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ABSTRACT 

 
 

The computational power and algorithms needed to create a cognitive radio are 

quickly becoming available.  There are many advantages to having a radio operated by 

cognitive engine, and so cognitive radios are likely to become very popular in the future.  

One of the main difficulties associated with the cognitive radio is ensuring the signal 

transmitted will follow all FCC rules.  The work presented in this thesis provides a 

methodology to guarantee that all signals will be legal and valid.  The first part to 

achieving this is a practical and easy to use software testing program based on the tabu 

search algorithm that tests the software off-line.  The primary purpose of the software 

testing program is to find most of the errors, especially structural errors, while the radio is 

not in use so that it does not affect the performance of the system.  The software testing 

program does not provide a complete assurance that no errors exist, so to supplement this 

deficit, a built-in self-test (BIST) is employed.  The BIST is designed with two parts, one 

that is embedded into the cognitive engine and one that is placed into the radio’s API.  

These two systems ensure that all signals transmitted by the cognitive radio will follow 

FCC rules while consuming a minimal amount of computational power.   

The software testing approach based on the tabu search is shown to be a viable method to 

test software with improved results over previous methods.  Also, the software BIST 

demonstrated its ability to find errors in the signal production and is dem to only require 

an insignificant amount of computational power.  Overall, the methods presented in this 

paper provide a complete and practical approach to assure the FCC of the legality of all 

signals in order to obtain a license for the product. 
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CHAPTER 1  

INTRODUCTION 

 
This chapter provides an introduction to the motivation and background of this 

project as well as the outline of the thesis. 

 

1.1  MOTIVATION 

Traditional transceivers are set to a certain specification by either the user turning 

physical knobs, the hardware being defined for an individual specification, or a 

combination of both.  These methods have worked well, but do have their limitations.  As 

processing power increases, especially for portable devices, and communication 

technology progresses, it is now possible to reduce some of the limitations of traditional 

transceivers by developing software defined radios (SDR) that are controlled by a 

cognitive engine. 

 

Cognitive radios operate by having an embedded program decide upon the best 

signal and alter the radio accordingly.  This has been compared to a radio operator 

turning the knobs on a radio and checking the meters, but in this case, it is done by a 

software program.  This has many advantages over traditional transceivers as the 

cognitive engine can find and use “white spaces” with little or no operator intervention, 

can modify the radio to achieve the best performance, and can be set to meet certain 

objectives, such as maximizing battery life [1].  These tasks can be completed very 

quickly with little or no human intervention. 

 

The complexity that enables cognitive radios a performance advantage over 

traditional radios also poses some very challenging testing problems.  The testing 

problems are even further complicated as the radios have to be approved by the Federal 

Communications Commission (FCC) before they are allowed to be used.  The FCC 

requires that any signal produced will not break any rules set for the product, and will not 
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interfere with any other signal.  The main challenge of testing cognitive radios is that they 

can transmit any number of possible signals, and depend largely on what environment it 

is in.  The environment may also be unexpected and therefore, difficult to test. 

 

Thus, the work of this thesis is to build and apply a testing approach that will 

ensure that any signal produced will be completely compliant with FCC rules and 

regulations.  The approach also needs to be minimally evasive as to not affect the 

operation or runtime of the cognitive radio. 

 

1.2  APPROACH AND CONTRIBUTIONS 

 In order to ensure the legality of the signal being produced, this study proposes 

using both an off-line and an on-line test to catch errors.  The errors targeted are 

unintended actions of the program, but of primary concern are those that result in a signal 

that does not follow FCC guidelines.  The off-line test which is proposed is a dynamic 

test that is based on the tabu search, while the on-line test is a built-in self-test (BIST) for 

software that checks the signal production at various stages.  Each method is used in 

order to counteract the weaknesses of the other.  Dynamic tests are a very practical 

method of testing both software and hardware for errors, but the time needed to achieve a 

100% complete test for large programs or circuits is far too large.  The BIST, on the other 

hand, will be able to catch any possible error that was missed by the software testing 

program.  The drawbacks with this method are that it will increase runtime, and thus 

energy consumption, as well as adding to the size and complexity of the program.  

Complemented with the software testing program, these drawbacks will be minimized to 

near negligible amounts. 

  

 The off-line test which is used is a simulation-based test that is based on the tabu 

search.  Tabu search is an established optimization technique that can compete with all 

other known techniques, and because of its flexibility, often outperforms many classical 

procedures [2].  A description of the basic tabu search and how it is applied to this 

method will be discussed later.  There has been one published attempt at using the tabu 

search for software testing [3], but this approach was hindered by a lack of learning 
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during the search and large increases in runtime with the addition of extra inputs to the 

program.  The method proposed in this thesis will attempt to improve upon this work by 

reducing runtime and improving the learning during the test.  In doing so, this will result 

in a practical and efficient testing program.   

 

 The online test, or BIST, has two parts to it.  These two parts correspond to the 

two parts of the cognitive radio: the selection of which signal to use, and the production 

of the signal.  For the selection of the signal, a mask has been designed whose primary 

purpose is to ensure that the signal chosen is a legal and valid signal.  In addition to this 

purpose, the mask can improve a signal’s fitness by guiding the searching process in a 

better direction.  After the signal has been chosen, the radio then begins to produce the 

signal in software.  Another test is used for this stage which ensures the signal production 

is done correctly.  Here, the produced signal is checked to see if it is the same as the 

signal selected from the previous segment.  If the produced signal is the same, which has 

been proven to be legal by the previous test, then it can be assured that the signal being 

sent to the hardware is legal and valid. 

 

1.3  THESIS OUTLINE 

An outline of the rest of the thesis is as follows: 

• Chapter 2 outlines the basic definitions and terminology used.  It provides 

an overview of the cognitive radio, as well as the cognitive engine and 

genetic algorithm which is used to control it, an introduction to software 

testing along with data generation and coverage metrics, and details of the 

basic operations of a tabu search. 

• Chapter 3 proposes an automated software testing approach that is based 

on the tabu search.  An in-depth description of the coverage metric, data 

generation, and error analysis will provide a complete analysis of how the 

process works.  The testing program will be able to check for general 

errors within any software code.  After the approach is presented, results 

and a comparison of the results to other attempts at software testing using 

a tabu search will be presented. 



4 4 

• Chapter 4 proposes a built-in self-test (BIST) for a cognitive radio.  It 

provides the need and the details for the two part implementation.  The 

first of these parts is a mask that is embedded into the cognitive engine to 

check that the signal being decided upon is legal.  The second is a checker 

in the application program interface (API) that ensures that the production 

of the signal is correct.  Finally, this chapter will prove that any signal 

developed by the cognitive radio is legal with respect to the rules it has 

been provided. 

• Chapter 5 presents conclusions drawn from the work and 

recommendations for future work. 
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CHAPTER 2  

BACKGROUND 

 
This chapter presents the basics that are needed to understand the research in the 

later chapters.  The cognitive radio that is to be tested will be described as well as the 

genetic algorithm used to choose the signal and the USRP individually.  A brief 

background on software testing will be presented with different approaches that have 

been researched and compared.  Lastly, a description of how the tabu search works and 

comparisons to other approaches will be examined. 

 

2.1  COGNITIVE RADIOS 

Cognitive radios are a very interesting research area because of their ability to 

efficiently use the radio frequency (RF) spectrum and optimize the transmission of a 

signal dependent on the users need, with little or no intervention by an operator.  This has 

many advantages over current radio systems, from the ease of use to the ability to 

transmit a signal in “white spaces” where current systems cannot transmit. Due to these 

advantages, cognitive radios can have widespread appeal among users with many varied 

goals. 

 

The term “cognitive radio” and the basic understanding of the subject was 

developed by Joseph Mitola who published his ideas in multiple publications [4][5][6][7], 

and eventually in a doctorial thesis [8].  His work has sparked a variety of research into 

the area of cognitive radios.  Currently, there is no standard definition for cognitive radio, 

and because of this, there are a wide variety of definitions.  Some definitions of a 

cognitive radio may just be another person’s definition of an adaptive radio.  The work 

done on this project defines a cognitive radio as a transceiver that is aware of the 

following [1]: 
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• The RF environment 

• Its own power, frequency and waveform capabilities 

• Its users requirements and operating abilities 

• The regulations, etiquette, and protocols that governs its operation 

 

This definition of a cognitive radio is very similar to how Mitola descried a cognitive 

radio in [4].  Here he called it a goal-driven framework where the radio autonomously 

observes the radio environment, infers context, assesses alternatives, generates plans, 

supervises services, and learns from its mistakes. He continued by pointing out that this 

observe-think-act cycle is radically different from today’s handsets that either blast out on 

the frequency set by the user, or blindly take instructions from the network. Cognitive 

radio technology thus empowers radios to observe more flexible radio etiquettes than was 

possible in the past. 

 

Cognitive radios operate through the use of “knobs” and “meters” inside a 

software defined radio (SDR) platform.  The “meters” represent the ability for the radio 

to receive and measure the stimulus from the outside world.  Based upon what the 

“meters” read, and the goals of the radio, the cognitive engine will then turn the “knobs” 

to obtain the optimal signal under those circumstances.  This is one of the advantages of a 

cognitive radio, the ability to modify itself and deal with unexpected situations.  Once the 

signal has been decided upon in the cognitive engine, it is sent to the SDR, where the 

radio is altered to the desired settings and sends, or prepares to receive, any possible 

signal. 

 

2.1.1 SOFTWARE DEFINED RADIO (SDR) 

 Software defined radios are an integral part of a cognitive radio.  SDRs allow a 

single radio to produce and receive a variety of signals with minimal hardware use, 

allowing a cognitive radio to automatically reconfigure a signal.  The advantages of 

SDRs have resulted in widespread use by the military and for cell phone service, and, in 
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the long run, its proponents expect it to become the dominant technology in radio 

communications.  

 

 An SDR is a multi-band radio capable of supporting a wide range of air interfaces 

and protocols.  It is, as the name would suggest, controlled by a software program that is 

used to modulate and demodulate a signal.  Ideally, all functions of a radio would be 

processed by a general purpose processor, which is currently impractical for some signals 

for one reason or another (i.e. power consumption).  Currently those signals are processed 

through application specific integrated circuits (ASICs), which are combined with field 

programmable gate arrays (FPGAs), digital signal processing (DSP) and general purpose 

processors to create the processing power of an SDR.  As processor technology increases, 

the likelihood that all signals can be processed on general purpose processors is 

increasing [4].  This would make SDRs very feature-rich radios that are relatively 

inexpensive. 

  

 In a cognitive radio, the SDR is used to produce or receive the signal.  The 

specification of the signal comes from an interface the SDR has with the cognitive 

engine.   

