Ol = f(F)ar.
0 5.54
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TABLE. 6

COMPARISON OF LEAKAGE AND ABSORPTION

N [‘HX 10' = % LEAKAGE OA') ABSORPITION
(REP - REP_) 1 -
ATOMS/CM3 L G ( REDPO )
2439 4.26 1.08
.3991 4.53 1.89
. 6231 4.85 2.25
9013 5.15 3.56
1.5381 5.65 5.49
TABLE. 7
NUCLIDE POPULATION CONTROL OF 2_ now
21 21 21
NI’HX1O NOXX1O NHX1O Zﬂ)'
AT()M/('.!P/(‘ AT(_)M%/(\,M; ATOMS C:T\/‘3 IN CM !
2439 35.42 64.99 1.456
.3991 36.69 63. 81 1.433
6231 38.91 61.43 1.409
19013 39.64 57.64 1.348
1.5381 41.51 46.10 1.145
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relative number density of hydrogen will be less., VWith

the heaviest contribution to the total macroscopic cross
section coming from hydrogen we expect that cross section
to reduce along with the hydrogen number density and there-

fore produce larger mean free paths.

A O tn*Rox9 ox N0 N ReC |

We have values of the sum

ZNQH l"'Zm: + XN + ZH (5.11)

for the five values of By, We see from table 7 that they

decrease with inecreasing Doy, e

5.2 Collision Probabilities

We notice that the last point for each graph of
figure 11 deviates from the approximate linear pattern set
by the points for small Byy e We can expect relatively
more collisions with thorium because of multiple collisions
that are infrequent on the smaller samplings of thorium
collisions, but we would expect to see some multiple colli=

sions on the larger samplings that go with larger Doy e
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Whereas, ny and n x increase faster than linear with a

o
linear increase of Dy making possible a faster than

linear increase of their collision frequencies. Accompanied
with this, we get a faster than linear decrease in ny
making possible a faster than linesr decrease in its
collision frequency with Doy, e These latter effects are

due to the non-linearity shown in figure 12. See equations

in appendix III,
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CHAPTER 6.
ERROR ANALYSIS AND CONCLUSIONS

6.1 Monte Carlo Statisties

The random error or measure of statistical variation
can be estimated by means of the central limit theorem

which for the case of weighted events takes the form

P({%»al“) = erfb%;—)‘r fN' (6.1)

where t = El!% and fﬂ"“’ as N—o=

i

the dispersion

]

the ratio of the number of histories
surviving to below 10 ev. to the number
of histories begun

a = true value of the escape probability.

We take as an estimator of b the quantity é’ which is

_ X w)® <E".1..\2
Q =] win |

given by:

\win /

éz i (6.2)



The error function

12
erf(x) = %/xe'x dx' (6.3)
o

is well tabulated.

If we wish to specify a probability of 0.5 that the
computed REP be within + € of the correct value a we must
then pick an € >0 such that erf Lﬁ.-) is about 0.5. We

will refer to such an € as the probable error. For this
t

W
to be true 7-2-’-‘-’ .5 hence ei in = .5
2b

or

Now w = M
;- win,i

however a very good estimator of this number is

W

7.

4 are about equal to unity. We then have

g = g:(wl 2 (_4 (6.4)

since all win,

The results with € displayed as the probable error are
given in table 8,
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TABLE. 8

RESULTS INCLUDING MONTE CARLO STATISTICAL
PROBABLE ERRORS

N X1 0 , PROBABLE PERCENT
AWMS/;M; RER, ERROR ERROR
1.5381 .9458 .0026 .27

.9013 . 9649 .0018 .19

. 6231 .9778 .0014 14

. 3991 .9814 .0013 13

. 2439 . 9893 .0010 .10




6.2 Probable Error for the Slope of Equation (5.9)

We wish to estimate the probable error of the slope
of the equation
P = 1~ .0%3Tn .

Agsume an equation
P = 1+ an . (605)

The following procedure leads to the normal equations

of a least squares fit:

N N

PN Z;gi - (1+an,)_7?

N

i
¥ >
g;"fi =z 0 = Z 2[}?1-(1"'3111)_7(“111)

Sa :
N
or Eg[?i - (14an,) /n;, = O . (6.6)

This last set of equations is the normal equations.
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2 2
(Plnlfnl-anl) + (P2n2~n2~an2) + eee = 0

n % P § 5_ 2
ence n, = n = a n
P Bk S Sy j=1 *

ZPin;l - A‘v.-ni

or a = 4-E§“;§“~—- . (6.7)
- 1

If one considers the ng fixed constants and the Pi

variables then we can write an equation for the probable

error.
IE da 2
“a = ‘1‘21(—5?161’1) (6.8)
2
or éa = é-—(niei’i) . (6.9)
32

Por the Monte Carlo results we have the values listed

in table 9 whence we obtain

19,7118x10 8x1 -3
€a = %%5&_ = 3759 = 1.1777x10

and we then have
a = =(.0367 + .0012)
= - 00367(1 t 0033) .




TABLE.

9

QUANTITIES FOR SLOPE PROBABLE ERROR

N N 2 € x10°’ N € xi10? (N E )P x10°
I P1 1 P P
1.5381 2.3504 2.6 4.00 1600. 00
.9013 0.8123 1.8 1.62 262. 44
. 6231 0.3883 1.4 8.72 76.04
.3991 0.1593 1.3 5.19 26.94
. 2439 0.0595 1.0 2.40 5.76



The model provides no mbsorption in the energy region

where the cross section is fit with the exponential function
Op, = 33.78 ¢ 0-01L138 (6.10)

where 76 eve < 1 £ 105 ev.

This is 8 very _00d agproxim:ation since the resonance abe
sorption due to the 6$.20 av, resonusnce drope off much more
rapidly then the resonsnce senttoring for that peak, i.2.,
the interference tarm in'cr@h controls the variation in the
interval in question.

The model also neglects absorption in the interval
185.5 eve { E £ 1000 ev. where an average of 13.2 burns
has been used. This latter number came from Bollinger's
raw data (1) purte of which ere displayed graphically in
figures 6, 7, and 8., The rescnance structure of the region
is neglected since the dats is guite uncertain and the
contributions from abzsorption are very small in general
compared to the total of potential secattering, rescnant
scatterin;, snd interference. The interference and poten-
tisl terms are completely dominent in the wings of these
relatively weak und poorly resclved resonances since X (x,t)
decrezses more slowly then the functianfyf(x,t) which con-

trole the resonent sbuorption snd scattering.
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6.4 Discussion of the Results

Probably the most striking feature of the Monte Carlo
results is the "goodness of fit" to a straight line for
resonance escape probability as a function of thorium
number density. In view of the very small probable errors
for each REP determination we conclude that more than a
sufficient number of histories were processed to provide
"good statistics".

Although we might expect no change in the probability
for an absorption (given that a thorium interaction occurs)
from density to density, nevertheless, the data seen in
table 5 and figure 13 for Pab' show considerable fluctu-
ations on top of a general downward trend with increasing
Dy o We do, of course, expect the variation since the
statistics (in this case the total weight absorbed) are
much poorer than for the REP calculations. One would have
to process about twenty times as many histories to provide
similarly precise data for Pab" We might explain the
downward trend of Pab' with increasing N, on the basis
that 2, /3 increases. One recells that it is this ratio
which, according to the Monte Carlo prescription of section
3.1, controls the selection of thorium for a collision.

For the first collision of a history, the probability of
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a thorium collision will be larger if ZTh/Z is larger,

Since
Loy o= 1
2 1+ 3 noH
2Th

Z NoH
for the answer., We note in table 5

2 Th

. | o
that Z Nok decreases with increasing Oy and that 2 T™h = %n Th

we can examine

is in general larger for larger Dy, e Therefore the ratio

E—%H/ Z’l‘h is smaller, making the ratio 2. P /> larger. This

R h
means that for a run with larger B, relatively more thorium
collisions occur at higher neutron energies where the
absorption cross sections are smaller. This reduces the
amount of absorption per thorium collision on the average.

The percentage of leakage increases with n_ . indicat-

Th
ing longer mean free paths in general. Since

2 - ZTh + ZI\IoH ’

we conclude that the decrease in ZNoH is not compensated

by the increzscze in ZTh' The reduction of ZN may appear

oH
to be at odds with the idea that a more dense solution
should increase its value. However, the element of highest
cross section is hydrogen and its density decreases with
inecreasing concentration by enough to reduce the overall

value of ZNOH



6.5 Comparisons to #Analytical Calculations

The analytical evaluation of REP is very difficult
for the whole resonance region as one problem. Calculating
a REP for even one resonance can be quite laborious. A
qualitative discussion of the problem is useful.

It is important to distinguish between wide resonances
and narrow resonances by stating a criterion for the
clagssification. It may seem paradoxical but a resonance
with 2 width large compared to another can be classified
narrower by use of the eriterion. For example, with a
eriterion thsat f;;<< E1(1~°<) where E, is an energy above
the ith resonance, there will be fewer neutron reactions
in the resonance, i.e., the width is narrow compared to the
energy change that can accompany a scattering. The figure
14 indicates the concept. AE nax = El(l-o() and the smaller
is I'/a E o.x® the narrower is the peak.

12
For a specific example let us try to decide which is the

If E, is lerge then B, 2 E and AB -~ Eo(l-o( )e

wider of two thorium resonances. We shall pick the
Ea = 21.84 ev. and the Eo = 170.80 ev. resonances from

table 2 where they are labeled peak 1 and peak 8.

= 36 mv = 106 nv .
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From the point of view of rescnsnce widths peak 8 is wider

than pezk 1. Continuing, we have

« = (—%ﬁ)zz (%)2= .983

and (AB

l)max = (1-.983)21.84 ev. = .37 ev. ,

(AE

o pay = (1-.983)(170.8 ev.) = 2.9 ev.

