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Abstract

Functional Electrical Stimulation (FES) is a technique that applies electrical currents to nervous

tissue in order to actively induce muscle contraction. Recent research has shown that FES provides

a promising treatment to restore functional tasks due to paralysis caused by spinal cord injury, head

injury, and stroke, to mention a few. Therefore, the overarching goal of this research work is to

develop FES controllers to enable patients with movement-disorder to control their limbs in a de-

sired manner and, in particular, to aid Parkinson’s patients to suppress hand tremor. In our effort

to develop strategies for muscle stimulation control, we first implement a model-based control

technique assuming that all the states are measurable. The Hill-type muscle model coupled with a

simplified 2DoF model of the arm is used to study the performance of our proposed adaptive slid-

ing mode controller for simulation purpose. However, in the more practical situations, human limb

dynamics are extremely complicate and it is inadequate to use model based controllers, especially

considering there are still technical limitations that allow in vivo measurements of muscle activity.

To tackle these challenges, we have developed output feedback adaptive control approaches for

a class of unknown multi-input multi-output systems. Such control strategies are first developed

for linear systems, and then extended to the nonlinear case. The proposed controllers, supported

by experimental results, require minimum knowledge of the system dynamics and avoid many

restrictive assumptions typically found in the literature. Therefore, we expect that the results in-

troduced in this dissertation can provide a solution for a wide class of nonlinear uncertain systems,

with focus on practical issues such as partial state measurement and the presence of mismatched

uncertainties.
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Chapter 1

Introduction

1.1 Motivation and Current Methodologies for Parkinson’s

disease and Stroke patients

Pathological tremor is one of Parkinsons disease symptoms described as a rhythmical, oscilla-

tory movement of body parts with abnormally high amplitudes and a broad band of frequencies.

People suffering from this neurological disorder have serious difficulties in perform daily activi-

ties. For example, some simple movements such as writing, drinking from a cup of water, inserting

a key or driving become formidable for these patients. Noticeably, according to a recent report (

[7]) 15% of people older than fifty years suffer from this disorder and over 65% of them reported

that they encounter severe difficulty in performing daily activities.

Currently, two common options for tremor treatment are drug therapy and surgery. Unfortu-

nately, these treatments come with some limitations. Drugs often induce side effects, and show

decreased effectiveness over years of use ([8]). Surgery with deep brain stimulation is one of the

most advanced method, however it introduces some risks such as brain hemorrhage, seizures and

other cognitive problems. Moreover, the price for treatment is extremely high. This motivates re-

search in alternative means to compensate the tremor and provide a continuous health care outside

1



2

the clinical environment.

Recently, some researchers have developed rehabilitation robotic exoskeleton equipment as an

alternative for tremor suppression. However, many patients do hesitate to use these devices due

to their bulky size and uncomfortable shapes, as illustrated in Fig. 1.1. Therefore, the possibility

to develop a soft, noninvasive, wearable device that facilitates patients in daily activities becomes

necessary and attractive to many researchers in the area of rehabilitation robotic.

(a) (b)

Figure 1.1: Examples of Rehabilitation Robotic Exoskeleton: (a) The device is developed by
Consejo Superior de Investigaciones Cientficas, Madrid, Spain ([1]), (b) The device is developed
by Dept. Advanced Technology Fusion, Saga University, Saga, Japan ([2])

Functional electrical stimulation (FES), which is primarily used to restore function in people

with disabilities, offers a potential solution. FES uses several electrodes attached on patient skin to

stimulate the muscles underneath and hence manipulating the body movements. Due to its small

size and non-invasivity, FES is an elegant choice to develop a soft and wearable device to suppress

tremor, as illustrated in Fig. 1.2. In fact, there are several on-going projects working in this area,

such as ([3],[4], [9], [10]).

In order to achieve the desired movement, the approach follows through three steps: sense

the movement, separate the actual tremor from the voluntary movement, and provide appropriate
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(a) (b)

Figure 1.2: Examples of on-going project to develop a soft, wearable device for tremor suppres-
sion: (a) TremUNA project developed by a group of researchers from Serbia and Spain ([3]) (b).
TREMOR project develop by a group of researchers from Spain ([4])

control commands to suppress the tremor by electrical stimulation. However, the current research,

to our knowledge, focuses on the first two steps, while only using simple control strategies to drive

the stimulations. The typical controllers found on recent publications ([3,4,10–14]) are open loop,

PID, and fuzzy logic. These controllers are preferred because they are simple and do not require

knowledge of the system dynamics. However, their performance relies greatly on how well their

parameters are tuned, while the tuning process depends on trials and errors and varies from patient

to patient.

These disadvantages motivate the development of more robust control algorithms. The chal-

lenges in developing a feedback controller are the complexity, uncertainty and highly nonlinear

behavior of the human body. Moreover, many parameters of the system dynamics are unknown,

not measurable, time variant and different from each patient. Therefore, designing a controller for

multi-input and multi-output (MIMO) systems with uncertain or even unknown dynamics and high

relative degrees, in the absence of full state measurements as well as the lack of knowledge regard-

ing the number of states, is inevitably required. Furthermore, the application of such controller can

extend to many other areas.
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1.2 Adaptive Control for High Relative Degree Systems with

Mismatched Uncertainties

Designing adaptive control for high relative degree systems with mismatched uncertainties is

complicated because the control signal can not directly cancel the uncertainties. Backstepping

control ([15]) provides a systematic and effective framework to handle the problem when the mis-

matched terms are known. Approaches utilizing backstepping control compute the virtual control

signals to stabilize the system at each level. The virtual control signals are then differentiated and

fed to the lower level. These steps are repeated until the physical control signals appear explicitly.

Hence, the mismatch terms will be differentiated as many times as the relative degree. However, if

the mismatched terms are unknown and estimated by adaptive laws, their derivatives are not avail-

able for feedback to the lower levels. Thus, designing adaptive control for high relative degree

systems with mismatched uncertainties becomes very challenging and complicated. The standard

approach is that the uncertainties are approximated by a finite combination of orthonormal basis

functions, using neural network or fuzzy logics, with the set coefficients assumed to be unknown

but constant ([16–23]). Then, the adaptive backstepping framework ([15]) is implemented to si-

multaneously design the adaptive laws and control signals at each level. However, for a system

with a relative degree greater than 2, the original adaptive backstepping leads to very complicated

adaptive laws and control structures, which is well known as ”explosion of the terms”. This draw-

back restricts the original adaptive backstepping to further practical applications. Yip et. al. ([24])

proposed dynamics surface control, a simplified version of adaptive backstepping. In [24–27], the

virtual control signals are passed through a first order low-pass filter before being differentiated.

In [28–30], the authors proposed a command filter adaptive backstepping approach, in which the

virtual control signals are obtained by passing the stabilizing functions through a monotonic, odd,

smooth function. The virtual control signals are then passed through a low pass filter before be-

ing differentiated. These adaptive backsteping-like approaches simplify the control structure by

avoiding the analytical partial derivatives required in the original adaptive backstepping. How-

ever, high gain low pass filters must be used to obtain an acceptable tracking error, which leads to



5

high magnitude control signals. Furthermore, as the relative degree of a system increases, the cas-

cade structure of these low pass filters makes the controller more complicated and computationally

expensive.

1.3 Output Feedback Control of Uncertain Systems

Output feedback control design for uncertain systems is a challenging task, essentially due

to two different issues. First, common control techniques require full state feedback, while in

practice only partial state information is available. To overcome this problem, most of the existing

output feedback control strategies rely on the separation principle which tries to reconstruct the

full state by using observer ( [31], [32]) and then close the loop with such reconstructed state (

[33]). However, designing observers for systems characterized by either parametric or structural

uncertainties often presents many problems and several restrictive assumptions ([34],[35],[36]).

Secondly, controllers are commonly derived leveraging some knowledge of the dynamics of the

system. When the system model is uncertain or even unavailable, model-based control techniques

are generally inadequate. While either one of the challenges has been addressed extensively in the

literature, a few effective approaches can handle both simultaneously.

A number of results addressing the output feedback control problem for uncertain systems can

be found in the literature, which can be classified into two approaches. The first approach extends

the separation principle of the classical output feedback control using robust or adaptive techniques

to deal with system uncertainty. For example, in [37] and [38], the authors develop a robust state

feedback control algorithms based on the standard High Gain Observer. First, the controller is de-

signed under the full state feedback assumption to obtain global uniform ultimate boundedness for

the tracking error, despite of the parameter’s uncertainty. Then, the results are extended to the case

of output feedback control using the High Gain Observer, in which the peaking phenomenon is sup-

pressed by using saturation function. Alternatively, if the system dynamics structure is uncertain,

approximation techniques such as adaptive Neural Network or Fuzzy Logic are often combined
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with observer techniques to solve the problem. For example, in [39], the unknown nonlinear func-

tions are first approximated by fuzzy logic systems, then a fuzzy adaptive observer is designed

for state estimation as well as system identification. Combining this approach with backstepping

design techniques, a fuzzy adaptive output feedback control is constructed recursively to obtain a

semi-global uniform ultimate boundedness for all the signals while the tracking error is guaranteed

to remain in a small neighborhood of origin.

Another attractive approach that has been extensively developed recently is the L1 adaptive

control technique, which can achieve both fast adaptation and robustness. In [40], the authors

provided an L1 adaptive control for a class of stable minimum phase SISO systems with relative

degree 1 with uncertainties and disturbances satisfying a particular matching condition. In [41], the

authors extended the results presented in [40] to a class of strictly positive real (SPR) systems, with

unknown dimensions and relative degree less than or equal to 2. In [42], the authors relaxed the

SPR requirement for a class of SISO systems with unknown relative degree. In [43], the authors

extended the L1 adaptive control to a class of SISO minimum phase, unknown systems with

known relative degree, which is matched by the reference system. In [44], the authors proposed

L1 adaptive output feedback control augmentation of a Model Reference Controller (MRC) for a

class of unknown SISO LTI system. By using the controller structure proposed in [45], the L1

adaptive control is applied to match the closed loop dynamics with that of the desired reference

system, which is described by a strictly positive real (SPR) transfer function. However, because

it relies on the matching condition of two SPR transfer functions, it is hard to apply the results to

high relative degree systems. In general, the previous methods are restricted to SISO systems and

are designed for systems with relative degree 1 or relative degree 2 in particular situations. In [46],

the authors extended the results to MIMO systems and relaxed the SPR requirement. However,

they required the number of control inputs be equal to the number of states, and all control inputs

have relative degree 1. Deviating from L1 adaptive control scheme, in [47], the authors avoid the

adaptive technique by proposing a controller which is based on a predictor capable of predicting

the system output for any input. However, the prediction relies on derivatives estimation of the

output, which is quite restrictive if the output is corrupted by noise, especially for high relative
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degree systems.

In light of this literature we believe there is the need of a control algorithm for unknown MIMO

systems, with arbitrary relative degree and limited measurements available.

1.4 Contribution of the Dissertation

This dissertation presents new approaches to improve the standard designs in adaptive control

theory, with a focus on output feedback adaptive control for high relative degree systems with

unknown dynamics. The research application is devoted to controlling biomedical systems where

an accurate dynamics model and full state measurement are unable to be obtained. This work will

provide advanced control algorithms to develop rehabilitation devices using FES to restore limb’s

motion for Parkinson and stroke patients.

In Chapter 2, we introduce a new sliding mode control technique to handle the matched un-

certainties of the dynamics systems. The presented control algorithm provides an improvement

over other sliding mode control techniques ([48]), in particular by considering the overestimation

problem of the sliding mode switching gain. In the standard approaches, a large constant switching

gain is necessary to suppress the maximum uncertainties. However, this creates a large magnitude

control signal, which also magnifies the control gain error, leading to large transient tracking error.

We address this problem by making the switching gain adaptive and taking account for the sin-

gularity problem of the control gain. The proposed sliding mode control is then combined with a

backstepping framework to study motion control of a human arm using muscle excitation signals.

This chapter also illustrates the complexity and challenges in designing controllers for the muscu-

lotendon systems using model-based control techniques. Even if the system model is assumed to

be accurate, full state estimation using observer-like techniques for complex nonlinear systems is

still an ongoing problem with limited success. Hence, the challenges are addressed by our novel

adaptive-output feedback control developed in the next chapters.

Chapter 3 establishes the first main contribution, which constitutes the foundation for the rest of
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the dissertation, by introducing the output feedback adaptive predictor-based control framework.

In this chapter, we first consider the problem of controlling a general class of unknown MIMO

linear systems using output feedback. The novel idea is that, in the circumstance that the system

model is unknown and the state vector is unmeasured, reconstructing the model dynamics and

observing the full state using this estimated model is ill established. Instead, we introduce an output

predictor, capable of predicting the system outputs for any admissible inputs. Hence, designing an

output tracking control for the unknown system is equivalent to constructing a full state tracking

control for the predictor, whose dynamics are known. With this approach, the tracking task can

be achieved by designing a tracking controller for a linear time varying system. In particular,

the method proposed in [49] is adopted for the tracking task. Furthermore, in order to guarantee

actuator amplitude and rate saturation constraints, the modified reference system method proposed

in [50] is applied. The algorithm in Chapter 3 is then extended in Chapter 4 to control a class of

nonlinear unknown dynamic systems. Simulation and experimental results obtained on a Quanser

helicopter confirm the theoretical analysis.

The problem of obtaining the prediction’s desired bounded error in the presence of time vary-

ing unknown uncertainties from Chapter 4 continues to be addressed in Chapter 5. Another major

contribution of this chapter is to address the insufficiencies of the current approaches ([15], [24],

[28], [51, 52]) in designing adaptive control for high relative degree system with unmatched un-

certainties. Since the proposed controller structure avoids the recursive designs of the standard

adaptive backstepping methods, its implementation remains simple regardless of the physical sys-

tem’s relative degree. Therefore, we can purposely increase the system’s orders and relative degree

by adding low pass filters in front of the control signals. Consequently, we can obtain a smooth

control signal without complicating the controller structure. The proposed controller is applied to

control the motion of human arm models to demonstrate its advantages over the approaches found

in the literature. The results from Chapter 5 are extended to MIMO systems in Chapter 6, and

further simulation and experimental results are reported to verify the theoretical analysis.



Chapter 2

Control Motion of A Human Arm:

A Simulation Study

The following result was presented at the 2014 International Conference of Control, Dynamic

Systems, and Robotics ([53]).

2.1 Introduction

This chapter presents a simulation study to control the motion of a human arm’s using muscle

excitations as inputs. Our simulation implements the musculoskeletal model Arm26 ([54]) pro-

vided in OpenSim which has 2 DOF and 6 muscles as actuators. First, in order to drive the limbs’

motion to track a desired trajectory, we propose an Adaptive Sliding Mode Controller (ASMC) to

compute the necessary driving moments at each joint. Since the system is over actuated, the Gen-

eralized Reduced Gradient (GRG) method is implemented to optimally distribute such moments

to the corresponding forces for each muscle. Because the system has a cascade structure, a sec-

ond Sliding Mode Control (SMC) within a backstepping algorithm framework is used to drive the

muscle excitation so that each muscle can produce the needed force. The simulation shows that

9
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this controller can handle the mismatches between the mathematic model and physical body and

bounded disturbances. This will establish a foundation for future work, in which we would like to

use the FES to adjust the neural excitation so that we can cancel the tremor and stabilize the arm

movement.

This chapter is organized as follows. Section 2.2 introduces the arm dynamics and the adaptive

sliding mode controller to control the movement of the arm. Section 2.3 describes the algorithm to

optimally distribute forces to each muscle. Section 2.4 presents the muscle dynamics and the back

stepping controller to control the muscle contraction. Numerical simulation results are presented

in Section 2.5. Finally, Section 2.6 concludes this chapter.

2.2 Body Dynamics and Adaptive Control

2.2.1 Dynamics model

We consider the case of controlling the joint flexion in the sagittal plane as illustrated in Fig

2.1, which shows both the right arm’s skeleton model and the corresponding free body diagram.
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Let m1,P1, I1 and m2,P2, I2 be the mass, the gravity force, and the inertial moment at the mass

center points A and C of the lower arm and the upper arm, respectively. M1 and M2 are the elbow

and shoulder moments. Let (α1,α2) be the elbow and shoulder flexion. Applying the Newton laws

to the 2-link segments model depicted in Fig 2.1, yields the following motion dynamics z1 z2(α2(t))

z3(α1(t)) z4(α1(t))

α̈1(t)

α̈2(t)

=

 M1(t)−Y1(α1(t),α2(t), α̇2(t))

M2(t)−M1(t)− (Y2(α1(t),α2(t), α̇1(t), α̇2(t))

 ,
where

z1 , I1 +m1l2
AB, z2(α1), m1lABlBD cosα1 +m1l2

AB,

z3(α1), m1lABlBD cosα1, z4(α1), I2 +m2l2
CD +m1l2

BD +m1lABlBD cosα1,

Y1(α1,α2, α̇2), P1lAB sin(α1 +α2)+m1lABlBD sinα1α̇
2
2 ,

Y2(α1,α2, α̇1, α̇2), (P1lBD +P2lCD)sinα2−m1lABlBD sinα1(α̇1 + α̇2)
2.

Equ. (2.1) is rewritten asα̈1(t)

α̈2(t)

=
1

z1z4− z2z3

(−z4Y1 + z2Y2

z3Y1− z1Y2

+
 z2 + z4 −z2

−(z1 + z3) z1

M1(t)

M2(t)

) (2.1)

with the reduced notations zi , zi(α1) and Yi , Yi(α1,α2,α̇1,α̇2).

2.2.2 Adaptive Sliding Mode Controller (ASMC)

The dynamic model in (2.1) can be rewritten in a more general form

ẍ(t) = f (x(t), ẋ(t))+g(x(t), ẋ(t))u(t)+d(t), (2.2)

where x(t)∈Rn is the state vector, u(t)∈Rn is the control input, f (x(t), ẋ(t))∈Rn, g(x(t), ẋ(t))∈

Rn×n are function of x(t) and ẋ(t), and d(t) is the unknown disturbance. The objective is to control

this system to follow a desired trajectory xd(t).

Due to the errors between the theretical model and the physical one, the plant dynamic can be



12

rewritten as

ẍ(t) = fn(x(t), ẋ(t))+gn(x(t), ẋ(t))u(t)+(∆ f +∆gu+d)(t)

= fn(x(t), ẋ(t))+gn(x(t), ẋ(t))u(t)+d(t), (2.3)

where fn(·) and gn(·) describe the nominal system with known estimated parameters, ∆ f (t) and

∆g(t) are the unknown difference between the real and nominal systems and d(t) , (∆ f (t) +

∆g(t)u(t)+d(t)) is the total uncertainty error and disturbance.

We introduce sliding mode variable

s(t), ė(t)+Ce(t) ∈ Rn, (2.4)

where e(t) , x(t)− xd(t) is the tracking error, and C ∈ Rn×n,C > 0. Differentiating the sliding

mode variable defined in 2.4 yields

ṡ(t) = ë(t)+Cė(t) = fn(x, ẋ)+gn(x, ẋ)u(t)+d(t)− ẍd(t)+Cė(t). (2.5)

where the short notation x = x(t) is used to simplify the notation.

According to Sliding Mode Control (SMC) ([55]), we introduce the following control input

u(t) =−g−1
n (x, ẋ)( fn(x, ẋ)− ẍd(t)+Cė(t)+ sgn(s(t))k) (2.6)

where sgn(s), diag([sgn(s1)...sgn(sn)]) is the diagonal matrix and k, [k1...kn]
T with ki ≥ |dmax|,

where |dmax| is the maximum absolute value of d(t).