 

2.1.2 COGNITIVE ENGINE 

 The cognitive engine is the brain of the cognitive radio.  It observes the radio 

environment, plans on what actions to take, learns from past actions, and decides on the 

best action to take.  It is in control of all aspects of the radio, from specifications to 

etiquette.  It is designed to automatically produce the best signal dependent on the user’s 

desires, and is sometimes built to emulate the actions an operator would take if he were in 

control of the radio.   

 

 There are many possible algorithms to implement a cognitive engine, partly due 

to the different definitions of cognitive radio, but also partly due to continuing research 

into the field.  The cognitive engine in this project is based on biologically inspired 

genetic algorithms.  How genetics algorithms work will be presented later in this chapter.  
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 A basic state diagram of the cognitive cycle created by Mitola while at the Royal 

Institute of Technology is presented in Figure 2.1 [5].  Here it is shown that the first step 

in the process is observing the outside world.  From that, a priority of the signal is 

established, which then, depending on that priority, is sent to either planning, deciding or 

acting.  To improve upon the signal, learning is occurring during each step. 

 

 
Figure 2.1: Cognitive Cycle 

 

 Again, the purpose of the cognitive engine is to provide the best quality of service 

(QoS) dependent on the user’s guidelines.  To do this, the radio must use sensors, or 

“meters”, to receive information about the radio environment, decide upon the best 

signal, and alter the actuators to achieve the desired results.  The actuators, or “knobs”, 

determine the characteristics of the waveform.  These can include, but not limited to 

those presented in Table 2.1 found in [1].   
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Table 2.1: List of Possible Knobs 

 

 On the other hand, meters allow the radio to understand its environment, and from 

such, can notice problems with signals and differences from the desired QoS.  Some 

meters are present within the radio, but others can be calculated from an objective 

function using the values of the knobs as inputs.  Some of the important meters displayed 

in [1] are presented in Table 2.2 along with the knobs that affect each meter.  BER is the 

bit error rate, and the SNIR is the signal to noise-interference ratio. 

 

 
Table 2.2: List of Possible Meters 

 

 It is noticeable from Table 2.2 that there are multiple meters that are affected by 

an individual knob.  This demonstrates the difficulty of finding the best QoS, as altering 

one knob to improve upon the value of a meter will then alter the other meters that it also 

affects.  This makes finding the exact QoS very challenging, which it is important to find 

the exact value because either a lower or a higher QoS is very undesirable.  A lower QoS 
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is bad for obvious reasons, while the higher is unwanted because it uses resources that are 

unnecessary [1]. 

 

 All cognitive engines need some tool that connects the meters to the knobs and 

implements learning into the engine.  For this project, it is controlled by a genetic 

algorithm which reads the meters, finds new values for the knobs that would implement 

the best QoS, and turns the knobs accordingly. 

 

2.1.3 GENETIC ALGORITHM 

Genetic algorithms are a biologically inspired search technique intended to find 

an optimal solution to a problem [9].  They are considered a local search algorithm as it is 

generally an incomplete search.  It has become a very popular search technique due to its 

flexibility allowing the algorithm to return a close to optimal solution in a minimal 

amount of time for a variety of problems.  The algorithm has four main parts: 

initialization, selection, reproduction, and termination. 

 

The genetic algorithm procedure begins by initializing a set of solutions, or 

individuals.  This set is referred to as a population.  The size of the population is 

generally dependent on the problem, (i.e. the amount of search space), but any size will 

work.  The process of initialization can either be random or seeded with initial values that 

are more promising. 

 

The next step is selection, where the best individuals from the current population 

are selected.  To do this, each individual’s fitness is evaluated in a fitness function.  The 

fitness is a value rating how well the individual achieves a certain goal, or set of goals.  

The number of individuals selected in this step is dependent on the size of the population 

chosen earlier. 

 

After selection occurs, the individuals selected previously are used to create a new 

generation of individuals in the reproduction step.  The new generation is created through 

two processes called crossover and mutation.  Crossover involves the individuals selected 
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before, now considered “parent” individuals, combining parts of the solution from one 

parent with parts of the solution from another parent to create a new solution, called the 

“child” individual.  Each of the individuals are broken up into sectors, called 

chromosomes, where each chromosome is kept whole during the crossover, and 

combined with chromosomes from the other parent individual.  All of the new child 

individuals now make up the current population.  The new individuals typically will share 

many of the characteristics of their parents.  Since the parents were some of the best 

individuals from the previous generation, the average fitness of the new generation will 

hopefully be higher.  

 

In order to keep the individuals from being stagnant and maintain diversity, 

mutation can be added to the reproduction process.  After a child individual has been 

created, a chance is taken, usually a small probability, that a small set of the child’s data 

may be mutated into a new value.  The amount of the child that is mutated is usually 

small, thus still keeping most of the parent’s characteristics, but infuses the child with 

new information that may improve the results. 

 

After the new generation is created, the process of selection and reproduction 

repeats until a terminating factor occurs.  These terminating factors can be that an 

individual has been found that satisfactorily meets the criteria, that the average fitness of 

a population has become stagnant between generations, or just that it has run for a 

specified amount of time.  Once termination has occurred, the best individual is then 

selected as the solution found. 

 

The genetic algorithm is very similar to the theory of the evolution of species.  It 

is a survival of the fittest practice, where the best of the best survive and pass on their 

traits to the next generation.  This results in each new generation being more capable and 

better suited to solve the problem than the last. 

 

For this project, the genetic algorithm is used to find the most optimal solution, or 

signal, dependent on the radio environment and the user’s needs.  The genetic algorithm 
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was chosen because it works very well with the structure of a radio.  Just as genes are 

used to build traits, knobs are used in a radio to build the signal.  Therefore, in this 

circumstance, the chromosomes are defined as the various knobs, and each of the 

chromosomes are set to the size that can represent all possible values of that knob.  

Figure 2.2 provides a sample chromosome where the different sizes of each chromosome 

is visible.  This was demonstrated in [1].   

 

 
Figure 2.2: Sample Chromosome for Cognitive Radio 

 

Genetic algorithms also provide the flexibility to allow for multi-objective 

optimization which is necessary in this situation, as the optimal signal needs to operate 

well among the entire range of a radio’s dimensions, e.g. power, bit error rate, etc.  Here, 

the genetic algorithm gives a weight to each dimension, which can change depending on 

the users needs.  An example of this would be where a user needs a long battery life; the 

genetic algorithm would provide a higher weight to the power objective, to ensure the 

user received a longer battery life.  The total fitness of an individual is the summation of 

all the fitness values of each dimension evaluated to its weight. 

 

The use of genetic algorithms to obtain an optimal signal has shown to be very 

successful.  It is able to efficiently find a signal that satisfies the user’s needs within a 

given environment, and is able to deal with unexpected events.  The challenge is that the 
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non-deterministic method of the algorithm means that the result can be different every 

time it is executed, thus making it difficult to test.   

 

2.2  SOFTWARE TESTING 

As software systems become increasingly larger and more complex, software 

testing has become more and more challenging, and thus more important.  It is a very 

labor intensive process that can have a major effect on the bottom line of a company [10].  

Currently, software testing accounts for approximately 50% of the cost in developing a 

software system [11].  Because of this, being able to automate, and quickly execute, 

testing algorithms has become very desirable as it can decrease testing times and 

development costs. 

 

The purpose of software testing is to find any errors in the code through the 

detection of a fault or defect, or to demonstrate the absence of an error [12].  These errors 

can be created in each and every step in the software development process.  Figure 2.3 

demonstrates a development cycle for software showing where errors can occur and how 

the faults they produce can propagate to further sections of development.  It is imperative 

that the code be tested during the development cycle, as it has been shown that 

programmers are only 25% efficient at finding their own errors [13]. 

 

 
Figure 2.3: Software Development Cycle 
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There are many methods and algorithms used to test software.  Many of these 

have come from hardware testing and verification, as these algorithms are already well 

known and well researched, and have been altered to better suite software programs.  

Software does add extra challenges that are not found in hardware systems, such as 

recursions, pointers, and dynamic memory allocations.  They can also be much larger and 

much more complex than hardware systems.   

 

All of the software testing approaches can be separated into two distinct groups: 

static and dynamic [14].  Static testing is any testing technique that does not involve 

executing the software.  This can include anything from simply inspecting the code to 

symbolic execution and other formal methods.  Dynamic testing, on the other hand, is 

any testing technique that executes the software.  There are many types of dynamic 

testing, including path testing and data flow testing.   

 

2.2.1 STATIC TESTING 

 The testing approach that will be presented in this paper is a dynamic execution of 

the software, so only a brief background to static methods will be presented.   

 

Research in automated static testing began in the 1960’s [15] from simple manual 

inspection.  It has since developed into many types of tools with varying capabilities.  

Two of the more popular research areas in static testing are symbolic execution and 

model checking, a formal approach to verification.   

 

Symbolic execution works by representing the program by some means.  The 

representation is then traversed, not with values, but with symbols, until an output is 

obtained.  Finally, the output is then presented in terms of the symbols placed at the input 

[16].  The program representation can be a type of flow-graph for the program.  The 

flow-graph contains input statements, condition predicates, assignment statements, and 

outputs.  The input symbols follow the flow-graph evaluating for each condition 

predicate and executing assignment statements.  The results are outputs for every possible 

path in the program, and how the outputs relate to the inputs of the program.  The output-
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input relationship can be viewed to find if any outputs react in an unexpected way for all 

inputs. 

 

Model checking is a formal approach where the program is abstracted into a finite 

state machine (FSM) [17].  Images or pre-images are then obtained about the FSM which 

allows a tester to prove whether or not a program, starting from a certain state, would 

ever be able to enter into an illegal state.  The process of doing this has been well 

researched for hardware, but software characteristics make this process very different and 

much more challenging than hardware.  The main positive characteristic of model 

checking is that it provides a complete 100% assurance that the error will not occur in the 

program.  

 

2.2.2 DYNAMIC TESTING 

Because of the challenges inherent in static testing, dynamic testing is a popular 

approach to testing software.  The principle idea is that while running the program, a 

defect will be excited and then propagated to an output where the error will be observed.  

There are three parts to dynamic testing: data generation, coverage metric, and error 

evaluation [18].  Test data generation is the algorithm used to obtain the input data for the 

program, while the coverage metric is the measurement of how much of the program has 

been tested, and the error evaluation is how the detection of an error occurs. 

 

The simplicity of dynamic testing has made it much easier to develop and 

execute, but its downsides are long test times and lack of a complete assurance the 

program is error free.  For a dynamic test to provide a complete assurance, it would need 

to execute the program for all possible inputs.  This can become very large very quickly, 

as the number of possible inputs to a program is 2(32*n), where each input is a 32 bit 

integer and n is the number of inputs to the program, and that is only for programs with 

static inputs.  Programs with a dynamic number of inputs will have an even greater 

selection.  Because of the large number of possible inputs, it is impractical to execute all 

combinations, and thus the need to find a select number of inputs that best tests the entire 

program, which will reduce the testing times.   