Since ,036 ev. <L .37 ev, and since .106 << 2,9 ev. we
conclude by our criteria that both resonances are narrow
as 1is the case for sll of the thorium resonances included

in table 2., However

[ 36 106.0
AT =50~ .0973 and 5855~ = .0366

which means that peak 8 satisfies narrowness more strongly
than peak 1 yet f'8 > r;. This, of course, occurs because
Eo for peak 8 is so much larger than EO for peak 1. If a
neutron appears with energy El'>'Eo and scatters from
thorium it has a greater chance of reducing its energy to
below Eo for peak 8 than for peak 1 and therefore less
chance for suffering a second or third collision in thorium
assuming thet scattering occurs rather than capture in

each case.



The low lying 6.7 ev. peak of U238 nas [ = 26.5 mv.
and X = ,9833,

B, & E = 6.7 ev. then (AE)max = (,0167)6.7
= ,1119
and L 207
AE _ = <Vl
nax

This peak is much wider than either of the thorium peaks.
In all three cases the addition of the Doppler-broadening
will weaken the narrowness criterion; this brings the
lowest lying peaks out of the narrow claessification.

Analytic evzluation of the resonance integral is more
eacily obtained for the narrower resonances of the higher
energy region, and thorium should prove easier than
uranium in this respect. See reference (19) for additional
details.

Presumably we can arrive at an estimate of RER! by
calculating the value of the resonance integral for each
of the eight peaks and adding them to get an effective

resonance integral I. Then

In,
RER! = exp{-~ ik ’

EXp



The calculations leading to the values in table 10 are
based on the curves of figure 3-3 of reference (5) and

equation (31-3) of the same reference,

pe g [ (6.12)

We will now present a calculation for the REP' based
on the analytical expressions valid for the narrow resonance
approximation in homogeneous mixtures., The following
equations will be employed where REP' is replaced by P:

{flxi :zn}
P = e i=1 -EZp (6.12)
I, = Eg{-?‘ﬁ-ai(o.g ) (6.13)
;W (x,8,)
3 (8,§) = -/V\"”' z"‘ifx dx (6.14)
0
2si
E = éfi i Ci o wereliBe (6.15) (6.16)
T
0O = -2-:-2 (6.17)

p i



TABLE. 10

SAMPLE DATA AND RESULTS FOR AN ANALYTICAL CALCULATION WITH

-t Lg—

Nt = 9013 X 10! ATOMS Cwm’
Eo i~ l [_‘ O_" "; U'
. u == 0 v = | 6 o— — Uo
S IR RS et oo 73 =2 | i |Jeg| 1E0|=7F
T g MoV . qu, - -1 IN BARNS BARNS
1 21.84 34 . 3691 2.344 . 2058 14.33 4.9 11.49 7316
2 23.48 L4252 2. 501 . 1366 13.74 5.1 12.76 11026
3 59.55 .1615 . 531 . 1950 14.25 6.0 3.19 7720
4 69. 20 L4725 .934 . 0842 16. 36 7.0 6.54 17887
5 113.15 . 2388 .559 .3157 14.95 3.5 1.96 4770
6 121.00 41 .2614 .510 . 2250 14.46 4.6 2.35 6690
7 129.40 41 .1854 L4471 1.0649 16.70 1.3 .61 1414
8 170.80 48 . 3887 . 423 . 1808 14.14 4.9 2.07 8325
-!
FOR THIS TABLE 7% — 1505 ans.  J = 875, 2 . = 1.3572eM AND

REP, = .9689.




Zp = Bpp Tpa +ZI§0H (6.18)

é?a -g.-g (6.19)

h 2.6x10% [ [
e R
1n
§‘i +°(§:_q (See pp. 81~83 of reference 12) (6.2.)

i

Fo== __g__iﬁ for A, > 10 (6.22)

where U pa is the potential scattering cross section of
the absorber which is thorium. These equations and the
necessary data are found in reference (5). Reference is
also made to tables 1 and 2 for the necessary peak parameters.
Agsuming np = .6231 x 1021 a’coms/c:m3 we have
-1

Loy = l4lem

> p = P o_;-)a + L-NoH

= (.6231x10%1)10.5x10 % %cn™ 1+ 1.4114 on™t

= 1.418 om™1,



le

IR

o

2
232,61
2

17.67 = 1363

o)

(38.91x10%1)(3.8x107%4) = .14786 cm”

2.492(9.1)x10™°

(61.43)(20.2)x10™2

1

= .02268 em™t

1.24089 cm~t

(.0086)(,0665)+(.12)(.148)+(.136)(,0227)+(1.241) _
1.418

10.5 bns + l: %%l X

Yo

Uo

lO3 bns = 2270.3 bns

«890
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To proceed with the caleculation we refer to figure 3-~3 and
table 3-3 of reference 5(1), where J(G,?) is given as a

function of j.

f = 29 x 10° so that

5 + logg
I = “Teg2 1
Table 10 gives the data and resonance integral values from
each peak for B, = .901311021atom/cm3. Proceeding for
Ny, = .6231x1021atoms/cm3 we obtain

8
i=1

The separate I,'s are obtained from equation (6.13).
Pinally, applying equation (6.12) we obtain P = ,9827
which is 0.5% higher than the value calculated by the
Monte Carlo.

It should be noted in table 10 that over one half

of the total absorption contribution comes from the first

(1) The same figure and table appear in volume 1 of
Nuclear Science and Engineering p. 74 and 76 (1956)
where the figure is larger.
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two peaks. Peak 4 is the largest in magnitude including
the Doppler peak reduction and yet does not contribute as
much as either 1 or 2. This means that peak 4 is narrower
than pesks 1 and 2 by our criteria. Similarly for peak 6,
It is interesting to note that the first peak of uranium
(6.7 ev.) contributes over 78% of the absorption. This
means that it must not only be large in magnitude but very
wide by our criteria.

Table 11 gives the comparison between Monte Carlo
and analytical calculations.

We now refer to figure 3 on page 78 of the reference
listed in footnote (1) where the effective integral for
™32 ig given as a function of C:f In the range of CE)
from 400 bns. to 2000 bns. there are two measurements that
fall somewhat below the theoretical resonasnce integral
values for 300 °K. The first two entries of table 12 have

G; in the same range and the corresponding effective
resonance integral falls below the experimental points.
Several explanations of these differences are as follows:

1. Table 12 lists Ieff calculated by Dresner's
method but using only the lowest eight resonances while
Dresner used fifteen taken from Hughes and Harvey (8).

2. Several parameters (particularly <Tb) that Dresner
used are in doubt. The o, reported in reference (5) is

too large in several cases,



TABLE.

11

COMPARISON OF MONTE CARLO AND ANALYTICAL VALUES FOR RER]

N REP oy g _|NR _ o MR /
o vonte | S (5T 5 £ &1l 3 S 1 #L@L) B
X10", | caro | ¥2,F V€ 2, S s IR Ll NGy
. 2439 .9893 . 01345 . 9865 .912 1.459 .28 . 9865 .28 5981.4
. 3991 .9814 . 01805 . 9838 . 904 1.447 .24 . 9837 .23 3625.9
. 6231 . 9778 . 02471 .9827 . 890 1.418 0.50 . 9826 .49 2270.3
.9013 . 9649 . 03349 . 9694 .875 1.357 0.46 . 9689 .41 1505.9
1.5381 . 9458 .05143 . 9569 . 825 1.161 1.16 . 9560 1.07 754.9
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TABLE. 12.

EFFECTIVE RESONANCE INTEGRALS -

NTHX ]O.” O-‘P N

3
AIOMb/CM

l EFF

HARNS . IN BARNS
1.5891 754.9 27. 41
.9013 1505.9 40.95
.6231 2270.3 35.34
. 3991 3625.9 53. 56

. 2439 5981.4 73.37
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3. Dresner's calculations indicate that the

unresolved resonances may contribute as much as 30% of the
total value of the effective resonance integral., If 30%
is added to the high concentration value in table 12,
Ieff falls in line with the measured value. For higher
concentrations, larger percentages due to the unresolved
resonances are expected because of self shielding of the
resolved resonances.

It appears that Dresner's theoretical calculations are
too high because the data he uses (8) give values of U  and
’1n that are too large. The data used in this paper comes
from Bollinger and Cote' (1) and Rosen (18). It is believed

that these sources of the resonance parameters for thorium

are more reliable with the latter being the most recent.

6.6 Coneclusions

The Monte Carlo calculation gives the following
contributions to the resonance escupe problem:

1. It indicates the geometric effect on the resonance
escape probability allowing caleculations for finite and
rather small reactors.

2. It gives the relative contributions of thorium
absorption and geometric leakage as a function of concentra-

tion.



3« It provides an analog calculation of the thorium
resonance escape probability independent of the theoretical
assumptions leading to equation (6.12).

4., If this Monte Carlo program were translated from
IBM=~650 language to the IBM-704 language the whole problem
could be run in less than two hours. On the IBM-650 it

takes about 65 hours.
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CHAPTER T,
SUGGESTED EXTENSIONS

A series of radial (off the beam axis) distributions
for sixteen values of z (the coordinate along the beam
axis) have been determined by least squares fitting with

a function of the form

f(r,z) = a(z)rb(z)e'c(z)r (7.1)

to the position distributions obtained from the water
moderated Monte Carlo which was used as the source for the
REP Monte Carlo (21). These distributions coupled with
the uniformly distributed "first arrival" energies and

the assumption of an isotropically directed set of "first
arrival" initial velocity vectors may well provide a
sufficient basis for Monte Carlo sampling to initiate a
history. This would replace the card-read source routine
used in this paper. It may well happen that the program-
ming of this new source routine may overtax the storage

of a "bare" IBM-650 in which case a larger computer would
be necessary. Since "reading" is very slow, we might
anticipate an overall speced up of the computations allowing

more statistics in a shorter running time. This would



help remove the large statistical fluctuations implied
in the results for such quantities as Pab"

It should prove interesting to modify the program to
provide a check for Safanov's water-uranium curve (19).

