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(ABSTRACT) 

 

Tuned vibration absorbers (TVA) have been discussed in literature since the early twentieth century.  

These devices are implemented to suppress the system’s vibration by transferring energy to the 

absorber mass.  This research examines an electromagnetic tuned vibration absorber that can have its 

tuned frequency altered by gap and current variation.  The advantage of an adjustable TVA is that the 

system can be tuned to various excitation frequencies to cancel vibration.  This research examines a 

unique embodiment using permanent magnets and an electromagnetic absorber to alter the system 

dynamics.  The focus is to allow changes in tuned frequency to cancel system vibrations.  This research 

develops the electromagnetic theory, presents absorber system simulations, and tests the dynamic 

absorber’s response. 

 

The electromagnetic field is investigated to determine the field between a stationary magnet and the 

absorber electromagnet.  This field can be numerically calculated as the superposition of four 

constituent fields.  With the electromagnetic field determined, the force to displacement relation 

between the stationary magnet and the absorber electromagnet is calculated.  The best fit is determined 

to be an inverse square relationship.  Once the spring force relation is determined, the damping 

mechanisms are discussed and experiments proposed to isolate the different damping mechanisms.  In 

the simulations, it is found that by having an adjustable electromagnetic TVA the natural frequency 

can be adjusted 2-3% with a +10 amp input and over 50% for a variable gap.  The advantage of the 

variable gap is that it may be adjusted once and then no additional energy is needed, while the 

advantage of the variable current is that the system may be rapidly altered. 

 

The experiments are undertaken to test the constructed absorber for the spring and damping force.  

The tests confirm the spring force relation and quantify the high damping present in the tested 

configuration.  Then the absorber system transfer functions are recorded.  The absorber is then 

applied to a single degree of freedom system to verify its cancellation results by a gap variation.  
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CHAPTER 1. INTRODUCTION 

Tuned Vibration Absorbers (TVA) have been used since 1911 to attenuate structural vibration.1  These 

devices aid in vibration reduction by adding a mass, a spring, and possibly a damper.  Figure 1 shows 

the standard TVA configuration.  The combined systems’ displacement ( 1x ) has an anti-resonance 

point at which frequency the primary structure will have a minimized response.  These devices attempt 

to cancel a single frequency or attenuate narrow-band vibration.   There is an extensive body of 

knowledge on Tuned Vibration Absorbers or Tuned Dampers (TD); some of the relevant papers will 

be examined and contrasted to the current work in Chapter 2.   
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Figure 1: Passive TVA Configuration 

Frequently, TVAs are used to suppress running speed imbalance responses from rotating machinery.  

These devices can be very effective passive solutions under two conditions: 

a) the system dynamics are invariant, and 

b) the running speed is within a narrow frequency range. 
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When the system undergoes operational speed variations, condition (b) is not fulfilled, and the 

combined system’s performance suffers.  For the traditional tuned absorber, as the excitation 

frequency shifts from the anti-resonance point, the response increases and eventually reaches 

responses larger than that of the primary system alone. 

 

Two methods exist to solve these limitations, a semi-active system and an active system.  A semi-active 

system is defined by a system that an alteration can be made and no additional energy is necessary to 

have this change persist.  An active system requires continuous energy expenditures to keep the system 

with the same characteristics.  Both active and semi-active TVAs have been used to attenuate rotating 

machinery vibrations.2   If the tuned absorber has a variable stiffness element (semi-active), then the 

minimum amplitude response can also shift.  This system is depicted in Figure 2.  If these shifts are 

coordinated, the minimum response can remain at the varying excitation frequency.  This research 

addresses the quasi steady-state vibration reduction by electromagnetic stiffness variations.  The 

stiffness variation is proposed with electromagnetic pole forces, varied with current input and gap 

space setting. 
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Figure 2: Semi-active TVA Configuration 
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The active TVA extensions that have been implemented are known as a Proof Mass Actuators (PMA) 

or Electromechanical Actuators (EMA).  A force generator placed in parallel with the spring, as seen in 

Figure 3, allows further control.  This configuration allows a controllable reaction force between the 

primary system and the absorber mass.  These devices may be used for active structural control. The 

force generator is typically controlled to minimize a sensor response.  This design can add energy to 

the primary system with its active force element.  With many active systems a stability problem based 

on the selected control law can result. 
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Figure 3: Active TVA Configuration 

Problem Examined: Magnetic Tuned Vibration Absorber 

Electromagnetic forces have been implemented in various configurations to affect a TVAs response. 

The proposed configuration, Figure 4, uses forces between magnetic poles within a magnetic circuit.  

This configuration has an electromagnet suspended between two permanent magnets using 

electromagnetic springs.  This arrangement offers a chance to alter the effective spring constant by the 

coil current (active) and the proximity from the stationary permanent magnets (semi-active).  A 

number of alternative designs have been discussed in literature. 

 



 

4 

A prior active configuration, the proof mass actuator (PMA) has been implemented with a wire-wound 

coil in a radial magnetic field, also known as a voice coil configuration.3,4  A voice coil harnesses forces 

on a current carrying conductors while perpendicular to a magnetic field.  This enables an active force 

element to be integrated in the TVA. 

 

Nagaya has implemented related actuator designs similar to the actuator implemented for this research.  

Nagaya and Arai studied a design for permanent magnet levitation with electromagnetic forces.5  Their 

application involves eliminating tabletop vibrations.  Nagaya and Sugiura continued the work and 

presented a feedback linear spring model for a levitated permanent magnet.6 

 

This dissertation builds on their research by inverting the electromagnets and the permanent magnets 

and providing for gap variations between the stationary magnets.  The investigated configuration has 

only one electromagnet, the moving mass.  This work examines system forces and dynamic responses 

with varied DC currents and varied gaps in a vibration absorber configuration. 
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Figure 4: Investigated configuration 
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Another design was patented by Waterman for a concept using a soft ferromagnetic secondary mass 

and two electromagnetic horseshoe magnets.7  These electromagnets can provide an attraction force 

and reduce the stiffness.  This dissertation differs from Waterman’s work since it relies on forces 

between magnetic poles, rather than the attractive force between a magnet and a ferromagnetic 

material.  One benefit is that the force can be increased and decreased with the investigated 

configuration.  Also the implemented configuration can be used semi-actively with the variable gap 

setting. 

 

Leibovich’s design was patented for force generation from a permanent magnet actuator.8  His 

embodiment, similar in character to Nagaya and Sugiura’s research6, has a permanent magnet as the 

mobile mass.  This research differs in its implementation of an electromagnet as the tuned mass. 

 

This dissertation proposes, models, simulates, and constructs a variable stiffness electromagnetic tuned 

vibration absorber.  The dissertation embodiment is unique in the configuration that the 

electromagnetic forces are implemented to provide variable stiffness.  Electromagnetic forces provide 

the mechanism for variable stiffness though both current variations and gap variation to provide lower 

response at various frequencies.  This research does not address the control law implementation for 

the absorber, but rather characterizes the absorber under various conditions.   

 

The research contributions are a nonlinear magnetic field quasi-static model applied to a variable 

stiffness TVA embodiment, and experimental testing to demonstrate system response.  This nonlinear 

dynamic model will be developed and examined for various configurations.  Once modeled, a proof of 

concept actuator was constructed to verify the response. 

Dissertation Outline 

This chapter has given the overall picture of the work examined and an overview of simple TVAs.  

The following chapter addresses TVA fundamentals, the current state of technology, and reviews the 

literature on various vibration absorbers.  Chapter 3 constructs the electromagnetic field derivation. 

Chapter 4 calculates the force equations given the electromagnetic field derived. Chapter 5 discusses 

the system damping mechanisms.   Chapter 6 outlines the non-linear system simulations of the 

theoretical response given the derived theory. 
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Chapter 7 describes the physical system tested and runs initial tests to examine the spring force and 

damping force present.  Chapter 8 examines design issues for a tuned vibration absorber.  Chapter 9 

presents the experimental findings and confirms the shifting range for lowering the vibration.  Chapter 

10 overviews this work’s contributions and discusses future work.  Each chapter’s summary provides 

the review of how the chapter’s contribution helps characterize the absorber. 
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CHAPTER 2. TVA FUNDAMENTALS & LITERATURE REVIEW 

TVA Fundamentals 

The following sections provide a review of tuned mass absorbers (TVAs), tuned dampers (TD), and 

proof mass actuators (PMAs).  First, a one degree-of-freedom (1-DOF) system is chosen as the 

primary system, and its freqnecy response function is examined.  Then the impact of adding a TVA to 

the primary system is examined. 

 

Primary System (Single DOF) 

The primary system of interest will be simplified to a one degree of freedom, mass-spring-damper 

system.  This is shown in Figure 5. 
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Figure 5: Primary System, One Degree of Freedom 

The system’s equation of motion is 
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(2 is presented in normalized frequency form with respect to the undamped natural frequency.  The 

frequency response graph is shown in Figure 6.  It is seen that there is one resonance, and operation 

close in frequency may have unacceptably high response based on the damping level present. 

 
Figure 6: Primary System Frequency Response Function 

If this SDOF system were excited with a rotating imbalance at startup, a large, potentially damaging 

response would occur while the rotating system passed through this resonance.  This is one case where 

it would be advantageous to have a tunable vibration absorber.  Next the effects of a passive TVA will 

be examined. 

Primary System with TVA (Combined System) 

By adding a connected mass-spring-damper system the combined system’s response will be different 

from the primary systems.  If the tuned absorber is chosen for the excitation frequency, the primary 

mass will have lower response for this pure tone.  Figure 7 depicts the combined system. 
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Figure 7: Combined System 

The matrix equation of motion becomes: 
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This system can be reduced by Laplace Transforms, using matrix notation: 

( ) EXTFKCsMsX 12 −
++=  (4)

At the tuned frequency it is desired that the combined system will have an anti-resonance point.  At 

this frequency the TVA’s inertia opposes the excitation force.  This leads to minimum displacement 

and therefore the minimum energy enters the primary system.  This is due to the high impedance at 

this anti-resonance.  If the primary system resonance is not desirable one may add a TVA to provide 

shifted resonant frequencies that are outside the disturbance frequency.  Equation (5) is the frequency 

response for the primary mass of the combined system. 
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Equation (6) is the simplified FRF for the case when the primary system resonance is to be cancelled.  

This occurs if the TVA’s natural frequency is set to the primary system’s natural frequency 

( )1
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ω
ω

 This is applicable when the original resonance is no longer desired.  Figure 8 shows the 

combined FRF in comparison to the primary system.  It uses the lightest damping formerly presented 

for the primary system and has a 5% damping for the TVA sub-system.  Although the original 

resonance is cancelled, two nearby resonances are created. 
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Figure 8: Primary & Combined System Frequency Response Function 

 

Figure 9 presents the combined system with lower damping (1%) for the TVA.  Less response is 

evident near the anti-resonance with the 1% damping, than with 5% damping.  Yet examining the 

phase response one notices that it is more sensitive to small frequency changes.  It is noted that 

increased TVA damping causes an increased response near anti-resonances. 
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Figure 9: Primary & Combined System Frequency Response Function 

 

One system advantage is the reduction near the tuned frequency.  Another advantage is it is an elegant, 

robust, simple mechanical system.  One disadvantage is that the reduction band is limited.  The system 

has gone from one resonance to two nearby resonances in the combined system.  If the excitation 

frequency may change under operation this can lead to unacceptably large displacements.  A variable 

stiffness TVA could address these issues. 

 

The absorber’s displacement range is related to the system stiffness ratio and mass ratio between the 

primary system and the vibration absorber.  In the case with cancellation at the original resonance, the 

stiffness ratio (
1

2

k
k

) appears in Equation (6).  In Equation (6) we set 1
1,

2, =










n

n

ω
ω

, so that through 

manipulation the stiffness ratio and mass ratio are equivalent in this case.  The smaller this ratio the 

larger the displacement for the tuned absorber mass.  This can enter as a design limitation in 

implementation of TVAs.  One adjustment is to add damping to the TVA; yet as discussed, this causes 

increased response at the tuned frequency for the combined system. 
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Passive Tuned Vibration Absorbers 

The passive TVA device was first patented in 1911 by Frahn.1  The TVA’s advantages include the ease 

of installation, simple design, and effectiveness over narrow frequency band vibration.  The TVA is 

selected such that the combined system has an anti-resonance at the desired cancellation frequency.  

An undamped TVA allows the best suppression at a specified fixed design frequency.  This is effective 

if the excitation frequency remains constant.  The disadvantage is that if the excitation frequency shifts, 

the response of the combined system may be larger than the primary system alone. 

 

The narrow operation band can adversely affect a system that changes over time, or that operates at 

varied frequencies.  The tuned absorber reduces vibration around the tuned frequency, yet it will make 

vibration worse at the combined system’s two new natural frequencies. In 1928, Ormondroyd and 

den Hartog, discussed adding damping to the passive vibration absorber.9  This helps reduce the 

response across a wider frequency range, yet does not completely cancel the vibration anywhere.  The 

rest of this section reviews some of the more recent literature on TVAs.  

 

Thomson provides introductory vibration theory and discusses the basics of passive vibration 

absorbers and demonstrates the change in frequency for various mass ratios.10  Korenev and Reznikov 

published a comprehensive book on many aspects of dynamic vibration absorbers.11  They present 

extensive analysis of harmonic excitation with both stable and unstable frequencies.  The frequency 

response invariant points are explained; these frequencies have the same magnitude response 

irrespective of the viscous damping coefficient.  They discuss transient vibrations, vibration under 

random excitations, and multi-mass vibration absorbers.  They devote a complete section to 

continuous systems with dynamic absorbers attached.  Einstein and Wernerowski also examined a 

multi-mass absorber system.12  With the additional elements, this enables the attenuation of added 

frequencies. 

 

Sun, Jolly, and Norris in their survey paper discuss passive absorbers in the first section.13  They 

examine an impedance coupling model for selecting TVA parameters.  This approach is convenient in 

that it requires only the driving point impedance and not the entire structural model.  They also discuss 
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passive absorber design variations: pendulum-type, rotary TVAs, and an ER-fluid rotating dynamic 

absorber.  This paper provides an excellent overview of the current body of knowledge and an 

extensive reference section. 