16 16 

 Two major classes of methods for dynamic testing exist.  These are black-box 

testing and white-box testing [19].  The black-box approach, also called the functional 

approach, is where the implementation of the program is unknown to the testing program.  

The only information that the testing program has is the program specifications [20].  

This method is used to check the functional correctness of a program.  The white-box 

approach, also called the structural approach, is able to see the implementation of the 

program as well as know the program specifications [12].  This method is used to check 

the structural correctness of a program, and is used as the method for the approach 

presented in this paper.   

 

2.2.2.1 Coverage Metric 

 One of the main focuses of software testing is to reduce the test times.  This is 

done by reducing the number of test cases that evaluate the program.  The number of test 

cases to run depends on the coverage metric.  The coverage metric can range from all 

possible inputs, creating many test cases, to statement coverage, which says that every 

statement in the program has to be executed, needing a far smaller number of test cases.   

 

 The purpose of a coverage metric is to quantify how much of the program has 

been successfully tested, and when the test is complete.  The types of coverage metrics 

possible depend on what type of test is to be run, whether it is black-box or white-box 

testing.  In white-box testing, since the structure of the program under test is visible to the 

tester, a metric is used to measure how much of the structure has been executed.  Popular 

metrics include path coverage, in which all paths are executed, branch coverage, in which 

all branches are evaluated, and statement coverage, in which all statements are executed.  

Black-box testing has different metrics, as it is not able to see the structure of the 

program, and focuses on executing the various functions of the program, rather than the 

structure of the program.  An example of these metrics is state coverage, where the input 

domain is decomposed into sub-domains, and each sub-domain needs to be used to 

execute the program [21].  The testing algorithm proposed in this paper uses a form of 

branch coverage as the coverage criteria. 
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2.2.2.2 Data Generation 

 There are many different types of data generation algorithms, and much research 

has gone into this area of dynamic testing [20].  The sole purpose of data generation is to 

obtain 100% coverage of the program, which obviously depends on the coverage metric, 

in as few number of test cases as possible.  This allows for a complete test in only a short 

period of time. 

 

 As stated before, there are many different methods of data generation, from a 

simple random data generation to very complex algorithms that search a program and 

deterministically create an input set.  Which type of data generation method is best for a 

certain case can depend on many things.  Of primary concern is which test is occurring, 

black-box or white-box testing [22].  Also, for white-box testing, simple programs, where 

all sections of the program are easily reached, can usually have simpler data generation 

methods.  While more complex programs, where some sections of the code are unlikely 

to be reached, need more complex data generation methods that can better target these 

hard to reach sections. 

 

2.2.2.3 Error Evaluation 

 After a test case has been created, the program under test is simulated with the 

values.  The next step is to realize if a fault has been detected or not.  This is a difficult 

task to automate, as being able to tell if values are not the “correct” values could mean 

implementing the same program that runs the software system for a comparison, but 

would thus possess the same faults.  The location that the evaluation occurs depends on 

the type of test.  A black-box testing method can only view the output of a program to 

determine an error, while white-box testing is able to view the values inside of a program 

to check for faults. 

 

 An approach to error evaluation that avoids the difficulty of automating the 

evaluation process is to manually check the values for correctness.  This is a very simple 

approach, and while it does work, it is very tedious and errors can be missed through 

human error.  A popular approach that does automate the process is the use of assertions.  
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Assertions are basically rules that are checked during or after a program’s execution [19].  

Once an assertion is violated, a flag is set to signal that an error has occurred. 

 

 Once an error has been found, the exact location of the fault in the program needs 

to be identified.  This is easier in white-box testing, as where an assertion occurred can 

tip off the tester to where the fault is located.  Otherwise, executing a stepping method of 

each line of the code again with the inputs that created the initial error should provide the 

location of the error. 

 

2.3  TABU SEARCH 

The tabu search is a metaheuristic optimization method that belongs to a class of 

local search techniques.  It is generally considered to have been developed by Fred 

Glover, and has successfully been used in many fields, including telecommunications, 

molecular engineering, and financial analysis [23].  Its distinguishing feature over other 

local search methods is in the use of adaptive forms of memory. 

 

Tabu search uses a neighborhood search procedure to move iteratively from one 

solution to another.  In order to explore regions of the search space that would not be 

achievable from the initial solution, thus escaping local optimality, this method modifies 

the neighborhood structure as the search progresses. This continues until the stopping 

criterion has been reached.  The final state produced is then the optimal solution selected 

for that particular problem.   

 

2.3.1 SEARCH PROCEDURE 

 The basic procedure that constitutes a tabu search starts by initializing a solution 

to the problem.  This solution usually is done randomly, but any seeding method will 

work as well.  Every single alteration to the solution is considered a neighbor, and several 

neighbors are chosen.  A quantitative measurement of how well each selected neighbor 

solves the problem is calculated in a fitness function.  The one that is most fit among all 



19 19 

the neighbors is selected, and the process repeats until a stopping criterion has been 

reached. 

 

 An interesting change in the tabu search from classical search methods is that the 

transition from one solution to another is not always an improvement.  This is 

demonstrated in Figure 2.4, which represents the weight, or fitness, of the solution during 

different iterations for an example that will be presented later in the memory structures.  

The purpose of allowing a new solution to be selected, even if it is less fit than the current 

solution is to prevent the solution from being trapped in a local minimum that may be far 

from the global minimum [2].  Thus the search is willing to take a step back, in order to 

take two steps forward and find the optimal solution. 

 

 
Figure 2.4: Fitness during Iterations [23] 
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 To guide the search procedure into more desirable solutions quickly, tabu search 

implements methods of intensification and diversification [2].  Intensification strategies 

are used throughout the search procedure that modifies the rules to encourage moves that 

have been found to be historically good.  Intensification strategies require a means for 

identifying optimal solution spaces [23].  Diversification, on the other hand, modifies the 

rules during the searching procedure so that areas, and especially exact solutions, that 

have already been looked at are not repeatedly used.  This should prevent cycling, or at 

least keep it to a minimum which is a constant problem with various previous search 

techniques. 

 

 The ability to implement intensification and diversification into the tabu search is 

done by its use of memory structures. 

 

2.3.2 MEMORY STRUCTURES 

The memory structures used in the tabu search operate by reference to four 

principal dimensions, consisting of recency, frequency, quality, and influence [23].  The 

four dimensions can easily be applied to represent the rules of intensification and 

diversification, thus are stored in memory to be used throughout the search procedure to 

improve the intensification and diversification rules.  The memory structures in which 

these are stored actually consist of two forms of memory, a short-term and a long-term 

memory, with each type of memory accompanied by it own special strategies.   

 

2.3.2.1 Short-Term Memory 

 Short-term memory used in the tabu search stores information about recent past 

searches in order to exclude possible neighbor selections from occurring.  This can have 

an effect on both the intensification and diversification of the search, by either 

eliminating neighbors that have already been searched or neighbors that appear to be bad 

solutions.  The neighbors that have been excluded from the search are considered “tabu”, 

providing the namesake for this searching process.  How a neighbor is eliminated as a 

search possibility depends on the problem being solved, but can be controlled by any of 

the four dimensions listed earlier. 



21 21 

 A good example of this, from [23], can be seen in a minimum k-tree problem.  

Given the graph provided in Figure 2.5, create a tree with k edges, where the sum of the 

edges is minimum.   

 

 
Figure 2.5: Graph Example 

 

From a greedy algorithm, an initial k-tree solution, where k is four, is found 

consisting of the edges between nodes 2 - 1, 1 - 4, 4 -7, and 7 -6, which has a combined 

weight of 40.  The iterative process that works for this problem is to remove one edge of 

the solution, and replace it with another.  An example of how short-term memory could 

be used to exclude solutions from occurring is through the recency dimension.  For this 

search problem, it is undesirable to change an edge of the tree right after it has already 

been altered, because this only provides for a minimal search of a tree with or without 

that edge.  To alleviate the problem, edges that have been just removed can not be added 

back to the tree for two iterations, while nodes that have just been added to the tree can 

not be removed for one iteration.  The process of placing and removing the edges, along 

with tabu valued for each edge during the search is presented in Figure 2.6. 
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Figure 2.6: K-Tree Tabu Search Example [23] 

 

 In the example, dotted edges have been recently removed; the number next to the 

edge represents of the number of iterations that the edge is tabu and can not be used.  

Bold edges have been recently placed into the tree, and also have the tabu number next to 

it. 

 

 This is a very simple example, using only short term memory for a simple 

problem, but does provide a good description of how short-term memory is used to 

simplify the neighborhood representing solutions to be searched. 
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2.3.2.2 Long-Term Memory 

 Long-term memory is used in the tabu search to store local minimum solutions 

that have occurred during the search process.  This is useful when the search gets stuck in 

certain areas, or there is a lack of improvement in fitness over an amount of time, and it is 

able to backtrack to previously good solutions.  Figure 2.7 demonstrates the difference 

between what values are stored to short-term memory and what values are stored to long-

term memory in a graph that provides the fitness of solutions for a section of iterations. 

 

 
Figure 2.7: Short-Term & Long-Term Memory Usage [2] 

 

Tabu search has been shown to be a very useful search technique to find an 

optimal solution to a problem.  It primarily works best on problems where each 

individual part of the solution contributes to the overall effectiveness of the solution.  

This thesis presents the use of a tabu search to find inputs for a software testing program. 
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CHAPTER 3  

AUTOMATED SOFTWARE TESTING PROGRAM BASED ON 

THE TABU SEARCH 

 

This chapter proposes an automated software testing approach that is based on the 

tabu search.  An in-depth description of the coverage metric, data generation, and error 

analysis will provide a complete look at how the process works.  The testing program will 

be able to check for general errors within any software code.  After the approach is 

presented, results and a comparison of the results to other attempts using this approach 

will be presented.   

 

There are many factors to consider in building an effective automated software 

testing program, such as speed, quality, and ease of use.  Dynamic testing methods have 

been around since the beginning of software testing, as this approach is the most obvious 

and simplistic way to test software.  Currently, research is being focused on two separate 

areas of dynamic testing.  The first is to represent the system by linear inequalities that 

are later solved [24], and then provides inputs to a program that will execute the code in 

the desired manor.  The second is by using metaheuristic search techniques that view the 

testing process as a search or problem.  The testing program then tries to find inputs that 

will satisfy the problem and obtain program coverage.   

 

The algorithm presented in this thesis uses the tabu search, which is a 

metaheuristic search technique.  Other, and maybe more well known, search techniques 

that have been applied to software testing are genetic algorithms [25][26] and simulated 

annealing [27].  Tabu search has been applied to software testing in only one published 

paper [3].  This paper, from the University of Oviedo, did a good job of showing the 

basic application to software testing and its potential, but the approach was hindered by a 

slow testing method, an inefficient search process, and by a lack of learning.  The 
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approach presented here will increase the learning and efficiency of the search process 

from the previous paper, providing overall shorter test times. 