A larger computer would provide more storage to allow
more definitive tabular histograms with which to approxi-
mate the resonance cross sections,

When data with better resolution becomes available
the higher energy resonances could be included with more
precision. All that need be done to the program is to
increase the number of energy gaps tested and expand the
number of }P’and X tables correspondingly. The basiec
structure of the program would thus be unaltered. This
refinement will not likely improve the results signifi-
cantly.

With a faster computer one could examine the effects
of tempersture variation on the REP. This can be done by
using different Doppler widths which provide the source of

temperature dependence of REP,
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APPENDIX I

The Fundamental Theorem of Monte Carlo

The primary question to be answered in a Monte Carlo
problem is how to select the value of a variable from many
possible values where the possibilities are described by a
frequency function or probability density function. The
answer to tht question is provided by the following theorem,
Theorem: Given a random number Nr uniformly distributed
on the interval (0,1/ and a real, positive, single valued,
continuous function f(x) defined on the interval - x
such that

f f(x)ax = 1.
x>
Then for N, = j f(x)dx we have that X is a random
0

variable with frequency function f£(x).

Proof: The indefinite integral

x
F(x) = jf(x')dx' exists (1)

-0

because of the given conditions on f(x).

lim F(x) = f(x )dx' =1

lim P(x) = f(x Yax' = 0 .
X —voo



F(xl) < F(xz) for x; < x, since £f(x)> 0 for all x.

We then recognize F(x) as a monitonically increasing

function so Plax = F(ee) = 1
and P = F(=c¢) = O

min

0< Px)<1.

From equation (1) and the fundamental theorem of integral

calculus

%% = f(x), or d4dF = f(x)dx . (2)

This is of the form g(F)AF = f£(x)dx where g(F) = 1, Ve
thus say thet £(x) in (x,f) space maps into g(F) in (F,g)
space., Since g(F) = 1, F is uniformly distributed in
(F,g) space on (0,1/. P then satisfies the conditions for
being N and we can write Plx) = N, or x= F'l(Nr).
Since a function of a random variable is also a random
variable we conclude that x is a random wvariable and by
(2) its frequency function is f£(x).

F(x) is called the distribution function of x and
gives the probability that x' < x, i.e.,

X
Fx) = Hr<x)a‘[fhﬂh'

-0

—



APPENDIX II

l. Cross Section Formulas*

In the present paper the neutron energies for all
collisions is so low that only interactions for 1 = O occur,
The cross sections for absorption and scattering in

terms of 1 are given by

Ty = fz: 2;(21&)(1- hl2) (1)
Opo,1 = ;75 Y, (2141) [1-n,)2 (2)

where k = the neutron wave number in the center of mass
- [e4E
1;2
and 1 = the orbital angular momentum quantum number,
hl is a factor giving the phase shift and amplitude

change in the scattered partial wave,

For 1 = O the equations (1) and (2) become

* The equations (1) to (12) are derived in the book,
"Theoretical Nuclear Physics" by Blatt and Weisskopf.



TG

qab,o = ;35 (1~ % g' )2 (3)
O—M:,o = ;J."z—‘ ,l"‘\o‘a . (4)

Introduction of the quantity

aly 3
fo = R Iir ﬁo R (5)

where Ue is the radial wave function for 1 = 0 and R is

the nuclear radius gives

T -4 ( Imf )R

(6)

abyo = 2 (Fﬁentfm)2+(Emfo-ka)"3
O;c,o g ,Apot + Areg : (7)
where Ap ot Qi2kR_l (8)
A= 32ikR (9)

With the introduction of resonance level widths r;l, rsf
and r



where r'n = neutron level width

r; = radiative capture level width

r sr‘n-t-'—; (10)

we obtain with suitable approximations and algebraic

manipulations
ab,0 15' [; [:i 2 (11)
) k 2
(E-E 2% L
LA I—'l?l 4R n(E"Eg) TR )
O;C,O = ‘l:é- (E_Eo)z,._!:; + K ""Eo +_Z + 4 . (12

E and E o are the center of mass neutron energies "off
resonance" and "on resonance" respectively. Equations
(11) and (12) are the single level Breit-Wigner formulas
for an 1=0, I=0 interaction. The nuclear spin I is zero

for thorium.

2. The Doppler Broadening Effect

We wish to include in our description of the resonance
cross sections the effect of the motion of the target nuclei.

To do this we use a relative energy formulation.



.

Define E = Bt

relative‘a Eeenter of mass

=2 mM
then B' = Lur where « = =%

m = neutron mass

M = target nucleus mass
¥ = relative velocity

¥ = 'flifz (see figure 15)
E' = %A:f‘z

Let'%i = A then we have

2 4 a2 2, Ty _i‘:gz
L - T T = ‘
B' = MW 20T 4T,%) = (% —= + */UZ )

now far/mr>>‘ial

R 2 ",-i"’ A e 7

B' ur (-&--U ___2.) but U-rz UX
AT

where Ui is the component of the target atom velocity

in the A direction. This becomes

Bt %wau-ij;&) ) (1)

2

We define E& & $ML S called the relative energy of m and M

for M at rest.



Then /\fu’ﬂ and AAAS = | 2ZMUE]
AA

so that equation (1) becomes

E' == Eé-\la?/u.Eo U, (2)

and dE' = = Q/uEé de . (3)

If we assume the speeds of the target atoms to have
a Maxwellian distribution and that the system contains
isotropic motion (no direction preferred) only, we can

write the one dimensional distribution for Ux by the

expression
- e 2
M 2kT "x
f(Ux)de = m e de (4)
but f(Ux)de = f(E')dE".

Therefore substituting equations (2) and (3) into equation
(4) we have

w  (Bg-')°
--.n——-—_r
£(B')dE' = \’MTF:I(TE e MTEG ag'  (5)
0

where T = kT.



We now wish to use this distribution to calculate an
effective cross section. The function f(B') is actually
a probability densz.ty function since it has been
normalized (f:t‘(L')dE’ = l)

therefore CIZEé,T) V/QTYE')f(E')dE' i (6)
Total,l © G;b,l + 0_ c,1 and for 1 =0

which is our case, since the neutron energies are too small

to have larger angular momenta, we would have

O, = 0. O

+
T,0 ab,0 8C,0

»

For future ease of writing we will drop the zero getting

the form
Op = Op+ O, (7)

which is more explicitly given by the Breit-Wigner equation

as

I Iy kR _y| 2
UT = g(s T-W S(B)TIT—T—)—HE + e 2t -].,

+ (1-g(s)) 4TTR2 (8)

where g(s) = %‘?%%m , 8 = I+, I-% (9)



but for thorium (I=0) g(e) = %— =1

80 equation (8) becomes

a . Iy r'% 7 iy 2ikR-1]? 10
i (5-2,)%40 T | AL T - (0

Expanding the second term gives

2
0— = I‘ rlg‘ r'r + '-.Z- [' n + 4ITR Fn(E"Eo)
T 2 n 12, e 2 (n_wly,pl k YN
k® (B-E )%+ k© (B-E])+L (B-E )24
) 7 )

+ 4TR2 (11)

where the first term is 0 ap 20nd the sum of the rest is 0;0.

= 2 _
Let o—ab,max. - 0—or’ U;c,max- 4MR™ = Oy (12) (13)
2
and U_imt = 4ITR". (14)

Since the neutron width is proportional to E' with the

reduced width being the proportionality constant we have

1! O
El
Pn = --—-—-r:-g (15)

ol 5Ty



)
where fjn = reduced width

o[; =/, at resonance.

2
Then O:r = 5‘-22-2[—;325— and O::s = ig(ilg - (16) (17)
k< I SV

We can now rewrite equation (6).
O—(-Eé,t) =/G;(E')f(z«}')df;' afO’;b(E')f(E')dE'
(o] (#]
+jU;c(E')f(E')dE’. (18)
(o]

We proceed to reduce the first term by use of equations

(11) to (17).

/ - -(n'-E'Z)/%*rE'
(E T) = ' o dE'.(lQ)
ab‘"o? r r |E:i }s" (E'-E )2
1;
( 2/4

We can use the expressions in energy for the k's as follows

=

k2
= 2B,
_1;% Eﬁ/‘it
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It is convenient here to introduce the following definitions

E'-nE E"E
’ = J&TE (20) (21) (22

where Eo is the energy at resonance

/A and 4y = '%ds' : (23) (24)

2 “ &8
In equation (19) Z‘fME:TEé ~ 2\‘»& TE,

‘E")-Eo|<< E . and so equation (19) vecomes

-~( X~y )2

&b (y +l)

(x-y )2

o
ab(EO'T) O—or Tjr l+y dy, EO >, (25)

For |y]>> |x} the integrand is very small and if one
stays away from the pole at E'=0 the only contributions
that are significant come for E' X EC". Another way of
saying this is that the function W is very slowly
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varying compared to _e 4(x—y )*  which drives the integrand
2
1+y

to zero long before a noticeable change in \JEO/E' can

occur, This allows us to write

ga‘n(E »T) J Eo \’r(x ) (26)
- 9° 2
< (x-y)
o e 4 dy .
h y0) = = 27
where \//(x ) T 1+y2 (27)

e~

We now reduce the second term of equation (18) using

equations (11) to (17) and (5) where (5) can now be given
in the form

2
- % (x-y)?
£(E')AE' = f(y),dy = z5 e dy
"2 - 2
0l xay )2 -~ 2
"'y) L P 2 ""‘(x""Y)
T (o - ©05s /e , o ﬂgl—'n(}:,' Eo)/% . 4 .
sc' o’ 2 i l+y2 28 k 3
o S 1+y
+ O;ct

O;sy(x,ah - twj(zﬁﬁ)zf?‘ —% _L? e dy .