Differentiating the Lyapunov function

V (s) =
1
2

s(t)Ts(t) (2.7)

along the trajectory (2.5) and (2.6) yields

V̇ (t) = s(t)Tṡ(t) = sT(t)( fn(x, ẋ)+gn(x, ẋ)u(t)+d(t)− ẍd(t)+Cė(t))

=−|sT(t)|k+ sT(t)d(t)≤−|sT(t)|k+ |sT(t)||dmax| ≤ 0. (2.8)
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which, according to LaSalle-Yoshizawa theorem, guarantees s(t)→ 0 as t → ∞. However, note

that d(t) depends on ∆g(t)u(t), which leads to the fact that |dmax| can be magnified when u(t) is

large, and choosing a large constant |dmax| can worsen the controller performance. Therefore, we

modify the control law given above.

Theorem 2.2.1 Consider the system (2.3), and a desired trajectory xd(t) ∈ C 2. Assume that there

exists k∗ ∈Rn and K∗ ∈Rn×n such that

k∗i > |di(t)+∆ fi(t)|max, K∗i j > |∆gi j(t)|max, i, j = 1, ...,n, (2.9)

then the controller

u(t), us1(t)+us2(t), (2.10a)

us1(t),−g−1
n (x, ẋ)( fn(x, ẋ)− ẍd(t)+Cė(t)+ sgn(s(t))k̂(t)), (2.10b)

us2(t),−g−1
n (x, ẋ)sgn(s(t))K̂(t)|u(t)|, (2.10c)

with the adaptive laws

˙̂k(t) = Proj(k̂(t),Pk|s(t)|), (2.11a)

˙̂K(t) = Proj(K̂(t),PK|s(t)||uT(t)|), (2.11b)

where Pk ∈ Rn×n,PK > 0 and PK ∈ Rn×n,PK > 0, guarantees that the closed loop system defined

by (2.3),(2.10) and (2.11) is Lyapunov stable, and the tracking error e(t) = x(t)− xd(t)→ 0 as

t→ ∞.

Proof Substituting the controller defined in (2.10) into (2.5) to obtain

ṡ(t) =−sgn(s(t))k̂(t)− sgn(s(t))K̂(t)|u(t)|+(d(t)+∆ f (t))+∆g(t)u(t). (2.12)

Differentiating the Lyapunov function

Va(t) =
1
2

s(t)Ts(t)+
1
2
(k(t)− k∗)TP−1

α (k(t)− k∗)T +
1
2

tr[(K̂(t)−K∗)TP−1
β

(K̂(t)−K∗)], (2.13)
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along the trajectory of (2.12) and substituting the update laws (2.11) yield

V̇a(t) = sT(t)ṡ(t)+(k̂(t)− k∗)TP−1
α

˙̂k(t)+ tr[(K̂(t)−K∗)TP−1
β

˙̂K(t)]

=−|sT(t)|k̂(t)−|sT(t)|K̂(t)|u(t)|+ sT(t)(d(t)+∆ f (t))+ sT(t)∆g(t)u(t)

+(k̂(t)− k∗)|sT(t)|+ tr[(K̂(t)−K∗)T|u(t)||sT(t)|]. (2.14)

Using the property that tr[XTY ] = tr[Y XT] = tr[Y TX ] = Y TX if Y TX ∈R yields

tr
[
(K̂(t)−K∗)T|s(t)||uT(t)|

]
= tr

[
(|s(t)|uT(t)|)T|(K̂(t)−K∗)

]
= tr

[
|u(t)||sT(t)||(K̂(t)−K∗)

]
= |sT(t)|(K̂(t)−K∗)T|u(t)|. (2.15)

Substituting (2.15) into (2.14) to obtain

V̇a(t) =T
s (t)(d(t)+∆ f (t))− k∗|sT(t)|+ sT(t)∆g(t)u(t)−|sT(t)|K∗|u(t)|

≤ −(k∗−|d(t)+∆ f (t)|) |sT(t)|− |sT(t)|(K∗−|∆g(t)|)|u(t)|

=−
n

∑
i=1

(k∗i −|di(t)+∆ fi(t)|) |si|−
n

∑
i=1

n

∑
j=1

(
K∗i j−|∆gi j(t)|

)
|siu j|≤0. (2.16)

where we used the definition of k∗i , K∗i j in (2.9). According to the Lasalle-Yoshizawa theorem, all

signals remain bounded and s(t)→ 0 as t→ 0, so that e(t)→ 0 as t→ 0. �

Remark 2.2.1 It follows from ((2.10)) that the controller u(t) can be rewritten as

u(t) =−(gn(x, ẋ)+ sgn(s(t))K̂(t)sgn(u(t)))−1( fn(x, ẋ)− ẍd(t)+Cė(t)+ sgn(s(t))k̂(t)). (2.17)

Comparing (2.17) to the conventional SMC, the proposed ASMC adds the gain K, to account

for the uncertainty in estimating system control gain (∆g(x, ẋ)u(t)) which can be magnified when

the control u(t) is large. Note that, when uT(t)s(t) converges to zero, then the ASMC controller

converges to the conventional SMC controller.

Furthermore, K̂(t) provides an easy way to handle the case of a singular gn(x, ẋ), which would

cause the standard SMC to become unbounded. Also note that in (2.17), u(t) depends on sgn(u(t)).

Therefore, in practical implementation, the previous value of u(t) can be used to predict sgn(u(t)),
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and compute new u(t). Finally, the sgn(s(t)) can be replaced by the saturate function Sat(s(t),ε >

0) to avoid the chattering problem of SMC ([31]).

2.2.3 Simulation Results

This section presents the simulation results to control the 2-link segments model (2.1) by apply-

ing the proposed controller (2.17). The simulation was conducted in MATLAB/Simulink 2014b.

MATLAB ODE3 solver is used for integration. The physical parameters to simulate the arm model

and the nominal parameters for the controller are given in Tab.2.1.

Table 2.1: Arm model simulation parameters

Model m1 I1 lAB m2 I2 lBD lCD

Physical 1.53 0.02 0.14 1.87 0.013 0.29 0.18

Nominal 1.8 0.022 0.16 2 0.015 0.31 0.20

Figure 2.3: Tracking performance Figure 2.4: Control moments and optimal force
distribution

The controller parameters are chosen as C = diag([7 7]), Pα = 100, Pβ = 100, ε = 1◦. The

system response and control inputs are shown in Fig. (2.3) and (2.4). Figure (2.3) shows that the
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system output converges to the desired output after 1.5s dispite the differences in paramters of the

physical and nominal systems.

2.3 Optimal Force Distribution

In the Arm26 body model, 6 muscles BIClong, BICshort, TRIlong, BRA, TRIlat, TRImed (with

respective index i = 1, . . . ,6) contribute to the moment M1, and 3 of them (BIClong, BICshort,

TRIlong) also contribute to the moment M2. In order to compute the muscle forces, the criterion

that the muscles should produce the least possible forces with minimal change rate to generate

the necessary moment is selected. The problem is formulated as minimizing the following cost

function

f (F) =
1
2

FTW1F +
1
2
(F−F∆t)

TW2(F−F∆t),

with F , [F1, ...,F6]
T ∈ Rn, n = 6, satisfying the constraints

6

∑
i=1

r1
i Fi = M1,

3

∑
i=1

r2
i Fi = M2, Fi

min ≤ Fi ≤ Fi
max, (2.18)

where Fi is the force produced by the muscle i, and F∆t , F(t−∆t). W1 > 0, W2 > 0 are weight

matrices, r1
i and r2

i are the moment arms of the muscle i at the elbow and the shoulder, respectively.

The constraints in (2.18) can be rewritten asr1
1 r1

2 r1
3 r1

4 r1
5 r1

6

r2
1 r2

2 r2
3 0 0 0

F =

M1

M2

⇒ AF = b, (2.19)

with obvious definitions for A∈Rm×n and b∈Rm, m = 2 is the number of the equality constraints.

The Generalized Reduced Gradient iterative procedure ([56]) is applied to solve the optimiza-

tion problem as follows. The vector F can be partitioned as

F = [FT
B ,FT

N ]T, FB ∈ Rm, FN ∈ Rn−m.
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where FB and FN are the basic vector and nonbasic vector, respectively. Let B and N be partitions

of A corresponding to the vectors FB and FN. Hence, (2.19) can be rewritten as

[B | N]

FB

FN

= b⇒ BFB +NFN = b. (2.20)

The vector F can be reordered so that FB can be chosen such that Fi
min < FBi < Fi

max and the

matrix B is nonsingular. Next, assume that at each iteration step, F changes by a small variation

δ = [δ T
B ,δ

T
N]

T while still satisfying the constraint (2.20), which yields

B(FB +δB)+N(FN +δN) = b⇒ δB =−B−1NδN. (2.21)

Let ∇ f (F), [∇B f T,∇N f T]T be the gradient vector of f (F) with two components ∇B f ,∇N f cor-

responding to the vectors FB and FN. It follows from (2.21) that the change of f caused by the

variation δ is

∆ f = ∇ f T(F)δ = ∇B f T(F)δB+∇N f T(F)δN = (∇N f T(F)−∇B f T(F)B−1N)δN = γ
T
NδN, (2.22)

where γT
N , ∇N f T(F)−∇B f T(F)B−1N. Hence, the value of the cost function f is reduced if the

variation δN is chosen so that ∆ f < 0.

Let [δ T
B δ T

N]
T = αΓ, where Γ, [ΓT

B ΓT
N]

T is the reduced gradient direction vector, and α is the

optimal step size. It follows from (2.21) and (2.22) that Γ can be chosen as.

ΓB =−B−1NΓN, ΓNi =


0, if (ΓNi=Fi min, γNi> 0),

0, if (ΓNi=Fi max, γNi< 0),

−γNi, otherwise,

After Γ is determined, the optimal step α can be found as

α = argmin f (F +αΓ), 0≤ α ≤ α max, (2.23)

α max = sup{α | F min≤ F +αΓ≤ F max}. (2.24)
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Suppose Fk and Γk are the force and the direction vector at the iteration step k, respectively. The

maximum step size αmax
k can be obtained by solving the linear inequality (2.24), and the optimal

step size αk is obtained by solving ∂ f (F,α,Γ)/∂α = 0 as following ([56])

αk = min
{

α
max
k ,−

FT
k W1Γk +(Fk−F∆t)

TW2Γk

ΓT
k (W1 +W2)Γk

}
.

The iteration will repeat with Fk +αkΓk 7→ F by finding the direction vector Γ and the step size

α until ||ΓN|| = 0 or ||Fk+1−Fk|| < εF , where εF is the chosen tolerance, or until there is no

arrangement of FB such that B is nonsingular.

Fig. (2.4) illustrates the simulation results for the required moments obtained in Section 2.2.

The muscle maximum forces are taken from the default values of the Arm26 model, and given

below.

Muscles BIClong BICshort TRIlong BRA TRIlat TRImed

Fmax(N) 624.3 435.56 798.52 987.26 624.3 624.3

The algorithm converges in less than 5 iterations on average, with a tolerance εF = 1N.

2.4 Control Muscle

2.4.1 Muscle Dynamics Model

This section summarizes the Thelen muscle model ([57,58]), whose block diagram is shown in

Fig. 2.2. All muscles share the same block structures and formulas, but differ in four properties:

the maximum isometric force FM
0 , the optimal fiber length lM

0 , the tendon slack length lT
s , and the

pennation angle at the optimal fiber length α0. Table 2.2 shows other parameters that are similar

across all muscles in the model. The interested reader can find more details in [58].

Tendon length The relationship between the tendon length lT (t) and the muscle length lM is

given by lT = lMT− lM cosα , where lMT , lMT(α1,α2) is the muscle tendon length and α is the
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Table 2.2: Muscle model parameters

εM
0 ktoe εT

0 klin εT
toe FT

toe kP γ A f FM
len

0.6 3 0.033 1.712/εT
0 10.609εT

0 1/3 4 0.5 0.3 1.8

pennation angle

α =


0, lM(t) = 0 or w/lM(t)≤ 0,

sin−1(w/lM(t)), 0 < w/lM(t)< 1,

π/2, w/lM(t)≥ 1,

with w = lM
0 sinα0. (2.25)

where lMT is the muscle tendon length which depends on the elbow and shoulder angles and α is

the pennation angle.

Tendon Force The tendon force FT (t) is governed by the tendon length lT as FT (t) = FM
0 FT (εT ),

where

FT (εT ) =
1+ εT

1000
+


klin(ε

T− εT
toe)+FT

toe, εT > εT
toe,

FT
toe

ektoeεT/εT
toe−1

ektoe−1
, 0 < ε

T ≤ ε
T
toe,

0, εT ≤ 0,

with ε
T = lT/lT

s −1. (2.26)

Passive Force The passive force FP is controlled by the muscle length lM as FP = Fm
o FP(l

M
),

where l
M
= lM/lM

0 is the normalized muscle length, and

FP(l
M
) =


1+ kP

εM
0
(l

M− (1+ εM
0 )), if l

M
> (1+ εM

0 ),

ekP(l
M−1)/εM

0

ekP
, if l

M ≤ (1+ ε
M
0 ).

(2.27)

Active Force The active force Fa is controlled by the muscle activation a and the normalized mus-

cle length l
M

Fa = aFM
0 e−(l

M−1)2
. (2.28)
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Contractile force The force in the contractile element FCE is calculated from tendon force FT and

passive force FP as follows

FCE =
FT

cosα
−FP. (2.29)

Fiber Velocity The fiber velocity l̇M is calculated as l̇M = (5+5a)lM
0 l̇

M
, where l̇

M
is the normal-

ized contraction velocity

l̇
M
= Ψ1(lM,a) =



FCE

ε

(
ε−Fa

Fa +
ε

A f
+ξ

+
Fa

Fa +ξ

)
− Fa

Fa +ξ
, if FCE < 0,

FCE−Fa

Fa +
FCE
A f

+ξ
, if 0≤ FCE < Fa,

FCE−Fa
1

FM
len−1

(2+
2

A f
)(FaFM

len−FCE)+ξ

, if Fa ≤ FCE < 0.95FaFM
len,

fv0 +
FCE−0.95FaFM

len

FaFM
len

( fv1− fv0), if 0.95FaFM
len ≤ FCE,

(2.30)

where

fv0 =
0.95FaFM

len−Fa
1

FM
len−1

(2+
2

A f
)0.05(FaFM

len)+ξ

, fv1 =
(0.95+ ε)FaFM

len−Fa
1

FM
len−1

(2+
2

A f
)(0.05− ε)(FaFM

len)+ξ

.

(2.31)

Activation dynamics The activation dynamics a is modeled as the first order lowpass filter of the

excitation signal u, with Tact = 0.01 and Tdact = 0.04 are the activate time and the deactivate time,

respectively. Hence, the activation dynamics can be rewritten as

ȧ = Ψ2(a,u) =

 (u−a)/Tact if u > a,

(u−a)/Tdact if u≤ a.
(2.32)

2.4.2 Muscle Control

The entire system dynamics has a cascade form and can be summarized as follows
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ẍ(t) = f (x(t), ẋ(t))+g(x(t), ẋ(t))u(t), (2.33a)

l̇M
i = Ψ1(lM

i,ai), (2.33b)

ȧi = Ψ2(ai,ui), i = 1, . . . ,6, (2.33c)

where (2.33a) is the arm dynamics defined in Section (2) and (3) with x(t) = [α1(t) α2(t)]T are the

joint angles, and u(t) = [∑6
i=1 r(1)i (x)Fi(lM

i (x)) ∑
6
i=1 r(2)i (x)Fi(lM

i (x))]T is the control moment.

The backstepping algorithm ([31]) can be applied to control this system . First, suppose that

the set of desired forces {Fdi = Fi(lM
di ), i = 1, ...,6} is available after solving the optimal force

distribution step as described in section (2) and (3), and also suppose that their time derivative Ḟd

is available. Then, the desired muscle length lM
d and its time derivative l̇M

d can be computed using

the Eq. (2.25) and (2.26).

Back-Stepping Level 1 Let ud(t) =
[

∑
6
i=1 r(1)i (x)Fdi ∑

6
i=1 r(2)i (x)Fdi

]T
be the desired joint

moment that stabilize the Lyapunov function V1(t) = 1
2sT(t)s(t), such that

V̇1(t) = sT(t)( fn(x, ẋ)+gn(x, ẋ)ud(t)+ d̄(t)− ẍd(t)+Cė(t))≤ 0, (2.34)

where Fdi = Fi(lM
di ), i = {1, ...,6} is the solution computed following the procedure described in

Section 2.2 and Section 2.3.

Back-Stepping Level 2 Let elM i , lM
i − lM

di be the error between the actual muscle length lM
i

and the desired muscle length lM
di . The control moment u(t) can be rewritten in term of the desired

ud(t) and the error elM i(t) as

u(t) = ud(t)+

 ∑
6
i=1 r(1)i (x)∇Fi(lM

di )elM i(t)

∑
6
i=1 r(2)i (x)∇Fi(lM

di )elM i(t)

 , ∇Fi(lM
d ),

Fi(lM
i )−Fi(lM

di )

elM i(t)
. (2.35)

Differentiating the Lyapunov function

V2(t) =
1
2

sT(t)s(t)+
1
2

6

∑
i=1

elM
i

2(t),

along the trajectories (2.34) and (2.35) yields
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V̇2(t) = sT(t)( fn(x, ẋ)+gn(x, ẋ)u(t)+ d̄(t)− ẍd + cė)+
6

∑
i=1

elM
i
(Ψ1(ai)− l̇M

d )

= V̇1(t)+
6

∑
i=1

elM
i
(Ψ1(ai)− l̇M

d + sTgnri∇Fi(lM
di )), (2.36)

where ri(x), [r(1)i (x) r(1)i (x)]T. Therefore, the control activation adi(t) is chosen as follow so that

V̇2(t)≤ 0

adi(t) = Ψ
−1
1 (−kaisgn(elM

i
(t))+ l̇M

di − sT(t)gn(x, ẋ)ri∇Fi(lM
di )), (2.37)

where kai is the chosen control gain. (2.37) can be approximated by a quadratic equation in term

of adi and solved analytically.

Back-Stepping Level 3 Suppose adi(t) is available after solving (2.37), let eai(t) , ai(t)−

adi(t) be the error between the actual activation ai(t) and the desired activation adi(t). The muscle

contraction velocity are rewritten

Ψ1(ai) = Ψ1(adi)+∇Ψ1(adi)eai, ∇Ψ1(adi) =
Ψ1(ai)−Ψ1(adi)

eai(t)
. (2.38)

Differentiating the Lyapunov function

V3(t) =
1
2

sT(t)s(t)+
1
2

6

∑
i=1

e2
lM
i
(t)+

1
2

6

∑
i=1

e2
ai
(t),

along the trajectory (2.36) and (2.38) yields

V̇3(t) = V̇1(t)+
6

∑
i=1

elM
i
(t)(Ψ1(ai)−l̇M

di (t)+ sT(t)gn(x, ẋ)ri(x)∇Fi(lM
di ))+

6

∑
i=1

eai(t)(Ψ2(ui)− ȧdi(t))

= V̇2(t)+
6

∑
i=1

eai(t)(Ψ2(ui)− ȧdi(t)+ elM i(t)∇Ψ1(adi)),

then the excitation control signal ui(t) is chosen such that V̇3(t)≤ 0, as

ui(t) = Ψ
−1
2 (−kuisgn(eai(t))+ ȧdi(t)− elM

i
(t)∇Ψ1(adi(t))) =

 Tact(ai + zi) if zi > 0,

Tdact(ai + zi) if zi ≤ 0,

where

zi(t),−kuisgn(eai(t))+ ȧdi(t)− elM
i
(t)∇Ψ1(adi(t)).
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Figure 2.5: Simulation Interface

2.5 Simulation Results

The simulation was conducted by using the interface between OpenSim and Simulink ([59]), as

described in Fig 2.5. The simulation parameters are given in Tab.1 and Tab.2, with the following

initial states

• lM(0) = [0.1138 0.1138 0.0858 0.134 0.1321 0.1157]T,

• ai(0) = 0, i = 1, . . . ,6

• α j(0) = α̇i(0) = α̈i(0) = 0, j = 1,2.