 

Soom and Lee furthered our knowledge of passive absorbers by examining the optimal parameters 

settings for various conditions.14  They examined minimizing the single-frequency response, 

minimizing the frequency response across a range, minimizing the velocity, and minimizing the mean 

square displacement or velocity.  They also examined how nonlinear stiffness elements affected these 

cost functions. 

 

Özgüven and Çandir sought the optimum parameters of two vibration absorbers tuned to the first two 

beam resonances.15  They demonstrated that the optimum parameters for the first resonance TVA are 

dependent on the second resonance TVA, while not the reverse.  This demonstrates the dynamic 

coupling in a multiple degree of freedom system. 

 

Kobayashi and Aida discuss a Houde damper implemented with magnetic damping.16  A Houde 

damper is an auxiliary mass and a damping element added to a primary structure; no spring element is 

present.  Their research examines how magnets can be used in conjunction with a moving conductor 

to dissipate mechanical energy.  They were successful in attenuating pipe vibrations.  Yamashita and 

Seto also implement magnetic damping.17  They list four advantages: 

i) Good linearity of damping characteristics, no mechanical contact and no friction, 

ii) Stability of damping for changing time and temperature, 

iii) Clean, no oil to leak and no dust, and 

iv) It can be used in space. 

They construct and test a dual dynamic absorber using magnetic damping.  Extending the research 

Yamashita, Sawatari and Seto design a system of five dual dynamic absorbers to control the resonance 

peak of a piping system.18  They model the piping system by the transfer matrix method and find seven 

resonance peaks that they successfully eliminate. These three papers demonstrate the use of magnetic 

damping in passive TVA construction. 
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The literature review of passive approaches shows the extensive use of TVA and a number of 

limitations. The passive TVA boundaries are extended by various methods using semi-active and 

active actuator configurations.  These configurations are discussed next. 

Semi-Active Tuned Vibration Absorbers 

Semi-active TVAs are systems implemented such that small energy expenditures can alter the system 

parameters.  Systems can have variable inertia, variable damping, variable stiffness, or variable initial 

conditions.  The primary attraction to semi-active systems is the small energy expenditure needed to 

reduce vibration. 

 

Semi-Active Variable Inertia TVAs 

Takita and Seto investigated using a variable length pendulum to adaptively tune the absorber.19  By 

adjusting the moment arm of the pendulum mass the tuned frequency shifts.  This was a creative 

implementation to provide a tuning mechanism for the anti-resonance.  Moyka also examined a semi-

active system with variable inertia.20  Altering the pendulum length using a stepper motor varied the 

effective inertia.  They demonstrated the frequency response functions for various pendulum lengths 

on a cantilevered beam primary system. 

 

Semi-Active Variable Stiffness TVAs 

A system that could alter its stiffness provides a unique opportunity.  Given knowledge of the 

excitation frequency alone, it could provide minimum response at any frequency within its tuning 

range.  The system is depicted in Figure 10.  Since attenuation is more effective with less damping at 

the tuned frequency, the absorber damping should be minimized. 
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Figure 10: Variable Stiffness Viscously Damped Combined System 

Variable stiffness TVAs have been discussed in a number of papers.  Wang and Lai have developed 

control theory during rotational system startup using variable stiffness.2  Their research focus is on 

developing a control law that minimizes the system energy for a simulated beam structure with a 

rotating machinery attached.  They do not address the practicality of implementing such a variable 

stiffness actuator.  Walsh and Lamancusa investigated control of rotating imbalance during constant 

acceleration and constant rotational velocity to minimize RMS response.21  They use an adjustable 

stiffness compound leaf spring provide a variable stiffness element.  The spring stiffness is determined 

using finite element techniques.  This dissertation research examines the forces provided from an 

electromagnetic actuator, while leaving the control law aside.  

 

Hubbard and Margolis discussed a semi-active spring concept.22  They discussed varying the time rate 

of change of the compliance force.  They discuss the variable spring constant’s equivalence to a force 

generator in which the rate of change is controlled.  They propose two implementations: a discretely 

variable spring and damper configuration, and a pneumatic spring.  They conclude that the 

performance improvements may be justified. 
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A number of methods to provided stiffness variation have been investigated.  Ryan, Franchek, and 

Bernhard present a variable stiffness TVA that changes the helical spring length for stiffness 

alteration.23  The preceding paper provides direct variation in the stiffness element via mechanical 

means.  Slavicek and Bollinger have produced a variable stiffness by using nonlinear stiffness 

characteristics of plastic elements.24  The current research examines electromagnetic stiffness alteration.  

Buhr, Franchek and Bernhard present a control law for tuning a variable stiffness vibration absorber to 

attenuate a pure tone.25 

 

Thus variable stiffness, when properly tuned, will benefit the primary mass vibration reduction.  This 

dissertation research characterizes and tests a nonlinear variable stiffness TVA using electromagnetic 

forces. 

 

Semi-Active Variable Damping 

Many researchers have addressed semi-active variable damping.  Karnopp, Crosby, and Harwood 

implement a semi-active electro-hydraulic damper.26  They find by computer simulation that semi-

active systems can approach the results from a fully active system.  The primary advantage of a semi-

active system is that it only requires signal processing and low level power signals; rather than full 

power electronics for an active system.  Hrovat, Barak, and Rabin demonstrate semi-active 

hydraulically controlled damping modulation to damp wind induced vibration in tall buildings.27 

 

In 1992, Tanaka and Kirushima published their work on impact vibration control using a semi-active 

damper.28  They focus on controlling the transient vibrations at impact rather than steady state.  They 

propose a semi-active damper, driven by releasing a damper mass from an initial displacement to 

suppress transient vibrations.  They referred to this as variable initial conditions. 

 

These three papers address the issue of isolation and suspension with semi-active methods, rather than 

using an auxiliary TVA.  Rakheja and Sankar discussed vibration isolation from a semi-active ‘on-off’ 

damper.29  The damping is controlled by a variable sized orifice.  The results of the two-state damper 

are compared to a passive damper.  Another group that studied semi-active suspension implemented a 

quadratic performance index using knowledge from stochastic optimal control theory.30  In 1988, 

Miller reported passive, semi-active, and active suspension system tests on a quarter car model.31  Ride 
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comfort, road holding, and suspension travel were investigated with random input velocity to simulate 

road roughness. 

 

Kobayashi and Aida developed a damper using variable magnetic damping.16  Variable damping helps 

TVAs dissipate energy most effectively.  Yet as presented in the prior section, damping reduces the 

attenuation near the anti-resonance. 

 

This research will not attempt to control the damping.  It will examine the different damping 

mechanisms present in the mechanical TVA constructed.  Chapter 7 examines the mechanical  

damping and the electromagnetic damping in the TVA designed. 

Active Tuned Vibration Absorbers 

To provide additional features, active TVAs, or Proof Mass Actuators (PMA), were introduced that 

have an arbitrary force generation mechanism in parallel with the spring and damper.  This adds 

flexibility to incorporate control theory to provide cancellation forces.  This force has frequently been 

implemented with a voice coil actuator design.  The majority of literature in this area focuses on 

control law issues.  Although this research does not address the TVA control law; a sampling of the 

papers in this area are discussed 

 

Stephens, Rouch, and Tewani develop a theory using a damped dynamic vibration absorber with an 

active control element.32  Their work focuses on transfer function with various feedback laws.  The 

control law implemented consisted of a linear combination of the primary structure velocity and 

acceleration.  Seto, Sawatari, and Takita present work on the linear quadratic (LQ) optimal control 

theory applied to active TVAs.33  Seto and Sawatari proposed a design method for active dynamic 

absorbers using the LQ optimum control theory.34  It is experimentally shown that the random 

response of the vibration-controlled system is attenuated by five times that of an uncontrolled.  In this 

paper they use an electromagnetic voice coil actuator design, to provide additional internal forces. 

 

Burdisso and Heilmann contrasted a single-mass active dynamic absorber and a dual-mass active 

dynamic absorber for broadband control.35,36  Both systems were controlled with a feedforward 
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filtered-X LMS algorithm.  The dual-mass configuration presented requires less control force than the 

single-mass active TVA. 

 

A survey paper by von Flotow, Beard, and Bailey covers a number of adaptively tuned TVA designs.37  

It discusses TVAs implemented in the aircraft industry, installed on the DC-9 and MD-80.  Waterman 

presents a variable stiffness electromagnetic actuator based on the attraction of ferromagnetics.7  The 

focus of this dissertation is different in that the attraction and repulsion are from magnetic poles, 

rather than using the ferromagnetic attraction.  Bonesho and Bollinger developed the theory for 

variable damping and variable stiffness, while applying it to machine tools.38,39 

 

Sato examines a unique configuration using a variable speed rotor that may be partially filled with a 

liquid.40  The variable speed controls the cancellation frequency.  This embodiment is shown effective 

if the rotor speed is adjusted with the excitation frequency. The dissertation embodiment has similar 

goals to the Sato’s actuator, with a different approach based on different principles. 

 

Okada, Matsuda, and Hashitani present a novel circuit to provide sensing and actuation in a voice coil 

design.41  The velocity is estimated based on the driving voltage and current.  This self-sensing active 

TVA is successfully experimentally demonstrated. 

 

Sun, Jolly, and Norris prepared a comprehensive survey paper of these devices.13  Chang and Soong 

present an approach for optimal design of an active TVA system.42  Their application is inclusion of an 

active force element in large-scale civil engineering structures.  Nishimura, et al. investigated work on 

an active TVA for a TVA.43 

 

Olgac and Holm-Hansen develop the delayed resonator concept to provide active control of a 

TVA.44,45 The delayed resonator provides an interesting approach; it uses properly selected time 

delayed position feedback.  They examine a number of tuning methods to quickly attenuate a range of 

vibration frequencies.  They examine the system stability and response with simulations. 

 

Sommerfeldt and Tichy develop an adaptive control system applied to minimize the force transmitted 

through a two-stage vibration isolation mount.46,47  They investigate a two-stage vibration mounts to 
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reduce force transmission.  They implement an adaptive least-mean-squares (LMS) algorithm for 

provided control.  Zimmerman, Horner, and Inman describe a proof-mass actuator designed for 

structural control.4  This actuator, along with its onboard sensors and microprocessor was tested for 

space structures.  Experiments demonstrated that rate-feedback could be used to damp transverse 

vibrations of a cantilever beam.  The preceding two publications used a moving coil actuator, while 

this dissertation will implement an electromagnetic pole actuator. 

 

Hyde and Anderson developed an active actuator using the same fluid for damping and as an hydraulic 

lever for a voice coil.48 

 

Okada and Okashita examined a moving coil active damper.49  Their work focus on using state 

feedback to increased damping.  This dissertation examines the damping present and the cause, yet 

does not look to actively increase damping. 

Summary 

The papers referenced in this review cover many aspects of tuned vibration absorbers.  They have 

been examined as three categories based on control mechanisms: passive, semi-active, and active.  This 

dissertation research focuses on characterizing an absorber that could be used in both semi-active and 

active control.  Altering the gap spacing is a semi-active means to alter the system stiffness, while 

providing a DC current is an active method.  This research demonstrates how the variable gap and 

variable current alter the system’s transfer function.   

 

This absorber type could be implemented to lessen the vibration for a rotating machinery platform.  

Small speed variations in the machinery will cause the excitation frequency to vary and this absorber 

can adjust based on the running speed.  The TVA control laws are not addressed in this research. 
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CHAPTER 3. ELECTROMAGNETIC FIELD FORMULATION 

This chapter develops the electromagnetic field equations. The system configuration is first presented 

to provide the basis of the derivations.  A set of simulation parameters is specified so the resulting 

component fields may be graphed.  Then the magnetic flux density field is determined from 

fundamental equations for the proposed configuration.  These fields are developed, presented, and 

discussed.  The following chapter derives the force equations given the magnetic flux density.  Nagaya 

and Arai’s derivation has been adapted to handle the proposed configuration.5 

System Configuration 

Figure 11 depicts the proposed system configuration with a moving electromagnet absorber placed 

between two stationary permanent magnets.  The permanent magnets provide a passive restoring force 

to center the absorber.  The force level may be varied by supplying the electromagnet current or by 

altering the stationary magnets position.  The electromagnetic fields are calculated as the intermediary 

step to determine the force level between the absorber and the stationary magnet. 

 

The simplified system is pictured in Figure 12.  The spring force is influenced by the design 

parameters, current input, and the gap variation.  The electromagnetic fields produce the spring force 

and also influences the absorber damping force.  This research begins by theoretically quantifying the 

electromagnetic fields, converting these to the spring force (Chapter 4), with the goal of providing 

spring force variations to reduce a primary system’s vibration (Chapters 6-8).  This research also 

examines the damping forces under different conditions, while not attempting to directly control this 

parameter (Chapters 5 & 7). 
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Figure 11: Proposed System Configuration 

 

Movement Direction Variable Gap Setting

 
Figure 12: Simplified System Diagram 

 

Table 1 lists the values used for the simulations throughout the development.  The simulations provide 

a means to examine the magnetic flux density produced by the different component parts.  The 

magnetic flux development will focus on only the left side of Figure 11; knowing that the right side will 

react similarly. 
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Table 1: Simulation Numerical Parameters 

Description Symbol Value 

Magnetization strength 
0J   0.405 T 

Coil turns N   50 

Current I   1.0 A 

Permeability of free space 
0µ  )/(104 7 ATmWb−×π  

Permanent magnet thickness  t   10.0 mm (0.394 in) 

Inner Core Radius 
1a   6.4 mm (0.25 in) 

Inner Permanent Magnet Radius 
2a   7.938 mm (0.3125 in) 

Outer Core Radius/ 

Inner Coil Radius 
3a   12.7 mm (0.50 in) 

Outer Permanent Magnet Radius 
4a   25.0 mm (0.984 in) 

Outer Coil Radius 
5a   25.0 mm (0.984 in) 

Right magnet edge 
1z   80 mm 

Core lead edge 
2z   90 mm 

Coil lead edge 
3z   90 mm 

Coil far edge 
4z   109 mm 

Leakage υ   0.809 

 

Magnetic Flux Density Derivation 

The magnetic flux density in the proposed configuration is found by evaluating the constituent 

contributions then applying the superposition principle. The component magnetic flux fields are due 

to the current carrying coil, the core within the current carrying coil, the permanent magnet and core, 

and the stationary magnets.  The field of interest is that between the two permanent magnets on the 

left of Figure 11. The first derivation is the magnetic flux density from a simple loop, this is the 

foundation of the magnetic flux density from the coil. 
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Magnetic Flux Density from Elemental Loop 

The loop is depicted in Figure 13.  The loop radius is a , I is the loop current, and r & z are the 

cylindrical coordinates, Θ  is unnecessary since the field is symmetric.  A complete derivation is found 

in Craik.50 

r
a

z
I

 
Figure 13: Elemental Loop Configuration 

The magnetic flux density can be expressed as the radial and axial elements. 