-85~

The last term becomes
2
- -2- (x=y)2

o0
2
<& vcr | azfla) 2y _
T pot kZG;) 1+y2 e dy

ro — PO ’.,OE k"lo

—
R 3

—

o
5 J

A ’1n

k

|

=

ad
]

Finally,

U e (B2, "OZS\I/(X'Q)*‘ Usot* | Opot O

o
po pot o8 ——
oV
2
[} 2
- 4 (x"'y)
2y e dy .

By defining

X(x,0) =55 | 2L ay

we obtain

U;c(Eé’T) = O'Bsy‘“) +JU'potO';8I(x,0) * O;ot

(28)

(29)

. (30)
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Since (T;(Eé,T) = 0 p(ELT) + O (E},T) (31)

we have

E
aa30m) [ TV 15:0) + 0o 0,00 + Ty 520 X

+ (I;bt . (32)

To express this in laboratory energies we recall that

E! = gl o Ao B, (33)

where El is the neutron energy in the laboratory system.

From equation (22) the Doppler width becomes

~ mM_ype oo mM ‘
A= ZJ"(“‘")’M ey N '2/(E+M)2 T.E,

where OEiis the neutron energy in the laboratory at resonance.
If we let the neutron mass m be equal to one and the target

mass M be the isotopic mass number A, we have

4717 E 1 47 E
A = e o 1 and for A>> 1
\[’\m '%711";1_4 FA 1+ |

A= 47A°E1 . (34)




The cross section equations given use center of mass
energies. If we wish to use laboratory energies we must
multiply each energy including level widths by the factor

Q%E or lié in our case. Since only energy ratios appear

in the formulas we can use laboratory energies directly.

In computing ©, we use equation (34) with no signifiecant

error.
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3. Properties of l'V(xJ) and X(x,t): where t = ;[92

2 o 2
-(ﬁl) ~% (x=y)2
Vizt) = 1= & & . L& | ¢ — (1)
n¥ J_  1+y 2ff j__, l+y
L]
w 2 2
g o
X(x,t) = -+t |2Xe____ dy __ 8 212__§-_ dy (2)
’ 2frv | __ 14y° 2/ ey
X(x,t) = 2 x\/f + 4% ——)g . (3)

which can be derived simply by taking the derivative
of V' with respect to x and re-using (1) and (2).

We wish to obtain asymptotic expressions for Wand
X that will afford ease in machine computation for x
beyond a value that provides only 2 small error. For
smaller values of x numerical integrations are available

in tabular form (16).

The asymptotic solution for\[/(x,t) can be obtained
as follows:

Expand the factor 1/1+y2 of the integrand of equations
(1) and (2) in a Taylor series about y = x to obtain



1 oM —=2x (ng)?{f 2 8x° .}
1+y 1+x° + X){( 2 }+ 2 (1+x°) * 2)sj

—t
2 1+4x )2 (1+x

-x)> 8x° -x)4 2 288x°

(1+x )3 (1+x°) (1+x

4
s %} (4)

Upon substitution of equation (4) into (1) and (2) we

obtain
2_ 2
(5)

2 2
.z%[l ety 22 (50 o) .

asymptotic™ 1+x (l+x2)2 (1+x2)4
(6)

In order to neglect the third term in equation (5) we
require that

2 2
2t—2X L. >> —-——5-312“ 1 - 10x° + 5x4
(1+x (1+x°) ( )



~90=-

which becomes

2 4
(1+x°) l_.‘*‘_?_&_.é:_ll!a, > 6
5 - 10/x°+ 1/x
and for large x

%12 >> 6% or x2 >>10% .

Neglect of the third term in equation (6) by similar

reasoning requires 12 >> 6%.



APPENDIX III

Nueclide Number Densities

We ghall define the following symbols:
¢ = c¢oncentration of reactor solution
( = density of the reaetor solution in gm/cm3

gy = number of thorium atoms per cm3

3

n = number of oxygen atoms per om
ng = number of nitrogen atoms per cm3

ng = number of hydrogen atoms per cm3.

One can show for a Tn(H03)4 aqueous solution that
Dgp, = 1255 x 1021 ¢
ng = 5.020 x 1021 c
n,, = l2ny + 26.64( = -l)ny,
ny = 53.29( % -1)ng -
Using the density vs. concentration curve one can,

for a specified ¢, calculate the number densities from

the above equations.



APPENDIX IV
The ogramns

1. Input _and Output Data.

(a) Input Data:
The initial parameters for beginning a neutron
history are fed into the IBM-~650 by reading punch eards
that contain eight 10-digit words. We have the following

arrangement of data:

Word Columns Quantity Deeimal Point

1 1-10 (irrelevant) -

2 11 - 20 p 4 4 - 6
3 21 - 30 y 4 - 6
4 31 = 40 z 4 -6
5 41 - 50 E 8 - 2
6 51 - 60 W 1-9
T 61 - 70 e l1-9
8 71 - 80 ¢ 1-9

E is the first energy the neutron has below 1000 ev. and

W is its statistical weight at that energy. W is essential-
ly one, but due to the inclusion of very small absorption
during the water moderation some neutrons have a weight

slightly less than one,



(b) Output Data:
An output card contains the following information

concerning the neutron history:

Word Column Quantity Decimal
1 l1-10 initial weight, win 1-9
2 11 - 20 final weight, W l=-9
3 21 - 30 Wl 2-8

N=4317
4 31 - 40 gz%: iwin 1-9
5 41 - 50 N , the total number 6 - 4
of collisions per
history
6 51 - 60 HH,i the number of 6 - 4
hydrogen collisions
on the ith card
7 61 - 70 Ko y the number of 6 - 4
X,i
oxygen collisions...
8 T2 and T3 90 means out
01 means low
74 - 80 NTh,i’ the number of 8 - 2

thorium collisions...



2.

The Data zxtraction Program.

This program adds the words on the output cards to

provide the following quantities:

Wl = §:3“11' the sum of weights for neutrons surviving

in

L1}

to energies less than 10 ev. where k is the
number of histories producing an energy less
than 10 ev.

the sum of initial weights from all source
cards.

the sum of weights that escape from the pile
before an energy leses than 10 ev. is attained.
£ 2

L V13

Ktk K = number of histories resulting

1=1 €01 in escape from the pile.



. EXITL
EXIT2

EXIT3.

EXIT4
MEANF

GAP1

LOOP
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_RAL

STL

_SRD
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_STL

LDD

STD

RAU

STU.

STuU
STU
STU
RAU
LDD
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- THE MAIN PROGRAM

RO0O1

R0006

WS
0004
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SuMW1
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ETWO
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EXITL
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EXIT3
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STU
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AUP
STU
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SuP
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RAU
SUP
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RAU
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SLO
LDD
RAU
MPY
SLO
MPY

0002
LAMBD
PEAK

8003
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PEAK
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PEAK
ETWO
TWo27
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PEAK
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PEAK

ETWO
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NEG
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0006
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Etwo

SIx4
EQU
PEAK
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60
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11
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T

46
60
10
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11
46
60
11
46
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19
35
16
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69
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16
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0002
0415
0430
8003
0430
0430
0347
0430
0361
0468
0426
0430
0347
0430
0361
0518

0426

036l
0568
0476
0429
0436
0006
0427
0430
0347
0430
0361
0618
0426
0430
0347
0430
0361
0668
0426
0361
0718
0526
0361
0768
0009
8002
0320
0328
8002
0340
8002
0429

0511
0418
0335
0343
0483
0435
0451
0533
0465
0423
0477

0485
0501
0583
0515
0473
0527
0565
0523
0577
0633
0406
0573
0330
0535
0551
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0615
0623

0627
0585
0601
0733
0665
0673
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0715
0723
0727
0765
0338
0309
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0325
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0310
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VALUE
ACT
STEP

XGAP

RAL
STL
RAU

_AUP

STu

_RAU

supP
BMI
RAU

_AUP

STU
RAU
SUP

BMI

RAU

AUP
STU

RAU
SUP
BMI
RAU

_AUP

STu
RAU
SUP
BMI
RAU

_MPY

RAL
STL
RAL
LDD
TLU
ALO
RAU
SUP
STuU
RAU
AUP
STU
RAU
AUP
STu
SLT
SupP

NZU

RAU
SUP
STU

8003
SIGTH
PEAK

_ONE

PEAK
ETWO
ELEVS
EQU
PEAK
ONE
PEAK
ETWO

ONE2YH

EQU
PEAK
ONE
PEAK
ETWO
ONE4O
EQU
PEAK
ONE
PEAK

" ETWO

ONEB5
EQU
NTH
ONE32

8003

SIGTH
ZERQP
PEAK
1900
VALUE
0000
PEAK
0181
STEP
ONEC
STEP
PEAK
ONEB
PEAK
0004
FIVE
EQU
STEP
Flvts
STEP

LooP

... 0635

PEAKE.