Figure 2.6 shows that the responses converge to the reference trajectories after 2s with the chosen

parameters C = [3 11], α = 0.5, β = 0.02. Fig. 2.8 shows the required moments and muscle forces,

respectively. The required muscle length, muscle activation and muscle excitation are shown in

Figure 2.9 and Fig. 2.10.



24

Figure 2.6: System output using the control
gain C = diag([3 11]), Pα = 2, β = 50.

Figure 2.7: System output using the control
gain C = diag([4 40]), α = 2, β = 50.

The tracking error depends on the chosen boundary of saturate function. In this example, the

error boundary is 1◦, and the maximum error reported is 1.5◦ at the shoulder. This is because the

muscles BIClong, BICshort, TRIlong contributes to both the shoulder and elbow moments.This

leads to the slight vibration at the shoulder angle to achieve the small error at elbow angle. More-

over, the gain can be adjusted to reduce the error. Figure 2.7 shows the system response when the

control parameters are chosen as C = diag([4 40]), α = 0.5, β = 0.02 and the saturate boundary

is 0.1◦. The maximum settling error is 0.9◦ at the shoulder and 1◦ at the elbow.

Figure 2.8: Requires moments and optimal
forces

Figure 2.9: Muscle length and activation re-
sponse
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Figure 2.10: Muscles excitation

2.6 Conclusion

In this chapter, we proposed an adaptive controller to control the arm movement and validate

its performance through a simulation study. First, we proposed an ASMC to derive the driving

moments. Secondly, we implemented the Generalized Reduced Gradient method to optimally dis-

tribute forces to each muscle. Finally, we used another SMC to drive the activation and excitation.

Because the model dynamics had a cascade form, the backstepping technique was implemented to

compute the muscle excitations. The simulation study showed that our controller can handle the

parametric uncertainties. Comparing to the Computed Muscle Control toolbox provided in Open-

Sim which uses the PID controller, the proposed method does not require heavy effort in tuning
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process. One drawback of this controller is that it requires full state knowledge including mus-

cle length and activations for feedback purpose. This shortcoming will be addressed with a novel

output feedback approach which will be described in the next chapters.



Chapter 3

Adaptive Predictor-Based Output Feedback

Control for a Class of Unknown MIMO

Linear Systems

The following result was presented at the 2014 ASME Dynamcis System and Control Conference

([60] and [61]) and object of an article submitted to International Journal of Adaptive Control and

Signal Processing.

3.1 Introduction

In this chapter, the problem of characterizing adaptive output feedback control laws for a gen-

eral class of unknown MIMO linear systems is considered. The controller proposed in this chapter

is built upon the strategy introduced in [47], but avoids using the output derivatives and it is ap-

plicable to minimum phase MIMO systems with any relative degrees. The key idea is that, in the

circumstance that the system model is unknown and the state vector is unmeasured, it is not nec-

essary to construct the model dynamics and attempt to estimate the full state if the output (i.e. the

27
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measurements) is all we need to control. Instead, we introduce an output predictor, capable of pre-

dicting the system output using the history of the system input and output stored in autoregressive

filtered vectors. Hence, designing an output tracking control for the unknown system is equivalent

to constructing a tracking control for the predictor, which is a virtual system whose dynamics and

state are known. With this approach, the tracking task can be achieved by designing a tracking

controller for a linear time varying system, using one of many approaches existing in the literature.

In particular, the method proposed in [49] is adopted for the tracking task. Furthermore, in order to

guarantee actuator amplitude and rate saturation constraints, the modified reference system method

proposed in [50] is applied. Ultimately, it is shown that the plant output, the predictor output and

the reference system output simultaneously converge to the desired trajectory. Exponential sta-

bility of the prediction error and uniformly ultimate boundedness of the tracking error are proved

using the Lyapunov’s direct method.

This chapter is organized as follows. Section 3.2 establishes the mathematical background and

the problem formulation. In Section 3.3, the novel output predictor is derived. Design of the control

algorithm for the predictor is then presented in Section 3.4. In addition, the actuator amplitude and

rate saturation constraints are also analyzed in this section. Furthermore, Section 3.5 summarizes

the framework to implement the algorithm. Section 3.6 provides two numerical simulations for

both linear and nonlinear systems to illustrate the algorithm’s efficacy, and Section 3.7 provides the

experimental results in implementing the algorithm on a helicopter. Finally, Section 3.8 concludes

the chapter.

3.2 Mathematical Preliminaries

In this section, we establish definitions, notations and assumptions used later in the paper.

Definition 3.2.1 ([62]) For a signal ξ (t) ∈Rn, t > 0, the L∞ norm is defined as

‖ξ‖L∞
= max

i=1,...,n
(sup

τ≥0
|ξi(τ)|),
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where ξi is the ith component of ξ .

Definition 3.2.2 ([62]) The L1 gain of a stable proper SISO system H(s) is defined as ‖H(s)‖L1 =∫
∞

0 |h(t)|dt, where h(t) is the impulse response of H(s).

Definition 3.2.3 ([62]) For a stable proper system H(s) with m input, n output, its L1 gain is

defined as

‖H(s)‖L1 = max
i=1,...,n

(
m

∑
j=1
‖Hi j(s)‖L1

)
,

where Hi j(s) is the ith row, jth column element of H(s).

Lemma 3.2.1 ([62]) For a stable proper MIMO system H(s) with input r(t) ∈ Rm and output

x(t) ∈Rn, the following holds ‖x(t)‖L∞
≤ ‖H(s)‖L1‖r(t)‖L∞

, t ≥ 0.

Definition 3.2.4 ([63]) If A∈Cm×n, then the pseudo-inverse A† is the unique matrix in Cm×n such

that

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

where (·)∗ denotes the conjugate transpose.

Definition 3.2.5 ([31]) The Lie derivative of a function φ(x)∈R, x∈Rn along the flow of a vector

field p(x) ∈Rn is defined as

Lpφ(x),
∂φ(x)

∂x
p(x).

Definition 3.2.6 ([31]) Consider the following nth-order nonlinear SISO system GNL

ẋ(t) = f (x(t))+g(x(t))u(t), x(0) = x0, t ≥ 0, (3.1a)

y(t) = h(x(t)), (3.1b)

with x(t) ∈ Rn, f : Rn→ Rn, g : Rn→ Rn, h : Rn→ R. GNL has relative degree 0 < r < n in a

region D ⊆Rn if Lgψi(x(t)) = 0 and Lgψr(x(t)) 6= 0, x(t) ∈D , t ≥ 0, where ψ1(x(t)), h(x(t))
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and ψi+1(x(t)), L f ψi(x(t)), i = 1, . . . ,r−1. In short, the relative degree of a given system is the

number of times one must differentiate the output y(t) before the input u(t) appears explicitly.

Consider the following linear time invariant (LTI) MIMO system GL

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, t ≥ 0, (3.2a)

y(t) =Cx(t), (3.2b)

where x(t) ∈Rn is the state vector, y(t) ∈Rp is the output, u(t) ∈Rm is the control input, and the

matrices A ∈Rn×n, B = [b1 . . .bm] ∈Rn×m where b j ∈Rn, j = 1 . . .m, and C = [c1 . . .cp]
T ∈Rp×n

where ci ∈ Rn, i = 1 . . . p, are defined accordingly. The matrices A, B, C are unknown and ri j is

the known relative degree of the input u j(t) with respect to the output yi(t).

The control objective is to design an adaptive controller to ensure that, for a given bounded

reference input r(t) ∈Rp, y(t) tracks the output ym(t) of the following desired system

ẏm(t) = Amym(t)+Bmr(t), t ≥ 0. (3.3)

where Am ∈Rp×p is a stable matrix, and Bm is a full rank matrix.

Lemma 3.2.2 Consider the LTI MIMO system GL defined in (3.2). The ith output of the system GL

can be represented in the Laplace domain by the following transfer function

yi(s) = Gi(s)u(s) =
∑

m
j=1 Ni j(s)u j(s)

D(s)
, (3.4)

where s ∈ C denotes the Laplace variable and Gi(s) , cT
i (sIn−A)−1B is the transfer function

relative to the output yi(t). Accordingly,

D(s) = sn +αn−1sn−1 + ...+α1s+α0 = det(sIn−A) (3.5)

Ni j(s) = β
(n−ri j)
i j sn−ri j + ...+β

(1)
i j s+β

(0)
i j = cT

i Aa(s)b j, (3.6)

represent the denominator and numerator’s components of the transfer function Gi(s), respectively,
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where Aa(s) denotes the adjunct matrix of (sIn−A). Then, the system output can be obtained as

y(t) = ω
T
y (t)α +β

T
ωu(t), t ≥ 0, (3.7)

where α ∈Rn and β ∈Rnm×p are defined as

α ,
[

α0−λ0 . . . αn−1−λn−1

]T
, (3.8a)

β ,


β11 · · · βp1

... . . . ...

β1m · · · βpm

, βi j ,
[

β
(0)
i j . . . β

(n−ri j)
i j 0T

ri j−1

]T
∈Rn, (3.8b)

and ωy(t) ∈Rn×p and ωu(t) ∈Rnm are defined as

ωy(t), [ωy1(t) · · ·ωy p(t)], ωu(t), [ωu
T
1 (t) · · ·ωu

T
m(t)]

T, (3.9a)

where ωyi ∈R
n, ωu j ∈Rn are the regression vectors obtained as follows

ω̇yi(t) = Afωyi(t)−Bfyi(t), ωyi(0) = ωyi0, t ≥ 0, (3.10a)

ω̇u j(t) = Afωu j(t)+Bfu j(t), ωu j(0) = ωui0, t ≥ 0, (3.10b)

where i = 1, . . . , p and j = 1, . . . ,m, and

Af ,

 0n−1 I(n−1)

−λ0 ... −λn−1

 ∈Rn×n, Bf ,

 0n−1

1

 ∈Rn, (3.11)

such that Λ(s), det(sIn−Af) = sn +λn−1sn−1 + ...+λ1s+λ0 is a nth order, Hurwitz polynomial.

Proof Consider the single output transfer function defined in (3.4). By multiplying both sides of

(3.4) by D(s)/Λ(s), it follows

D(s)
Λ(s)

yi(s) =
∑

m
j=1 Ni j(s)u j(s)

Λ(s)
,

which implies

yi(s) =−
D(s)−Λ(s)

Λ(s)
yi(s)+

∑
m
j=1 Ni j(s)u j(s)

Λ(s)
= ω

T
yi
(s)α +

m

∑
j=1

β
T
i jωu j(s), (3.12)
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where α and βi j are defined in (3.8) , and

ωyi(s) =−(sIn−Af)
−1Bfyi(s) =−

[
yi(s)
Λ(s)

, · · · , sn−1yi(s)
Λ(s)

]T

,

ωu j(s) = (sIn−Af)
−1Bfu j(s) =

[
u j(s)
Λ(s)

, · · · ,
sn−1u j(s)

Λ(s)

]T

,

which are the Laplace transform of ωyi(t) and ωu j(t) defined in (3.10), respectively. Hence, it

follows from (3.12) that the output of the system can be obtained by

y(t) =


ωT

y1
(t)

...

ωT
yp
(t)

α +


β T

11 · · · β T
1m

... . . . ...

β T
p1 · · · β T

pm




ωu1(t)
...

ωum(t)


which proves (3.7) and concludes the proof. �

Lemma 3.2.3 (Theorem (4.12) [31]) Let x = 0 be the exponentially stable equilibrium point of the

linear time varying system ẋ(t) = A(t)x(t). Suppose A(t) ∈ Rn×n is continuous and bounded. Let

Q(t) ∈Rn×n be a C 0 matrix such that

Q(t)> c3I > 0, Q(t) = QT(t).

Then, there exits a C 1 matrix P(t) ∈Rn×n that satisfies

0 < c1I ≤ P(t)≤ c2I, P(t) = PT(t),

−Ṗ(t) = P(t)A(t)+AT(t)P(t)+Q(t), t ≥ 0.

and V (t,x) = xT(t)P(t)x(t) is a Lyapunov function for the system that satisfies

c1‖x‖2
2 ≤V (t,x)≤ c2‖x‖2

2,

V̇ (t,x) =−xTQ(t)x≤−c3‖x‖2
2.

Lemma 3.2.4 ([49]) Consider the LTV system

ẋ(t) = A(t)x(t)+B(t)u(t), (3.14)

where x(t) ∈ Rn, u(t) ∈ Rm, and A(t) ∈ Rn×n, B(t) ∈ Rn×m, and consider the transformation
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matrices

T (x), In−2x(t)x†(t) ∈Rn×n,

AT (x, t),−T (x)A(t)T (x) ∈Rn×n, BT (x, t), T (x)B(t) ∈Rn×m.

where the time dependence of the state x(t) is not explicitly shown in order to simplify the notation.

Let R(t) : [t0,∞)→ Rm×m, R(t) > 0 and Q(t) : [t0,∞)→ Rna×na, Q(t) > 0 be design bounded

matrices. Assume that the following state dependent Riccati differential equation

Ṗ(t) =−P(t)AT (x, t)−AT
T (x, t)P(t)+Q(t)− ε(t)P(t)BT (x, t)R−1(t)BT

T (x, t)P(t), (3.15)

with P(t0) = P0 > 0 admits solution P(t)> 0 over [t0,∞), and R(t), Q(t) and ε(t)> 0 satisfies

Q(t)+(2− ε(t))P(t)BT (x, t)R−1(t)BT
T (z, t)P(t)> σ Ina , (3.16)

where σ > 0. If (A(t),B(t)) is uniformly controllable, then (AT (t),BT (t)) is also uniformly con-

trollable and P(t) is uniformly bounded. Furthermore, the feedback control

u(t) = Kf(t)x(t), Kf(t) = R−1BT
T (x, t)P(t), (3.17)

guarantees that the closed-loop system (3.14) and (3.17) is globally exponentially stable.

3.3 Predictor Design

In this section, we will obtain the output predictor, capable of predicting the system output

using the history of the system input and output stored in autoregressive vectors. For the statement

of the following theorems, we define the following notation

Au , Im⊗Af ∈Rnm×nm, Bu , Im⊗Bf ∈Rnm×m, (3.18)

where Af,Bf are defined in (3.11), and

ηy(t), (Af + kpIn)ωy(t)−BfyT(t) ∈Rn×p, (3.19)

ηu(t), (Au + kpInm)ωu(t)+Buu(t) ∈Rnm. (3.20)
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Theorem 3.3.1 Consider the system GL defined in (3.2) which has input u(t) ∈Rm, output y(t) ∈

Rp, and the regression vectors ωy(t) and ωu(t) defined in (3.9). Let kp > 0 and introduce the tuning

matrices Γ ∈Rp×p, Γ > 0, Pα ∈Rn×n, Pα > 0, Pβ ∈Rnm×nm, Pβ > 0. Then, the output predictor

ẏp(t) =−kpyp(t)+η
T
y (t)α̂(t)+ β̂

T(t)ηu(t), yp(0) = yp0, t ≥ 0, (3.21)

with α̂(t) ∈Rn, and β̂ (t) ∈Rnm×p obtained from the adaptive law

˙̂α(t) = Pα

(
ηy(t)ΓTep(t)+σ(t)ωy(t)ε(t)

)
, α̂(0) = α̂0, t ≥ 0, (3.22a)

˙̂
β (t) = Pβ

(
ηu(t)eT

p (t)Γ+σ(t)ωu(t)εT(t)
)
, β̂ (0) = β̂0, t ≥ 0, (3.22b)

where ep(t), y(t)−yp(t) is the prediction error, σ(t) ∈ C 0, σ(t)≥ 0 is a bounded function, and

ε(t), y(t)−ω
T
y (t)α̂(t)− β̂

T(t)ωu(t), (3.23)

guarantees that the system defined by (3.21) - (3.22) is Lyapunov stable, and the prediction error

ep(t)→ 0 and ε(t)→ 0 as t→ ∞.

Proof It follows from Lemma (3.2.2) that any nth order MIMO system can be represented by

y(t) = ω
T
y (t)α +β

T
ωu(t). (3.24)

Taking the time derivative of (3.24) yields

ẏ(t) =
(
ω

T
y (t)A

T
f − y(t)BT

f
)

α +β
T(Auωu(t)+Buu(t))

=−kpy(t)+
(
ω

T
y (t)(A

T
f + kpIn)− y(t)BT

f
)

α +β
T ((Au + kpInm)ωu(t)+Buu(t)

)
=−kpy(t)+η

T
y (t)α +β

T
ηu(t), (3.25)

where ηy(t) and ηu(t) are defined in (3.19) and (3.20), respectively.