),,(),,( 0, zraIfIzrB rloopr µ=  (7)

),,(),,( 0, zraIfIzrB zloopz µ=  (8)

The functions rf  and zf  are solely based on the elemental loop geometry. These functions 

incorporate the complete elliptical integrals of the first and second kind. 
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The elliptical integrals are defined as  
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The elliptical integral values are frequently calculated from approximate numeric methods for the level 

of accuracy necessary. 

 

For this example the outer permanent magnet radius is used for the loop radius.  Figure 14 shows that 

the radial field is strongest adjacent to the loop and goes to zero at a far distance from the loop.  It also 

coincides with the expectation along the axial center line that the radial flux will be zero.  Figure 15 

depicts the change of axial field direction from the loop interior to the loop exterior.  Figure 16 

combines these two graphs into a vector plot, depicting the strong field close to the loop interior and 

how the flux lines form a path around the wire loop. 

 
Figure 14: Radial Magnetic Flux Density from Current Carrying Loop 
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Figure 15: Axial Magnetic Flux Density from Current Carrying Loop 
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Figure 16: Magnetic Flux Density Field from Current Carrying Loop 

 

 

 



 

27 

 

Magnetic Flux Density from Current Carrying Coil 

The first component field of interest is that caused by the coil.  This is calculated by summing the 

individual loops contributions from a simple elemental loop.  The extension for taking in account the 

entire coil involves the integration of Equation (9) & (10).   

),(),,( 0 zriFIzrB esresr µ=  (14)

),(),,( 0 zriFIzrB eszesz µ=  (15)

The current density, i , is calculated using N (the number of wire turns) and I (the coil current) in 

addition to the geometric parameters. 
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The geometric function is integrated over the bounds of the coil, 
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4

3

),,(),(
a

a

Z

Z resr dadzrafzrF ξξ  (17)

∫ ∫ −= 5

3

4

3

),,(),(
a

a

Z

Z zesz dadzrafzrF ξξ  (18)

For the simulation parameters, the graphs are depicted in Figure 17 & Figure 18.  The origin is located 

at the axis shown in Figure 11, while the coil is located beyond the gap by the distance )( 13 zz − .  

Examining Figure 17, moving along the center line, the radial magnetic flux is zero.  Following the 

radial magnetic flux closest to the coil a peak exists while over the coil and then the flux decreases 

towards zero in either radial direction.  Figure 18 shows the axial magnetic flux density.  The axial 

magnetic flux is constant close to the coil interior.  It is also seen that the magnetic flux density on the 

coil interior and coil exterior have opposite signs, as would be expected to complete the flux paths.  

Figure 19 shows the vector field produced. 
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Figure 17: Radial Magnetic Flux Density from Current Carrying Coil 

 

 
Figure 18: Axial Magnetic Flux Density from Current Carrying Coil 



 

29 

 

Current Carrying Coil

a1 a2
a3 a4

z1
z2

z3
z4

z5
z6

z7

a5

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Axial Position [m]

R
ad

ia
l P

os
iti

on
 [m

]

Vector Field for Magnetic Flux Density from Current Carrying Coil

 
Figure 19: Vector Field of Magnetic Flux Density from Current Carrying Coil 

 

Magnetic Flux Density from Core within Current Carrying Coil 

The next constituent field evaluated is that from the core material present.  The magnetic field from 

the current will interact with the core to provide a stronger magnetic field if the core is a ferromagnetic 

material.  A simplifying assumption is that the magnetic field is uniform though out the core.  The 

average of three locations will be used to represent that strength of the field without a core present.  

Using the apparent permeability, µ′ , the magnetic field is calculated as 
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µ′= /)()( 00 IBzH  (19)

Given that the core has a large permeability, the magnetic strength is expressed as 

nIBIJ ce /)()( 0=  (20)

Where n  is the demagnetizing factor and 0B  is the mean value of zB .  The magnetic flux density can 

then be expressed as 

),()(),,( zrFIJIzrB ecrceecr =  (21)

),()(),,( zrFIJIzrB eczceecz =  (22)

 

[ ]∫ −−−= 5

2

),,(),,(),( 13

Z

Z rrecr dzrafzrafzrF ξξξ  (23)

[ ]∫ −−−= 5

2

),,(),,(),( 13

Z

Z zzecz dzrafzrafzrF ξξξ  (24)

Figure 20 shows that for an annulus core, the radial flux lines are strongest over the core material.  

This appears in the graph as the radial flux peak location between the core’s radial position of 6.4 mm 

and 12.7 mm. Figure 21 shows that the axial magnetic flux changes signs between the inside and 

outside of the core material.  This is seen along the axial maximum position by the large negative value 

it the small radial position and the small positive value along the maximum radial position.  The change 

of sign is expected so that the flux path completes itself. 
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Figure 20: Radial Magnetic Flux Density from Core within Current Carrying Coil 

 

 
Figure 21: Axial Magnetic Flux Density from Core within Current Carrying Coil 
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Figure 22: Vector Field of Magnetic Flux Density from Core within Current Carrying Coil 
 

Magnetic Flux Density from Permanent Magnet Attached to Core 

The third flux contribution to examine is the moving permanent magnet.  Since the core and the 

permanent magnet are in contact, the permanent magnet magnetizes the core.  The magnetic flux from 

the permanent magnet is 

pp GJ 02π=Φ  (25)
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The magnetic flux from the core is 

cpcpcp GJπ2=Φ  (26)

Where the geometry dictates, 

22
Pr PzP GGG +=  (27)

22
Pr cPzccP GGG +=  (28)

[ ]∫ ∫ −−−= 4
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Z rr drrdZrafZrafG ξξξ  (29)
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Z zzPz drrdZrafZrafG ξξξ  (30)
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Z rrc drrdZrafZrafG ξξξ  (31)
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),,(),,( 1113
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Z

Z zzcPz drrdZrafZrafG ξξξ  (32)

The electromagnetic leakage between the surfaces provide a reduction in flux: 

pcp Φ−=Φ )1( ν  (33)

cP

P
cP G

JG
J 0)1( ν−

=  (34)

The magnetic flux density at an arbitrary point P is 

),(),(),( Pr0Pr zrFJzrFJzrB ecrcP ⋅+⋅=  (35)

),(),(),( 0 zrFJzrFJzrB eczcPPzPz ⋅+⋅=  (36)

 

[ ] ξξξ dzrafzrafzrF
Z

Z rr∫ −−−= 2

1

),,(),,(),( 24Pr  (37)

[ ] ξξξ dzrafzrafzrF
Z

Z zzPz ∫ −−−= 2

1

),,(),,(),( 24  (38)

 

Figure 23 demonstrates the radial magnetic flux from the permanent magnet/core combination.  The 

permanent magnet near edge is positioned at 80 mm.  As expected the radial field reverses between the 

interior and exterior of the permanent magnet.  Figure 24 demonstrates the axial magnetic flux and 

how on both the interior and exterior it is in the same direction, yet over the permanent magnet it is 
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the opposite direction, thereby completing the flux path.  Figure 25 shows the vector field eminating 

from the magnet and encircling the magnet on the outside and through the interior. 

 
Figure 23: Radial Magnetic Flux Density from Permanent Magnet Attached to Core 
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Figure 24: Axial Magnetic Flux Density from Permanent Magnet Attached to Core 
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Figure 25: Vector Field of Magnetic Flux Density from Permanent Magnet Attached to Core 
 

Magnetic Flux Density from Stationary Permanent Magnet 

The final component contribution is that of the stationary permanent magnet.  In this situation the 

magnet center is bisected by the axial origin.  The magnetic flux density from the separated magnet are 

),(),( 0 zrFJzrB mrmr ⋅−=  (39)

),(),( 0 zrFJzrB mzmz ⋅−=  (40)
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[ ] ξξξ dzrafzrafzrF
t

t rrmr ∫− −−−=
2/

2/ 24 ),,(),,(),(  (41)

[ ] ξξξ dzrafzrafzrF
t

t zzmz ∫− −−−=
2/

2/ 24 ),,(),,(),(  (42)

 

Figure 26 shows the radial flux produced from a single magnet, similar to Figure 23, simply the magnet 

placement has changed.  Figure 27 shows the axial magnetic flux produced from a single magnet.  

Note how the interior and exterior have axial flux in the same direction while the flux path is 

completed as it returns to the magnet above the annulus. Figure 28 depicts the vector field produced 

from the stationary permanent magnet. 

 
Figure 26: Radial Magnetic Flux Density from Separated Permanent Magnet 
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Figure 27: Axial Magnetic Flux Density from Separated Permanent Magnet 
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Figure 28: Vector Field of Magnetic Flux Density from Separated Permanent Magnet 
 

Total Magnetic Flux Density 

This segment combines the electromagnetic fields produced by the four constituent components.  The 

magnetic flux may be summed from each of the components.  

),(),(),,(),,(),,( Pr zrBzrBIzrBIzrBIzrB mresrecrr ++++=  (43)

),(),(),,(),,(),,( zrBzrBIzrBIzrBIzrB Pzmzeszeczz ++++=  (44)
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Figure 29: Total Radial Magnetic Flux Density 

 

  



 

41 

 
Figure 30: Total Axial Magnetic Flux Density 
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Figure 31: Vector Field of Total Magnetic Flux Density 
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Figure 29 depicts the total radial magnetic flux density between the stationary magnet and the absorber 

mass.  Figure 30 depicts the total axial magnetic flux density between the stationary magnet and the 

absorber mass.  Figure 31 shows the complete vector field.  This numeric representation of the field 

may be used to calculate the force in the next chapter. 

Summary 

This chapter has developed the full electromagnetic field relations between the absorber electromagnet 

and the stationary permanent magnet.  This relationship consists of the superposition of the four 

constituent fields: the coil, core, absorber permanent magnet and the stationary permanent magnet.  

These equations also takes advantage of the fact that the system is axial symmetric. 

 

Now that the full field is known the force between the stationary permanent magnet and the absorber 

can be examined for different gaps.  The electromagnetic fields may be summed with various gaps to 

examine how the fields interact.  These fields will be examined in the following chapter to arrive at the 

force to gap relationship. 

 

The electromagnetic field has been solved so that the force between the absorber and stationary 

magnets may be calculated.  This field equation will allow the force to distance function to be 

identified and simulated so that the system response can be found using the nonlinear spring relation.  

The electromagnet field is dominated by the permanent magnet strength, yet the small variation with 

current will allow small changes in the transfer function of the combined system.  
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CHAPTER 4. ELECTROMAGNETIC FORCE FORMULATION 

This chapter develops the theoretical force relationships between the absorber and the stationary 

magnet.  It takes the component electromagnetic fields developed in Chapter 3 while varying the 

current or gap to calculated the total electromagnetic field.  Using this total electromagnetic field the 

chapter determines the force relationship using tensor notation. 

Force Derivation from Magnetic Flux Density 

This section evaluates the force on a volume, given the magnetic flux density.  It begins with a review 

of the Lorentz force material covered in Woodson and Melcher.51  This law relates the force on a 

moving charge while it passes though an electromagnetic field. 

 

The Lorentz force gives the magnetic force on a charge q  moving with velocity vr  as 

Bvqf
rrr

×=  (45)

From this we may calculate the force density F
r

as 

V

Bvq

V

f
F i

iii

V

i
i

V δδ δδ

∑∑ ×
==

→→

rrr

r

00
limlim  (46)

Assuming that all particles experience the same flux density, B
r

, the definition of free current density 

can be used to write 

BJF f

rrr
×=  (47)

This derivation relies on the fact that the averaging process makes Equation (46) and (47) consistent.  

Using the constituent relation, 

HB
rr

µ=  (48)

and Ampere’s law for magnetic field systems, Equation (47) becomes 

( ) HHF
rrr

××∇= µ  (49)

Alternatively this expression may be expressed as 
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( ) ( )HHHHF
rrrrr

⋅∇−∇⋅=
2
µµ  (50)

Using tensor notion this equation may be expressed with Maxwell’s stress tensor as 

n

mn
m x

T
F

∂
∂

=  (51)

The tensor elements are 

kkmnmnmn HHHHT δµµ
2

−=  (52)

The stress tensor may alternatively be expressed in cylindrical coordinates r ,Θ , and z . 
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Through manipulation the force component may be expressed as a surface integral or this stress 

tensor. 

∫= S nmnm danTf  (55)

This allows the force calculation given the magnetic flux field encircling the object.  This relation may 

now be used to find the force between the electromagnetic absorber and the stationary permanent 

magnet. 

Force on Vibration Absorber 

This general relation may now be applied to the current case in calculating the levitation force fR as  

∫ ++=−= ΘΘS zzzzrzrzf dSnTnTnTFR )(  (56)

To simplify the expression consider the point ),0( mZS , along the actuator axis, where the axial 

magnetic flux density is zero )0( =zB , for convenience.  Taking the plane, including the point S and 

being normal to the z-axis, the components of the vector become .0== Θnnr  Since the magnetic 
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field is symmetrical about the z-axis, the magnetic flux densities in the tangential direction become 

0=ΘB . This yields 

∫
∞

−−=
0

22

0

)( drBBrR rzf µ
π  (57)

The force is calculated from the integral across the entire plane, as seen by the bounds of integration.  