 

3.1 COVERAGE METRIC 

The selection of which coverage metric to use is a critical part of the software 

testing process.  It selects how much of the program needs to be executed before the 

testing process is complete.  For the tabu search, the coverage metric represents the goal 

that the search process is trying to reach.   

 

Setting the coverage metric as the goal for the tabu search has some challenges in 

itself.  The tabu search is designed to solve a single goal, and a coverage metric has many 

separate goals throughout the testing process.  Furthermore, it is possible that fitness 

values for some of the goals would not be able to be evaluated during part of the search 

process.  This would occur for sections of code that had yet to be executed, and thus, 

unable to be evaluated.   

 

The authors of the previous approach [3] decided to set the coverage for the entire 

program as the single goal that possesses many sub-goals throughout the process.  Figure 

3.1 demonstrates how the goal is divided into sub-goals.  It is easy to see this method 

being used for branch coverage, where each node is a branch and each edge provides a 

connection to branches that can only be executed within the section of code that is 

controlled by the previous branch.  In this manner, the current goals of the process are 

nodes that have been reached, but not executed.  The other nodes are viewed almost as if 

they did not exist, until they have been reached and can be evaluated.  When every sub-

goal has been achieved, the goal of the entire coverage metric has been completed. 
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Figure 3.1: Sub-Goals of the Coverage Metric 

 

Instead of using the sub-goal method as the authors from Oviedo did, each 

individual part of the coverage will be considered as a problem to solve for the purpose of 

this research.  So, instead of running one tabu search to solve the entire coverage metric, 

many tabu searches are run to solve each individual item within the coverage metric.  

This change of what exactly is the goal of the tabu search has a small affect on covering 

the code, mostly due to the initialization structure being different.  The goals set forth in 

this approach are based on the branch coverage metric. 

 

3.1.1 BRANCH COVERAGE 

Branch coverage, in its basic form, checks to ensure that all branches have been 

executed for every condition in the code [24].  This is a very simplistic metric, but allows 

for strong coverage, as each branch carries out all possible results and thus every section 

of code is executed.   

 

High-level languages, such as C/C++, allows for conditional statements with 

multiple conditions, e.g. (x AND y).  When this is transformed into assembly language, 

the conditional statement is separated into two individual conditions, which is how it is 

modeled for this coverage metric.  While the previous example, (x AND y), only 

provides two solutions, true and false, this metric checks for four solutions: false AND 

false, false AND true, true AND false, and true AND true.  If there were three conditions, 
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instead of two, then the number of solutions checked for would be eight.  This allows for 

the logical operator to be checked for correctness, e.g. if the logical AND, “&&”, should 

have been a logical OR, “||”.  Once the conditional statements have been broken down, 

the individual conditions can be checked for correctness. 

 

Conditions can be evaluated with either one variable, a Boolean expression, or 

two, a relational expression.   

• !x;  // (NOT x) Boolean expression 

• x != y;  //(x does not equal y) relational expression 

 

In this approach, these two types of conditional statements are treated differently 

in order to improve the coverage.  Boolean expressions are evaluated just as in the 

original branch coverage where the goals are to have the statement execute both the true 

and false branches.  Accomplishing this will provide enough evidence about whether the 

statement is correct or should be revised.   

 

Relational expressions are treated slightly different.  The original branch coverage 

simply tries to execute both the true and false branches of the condition.  This may skip 

some possible errors, as the example below demonstrates.  To improve upon the 

coverage, a corner case test is added whose goal is to execute the conditional statement 

with both conditional variables being equal.   

 

Applied (Erroneous) Expression:  (x < y) 
Correct (Non-Erroneous) Expression: (x <= y) 

 
Branch Coverage:  Applied  Correct 
 x = 5; y = 10;  True  = True    
 x = 10; y = 5;  False  =  False 
 
 No difference found between correct and incorrect expressions 
 
BC w/ Corner Case:  Applied  Correct 

x = 5; y = 10;  True  = True 
x = 10; y = 5;  False  =  False 
x = 5; y = 5;  False  � True 
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A difference is found between the correct and incorrect expression, providing 

incorrect results.  This method will provide different results for any incorrect expression 

being used. 

 

With the application of the new goal, the entire coverage metric can be simplified 

by setting it to be independent of which condition is present. The three goals that are 

checked for are that the first variable is greater than the second variable, the first variable 

is less than the second, and the first variable is equal to the second.  This new method is 

then capable of finding the difference between any relational expression, just as the 

previous example demonstrated the difference between two very similar, but different, 

conditional expressions. 

 

3.1.2 FITNESS FUNCTION 

 A fitness function has to be created to evaluate the fitness of, or how close to the 

goal, a solution is.  In this case, the goals of the program are to achieve a complete 

coverage of the program under test.  To do this, the values of the variables at each 

condition are checked and the difference needed in those variables to alter the condition 

to the desired state is set as the fitness [3].  When the desired state is eventually reached, 

it possesses a needed change in value of zero, or even a negative value, which can be 

used to identify previously achieved goals.  Every goal that has a positive fitness value 

has yet to be reached, with the lower the value, the closer the goal is to being reached.  

Even though a new test set may result in the same execution of a conditional statement, 

this approach is able to identify “better” results by measuring how close they are to 

reaching the goal.   

  

 The approach from Oviedo’s only goal was to execute a conditional statement for 

both true and false [3].  Because of this, the fitness function was different for each 

conditional statement as presented in Table 3.1.   
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Table 3.1: Previous Fitness Function 

 

Adding the corner case as another objective creates the same goal for every 

condition and thus simplifies the fitness function.  The entire fitness function for each 

condition in this new method is presented in Table 3.2.   

 

 
Table 3.2: Tabu Search Fitness Function 

 

To demonstrate that the new fitness function provides at least the same coverage 

as the basic branch coverage, the following example is provided in Table 3.3.  This 

example shows some conditional statements and their results based on the new fitness 

function.  It is noticeable that for every condition the new fitness function results in both 

true and false executions.  This proves that the new fitness function will execute all the 

conditions with the same coverage as the branch coverage, but with the added support to 

find other errors that would not have been found, as shown in the previous section. 
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Table 3.3: Fitness Function Example 

 

The simplified fitness function does not specifically provide any advantage for the 

testing program with respect to run time, especially when considering the process is 

increasing the number of goals needed to be achieved.  It does greatly improve the ease 

of applying the testing program to test sections of code, especially for larger sections, as 

well as increasing the likelihood of catching an error.  

 

 Once the coverage metric has been set and the fitness function created specifically 

for the coverage metric, the data generation part of the testing program is created in order 

to completely cover the program based on the terms of the coverage metric. 

 

3.2 DATA GENERATION 

The data generation section of the testing program follows the basic operation of 

the tabu search in order to create new input vectors.  The process includes an 

initialization, neighborhood selection, learning, and finally a solution. 

 

3.2.1 INITIALIZATION 

 The tabu search algorithm starts with an initial solution to the problem.  This is 

the point where viewing the coverage metric as multiple problems, instead of one large 

problem, has an effect on the testing process.  The tabu search initializes one solution for 

a problem, so having one input data set to initialize many conditions is very limiting.  The 

initialized solution, while it may be good for one, or even a few, reachable conditions, 

may not be close to executing others.  With highly controllable branches reachable at the 

beginning of the testing process, it is more effective to randomly initialize more test sets 
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than to try to execute these conditions from the tabu searching process.  Thus, multiple 

test sets are initialized, just as if attempts were being made to solve multiple problems at 

the same time. 

 

3.2.2 NEIGHBORHOOD SELECTION PROCESS 

 After initialization, it is time to begin the search by creating neighborhoods and 

finding optimal solutions to each problem.  The process begins by selecting a suitable 

neighborhood, executing the neighborhood on the program under test, evaluating, 

choosing the new solution, and then repeating the process.  This is done for each goal in 

the program. 

 

 Each goal throughout the program is evaluated separately, so only one goal is 

selected to be solved at a time.  Every goal stores the current solution, which is based on 

the fitness function.  The current solution stored for a particular goal, which was either 

decided upon through the initialization process or from a previous iteration, is the 

reference solution used to create the neighbors.  The number of neighbors created from 

this selected solution is twice the number of inputs to the program.  This technique 

consists of generating two neighbors for each input, one by increasing the value of the 

input and the other by decreasing the value of the input.  This means that if the selected 

solution is (v1,v2,…,vn), the values for all vk that satisfy k�i remain the same and two new 

values for vi are produced.   Thus, we have two new test data neighbors: 

 (v1,v2,…vi+� 1…,vn) 

(v1,v2,…vi-� 2…,vn) 

 

The variable, �x, changes dynamically during the search, and is decided upon 

through several factors, including limits on the value, the fitness of the current solution, 

and learning through past searches.  Since each input has different results for these 

factors, � is usually different for each and every neighbor.  How the � is evaluated will be 

provided later in this section. 
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So, for example, provided there is a simple four input section of code that we are 

testing, much like the test triangle program presented in Appendix A.  A certain goal is 

chosen to try to execute, and the current solution for that is (5, 10, 7, 13).  This solution 

has either been found through initialization or a previous search.  The solution has many 

possible neighbors, but only eight are chosen.  These could be: 

• (10, 10, 7, 13) 

• (3, 10, 7, 13) 

• (5, 16, 7, 13) 

• (5, 4, 7, 13) 

• (5, 10, 19, 13) 

• (5, 10, 5, 13) 

• (5, 10, 7, 22) 

• (5, 10, 7, 1) 

 

Other tabu search approaches have created four new neighbors for each input, as 

the method for Oviedo [3].  This may reduce the number of iterations needed to find the 

goal, but it creates and executes a lot of unnecessary neighbors.  Ultimately increasing the 

overall number of test sets needed to evaluate a program, and as a result, increases test 

times. 

 

3.2.3 EXECUTION OF CODE 

Instead of producing every neighbor prior to the execution process, each 

individual neighbor is created and executed before the next neighbor is made.  This 

allows for the possibility to end the current iteration process before all neighbors have 

been executed.  This will occur when an executed test set has a better fitness than the 

current solution.  Once this happens, the iteration stops and the neighbor is set as the 

current solution for the next iteration.  If no test sets are found that are better than the 

current solution, then the most fit between all of the neighbors is selected as the current 

solution for the next iteration. 
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The tabu search generally evaluates all neighbors all of the time.  This is done so 

that the most learning can occur on each solution and the best neighbor will proceed to 

the next iteration.  By halting the execution of the neighbors, it is possible that a more fit 

neighbor may have been missed.  However, the advantage of greatly reducing the number 

of input vectors to the program far outweighs the possibility of skipping better neighbors.  

This is especially true when testing software, as the program run times may be relatively 

large as compared to other tasks that the tabu search has been previously used to solve. 