It follows from (3.25) and (3.21) that the prediction error dynamics is obtained as

ėp(t) =−kpep(t)+η
T
y (t)α̃(t)+ β̃

T(t)ηu(t), ep(0) = ep0, t ≥ 0, (3.26)

where α̃(t) , α − α̂(t) ∈ Rn and β̃ (t) , β − β̂ (t) ∈ Rnm×p. Now, differentiating the Lyapunov

function candidate
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V (ep, α̃, β̃ ) =
1
2

eT
p (t)Γep(t)+

1
2

α̃
T(t)P−1

α α̃(t)+
1
2

tr[β̃ T(t)P−1
β

β̃ (t)], (3.27)

along the error dynamics trajectories given by (3.26) and substituting the update laws (3.22), yields

V̇ (t) =−kpeT
p (t)Γep(t)+ eT

p (t)Γη
T
y (t)α̃(t)+ eT

p (t)Γβ̃
T(t)ηu(t)− α̃

T(t)P−1
α

˙̂α(t)− tr[β̃ T(t)P−1
β

˙̂
β (t)]

=−kpeT
p (t)Γep(t)+ α̃

T(t)
(
ηy(t)ΓTep(t)−P−1

α
˙̂α(t)

)
+ tr[β̃ T(t)(ηu(t)eT

p (t)Γ−P−1
β

˙̂
β (t))]

=−kpeT
p (t)Γep(t)−σ(t)α̃T(t)ωy(t)ε(t)− tr[σ(t)β̃ T(t)ωu(t)εT(t)]. (3.28)

Using the fact that if x ∈R then x = xT yields

σ(t)α̃T(t)ωy(t)ε(t) = σ(t)εT(t)ωT
y (t)α̃(t). (3.29)

and the fact that if X ∈R1×n and Y ∈R1×n then tr[XTY ] = tr[Y XT] = Y XT yields

tr[σ(t)β̃ T(t)ωu(t)εT(t)] = σ(t)εT(t)β̃ T(t)ωu(t). (3.30)

Substituting (3.24) into (3.23), we rewrite ε(t) as

ε(t) = ω
T
y (t)α̃(t)+ β̃

T(t)ωu(t). (3.31)

Finally, substituting (3.29), (3.30) and (3.31) into (3.28) yields

V̇ (t) =−kpeT
p (t)Γep(t)−σ(t)εT(t)(ωT

y (t)α̃(t)+ β̃
T(t)ωu(t))

=−kpeT
p (t)Γep(t)−σ(t)εT(t)ε(t)≤ 0. (3.32)

Hence, the dynamic system given by (3.26) and (3.22) is Lyapunov stable and, by the LaSalle-

Yoshizawa theorem, limt→∞ V̇ (t) = 0, and hence, ep(t)→ 0 and ε(t)→ 0 as t→ 0, which concludes

the proof. �

Corollary 3.3.1 Consider the system GL defined in (3.2) which has input u(t) ∈Rm, output y(t) ∈

Rp, and the regression vectors ωy(t), ωu(t) defined in (3.9). Let kp > 0 and introduce the tuning

matrices Γ ∈Rp×p, Γ > 0, Pα ∈Rn×n, Pα > 0, Pβ ∈Rnm×nm, Pβ > 0. Then, the output predictor

ẏp(t) =−kpyp(t)+η
T
y (t)α̂(t)+ β̂

T(t)ηu(t), yp(0) = yp0, t ≥ 0, (3.33)
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with α̂(t) ∈Rn, and β̂ (t) ∈Rnm×p obtained from the adaptive law

˙̂α(t) = Pα

(
ηy(t)ΓTep(t)+

∫ t

t−T
σ(t,τ)ωy(τ)ε(t,τ)dτ

)
, α̂(0) = α̂0, t ≥ T ≥ 0, (3.34a)

˙̂
β (t) = Pβ

(
ηu(t)eT

p (t)Γ+
∫ t

t−T
σ(t,τ)ωu(τ)ε

T(t,τ)dτ

)
, β̂ (0) = β̂0, t ≥ T ≥ 0, (3.34b)

where ep(t), y(t)− yp(t) is the prediction error, σ(t,τ) ∈ C 0, σ(t,τ)≥ 0 is a bounded function,

and

ε(t,τ) = y(τ)−ω
T
y (τ)α̂(t)− β̂

T(t)ωu(τ), t−T ≤ τ ≤ t, t ≥ 0, (3.35)

guarantees that that the system defined by (3.33) - (3.34) is Lyapunov stable, the prediction error

ep(t)→ 0 as t→ ∞, and

lim
t→∞

∫ t

t−T
σ(t,τ)εT(t,τ)ε(t,τ)dτ = 0. (3.36)

Proof Similar to the proof of Theorem 3.3.1, differentiating the Lyapunov function candidate

V (ep, α̃, β̃ ) defined in (3.27) along the error dynamics trajectories given by (3.26) and substituting

the update law (3.34), yields

V̇ (t) =−kpeT
p (t)Γep(t)− α̃

T(t)
∫ t

t−T
σ(t,τ)ωy(τ)ε(t,τ)dτ− tr

[
β̃

T(t)
∫ t

t−T
σ(t,τ)ωu(τ)ε

T(t,τ)dτ

]
=−kpeT

p (t)Γep(t)−
∫ t

t−T
σ(t,τ)α̃T(t)ωy(τ)ε(t,τ)dτ− tr

[∫ t

t−T
σ(t,τ)β̃ T(t)ωu(τ)ε

T(t,τ)dτ

]
.

(3.37)

where the second equality observing that α̃T(t) and β̃ T(t) are independent of τ . Similar to (3.29),

(3.30) and (3.31), the following properties hold∫ t

t−τ

σ(t,τ)α̃T(t)ωy(τ)ε(t,τ)dτ =
∫ t

t−τ

σ(t,τ)εT(t,τ)ωT
y (τ)α̃(t)dτ, (3.38a)

tr
[∫ t

t−T
σ(t,τ)β̃ T(t)ωu(τ)ε

T(t,τ)dτ

]
=
∫ t

t−T
σ(t,τ)εT(t,τ)β̃ T(t)ωu(τ)dτ, (3.38b)

ε(t,τ) = ω
T
y (τ)α̃(t)+ β̃

T(t)ωu(τ). (3.38c)

Hence, substituting (3.38) into (3.37) yields
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V̇ (t) =−kpeT
p (t)Γep(t)−

∫ t

t−T
σ(t,τ)εT(t,τ)(ωT

y (τ)α̃(t)+ β̃
T(t)ωu(τ))dτ

=−kpeT
p (t)Γep(t)−

∫ t

t−T
σ(t,τ)εT(t,τ)ε(t,τ)dτ ≤ 0.

Hence, the dynamic system given by (3.26) and (3.34) is Lyapunov stable, and, by the LaSalle-

Yoshizawa theorem, limt→∞ V̇ (t) = 0, and hence, ep(t)→ 0 as t → 0, and proves (3.36), which

concludes the proof. �

Remark 3.3.1 In order to compute the adaptive law (3.34) efficiently, notice that

ωy(τ)ε(t,τ) = ωy(τ)
(
y(τ)−ω

T
y (τ)α̂(t)− β̂

T(t)ωu(τ)
)

= ωy(τ)y(τ)−ωy(τ)ω
T
y (τ)α̂(t)− (ωT

u (τ)⊗ωy(τ))vec(β̂ T(t)), (3.39)

by using the property vec(AXB) = (BT⊗A)vec(X) ([64]) we obtain

ωy(τ)β̂
T(t)ωu(τ) = vec(ωy(τ)β̂

T(t)ωu(τ)) = (ωT
u (τ)⊗ωy(τ))vec(β̂ T(t)).

Similarly, we have

ωu(τ)ε
T(t,τ) = ωu(τ)

(
yT(τ)− (ωT

y (τ)α̂(t))T−ω
T
u (τ)β̂ (t)

)
= ωu(τ)yT(τ)−ωu(τ)ω

T
u (τ)β̂ (t)− (ωu(τ)ω

T
y (τ))α̂(t), (3.40)

where (ωT
y (τ)α̂(t)) = α̂(t)Tωy(τ). Substituing (3.39) and (3.40) into (3.34), we rewrite the adap-

tive law as

˙̂α(t) = Pα

(
ηy(t)ΓTep(t)+Dα(t)−Hα(t)vec(β̂ T(t))−Ωα(t)α̂(t)

)
, α(0) = α0, (3.41a)

˙̂
β (t) = Pβ

(
ηu(t)eT

p (t)Γ+Dβ (t)−Hβ (t)α̂(t)−Ωβ (t)β̂ (t)
)
, β (0) = β0, t ≥ 0, (3.41b)

where Dα(t) ∈ Rn, Dβ (t) ∈ Rnm×p, Hα(t) ∈ Rn×nmp, Hβ (t) ∈ Rnm×np, Ωα(t) ∈ Rn×n, and
Ωβ (t) ∈Rnm×nm are defined as,

Dα(t),
∫ t

t−T
σ(t,τ)ωy(τ)y(τ)dτ, Dβ (t),

∫ t

t−T
σ(t,τ)ωu(τ)yT(τ)dτ,

Ωα(t),
∫ t

t−T
σ(t,τ)ωy(τ)ω

T
y (τ)dτ, Ωβ (t),

∫ t

t−T
σ(t,τ)ωu(τ)ω

T
u (τ)dτ,
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Hα(t),
∫ t

t−T
σ(t,τ)ωT

u (τ)⊗ωy(τ)dτ, Hβ (t),
∫ t

t−T
σ(t,τ)ωu(τ)ω

T
y (τ)dτ.

Note that since Ωα(t) ≥ 0 and Ωβ (t) ≥ 0, −Ωα(t)α̂(t) and −Ωβ (t)β̂ (t) play a role of damping

components that attenuate the high frequency content contained in the adaptive law (3.41), which

allows us to use high gain adaptation Pα , Pβ and still guarantee robustness.

Remark 3.3.2 The projection operator should be applied to all adaptive laws (3.22) or (3.34), to

ensure the boundedness of the estimated signals α̂(t), β̂ (t). Furthermore, β̂i j(t) needs to satisfy

the topological equivalence of the input u j(t) with respect to the output yi(t), such that

β̂i j(t),
[

β̂
(0)
i j (t) . . . β̂

(n−r)
i j (t) 0T

ri j−1

]T
∈Rn.

which can also be enforced using the projection operator.

Remark 3.3.3 If σ(τ) is chosen as

σ(τ),


0, if ‖ωy‖2 +‖ωy‖2 = 0;

κ1e−κ2(t−τ)

‖ωy(τ)‖2 +‖ωu(τ)‖2 , κ1 ≥ 0,κ2 ≥ 0, otherwise,
(3.42)

it follows from (3.23), (3.36) and (3.42) that

J(ε) =
∫ t

t−T
κ1e−κ2(t−τ)

‖y(τ)−ωT
y (τ)α̂(t)− β̂ T(t)ωu(τ)‖2

‖ωy(τ)‖2 +‖ωu(τ)‖2 dτ,

which is the cost function to estimate α and β using the least square with forgetting factor method.

According to Corollary 3.3.1, J(ε) converges to 0 as t→ ∞.

3.4 Controller Design

In this section, we will rewrite the predictor in the form of linear time varying (LTV) system,

and extend the control design framework in [10] to control this LTV system.
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3.4.1 Controller using Forward Riccati Differential Equation

It follows from (3.20) and (3.21) that the predictor dynamics can be obtained as

ẏp(t) =−kpyp(t)+η
T
y (t)α̂(t)+ β̂

T(t)(Au + kpInm)ωu(t)+ β̂
T(t)Buu(t)

=−kpyp(t)+η
T
y (t)α̂(t)+Cu(t)ωu(t)+Du(t)u(t), (3.43)

where

Cu(t), β̂
T(t)(Au + kpInm) ∈Rp×nm, Du(t), β̂

T(t)Bu ∈Rp×m.

Note that if the control inputs u j(t), j = 1, . . . ,m, have relative degree ri j ≥ 2 then Du(t) = 0p×m.

Now, consider the desired reference system defined in (3.3) and let er(t) , yp(t)− ym(t) be the

tracking error between the predictor and the reference system. It follows from (3.3) and (3.43) that

ėr(t) =−kp(yp(t)− ym(t))+η
T
y (t)α̂(t)+Cu(t)ωu(t)+Du(t)u(t)− (Am + kpIp)ym(t)−Bmr(t)

=−(kpIp +Kr)er(t)+Cu(t)ωu(t)+Du(t)u(t)−ϕd(t), (3.44)

where Kr ∈Rp×p,Kr > 0 and

ϕd(t),−Krer(t)−η
T
y (t)α̂(t)+(Am + kpIp)ym(t)+Bmr(t). (3.45)

The problem of driving er(t) to the origin therefore reduces to design a full state feedback controller

such that the following linear system

ω̇u(t) = Auωu(t)+Buu(t), (3.46a)

ϕ(t) =Cu(t)ωu(t)+Du(t)u(t), (3.46b)

tracks the desired trajectory ϕd(t). Note that this system is linear time varying, even though

C(t), D(t) and α̂(t), β̂ (t) will converge to constants as ep → 0. If the matrices C(t) and D(t)

vary slowly in time and converge to constants, the LQR controller can be applied at each frozen

time t. However, when parameters change rapidly, this system is linear time varying and since

the system parameters are not known ahead in time, it is not suitable to apply the LQR controller
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using the backward Riccati differential equation ([49]). In the following section, we will extend

the controller for LTV systems using the Forward Differential Riccati equation (FDRE) developed

in [49].

Let e2(t), ϕ(t)−ϕd(t), and define the filter of e2(t) as

ẋI(t) =−ΛxI(t)+Ωe2(t), xI(0) = xI0, t ≥ 0, (3.47)

where Λ ∈Rp×p, Λ≥ 0 and Ω ∈Rp×p, Ω≥ 0. The dynamics (3.46) can be augmented to include

(3.47) as follows

ẋa(t) =

 Au 0nm×p

ΩCu(t) −Λ

 ωu(t)

xI(t)

+
 Bu

ΩDu(t)

u(t)+

 0nm

−Ωϕd(t)


= Aa(t)xa(t)+Ba(t)u(t)+ϑ(t), (3.48)

where xa(t),
[

ωT
u (t) xT

I (t)
]T
∈Rna , na , nm+ p, ϑ(t) = [0T

nm −ϕT
d (t)]

T and obvious defini-

tions of Aa(t) ∈Rna×na and Ba(t) ∈Rna×m.

Proposition 3.4.1 Let R(t) : [t0,∞)→ Rm×m, R(t) > 0 and Q(t) : [t0,∞)→ Rna×na, Q(t) > 0 be

design bounded matrices. Assume that the system (Aa(t), Ba(t)) is uniformly controllable and the

following state dependent Riccati differential equation

Ṗ(t) =P(t)(Aa(t)+Ab(t))+(Aa(t)+Ab(t))TP(t)+Q(t)−ε(t)P(t)Ba(t)R−1(t)BT
a (t)P(t), (3.49)

with P(t0) = P0 > 0 admits solution P(t)> 0 over [t0,∞), where

Ab(t) = 2(x†
a

T
(t)ẋT

a (t)− ẋa(t)x†
a(t)). (3.50)

If Q(t), R(t) and ε(t)> 0 satisfies

Q(t)+(2− ε(t))P(t)Ba(t)R−1(t)BT
a (t)P(t)> σ Ina , (3.51)
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where σ > 0, then the feedback control

u(t) =−Kf(t)xa(t), Kf(t) = R−1(t)BT
a (t)P(t), (3.52)

guarantees that the filtered tracking error xI(t) is uniformly ultimately bounded.

Proof First, consider the nominal system (3.48) without disturbance ϑ(t)

ẋa(t) = Aa(t)xa(t)+Ba(t)u(t). (3.53)

and the following transformation matrices

T (xa), Ina−2xa(t)x†
a(t) ∈Rna×na , QT (xa, t), T (xa)Q(t)T (xa) ∈Rna×na, (3.54)

AT (xa, t),−T (xa)Aa(t)T (xa) ∈Rna×na , BT (xa, t), T (xa)Ba(t) ∈Rna×m. (3.55)

Next, define the controller as

u(t) = R−1(t)BT
T (xa, t)Pf(t)xa(t), (3.56)

where Pf(t) is the solution of the FDRE

Ṗf(t) =−Pf(t)AT (xa, t)−AT
T (xa, t)Pf(t)+QT (xa, t)− ε(t)Pf(t)BT (xa, t)R−1(t)BT

T (xa, t)Pf(t),

(3.57)

with Pf(t0) = Pf0 > 0. Assume that (3.57) admits solution Pf(t)> 0 over [t0,∞), and R(t), Q(t),σ

and ε(t)> 0 satisfies

QT (xa, t)+(2− ε(t))Pf(t)BT (xa, t)R−1(t)BT
T (xa, t)Pf(t)> σ Ina, (3.58)

then, according to the Lemma 3.2.4, xa(t) is exponentially stable.

Secondly, consider the closed loop system (3.48) with the feedback controller (3.56). Since we

have proved that the nominal closed-loop system (3.53) with the feedback control (3.56)

ẋa(t) = AK(t)xa(t), AK(t) = Aa(t)+Ba(t)R−1BT (xa, t)Pf(t),
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is globally exponentially stable, it follows from Lemma 3.2.3 that for Qb(t) ≥ c1Ina > 0, t ≥ 0,

there exists Pb > 0, such that 0 < c2Ina < Pb < c3Ina and satisfies the Backward Differential Riccati

equation

−Ṗb(t) = AT
K(t)Pb(t)+Pb(t)AK(t)+Qb(t). (3.59)

Now, differentiating the Lyapunov function candidate

V (xa) = xT
a (t)Pb(t)xa(t), (3.60)

along the trajectories defined by (3.48) and (3.59), yields

V̇ (xa) =−xT
a (t)Qb(t)xa(t)+2xT

a (t)Pb(t)ϑ(t). (3.61)

Next, we introduce the following inequalities

xT
a (t)Qb(t)xa(t)≥

λmin(Qb(t))
λmax(Pb(t))

V (xa), (3.62)

and

2xT
a (t)Pb(t)ϑ(t)≤ λmax(Pb(t))

(
‖xa(t)‖2

ρ(t)
+ρ(t)‖ϑ(t)‖2

)
≤ λmax(Pb(t))

ρ(t)λmin(Pb(t))
V (xa)+ρ(t)λmax(Pb(t))‖ϑ(t)‖2, (3.63)

where ρ(t) ∈ C 0, ρ(t)> λ 2
max(Pb(t))/(λmin(Qb(t))λmin(Pb(t))) is a bounded function so that

∆(t),
λmin(Qb(t))
λmax(Pb(t))

− λmax(Pb(t))
ρ(t)λmin(Pb(t))

> 0.

Finally, substituting (3.62) and (3.63) into (3.61), we obtain

V̇ (xa)≤−∆(t)V (xa)+d(t),

where d(t), ρ(t)λmax(Pb(t))‖ϑ(t)‖2. Hence, whenever

V (xa)≥
d(t)
∆(t)

=V0(t),

then V̇ (xa) ≤ 0. Since all the signals ϑ(t), Pb(t), Qb(t) are uniformly bounded, ‖xa(t)‖ and thus
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‖xI(t)‖ are uniformly ultimately bounded

‖xI(t)‖2 ≤ V0(t)
λmin(Pb)

−‖ωu(t)‖2.

Next, we need to show that the controller given by (3.56) and (3.57) is equivalent to the con-

troller defined by (3.52) and (3.49). Using the following property of the transform matrix defined

in (3.54)

T (xa)xa(t) =−xa(t), T−1(xa) = T (xa) = T T(xa), (3.64)

and substituting (3.55) into (3.56), the controller in (3.56) can be rewritten as follow

u(t) = R−1(t)BT
a (t)T (xa)Pf(t)

(
−T (xa)xa(t)

)
=−R−1(t)BT

a (t)P(t)xa(t), (3.65)

where

P(t), T (xa)Pf(t)T (xa). (3.66)

Since the system is assumed to be controllable, it is well known that for the giving pair (Q(t), R(t))

there exits an unique optimal LQR control

ub(t) =−R−1(t)BT
a (t)Pb(t)xa(t), (3.67)

where Pb(t) is computed backward if Aa(t),Ba(t) are known ahead in time. Comparing (3.65) and

(3.67), if ub(t)≡ u(t), then Pb(t)≡P(t). Hence, the assumption that there exists a positive definite

bounded matrix P(t) that satisfies (3.49) is verified.

Multiplying both sides of the condition (3.58) by T (xa) yields

T (xa)(T (xa)Q(t)T (xa)+(2−ε(t))Pf(t)T (xa)Ba(t)R−1(t)BT
a (t)T (xa)Pf)T (xa)>σT (xa)T (xa), (3.68)

Substituting (3.55) and (3.58) into (3.68) to obtain

Q(t)+(2− ε(t))P(t)Ba(t)R−1(t)BT
a (t)P(t)> σ Ina,

which is the condition (3.51) given in the Proposition 3.4.1. Furthermore, differentiating P(t)
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yields

Ṗ(t) = Ṫ (xa)Pf(t)T (xa)+T (xa)Ṗf(t)T (xa)+T (xa)Pf(t)Ṫ (xa). (3.69)

In the following, we will simplify the notation by not explicitly specifying all of the dependencies.