The other surface integral segments encircling the volume may be taken at a large distance and this will 

result in zero magnetic flux and therefore no force contribution.  As long as the magnetic field is small 

at the maximum radius selected one may approximate the entire plane.  By reviewing the fields shown 

in the prior chapter one sees that they are a small contributions once beyond twice the permanent 

magnet radius.  Therefore this integral may be numerically evaluated using the determined 

electromagnetic fields. 

 

Using the simulation parameters while changing the displacement one can find the force verses 

displacement relationship for zero current.  The reference point is the center of the fixed magnet.  This 

is depicted in Figure 32 with three curve fits.  Polynomial curve fits were calculated. The sixth and 

seventh order polynomial fits are depicted as close representations.  The inverse square is a simpler 

model with a high relation to the theoretic force.  Figure 33 depicts the standard deviation of the error 

terms for different polynomial orders.  As expected this decreases as additional terms are added. 
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Figure 32: Force relationship for no current with variable gap 
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Figure 33: Standard Deviation of error terms for various polynomial curve fits 
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Although the polynomial fits have less standard deviation with increased order, these fits are very 

specific to the range selected and at larger distances fail to represent the force and diverge from the 

smooth extrapolation.  This leads to examining alternative models.  Table 2 lists the standard deviation 

of the error terms for the polynomial models and then examines using the models B-1Z1
-1 (inverse), B-

2Z1
-2 (inverse square), and B-3Z1

-3 (inverse cube).  It is clear from the error terms standard deviation that 

the inverse square is an appropriate model.  The sixth order or larger polynomial has less deviation of 

the error term, yet it does not properly model the expectation beyond the fit range and also uses seven 

degrees of freedom to calculate this polynomial.  With the inverse square model only one degree of 

freedom is used and the standard deviation is less than the fifth order polynomial and the model 

corresponds to the expected extrapolation.  The inverse square model will be the preferred model for 

the remaining modeling. 

Table 2: Standard Deviation of error terms 
Polynomial Order Standard Deviation 

of Error Terms 

Constant 3.897 

1 3.067 

2 2.172 

3 1.418 

4 0.867 

5 0.505 

6 0.286 

7 0.162 

8 0.094 

9 0.056 

Inverse only 2.064 

Inverse square 0.275 

Inverse Cube only 1.092 
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Force Level with Current Variation 

The force levels will be examined with varying current into the electromagnetic absorber.  Figure 34 

depicts the force relationship with +1 amp, while Figure 35 depicts the force relationship with -1 amp.  

Both of these cases result in appropriate fits with the inverse square fit.  The inverse square curve fits 

are tabulated in Table 3 across various current levels.  The 95% confidence bounds cover a 2.2% 

parameter variation of B-2.  The residual’s standard deviation shows that the inverse square model is 

appropriate with the current supply variation.  This table shows that with 10 amps it is possible to 

change the fit coefficient by 7.63%. 
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Figure 34: Force relationship for fixed current with variable gap [1 Amp] 
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Figure 35: Force relationship for fixed current with variable gap [-1 Amp] 

 
Table 3: Inverse Square Curve Fit Parameters B-2Z1

-2 [Leakage = 0.809] 
 
 

Current 
[Amps] 

 
Fit Coefficient 

B-2 
[x10-3 Nm2] 

95% Confidence 
Bound Range on 

B-2 
[x10-3 Nm2] 

Standard Dev for 
Regression 

Model Residuals 
(s) 

Coefficient 
Change from 
Zero Amps 

[%] 
 10  1.095  0.0153  0.285  7.63 
 5  1.057  0.0144  0.267  3.82 
 3  1.041  0.0144  0.267  2.29 
 2  1.033  0.0145  0.259  1.53 
 1  1.025  0.0146  0.271  0.76 
 0  1.018  0.0148  0.275  0 
 -1  1.010  0.0150  0.279  -0.76 
 -2  1.002  0.0153  0.284  -1.53 
 -3  0.994  0.0156  0.391  -2.29 
 -5  0.979  0.0164  0.305  -3.82 
 -10  0.940  0.0190  0.352  -7.64 

 

Dual-Sided Absorber Force 

 The curve fits to this point are for the force-distance relationship for a single sided actuator, the force 

between the electromagnetic actuator and one permanent magnet.  The configuration of interest is the 

dual-sided actuator, depicted in Figure 36.  To transform the single sided equations we need to alter 
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the displacement reference point to the center equilibrium position of the dual-sided actuator.  The 

force equation becomes 

2
02

2
02 )()( −

−
−

− −−+=

+=

xxBxxBF
ForceSideRightForceSideLeftF

 (58)

0x  is the center equilibrium position measured as Z1, from the stationary magnet center.  While x is 

the displacement from this equilibrium position. 0x  in the test case is 10.3 mm, with the magnet 

thickness at 10 mm, the maximum x displacement is 5.3 mm. 
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Figure 36: Dual Sided Absorber Configuration 

 

Figure 37 shows the relationship described by Equation (58).  The relationship is clearly an odd 

function [f(x)=-f(-x)] that is linear for small displacements.  Although to absorb the primary system’s 

vibration this linear range is expected to be exceeded.  Figure 38 is a close up with a smaller area of 

interest. This shows that the force relationship is very close to linear for quarter of the range of 

motion.  These graphs demonstrate the amount of force variation for various excitation currents. 
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Figure 37: Dual Sided Absorber Force Relationship 
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Figure 38: Dual Sided Absorber Force Relationship, Linear Range 
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Table 4 shows that the force level percentage change is constant for a particular current setting.  This 

force change is directly related to the stiffness change.  If the absorber were a linear system it would 

result in a natural frequency change ( m
k

n =ω ), a 7.62% stiffness change would result in a 3.8% 

natural frequency shift.  This small absorber force variation would be adequate to shift the system’s 

transfer function if low damping is present. 

 

Table 4: Force Change for Various Currents 
Displacement % 

of maximum 
Displacement 

[mm] 
Force with 

no Current [N] 
Force % Change 

±2 Amps 
Force % Change

±10 Amps 
+90%  +7.58  -27.44  m 1.53%  m 7.62% 
+75%  +6.32  -17.51  m 1.53%  m 7.62% 
+50%  +4.21  -8.70  m 1.53%  m 7.62% 
+25%  +2.10  -3.72  m 1.53%  m 7.62% 
0%  0  0  -  - 

 

Force Levels with Variable Gap Spacing 

The dual-sided inverse square model is the most appropriate model since a change in gap allows just 

one parameter to change in Equation (58).  Yet this model is not easily contrasted with other known 

models.  Examining the dual-sided force graph, it can be approximated as a Duffing’s hardening spring 

model.  The Duffing spring is a linear spring with a cubic term for softening or hardening, as in 

Equation (59). 
3xxkF DuffingduffingDuffing µ+=  (59)

x is the displacement from the center equilibrium location.  If Duffingµ  is positive a hardening spring is 

modeled, if negative a softening spring. These coefficients may be calculated for different gap spacing, 

yet each gap has unique coefficients. 

 

Figure 39-Figure 41 demonstrate the inverse square relationship and both a linear and Duffing spring 

fit.  The linear fit is calculated across a quarter (¼) of the movement range since this portion visually 

appears linear (Figure 38).  The Duffing spring fit is calculated across the entire movement range.  As 

the gap is widened the Duffing spring approximation deviates from the inverse square relation (Figure 

41).  Table 5 lists the various Duffing & linear spring constant calculated values for various gaps.  It 

demonstrates that all the spring stiffness estimates soften as the gap is widened. 
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Figure 39: Dual Sided Absorber Force Relationship, Duffing’s Approximate 
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Figure 40: Dual Sided Absorber Force Relationship, Duffing’s Approximate 
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Figure 41: Dual Sided Absorber Force Relationship, Duffing’s Approximate 

 

Table 5: Equivalent Spring Stiffness for System 
  Duffing Stiffness Elements Linear 
 x0 

[mm] 
duffingk  Duffingµ [x106] lineark  

[N/m] 
  10.3  3430  115  3800 
  11  2720  89  3130 
  12  1970  64  2420 
  13  1440  47  1910 
  14  1060  36  1530 
  15  770  27  1250 
  16  540  22  1030 
  17  380  17  860 
  17.2  350  16  830 
  18  250  14  730 
  19  160  11  620 
  19.9  82  9.5  540 
  20  70  9.4  530 
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Summary 

This chapter takes the electromagnetic fields derived in the prior chapter and determined the force 

relationship between the absorber mass and the stationary magnet.  After the force vs. displacement 

relation is determined a number of curve fits are examined.  The best relation identified is the inverse 

square relationship for the single sided actuator.  For the dual sided actuator the inverse square relation 

can be used, yet the similarities with a Duffing spring (cubic and linear terms) are presented.  These 

similarities yield a base comparison system that has been investigated in literature.  These theoretical 

relations will be confirmed with experimental tests in Chapter 7.  The magnetic spring forces have 

been developed and the next chapter discusses the damping mechanism. 

This chapter has shown the resultant force for the dual-sided absorber may be adjusted with either 

current variation or gap variation.  The current variation has the advantage that it may be rapidly 

altered, while the gap variation may be altered one time for sustained changes in the transfer function.  

Both these mechanisms may be used to tune the absorber and lower the resultant vibration of the 

combined system. 
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CHAPTER 5. DAMPING MECHANISMS 

To properly understand the system dynamics, the damping mechanisms must be examined.  This 

absorber will have a number of damping mechanisms present.  Mechanical systems experience varying 

damping mechanisms, viscous and Coulomb damping will be discussed for this application.  The 

dynamic electromagnetic fields also provides an energy loss mechanism resulting in damping.  This 

chapter presents elementary damping relationship as they relate to this research.  

Mechanical Damping 

The two primary mechanical damping mechanisms for this experiment are viscous damping and 

Coulomb damping.  Viscous damping will arise when a liquid lubricant is applied to the shaft and 

bearing.  Coulomb damping is caused from the friction between the bearing and the shaft.  These 

mechanical damping mechanisms are quantitatively discussed in this section. 

 

The viscous damping model is a force proportional to the velocity.  This is the traditional mechanical 

damping model and is easily modeled in a differential equation as 

xcfdamp &=  (60)

A common method to compare various damping mechanisms is by comparing the energy dissipated 

per cycle with the viscous model.52  The viscous model results in the dissipated energy of 
2XcW eqd ωπ=  (61)

The equivalent viscous damping coefficient, eqc , can be calculated based on other damping 

mechanisms and used as a comparison metric. 

 

The damping ratio, ζ , is the ratio of the viscous damping coefficient to the critical damping. 

km
c

c
c

cr 2
==ζ  (62)

When this nondimensional parameter is less than one the time response is oscillatory and when greater 

than one it becomes nonoscillatory.  This value influences the decay envelope of the system time 
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response.  It was mentioned in reviewing the transfer functions than low damping is better for the 

research absorber since it allows increased attenuation over a smaller frequency band. 

 

The friction between the bearing and the shaft create another form of mechanical damping.  The 

bearing has a Teflon™ insert to minimize this friction.  Yet significant mechanical damping is found 

present in the experimental tests.  The equivalent viscous damping coefficient for Coulomb friction is 

X
Fc d

eq πω
4

=  (63)

This provides a method to compare the Coulomb and viscous dissipative sources.  The equivalent 

damping coefficients are found, yet the best way to determine the damping is by an experimental test. 

  

Experimental Test 

To properly quantify the mechanical system damping the following experiment is performed.  The 

wire-wound bearing (without end magnets) is mounted on the center rod and two mechanical springs 

are used replacing the stationary magnets, as in Figure 42.  The transfer function is experimentally 

found for this mechanical system (X/Y) and the equivalent damping ratio can be estimated by a curve 

fit.  This equivalent damping coefficient will then cover all mechanical damping mechanisms.  The 

experimental results are covered in Chapter 7.  The electromagnetic damping from the eddy current 

will be examined next. 
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Figure 42: Mechanical Spring System Configuration 

Electromagnetic Damping 

In 1992, Yamashita and Seto developed a damper using variable magnetic damping.17  Kobayashi and 

Aida also implement magnetic damping in a Houde damper.16    These configuration used a conductive 

material moving through an electromagnetic field created from permanent magnets to provide a 

dissipative mechanism.  Unlike these researchers this work does not look to maximize the 

electromagnetic damping, but only quantify it for its effect on the absorber.  A fundamental review of 

electromagnetic damping follows. 