 

Even though only one goal is targeted at a time, all unsatisfied goals are evaluated 

for each test.  An input vector that may not correctly evaluate the targeted goal, may 

satisfy the conditions of the other goals.  This is an obvious approach but very important 

in reducing the number of input vectors. 

 

So, with the example from the previous section, a neighbor, such as (10, 10, 7, 

13), will execute the code.  All unsatisfied conditions are evaluated.  If the current goal 

that is targeted is improved, (10, 10, 7, 13) is set as the current solution, else another 

randomly chosen neighbor, such as (5, 10, 5, 13), is executed.  If all values are executed 

and none improve upon the current solution for the targeted goal, the most fit of the 

neighbors is set as the current solution. 

 

3.2.4 SEARCH SPACE 

 The search space represents the possible inputs and their neighbors for the 

program under test.  As a graph, each node corresponds to a single possible input to the 

program.  If the nodes are only different by one input variable, as is a neighbor of the 

input vector, an edge connects the two nodes.  This creates an extremely large and 

complex graph.  For even a simple program with four, 32-bit inputs, there are 2(32*4), or 

3.4x1038, nodes, and many more edges.   

 

 The tabu search process allows various nodes or edges to be set to a tabu state to 

limit the search.  With software program search spaces, the graph is initially so large that 

setting a node or edge to tabu has a negligible effect on shrinking the size of the graph.  
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The Oviedo’s approach [3] noted this, but also pointed out that “avoiding repeating the 

best test would be to avoid repeating many tests candidates” [3].  This is intended to 

show that setting the previous solution as tabu does not just limit that one state from 

occurring again, but also prevents all the neighbor states that were evaluated from that 

state from also occurring again.   

 

 While this method of setting individual states as tabu does improve the searching 

process, it is still very weak as it only affects a very small amount of the possible states.  

To improve the power of the tabu process, the states have been partitioned, or compacted, 

for this research.  This has been shown to reduce test times and improve learning in 

software testing [28][29].  Partitioning groups many of the input vectors into one state, so 

rules that affect one state, control many vector sets.  Since the input vectors are grouped 

together, it is impossible to have tabu rules that explicitly affect a single input vector.  

Instead, the rules pertain to attributes that represent each state.  The attribute that we have 

found that works the best is the location relative to the current solution.  A graph of this 

state partitioning is provided in Figure 3.2.  The advantage of this approach is that it 

resembles the neighborhood search and it is easy to draw cause and effect from the search 

process into rules for the state portioning.   

 

 
Figure 3.2: State Partitioning 
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 The state portioning improves the tabu search for software testing immensely.  It 

allows one of the strengths of the tabu search process to be applicable to the large state 

spaces found with software testing.  To take advantage of this, rules must be properly set 

to force states into being tabu and limiting the search. 

 

3.2.5 RULES 

 The rules set forth are intended to limit the search from testing areas of the search 

space that are expected to hold less fit solutions.  This can be related to the intensification 

ideology [2] of the tabu search by only searching areas that are expected to possess strong 

solutions.  The dimensions used in this case are quality and influence [23].  The rules are 

based on the results of the execution of the neighbor solutions.  They are set only to a 

small number of iterations, as the affected states represent different input vectors for 

different solutions.  There are four possible results that can occur when a new neighbor is 

executed. 

• The fitness of the neighbor is better than the original solution.  It is proved that 

the variable changed has an effect on the goal, and it is believed that changing this 

variable more can reach the goal.  No states are set to tabu.  The neighbor that 

found the better solution is set to be the first neighbor executed in the next 

iteration and the opposite neighbor, the increase to decrease or vise versa, is set to 

execute second if the first neighbor does not improve the fitness again. 

• The fitness of the neighbor is worse than the original solution.  It is proved that 

the variable changed has an effect on the goal and it is believed that moving in the 

opposite direction may find the goal.  The effective state is set to tabu for one 

iteration.  If the opposite neighbor has not been executed in this iteration, it is set 

to be the next neighbor to be executed. 

• The fitness of the neighbor is the same as the original solution.  It is believed that 

the variable changed has no effect on the goal.  The effective neighbor is set to 

tabu for three iterations, and even the opposite neighbor is set to tabu for one 

iteration. 
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• The fitness of the neighbor is not evaluated.  This occurs when the goal branch is 

nested within other branches, and the path to the goal branch is not executed.  

Thus, it is proven that the variable changed has an effect on some previous branch 

which contains the goal.  The effective neighbor is set to tabu for one iteration. 

 

To demonstrate how these rules are applied, we will continue to use the example from 

the previous sections.  Given the current solution, (5, 10, 7, 13), has a fitness value of 10 

and the eight neighbors presented in section 3.2.2.  One of the neighbors is then executed 

among the program under test, let’s say neighbor (5, 10, 5, 13), which is a decrement on 

the third input variable.  The following are the possible results and the rules being applied 

to them: 

• If the neighbor obtains a better fitness value, such as 6, then the iteration ends, 

and the current neighbor is selected as the current solution.  In the next 

iteration, the first neighbor to be executed will decrement the third input 

variable, a possible input is (5, 10, 2, 13).  If this neighbor does not improve 

the results, the next neighbor executed will increase the third input variable, 

but not to the point of the original solution.  This could result in a vector (5, 

10, 4, 13). 

• If the neighbor obtains a worse fitness value, such as 14, then the current 

partition of decrementing the third input variable is set to tabu for one 

iteration.  If the opposite neighor, in this case (5, 10, 19, 13) has not been 

executed, it is set to be the next neighbor to run. 

• If the neighbor obtains the same fitness value, 10, then the current partition of 

decrementing the third input variable is set to tabu for three iterations, and the 

opposite partition of increasing the third variable is set to tabu for one 

iteration. 

• If the neighbor does not obtain a fitness value for the goal, the then current 

partition of decrementing the third input variable is set to tabu for one 

iteration. 
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These rules provide a strong result due to their simplicity and accuracy in quality 

evaluation.  Even though these rules provide very accurate results, it is possible to 

incorrectly estimate that a state contains only bad solutions.  States are only tabu for a 

small number of iterations, so that after the set number, the state can then be searched 

again, hopefully finding better results. 

 

3.2.6 LEARNING 

 The learning referred to in this section refers to the ability to make a more 

educated guess at which neighbor would be best to pursue.  Simply put, it is the 

algorithms used to solve for �, the change in value between the solution and its neighbor.  

This approach applies three aspects to control the value of �: the current fitness, the 

bounds of the search, and the results from previous searches.  The paper from Oviedo did 

not include a consideration of the results from the previous searches [3]. 

 

 The idea behind using the current fitness aspect is to incrementally get closer to 

the goal.  If the current solution is only one value away from reaching the goal, it is not in 

the best interest of the searching procedure to completely change the solution by wildly 

altering the inputs.  As the solutions become closer to the goal over a number of 

iterations, the steps size taken to the neighbors becomes increasingly smaller. 

 

 The use of the bounds of the search in order to calculate the new neighbors is an 

obvious method.  The new neighbors can not be illegal inputs, so if the current solution is 

near a bound, yet far away from the goal, the step to the neighbor in the direction toward 

the bound will have to be small in order to stay legal.   

 

 The new aspect employed by this research is learning how the changes from the 

past altered the fitness of the goal and applying that knowledge to the new neighbors.  

The idea behind this change is that when a neighbor is created to solve a goal, it is likely 

to be follow a program path similar to that of the current solution, and thus be executed 

by many of the same statements.  If a step is made in a certain direction that gets a quarter 

better fitness, the next step in that direction will be three times the previous.  As long as 
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the steps keep improving the signal, the new learned value will average with the 

previously learned values to calculate the next step.  This applies more weight to the 

recent step as it is expected to be closer to the correct next step. 

 

 Continuing with the example from the previous sections, given is that the original 

solution, (5, 10, 7, 13), possessed a fitness value of 12 and an executed neighbor (10, 10, 

7, 13) has a fitness value 8.  The learning takes into account that increasing the first 

variable by 5, improves the fitness value by 4.  Since the fitness still needs to be 

improved by 8, the next step will increase the first input variable by 10, in proportion to 

the increase needed in fitness, providing an input vector of (20, 10, 7, 13).  If this still 

does not satisfy the goal, and provides a fitness value of 7.  Then the current proportion 

of 5 input values to 4 fitness values is averaged with 10 input values with 1 fitness value, 

to make 15 input values to 5 fitness values, or 3 to 1.  With 7 fitness values left, the next 

jump will be 21, or an input vector of (41, 10, 5, 13).  This continues until a satisfying 

solution is found. 

 

 The use of a variable �, which depends on its environment and past search history, 

produces a far more accurate, less random, search procedure.  This can result in 

generating fewer iterations before the goal is reached, resulting in far fewer test vectors to 

be run and overall shorter test times. 

 

3.2.7 TREATEMENT OF UNREACHED BRANCHES 

 There will be times where a goal branch is not being reached by the tabu search.  

This could be either because it is impossible to actually reach the branch, or that it is 

simply difficult to reach and the search technique has not been able to find it.  The real 

difficulty is that if a branch does not execute in a certain way, other branches may not be 

able to be reached as they are contained in the previous branch’s section of code.   

 

 A parameter has been defined in order to keep the search from getting stuck on 

these types of branches.  This is the number of iterations that can occur from a solution 

without finding a more fit solution.  If this parameter is ever reached, the program 
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backtracks to the previous best solution, and if that solution has been backtracked to 

previously, it backtracks one step further, or simply to the previous solution stored in the 

long term memory.   

 

 It is at this point where the long term memory becomes useful.  Every time a 

solution is a local minimum along the fitness domain, being more fit than the previous 

and the next solution, it is stored into the long term memory.  When backtracks are 

needed, such as when the stopping parameter is reached, the solutions stored in the long 

term memory are used to effectively backtrack to that solution and the searching process 

begins again. 

 

 If the case happens that there is not a solution to which to backtrack, the goal is 

skipped and pointed out to the operator when the program is complete.  The operator can 

then rerun the search process, only looking for that specific goal.  The search can also be 

seeded, hoping that will help find the solution, or it may be determined that the goal is 

unreachable by any possible input vector. 

 

 It is possible that some goals are just not reachable.  It even occurs a few times for 

the code that was used to test this approach, which is provided in Appendix A.  If this 

occurs, the operator can very easily set the goal as already being achieved, and the search 

process will skip over this.  Adding the unreachable branches to the search can be done 

before even the first search has occurred, as long as the operator is sure that it is 

unreachable. 

 

3.3 ERROR ANALYSIS 

Once the software test program is creating data for the program under test, it is 

then important for the test program to be able to identify when an error has occurred and 

to calculate the amount of the program that has been covered.  As stated previously, 

identifying errors is a difficult task, as the ability to find if values are incorrect requires 

the same software that has the error.  One way to locate errors without requiring the same 
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executable software is through assertions, which work well for testing programs of the 

manner on which this research is focused.   