It follows from (3.55), (3.64) and (3.57) that

T (xa)Ṗf(t)T (xa) = T (−Pf(−TAaT )−(−TAaT )TPf +T QfT−ε(t)Pf(T Ba)R−1(BT
a T )Pf)T

= P(t)Aa(t)+AT
a (t)P(t)+Q(t)− ε(t)P(t)Ba(t)R−1(t)BT

a (t)P(t), (3.70)

Moreover, it follows from (3.64) that

T (xa)Pf(t)Ṫ (xa)+ Ṫ (xa)Pf(t)T (xa) = T (xa)Pf(t)T (xa)T (xa)Ṫ (xa)+ Ṫ (xa)T (xa)T (xa)Pf(t)T (xa)

= P(t)Ab(t)+AT
b (t)P(t), (3.71)

where Ab(t), T (xa)Ṫ (xa) = (Ṫ (xa)T (xa))
T. It can be verified that

Ab(t) = 2(x†
a

T
(t)ẋT

a (t)− ẋa(t)x†
a(t)). (3.72)

Hence, substituting (3.70), (3.71), (3.72) into (3.69) to obtain the updated law of P(t) defined in

(3.49)

Ṗ(t) = P(t)(Aa(t)+Ab(t))+(Aa(t)+Ab(t))TP(t)+Q(t)− ε(t)P(t)Ba(t)R−1(t)BT
a (t)P(t),

where Q(t), R(t) and ε(t) satisfy the condition (3.51), which concludes the proof. �

Remark 3.4.1 It follows from (3.44) and (3.47) that

er(s) =
e2(s)

sIp + kpIp +Kr
=

sIp +Λ

sIp + kpIp +Kr
Ω
−1xI(s) = H(s)Ω−1xI(s), (3.73)

where H(s), (sIp+Λ)/(sIp+kpIp+Kr). Since H(s) is stable proper, it follows from lemma (3.2.1)

that

‖er(t)‖L∞
≤L1H(s)‖Ω−1xI(t)‖L∞

, (3.74)



45

which proves that er(t) is uniformly ultimately bounded. If Kr = diag([Kr1, ...,Kr p]), Λ= diag([Λ1, ...,Λp]),

and Ω = diag([Ω1, ...,Ωp]), it follows from (3.73) that

‖eri(t)‖L∞
≤Ω

−1
i L1Hi(s)‖xIi(t)‖L∞

, Hi(s) =
s+Λi

s+ kp +Kri
, (3.75)

where i = 1, . . . , p. When Λ = kpIp +Kr, then er(t) = Ω−1xI(t).

3.4.2 Actuator Amplitude and Rate Saturation constraints

In order to guarantee asymptotic stability of the closed-loop tracking error dynamics in the face

of amplitude and rate saturation constraints, an approach to modify the reference signal based on

[50] is provided in this section. Let umax>0 be the maximum control magnitude, ∆umax>0 be the

maximum change of u(t) in a time interval ∆t, and ud(t) be the desired control signal obtained by

(3.56). The saturation constraints |ui(t)|≤umaxi and |u(t)−u(t−∆t)|≤∆umax are guaranteed by

u(t) = Sat(û(t),umax), (3.76a)

ûi(t) = ui(t−∆t)+Sat(udi(t)−ui(t−∆t),∆umax), (3.76b)

where ui(t) and udi(t) are the ith component of u(t) and ud(t), i = 1, . . . ,m, respectively.

By partitioning the matrix Kf(t) = [Kωu(t) KI(t)] ∈Rm×na , where Kωu(t) ∈Rm×nm and KI(t) ∈

Rm×p, the desired control signal given in (3.52) can be rewritten as

ud(t) = Kf(t)xa(t) = Kωu(t)ωu(t)+KI(t)xI(t). (3.77)

Eq.(3.77) indicates that when ud(t) violates the saturation constrains, the error xI(t) can be modi-

fied so that ud(t) is no longer saturated. Using this approach, the control law needs not be altered

and the saturation constraints can still be satisfied. It follows from (3.47) that the reference signal

needs to be adjusted to modify ϕd(t) and xI(t). For ease of presentation, 2 cases are considered

i) when all control inputs have relative degree 1 ( ri j = 1).

ii) when no control inputs have relative degree 1 (ri j ≥ 2, i = 1, . . . p, j = 1, . . . ,m).
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It is easy to combine both methods if the system has both types by separating the control indexes.

For the following derivations, define the variables

Pa(t), P(t)Aa(t)+AT
a (t)P(t)− ε(t)P(t)Ba(t)R−1(t)BT

a (t)P(t), (3.78)

Pb(t), P(t)Ab(t)+Ab(t)TP(t). (3.79)

It can be verified that

Ṗ(t) = Pa(t)+Q(t)+Pb(t). (3.80)

Theorem 3.4.1 Consider the linear system (3.2), the predictor (3.21), the reference system (3.3),

and the controller (3.56). For a given desired reference input rd(t), consider the modified reference

dynamics ˙̄ym(t) along with the modified reference input r(t)

˙̄ym(t) = ϕ̄d(t)+Krer(t)+η
T(t)α̂(t)− kpym(t), t ≥ 0, (3.81a)

r(t) = B−1
m ( ˙̄ym(t)−Am(t)ym(t)), (3.81b)

where ϕ̄d(t) is the modified signal of ϕd(t) due to the saturation of u(t) defined in (3.76).

Case 1: When all the relative degrees ri j = 1, i = 1, . . . p, j = 1, . . . ,m

ϕ̄d(t) =Cu(t)ωu(t)+Du(t)u(t). (3.82)

Case 2: When all the relative degrees ri j ≥ 2, i = 1, . . . p, j = 1, . . . ,m

ϕ̄d(t) = ϕ(t)−Ω
−1( ˙̄xI(t)+Λx̄I(t)), (3.83)

x̄I(t) = K†
I (t)(u(t)−Kωu(t)ωu(t)), (3.84)

˙̄xI(t) =−S†
I (t)(F(t)+Sωu(t)ω̇u(t)), (3.85)

where F(t) ∈Rm and S(t), [Sωu SI] ∈Rm×na , Sωu ∈Rm×nm, SI ∈Rm×p are defined as

F(t), Ṙ−1(t)BT
a (t)P(t)xa(t)+R−1(t)BT

a (t)(Pa(t)+Q(t))xa(t), (3.86)

S(t), R−1(t)BT
a (t)(2(P(t)xa(t)x†

a(t)− xa(t)x†
a(t)P(t))−P(t)+2x†

a(t)P(t)xa(t)Ina), (3.87)

Then the control law (3.56) along with the saturation (3.76), based on the predictor (3.21), and the
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reference system given by (3.3) and (3.81), guarantees that

i) The tracking error e(t), y− ym(t) are uniformly ultimately bounded.

ii) |ui(t)| ≤ umaxi and |u(t)−u(t−∆t)| ≤ ∆umax, i = 1, . . . ,m.

Proof Statement i) is a direct consequence of Theorem 3.3.1 or Corollary 3.3.1 and Proposition

3.4.1 with r(t) = rd(t), if the actuator amplitude and rate saturations constraints are not violated.

To prove ii), for Case 1, it follows from (3.46b) and (3.47) by setting e2(t) = 0, we obtain ẋI =

−ΛxI(t) and

ϕ̄d(t) = ϕ̄(t) =Cu(t)ωu(t)+Duu(t),

which guarantees that xI(t) is exponentially stable until the control is no longer saturated.

For Case 2, note that when the control magnitude is saturated, the control rate u̇(t) = 0. Therefore,

it follows from (3.52) and (3.80) that

u̇(t) =−Ṙ−1(t)BT
a P(t)xa(t)−R−1(t)BT

a ((Pa(t)+Q(t)+Pb(t))xa(t)+P(t)ẋa(t)) = 0. (3.88)

where Pa(t) and Pb(t) are defined in (3.78) and (3.79). In the following, we will simplify the

notation by not explicitly specifying all of the dependencies. It follows from (3.50) and (3.79) that

Pbxa = 2(P(x†
a

T
ẋT

a − ẋax†
a)+(ẋax†

a− x†
a

T
ẋT

a )P)xa = 2(P(x†
a

T
xT

a ẋa− ẋa)+ ẋax†
aPxa− x†

a
T
xT

a Pẋa)

= (2(Px†
a

T
xT

a−x†
a

T
xT

a P)−2P+2x†
aPxaIna)ẋa = (2(Pxax†

a−xax†
aP)−2P+2x†

aPxaIna)ẋa. (3.89)

Therefore, from (3.87) and (3.89) we obtain

R−1(t)BT
a (t)(Pb(t)xa(t)+P(t)ẋa(t)) = S(t)ẋa(t) = Su(t)ω̇u(t)+SI(t) ˙̄xI(t), (3.90)

It follows from (3.86) and (3.90) that (3.88) can be rewritten as

F(t)+Su(t)ω̇u(t)+SI(t) ˙̄xI(t) = 0. (3.91)

Therefore, (3.85), (3.84) and (3.83) are directly obtained from (3.91), (3.77) and (3.47) respec-

tively. Finally, (3.81) is inferred from (3.47) and (3.45), which concludes the proof. �
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3.5 Implementation

Figure 3.1 presents the control framework, and the Fig 3.2 and the Fig 3.3 illustrate the predictor

and the controller structures respectively. The adaptive laws in Theorem 3.3.1 and Corollary 3.3.1

can be rewritten in a general form as follow

˙̂α(t) = Pα

(
ηy(t)ΓTep(t)+Mα(t)

)
, (3.92a)

˙̂
β (t) = Pβ

(
ηu(t)eT

p (t)Γ+Mβ (t)
)
, (3.92b)

where Mα(t) and Mβ (t) are the modification terms given in Table 3.1

Table 3.1: Modification Terms of the Adaptive Laws in Theorem 3.3.1

Theorem 3.3.1 Corollary 3.3.1

Mα(t) = σ(t)ωy(t)ε(t), Mα(t) =
∫ t

t−T σ(t,τ)ωy(τ)ε(t,τ)dτ,

Mβ (t) = σ(t)ωu(t)εT(t), Mβ (t) =
∫ t

t−T σ(t,τ)ωu(τ)ε
T(t,τ)dτ,

Plant

Filter ωu(t) Filter ωy(t)

Predictor

Controller Reference

u(t) y(t)

ωu(t) ωy(t)

α̂(t) β̂ (t) ηy(t) yp(t)ωu(t)

er(t) −
ym(t)

r(t)

Adaptive Predictor Based Controller

Figure 3.1: Adaptive Predictor based controller for linear systems block diagram
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u(t) y(t)

y(t)

+

ωu(t) ωy(t)

ηy(t),ηu(t)

yp(t)

−

α̂(t), β̂ (t)

ep(t)

Predictor

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)

ω̇ui(t) = Afωui(t)+Bfui(t)
ωu(t) = [ωu

T
1 (t) · · ·ωu

T
m(t)]

T
ω̇yi(t) = Afωyi(t)−Bfyi(t)
ωy(t) = [ωy1(t) · · ·ωy p(t)]

ηy(t) = (Af + kpIn)ωy(t)−BfyT(t)
ηu(t) = (Au + kpInm)ωu(t)+Buu(t)

ẏp(t) =−kpyp(t)+ηT
y (t)α̂(t)+ β̂ T(t)ηu(t)

∫
˙̂α(t) = Pα

(
ηy(t)ΓTep(t)+Mα(t)

)
,

˙̂
β (t) = Pβ

(
ηu(t)eT

p (t)Γ+Mβ (t)
)
,

∫
Mα(t), Mβ (t) (Table 3.1) ε(t) = y(t)−ωT

y (t)α̂(t)− β̂ T(t)ωu(t)

Figure 3.2: Predictor’s structure for linear systems

xa(t) = [ωT
u (t), xT

I (t)]
T,

ud(t) = R−1(t)BT
a (t)P(t)xa(t).

Saturated?
u(t) (Equ.(3.76)).

ϕ(t) =Cu(t)ωu(t)+Du(t)u(t)
ϕd(t) (Equ.(3.45)).

ẏm(t) = Amym(t)+Bmr(t).
ϕ̄d(t) (Eqn.(3.82) or Equ.(3.83)-(3.87))

˙̄ym(t) = ϕ̄d(t)+Krer(t)+ϑ(t)−Kpym(t).

ẋI(t) =−ΛxI(t)+Ω(ϕ(t)−ϕd(t)).
∫

ẋa(t) = [ω̇T
u (t), ẋT

I (t)]
T.

Ab(t) = 2(x†
a

T
(t)ẋT

a (t)− ẋa(t)x†
a(t)).

Ṗ(t) (Eqn.(3.49))
∫

No

Yes

u(t)

ϕd(t)

xI(t)

P(t)

Control Saturation
& Modified Reference

FRDE Control Gain

Figure 3.3: Controller’s structure
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3.6 Simulation

Example 3.6.1 Consider designing a controller for the following LTI system with unknown pa-

rameters and unmeasured state

ẋ(t) =


−50 2 12

−80 −12 28

−20 −8 2

x(t)+


0 0

0 2

2 3

u(t), x(0) = 03,

y(t) =

 1 0 0

0 1 0

x(t),

to track the reference system (3.3) with parameters Am =−2I2, Bm = 2I2 and rd(t) = [−5sin(4t +

π/4) 2sin(3t)]T. We only know the relative degree r11 = r12 = 2; r21 = 2, r22 = 1.

To design the predictor, we chose a 3nd order filter defined in (3.10) with parameters

Af =


0 1 0

0 0 1

−3375 −675 −45

 , Bf =


0

0

1

 .

The predictor parameters are kp = 10, Pα = 102I3, Pβ = diag([103I5, 0.5]). The delay time

T = 1(s), σ(τ) is given in (3.42) with κ1 = 1,κ2 = 0. The initial conditions are y(0) = yp(0) =

02, ym(0)= [0.5 0.2]T, ωy(0)=ωu(0)= 06, α̂s(0)= [2400 500 12]T, β̂11(0)= [380 30 0]T, β̂12(0)=

[450 50 0]T, β̂21(0) = [900 60 0]T, β̂22(0) = [1500 160 1.3]T.

The augmented system has Λ = 02×2 and Ω = diag([50, 80]). The FDRE controller parameters

are Kr = 10I2, Q(t) = diag([I6, 200, 200])−2P(t), R= I2, ε = 12 and P0 = 10−5I8. The saturation

parameters are umax = 100 and ∆umax = 2. Figure (3.4) illustrates the tracking result and the

control effort. Note that α̂T
s (t)ωy(t)+ β̂ T(t)ωu(t)→ y(t) and y(t), yp(t) all converge to ym(t) as

t→ ∞.

Example 3.6.2 Consider the 3D Quanser helicopter, whose dynamics are described by ([65])
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Figure 3.4: The system output, the predictor and the reference trajectories (top and middle) and
the control effort (bottom) using the FDRE controller

η̇(t) = J(η(t))ν(t), η(0) = η0, t ≥ 0 (3.93)

ν̇(t) = Θ1ϕ(η(t))+Θ2τ(t), ν(0) = ν0, (3.94)

where η(t), [φ(t) θ(t) ψ(t)]T ∈R3 is the measured output where φ(t), θ(t), ψ(t) are the roll,

elevation and the travel angles respectively, ν(t) ∈ R3 are the unmeasured states, and τ(t) ∈ R2

is the control input applied to the system, and

J(η),


1 tan(θ)sin(φ) tan(θ)cos(φ)

0 cos(φ) −sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)

 , φ(η),

 cos(θ)cos(φ)

−cos(θ)sin(φ)

 ,

Θ1 =


−2.6828 3.2966

−9.8298 −9.9455

0 −20

 , Θ2 =
1
2


0.25 −0.25

0.575 0.575

0 0


Note that system dynamics and parameters are only used to simulate the nonlinear plant. We only

know the relative degree ri j = 2, i= 1,2, j = 1,2. When the control is set at τ∗= [27.8265 6.3641]T,
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the system stays at the equilibrium point x∗ = [ηT(t) νT(t)]T = 06.

In order to apply the proposed controller, we assume that the system dynamics can be approxi-

mated by a linear model in a small neighbor hood of x∗

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, t ≥ 0,

y(t) =Cx(t)

where A ∈R6×6, B ∈R6×2 and C ∈R3×6 are unknown constant matrices, and u(t) = τ(t)− τ∗ ∈

R2 is the control signal.

The autoregressive vectors are constructed using a 6th order filter defined in (3.10) with parameters

Af ,

 05 I5

−λ5 ... −λ0

 ∈R6×6, Bf ,

 05

1

 ∈R6,

where det(sIn−Af) = sn +λ5sn−1 + ...+λ1s+λ0 = (s+ 5)6. The predictor parameters are kp =

10, Pα = I6,Pβ = 10I12. The delay time T = 1(s), σ(τ) is given in (3.42) with κ1 = 1,κ2 = 0. The

initial conditions are y0 =
π

180 [2 −27 0]T, yp(0) = π

180 [2 −20 0]T and

α̂
T(0) = [−λ0 . . .−λ5] = [−15625 −18750 −9375 −2500 −375 −30],

β̂
T(0) =


0 0 0 0 0.2 0 0 0 0 0 −0.2 0

0 0 2 0 0.2 0 0 0 −0.2 0 0.2 0

0 0 2 0 0 0 0 0 −2 0 0 0

 .
The projector operator boundary for α̂(t) and β̂ (t) are setup at α̂max,min = α̂(0)± 0.2α̂(0) and

β̂max,min = β̂ (0)±0.5(β̂ (0)+0.1I3×12.

First, we aim to control only the pitch and elevation angle [φ(t) θ(t)]T of the helicopter to

track the output ym = [φd(t) θd(t)]T of the reference system (3.3) with Am = −I2,Bm = I2 and the

reference signal rd(t) = π

180 [10sin(0.4πt) 15sin(0.2πt)]T.

The augmented system has Λ = diag([10, 10]) and Ω = diag([1000, 500]). The FDRE con-

troller parameters are Kr =−5I2, Q(t) = diag([I12, 50, 50])−P(t), R= 0.5I2, ε = 20 and P0 = I14.
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Figure 3.5: The system output y(t),the predictor output yp(t), the modified reference ȳm(t) and the
reference signals ym(t) (top and middle) and the control effort (bottom) using the FDRE controller

The saturation parameters are umax = 6 and ∆umax = 1. Figure (3.5) illustrates the tracking result

and the control effort applied to the nonlinear model (3.93). In this example, we control two out-

puts by using two actuators; since the system is square, we can achieve the exact tracking result

for both outputs simultaneously.

Secondly, we attempt to control the system’s output to track the desired trajectory ym = [φd(t) θd(t)

ψd(t)]T, using the reference system (3.3) with Am =−I3,Bm = I3 and

rd(t) =
π

180
[0 10sin(0.08πt) 90sin(0.12πt)]T.

For this situation, we aim to control 3 outputs of the system simultaneously by using only two

actuators, the system is an under-actuated, which implies that there is a constraint between 3

feasible outputs [φd(t) θd(t) ψd(t)]. Therefore, an arbitrary selection of the desired outputs is not

necessarily achievable. In order to handle such constraint, different entries in the weight matrices

Ω and Q(t) are selected depending on each output’s priority.



54

Figure 3.6: The system output y(t), the predictor output yp(t), the modified reference ȳm(t) and the
reference signals ym(t) (top and middle) and the control effort (bottom) using the FDRE controller.

The controller is designed by choosing the parameters as follow. The delay time T = 0.05(s),

σ(τ) is given in (3.42) with κ1 = 1,κ2 =−5. The augmented system has Λ = diag([10 10 18]). The

FDRE controller parameters are Kr =−5I3, Q(t) = diag([I12, 50, 50, 100])−15P(t), R = I2, ε =

12 and P0 = I15. The saturation parameters are umax = 2 and ∆umax = 1. Figure 3.6 illustrates the

tracking result and the control effort applied to the nonlinear system.

Note that although the plant, the predictor and the reference started at different initial condi-

tions, they all converge at the end. For the second case, worth noting is that the tracking per-

formance of the pitch angle φ(t) is not as good as that of the other states. This is due to our

particular choice of weights in matrices Ω and Q(t), which penalizes the tracking error of θ(t)

and ψ(t) more than the tracking error of φ(t). In the mean time, the tracking error of roll φd(t) is

small and bounded, with the maximum error is about 1o.
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3.7 Experimental Setup and Result

The controller performance is further studied by real time implementation on the Quanser 3-

DOF helicopter depicted in Fig 3.7.