Once the research absorber is implemented, time-varying magnetic fields will be present and this 

requires that Faraday’s Law be reviewed.53  In the nineteenth century, Faraday had found that a time 

varying magnetic field result in a closed circuit current.  The B-field created by this induced current will 

oppose any change in the external field.  Maxwell’s equations demonstrate that the electric field created 

is related to the changing magnetic field as 

∫ ∫ ∫−= dS
dt
dB

dlE n
l  (64)
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Figure 43: Construction for Eddy Currents in a Cylinder 

 

For a cylinder as in Figure 43 with uniformly distributed parameters 

dt
dBrrE

dt
dBrrrE

2
)(;)(2 2 −=−= ππ  (65)

The induced current in the cylinder is 

dt
dBrrErI

ρρ 2
)()( −==  (66)

The current induced is frequently called an eddy current.  The instantaneous power loss per unit length 

for a cylinder is 
222

02 8
2)

2
)(

2
(1







=−−= ∫ dt
dHRrdr

dt
dBr

dt
dBr

R
P

R

ρ
µπ

ρπ
 (67)

With the field excited harmonically, Craik reports the average power becomes53 

ρ
µπ
4

2
0

2222 HfR
P =  (68)

The work per unit length over one cycle when H is harmonic is 

ρ
µπ

ρ
µ

48

2
0

2222
/1

0

22 fHR
dt

dt
dHRW

f
=






= ∫  (69)

Equating the work dissipated per cycle the equivalent damping measure can be obtained 

2

2
0

22

22 82 X
LHR

fX
W

c d
eq ρ

µ
π

==  (70)

Thus an equivalent viscous damping measure may be used for electromagnetic damping when a field 

varies harmonically through a cylinder. 
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In this work, if the center rod is examined for it conductive nature; H has a better approximation than 

a simple harmonic term.  By taking an approximation of H at the center of a single loop used with the 

rod moving harmonically, an integral equation can be formed.  The field along the axis of a single coil 

is 

2
3

22
2

][
2

−
+= azIaH z  (71)

Its spatial derivative may be calculated as 

2
5

22
2

][
2

3 −
+

−
= azzIa

dz
dH z  (72)

By using the chain rule the time derivative can be found 

dt
dzazzIa

dt
dz

dz
dH

dt
dH zz 2

5
22

2

][
2

3 −
+

−
==  (73)

By calculating the work on a sliver of the rod 

∫











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
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+
=

T
dt

az

z
dt
dz
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)(32
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ρ
µ  (74)

 The work across the entire length would be 

∫ ∫−













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+
=
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2

2/522

2422
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L

T
dldt

az

z
dt
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IaRW
ρ

µ  (75)

 

This provides an analytical expression for the dissipated work per cycle for a center rod with field 

variation presented in Equation (71).  The damping mechanism will be checked during the system 

experimental testing using experimental damping measures.  An equivalent viscous damping term may 

then be calculated and used in the system simulation. 
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Experimental Test 

To examine the electromagnetic damping influences a low damping cantilever beam is used as a 

reference.  At the beam end a magnet is mounted.  This system is depicted in Figure 44.  The time 

response of this system is then found, this represents the inherent mechanical damping of the beam.  

Then two magnets are placed above and below the beam magnet.  This systems response will have 

both the mechanical and electromagnetic damping components present.  This enables an estimate of 

the electromagnetic damping contribution.  The experiments are reported in Chapter 7. 

x

x

Cantilever Beam

Cantilever Beam with
Extra Magnets

 
Figure 44: Beam System Diagram for Damping Determination 

 

Damping Summary 

This chapter has examined the fundamental damping mechanisms present and how they can be 

quantified.  The most significant contribution is the experimental design to isolate and identify the 

damping mechanisms.  This will provide insight of the electromagnetic and mechanical damping 

mechanisms contributions.  The damping experiments are summarized in Chapter 7. 

 

The damping relations are important to the tuned vibration absorber for maximum attenuation.  The 

more damping the absorber system has, the less attenuation possible as found in Chapter 2.  The best 
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can is the absorber to have no damping and then maximum cancellation is possible.  If moderate 

damping is present the level of cancellation is reduced, yet the attenuation frequency range is enlarged. 
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CHAPTER 6.  SYSTEM SIMULATION 

The prior two chapters have examined the spring and damping forces present in the electromagnetic 

absorber.  This chapter examines the absorber dynamic response that results from the force and 

damping relations.  Now that these force relations are known the absorber system is simulated using 

ordinary differential equations.  First a linear absorber is simulated, followed by the nonlinear absorber 

system. 

Linear System Simulation 

The general equation of motion is for a single degree of freedom system comes from Newton’s Law as 

extspringdamp fffxmF ++==Σ &&  (76)

First, the response of the linear system with base excitation will be considered.  This system is depicted 

in Figure 45. 

 

 

Figure 45: One Degree of Freedom with base motion 

The equation of motion for applied base motion is 

)()( yxkyxcxmF −−−−==Σ &&&&  (77)

By rearranging and algebra one arrives at 

kyyckxxcxm +=++ &&&&  (78)

xx &,m

kc

yy &,
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By examining this equation in the frequency domain one determines the transfer function between X 

and Y as 

kcsms
kcs

Y
X

++
+

= 2  (79)

By substituting ωis +=  and rearranging with non-dimensional parameters. 
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(80)

This function is presented in Figure 46 and this linear transfer function can be used as a reference for 

the nonlinear system response. 
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Figure 46: X/Y Transfer Function for Base motion 

Alternatively, the system may be simulated using the applicable differential equations, with a selected 

mass (0.218 kg), moderate damping (c = 3.0 Ns/m), and the linearized stiffness coefficient 

(3800 N/m).  A harmonic base excitation drives the system.  Each frequency is simulated and the 

response analyzed after the transient terms decay.  This allows isolation of the first order response and 

prevents having harmonic frequency multiples effecting the transfer function.  Figure 47 shows the 
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outcome of a sine dwell simulation using a linear spring model for the absorber.  The points are the 

simulated responses from the differential equation, the line is the appropriate curve fit for the SDOF 

linear transfer function.  The curve fit identifies the natural frequency as 21.1 Hz with 5.5% of critical 

damping.  The curve fit is close to the actual natural frequency of 21.0 Hz and 5.2% damping.  In the 

linear case the higher order harmonics are not present. 
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Figure 47: X/Y Linear System Transfer Function Simulation 

[m=0.218 kg, c=3.0 Ns/m, k=3800 N/m] 

Nonlinear System Simulation 

The nonlinear absorber system, pictured in Figure 48, is now examined.  The parameters used for the 

nonlinear simulation are discussed.  The simulated mass is 0.129 kg.  The damping term is taken as an 

equivalent viscous damping term.  The spring force is selected based on the curve fits from the prior 

chapter, using the dual-sided inverse square relationship.  The simulations were accomplished using 

sinusoidal base excitation to determine the motion of the absorber mass. The terms used in the 

simulation are 

))()(()(

)(
2

0
2

02
−−

− −++−=

=

zxzxzf

zczf

spring

damp

β

&&
 (81)

The resulting differential equation is 
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ti
springdamp eYzfzfzm ωω −=++ 2)()( &&&  (82)

This system may then be simulated with various base displacements, and spring forces based on 

changing currents and changing magnetic gap spacing.  First the variable base excitation cases will be 

examined to demonstrate the system nonlinearity. 

 

z1

Movement Direction

Electromagnet Coil

Electromagnet Core

x

y

 
Figure 48: Absorber Configuration for Simulation 

 

Variable Base Excitation 

The first simulation will be with the outer magnets set to their closest position due to the physical 

constraints in the experimental apparatus.  This sets the gap on each side of the absorber neutral 

position to 5.3 mm ( mm 10.30 =x ), and the electromagnet curve fit solves for 

2-3
2 Nm101.018×=−β  (see Table 3).  The damping is set to c=1.0 Ns/m, and the base motion 

excitation amplitude is varied.  These simulations are run without a current input. 

The following graphs (Figure 49-Figure 52) depict the system’s natural frequency shift with larger 

displacements caused by larger base excitation.  The larger base displacement the higher the system’s 

linear equivalent natural frequency becomes.  This is due to the nonlinear nature of the spring force; 
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the electromagnetic absorber spring force actually stiffens with larger displacements as a Duffing 

spring does (Figure 37).  The third graph in the figures displays the motion range so it is known that 

the range is not exceeded, which would be an invalid simulation, yet can numerically appear based on 

the simulation step size.  In the larger base displacement cases the simulation shows a discontinuity in 

the transfer functions.  This is expected due to the nonlinear spring; a Duffing spring has a similar 

response.  It is due to a jump phenomenon in the transfer function that the differential equation has 

two amplitude solutions at some points.54  Moderate to high damping will prevent the jump 

phenomenon from showing up. 
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Figure 49: First order TF for non-linear system 
[x0 = 10.3mm, Base Displacement = 0.1mm] 
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Figure 50: First order TF for non-linear system 
[x0 = 10.3mm, Base Displacement = 0.2mm] 
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Figure 51: First order TF for non-linear system 
[x0 = 10.3mm, Base Displacement = 0.3mm] 
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Figure 52: First order TF for non-linear system 
[x0 = 10.3mm, Base Displacement = 0.4mm] 

 

Figure 52 shows the magnitude, phase & percent of displacement for the magnetic absorber without 

any current.  Observing the graph the peak response is at 31.2 Hz.  This figure represents only the 

linear transfer function response.  Table 6 organizes the equivalent linear system parameters based on 

the varying base excitation.  This demonstrates the increased linear natural frequency based on the 

increased base excitation. 

Table 6: Theoretical Variation of Parameters Based on Base Excitation 
  

Base Displacement 
(mm) 

Curve Fit 
Natural Frequency 

(Hz) 

Curve Fit 
Damping Ratio 

(%) 

 
Peak Frequency 

(Hz) 
  0.1  27.6  2.4  28.0 
  0.2  29.7  3.2  29.9 
  0.25  29.4  4.2  29.6 
  0.3  30.0  4.8  30.2 
  0.35  30.5  5.4  30.7 
  0.4  31.2  8.6  31.2 
 
Variable Current 

By applying a current to the absorber the natural frequency will shift based on the effective stiffness 

change.  The control advantage with current is that this excitation may be rapidly varied so that quick 
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changes in the transfer function will result.  Figure 52 is the no current baseline for this set of 

simulations.  Figure 53 shows the system response with a –10 Amp current supplied.  The peak 

response shift of 1.3 Hz to 29.9 Hz is seen.  Figure 54 demonstrates the system with a +10 Amp 

current.  As expected the peak response frequency has shifted higher to 32.5 Hz.  Figure 55 and Figure 

56 show the linear frequency response for the –1 Amp and +1 Amp case respectively. 
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Figure 53: First order TF for non-linear system 

[x0 = 10.3mm, Base Displacement = 0.4mm, Current=-10A] 
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Figure 54: First order TF for non-linear system 

[x0 = 10.3mm, Base Displacement = 0.4m, Current=+10A] 
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Figure 55: First order TF for non-linear system 

[x0 = 10.3mm, Base Displacement = 0.4mm, Current=-1A] 
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Figure 56: First order TF for non-linear system 

[x0=10.3mm, Base Displacement=0.4mm, Current=+1A] 
 

The transfer function parameters are tabulated in Table 7.  This demonstrates the current levels 

necessary to adjust the natural frequency.    The power supplied for this current will be small since the 

coil resistant will be low and primarily inductive.  These current levels are possible, yet the challenge is 

that the current continues to consume power for as long as it is supplied.  In this case the equivalent 

natural frequency may be altered by 4% with a 10 amp input. 

 

Alternatively the gap spacing can be manipulated that would not require continuous energy 

expenditure.  These simulations follow. 
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Table 7: Theoretical Variation of Parameters Based on Input Current 
  

Current 
(Amps) 

Curve Fit 
Natural Frequency 

(Hz) 

Curve Fit 
Damping Ratio 

(%) 

 
Peak Frequency 

(Hz) 
  -10  29.9  7.0  29.9 
  -5  31.1  8.9  31.1 
  -1  31.1  9.1  31.1 
  0  31.2  8.9  31.2 
  +1  31.3  8.5  31.3 
  +5  31.9  7.5  31.8 
  +10  32.5  6.9  32.5 
 
Variable Gap 

By altering the distance between the stationary magnets the effective stiffness can also be altered.  The 

system responses for various gaps are depicted in Figure 58 - Figure 67.  x0  is the z1 measurement that 

places the absorber in equilibrium.  The movement gap on each side will be x0 minus half the 

stationary magnets thickness. These figures show that by doubling the x0 the natural frequency can be 

reduced by 60%.  At the smallest x0 of 10.3 mm the natural frequency is 31.2 Hz and the largest x0 

shown is 19.9 mm with a natural frequency of 10.2 Hz. 

z1

z7, variable setting

Movement Direction

Electromagnet Coil

Electromagnet Core

x

y

 
Figure 57: Gap Variation for Simulation 
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Figure 58: First order TF for non-linear system 

[x0 = 11 mm, Base Displacement = 0.4mm] 
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Figure 59: First order TF for non-linear system 

[x0 = 12 mm, Base Displacement = 0.4mm] 
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Figure 60: First order TF for non-linear system 

[x0 = 13 mm, Base Displacement = 0.4mm] 
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Figure 61: First order TF for non-linear system 

[x0 = 14 mm, Base Displacement = 0.4mm] 
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Figure 62: First order TF for non-linear system 

[x0 = 15 mm, Base Displacement = 0.4mm] 
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Figure 63: First order TF for non-linear system 

[x0 = 16 mm, Base Displacement = 0.4mm] 
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Figure 64: First order TF for non-linear system 
[x0 = 17.2mm, Base Displacement = 0.4mm] 
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Figure 65: First order TF for non-linear system 

[x0 = 18 mm, Base Displacement = 0.4mm] 
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Figure 66: First order TF for non-linear system 

[x0 = 19 mm, Base Displacement = 0.4mm] 
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Figure 67: First order TF for non-linear system 
[x0 = 19.9mm, Base Displacement = 0.4mm] 

Table 8 shows the parameter variation for various gap spacing.  This table shows how the fit natural 

frequency and damping ratio shift with various gap settings.  This table shows that the natural 
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frequency can be shifted across a large range based on the gap spacing.  The advantage of this 

configuration is that once adjusted, maintaining the same natural frequency does not require additional 

energy input. 

Table 8: Theoretical Variation of Parameters based on Gap Spacing 
  

x0 Spacing 
(mm) 

Curve Fit 
Natural Frequency  

(Hz) 

Curve Fit 
Damping Ratio 

(%) 

 
Peak Frequency 

(Hz) 
  10.3  31.2  8.9  31.2 
  11  28.0  5.8  28.0 
  12  24.0  5.4  24.0 
  13  21.0  5.0  21.0 
  14  18.5  4.8  18.5 
  15  16.5  4.8  16.5 
  16  14.8  4.8  15.0 
  17.2  13.0  5.2  13.0 
  18  12.1  5.4  12.0 
  19  11.0  5.9  11.0 
  19.9  10.3  6.2  10.0 
 

Higher Order Harmonics 

Since the system is nonlinear, additional output frequencies may be generated.  The primary, third, and 

fifth order harmonics are examined for their contribution. Figure 68 shows the nonlinear response to a 

pure tone excitation for the system.   Figure 69 shows the primary, third, and fifth order response.  