PEAKT

PEAKS

GAP13

LOOP

8002
ACT

STEP

XGAP

0400
0407
0727

0651
0783
0815
0773
07177

0685

0701

0833

0865
..0823
0827

0735

0751
0883
0915
0873
0877
.. 0785
0801
0933
0965
0923
0927
0983
0456
0413
0426
0471
1033
0305
0408
0405
0835
0484
0389
0397
0388
0885
0393
1083
0443
0851
0506
0439
0375

65

20

60

10

21
60
11
46
60
10
21
60
11
46
60

1o

21
60
11
46
60

10

21
60
11
46
60
19
65
20
65
69
84
15
60
11
21
60
10
21
60
10
21
35
11
44
60
11
21

8003
0427
0430
0347
0430
0361
0818
0426
0430

0347

0430
0361
0868
0426
0430
0347
0430
0361
0918
0426
0430
0347
0430
0361
0968
0426
0429
0486

8003

0427
0317
0430
1900
0408
0000
0430
0181
0835
0392
0835
0430
0438
0430
0004
0346
0426
0835
0320
0835

0407
0330
0635
0651
0783
0815
0773
0777
0685
0701
0833
0865
0823
0827
0735
0751
o883
0915
0873
0877
078%
0801
0933
0965
0923
0927
0983
0456
0413
0330
0471
1033
0305
8002
0405
0835
0484
0389
0397
0388
0885
0393
1083
0443
0851
0506
0439
0375
0488



ASYMP

RAU

SUP
MPY

_SRD

STL

RAM

SLO
BMI
RAU
MPY
STL
ALO
SRD
STL
RAU

_MPY

SLO

RAU

MPY
SRD
DVR
SLT

DVR

ALO
SLT
DVR
SRD
STL

ST
SLO

SLT
DVR

RAU
_MPY.
DVR

ALO
RAU
MPY
RAU

MPY

SRD
DVR
STL
RAU
STU

_RAU_
SRT

SLO

SLT

ETWO
0181
0185

0003

XDELE
XDELE
0182
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XDELE
XDELE
XSQAR
ONED
0002
DIV
XSQAR
THREE
ONED
8002
0186
0002
DIV
0003
DIV
ONEB
0003
DIV
0003
PSI
XSQAR
THREB
0001
DIV
8002

0186

LIV
ONEB

8002

TWO
8002
XDELE
0001
DIV
CHI
0182
XMODT
PEAK
0006
8002
0009

ASYMP

COMP
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.1015
0935

0556

0417
0424
0425
0537
0391

0475

0442
0450
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1065
0422

0901

0474

0507

1115
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1165
0480
0489
0530
0493
0951
0580
0441

0348
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0409

1215
0630
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0656

0680

0543
1051
0524

1133
0492

0349
0730
0390
0587
0445
1035
0399
0557

60

11
19

31
20
67
16
46
60
19
20
15
31
20
60
16
60
19
31
64
35

64

15

'35

64
31
20

65

16
35
64
60
19

64

15
60
19
60
19

37
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20
60
21
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30
16
35
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0185

0003
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0186
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0985
0182
0542
0430
0006
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0935
0556
0417
0424
0425
0537
0391
0475
0442
0450
0457
1065
0422
0901
0474
0507
1115
0606
1165
0480
0489
0530
0493
0951
0580
0441
0346
1001
0409
1215
0630
0539
0656
0680
0543
1051
0524
1133
0492
0349
0730
0538
0587
0445
1035
0399
0557
0977
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SCAN RAU  XDELE
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0003
0006
0395
8003
0005
0985
0521
0528
0985
0642
0985
0395

1085
0497
0455

0459

1265
0973
0467
0973
0525
0479
0547
0575
0625
0529
0637
0495
1135
0597
0675
0547
0647
0725
0775
0579
0687
0545
1185
0697
0825
0647
0737
0595
1235
0592
0505
8002
0555
0463
1027
0396
0605
0517
0586
0879
0629
0589
0362
0629
0449



coMP

GOON

AFT

NR

—AFTRR

NON

. POSTL

. ZERO

SLT
STU
RAL
SLT

DVR

LDD
SRD
RAU
MPY
RAU
MPY
SRD
STL
RAUY
MPY
SRD
STL
RAU
MPY
LDD
SRD

_RAU

MPY
SRD
ALO
ALO
STL

ALO

RAU
STU
MPY
SRD
STL

LOD

RAL
SRD
RAU
NZU
LDD
RAU
MPY

SRD

STL

~RAU

NZU

RAM

RAU
MPY
SRD

0001
PsSl
0181
0004
ETWO
GOON
0003
8002
0183
8002
PSI
0007
SIGAB
PSI
0184
0003
TEMP
SPOT
0184
AFT
0004

8002

CHI
0005
SPOT
TEMP
S16SC
SIGAB
8002
THSIG
NTH
0006
SIGTH
AFTNR
8001
0005
8002
NON
POSTL
8003

LAMBD

0006
D12

_CoLLs
- CAL2

012
8004
COSAl
0007

-lOOdu

coMp

0110

0110

LooP

o150

NR
0214

ZERO

0449

0655
0538
1285
0645

0472

0925
1335

0593

0504
0513
0416
1385
0692
0499
0554

1315
0522

0679
0604
0607
0569

1077

0706
0571
0729
1023

0780

0643
1101
0509
0550
0567

0418

0621
0779
0693
1151
0705

0558
1365

0536
0453
0410
0431

0586

0611
0619

0490

35
21
65

35

64
69
31
60
19

60
19

31
20
60
19
31
20
60
19
69
31
60
19
31
15
15
20
15

—50

21
19
31
20
69
65
31
60
44
69
60
19

31

20
60
44
67

19
31

0001

0395

0181
0004
0361
0925
0003
8002
0183
8002
0395
0007
0639
0395
0184
0003
0519
0975
0184
0607
0004
8002
0985
0005
0975
0519
1127
0639
8002
0756
0429
0006
0427
0621
8001
0005
8002
0705
0558
8003
0415
0006
0657
0326
1435
0657
8002
0369
0007

0655
0538
1285
0645
0472
0ll0
1335
0593
0504
0513
0416
1385
0692
0499
0554
1315
0522
0679
0604
0110
0569
1077
0706
0571
0729
1023
0780
0643
1101
0509
0550
0567
0330
0150
0779

- 0693

1151
0418
0214
1365
0536
0453
0410
0431
0586
0611
0619
0490
0559



ALO

e ST

RAM

MPY

o SkLT

SLO

MPY
AUP

e..STU

RAM

RAU.

MPY
SLT
SLO

MPY S

AUP

STU

_ RAU
ouTz BMI
ZouT RAM
SLO

BMI

POUT RAU
AUP

STU

RAU

STU.

LDD

STD

LDD

STD

RAU

STU

MPY

.STU

RAU

STU

LDD

STD

| PCH
XouT RAM
SLO

BMI .

YOUT RAM
SLO
BMI
THOR LDD
AFTER STL

. RAU 80

-101~-

0559

- 0609
0466
0661

ouTZ
Z20UT

POUT

START
POUT

POUT
0150

0669

1201

0659
0742

... 0707

1415
0711
0719
0590
1251

0792
0757
1465
0617
0671

0667

1025
0420
1177
0755
o787
0481
0534
0837
1485
0695
0636
0769
0531
0806
0432
0761
0830
0887
1183

0578 -

0717
1075
0628
0767
1125
0678
0581

0540

0709

15
20

67

60

19

35

16

19
10

21

67
60
19
35
16

19

10
21
60
46
67
16
46
60
10
21
60
21
69
24
69
24
60
21
19
21
60
21
69
24
71
67
16
46
67
16
46
69
20

0354
0563
0657

8002

0319
0004
8002
0421
0352
0412
0657
8002
0319
0004
8002

0371

0353
0462
0563
0420
0563
0470
0578
1073
0350
0384
0326
0381
0434
0382
0342
0383
0315
0378
8003
0379
0356
0377
0334
0380
0377
0412
0520
0628
0462
0570
0678
0581
1535

0609
0466
0661
0669
0540
1201
0659
0742
o707
1415
0711
0719
0590
1451
0709
0792
0757
1465
0617
0671
0667
1025
0420
1177
0755
0787
0481
0534
0837
1485
0695
0636
0769
0531
0806
0432
0761
0830
0887
1183
0300
0717
1075
0420

07617

1125
0420
015¢C
0638



NOTH

_NOOX

NOHY

_YESHY

YESOX

_YESTH_

WATE

coLL

RAL
SLT
DVR
SLT
STL
SLO
BMI
RAL
SLT
DVR
SLT
STL
ALO
SLO
BMI
RAL
SLT
DVR
SLT
STL
ALO

_ALO

SLO
BMI
RAU
SLT
STU
RAU
SLT
STU
RAU
AUP
STU

~ RAU

SLT

_STU

RAU
AUP
STU
RAU
STU
RAU
AUP
STU
RAU
MPY
DVR

STL.

RAU

SIGTH
0006
SIG
0004
FTH
NR2
NOTH
S1GOX
0006
SIG
0004
FOX
FTH
NR2
NOOX
SIGHY
0006
SIG
c004
FHY
FTH

FOX .

NR2
NOHY
FOUR

0005
ID

THREE

0005
1D
COLHY
ONED
COLHY
TwO

0005

1D
COLOX
ONED
COLOX
ONEB
10
COLTH
ONED

COLTH

WS
S165¢C
THSIG
WS
coLLs

-102-

YESTH

" YESOX

YESHY

coLL

coLL

coLL

WATE

coLL

0638
0631
0745

0402

0613
0620
0689

0842

0549
0663
0452
0713
0670
0721
0739
0892
0599

0763

0502
0813
0720
0771
0821
0789
0942
0649
0811
0843

0759 -

0871
0869
0839
0807

0793
. 0809

0921
0919
0747
0857
0743
0893
0969
0805
0907
0503

1019

0448
0566
0819

65
35
64
35
20
16
46
65
35
64
35
20
15
16
46
65
35
64
35
20
15
15
16
46
60
35
21
60
35
21
60
10
21
60
35
21
60
10
21
60
21
60
10
21
60
19
o4
20
60

0427
0006
0341
0004
0817
1535
0642
0795
0006
0341
0004
0867
0817
1535
0892
0845
0006
0341

0004 .