 

Assertions are rules placed into code that check the values of variables in the 

program relational to another variable or a constant [19].  The rules represent areas that 

the variables should never be in and if any is ever violated, it alerts that an error in the 

code has been found.  It is sometimes difficult to realize which rules can be placed into 

the code to ensure errors are found.  For cognitive radios, the purpose of testing is to 

guarantee that that the waveform produced is legal, which can be easily turned into 

assertions.  These assertions can be to check for legality and validity in the signals, check 

for accurate crossover and mutation, check for correct sorting, and check the fitness 

evaluation of the signal. 

 

An example demonstrating the use of assertions would be for ensuring the validity 

of a signal.  This assertion checks to see if all parts of a signal have been initialized and 

all segments are within possible ranges.  If an error is located in assigning the signal, it is 

possible that the signal could possess invalid information and not be a producible by the 

hardware. 

 

Assertions allow checking for errors inside the program, as some errors may be 

executed in the program and the erroneous values not propagate to an output where it is 

visible to the operator.  It is still important for the operator to check output values for 

possible errors that have been propagated to a visible output.  Both of these techniques 

should provide for the assurance that if an error is in the program and executed by the test 

vectors, that it will be noticed by the testing program or operator so that the error can be 

fixed. 

 

3.4 RESULTS 

It is very difficult to evaluate the quality of a software testing program.  This is 

partially because there are so many different types of software programs that need testing.  
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When evaluating general software testing programs, certain algorithms may work well 

for some types of programs and not for others.  Another challenge is that there are not a 

set of standardized programs that can be used to test software testing programs.  This is 

done for hardware systems, as there are many standardized circuits that allow an 

algorithm to be evaluated and compared against other algorithms.   

 

The previous approach using the tabu search to implement software testing did 

not provide any results [3], possibly due to the two reasons cited that create difficulties in 

evaluating approaches.  Therefore, in order to compare this new approach with the 

previous one, a program needs to be written for these algorithms to be used upon, and the 

previous approach has to be built so that the results from that algorithm can be evaluated. 

 

One standardized function that has been used in the past to evaluate testing 

program is the triangle function.  This program takes three numbers as an input and 

evaluates whether it can be a triangle, and if so, what type of triangle it is, be it 

equilateral, isosceles, etc.  It is a popular function to use since it has many branches, with 

some easy to reach and some difficult to reach, as they are deep inside other branches.  

However, it is not a perfect program to test, as it is very simple, very short, and does not 

possess any mathematical functions in it.   

 

The triangle program was altered so that it would contain loops, one of the 

structures in software that make it difficult to test.  This program is presented in 

Appendix A.  The approach from Oviedo was then built with the available information.  

Obviously, since the exact equations and precise details used by this method are not 

presented in their paper, the re-creation of their method is not the exact same as their built 

approach.  The information provided from their paper is done exactly the same in the 

built approach, while lacking information was done with creating the best results in mind.  

Table 3.4 presents the number of test generations needed, as well the average run-time, 

needed for both tabu search approaches, the one presented in this thesis and the Oviedo’s 

approach.  A completely random search which is applied to the triangle function is also 
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included.  Since all the methods listed are a non-deterministic approach, all results are 

averages over 100 tests. 

 

 
Table 3.4: Results on the Triangle Function 

 

The previous results are slightly biased toward the tabu search approach presented 

in this thesis, since there are no mathematical operations in the test program.  This skews 

the results because the approach presented here starts off by creating neighbors that are 

the same distance from the solution as the goal is, which, since there are not 

mathematical operations, is the exact change needed at the inputs.  To counteract this, 

mathematical operations were applied to the input variables at the beginning of the 

program and the results were evaluated again.  These are presented in Table 3.5.   

 

 
Table 3.5: Results on the Triangle Function w/ Mathematical Operations 

 

The tabu search presented in this thesis is significantly better than the previous 

approach for both variations of the test program.  It is noticeable that the improvement is 

less than results presented in Table 3.5, which better reflects real world results, yet still 

shows a large improvement over the previous method.  All methods obtained 88% 

coverage of the code.  This is due to several unreachable branches.  88% of the branches 

is the total number of reachable branches in the code. 
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Now that the software testing program presented in this thesis has shown to be an 

effective approach, it is applied to test its main objective, the cognitive radio code.  Since 

the code is so large and complex, certain sections are modularized and tested 

individually.  To show the ability of testing the individual modules of the cognitive 

engine, Table 3.6 displays the testing results for the selection module in the cognitive 

engine.  This module takes in two signals, and selects the signal with the better fitness.  

To allow for the optimal searching procedure, each knob of the signal is defined as the 

input for the program under test.  Since the fitness of each signal is needed to be 

obtained, the evaluation module is placed before the selection module.  Again, all results 

are averaged over 100 tests.  A list of all modules in the cognitive engine that have been 

tested is presented in Appendix B. 

 

 
Table 3.6: Results on the Selection Module within the Cognitive Engine 

 

The results display the tabu searching algorithm presented in this thesis requires 

fewer input vectors and a shorter runtime than the other methods, while all tests covered 

100% of the code.  The runtime of each vector for the selection module is longer than the 

triangle program, which reduces the searching algorithm overhead compared to execution 

time.  The random generation of input vectors actually performed better than the tabu 

search from Oviedo.  This is due to no conditional statements being deeply embedded 

and hard to reach, as well as having many inputs and thus many neighbors for the Oviedo 

approach to execute.  Finally, there are random values that are used in the selection 

module as a tie breaker.  We kept these variables as random values, as opposed to another 

input variable controlled by the data generation algorithms, because they have a high 

chance of evaluating the conditions they are used in for both true and false. 
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Since the program under test is modularized, the software testing program is 

needed to test many sections of codes separately.  This brings in one of the main 

advantages of the approach presented in this thesis, its ease of use.  The program under 

test does not require large changes to the code, only the ability to check the coverage 

metric and the addition of assertions.  This can be done by placing functions into the code 

at the necessary spots.  Also, the algorithm does not need to be altered for different types 

of software programs, thus requiring few alterations to the testing program from testing 

one function to another. 

 

It has been shown that applying the tabu search to software testing can create a 

testing algorithm that covers the program under test in a relatively few number of test 

cases.  The ease of use and the low run times make this approach a very practical method 

to test software.  It provides a quick method to ensure all the goals necessary to achieve a 

complete coverage of a program are met while only needing a minimal amount of setup 

time.  This approach works for both large and small software programs and is highly 

flexible so that any necessary changes can be made to fit any program under test.  
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CHAPTER 4  

BUILT-IN SELF-TEST FOR COGNITIVE RADIO 

 

This chapter proposes a built-in self-test (BIST) for a cognitive radio.  It provides 

the need and the details for the two part implementation.  The first of these parts is a 

mask that is embedded into the cognitive engine to check that the signal being decided 

upon is legal.  The second is a checker in the application program interface (API) that 

ensures that the production of the signal is correct.  Finally, this chapter will prove that 

any signal developed by the cognitive radio is legal with respect to the rules it has been 

provided. 

 

The previous chapter’s work presents a general software testing program using 

the tabu search.  This can be used to test any code segment that runs in the cognitive 

radio, but it is not perfect.  Since it is a simulation-based testing program, and not all 

inputs are simulated, there is still the slight possibility that there are errors in the code.  

Also, this type of general testing focuses more on finding structural errors, as opposed to 

functional errors.  Because of this, applying only the testing program to a code can not 

provide a 100% guarantee that the cognitive radio will never produce an illegal signal.  In 

order to achieve a 100% success rate, using a simple BIST that continuously checks the 

cognitive functions to ensure correctness is proposed.   

 

Built-in self-tests have been used in hardware components with much success 

[30].  They are built into the design of a circuit and provide the ability to test itself.  That 

is the same idea that is being implemented in this study, only this time with software.  

The desired goal is to have the cognitive radio continuously inspecting itself with respect 

to rules put forth by the FCC in order to guarantee that the produced signal will be legal.  

It is also important to focus on the computational cost of the BIST, as the cognitive radio 

is very computationally intensive alone, so any additional processing work will result in a 

performance loss for the entire system. 



46 46 

 There are two main sections of code that work to produce the signal, thus 

requiring two separate BIST implementations.  The first is the cognitive engine, which 

selects which signal to use.  The BIST for the cognitive engine needs to ensure that the 

signal that has been decided upon is legal and valid.  The second is the API for the radio.  

This takes the selected signal from the cognitive engine and modulates it into a signal that 

can be produced by the hardware.  This BIST will check to see if the waveform produces 

the same signal that was selected upon in the cognitive engine. 

 

4.1  POLICY MASK 

 The mask acts like a filter, checking the signal for legality and only allowing 

those that pass to go through.  Since we are dealing with radio communications where the 

term filter means something completely different, the implementation of this is referred 

to as the mask.  It contains the rules set forth by the FCC as to what power a signal can be 

at certain frequencies [31].  The mask is used is the rules for UWB, which has been 

selected as an example.  This same built-in self-test can be applied to public safety 

communications but would not posses a pre-built mask. 

 

4.1.1 UWB MASK FOR COMMUNICATION SYSTEMS 

 The mask that is provided by the FCC is a very simple table.  It lists ranges of 

frequencies along with the maximum effective isotropic radiated power (EIRP) in dBm 

allowed for each frequency range.  A sample table that corresponds to a hand held UWB 

system is provided in Table 4.1, while the graph representing the table is presented in 

Figure 4.1.  The FCC document UWB Operation for Communications and Measurement 

Systems [31] comments that the hand held communication devices are expected to be 

popular, and so they “recognize that the greatest concerns of interference in the record 

were centered about the potential for uncontrolled proliferation of these devices.  

Therefore, out of an abundance of caution the limits that we are adopting here are the 

most stringent for UWB operation.” [31] 
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Frequency in MHz EIRP in dBm 
960-1610 

1610-1900 
1900-3100 

3100-10600 
Above 10600 

-75.3 
-63.3 
-61.3 
-41.3 
-61.3 

Table 4.1: Hand Held UWB Emissions Mask Table [31] 

 

 
Figure 4.1: Hand Held UWB Emissions Mask Graph [31] 

 

4.1.2 LEGALITY FOCUS 

 The primary purpose of implementing the mask into the cognitive engine is to 

ensure that the signal it selects will be legal and valid.  The most simplistic way to 

accomplish this is to check the final selected signal and if it is legal, allow it to pass 

through, or else run the cognitive engine again to select another signal.  The downside to 

doing this is that the cognitive engine takes a large amount of computational power and 

thus time to run.  By having the program run again, the runtime needed until a solution is 

found is double an already long time.  
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 Since the cognitive engine uses a genetic algorithm, it may be possible to select 

the second best signal in the final generation if the most fit signal is illegal.  This will 

work, except in the case when every signal in the final generation is illegal.  This is a real 

possibility since certain fitness aspects of the signal are in competition with the legality 

rules, e.g. adding extra power is the easiest way to improve the strength of the signal, but 

this intrinsically makes it more likely to be illegal.   