The frequency axis represents is the input pure tone frequency, while the first order graph represents 

the first order output divided by the primary frequency phasor.  The third order graph is the third 

order output phasor divided by the primary input frequency phasor.  

Figure 69 - Figure 71 show that the contribution of the third and fifth order harmonics are small.  The 

largest third order harmonics is 1.5% or the primary, while the fifth order is 0.07% or the primary. 
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Figure 68: Pure Tone Excitation and Response for non-linear system 

[x0 = 10.3mm, Base Displacement = 0.4mm, Input Freq = 30 Hz] 
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Figure 69: Harmonic TF for non-linear system 
[x0 = 10.3mm, Base Displacement = 0.4mm] 

 



 

81 

0 5 10 15 20 25 30 35
-200

-100

0

100

200

Input Frequency [Hz]

P
ha

se

0 5 10 15 20 25 30 35
10

-10

10
-5

10
0

10
5 Frequency Response Function with Sine Dwell

Input Frequency [Hz]

M
ag

ni
tu

de

First Order      
Third Order 0.37%
Fifth Order 0.00%

 
Figure 70: Harmonic TF for non-linear system 
[x0 = 17.2mm, Base Displacement = 0.4mm] 
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Figure 71: Harmonic TF for non-linear system 
[x0 = 19.9mm, Base Displacement = 0.4mm] 
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Simulation Summary 

The chapter has undertaken the theoretical system simulations using the prior chapters force and 

damping results.  A linear system is simulated as a check system.  The first simulation group 

demonstrates how the increased base excitation level will stiffen the system as expected for the 

nonlinear spring.  The second group shows that some variation of transfer function results in current 

variation.  This small variation can be used in the absorber system to alter the combined system’s 

response.  The main factor of concern is that if the absorber damping is low the transfer function 

change will be more dramatic than if the absorber has a lot of damping.  

The third group demonstrates that variation of the stationary permanent magnet positions can be 

implemented to vary the system transfer functions.  The gap variation is appealing since the system 

may be altered and then no additional energy is necessary to retain the changed system. 

This chapter has demonstrated the theoretical transfer function variation.  This shows how the 

absorber system responds to the proposed system variation.  The following chapter now examines the 

experimental setup and fundamental tests to understand the system. 
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CHAPTER 7.  SYSTEM DESIGN AND INITIAL TESTING 

This chapter describes the experimental apparatus and a group of introductory experiments.  These 

experiments are designed to quantify and confirm our understanding of the force and damping 

relationships.  The following chapter presents the dynamic tests of the complete absorber. 

System Design 

The experimental system consists of a non-magnetic rod on which the moving-mass is free to slide.  

This mass is supported with a Teflon™ bearing to minimize the friction present.  On each end, a 

magnet can be positioned along the threaded portion to alter the spacing and the effective stiffness. 

The mechanical drawings are in Figure 72, and a system photograph in Figure 73. 

0.3125in.

 4 Magnets

0.394in.
(as given)

2 Bushings, (scrap bronze/brass)

Ø 0.984
(as given)

0.50in
. 0.375in

.

tapped with 10-32 UNF threads

0.3125in.
(fit inside magnet)

Stainless Steel Rod

10-32 UNF
threads

10-32 UNF
threads

1.86 1.86

6.00

Ø
0.50

0.25in.
(as given)  

Figure 72: Mechanical Drawings 
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Figure 73: Apparatus Photograph 

 

The moving-mass consists of a linear bearing encased between two washers and two magnets.  The 

moving mass is 218.0 g and the shaft and end magnets have a mass of 89.0 g. 

Force Relationship 

The first experimental task undertaken determines the force to displacement relationship for the 

magnetic spring.  This provides confirmation of the electromagnetic spring model developed in 

Chapter 4 and an estimate of the magnetic leakage.  The leakage is a parameter based on the magnetic 

circuit efficiency; since the circuit is in repulsion the leakage will be close to one.  The theoretical 

model will be selected with the leakage that results in the closest model to the experimental fit.  This 

will provide the magnetic leakage estimate.  The test assembles one fixed magnet on the rod and the 

movable center mass rests above the fixed magnet from the gravity force, depicted in Figure 74.  The 

equivalent free body diagram is in Figure 75, by varying the mass the spring force verses displacement 

relationship can be found. 

 

The guide rod and lower magnet are first placed on the scale and this weight can be tared out.  Then 

the electromagnet can be added and the rest-position measured.  Placing additional masses on top of 

the electromagnet allows additional force and gap data points to be determined.  The measurement 

task is done with a nonmagnetic plastic/fiberglass caliper to determine the distance since any magnetic 

materials will alter the displacement measurement.  
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Figure 74: Force vs Displacement Experiment 
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Figure 75: SDOF Force to Displacement Experiment Model 
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The gap reading is adjusted by the additional distance to the lower magnet center.  This is the same 

reference position used in the theoretical development.  The results are plotted in Figure 76.  This 

graph also demonstrates a number of possible curve fit relationship.  The inverse square experimental 

curve fit is in the form 
2

12 )( −
−= zBF  (83)

The polynomials are in the form 

∑
=

=
n

i

i
i zBF

0
1)(  (84)

These polynomials have all terms up to and including the nth power.  The curve fits are calculated using 

the least squares methodology.  The expected curve fit is an inverse square relationship as developed in 

Chapter 4.  The polynomial fit is more illustrative in the dual-sided case.  The best inverse square fit is 
2

1
2 ))()(048.0221.1( −±= zmmNF  (85)

 

Figure 77 shows the residual’s standard deviation decreases as expected with increasing polynomial 

model order.  Examining Figure 76, it is seen that the inverse square fit has the advantage that for 

extrapolations its behavior is as expected for the physical system.  The polynomial curve fits exhibit 

divergence from expectation when used for extrapolations.  The other advantage of the inverse square 

is that it only uses one coefficient while the polynomials use n+1 degrees of freedom.  So even though 

the fifth order model has less residual standard deviation, it uses 5 more terms than the inverse square 

relation and the extrapolation is unacceptable.  Therefore the most appropriate model is an inverse 

square model for the single-sided electromagnetic spring force. 
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Figure 76: Experimental Data and Curve Fit Selections, no current 

 

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Model Order [Inverse Square Std = 0.18]

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 R

es
id

ua
l

Standard deviation relation to polynomial model order

 
Figure 77: Curve Fit Residual Standard Deviations for Various Polynomials 
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The theoretical model is then examined in relation to the experimental model.  The theoretical model 

values are calculated using the experimental parameters, and a range for the magnetic leakage.  Each 

theoretic model is curve fit and the fit coefficient is compared with the experimental model.  

Examining Table 9 it is found that the most appropriate model has a magnetic leakage of 0.87.  Figure 

78 shows the graph of the experimental and best theoretical relationship. 

 

Table 9: Variation in Theoretic Fit for Variable Leakage 
  

Leakage 

 

Theoretic Fit 

[(mN)m2] 

% Difference from 

Experimental Fit 

[1.221±0.048 (mN)m2] 

  0.80  0.989  -19 

  0.81  1.021  -16.4 

  0.82  1.053  -13.8 

  0.83  1.085  -11.2 

  0.84  1.117  -8.5 

  0.85  1.149  -5.9 

  0.86  1.181  -3.3 

  0.87  1.213±0.024  -0.7 

  0.88  1.245  +1.9 

  0.89  1.276  +4.5 

  0.90  1.308  +7.1 
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Figure 78: Experimental Force Relationship 

 

Figure 79 plots the dual-sided magnetic spring force is as a result of the inverse square single-sided 

force.  The equation is 
2

02
2

02 )()( −
−

−
− −−+= xxBxxBF  (86)

0x is the distance from the fixed magnet center to the edge of the moving-mass neutral position; this 

will vary for different gaps.  The curve fits attempted here are a linear, a cubic and linear term, and a 

fifth order, cubic and linear term.  The odd order terms are selected since the function is odd function 

[f(x)=-f(-x)], the even order terms do not add descriptive power.  The cubic and linear term is referred 

in literature as a Duffing spring.  In this case, since the cubic term coefficient is positive, it represents a 

stiffening spring.  Figure 79 shows that the dual-sided magnetic spring may be closely modeled as a 

Duffing spring.  With this similarity we may be able to understand the response of the moving-mass in 

light of Duffing’s work on non-linear systems.  In a Duffing system the jump phenomenon is expected 

in the transfer function; although the high damping will make the jump frequency range small.  These 

dynamic response characteristics will be discussed in more detail when examining the system’s 

dynamic transfer functions. 
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Figure 79: Dual-Sided  Absorber and Curve Fit Selections 

 

This first experiment has found the force to distance relation.  The next step is to determine the 

equivalent damping relationship. 

Damping Relationship 

The absorber damping is very important for the system dynamics and the reduction of the combined 

system’s vibration.  Chapter 5 discussed that less absorber damping results in larger maximum 

attenuation at the anti-node.  While more damping widens the attenuator band and reduces the 

maximum system attenuation.  Two tests are undertaken to examine the moving-mass system 

damping.  The tests are designed to allow the separation and identification of the mechanical damping 

and the electromagnetic damping mechanisms.  The first test isolates the mechanical damping in the 

absorber system without electromagnetic forces.  The second experiment separates the 

electromagnetic damping present in a low mechanical damping cantilevered beam system. 
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Damping Experiments for Mechanical Springs 

To investigate the damping nature further, the response of the bearing and coil (without magnets, 

159.5g) suspended with two mechanical springs is recorded.  This enables the effects of the mechanical 

damping mechanism to be observed alone.  This experimental setup is pictured in Figure 80. 

Movement Direction

y

x

 
Figure 80: Mechanical Spring System Configuration 

 

Figure 81 & Figure 82 are two transfer functions for the mechanical bearing system.  The transfer 

functions relate the moving-mass acceleration to the base motion acceleration.  This should not be 

confused with an operating shape since the driving force is the base motion.  The transfer function 

curve fit minimizes the sum of the squared residuals magnitudes.  The fit equation form is 
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 (87) 

This is a nonlinear estimation and the equation is evaluated across a grid of potential 1β  and 0β .  

Evaluating the residuals between each individual fit and the experimental data helps identifies the best 

fit with the minimum sum of residual magnitudes squared.  Based on this single degree of freedom 

curve fit, the damping estimates are 5.0% and 6.4% in the two tests.  In this system there are no 

electromagnetic fields present, therefore this damping represents the mechanical damping mechanism, 
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believe to primarily be Coulomb damping.  This level of inherent mechanical damping is certainly a 

drawback in the absorber design. 
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Figure 81: Transfer Function for Bearing with Mechanical Springs [1] 
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Figure 82: Transfer Function for Bearing with Mechanical Springs [2] 

 

Damping Experiments for Beam with Magnets 

This experiment isolates the damping present from electromagnetic mechanisms.  This allows the 

electromagnetic damping to be quantified.  A cantilever beam is clamped to a fixed base at one end 

and a single magnet attached to the far end.  A cantilever beam is selected for its inherent low 

mechanical damping.  

 

The beam’s response is then recorded under two different cases.  The first case examines the inherent 

damping in the cantilever beam.  The beam acceleration is recorded after excitation of the first 

beaming mode.  The second case places two fixed magnets in repulsion along the nominal movement 

axis of the cantilevered magnet.  This increased the system stiffness due to the additional force added 

and may alter the damping characteristics.  The system diagram is found in Figure 83. 

 

The two responses are graphed in Figure 84.  The black line on top represents the estimated decay 

envelope.  This envelope is found by summing the Hilbert Transform and the original signal in the 
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time domain.  The decay envelope follows the expected exponential decay pattern.  This expected 

decay pattern for a linear spring and a viscous damper is 
tnXeD ζω−=  (88)

This can be examined in a transformed linear space as 

tXD nζω−= lnln  (89)

This equation can be used in a linear fit to estimate the damping ratio, given the damped natural 

frequency estimation from the impulse response. 

 

The decay envelope is close to the expected exponential decay model.  The linearized transformed 

signal is then plotted in Figure 85.  The top graph is for the cantilever beam and the bottom graph 

includes the stiffening magnets.  In this graph a linear equation is expected if the damping was purely 

viscous and the spring constant linear, the data appears close to linear.  This indicates that this method 

is an appropriate method to estimate the damping.  This data appears linear while the time signal has 

not experienced too much decay.  In the lower diagram, it deviates from a linear fit since the signal-to-

noise ratio becomes large.  The curve fit is then calculated across the time range or 0.2 – 6.0 sec, the 

portion where the signal has not decayed completely. 

 

The damping estimates for the cantilever alone are 1.4%.  Using the magnets to stiffen the system, the 

total damping becomes 3.0%, and increase of 1.6% damping.  This increase is attributable to the 

electromagnetic mechanisms of damping between permanent magnets. 

 

This demonstrates that the electromagnetic field provides both an increased stiffness as well as 

increased damping.  The electromagnetic damping dissipates energy through eddy current and 

electromagnetic warming, as discussed in Chapter 5. 
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Figure 83: Beam System Diagram 
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Figure 84: Time Response for Beam Systems 
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Figure 85: Transformed Data Curve Fit 

 

Summary 

This chapter presented initial experiments with the prototype absorber and other setups to 

characterize the absorber’s spring and damping force.  The single-sided force is characterized as an 

inverse square relationship as discussed in Chapter 4.  The experimental curve fit values are evaluated 

from the data recorded.  The magnetic leakage is evaluated based on the best fit of the data.  The dual-

sided absorber spring relation is similar to a Duffing stiffening spring. 

 

It was found that the majority of the absorber damping is mechanical damping from the first damping 

test.  The mechanical damping experienced is between 5-6.4% of critical.  Additionally it is found that 

the magnets not only supply a spring-like restoring force, yet also have electromagnetic damping 

present.  The electromagnetic damping present for just the magnets is on the order of 1.6% of critical 

damping. 