0917
0817
0867
1535
0942
0895
0005
0516
0304
0005
0516
0434
0403
0434
0454
0005
0516
0342
0403
0342
0438
0516
0350
0403
0350
0315
1127
0756
0315
0326

0631
0745
0402
0613
0620
0689
0743
0549
0663
0452
0713
0670
0721
0739
0793
0599
0763
0502
0813
Q720
0771
0821
0789
0843
0649
0811
0819
0759
0871
QBoY
0839
0807
0819
0609
0921
0919
0747
0857
0819
0893
0969
0805
0907
0503
1019
0448
0566
0819
0681



AUP  ONED 0681 10

— STy CoLLs _ 0957 21
LOb 1D 0829 69

TLU 1850 1069 84

« ALO  VALU 8002 0855 15
VALU RAU 0000 ACT2 0608 60
ACT2 SLT 0005 0905 35
RS SRT 0005 . 0967 30
STU  MASS 0879 21

LDD  AFR 0150 0937 69

AFR STD  ENR 0640 24

. ) RAU ~ ONED 0396 60
SRT 0002 1007 30

o AUP __ MASS . 0863 10
STU  AONE 0889 21
B RAU  MASS . 0797 60
SLT 0002 0939 35

. SUP  ONED 0945 11
SRT 0002 1057 30

DVR  AONE 0913 64

RAU 8002 0654 60

MPY 8003 0963 19

SRT 0004 0688 30

STU  ALPHA 0699 21

SLO 8002 1107 16

RAU  ONE 1515 60

SUP  ALPHA 1301 11

MPY  ENR _ 0859 19

SRD 0009 0464 31

AUP  ONEE 0987 10

SUP 8002 0995 11

sLO 8002 0553 16

MPY  ETWO 0861 19

STD  EONE 0482 24

SRD 0007 0738 31

STL  ETwWO 1157 20

SLO  EMIN 0514 16

BMI  LOW ESCAT 0971 46

LOW RAU  RO006 0574 60
sTU  P0001 0911 21

RAU  COLLUY 0880 60

sTU  P000Y 0731 21

LDD  COLHY 0634 69

STD  P0O006 1037 24

LDD  COLOX 1685 69

STD  P0QO7 1045 24

RAU  ONE 0686 60

AUP  COLTH 1351 10

STU  PO0OB 0955 21

0403
0326
0516

1850

0608
0000
0005
0005
0584
0640
0943
0403

. 0002

0584
0394
0584
0002
0403
0002
0394
8002
8003
0004
0704
8002
0347
0704
0943
0009
0440
8002
8002
0361
1585
0007
0361
1017
0574
0356
0377
0326
0381
0434
0382
0342
0383
0347
0350
0384

0957
0829
1069

0855

8002
0905
0967
0879
0937
0150
0396
10607
0863
0889
0797
0939
0945
1057
0913
0654
0963
0688
0699
1107
1515
1301
0859
0464
0987
0995
0553
0861
0482
0738
1157
0514
0971
1175
0911 -
0880
0731
0634
1037
1685
1045
0686
1351
0955
1087



ESCAT

CNXT.

RAU
STu
MPY
STU
LDD
STD
PCH
RAU
SRT
DVR
LDOD

~_SRD

STL
RAL
SLT

_LDD

SRD

DVR

AUP
SUP
SLO

_MPY

RAU
MPY
SRD
STL
RAU

MPY

SLT

STuU

RAU

_SRT

SLO

SLY

NX

SQ
NON2

AZMTH
NXNR

AFPHI

NZU
LDD.

SRD
STL
SRD
STL
LDD
RAU
MPY
SLT
STU

~SLO

LDD
STL
RAU

WS
PQO02
8003

P0003

SUMWI
P0004
P0O0O1
ETWO
0002
EONE
NXT
0005
AID
ALPHA

0004
AUX
0002
CATD

AID
8002
8002

AONE
8002

FIVE
0005

COSAP

800¢

8003

000l
AID
ONED

0003
AID

NONZ2

SQ
0001
SINAP

0001

_SINAP

NXNR

8002

TPI

~ 0005

ALD

_ 0001

;104;

START

0110

oo

1087
1119
0781

0856

0532
1137
1233

1175

1565

1021
- 0446

0749
1013

0770

0909

1169

0572

0831

0728
1071
0929

1187

0564
1123
g6lé

0881
0786

0847
0622

0979

0820

1207

1865

1121

“NK
0110

ALMTH

AZMTH
0150

8002

AFPHI
SINBP
AID

T TR

1221
0582
1985
0491
0931
1237
0498
1401
0959

0632

1145

0870

1029

0682 -

0690

0315
0378
8003
0379
0334
0380
0371
0361
0002
1585
0749
0005
1067
0704
0004
0572
0002
1067
1067
8002
8002
0394
8002
0346
0005
1885
8002
8003
0001
1067
0403
0003
1067
0001
0931
1985
0001
1095
0001
1095
1401
8002
0512
0005
1067
8002
0682
1287
1067

1119
0781
0856
0532
1137
1233
0300
1565
1021
0446
0110
1013
0770
0909
1169
0110
0831
Q728
1071
0929
1187
0564
1123
0616
n8sl
0788
0847
Qo6ll
0979
0820
1207
1865
1121
1227
0582
0110
0491
0498
1237
0498
0150
0959
0632
1145
0870
1029
0000
0690
1171



. AFCOS

CALZ2

LDD

AFCOS

0049
MEANF

i
0624

SINBP

o003

...Qool

STL  COSBP
RAU SINAP
SRT 0002
STU  XPOND
RAU SINAP
MPY
SRT 0002
_.STU___ _YPOND
RAU COSAP
SRT
STU ZPOND
RAU  YPOND
MPY SINC1
SLT
STu Al1D
RAU XPOND
MPY COSAl
SLT 0001
STu STORE
RAU _ ZPOND
MPY SINAL
SLT 0001
AUP STORE
STU STORE
SLO 8002
MPY cossl
SLT 0001
Sup AlID
STu DELXD
RAU YPOND
MPY cosBl
SLT 0001
STU AID
RAU STORE
MPY SINC1
SLT 0001
AUP AID
STy DELYD
RAU XPOND
MPY SINAl
SLT 0001
STu A1D
RAU ZPOND
MPY COSAl
SLT 0001
SUP AlD
SLT 0003

MPY _CosBP

1435

0799

0600

1257

0666

0849

0658

0716

1173

0989

0897

1005
1225
0992

0899
0970
1117
0740
0947
1055
1307
0790
0997
1357
1105

1063

1042
0949
1221
1129
1275
1092
0999
1020
1407
1142
1049
1271
1179
1167
0840
1047
1070
1457
0890
1097
1321

69
20
60

S

30
21
60
19
30

60
30
21
60
19

21
60
19
35
21
60
19
35
10
21
16
19
35
11
21
60
19
35
21
60
19
35
10
21
60
19
35
21
60
19
35
11
35

21

35

0624
1079
1095
1079
0002
0562
1095
1287
0002
0920
1885
0003
0552
0920
0371
0001
1067
0562
0369
0001
0602
0552
0319
0001
0602
0602
8002
0421
0001
1067
0576
0920
0421
0001
1067
0602
0371
0001
1067
0626
0562
0319
0001
1067
0552
0369
0001
1067
0003

0049
0374
0799
0600
1257
0666
0849
0658
o716
1173
0989
0897
1005
1225
0992
0899
0970
1117
0740
0947
1055
1307
0790
0997
1357
1105
1063
1042
0949
1221
1129
1275
1092
0999

1020

1407
1142
1049
1271
1179
1167
0840
1047
1070
1457
0890
1097
1321
1229



ZIN

_NTH

SINOH
NINTN
$161

STuU
RAU
MPY
SLT
STU

~ RAU

MPY
SLT
AUP
RAL
LOD
STL
RAU
SRT
DVR

_SLT

_RAU

STL

DVR
SLT
STL

__RAM

STU

STL
RAU
MPY
SLT
AUP

BMI

. RAU

MPY
SRD

ALO

. STL

RAM

SLO

BMI
RAU
MPY

SRD_

ALO
STL
RAM
SLO
BMI

00_

Go
00
00

COsAl

DELXD
8003
0006

AID

DELYD
8003

0006
AID
8003

SINAL
DELXD
0001
SINAL
0002
cossl

DELYD

SINAL
0002
SINC1
L12
012
8002
COSAL
0003
ZEE
ZEE

POUT

DELXD
D12

0004

XMAX
XIN
DELYD
D12
0004

YMAX

THOR
0006
0001
0600
0000

-106—~

0110

3 REE—

POUT

POUT

2500

5276
1900
1150

1229
0672
0981

_..0906

1371
1120
1031
0956
1421
1471
1279
0732
0722
1081
1337

~0930

1387

_ 0674

1131
0980
1437

0724

0961
0460
1219
0940
1099

_ 1217

0766
1170
1181
0778
0541

1267

0816
1317
1325
0828
1231
0878
0591
1367
0866
1417
1375

0429

0433
0368
0336

21
60
19
35
21

60

19
35
10
65
69
20
60
30
64

35

20

60

64
35
20

67

20
60
19
35
10

21

46
60
19
31
15

20

67

16

46

60

19
31
15
20
67
16
46
00
00
00
00

0369
0576

- 8003

0006
1067
0626
8003
0006
1067
8003
0732
0319
0576
0001
0319
0002
0421
0626
0319
0002
0371
0657
0657
8002
0369
0003
0563
0563
0420
0576
0657
0004
0412
0412
0412
0520
0828
0626
0657

0004

0462
0462
0462
0570
0678
0006
0001
0000
0000

0672
0981
0906
1371
1120
1031
0956
1421
1471
1279
0110
0722
1081
1337
0930

1387

0674
1131
0980
1437
0724
0v61
0460
1219
0940
1099
1217
0766
1170
1181
0778
0541
1267
0816
1317
1325
0420
1231
0878
0591
1367
DB66
1417
1375
0420
2500
5276
1900
1150