 

 In order to avoid having every signal in the final generation be illegal, and thus 

having no signal to select from, the mask will be embedded into the genetic algorithm.  

The mask will then be able to test not only the final generation’s signals, but all signals 

that are generated throughout the algorithm.  The mask can then alter the fitness of the 

signals so that a legal signal remains the final generation, which can be selected as the 

signal to produce. 

 

4.1.3 QUALITY FOCUS 

 Along with ensuring that the selected signal is legal, the mask also serves the 

purpose of improving the quality of the selected signal.  The idea behind this is that the 

mask will help the genetic algorithm focus on high quality results that are also legal.  

Without the mask being embedded into the genetic algorithm, many of the final 

generation’s signals could be illegal.  This may leave only a small number of signals that 

can be selected from, which may or may not be optimal as a solution.  Instead, the mask 

can check every signal along the algorithm and focus in on the most fit, legal signals that 

will produce the best results 

 

 There are two factors that need to be observed with the focus on the quality of the 

selected signal.  These are diversification and intensification.  Even though we desire the 

algorithm to intensify its search on the strong and legal signals, we do not want the 

algorithm to lose its strength of searching through diversified results.  By deleting certain 

individual signals during the process, we are limiting the search for the best signal and 
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possibly deleting good information, that when combined with parts of another signal, 

produces a very strong result.   

 

 It is possible to demonstrate this dilemma through an example using the 

information provided in Table 4.1 and Figure 4.1 earlier in the chapter. Given a 

generation that produces two signals, one at 3GHz with an EIRP of -50dBm and another 

at 3.2GHz with EIRP of -70dBm.  The 3GHz signal is illegal under the FCC’s hand held 

UWB emission’s mask.  If this signal were to be deleted because it is illegal, all the 

information it possess will be lost to future generations.  Instead, if its information was 

able to propagate to the next generation, these two signals could combine to form a new 

signal that is 3.2GHz with an EIRP of -50dBm.  This new signal is completely legal and 

may possibly be more fit than either of the two previous signals.  Because of this 

possibility, it is not desirable to delete all illegal signals, as it may cause the removal of 

information that may be useful for future generations. 

 

4.1.4 SIGNAL MODELING 

 The cognitive engine only knows the signals based on their specifications, e.g. 

power, center frequency, bandwidth, etc.  The specifications then create a signal that 

forms a very complex shape in the frequency domain.  The best way to describe this 

signal is as a downward facing parabola, with smaller roll-off side lobes on the sides of 

the main shape.  This shape is shown in Figure 4.2.  The main shape is centered at the 

frequency of the signal, the height is based on the power of the signal, the bandwidth 

deals with the width, and the other factors have various effects on how the shape is 

produced. 
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Figure 4.2: Signal Shape in the Frequency Domain [32] 

 

 To confirm if the signal is legal, the signal is placed over the mask to check for 

any overlap of the signal into an illegal section.  This means that the signal has to be 

converted into the shape presented in Figure 4.2.  Creating this shape from the signal 

specifications is a very computationally intensive process.  This process needs to occur 

for each signal being tested throughout the genetic algorithm, which takes place many 

times in the cognitive engine.   

  

 The genetic algorithm already requires a large amount of computational power to 

run the selection process, so it is imperative that the signal modeling is as simple as 

possible.  In order to accomplish this, the signal is modeled as a rectangle.  A sample of 

how this modeling looks around the exact signal is shown in Figure 4.3.   

 

 
Figure 4.3: Modeled Signal Rectangle 
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The height of the rectangle is the exact same as the signal, with the width being 

dependent on which signal is being produced and the bandwidth or symbol rate of the 

signal.  For example, an analog AM signal that uses a double sided band has a bandwidth 

based on the baseband bandwidth, while a digital PSF signal uses the symbol rate to 

evaluate the bandwidth.  The formulas to calculate both of these bandwidths are 

presented: 

• PSF:   BW = 2 x 1.10 x (SR) x (1 + �); 

• AM-DSB: BWBP = 2 x 1.10 x BWBB; 

 

The rectangle completely overlaps the entire main lobe.  This way, if any part of 

the main lobe is illegal, the modeling rectangle is also illegal.  The rectangle does extend 

past the lobe, which can then produce false failures.  The likelihood of a false failure is 

small, as the amount of overlap is minimal compared to the ranges of frequency in a 

mask.  An example of this is shown in Figure 4.4 with a modeled signal placed onto the 

mask from Figure 4.1.  The signal used in this example is provided with a bandwidth of 

40kHz, which represents the bandwidth of an average signal that the cognitive radio may 

produce.  Each mark along the x-axis is one gigahertz. 

 

 
Figure 4.4: Modeled Signal Overlaying Mask 
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The actual signal produced will also have smaller side lobes.  These lobes have 

much less power than the main lobe and will be legal as long as the main lobe is legal.  

Because of this, the side lobes are not taken into consideration while checking the signal 

for legality. 

 

4.1.5 GENETIC ALGORITHM 

 The cognitive engine is controlled by a genetic algorithm that produces several 

signals throughout the generation process.  The mask is embedded into the genetic 

algorithm in order to have an effect on the individual signals inside the engine.  This is 

directed to ensure a high quality, legal output. 

 

 Without the mask in place, on average 24% of the signals produced in the genetic 

algorithm are illegal with respect to the FCC hand held UWB emissions mask.  The 

process is non-deterministic and therefore each case will have a different number of 

illegal signals.  From running the cognitive engine a number of times, the range of illegal 

signals has always been between 18% and 31% of the total number of signals produced 

throughout the generations.   

 

 Throughout the evaluation and testing process, the selected final signal from the 

output of the cognitive radio has never been shown to be an illegal signal.  This is 

probably due to the various fitness functions that are improved by a less powerful signal, 

e.g. power consumption.  Even though the final signal has yet to be shown as illegal 

through many trials, this does not prove that the all selected signals will be legal, so a 

final legality check still needs to occur to ensure that this final signal will always be legal.  

  

4.1.6 IMPLEMENTATION 

 Besides computational costs and quality of the results, flexibility is also an 

important aspect to consider when implementing the mask.  It is important to be able to 

easily change or alter the mask, as there are different rules for different situations.  Also, 
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the rules might change and need to be updated inside the radio.  To provide the simplest 

solution to this, the mask is implemented as a table in a SQL database. 

 

 The database holds three sets of information: the minimum frequency, the 

maximum frequency, and the maximum power for that range.  This information is then 

able to be used to create the mask.  For the hand held UWB emissions mask, the SQL 

database appears as Table 4.2. 

 

 
Table 4.2: Hand Held UWB Emissions Mask Database  

 

 A wrapper called “mysql++” is used to allow the c++ code to interact with the 

database.  It possesses all actions that a SQL database can accomplish, such as queries, 

table manipulations, and mathematical operations.  Thus, in order to determine if a signal 

is legal, the program simply has to query the database to obtain the entries within the 

range of the signal and check to see if the maximum power is greater than the signal’s 

power.   

 

 The problem with running a query to check for each signal is that the queries take 

a relatively large amount of time.  With many checks needed throughout the genetic 

algorithm, this adds a significant amount of run-time.  Instead, only a single query has 

been placed at the initialization of the genetic algorithm, which brings in the entire mask 

table.  The information on the table is stored in variables in the code and then used to 

evaluate the legality of a signal.  This reduces the number of queries down to one, but 

does slightly increase the memory needed for the system.   
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 The difference in run-time by only using one query is considerable.  Table 4.3 

provides the timing overhead from the mask for various mask implementations. 

 

 
Table 4.3: Mask Timing Overheads 

 

The table shows a dramatic decrease in time between running multiple queries 

and a single query.  The decrease is so much that even running the mask for every 

generation does not add enough overhead to prevent it as a possibility.  This is because 

the genetic algorithm alone is already so computationally intensive that it takes a few 

seconds to run.  Also, since it is a non-deterministic algorithm, it does not have the same 

runtime each execution.  The resulting range in runtime is over a second, which is so 

much greater than the mask overhead that the additional time is unobtrusive.  Because of 

this, time is no longer considered a factor in how the mask is implemented. 

 

 To allow for the simplest way to update or change the SQL database, the database 

information to be used is set as an input to the program.  The database name, table name, 

username, and password are all stored into an XML document which the code parses 

during initialization.  So to change the mask, all that needs to be done is to load the new 

SQL database and corresponding XML file. 

 

4.1.7 RESULTS 

 Since the amount of run-time is no longer an issue in how the mask is applied, the 

fitness of the final signal is the only factor in choosing how to employ the mask.  To find 

the method that resulted with the highest quality, many different approaches were 
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executed and the results compared.  The approaches differed in how often the mask was 

executed and how much of a penalty was provided if the signal was shown to be illegal.   

 

 The fitness used for this cognitive engine is based on relative quality as compared 

to another signal or sets of signals.  Thus, to find the quality of the various approaches, 

results were obtained for each approach and then evaluated with respect to the results 

from the genetic algorithm without the mask.  The evaluation calculates the fitness for all 

signals and the amount of improvement, or lack of, so that each application of the mask 

can be compared against all others. 

 

 Results from genetic algorithms are non-deterministic and thus a single 

comparison is not enough, as it may not be an accurate example of the results.  In order to 

alleviate this, 100 results were taken for each approach and evaluated with 100 base 

results of the cognitive engine without a mask.  The fitness values for each result are then 

summed together and provided in Table 4.4, along with the percentage of improvement.  

The lower the fitness value, the more fit the individuals are. 
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Table 4.4:  Fitness Results for Various Mask Executions 

 

 Table 4.4 presents the quality of the final selected signal from the cognitive radio 

based on two variable aspects: the mask pattern and the fixed penalty amount.  Take for 

example the pattern of 10 generations.  This represents the mask being exercised once 

every 10 generations.  For a penalty of 10%, this means that if a signal where found to be 

illegal, its fitness value would be increased by 10%, thus making it less fit, no matter how 

illegal it is.  The total fitness values are presented for the cognitive radio when the mask 

is implemented, and one, the base, without the mask.  The improved percentage is then 

the improvement of the masked results over the base results.  So, for every 10 generations 

with a fixed penalty of 10%, the selected signals that are found when using the mask are, 

on average, 13.22% more fit than when not using the mask. 
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Besides a fixed penalty, another penalty approach was tested where the penalty 

was proportionate to the percentage of the signal that was found to be illegal.  For these 

cases, the amount that a signal is illegal, whether it be 30% or 60%, is calculated and the 

percentage of the signal that is illegal is used as the penalty for an illegal signal.  Since 

the signal does not have a defined minimum to calculate the area, -80 dBm is used.  The 

area above this minimum power, below the signal’s power, and within the bandwidth is 

then calculated to find the signal’s effective area.  The affects of a variable penalty on the 

fitness of the final signal is presented in Table 4.5. 