Figure 3.7: The 3D helicopter prototype

The helicopter body is mounted at the end of an arm and is free to rotate around the arm (pitch),

and the arm is free to rotate around the y-axis (elevation) and z-axis (travel) at the pivot point O.

Two DC motors with attached propellers generate driving forces for the helicopter. Hence, the

system has 3 outputs, i.e. the pitch φ(t), the elevation θ(t), the travel ψ(t) angles, all of which

are measured via optical encoders, and has 2 control inputs v(t) = [vf(t), vb(t)]T where vf, vb are

the voltages applied to the front and the back motor respectively. The controller is implemented

using Simulink running on a digital computer with a Pentium(R) D 3.4Ghz CPU, and the encoder

sampling frequency is 1kHz.

The system model is unknown, but we assume that it has a minimal representation consisting

of 6 states (n = 6), and relative degrees ri j = 2, i = 1,3, j = 1,2. When the control is set at

v∗ = [12.5 12.5](Vol), the system stays at the equilibrium point x∗ = 06. We make the same

assumptions and use the same filters as in Example 5.2.
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Figure 3.8: The time evolution of y(t), yp(t), and ym(t) for the parameters described in Set 1

3.7.1 Tracking Pitch and Elevation

First, we aim to control only the pitch and elevation angle [φ(t) θ(t)]T of the helicopter to track

the output ym = [φd(t) θd(t)]T of the reference system (3.3) with Am =−I2,Bm = I2 and the refer-

ence signal

rd(t) =
π

180
[5sin(0.08πt) 10sin(0.06πt)].

Figure 3.8 demonstrates the controller’s tracking performance with the initial conditions and con-

trol parameters selected as in Set (1)

Set 1: The predictor parameters are kp = 10, Pα = I6,Pβ = 10I12. The delay time T = 0.01(s),

σ(τ) is given in (3.42) with κ1 = 1,κ2 = 0. The initial conditions are y0 = π

180 [2 − 27 0]T, and

yp(0) = π

180 [−5 −25 0]T and

α̂
T(0) = [−λ0 . . .−λ5] = [−15625 −18750 −9375 −2500 −375 −30],

β̂
T(0) =


0 0 0 0 0.07 0 0 0 0 0 −0.07 0

0 0 0 0 0.1 0 0 0 0 0 0.1 0

0 0 −1 0 0 0 0 0 1 0 0 0

 .
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The projector operator boundary for α̂(t) and β̂ (t) are setup at α̂max,min = α̂(0)± 0.2α̂(0) and

β̂max,min = β̂ (0)±0.5(β̂ (0)+0.1I3×12.

The augmented system has Λ = diag([30, 10]) and Ω = diag([104, 104]). The FDRE controller

parameters are Kr = diag([−2,2]), Q(t) = diag([I12, 100, 100])−2P(t), R= I2, ε = 2 and P0 = I14.

Figure 3.8 shows that although the plant, the predictor and the reference started at different initial

conditions, they all converge to each other.

3.7.2 Tracking 3 DOF

Secondly, we attempt to control the system’s output to track the desired trajectory ym = [φd(t) θd(t)

ψd(t)]T, using the reference system (3.3) with Am = −I3,Bm = I3 and different reference inputs

rd(t). Figure 3.9 to Fig 3.11 demonstrate the control’s tracking performance using the predictor

with parameters selected in Set (1), and different control gains for different reference inputs.

Figure 3.9 demonstrates the tracking performance for a reference input r(t) = 03, under an

impulse disturbance generated by a random external force at time t = 44(s), depicted by a vertical

line, with the control gains Kr = 2I3 and Λ = diag([30, 16, 18]), Ω = diag([2.5, 2, 2.7]× 104),

Q(t) = diag([I12, 30, 30, 30]), R = I2, ε = 1 and P0 = I15. The saturation parameters are umax =

[2 2].

Figure 3.10 illustrates the controller’s tracking performance for the reference inputs

r(t) =
π

180
[0 0 20sin(0.12πt)]T,

with the control gains Kr = diag([2, 2, 4]) and Λ = diag([35, 16, 18]), Ω = diag([12, 2.5, 16]×

104), Q(t) = diag([I12, 30, 50, 50]), R = I2, ε = 1 and P0 = I15. The saturation parameters are

umax = [4 4].

Finally, Fig 3.11 depicts the experimental tracking results for the reference input

r(t) =
π

180
[0 10sin(0.08πt) 30sin(0.12πt)]T,
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Figure 3.9: The time evolution of y(t), yp(t), and ym(t) under a random impulse disturbance

Figure 3.10: The time evolution of y(t), yp(t), and ym(t) for r(t) = π

180 [0 0 20sin(0.12πt)]T

with the control gains Kr = diag([2, 2, 4]) and Λ= diag([35, 16, 18]), Ω= diag([10, 8, 20]×104),

Q(t) = diag([I12, 30, 50, 50]), R = I2, ε = 1 and P0 = I15.

Worth noting is that the tracking performance of the pitch angle φ(t) is not as good as that of
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Figure 3.11: The time evolution of y(t), yp(t), and ym(t) for the reference input
r(t) = π

180 [0 10sin(0.08πt) 30sin(0.12πt)]T.

Figure 3.12: The time evolution of y(t) and ym(t) using the LQR controller

the other states. This is due to our particular choice of different entries in the matrix M, the gains
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Figure 3.13: The time evolution of u(t) using the proposed controller (upper) and the LQR con-
troller (lower)

Kr and Q, R, which penalizes the tracking error of θ(t) and ψ(t) more than the tracking error of

φ(t).

We also compare the performance of the proposed adaptive controller with the LQR controller

provided by the Quanser, with uLQR(t) = Kx(t), where

K =

 13.21 37.67 −11.50 4.77 20.95 −16.10 10 −1

−13.21 37.67 11.50 −4.77 20.95 16.10 10 −1

 ,
x(t) =

[
φ(t) θ(t) ψ(t) φ̇(t) θ̇(t) ψ̇(t)

∫ t

0
eθ (τ)dτ

∫ t

0
eψ(τ)dτ

]T

.

where eθ (τ), θ(τ)−θm(τ) and eψ(τ), ψ(τ)−ψm(τ).

Figure 3.12 depicts the tracking performance using such LQR controller for the same desired

trajectory as in Fig 3.11. Figure 3.13 depicts the corresponding control input for the tracking task

using the proposed controller and the control input obtained with the LQR controller.
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Figure 3.11 and Fig 3.12 show that in general the proposed adaptive controller can yields bet-

ter performance than the LQR controller. Furthermore, it can be seen from the Fig 3.13 that

the control signal using LQR controller is very noisy due to the numerical derivatives to obtain

[φ̇(t) θ̇(t) ψ̇(t)]. The proposed control’s input is less noisy but still chattering, which can be im-

proved by further tuning. Nevertheless, the controller tracking performance is in general satisfying.

3.8 Conclusion

This chapter presents a novel output feedback control for a class of unknown linear systems.

The algorithm relies on an adaptive predictor, which can predict the system output for any admis-

sible input by using the output and input prior history. The only required knowledge about the

system is the relative degree in order to ensure the topological equivalence between the predictor

and the plant. The prediction error is proved to be exponentially stable using the Lyapunov direct

method. From that, any available control algorithms that can drive the predictor to track the tra-

jectories can be applied to the original system and simultaneously drive the plant output to also

converge to the desired trajectories. We adopt the FRDE method for our tracking task. In addition,

actuator amplitude and rate saturation constraints are enforced by using the modified reference

trajectory method. The proposed controller was experimentally tested on the Quanser helicopter

and yielded satisfying results. The next chapter will incorporate disturbances in the system and

generalization to nonlinear systems.



Chapter 4

Adaptive Predictor-Based Output Feedback

Control for a Class of Unknown MIMO

Nonlinear Systems

The following result was presented at the American Control Conference 2015 ([66]) and object

of an article submitted to Journal of Intelligent and Robotic Systems.

4.1 Introduction

In this chapter, the problem of characterizing adaptive output feedback control laws for a general

class of unknown MIMO nonlinear systems is addressed. In particular, the control method for

linear systems presented in the previous chapter is extended to the nonlinear case. Following

the same design philosophy, we first construct an output predictor capable to predict the system

output for all admissible input signals. Using this approach, the problem of controlling a nonlinear

system with unknown dynamics and unmeasurable full-state reduces to design a controller for

the predictor, which is a virtual system whose dynamics and state are all known. Similar to the

62
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previous chapter, it is then shown that the tracking task can be achieved by designing a tracking

controller for a linear time varying system, and the same Forward Riccati Differential Equation

controller can be implemented. Uniform ultimately boundedness of the prediction error and the

tracking error are proved based on the Lyapunov’s direct method.

This chapter is organized as follows. Section 4.2 establishes the mathematical background

and the problem formulation. In Section 4.3, the output predictor for a class of MIMO nonlinear

systems is derived. Design of the control algorithm for the predictor in the presence of actuator

amplitude and rate saturation constraints is then presented in Section 4.4. Section 4.5 summarizes

the framework to implement the algorithm. The control effectiveness is proved by simulation in

Section 4.6. Section 4.7 further provides the experimental results in implementing the algorithm

on a helicopter. Finally, Section 4.8 concludes the chapter.

4.2 Mathematical Preliminaries

In this section, we establish the control problem, notations and assumptions used later in the

paper. Consider the following nonlinear MIMO system G

ẋ(t) = f (x(t),u(t), t) x(0) = x0, t ≥ 0, (4.1a)

y(t) =Cx(t), (4.1b)

where x(t) ∈ Rn is the unmeasured state vector, y(t) ∈ Rp is the output, u(t) ∈ Rm is the con-

trol input, and f : Rn ×Rm ×R+ → Rn is a C 0 unknown, bounded nonlinear function, and

C = [c1 . . .cp]
T ∈ Rp×n where ci ∈ Rn, i = 1 . . . p are unknown vectors defined accordingly. ri j

is the known relative degree of the input u j(t) with respect to the output yi(t).

The control objective is to design an adaptive controller to ensure that, for a given bounded

reference input r(t) ∈Rp, y(t) tracks the output ym(t) of the following desired system

ẏm(t) = Amym(t)+Bmr(t), t ≥ 0. (4.2)
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where Am ∈Rp×p is a stable matrix, and Bm is a full rank matrix.

For a given compact operating domain D(x(t),u(t))⊆Rn×Rm, the system G can be rewritten

as

ẋ(t) = Ax(t)+B(u(t)−u0)+h(x(t),u(t), t), x(0) = x0, t ≥ 0, (4.3a)

y(t) =Cx(t), (4.3b)

where A ∈ Rn×n, B = [b1 . . .bm] ∈ Rn×m, b j ∈ Rn, j = 1 . . .m are unknown matrices, h(x,u, t) ,

f (x,u, t)−Ax(t)−B(u(t)−u0) is the unknown nonlinear term, u0 is a chosen constant input.

Assumption 4.2.1 In the domain D(x(t),u(t)), there exists a controllable matrix pair (A,B) such

that ‖h(x,u, t)‖ < δ1 < ∞ and ‖h(x,u, t)‖ < δ2 < ∞ (i.e radically bounded). Furthermore, we

know the relatives degree ri j between each input u j, j = 1 . . .m to each output yi, i = 1 . . . p of the

nominal system ẋ(t) = Ax(t)+B(u(t)−u0). For simplicity and without losing generality, we also

assume u0 = 0. In general, we can define uE(t) = u(t)−u0 and follow the same steps by replacing

u(t) with uE(t).

Lemma 4.2.1 The ith output of the system GL can be represented in the Laplace domain by the

following transfer function

yi(s) = Gi(s)u(s)+Hi(s)h(s) =
∑

m
j=1 Ni j(s)u j(s)

D(s)
+

Zi(s)h(s)
D(s)

, (4.4)

where s ∈ C denotes the Laplace variable, Gi(s), cT
i (sIn−A)−1B is the transfer function of u(t)

relative to the output yi(t), and Hi(s) , cT
i (sIn − A)−1 is the transfer function of h(x, t) rela-

tive to the output yi(t). Accordingly, D(s) = sn +αn−1sn−1 + ...+α1s+α0 = det(sIn−A) and

Ni j(s) = βi jn−ri j
sn−ri j + ...+βi j1s+βi j0 = cT

i Aa(s)b j represent the denominator and the numera-

tor’s component of the transfer function Gi(s), respectively. Furthermore, Zi(s), cT
i Aa(s), where

Aa(s) denotes the adjunct matrix of (sIn−A). Then, the system output can be obtained as follows

y(t) = ω
T
y (t)α +β

T
ωu(t)+ z(t), t ≥ 0, (4.5)
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where α ∈Rn and β ∈Rnm×p are defined as

α ,
[

α0−λ0 . . . αn−1−λn−1

]T
, (4.6a)

β ,


β11 · · · βp1

... . . . ...

β1m · · · βpm

, βi j ,
[

β
(0)
i j . . . β

(n−ri j)
i j 0T

ri j−1

]T
∈Rn, (4.6b)

and ωy(t) ∈Rn×p and ωu(t) ∈Rnm are defined as

ωy(t), [ωy1(t) · · ·ωy p(t)], ωu(t), [ωu
T
1 (t) · · ·ωu

T
m(t)]

T, (4.7a)

where ωyi ∈R
n, ωu j ∈Rn are the regression vectors obtained as follows

ω̇yi(t) = Afωyi(t)−Bfyi(t), ωyi(0) = ωyi0, t ≥ 0, (4.8a)

ω̇u j(t) = Afωu j(t)+Bfu j(t), ωu j(0) = ωui0, t ≥ 0, (4.8b)

where i = 1, . . . , p and j = 1, . . . ,m, and

Af ,

 0n−1 I(n−1)

−λ0 ... −λn−1

 ∈Rn×n, Bf ,

 0n−1

1

 ∈Rn, (4.9)

such that Λ(s), det(sIn−Af) = sn +λn−1sn−1 + ...+λ1s+λ0 is a nth order, Hurwitz polynomial.

Finally, z(t) is the inverse Laplace transform of z(s), [z1(s) . . .zp(s)]T, zi(s), Zi(s)h(s)/Λ(s), i=

1, . . . , p, such that z(t) and ż(t) are bounded.

Proof Consider the single output transfer function defined in (4.4), by multiplying both sides of

(4.4) by D(s)/Λ(s), it follows

D(s)
Λ(s)

yi(s) =
∑

m
j=1 Ni j(s)u j(s)

Λ(s)
+

Zi(s)h(s)
Λ(s)

, (4.10)

which implies
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yi(s) =−
D(s)−Λ(s)

Λ(s)
yi(s)+

∑
m
j=1 Ni j(s)u j(s)

Λ(s)
+

Zi(s)h(s)
Λ(s)

= ω
T
yi
(s)α +

m

∑
j=1

β
T
i jωu j(s)+ zi(s), (4.11)

where α and βi j are defined in (4.6), and

ωyi(s) =−(sIn−Af)
−1Bfyi(s) =−

[
yi(s)
Λ(s)

, · · · , sn−1yi(s)
Λ(s)

]T

, (4.12a)

ωu j(s) = (sIn−Af)
−1Bfu j(s) =

[
u j(s)
Λ(s)

, · · · ,
sn−1u j(s)

Λ(s)

]T

, (4.12b)

zi(s),
Zi(s)h(s)

Λ(s)
, (4.12c)

which are the Laplace transform of ωyi(t) and ωu j(t) defined in (4.8) and zi(t) respectively. Hence,

it follows from (4.11) that the output of the system can be obtained by

y(t) =


ωT

y1
(t)

...

ωT
yp
(t)

α +


β T

11 · · · β T
1m

... . . . ...

β T
p1 · · · β T

pm




ωu1(t)
...

ωum(t)

+ z(t), (4.13)

which proves (4.5). Finally, since Zi(s)/Λ(s) is a strictly proper transfer function and h(x, t) is

bounded. Hence, it follows from (4.12c) and Lemma 3.2.1 that z(t) and ż(t) are bounded. �

Assumption 4.2.2 In the domain D , α , β , and z(t) satisfy α ∈Θα , β ∈Θβ , z(t)∈Θz, where Θα ,

Θβ , Θz are the known convex compact sets, and d0,d1,d2 are the known constants such that

‖z(t)‖ ≤
√

n‖L∞
‖ ≤
√

n
∥∥∥∥Z(s)

Λ(s)

∥∥∥∥δ1 , d0 < ∞

‖ż(t)‖ ≤
√

n
∥∥∥∥sZ(s)

Λ(s)

∥∥∥∥δ1 , d1 < ∞,

‖z̈(t)‖ ≤
√

n
∥∥∥∥sZ(s)

Λ(s)

∥∥∥∥δ2 , d2 < ∞
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4.3 Predictor Design

Theorem 4.3.1 Consider the system GL defined in (4.3) which has input u(t) ∈Rm, output y(t) ∈

Rp, and the regression vectors ωy(t), ωu(t) defined in (4.7). Let kp > 0 and matrices Γ ∈ Rp×p,

Pα ∈ Rn×n, Pβ ∈ Rnm×nm, P1 ∈ Rp×p, P2 ∈ Rp×p are the positive definite matrices. Then, the

output predictor

ẏp(t) =−kpyp(t)+η
T
y (t)α̂(t)+ β̂

T(t)ηu(t)+ kpẑ1(t)+ ẑ2(t), yp(0) = yp0, t ≥ 0, (4.14)

guarantees that the system defined by (4.14 - 4.15) is Lyapunov stable and the prediction error

ep(t), y(t)−yp(t) is ultimately bounded, provided that α̂(t) ∈Rn, β̂ (t) ∈Rnm×p, ẑ1(t) ∈Rp and

ẑ2(t) ∈Rp are obtained from the adaptive law

˙̂α(t) = Pα

(
ηy(t)ΓTep(t)+Ωy(t)vec( f (t))

)
, α̂(0) = α̂0, (4.15a)

˙̂
β (t) = Pβ

(
ηu(t)eT

p (t)Γ+Ωu(t) f T(t)
)
, β̂ (0) = β̂0, (4.15b)

˙̂z1(t) = ẑ2(t)+P1
(
Γ

Tkpep(t)+ f1(ε1(t), t)
)
, ẑ1(0) = ẑ10, (4.15c)

˙̂z2(t) = P2
(
Γ

Tep(t)+ f2(ε2(t), t)
)
, ẑ1(0) = ẑ10, (4.15d)

where Ωy(t) , [ωy(t) ω̇y(t)] ∈ Rn×2p, Ωu(t) , [ωu(t) ω̇u(t)] ∈ Rnm×2, and ε(t) , [εT
1 (t) εT

2 (t)]
T,

ε1(t) ∈Rp, ε2(t) ∈Rp are defined as

ε1(t), y(t)−ω
T
y (t)α̂(t)− β̂

T(t)ωu(t)− ẑ1(t), (4.16a)

ε2(t), ẏ(t)− ω̇
T
y (t)α̂(t)− β̂

T(t)ω̇u(t)− ẑ2(t), (4.16b)

and f (t) , [ f1(ε1, t) f2(ε2, t)] ∈ Rp×2, fi : Rp ×R+ → Rp is the bounded function satisfying

f T
i (εi(t), t)εi(t)≥ 0, i = 1,2.