TwOb
FIVE2
S1G2
_S1X4
SEV6
TENS
ONE11
ELEVS
ONEZ5

_ONE4O_

ONES8S
ONE32
THRE3

Tw027

SIXTY

ONE

“ONEB

_FIVE

ONEC
_LELL
DEL2

LAY S S

ZMAX
_XMAX
YMAX
_ NINE
SIGOX

. SIGHY

SIGNI

. EMIN
TP1

_ FOUR

ONEE

TwO

. THREE

ONED

_FI1VEB

ZEROP
__SPoT

. THREB

Go

00
00
0o
00
00
vo
o

00

Co
0o
03
00
60
00
00

50
00

00
00
00
00
U0
Co
00

00
0o

6o

- 00

00
00
00

00

o

~ 00

U0

60

00

00

0000
0000
0000
0000
0000
0001
0111
0001
0001
0001
0001
1320
3780
0000
0000

0100

0010
000U
0001
0000
0000

2000

3700
3650
3650

9000

0000
0001
0000
0000
0006
0000
1000

0000

0000
0000
0000
0005
0000

0000

-107-

0518

2800
5200 0568
1180 0436
6400 0618
7600 0668
0500 0718
3000 0768
1800 0818
2500 0868

4000 0918
8550 0968
0000 P 0486
0000 0340
2270 0468
G000 0650
0000 0347
0000 0438
0000 0346
0000 0392
0010 0561
0020 0312
uouo 0500
0000 0470
0000 0520
Q000 0570
0000 1073
1554 0795
3439 0845
0228 0700
1000 1017
2832 0512
0004 0895
0000 0440

0300 . 0404
0002 0454
0003 0304
G100 0403
0000 - 0320
00 0O 317
1050 0975

470
520
570
429
795
845
700
433

00
Q0
00
00
00
00
00
00
00

00

00
00
03

00

60

00

00

20

00
00
00
00
00
00
00
00
00
00

50

00
00
co
00

00

00
00
00
00
00
00
00
00
00
00
00
00
00

00

0000
0000
0000
0000
0000
0001
0111
0001
0001
0001
0001
1320
3780
0000
0000
0100
0010
0000
0001
0000
0000
2000
3700
3650
3650
9000
0000
0001
0000
0000
0006
0000
1000
0000
0000
0000
0000
0005
0000
0000
3300
3100
3100
0015
0000
0000
0000
0001

2800
5200
1180
6400
7600
0500
3000
1800
2500
4000
8550
0000
0000
2270
0000
0000
0000
0000
0000
0010
0020
0000
0000
0000
0000
0000
1554
3439
0228
1000
2832
0004
0000
0300
0002
0003
0100
0000
0000
1050
0000
0000
0000
3813
1577
9312
0560
1449



-]108=-

TABLE LOOKUP FOR PEAK PARAMETERS

The data for each peak ié“givéﬂhby a group of six
- words. The last 5 digits of each gives the particular
. parameter value.

Position Argument Function
1900 00010 02184
1901 00011 00190
1902 00012 06871
1903 00013 00445

1904 00014 05555
) 1905 000615 01468
) 1906 00020 02348
1907 00021 00170
1908 00022 09340
R 1909 00023 00957

1910 00024 04651
1911 00025 01106
1912 00030 05955
1913 00031 00440
1914. 00032 06235
1915 00033 01365

1916 00034 07692
1917 00035 07668
1918 00040 06920
1919 00041 00150
1920 00042 09380
B 1921 00043 08500
1922 00044 02439
1923 00045 00896
1924 00050 11315
1925 00051 00300
1926 00052 03780
1927 00053 00989 =
1928 00054 03774
1929 00055 03506
1930 00060 12100
1931 00061 00280
1932 00062 04610
R 1933 00063 02079
1934 00064 03333

1935 00065 02926
1936 00070 12940




1937 00071 00380
1938 . 00072 01318
1939 00073 00100
- ... 1940 00074 04545
; 1941 00075 0b818
B 1942 00080 17080
1943 00081 00190
S — 1944 00082 03770
1945 00083 04560
1946 . 00084 01887 .
1947 00085 01324

_TABLE LOOKUP FOR y/(xyt) awp Xz, t)

———-For a given 10 digit word, digits 4 through 7 carry
the value of \[/{x,t) and digits 8 through 10 ecarry the

—eorresponding 'value of X(x,t). The values are O-4 and 0-3

numbers respectively. The first digit gives the peak number

1700 10100 35058

1701 10200 40061
1702 10300 46065
1703 10400 55074
1704 10500 67079
170% 10600 84084
1706 10701 10091
1707 10801 50099
1708 10902 11110
1709 11003 031295
1710 11104 39141
1711 11206 30151
1712 11308 82153
1713 11411 95157
1714 11515 51147
1715 11619 22138
1716 11722 63125
1717 11825 27068
1718 11926 71042
1719 20100 50069
1720 20200 59074
1721 20300 72081
1722 20400 90087

1723 20501 17097



-110-

1724 20601 59109
1725 20702 27119
1726 20803 135132
B 1727 20305 02158
1728 21007 46171
1729 21110 79176
1730 21214 94180
1731 21319 59163
1732 21424 14137
o S 1733 21527 82088
1734 21629 88030
1735 30100 06025
1736 30200 07026
1737 30300 08027
1738 30400 09029
. ) 1739 30500 11031
1740 30600 14034
“ I . 1741 30700 18036
1742 30800 24041
1743 30900 34045
1744 31000 50050
1745 31100 74055
1746 31201 14061
} 1747 31301 70071
1750 31402 50077
1751 31503 55078
1752 31604 88078
R . 1753 31706 43076
1754 31808 12074
1755 31909 80069
1756 32011 31057
_ 1757 32112 44040
1758 32213 04017
1759 40100 56074
1760 40200 67079
I 1761 40300 82087
1762 40401 03095
. B 1763 40501 36106
1764 40601 88119
. 1765 40702 75135
1766 40804 17152
1767 40906 41180
1768 41009 72189
1769 41114 19205
1770 41219 54280
,,,,,,,,,,,,, . 1771 41325 07144
1772 41429 72069
- 1773 41532 41032
1774 50100 14036




1775 50200 17040
1776 50300 ' 21044
1777 50400 26049
1778 50500 36052
1779 50600 54060
o 1780 50700 88072
1781 50801 51080
1782 50902 62103
1783 51004 40110
- S 1784 51106 97106
1785 51210 19117
1786 51313 65087
1787 51416 63071
1788 51518 37024
1789 60100 16039
— i 1790 . 60200 19043
1791 60300 24047
1792 60400 32052
1793 60500 45060
1794 60600 69070
1795 60701 18082
1796 60802 11097
1797 60903 76116
_ 1800 61006 36132
1801 61109 91123
1802 61213 96118
1803 61317 63109
o 1804 61419 82042
1805 70100 09029
1806 70200 10032
1807 70300 12036
— 1808 70400 14038
1809 70500 17042
I 1810 70600 23048
1811 70700 32058
1812 70800 47072
1813 70900 73090
1814 71001 15121
1815 71101 82158
1816 71202 80200
1817 71304 17249
1818 71405 92238
1819 71507 99305
1820 71610 19311
1821 71712 25290
1822 71813 87176
1823 71914 76006
1824 80100 34057
1825 80200 39060




-112-~

1826 80300 45065
1827 80400 53070
1828 80500 - 63075
1829 80600 79082
1830 80701 01090
. 1831 80801 35097
1832 8090} 89110
1833 81002 72123
1834 81103 98138
~ 1835 81205 82147
1836 81308 34163
1837 81411 57179
1838 81515 36151
1839 81619 40132
1840 81723 2112%
B . le41 81826 20087
1842 81927 84016
- 1600 24160 31606
1606 16800 21665
1665 24166 81621
1621 19162 41660
1660 10166 31620

1620 31000 81641
1641 16800 21649
1649 24160 21605

TABLE LOOKUP FOR ATOMIC MASSES

- The mass is given by the last five digits.

1850 00001 00232

T R 1851 00002 00016
1852 00003 00001
1853 00004 00014




N “.1.1% S

_SUBROUTINE exp{ -x}

Opor- Data Instruction
Position MMM___&MAddmss ,
1605 0001 1662
1662 ] 11; 8003 1669
1669 35 0001 1626
1626 15 8001 1631
1631 35 0004 1642
1642 10 1645 1650
1650 11 8003 1608
1608 24 1661 1664
1664 18 1668 1623
1623 45 1676 1679
1676 46 1629 1630
1630 69 1633 1637
1629 69 1632 1637
1679 69 1634 1637
1637 22 1643 1647
1641 60 1602 1607
1607 11 1663 1667
1667 30 0001 1674
1674 16 8002 1635
1635 19 8003 1658
1619 89 1250 9381
1658 24 1673 16217
1627 65 8003 1636
1636 31 0002 1646
1646 15 1601 1655
1655 10 1609 1666
1666 16 8002 1625
1625 30 0001 1638
1638 64 8001 1644
1644 16 1648 1653
1653 35 0001 1659
1659 10 8002 1670
1670 15 1673 1677
16717 11 8001 1639
1639 16 8002 1651
1651 30 0001 1657
1657 64 8001 1652