 

 
Table 4.5:  Fitness Results for Variable Penalty Mask Executions 

 

 The results overall do not show an overwhelmingly large improvement for any 

case, but that is to be expected.  This is because the genetic algorithm finds strong results 

on its own and does not have much room for improvement.  Nevertheless, the mask is 

shown to improve the results and any improvement is highly desirable. 
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 The results are not exactly uniform, due to the simple randomness of the genetic 

algorithm.  It is possible to see basic patterns provided though.  For the fixed penalty, 

applying the mask every fifth generation provides the strongest results.  Applying it every 

first or second generation is too often and does not allow the information that may be 

valuable, but illegal for the selected signal, to propagate into a legal signal.  Less frequent 

than every fifth generation loses any affect as it is not executed enough.  This is 

noticeable in Table 4.4 as the improvements for these patterns are closer to null. 

 

 The smallest fixed penalty tested, 10%, provided the best results of all types of 

penalties.  The reason for this is that the smaller penalties act simply as a tiebreaker 

between two equally fit signals.  The fitness evaluation used results in many signals with 

the same fitness value.  The smaller penalties allow the legal signal to propagate to the 

next generation over the illegal signals.  Greater penalties can then allow less fit, but 

legal, signals to propagate over more fit, but illegal signals.  This then can hinder the 

fitness improvements from one generation to the next. 

 

 The variable penalty results do not show any promising or uniform results.  The 

idea for using a variable penalty was to punish more illegal signals a higher amount than 

less illegal signals.  We were hoping that less illegal signals were more likely to possess 

information that would become legal through the genetic algorithmic process and should 

be more likely to be propagated to future generations.  The reason for this likely has to do 

with the same reasoning behind why greater fixed penalties are less helpful than lower 

penalties.  When signals are illegal, they are usually illegal by larger amounts than the 

previously found best penalty of 10%.  The variable penalty also adds another area of 

randomness in the code.  All together, the variable penalty is not an effective method to 

penalize the fitness of illegal signals inside the cognitive engine. 

 

 The smaller penalty of 10% was the best of all the penalties, and applying the 

mask every fifth generation was the best pattern.  Therefore, not surprisingly, the best 

selection of penalty and pattern turned out to be these two.  This will provide a result that 

is likely to be somewhat more fit than without the application of the mask. 
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 Appling the mask provides a very practical solution to ensure that the signal 

produced by the cognitive engine is legal and valid.  It is simple to integrate and allows 

for high flexibility with its ability to be altered in a quick and easy way.  It only adds a 

minimal amount of computational power, which when compared with the entire system is 

very inconsequential.  It also provides a result that is likely to be more fit than without the 

mask.  Overall, the mask and how it is applied, offers a reasonable way to ensure the 

legality of the signal.   

 

4.2  API CHECKER 

 Once the cognitive engine has selected a legal signal, the signal is passed on to the 

radio API before it is sent to the hardware.  The API interprets the cognitive engine 

commands to the radio and interprets the radio’s responses back to the cognitive engine.  

This is another spot where an error may occur in the code and thus another BIST is used 

to ensure the output of the API is correct.  For this research, the focus is on ensuring that 

the interpretation of the cognitive engine commands to the radio is correct.  The 

interpretation is done by modulating the signal, which is the primary concern because 

incorrectly doing so can cause the radio to output an illegal signal. 

  

4.2.1 RADIO API 

 As stated before, the API modulates and demodulates signals so that the cognitive 

engine and radio can interact with each other.  The API takes in an XML document from 

the cognitive engine with the radio specifications and uses that to modulate the 

information into the correct signal.  The basic structure of this is provided in Figure 4.5.  
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Figure 4.5: Basic API Structure [33] 

 

 The API is implemented through various operational blocks.  This is represented 

by the flow graph in Figure 4.6.  The input information is first sent to the packet 

construction block.  That information is then modulated and amplified before it is sent to 

the radio. 

 

 
Figure 4.6: API Flow Graph [34] 

 

 Any error in any block can cause a signal to be sent to the radio that is illegal, and 

could interfere with other, possibly very important signals, such as military and public 

safety communications, as well as signals controlling medical devices.  Therefore it is 

imperative to ensure that the modulation of a signal is done correctly and legally.   
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4.2.2 CHECKER 

 With the policy mask embedded into the cognitive radio ensuring that the selected 

signal is legal, it is not necessary to recheck that the modulated signal is also legal against 

the policy mask.  It is only necessary to make sure that the outputted signal is the same 

signal that was selected by the cognitive engine.   

 

 The checker is embedded in the API.  If an incorrect modulation is found, the 

results from the modulation are blocked from the USRP.  In order to be able to halt the 

incorrect modulation being sent, a buffer is placed between the API and the hardware 

radio so that the connection to the radio can be cut when needed.  The flow graph of how 

this is connected is presented in Figure 4.7.  The graph depicts how the API, the dotted 

block on the left, is separated from the USRP, which is the radio hardware.  The buffer 

can be cut at anytime, preventing the radio from obtaining that modulation that may 

produce an illegal signal. 

 

 
Figure 4.7: API Flow Graph with Buffer [34] 

 

 The checker tests for an incorrect signal and the results are used to select if the 

buffer continues to propagate the signal or not.  It is applied on the same information that 

is going to the USRP, so it is placed at the output of the amplifier.  If the check finds an 

incorrect signal, it sends information to the buffer to halt propagation.  The flow graph 

for this is presented in Figure 4.8. 
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Figure 4.8: API Flow Graph with Checker [34] 

 

 Again, the checker does not need to verify for legality against the policy mask, 

but rather just confirm if the modulated signal is the correct signal that the API was 

supposed to produce.  To do this, the signal from the amplifier is sent to an FFT.  This 

will provide information on the center frequency and power of the signal.  The power and 

frequency can then be compared with the radio specifications that are inputted from the 

XML document.  If they are the same, then the buffer is allowed to propagate the signal, 

else the signal will be blocked. 

 

 Using only the power and the center frequency to check if the modulated signal is 

correct is not a full check.  There are many other specifications that are not examined, 

such as the bandwidth.  These specifications are not checked primarily because they are 

much more difficult and computationally intensive to check.  Also, the power and 

frequency are the most important factors in determining whether a signal is legal or not.   

 

4.2.3 SUMMARY 

Combined with the policy mask that guarantees the selected signal is legal, 

ensuring that the modulated signal is the same will prove that all signals being sent to the 

radio hardware are legal and valid.  Since all hardware for the radio must be approved by 

the FCC, we can assume that the hardware will correctly produce the signal.  All 

together, this ensures that all signals being produced by the cognitive radio will be legal 

with respect to the FCC rules and regulations. 
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Applying the checker to the API is a simple and practical way to ensure that the 

signal produced by the API is the same as the signal selected by the cognitive engine.  It 

is easy to apply, not computationally intensive, and can quickly halt the execution of the 

signal if an error is found.     
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

 

This chapter presents conclusions drawn from the work and recommendations for 

future work. 

 

5.1 CONCLUSTIONS 

The work presented in this thesis provides a complete and practical approach 

ensure the legality of a signal in a cognitive radio.  It was important to achieve a 100% 

success rate as that is what the FCC requires such and any error could produce very 

harmful results.   

 

A software testing program that is aimed at finding structural errors has been 

produced.  The approach is based on the tabu search algorithm with slight alterations to 

improve performances on software testing.  This thesis has shown that this program 

provides strong results with few test vectors.  It also has been demonstrated that it does 

not require much effort by the user in applying to a particular code segment, as the 

algorithm does not need many specifics on which program is being tested. 

 

A built-in self-test (BIST) for the software has also shown to be useful.  The work 

done in this thesis was able to show the most effective way to implement the BIST, how 

it is able to assure 100% legality of the signal, and that it does not add additional run-time 

to the cognitive engine. 

 

Overall, the FCC has been searching for ways to ensure that cognitive radios will 

not effect existing license holders [35].  The complete approach presented in this thesis 

does a good job of completing this goal.  The BIST will ensure any signal produced is 

legal and valid, and the software testing program will help to find many errors offline, so 

that the disruption that occurs when the BIST does find an erroneous signal is minimized. 
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5.2  FUTURE WORK 

 The work presented in this thesis opens up the possibility for future work. 

 

 The software program shows the viability of the tabu search algorithm in software 

testing.  With only a minimal amount of research done on this area, many possible areas 

to focus on in future work are available.  One main area is the use of the searching 

algorithm with different coverage metrics, such as path coverage and loop coverage.  

Also, other partitioning schemes and other rules to set items as tabu are definitely 

possible. 

 

 There are several paths for future work with the mask.  One is a more flexible, 

and possibly dynamic, pattern, such as applying the mask at different generational 

spacing.   Another is to improve the model, so that it might take into affect the side lobes.  

These two research possibilities could improve the effectiveness of the mask in the 

genetic engine. 

  

 The work done on the API checker is only to ensure that an illegal signal is not 

produced.  Therefore, a lot of future research can be done to find the best way to correct 

and resend the signal.   
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APPENDIX A 

TRIANGLE PROGRAM 
 
 
void triangle(values *val) 
{ 
 int x; 
 char type[4]; 
 char a,b,c; 
 
 for (x=0;x<4;x++) 
 { 
  if (x==0) 
  { 
   a = val->length[0]; 
   b = val->length[1]; 
   c = val->length[2]; 
  } 
  else if (x==1) 
  { 
   a = val->length[0]; 
   b = val->length[1]; 
   c = val->length[3]; 
  } 
  else if (x==2) 
  { 
   a = val->length[0]; 
   b = val->length[2]; 
   c = val->length[3]; 
  } 
  else if (x==3) 
  { 
   a = val->length[1]; 
   b = val->length[2]; 
   c = val->length[3]; 
  } 
 
  if (a <= 0 || b <= 0 || c <= 0) 
  { 
   type[x] = 0; 
  } 
  else 
  { 
   if (2*a < a+b+c && 2*b < a+b+c && 2*c < a+b+c) 
   { 
    if (a==b) 
    { 
     if (b==c) 
     { 
      type[x] = 2; 
     } 
     else 
     { 
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      type[x] = 3; 
     } 
    } 
    else 
    { 
     if (a==c) 
     { 
      type[x] = 3; 
     } 
     else 
     { 
      if (b==c) 
      { 
       type[x] = 3; 
      } 
      else 
      { 
       type[x] = 4; 
      } 
     } 
    } 
   } 
   else 
   { 
    type[x] = 1; 
   } 
  } 
 } 
} 
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APPENDIX B 

COGNITIVE ENGINE MODULE TESTING OVERVIEW 
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