Proof It follows from Lemma (4.2.1) that any nth order MIMO system can be represented by

y(t) = ω
T
y (t)α +β

T
ωu(t)+ z(t), (4.17)
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Taking the time derivative of (4.17) yields

ẏ(t) = ω̇
T
y (t)α +β

T
ω̇u(t)+ ż(t)

=−kpy(t)+(ω̇y(t)+ kpωy(t))T
α +β

T(ω̇u(t)+ kpωu(t))+ kpz(t)+ ż(t)

=−kpy(t)+η
T
y (t)α +β

T
ηu(t)+ kpz(t)+ ż(t), (4.18)

where ηy(t) and ηu(t) are defined in (3.19) and (3.20), respectively. It follows from (4.18) and

(4.14) that the prediction error dynamics is obtained as

ėp(t) =−kpep(t)+η
T
y (t)α̃(t)+ β̃

T(t)ηu(t)+ kpz̃1(t)+ z̃2(t), ep(0) = ep0, t ≥ 0, (4.19)

where α̃(t) , α − α̂(t) ∈ Rn, β̃ (t) , β − β̂ (t) ∈ Rnm×p, z̃1(t) , z(t)− ẑ1(t) ∈ Rp and z̃2(t) ,

ż(t)− ẑ2(t) ∈Rp. Now, differentiating the Lyapunov function candidate

V (ep, α̃, β̃ , z̃1, z̃2) =
1
2

eT
p (t)Γep(t)+

1
2

α̃
T(t)P−1

α α̃(t)+
1
2

tr[β̃ T(t)P−1
β

β̃ (t)]

+
1
2

z̃T
1 (t)P

−1
1 z̃1(t)+

1
2

z̃T
2 (t)P

−1
2 z̃2(t), (4.20)

along the error dynamics trajectories given by (4.19) and substituting the update law (4.15), yields

V̇ (t) =−kpeT
p (t)Γep(t)+ eT

p (t)Γη
T
y (t)α̃(t)+ eT

p (t)Γβ̃
T(t)ηu(t)+ eT

p (t)Γkpz̃1(t)+ eT
p (t)Γz̃2(t)

− α̃
T(t)P−1

α
˙̂α(t)− tr[β̃ T(t)P−1

β

˙̂
β (t)]

+ z̃T
1 (t)P

−1
1 (ż(t)− ẑ2(t)+ ẑ2(t)− ˙̂z1(t))+ z̃T

2 (t)P
−1
2 (z̈(t)− ˙̂z2(t))

=−kpeT
p (t)Γep(t)+ α̃

T(t)
(
ηy(t)ΓTep(t)−P−1

α
˙̂α(t)

)
+ tr[β̃ T(t)(ηu(t)eT

p (t)Γ−P−1
β

˙̂
β (t))]

+ z̃T
1 (t)(Γ

Tkpep(t)+P−1
1 (ẑ2(t)− ˙̂z1(t)))

+ z̃T
2 (t)(Γ

Tep(t)−P−1
2

˙̂z2(t))+ z̃T
2 (t)(P

−1
1 z̃1 +P−1

2 z̈(t))

=−kpeT
p (t)Γep(t)− α̃

T(t)Ωy(t)vec( f (t))− tr[β̃ T(t)Ωu(t) f T(t)]

− z̃T
1 (t) f1(ε1(t), t)− z̃T

2 (t) f2(ε2(t), t)+ z̃T
2 (t)(P

−1
1 z̃1 +P−1

2 z̈(t)). (4.21)
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Using the property x = xT if x ∈R yields

α̃
T(t)Ωy(t)vec( f (t)) = vec( f (t))T

Ω
T
y (t)α̃(t) = f T

1 (ε1(t), t)ωT
y (t)α̃(t)+ f T

2 (ε2(t), t)ω̇T
y (t)α̃(t).

(4.22)

and the property tr[XTY ] = tr[Y XT] = Y XT if Y XT ∈R yields

tr[β̃ T(t)Ωu(t) f T(t)] = tr[β̃ T(t)ωu(t) f T
1 (ε1(t), t)]+ tr[β̃ T(t)ω̇u(t) f T

2 (ε2(t), t)]

= f T
1 (ε1(t), t)β̃ T(t)ωu(t)+ f T

2 (ε2(t), t)β̃ T(t)ω̇u(t). (4.23)

Moreover, substituting (4.17) into (4.16) to rewrite ε1(t) and ε2(t) as

ε1(t) = ω
T
y (t)α̃(t)+ β̃

T(t)ωu(t)+ z̃1(t), (4.24a)

ε2(t) = ω̇
T
y (t)α̃(t)+ β̃

T(t)ω̇u(t)+ z̃2(t), (4.24b)

Finally, substituting (4.22), (4.23) and (4.24) into (4.21) to obtain

V̇ (t) =−kpeT
p (t)Γep(t)− f T

1 (ε1(t), t)(ωT
y (t)α̃(t)+ β̃

T(t)ωu(t)+ z̃1(t))︸ ︷︷ ︸
ε1(t)

− f T
2 (ε2(t), t)(ω̇T

y (t)α̃(t)+ β̃
T(t)ωu(t)+ z̃2(t))︸ ︷︷ ︸

ε2(t)

+ z̃T
2 (t)(P

−1
1 z̃1 +P−1

2 z̈(t))︸ ︷︷ ︸
d(t)

=−kpeT
p (t)Γep(t)− f T

1 (ε1(t), t)ε1(t)− f T
2 (ε2(t), t)ε2(t)+d(t) (4.25)

where d(t), z̃T
2 (t)(P

−1
1 z̃1 +P−1

2 z̈(t)). According to the Assumption 4.2.2, the projection operator

keeps α̃, β̃ , z̃1(t), z̃2(t) bounded, so that

1
2

α̃
T(t)P−1

α α̃(t)+
1
2

tr[β̃ T(t)P−1
β

β̃ (t)]+
1
2

z̃T
1 (t)P

−1
1 z̃1(t)+

1
2

z̃T
2 (t)P

−1
2 z̃2(t)

≤ 1
2

(
4

λmin(Pα)
max
α∈Θα

‖α‖2 +
4

λmin(Pβ )
max
β∈Θβ

‖β‖2 +
4

λmin(P1)
max

z(t)∈Θz
‖z(t)‖2 +

4d2
1

λmin(P2)

)
, Dmax,

(4.26)

d(t)≤ 2d1

(
2

λmin(P1)
max

z(t)∈Θz
‖z(t)‖+ d2

λmin(P2)

)
, dmax. (4.27)

Substituting (4.20), (4.27) and (4.26) into (4.25) to obtain
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V̇ (t)≤−2kpV (t)+2kpDmax +dmax− f T(ε(t), t)ε(t). (4.28)

Denote ζ , (ep, α̃, β̃ , z̃1, z̃2) and Vmax , Dmax +
dmax− f T(ε(t), t)ε(t)

2kp
. Note that

−2kpVmax +2kpDmax +dmax− f T(ε(t), t)ε(t) = 0,

hence the set ΩV , {ζ ∈ Rp×Ωα ×Ωβ ×Ωz×Ωż | V (ζ ) ≤ Vmax} is such that V̇ (ζ ) ≤ 0 for all

ζ ∈ {ζ ∈ Rp×Ωα ×Ωβ ×Ωz×Ωż}\ΩV , which according to Lyapunov theory (Theorem 4.1 in

[31]) guarantees that ΩV is a positive invariant set and all state trajectories enter and remain in

ΩV after an initial transience. Note that ε1(t), ε1(t) are the measurable signals, and fi(εi(t), t) are

the designed bounded signals satisfying f T
i (εi(t), t)εi(t)> 0, i = 1,2, which reduce the maximum

bound Vmax. Moreover, since λmin(Γ)‖ep‖2 ≤ eT
p (t)Γep(t)≤ 2V (t), then

‖ep(t)‖ ≤

√
2Vmax

λmin(Γ)
. (4.29)

Therefore, the dynamic system given by (4.19) and (4.15) is Lyapunov stable, and ep(t) is ultimately

bounded, which concludes the proof. �

Remark 4.3.1 The projection operator should be applied to all adaptive laws (4.15), to ensure the

boundedness of the estimated signals α̂(t), β̂ (t), z1(t), z2(t). Furthermore, β̂i j(t) needs to satisfy

the topological equivalence of the input u j(t) with respect to the output yi(t), such that

β̂i j(t),
[

β̂
(0)
i j (t) . . . β̂

(n−r)
i j (t) 0T

ri j−1

]T
∈Rn. (4.30)

Remark 4.3.2 A simple choice of fi(εi, t) is

fi(εi, t) = σi(t)
εi(t)
∆i(t)

, ∆i(t) =

 ‖ωy(t)‖2 +‖ωu(t)‖2 +1, if i = 1

‖ω̇y(t)‖2 +‖ω̇u(t)‖2 +1, if i = 2
(4.31)

where σi(t) > 0 is any scalar bounded function and ∆(t) is the normalizing term. It follows from

(4.25) that σ(t) can be conditionally adjusted to achieve small errors ‖ep(t)‖ and ‖ε(t)‖.
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4.4 Controller Design

It follows from (3.20) and (4.14) that the predictor dynamics can be obtained as

ẏp(t) =−kpyp(t)+η
T
y (t)α̂(t)+ β̂

T(t)(Au + kpInm)ωu(t)+ β̂
T(t)Buu(t)+ kpẑ1(t)+ ẑ2(t)

=−kpyp(t)+υ(t)+Cu(t)ωu(t)+Du(t)u(t), (4.32)

where

υ(t), η
T
y (t)α̂(t)+ kpẑ1(t)+ ẑ2(t), (4.33)

Cu(t), β̂
T(t)(Au + kpInm) ∈Rp×nm, Du(t), β̂

T(t)Bu ∈Rp×m. (4.34)

Note that if the control inputs u j(t), j = 1, . . . ,m, have relative degree ri j ≥ 2 then Du(t) = 0p×m.

Now, consider the desired reference system defined in (4.2) and let er(t) , yp(t)− ym(t) be the

tracking error between the predictor and the reference system. It follows from (4.2) and (4.32) that

ėr(t) =−kp(yp(t)− ym(t))+υ(t)+Cu(t)ωu(t)+Du(t)u(t)− (Am + kpIp)ym(t)−Bmr(t)

=−(kpIp +Kr)er(t)+Cu(t)ωu(t)+Du(t)u(t)−ϕd(t), (4.35)

where Kr ∈Rp×p,Kr > 0 and

ϕd(t),−Krer(t)−υ(t)+(Am + kpIp)ym(t)+Bmr(t). (4.36)

The problem of driving er(t) to the origin therefore reduces to design a full state feedback controller

such that the following linear system

ω̇u(t) = Auωu(t)+Buu(t), (4.37a)

ϕ(t) =Cu(t)ωu(t)+Du(t)u(t), (4.37b)

tracks the desired trajectory ϕd(t). Hence, the problem can be solved by simply applying the FRDE
controller given in the Proposition 3.4.1 and the saturation mechanism provided in Theorem 3.4.1.
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4.5 Implementation

Figure 4.1 presents the control framework, and the Fig 4.2 and the Fig 4.3 illustrate the predictor

and the controller structures respectively.

Plant

Filter ωu(t) d
dt Filter ωy(t)

Predictor

Controller Reference

u(t) y(t)

ωu(t) ωy(t)

α̂(t) β̂ (t) ηy(t) yp(t)ωu(t)

er(t) −
ym(t)

r(t)

Adaptive Predictor Based Controller

Figure 4.1: Adaptive Predictor based controller for nonlinear systems block diagram

u(t) y(t)

ẏ(t)

y(t)

+

ωu(t) ωy(t)

ηy(t),ηu(t)

yp(t)

−

α̂(t), β̂ (t), ẑ1(t), ẑ2(t)

ep(t)

Predictor

ẋ(t) = f (x(t),u(t), t)
y(t) =Cx(t)

ω̇ui(t) = Afωui(t)+Bfui(t)
ωu(t) = [ωu

T
1 (t) · · ·ωu

T
m(t)]

T
ω̇yi(t) = Afωyi(t)−Bfyi(t)
ωy(t) = [ωy1(t) · · ·ωy p(t)]

d
dt

ηy(t) = (Af + kpIn)ωy(t)−BfyT(t)
ηu(t) = (Au + kpInm)ωu(t)+Buu(t)

ẏp(t) =−kpyp(t)+ηT
y (t)α̂(t)+ β̂ T(t)ηu(t)+ kpẑ1(t)+ ẑ2(t)

∫
˙̂α(t) = Pα

(
ηy(t)ΓTep(t)+Ωy(t)vec( f (t))

)
,

˙̂
β (t) = Pβ

(
ηu(t)eT

p (t)Γ+Ωu(t) f T(t)
)
,

˙̂z1(t) = ẑ2(t)+P1
(
ΓTkpep(t)+ f1(ε1(t), t)

)
,

˙̂z2(t) = P2
(
ΓTep(t)+ f2(ε2(t), t)

)
.

∫
f1(ε1(t), t)
f2(ε2(t), t).

ε1(t) = y(t)−ωT
y (t)α̂(t)− β̂ T(t)ωu(t)− ẑ1(t),

ε2(t) = ẏ(t)− ω̇T
y (t)α̂(t)− β̂ T(t)ω̇u(t)− ẑ2(t),

Figure 4.2: Predictor’s structure for nonlinear systems
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xa(t) = [ωT
u (t), xT

I (t)]
T,

ud(t) = R−1(t)BT
a (t)P(t)xa(t).

Saturated?
u(t) (Equ.(3.76)).

ϕ(t) =Cu(t)ωu(t)+Du(t)u(t)
ϕd(t) (Equ.(4.36)).

ẏm(t) = Amym(t)+Bmr(t).
ϕ̄d(t) (Eqn.(3.82) or Equ.(3.83)-(3.87))

˙̄ym(t) = ϕ̄d(t)+Krer(t)+ϑ(t)−Kpym(t).

ẋI(t) =−ΛxI(t)+Ω(ϕ(t)−ϕd(t)).
∫

ẋa(t) = [ω̇T
u (t), ẋT

I (t)]
T.

Ab(t) = 2(x†
a

T
(t)ẋT

a (t)− ẋa(t)x†
a(t)).

Ṗ(t) (Eqn.(3.49))
∫

No

Yes

u(t)

ϕd(t)

xI(t)

P(t)

Control Saturation
& Modified Reference

FRDE Control Gain

Figure 4.3: Controller’s structure

4.6 Simulation

Example 4.6.1 Consider designing a controller for the following nonlinear system

ẋ(t) =


−50 2 12

−80 −12 28

−20 −8 2

x(t)+


0 0

0 2

2 3

u(t)+


tanh(x2(t))+2sin(t)

2sin(3x1(t))

3sin(x3(t))cos(2x1(t)x2(t))

 ,

y(t) =

 1 0 0

0 1 0

x(t), x(0) = 03,

to track the reference system (3.3) with parameters Am =−I2, Bm = I2 and

rd(t) = [−5sin(4t +π/4) 2sin(4t)]T.

The system dynamics is unknown and the vector state x(t) , [x1(t) x2(t) x3(t)]T is not fully mea-

surable. We only know the relative degrees r11 = r12 = 2; r21 = 2, r22 = 1.
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Figure 4.4: The system output, the predictor and the reference trajectories (top and middle) and
the control effort (bottom) using the FDRE controller

To design the predictor, we chose a 3nd order filter defined in (3.10) with parameters

Af =


0 1 0

0 0 1

−3375 −675 −45

 , Bf =


0

0

1

 .

The predictor parameters are kp = 5, Pα = 10I3, Pβ = 10I6, P1 = 102I2 and P2 = 5× 103I2.

fi(ε1(t), t) is chosen as in (4.31), with σ(τ) = 1+ eT
p (t)ep(t). The initial conditions are y(0) =

yp(0)= 02, ym(0)= 02, ωy(0)=ωu(0)= 06, α̂s(0)= [2400 500 12]T, β̂11(0)= [380 30 0]T, β̂12(0)=

[450 50 0]T, β̂21(0) = [900 60 0]T, β̂22(0) = [1500 160 1.3]T.

The augmented system has Λ = diag([2,4]) and Ω = diag([100,100]). The FDRE controller

parameters are Kr = diag([20,40]), Q(t) = diag([I6, 100, 100])− 2P(t), R = I2, ε = 10 and

P0 = 10−4I8. The saturation parameters are umax = 60 and ∆umax = 1. Figure (4.4) illustrates

the tracking result and the control effort. Note that α̂T
s (t)ωy(t)+ β̂ T(t)ωu(t)+ ẑ1(t)→ y(t) and
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y(t), yp(t) all converge to ym(t) as t→ ∞.

Example 4.6.2 Consider the 3D Quanser helicopter, which has a dynamic system ([65])

η̇(t) = J(η(t))ν(t), η(0) = η0, t ≥ 0 (4.38)

ν̇(t) = Θ1ϕ(η(t))+Θ2τ(t), ν(0) = ν0, (4.39)

where η(t), [φ(t) θ(t) ψ(t)]T ∈R3 is the measured output where φ(t), θ(t), ψ(t) are the roll,

elevation and the travel angles respectively, ν(t) ∈ R3 are the unmeasured states, and τ(t) ∈ R2

is the control input applied to the system, and

J(η),


1 tan(θ)sin(φ) tan(θ)cos(φ)

0 cos(φ) −sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)

 , φ(η),

 cos(θ)cos(φ)

−cos(θ)sin(φ)

 ,

Θ1 =


−2.6828 3.2966

−9.8298 −9.9455

0 −20

 , Θ2 =
1
2


0.25 −0.25

0.575 0.575

0 0

 .
Note that system dynamics and parameters are only used to simulate the nonlinear plant, and we

only know the relative degree ri j = 2, i = 1,2, j = 1,2.

In order to apply the proposed controller, the system dynamics can be rewritten in the following

nonlinear form

ẋ(t) = Ax(t)+Bu(t)+h(x(t),u(t), t), x(0) = x0, t ≥ 0, (4.40a)

y(t) =Cx(t) (4.40b)

where A ∈R6×6, B ∈R6×2 and C ∈R3×6 are unknown constant matrices, h(t) is unknown nonlin-

ear function, and u(t) = τ(t)−τ0 ∈R2 is the control signal, and τ0 = [25;8] is chosen arbitrarily.

To implement the predictor, the autoregressive vectors are constructed using a 6th order filter
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defined in (4.8) with parameters

Af ,

 05 I5

−λ5 ... −λ0

 ∈R6×6, Bf ,

 05

1

 ∈R6,

where det(sIn−Af) = sn +λ5sn−1 + ...+λ1s+λ0 = (s+ 5)6. The predictor parameters are kp =

10, Pα = 10I6, Pβ = 10I12, P1 = 10I3 and P2 = 10I3. fi(εi(t), t) is chosen as in (4.31), with σ(τ) =

1+ eT
p (t)ep(t). The initial conditions are y0 =

π

180 [2 −27 0]T, yp(0) = π

180 [2 −20 0]T and

α̂
T
s (0) = [−λ0 . . .−λ5] = [−15625 −18750 −9375 −2500 −375 −30],

β̂
T(0) =


0 0 0 0 0.2 0 0 0 0 0 −0.2 0

0 0 2 0 0.2 0 0 0 −0.2 0 0.2 0

0 0 2 0 0 0 0 0 −2 0 0 0

 .
The projector operator boundary for α̂(t) and β̂ (t) are setup at α̂max,min = α̂(0)± 0.2α̂(0) and

β̂max,min = β̂ (0)±0.5(β̂ (0)+0.1I3×12.

First, we aim to control only the pitch and elevation angle [φ(t) θ(t)]T of the helicopter to

track the output ym = [φd(t) θd(t)]T of the reference system (4.2) with Am = −I2,Bm = I2 and the

reference signal rd(t) = π

180 [10sin(0.4πt) 15sin(0.2πt)]T.

The augmented system has Λ = diag([10, 10]) and Ω = diag([1000, 500]). The FDRE con-

troller parameters are Kr =−5I2, Q(t) = diag([I12, 50, 50])−P(t), R= 0.5I2, ε = 20 and P0 = I14.