 

The spring force and the damping force directly related to the absorber’s performance and ability to 

cancel vibration.  The spring force is confirmed to be an inverse square relation and the curve fit 
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coefficient evaluated.  The damping is found to be significant in the current design, this may limit the 

cancellation ability of the current absorber design.  The next chapter evaluates the experimental 

dynamic response for parameter variations.  This will demonstrate the absorbers ability to vary its 

parameters when placed on a primary system. 
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CHAPTER 8. TVA DESIGN EQUATIONS AND TUNING 

Design Equations for Minimum Response 

The linear two degree of freedom system as in Figure 86 can be represented with the matrix of 

frequency response functions (FRFs), as follows: 
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Figure 86: Combined System 

 
In order to minimize the 1X  motion from the applied force 1F  at the frequency ω , )(11 ωH  must be 

minimized with a properly tuned actuator.  The minimum of )(11 ωH  is investigated by examining the 
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minimum of the product with the complex conjugant 
)(
)()()( *

1111 ω
ωωω

D
NHH = .  It’s first derivative is 

evaluated ( ωω ∂
∂= )()(

*HHZ ) and roots are determined.  The equation becomes 
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By solving for the roots of )(ωZ  one may determine the frequency at which the extrema points of 

)()( * ωω HH  occur.  The constituent equations )(ωN  and )(ωD  are expanded below.  )(ωZ  is 

expanded analytically with symbolic math program and the Matlab code is located in the Appendix.  
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)(ωZ  may be examined for variable 2k  with the other system parameters fixed.  The masses, damping 

coefficient, and base stiffness taken for numeric confirmation are in Table 10.  With these parameters 

the zeros of )(ωZ  can be solved for and plotted for variable 2k .  This methodology allows for direct 

evaluation of the extrema for the frequency response function. 

 
Table 10: Numeric Parameter Confirmation Values 

 Variable Value Units 
 1m   1 kg 
 2m   0.1 kg 
 1c   0.02 N/(m/s) 
 2c   0.002 N/(m/s) 
 1k   1 N/m 
 2k  0.8- 1.2 N/m 

 
Figure 87 and Figure 88 depicts the frequency response relationship for the single degree of freedom 

system and the extrema when a variable stiffness actuator is implemented. 
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Figure 87: Frequency Response Function for SDOF and standard fixed TVA 
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Figure 88: Frequency Response Functions for SDOF and TVA with varied stiffness 

( 21 mm = 10, 1ζ = 2ζ =1%) 
 

The positive real valued frequencies for these extrema points are tabulated in Table 11.   This depicts 

that a 20% change in the stiffness results in close to a 10% change in the minimum response 

frequency, for a mass ratio of 10:1.  These frequency response functions demonstrate that by 

appropriately altering the tuned vibration absorber stiffness the system response can be shifted lower 

than simply a passive vibration absorber.  Figure 89 and Figure 90 depict the similar results for smaller 

absorber masses (40:1 and 100:1), these figures demonstrate that a 10% change in natural frequency is 

possible with a 20% change in stiffness.  The frequency response function becomes more sensitive to 

the excitation frequency as the absorber mass is decreased and the minimum response is larger for a 

smaller absorber mass. 
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Table 11: Extrema Values for Magnitude Frequency Response Function 
 Stiffness 

Multiplier 
Frequency Magnitude Phase Extrema 

Type 
 [%] [Hz]  [rad]  

 0% - SDOF 1.00 50.00 -1.57 Maximum 
 1.11 24.80 -1.60 Maximum 
 0.90 0.28 -1.47 Minimum 
 

 
80% 0.81 21.50 -1.43 Maximum 

 1.14 21.21 -1.62 Maximum 
 0.95 0.23 -1.54 Minimum 
 

 
90% 0.83 28.02 -1.48 Maximum 

 1.15 19.57 -1.62 Maximum 
 0.97 0.22 -1.56 Minimum 
 

 
95% 0.84 31.08 -1.50 Maximum 

 1.17 18.06 -1.63 Maximum 
 1.00 0.20 -1.58 Minimum 
 

 
100% 0.85 33.90 -1.51 Maximum 

 1.19 16.68 -1.64 Maximum 
 1.02 0.19 -1.60 Minimum 
 

 
105% 0.86 36.43 -1.52 Maximum 

 1.21 15.43 -1.65 Maximum 
 1.05 0.17 -1.61 Minimum 
 

 
110% 0.87 38.67 -1.53 Maximum 

 1.24 13.30 -1.66 Maximum 
 1.10 0.15 -1.64 Minimum 
 

 
120% 0.88 42.29 -1.54 Maximum 
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Figure 89: Frequency Response Functions for SDOF and TVA with varied stiffness 

( 21 mm = 40, 1ζ = 2ζ =1%) 
 

Table 12: Extrema Values for Magnitude Frequency Response Function 

( 21 mm = 40, 1ζ = 2ζ =1%) 

 Stiffness 
Multiplier 

Frequency Magnitude Phase Extrema 
Type 

 [%] [Hz]  [rad]  
 0% - SDOF 1.00 50.00 -1.57 Maximum 
 1.04 35.03 -1.59 Maximum 
 0.90 1.05 -1.19 Minimum 
 

 
80% 0.86 11.99 -1.15 Maximum 

 1.08 21.45 -1.69 Maximum 
 1.00 0.79 -1.58 Minimum 
 

 
100% 0.92 29.41 -1.45 Maximum 

 1.15 11.44 -1.84 Maximum 
 1.09 0.59 -1.81 Minimum 
 

120% 
0.95 42.39 -1.53 Maximum 
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Figure 90: Frequency Response Functions for SDOF and TVA with varied stiffness 

( 21 mm = 100, 1ζ = 2ζ =1%) 
 

Table 13: Extrema Values for Magnitude Frequency Response Function 
( 21 mm = 100, 1ζ = 2ζ =1%) 

 Stiffness 
Multiplier 

Frequency Magnitude Phase Extrema 
Type 

 [%] [Hz]  [rad]  
 0% - SDOF 1.00 50.00 -1.57 Maximum 
 1.02 41.21 -1.58 Maximum 
 0.90 2.21 -0.83 Minimum 
 

 
80% 0.88 7.96 -0.79 Maximum 

 1.05 23.02 -1.76 Maximum 
 1.00 1.92 -1.58 Minimum 
 

 
100% 0.95 28.12 -1.38 Maximum 

 1.12     8.75    -2.10 Maximum 
 1.09     1.37    -2.07 Minimum 
 

120% 
0.98    44.58    -1.54 Maximum 

  
Figure 91 to Figure 93 depict the system frequency response for varied damping coefficients ( 2c ) of 

the absorber mass. Figure 91 shows that increased damping coefficient for 2c  causes reduced peaks 

and increased troughs.  Figure 92 & Figure 93 demonstrate varied damping for altered stiffness 
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parameters.  Figure 92 has the stiffness adjusted to 120% while the damping is varied, and Figure 93 

has the stiffness set to 80% while the damping is varied. 
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Figure 91: Frequency Response Functions for SDOF and TVA with varied damping 

( 21 mm = 10, 1ζ =1%) 
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Figure 92: Frequency Response Functions for SDOF and TVA with varied stiffness & damping 

( 21 mm = 10, 1ζ =1%) 
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Figure 93: Frequency Response Functions for SDOF and TVA with varied stiffness & damping 

( 21 mm = 10, 1ζ =1%) 
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This section has demonstrated the effects on the frequency response function of altering the absorber 

stiffness, damping, and mass variables.  It has shown that a 20% change in stiffness from a tuned 

passive absorber results in close to a 10% change in the system minimum response frequency.  

Therefore an active or semi-active tuned absorber can take advantage of this relationship.  

 

System Testing for Variable Gaps 

The following experiment compares the expected theoretical stiffness from the earlier experiments 

with the dynamic stiffness demonstrated in the transfer function.  The system is tested with 

accelerometers on the primary mass and the excitation base.   The experimental system parameters are 

listed in Table 14.   

 
Table 14: Experimental System Parameters 

 Variable Value Units Measurement 
Method 

 1m   0.8693 kg Static Measurement 
 2m   0.218 kg Static Measurement 

 1c   0.850 N/(m/s) SDOF Dynamically 
determined 

 2c  variable N/(m/s) 2-DOF Dynamically 
determined 

 1k   2750 N/m SDOF Dynamically 
determined 

 2k  variable N/m 2-DOF Dynamically 
determined 

 
The system transfer functions between 1x  and u  were recorded and curve fit in Figure 95 - Figure 

103.   These figures depict the experimental transfer functions and the curve fit transfer function.  

First, the SDOF transfer function (Figure 95) is curve fit to estimate the primary system damping ( 1c ) 

and stiffness ( 1k ).  Then, the two degree of freedom transfer functions, Figure 96 to Figure 103, are 

curve fit to estimate the appropriate varied stiffness and damping coefficients, given that the primary 

system is unchanged.  Table 15 summaries the measured stiffness and the theoretic predicted stiffness.  

Figure 94 graphs these stiffness values for the various gaps.  The experimental achieved values deviate 

significantly from the theoretical values.  These deviations can be caused by significant non-linearity 

present in the dynamic system and the belief that the dual sided stiffness is indeed an inverse square 
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relationship.  Figure 94 demonstrates that while the stiffness does increase with reduced gap, it appears 

to be stronger than anticipated for the smaller gaps and less than anticipated for larger gaps, this could 

indicate that a larger exponent is necessary on the inverse relationship than the 2 that was curve fit. 

 

Table 15: Experimental Stiffness compared to Theoretical Stiffness 
 Gap, 0x  Experimental 

Stiffness 
Theoretical Linear 

Stiffness 
 [mm] [N/m] [N/m] 
  

1
~k   

  SDOF  2750  
  

2
~k  2k  

  11.0  1245  3130 
  15.0  957  1250 
  20.0  714  530 
  22.0  626  400 
  24.0  543  309 
  26.0  461  243 
  28.0  349  195 
  30.0  261  159 
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Figure 94: Experimental and theoretic stiffness for various gaps. 
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1m =0.8693 kg, 1
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Figure 96: Frequency Response Functions for 2-DOF varied gap – 11.0mm gap 

2m =0.218 kg, 2
~c =3.64 N/(m/s), 2

~k = 1245 N/m 
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Figure 97: Frequency Response Functions for 2-DOF varied gap – 15.0 mm gap 

2m =0.218 kg, 2
~c =1.86 N/(m/s), 2

~k = 957 N/m 
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Figure 98: Frequency Response Functions for 2-DOF varied gap – 20.0 mm gap 

2m =0.218 kg, 2
~c = 1.80 N/(m/s), 2

~k = 714 N/m 
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Figure 99: Frequency Response Functions for 2-DOF varied gap – 22.0 mm gap 

2m =0.218 kg, 2
~c = 1.07 N/(m/s), 2

~k = 626 N/m 
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Figure 100: Frequency Response Functions for 2-DOF varied gap – 24.0 mm gap 

2m =0.218 kg, 2
~c = 0.74 N/(m/s), 2

~k = 543 N/m 
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Figure 101: Frequency Response Functions for 2-DOF varied gap – 26.0 mm gap 

2m =0.218 kg, 2
~c = 0.39 N/(m/s), 2

~k = 461 N/m 
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Figure 102: Frequency Response Functions for 2-DOF varied gap – 28.0 mm gap 

2m =0.218 kg, 2
~c = 0.35 N/(m/s), 2

~k = 349 N/m 
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Figure 103: Frequency Response Functions for 2-DOF varied gap – 30.0 mm gap 

2m =0.218 kg, 2
~c = 0.37 N/(m/s), 2

~k = 261 N/m 
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Conclusions 

This chapter has examined the force equations predicted by the inverse square model postulated in 

Chapter 4 and the relation to the absorber design and dynamic use.  Figure 94 demonstrates that while 

the stiffness does increase with reduced gap, it appears to be stronger than anticipated for the smaller 

gaps and less than anticipated for larger gaps.  This indicates that the inverse square model may not 

adequately capture the dynamic stiffness that was captured in the transfer functions.  The next chapter 

examines additional dynamic testing of the actuator. 
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CHAPTER 9.  SYSTEM DYNAMIC TESTING 

This chapter examines the absorber dynamic testing.  The absorber acceleration to base acceleration 

transfer functions (TF) of the single degree of freedom (SDOF) absorber are presented for different 

gaps and different current levels.  The effects on the absorbers transfer function for changing gap and 

currents will be demonstrated.  These tests demonstrate and isolate the electromagnetic absorber’s 

variable dynamics. 

 

The two degree of freedom tests demonstrate the changing combined system transfer functions 

(primary system acceleration to base acceleration) for various gaps using a given primary system.  

These demonstrate how the absorber could be tuned to minimize response based on the excitation 

frequency. 

SDOF Experiments  

The magnetic absorber is characterized by the transfer functions between the base acceleration ( y&& ) 

and the absorber mass acceleration ( x&& ).  The frequency domain acceleration-to-acceleration transfer 

function ( Ys
Xs

2
2 ) is equivalent to the displacement-to-displacement transfer function ( Y

X ).  These 

transfer functions are considered since the configuration is comparable to a base excitation problem.  

The first set of experiments reported are the variable gap system TF.  The second experimental set 

implementing variable current had limited success, as the simulations in Chapter 6 predict very small 

changes in the system parameters. 

 

The experimental transfer function is best found using a periodic chirp signal for shaker excitation.  

The acceleration is recorded on the base ( y&& ) and on the absorber ( x&& ).  The frequency range is 0-25 

Hz, 10 averages are taken to limit the random noise effects.  The system diagram is presented in Figure 

104.  These experimental transfer functions are used to determine the absorber system’s damping and 

natural frequency.  A least squares curve fit algorithm is used to minimize the error of the experimental 

data to the theoretical fit.  The sum of the residuals are minimized across the range of possible values 

for the damping and natural frequency. 
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Figure 104: Single DOF Absorber System 
 

Variable Gap 

Figure 105 shows the TF of the electromagnetic absorber system with the outer magnets in the closest 

position. The natural frequency of the equivalent linear curve fit system is 21.8 Hz, with a damping 

ratio of 6.7%.  The TF curve fit that minimizes the residuals is represented in the graph with the 

smooth line.  Figure 106 shows that the experimental test coherence is near to one above 4 Hz.  This 

indicates that the experimental transfer function is reliable above 4 Hz. 