Fosition

Oper- Data Instruction

SUBROUTINE

exp {-x}
(continued)

ation Address Address

1652 60 8002 1661

1661 19 0000 1671

1671 31 0009 1643

1643 00 0000 1603

1624 43 4294 4819

1663 50 0000 0000

1645 19 1610 1671

1633 35 0000 1603

1632 31 0000 1603

le34 00 0000 1603

1601 11 3167 0182

1609 49 1478 1154

1648 52 1153 3783

1610 11 2201 8454

1611 14 1253 7545

. i 2 lelz2 17 7827 9410

1613 22 3872 1139

§ 21614 28 1838 2931
1615 35 4813 3892

1616 44 6683 5922

1617 56 2341 3252

1618 70 7945 7844

1619 89 1250 9381

SUBROUTINE FOR SINE AND COSINE

49 24 0003 0006

6 10 0009 0013

S 13 46 0025 0017
17 11 0020 0025

24 0003 0025

25 46 0028 0029

28 10 0032 0037

29 11 0032 0037

~ 37 21 0042 0045
45 46 0048 0099

,,,,,,,,,,,, 48 10 0002 0007
99 11 0002 0007



-'! | 5_
T 21 0012 0015
15 46 0018 0019
18 10 0022 0027
19 11 0022 Q027
217 21 0082 0035
35 68 8003 0043
43 15 0046 0001
.1 35 0001 0057
57 20 0011 0014
14 60 8001 0021
21 19 8001 0005
5 21 0056 0059
59 60 0012 0069
69 46 0072 0073
T2 60 0082 0087
87 46 0092 0050
73 60 0082 0038
38 46 0050 0092
92 61 0095 0051
51 19 0056 0030
30 10 0091 0096
96 61 8003 0053
53 19 0056 0041
41 10 0089 0094
94 61 8003 0052
22 19 0056 0044
44 10 0085 0090
90 61 8003 0098
98 19 0056 0054
54 10 0034 0040
40 61 8003 0047
47 19 0056 0055
55 10 0093 0097
97 . 60..8003 0008
8 19 0011 0031
31 21 0036 0039
39 65 0042 0004
4 46 0070 0071
70 65 0036 0003
11 66. 0036 0003
50 61 0056 0064
64 24 0079 0033
33 19 0086 0058
58 10 0063 0068
68 61 8003 0026
26 19 0079 0074
T4 10 0062 0067
67 61 8003 0076
76 19 0079 0078




78 10 0061 0016
16 61 8003 0075
75 19 0079 0088
88 10 0010 0066
66 61 8003 0024
24 19 0079 0080
80 10 0060 0065
65 61 8003 0023
23 19 06079 0083
83 10 0093 0031
9 15 7079 6327
20 62 8318 5307
32 31 4159 2654
2 15 7079 6327
22 07 8539 8163
46 07 8539
95 00 0000 0025
91 00 0000 2756
89 00 0019 8413
85 00 0833 3333
34 01 6666 6667
93 10 0000 0000
86 00 0000 0002
63 00 0000 0276
62 00 0002 4802
61 00 0138 8889
10 00 4166 6667
60 05 0000 0000

-116-

8163

SUBROUTINE FOR RANDOM NUMBER

110 45
114 24
121 20
106 65
113 10
12219
115 65

0114

0118

0127

0109

8001

0127
8003

8001

0121
0loe6

0113

0122

0115
0124



=TT

: 124 10 0127 0131
. oo.......13) 16 8002 0139
139 64 8001 0130
130 16 8001 0138

138 46 0100 0108

- ...............100 15 8001 0107

107 15 8001 0116
S 116 10 0119 0123
123 30 0001 0129

137 19 8001 0124
2108 15 8001 0118
109 50 0000 0000
R : 119 00 0000 0050
156 60 0159 0163

129 16 8002 0137

150 24 0153 0156

163 19 0166 0160

e — 160 20 0166 Q169

169 21 0174 0177
177 60 0180 0151
151 19 0154 0152
S 152 15 Q174 0179
179 20 0154 0153
159 11 6226 1467
180 11 6226 1467
154 01 3508 5171
166 76 7299 2089

SUBROUTINE FOR NATURAL LOG

224 24 0227 0280
280 69 0231 0285
285 24 0288 0291
214 24 0227 0221
221 . 69 .0232 0285
291 46 0299 0295
295 . 45 0298 0299
299 01 9999 9999



-ue-

298 36 0000 0223

223 20 0277 0281
281 65 8003 0230
~ 230 15 0233 0238
238 31 0001 0245
245 20 0249 0202
202 35 0001 0209
209 . 16 0212 0217
217 16 8001 0229
) 225 35 0209 0246
. 246 64 0249 0239
239 20 0244 0247
247 60 8001 0206
206 19 8001 0237
237 31 0000 0215
N 2231 10 0000 0000
232 23 0258 5093
) 215 20 0222 0228
2286 60 8001 0235
235 19 0240 0236
236 10 0243 0201
201 60 8003 0216
216 19 0222 0200
200 10 0203 0210
210 60 8003 0218
218 19 0222 0204
204 10 0207 0211
S 211 60 8003 0219
219 19 0222 0226
) 226 10 0229 0234
234 60 8003 024l
241 19 0244 0205
205 10 0208 0213
. 213 30 0001 0220
220 15 8001 0278

. 229 86 8591 7180
207 28 9335 5240
203 17 7522 0710
243 09 4376 4760
- 240, 19 1337 7140
212 31 6227 1660
233 31 6221 1660
208 50 0000 0000
278 21 0282 0286
286 61 0277 0283
i S 283 10 0287 0292
287 00 0000 0004
292 30 0001 0279
279 60 8002 0242



2642 10 0282 0289
€89 1Y 0288 0227

I DATA EXTRACTION PROGRAM ,
After reading the output cards into this program
.. locations 277, 278, 281, 282, 283, 284, 285, 286, 287, 288,
289, and 290 will contain the necessary results.

405 00 0100 0000

60 70 0251 0065
65 60 0331 0070
70 10 0405 G075
15 21 0331 0080
80 60 0258 0085
85 44 0410 0090
90 60 0251 0092
92 31 0003 0095
95 10 0277 01900

100 21 0277 0105
105 60 0252 0107
107 31 0003 0110
110 10 0278 0115
115 21 0278 0120
120 60 0281 0125

125 10 0255 0130
130 21 0281 0135
135 60 0282 0140
140 10 0256 0145
145 21 0282 0150
150 60 G283 0155
155 10 0257 0160
160 21 0283 0060
410 60 0251 0412
412 31 0003 0415
415 10 0284 0420
420 21 0284 0425
42% 60 0252 0428
428 31 0003 0430
430 10 0285 0435

435 21 0285 0440
440 60 0286 0445



~120-"

445 10 0255 0450
450 21 0286 0455
455 60 0287 0460

460 10 0256 0465
465 21 0287 0470
470 60 0288 0475
475 10 0257 0480
480 21 0288 0485
485 60 0289 0490
. o 490 10 0258 0495

495 21 0289 0060
80 60 0458 0083
83 3% 0005 0085

85 . 30 0005 0087
87 21 0050 0088
88 44 0410 0090

490 10 0050 0495
R . 495 21 0289 0500

500 60 0253 0505
160 21 0283 0360
360 60 0253 0500

- - 205 21 0290 0060
505 30 0003 0510
510 10 0290 0515
515 21 0290 0060



ABSTRACT

We have undertaken to develop a method for determining
the resonance escape probability of homogeneous reactors
containing acqeous solutions of a resonance absorber.
TH(E03)4 was selected as a salt since it is readily dis-
golvable in water. Even at the highest concentration,
the atomic densities of thorium and nitrogen are small
compared to hydrogen and oxygen. Only the latter two
contribute significantly to the slowing down in the high
energy range; therefore, a water Monte Carlo serves ade~
quately as the neutron supply to the resonance region of
thorium.

In order to find an escape probability we determine
the ratio of the number of neutrons that attain energies
below the resonance region to the number that appear in the
resonance region for the first time. The difference
between the two numbers in the ratio occurs due to absorp-
tion by the resonance absorber, in this case thorium, and
dueg to l;akage.

The initial source of neutrons comes from Hz(d,n)He3
reaction where the deuteron beam strikes the deuterium

target at the center of one face of the containing

parallelepiped.



Once the water Monte Carlo is run one has a set of
data cards which can be used as the input data to a second
Monte Carlo designed to cglculate the resonance escape
probability. Our prime concern is this second Monte Carlo.

The resonance escape Monte Carlo is a direct analog
type using known physical distributions and laws. The
decisions about what events occur in the history of a
neutron are based on these distributions and laws. The
detailed effect of the thorium resonances on the number
of neutrons absorbed is described by the cross section as
a function of energy. A Breit-Wigner Doppler broadened
gingle level formulation gives the scattering and absorp-
tion parts of the cross section as a function of energy.

Given a neutron-thorium interaction, the neutron is either

absorbed or scattered with probabilities —rmo Sl ——
Tge .
and “Tab + Osc ° A new statistical weight is assigned

the neutron by taking the latter fraction of the old weight,
A new neutron is picked from the source supply only after
the previous neutron has delivered a weight to low energy
or to the exterior of the pile.

The heart of the Monte Carlo method lies in the deter-
mination of a random variable, distributed according to some

known probability function. This requires a source of



random numbers which in our case is provided by the IBM-650
computer.,

The resonance escape probability as a function of
thorium number density fits very closely to a straight line
with small negutive slope throughout the whole range of
stable concentrations. The Monte Carlo statistics provides
probable errors of less than 0,3% for all five points
calculated, DIach of the five points lies close enough to
the straight line of least squares it to give an error
less than 0,3%.

A theoretical determination of the resonance escape
probability based on resonance integral theory for the
eight peaks used in the Monte Carlo calculation gives good
enough agreement to make both methods plausible,

Although other resonance escape calculations have
been done by the Monte Carlo method, they have been for
radically different systems. In all such cases the system
was heterogeneous with "lumped" uranium for the absorber.
Therefore comparisons between existing Monte Carlo calcu=~
lations is impossible. We hope to be able to provide
experimental verification for the applicability of the

Monte Carlo model.
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