 

The absorber’s damping is high, yet as expected based on the prior chapters experiments.  Chapter 7 

found the mechanical damping between 4.5%-6.0% and the electromagnetic damping around 1.6%.  

Given a total damping ratio range of 6.1%-7.6%.  The mechanical damping present needs to be 

reduced for future experiments, since this large damping reduces the effective cancellation possible. 

 

Figure 107 is the transfer function for the medium gap setting, with Figure 108 the related coherence 

function.  This demonstrates for a change in x0 of 7.1 mm (or a total gap widening of 14.2 mm) a 

frequency shift of 40% results.  Figure 109 & Figure 110 are the results from the wide gap experiment.  

Table 16 summaries the parameter variations based on the variable gap.  This table demonstrates the 

ability to significantly shift the natural frequency of the electromagnetic absorber based on the gap 

setting.  This shift can be used to select the appropriate gap for various excitations. 

 

In the examination of the coherence plots it is noticed that the coherence reduces near resonances as 

the gap is increased.  This indicates that with larger gaps, the first order response is not the only system 

response.  Since the spring force is an inverse square relationship it is expected that frequencies may 
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appear that did not exist on the vibration input.  This nonlinear effect can result in additional vibration 

at frequency multiples.  This can be the result of the increased non-linearity associated with larger gaps. 
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Figure 105: X/Y TF for Smallest Gap 
[x0 = 10.3 mm, fn=21.8 Hz, ζ =6.7%] 
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Figure 106: X/Y TF Coherence [x0 = 10.3 mm] 
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Figure 107: X/Y TF for Medium Gap 
[x0 = 17.2 mm, fn=13.0 Hz, ζ =5.6%] 
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Figure 108: X/Y TF Coherence for Medium Gap 

[x0 = 17.2 mm] 
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Figure 109: X/Y TF for Wide Gap 

[x0 = 19.9 mm, fn=11.0 Hz, ζ =6.3%] 
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Figure 110: X/Y TF Coherence for Wide Gap 

[x0 = 19.9 mm] 
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Table 16: Experimental Variation of Parameters for a Variable Gap 
 Gap 

[mm] 

Curve Fit Natural 

Frequency 

[Hz] 

Curve Fit Damping 

Ratio 

% 

  10.3  21.8  6.7 

  17.2  13.0  5.6 

  19.9  11.0  6.3 

 

Simulations with Experimental Force Relationship 

The following simulations are done using the experimental system’s measured spring force.    This 

enables comparison between the theory and the experiments.  The inverse square force relationship is 

used along with an estimate of the damping (c=1 Ns/m) from the experiments in Chapter 7.  The base 

motion is simulated as 0.4 mm.  Figure 111 shows the simulated transfer function response for the 

smallest gap.  The experimental TFs do not have the discontinuities that are present in the theoretical 

simulations.  Increasing the damping in the simulations will lead to elimination of the jumps.  A SDOF 

curve fit of the simulated data allows the equivalent natural frequency and damping ratio to be 

calculated. 

Figure 111-Figure 113 demonstrate the increased damping coefficients effect on the system.  The 

larger viscous damping simulated the less of a jump is experienced in the magnitude and phase 

relationship. 

Table 17 summaries the equivalent natural frequencies and damping ratios from the simulation and the 

experimental work.  It demonstrates that the natural frequencies estimated are near each other for the 

theoretic and simulations.     
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Figure 111: X/Y TF for Smallest Gap Simulation [c=1.0Ns/m] 

[x0=10.3 mm, fn=26.7 Hz, ζ =6.2%] 
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Figure 112: X/Y TF for Smallest Gap Simulation [c=3.0Ns/m] 

[x0 = 10.3 mm, fn=24.6  Hz, ζ =5.9%] 
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Figure 113: X/Y TF for Smallest Gap Simulation [c=5.0Ns/m] 

[x0 = 10.3 mm, fn = 23.4 Hz, ζ =7.9%] 
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Figure 114: X/Y TF for Medium Gap Simulation 

[x0 = 17.2 mm fn = 11.5 Hz ζ  = 4.3%] 
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Figure 115: X/Y TF for Wide Gap Simulation 

[x0 = 19.9 mm fn = 8.9 Hz ζ  = 4.5%] 
 

Table 17: Simulated and Experimental Variation of Parameters for Variable Gap 
  

 

Gap 

[mm] 

Experimental 

Natural 

Frequency 

[Hz] 

 

Experimental 

Damping Ratio 

% 

Simulation 

Natural 

Frequency 

[Hz] 

 

Simulation 

Damping Ratio 

% 

  10.3  21.8  6.2  26.7  6.2 

  17.2  13.0  5.0  11.5  4.3 

  19.9  11.0  5.7  8.9  4.5 
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Gap 

[mm] 

Experimental 

Natural 

Frequency 

[Hz] 

 

Experimental 

Damping Ratio 

% 

Simulation 

Natural 

Frequency 

[Hz] 

 

Simulation 

Damping Ratio 

% 

  10.0  22.0  6.4   

  10.3  21.8  6.2  26.7  6.2 

  11.0  20.3  6.2  28.0  5.8 

  12.0  18.7  5.7     

  13.0  17.4  4.4     

  14.0  16.1  4.5     

  15.0  14.8  4.6     

  16.0  14.1  4.6     

  17.0  12.7  5.4     

  17.2  13.0  5.0  11.5  4.3 

  18.0  12.3  4.6     

  19.0  11.8  3.6     

  19.9  11.0  5.7  8.9  4.5 

  20.0  11.1  3.7     

  21.0  10.3  4.2     

  22.0  9.7  4.1     

  23.0  8.9  4.6     

  24.0  8.5  4.7     

  25.0  7.6  7.7     

 

SDOF System with Current Variations 

This section examines the system change with a variable DC current input.  The simulations from 

Chapter 6 predict a small shift of the system natural frequency.  This small natural frequency shift can 

be used effectively if the damping was very low, it would provide significant changes in the transfer 

function.  Yet in this case, the large damping does not have allows a dramatic effect in the transfer 

function minimum.  Figure 116 & Figure 117 are the results from the no current case.  The coherence 
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is very poor under 6 Hz.  The damping is quite large estimate at just under 10%.  Figure 118 & Figure 

119 report the results with +5 Amps current supplied to the electromagnet.  There is a small shift in 

the natural frequency as expected.  The damping estimate is very high at just under 20%. The 

experiments show that a small shift can be implemented with the current input, yet this will also 

increase the electromagnetic damping present. 
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Figure 116: X/Y TF for No Current 
[x0=23.3mm, fn=8.2Hz, ζ =11.4%] 
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Figure 117: X/Y TF Coherence for No Current 

[x0=23.3mm] 
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Figure 118: X/Y TF for +5 Amps Current 

[x0=23.3mm, fn=8.8Hz, ζ =19.1%] 
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Figure 119: X/Y TF Coherence for +5 Amps Current 

[x0=23.3mm] 
 

2-DOF Experiments 

A two degree of freedom system is constructed to test the variable gap settings and its effect on the 

system frequency response.  This primary system consists of a spring, mass and the fixed portion of 

the TVA.  This primary system (w/TVA casing) is a simple one-degree of freedom system (780.3g + 

89.0g).  The combined system has the moving actuator mass suspended within the electromagnetic 

field.  This combined system is depicted in Figure 120. 

Figure 121-Figure 133 depict the change in transfer function response as the magnetic gap is widened.  

Figure 121 shows the stiffest absorber system.  The addition of the absorber shifts the peak response 

lower by over 1 Hz.  It also lessens the response at the prior peak.  A second peak response is not 

present across this frequency range as expected.  This primary system vibration response declines   

between 7.5 Hz and 13 Hz.  The phase response has a –180 degree roll off.  This stiff absorber system 

will be the comparison for the other absorber systems. 
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Figure 120: 2-DOF System 
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Figure 121: Experiment TF for SDOF and 2-DOF system 

[x0 = 17.7mm] 
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Figure 122: Experiment Coherence for SDOF and 2-DOF system 

[x0 = 17.7mm] 
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Figure 123: Experiment TF for SDOF and 2-DOF system 

[x0 = 19.8 mm] 
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Figure 124: Experiment Coherence for SDOF and 2-DOF system 

[x0 = 19.8mm] 
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Figure 125: Experiment TF for SDOF and 2-DOF system 

[x0 = 21.2mm] 
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Figure 126: Experiment Coherence for SDOF and 2-DOF system 

[x0 = 21.2mm] 
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Figure 127: Experiment TF for SDOF and 2-DOF system 

[x0 = 23.2mm] 
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Figure 128: Experiment Coherence for SDOF and 2-DOF system 

[x0 = 23.2mm] 
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Figure 129: Experiment TF for SDOF and 2-DOF system 

[x0 = 26.2mm] 
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Figure 130: Experiment Coherence for SDOF and 2-DOF system 

[x0 = 26.2mm] 
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Figure 131: Experiment TF for SDOF and 2-DOF system 

[x0 = 28.1mm] 
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Figure 132: Experiment Coherence for SDOF and 2-DOF system 

[x0 = 28.1mm] 
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Figure 133: Experiment TF for SDOF and 2-DOF system 

[x0 = 33.5mm] 
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Figure 134: Experiment Coherence for SDOF and 2-DOF system 

[x0 = 33.5mm] 
 
 
Table 18 summarizes the vibration reduction range for adding the absorber mass and adjusting the 

gap.  This shows that as the gap is widened and the effective stiffness drops the reduction band moves 

to lower frequencies.  This demonstrates that the electromagnetic absorber can be effectively varied 

with the gap setting. 
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Table 18: Minimized Range for Various Experimental Gaps 
 x0 

[mm] 
Minimized Range 

Low Point 
[Hz] 

Minimized Range 
High Point 

[Hz] 
  17.7  7.5625  12.875 
  19.8  7.3750  11.75 
  21.2  7.3125  11.6875 
  23.2  7.125  10.375 
  26.2  6.8125  9.625 
  28.1  6.625  9.375 
  33.5  6.125  8.875 

Summary 

This chapter has reviewed the experimental work done on the electromagnetic absorber.  First the 

absorber’s transfer function was characterized with both DC current variation and varying gaps.  The 

DC current variations provided small equivalent linear system parameter variations, this was as 

predicted by the theoretical development.  The varied gap was highly successful with a change in 

natural frequency of 50% over the range examined. 

The two degree-of-freedom system demonstrates the transfer functions variation with various gaps.  

This system is shown to reduce vibration across a frequency range as determined by the gap spacing 

and the applied current.  The following chapter summaries the contributions of the work. 
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CHAPTER 10.  CONCLUSIONS 

Tuned Vibration Absorbers have been in use since the early 1900’s.  These passive devices have 

proven useful to reduce vibration at specific design frequencies.  A large body of research exists on 

design variations of Tuned Vibration Absorbers.  These papers address the effects of mass ratios, 

absorber damping, different designs, and additional control methods.  This research has addressed the 

use of an electromagnetic absorber to control vibration.  This device can be operated with varying 

currents or varying mechanical gaps.  It was found that the variable gap is a viable method to tune the 

absorber to different excitation frequencies for extended periods, while varying the current allows 

quick adjustments. 

Theoretical Work 

Chapter 3 develops the electromagnetic field equations necessary to predict the electromagnetic force.  

The electromagnetic field is arrived at by superposition of the constituent contributions.  The 

contributions calculated for the four different components present: the absorber magnets, the 

absorber coil, the absorber core and the stationary magnets.  Chapter 4 takes the resultant 

electromagnetic field and converts it to a force relationship for various displacements and current 

levels.  This provides the theoretical force to displacement relationship; using continuum mechanics 

and electromagnetic field relationships.  The best fit is an inverse square relation between the 

displacement and the force between the stationary permanent magnet and the electromagnetic 

absorber. 

Chapter 5 examines the damping mechanisms and how they may affect the experimental work.  It 

discusses a number of damping mechanisms that could be present in the system.  Chapter 6 has 

system dynamics simulations using the parameters found from Chapter 4 & 5.  This chapter calculates 

the SDOF linear equivalent system parameters for the simulations. 
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Experimental Work 

The experimental tests are examined in Chapter 7 - 9.  Chapter 7 depicts the absorber design and initial 

tests to characterize the force and damping relationships.  Chapter 7 compares the mechanical and 

electromagnetic damping present in the absorber system.   The spring force relation is confirmed and 

found to closely be an inverse square relation.  The damping is quantified with experiments on the 

absorber to determine the mechanism responsible.  It was found that the mechanical damping is very 

high and provided 5.0-6.4% of critical damping.  Chapter 8 reports experiments related to the actuator 

design and the challenges of modeling the dynamic stiffness adequately.  Chapter 9 covers additional 

dynamics testing done using the absorbers and their success.  The large damping present in the test 

absorber is the most significant drawback encountered in the current experimental setup.  It is 

demonstrated how the transfer functions shift for decreasing absorber electromagnetic stiffness.  This 

shows how the anti-node can shift providing the minimum response for different excitation 

frequencies. 

Future Work 

Two primary tasks follow the research presented here.  First, to improve this electromagnetic 

absorber, the mechanical damping must be reduced.  This could be in an entirely different design or in 

refining the current design.  This could also consist of adding additional mass to the absorber to 

reduce the effective damping ratio.  This will allow more cancellation because of lower absorber 

damping. 

Secondly, the control law needs to be developed and implemented to provide the minimum response 

for a specified frequency range. This control law selected will depend on the experiment situation that 

is addressed.  One possible example is transient machinery startup, where the cancellation frequency 

should track the running speed. 

Summary 

The theory has been developed to determine the electromagnetic field and force available for an 

electromagnetic absorber.  An electromagnetic absorber is shown how it can impact system transfer 

functions to yield a lower system response.  It is demonstrated that the semi-active mode with a 
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variable gap can be used to significantly alter the transfer function and minimize the primary system 

response. 
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