The saturation parameters are umax = 6 and ∆umax = 1. Figure (4.5) illustrates the tracking result

and the control effort. In this example, we control two outputs by using two actuators; since the

system is square, we can achieve the exact tracking result for both outputs simultaneously.

Secondly, we attempt to control the system’s output to track the desired trajectory ym = [φd(t) θd(t)

ψd(t)]T, using the reference system (3.3) with Am =−I3,Bm = I3 and

rd(t) =
π

180
[0 10sin(0.08πt) 90sin(0.12πt)]T.

For this situation, since we aim to control 3 outputs of the system simultaneously by using only
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Figure 4.5: The system output y(t), the predictor output yp(t), the modified reference ȳm(t) and the
reference signals ym(t) (top and middle) and the control effort (bottom) using the FDRE controller

two actuators, the system is an under-actuated, which implies that there is a constraint between 3

feasible outputs [φd(t) θd(t) ψd(t)]. Therefore, an arbitrary selection of the desired outputs is not

necessarily achievable. In order to handle such constraint, different entries in the matrices Ω and

Q(t) are selected depending on each output’s priority.

The augmented system has Λ = diag([10, 10, 20]) and Ω = diag([1, 1, 6]× 103). The FDRE

controller parameters are Kr = diag([−2,−2,−4]), Q(t)= diag([I12, 50, 50])−8P(t), R= 10I2, ε =

15 and P0 = I14. The saturation parameters are umax = 6 and ∆umax = 1. Figure (4.6) illustrates

the tracking result and the control effort.

Note that although the plant, the predictor and the reference started at different initial condi-

tions, they all converge at the end. For the second case, worth noting is that the tracking perfor-

mance of the pitch angle φ(t) is not as good as that of the other states. This is due to our particular

choice of weights in matrices Ω and Q(t), which penalizes the tracking error of θ(t) and ψ(t) more

than the tracking error of φ(t). Regardless, we note that the tracking error of φ(t) remains small
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Figure 4.6: The system output y(t), the predictor output yp(t), the modified reference ȳm(t) and the
reference signals ym(t) (top and middle) and the control effort (bottom) using the FDRE controller.

and bounded with the maximum error is about 1o.

4.7 Experimental Setup and Result

The controller performance is further studied by considering the real time implementation on

the Quanser 3-DOF helicopter with the same experiment setup described in Section 3.7.

The system model is unknown, but we assume that it has a minimal representation consisting

of 6 states (n = 6), and relative degrees ri j = 2, i = 1,3, j = 1,2. When the control is set at

v∗ = [12.5 12.5](Vol), the system stays at the equilibrium point x∗ = 06. We make the same

assumption and use the same filters as in Example 4.6.2.
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Figure 4.7: The time evolution of y(t), yp(t), and ym(t) for the parameters described in Set 1

4.7.1 Tracking Pitch and Elevation

In this section, we aim to control only the pitch and elevation angle [φ(t) θ(t)]T of the heli-

copter to track the output ym = [φd(t) θd(t)]T of the reference system (4.2) with Am =−I2,Bm = I2

and the reference signal

rd(t) =
π

180
[5sin(0.08πt) 10sin(0.06πt)].

Figure 4.7 demonstrates the controller’s tracking performance with the initial conditions and con-

trol parameters selected as in Set (1)

Set 1: The predictor parameters are kp = 10, Pα = 10I6,Pβ = 10I12, P1 = P2 = 100I2. fi(εi(t), t)

is chosen as in (4.31), with σ(τ) = 1+ eT
p (t)ep(t). The initial conditions are y0 =

π

180 [0 −27 0]T,

and yp(0) = π

180 [2 −25 0]T and

α̂
T(0) = [−λ0 . . .−λ5] = [−15625 −18750 −9375 −2500 −375 −30],
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β̂
T(0) =


0 0 0 0 0.07 0 0 0 0 0 −0.07 0

0 0 0 0 0.1 0 0 0 0 0 0.1 0

0 0 −1 0 0 0 0 0 1 0 0 0

 .
The projector operator boundary for α̂(t) and β̂ (t) are setup at α̂max,min = α̂(0)± 0.2α̂(0) and

β̂max,min = β̂ (0)± 0.5(β̂ (0)+ 0.1I3×12. The augmented system has Λ = diag([35, 10]) and Ω =

diag([8,8]×103). The FDRE controller parameters are Kr = diag([2,2]), Q(t)= diag([I12, 50, 50])−

5P(t), R = I2, ε = 10 and P0 = I14. The saturation parameters are umax = 3.75(Vol). Figure 4.7

shows that although the plant, the predictor and the reference started at different initial conditions,

they all converge to each other.

4.7.2 Tracking 3 DOF

In this section, we aim to control the system to track the reference system (3.3) where ym =

[φd(t) θd(t) ψd(t)]T is the desired trajectory, and Am =−I3, Bm = I3 for different reference inputs.

Figure 4.8 to Fig 4.10 demonstrate the control’s tracking performance using the same predictor

selected in Set (2), and different control gains for different reference inputs.

The predictor uses the same parameter as in Set 1. Figure 4.8 demonstrates the tracking

performance for a step reference input r(t) = π

180 [0,0,20] with the control gains Kr = 2I3 and

Λ= diag([30, 16, 18]), Ω= diag([2.5, 2, 2.7]×104), Q(t) = diag([I12, 30, 30, 30]), R= I2, ε = 1

and P0 = I15. The saturation parameters are umax = [2 2].

Figure 4.9 illustrates the controller’s tracking performance for the reference inputs

r(t) =
π

180
[0 0 40sin(0.12πt)]T,

using the control gains Kr = diag([2, 2, 8]) and Λ = diag([30, 16, 18]), Ω = diag([2.2, 1, 10]

×104), Q(t) = diag([I12, 60, 60, 60])−5P(t), R = I2, ε = 10 and P0 = I15. The saturation param-

eters are umax = [3.75 3.75].
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Figure 4.8: The time evolution of y(t), yp(t), and ym(t) under a random impulse disturbance

Figure 4.9: The time evolution of y(t), yp(t), and ym(t) for r(t) = π

180 [0 0 40sin(0.12πt)]T

Finally, Fig 4.10 depicts the experimental tracking results for the reference input

r(t) =
π

180
[0 15sin(0.08πt) 30sin(0.12πt)]T,
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Figure 4.10: The time evolution of y(t), yp(t), and ym(t) for the reference input
r(t) = π

180 [0 10sin(0.08πt) 30sin(0.12πt)]T.

using the control gains Kr = diag([2, 2, 9]) and Λ = diag([35, 16, 18]), Ω = diag([2.5, 1.8, 13]×

104), Q(t)= diag([I12, 60, 60, 60])−5P(t), R= I2, ε = 10 and P0 = I15. The saturation parameters

are umax = [3.75 3.75] and ∆umax = 0.06 between the sampling interval ∆t = 0.001.

Figure 4.11 depicts the control voltage applied on the system for the tracking task shown in Fig

4.10. Worth noting is that the tracking performance of the pitch angle φ(t) is not as good as that

Figure 4.11: The time evolution of control input u(t)
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of the other states. This is due to our particular choice of weights in matrices Ω and Q(t), which

penalizes the tracking error of θ(t) and ψ(t) more than the tracking error of φ(t). Comparing

the experimental results from Chapter 3 and Chapter 4, we can see that incorporating the adaptive

nonlinear terms to the predictor proposed in Chapter 4 improved the tracking performance and the

transience of control signal.

4.8 Conclusion

This section presents a novel output feedback control for a class of unknown nonlinear systems.

Extending the control approach for linear systems presented in Chapter 3, the algorithm for non-

linear systems also has three main components, which are the adaptive predictor, the controller

and the reference system. The only required knowledge about the system is its relative degree in

order to ensure the topological equivalence between the predictor and the plant. The prediction

error is proved to be uniform ultimately bounded based on the Lyapunov direct method. From

that, any available control algorithms that can drive the predictor to track the desired trajectories

can also simultaneously drive the plant output to converge to the desired trajectories. Particularly,

the FRDE and the saturation mechanism established in Chapter 3 are reused in this chapter. The

proposed controller performance is demonstrated by simulation. Furthermore, it is also experimen-

tally tested on the Quanser helicopter. Experiments demonstrates the successfulness of the method

for systems with unmodeled dynamics and unmeasured states in presence of control saturation

constraints.

One problem with the approach presented in this chapter is that in the presence of time-varying

uncertain parameters, the only option to reduce the bound of the prediction error is to increase

the adaptive gain to a significantly large value. However, high gain adaptation will induce high

frequencies in the adaptive parameters, which leads to a problem of noisy control signals. This is

a well know trace-off problem of adaptive control when the uncertainties are time-varying. Fur-

thermore, the FRDE is quite computationally expensive, especially for high order systems. These
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problems will be addressed in the next chapter.



Chapter 5

Adaptive Predictor-Based Output Feedback

Control for a Class of High Relative Degree

Uncertain Nonlinear Systems with Fast

Adaptation and Simple Control Structure

The results featured in this chapter are the object of an article published in Journal of Dynamic

Systems, Measurement and Control ([67]).

5.1 Introduction

One of the biggest challenges in designing adaptive controllers for an uncertain nonlinear sys-

tem with high relative degree is that due to the cascade structure, the mismatched uncertainties

appearing in the first level can not be directly cancelled by the control signal appearing in the

lowest level. Instead, the control signal would need to know the high order derivatives of the un-

certainties in order to indirectly compensate for these mismatches. The problem becomes even

85
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harder when the uncertainties are time-varying, hence their derivatives are unknown.

The most common approach to handling this problem is adaptive backstepping control ([15])

and its variations, such as dynamic surface control ([24,26,68–72]) or command filtered backstep-

ping ([28, 73–75]). In general, for backstepping-like control techniques, the adaptive laws will be

used to estimate the uncertainties at the first level. Then, the estimated terms will be differentiated

as many times as the system relative degrees. In order to avoid numerical differentiation of the es-

timated terms, the original adaptive backstepping ([15]) proposes a systematic design approach, in

which the adaptive laws are recursively designed to estimate at each level, so that the uncertainty’s

derivatives are available to feed to the lower level. The design process will require r step, where

r is the system relative degrees, until the uncertainties’s derivatives are available to cancel directly

at the level of the control signal. However, this approach leads to an extremely complicated con-

trol structure, which is well known as the ”explosion of terms” effect, that prevents its practical

implementation for systems with the relative degree larger than 3. Giving up in implementing the

analytical approach, the backstepping variations return to the original idea, in which the uncer-

tainties are estimated once by adaptive laws at the first level. Then, the estimated terms are fed

to the low pass filters before being differentiated to approximate their derivatives. Theoretically,

it can be proved that the desired boundedness of the tracking error can be obtained by choosing

sufficiently high gain for the low pass filters ([28, 73–75]). Therefore, the backstepping variations

can yield simpler solutions, but the control signals suffer from high magnitude effects due to the

approximation of the virtual control signals’ differentiations. This effect is more serious if high

adaptation gain is used. On the other hand, small adaptation gains lead to slow convergence and

unsatisfied tracking results. This is a well known trade-off of backstepping-like adaptive controls,

besides its complexity and the computational burden of building the cascade of low pass filters

for high relative degree systems. Another idea to reduce the unmatched uncertainty to matched

certainty is to estimate the high order derivatives of the outputs, which is in general equivalent to

estimating the full state. The most common technique is adaptive sliding mode control (ASMC)

([5, 76–90]). However, despite many attempts to reduce the intrinsic chattering effect, estimating

high order derivatives of the outputs in ASMC, especially in the presence of corrupting noise, is
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still not appealing to many practitioners. In short, the literature shows that for high relative degree

systems, the exact backstepping approach can yield the best transient behavior but it is too com-

plicated to apply. In contrast, approximating approaches are simpler but often require some sort

of high-gain parameters; hence encountering the trade-off problems between the smoothness of

control signals and acceptable tracking performances. In addition, the complexity of the controller

increases as the systems relative degree increases.

Therefore, this chapter proposes an adaptive control for a class of unknown dynamics systems

with unmatched uncertainty and high relative degrees. The proposed controller has three com-

ponents: the predictor, the controller and the reference system, similar to that in Chapter 3 and

Chapter 4. However, the proposed controller avoids the recursive step-by-step design of back-

stepping or the expensive computation of FRDE, and therefore is significantly simpler than the

mentioned approaches. In order to guarantee the smoothness of the control signals and fast con-

vergence, the feed-forward gain recently proposed in ([91, 92]) is incorporated into the predictor.

It can be shown that by appropriately choosing the tuning parameters, the tracking error can be

rendered as small as desired while the control signal is still smooth. The controller is then applied

to control a musculoskeletal system to track a desired trajectory. Specifically, the model Arm26

provided in OpenSim ([54]) is selected to validate our proposed controller.

This chapter is organized as follows. Section 5.2 establishes the mathematical background and

the problem formulation. Section 5.3 summarizes the main results and presents the controller

structure. Analysis and assumptions about the systems are provided in Section 5.4. In Section

5.5, the output predictor using fast adaptation is derived. Design of the controller for the SISO

case is then presented in Section 5.6. In addition, the transient behavior of the control signal and

the tracking errors are analyzed in Section 5.7. Section 5.8 provides numerical simulations to

illustrate the algorithm’s efficacy. Section 5.9 presents simulations to control the musculotendon

arm model. Section 5.10 presents a discussion to distinguish our work from literature and Section

5.11 concludes this chapter.
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5.2 Mathematical Preliminaries

Lemma 5.2.1 ([92]) Consider the following SISO sytem ż1(t)

ż2(t)

=

 0 1

−γh(t) −2a

 z1(t)

z2(t)

+
 b1

b2

 f (t) (5.1)

where γ > 0, 0 < h1≤ h(t)≤ h2 and f (t) :R+→R is piecewise continuous and bounded function.

Let h0, (h1+h2)/2, h3, (h2−h1)/2, ω2, γh0, and a, ζ ω . If ζ ≥ 1, then the following bounds

are hold

|z1(t)| ≤ c4e−νt +

[
c1|b1|

√
h0

h1
√

γ
+
|b2|
h1γ

]
‖ f (t)‖L∞

,

|z2(t)| ≤ c4e−νt +

[
|b1|(1+

h3

h1
c1c2)+

c2|b2|
√

h0√
γ

]
‖ f (t)‖L∞

where c4 , c3‖z(0)‖, c3 > 0, ν =
√

γ

2 (
√

ζ h0−
√

ζ h0−h1), c1 ≥ 2 and 2
e ≥ c2 > 0.

Consider the following nonlinear MIMO system G

ξ̇ (t) = f (ξ (t),u(t), t) ξ (0) = ξ0, t ≥ 0,

y(t) =Cξ (t),

where ξ (t) ∈ Rn is the unmeasured state vector, y(t) ∈ Rp is the output, u(t) ∈ Rm is the control

input, f : Rn×Rm×R+→ Rn is a C 0 unknown nonlinear function, and C = [c1 . . .cp]
T ∈ Rp×n

where ci ∈Rn, i = 1 . . . p are unknown vectors defined accordingly. The known relative degree of

u j(t) with respect to yi(t) is denoted with ri j. Since the solutions for systems with relative degree

ri j = 1 are well established in the literature (i.e [93]), we shall only consider the systems which

have ri j ≥ 2.

The control objective is to design an adaptive controller to ensure that, for a given bounded

reference input r(t) ∈Rp, y(t) tracks the output ym(t) of the following desired system

ẋm(t) = Amxm(t)+Bmkgr(t), xm(0) = x0, (5.2a)

ym(t) =Cmxm(t), (5.2b)
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where Am is stable, kg , −(CmA−1
m Bm)

−1 and Am, Bm, Cm are chosen appropriately as presented

later.

In the following sections, parameters explicit time dependence (t) are used upon introduction,

and then omitted thereafter except for emphasis.

5.3 Main results

u(t) y(t)

ωu(t)

ωy(t)ωu(t)

+˙̂x(t) −

x̃(t) = x(t)− x̂(t)

Filter

Predictor

Adaptive Law

Controller

System
ξ̇ (t) = f (ξ (t),u(t), t)
y(t) =Cξ (t)

u(t) =−Kfωu(t)+ v̂(t) ω̇u(t) = Afωu(t)+Bfu(t) ω̇y(t) = Afωy(t)−Bfy(t) x(t) =
[

ωy(t)
y(t)

]

v̂(t) =−kC
(
µ̂(t)+ η̂(t)
−kgr(t)

) Φu(t) = Auωu(t) Φx(t) = Axx(t)

µ̂(t) = β̂ (t)Φu(t)
η̂(t) = ΦT

x (t)α̂(t)+λn−1Cmx(t)+ σ̂(t)

˙̂x(t) = Amx̂(t)+Bm(µ̂(t)+ η̂(t))+ k(t)x̃(t)
ŷ(t) =Cmx(t)

∫
reference

r(t) ∫ ˙̂α(t) = γ Proj
(
α̂(t),Φx(t)e(t)

)
˙̂
β (t) = γ Proj

(
β̂ (t),Φu(t)eT(t)

)
˙̂σ(t) = γ Proj

(
σ̂(t),e(t)

) e(t) = BT
mPx̃(t)

Figure 5.1: Controller structure for SISO systems

The chapter’s main results are summarized as follow

• System Analysis: In this section, main assumptions are made to represent the system dy-

namics in an useful form for control and analysis. Furthermore, problems that are not easily

solved by common control techniques are presented to promote our new controller structure.
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• Predictor with fast adaptation: The fast adaptation technique is presented to address the

problem of estimating time-varying parameters, and the prediction error is analyzed in this

section. In contrast with classical adaptive control approaches, it will be shown that the

prediction error can be specified as small as needed without damaging the control signal

transient by increasing the adaptive gain.

• Simple control structure is then presented to address the problem of canceling the mis-

matched uncertainties of high relative degree systems. In addition, we also show how diffi-

cult is to solve this problem if common control techniques such as backstepping , dynamics

surface control or command filter backstepping are used instead.

• Transient Analysis: Finally, all the prediction and control errors are proved to be bounded,

and the bounds can be designed as small as needed by tuning appropriate parameters.

Figure 5.1 illustrates the controller structure for the SISO case.

5.4 System Analysis

In a given compact operating domain D ⊂Rn×Rm×R+, the system G can be rewritten as

ξ̇ (t) = Aξ (t)+Bu(t)+h(ξ (t),u(t), t), ξ (0) = ξ0,

y(t) =Cξ (t),

where A ∈Rn×n, B = [b1 . . .bm] ∈Rn×m, b j ∈Rn, j = 1 . . .m are unknown matrices, and

h(ξ ,u, t), f (ξ ,u, t)−Aξ (t)−Bu(t)

is the unknown nonlinear term.

Assumption 5.4.1 In the domain D , there exists a pair (A,B) such that the linear system (A,B,C)

is minimum phase, and ‖h(ξ ,u, t)‖ and ‖ḣ(ξ ,u, t)‖ are radically bounded, i.e. ‖h(ξ ,u, t)‖L∞
≤
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δ0 < ∞, ‖ḣ(ξ ,u, t)‖L∞
≤ δ1 < ∞. For instance, if (ξe,ue) is an equilibrium point, one possible

choice of A and B is

A,
∂ f
∂ξ

(ξe,ue), B,
∂ f
∂u

(ξe,ue), (ξe,ue) ∈D .

The Lemma 5.4.1 is restated as follow with the minor change of the definition of α to facilitate

the proof in the next sections.

Lemma 5.4.1 The ith output of the system G can be represented in the Laplace domain by the

following transfer function

yi(s) = Gi(s)u(s)+Hi(s)h(s) =
∑

m
j=1 Ni j(s)u j(s)

D(s)
+

Zi(s)h(s)
D(s)

,

where Gi(s) , cT
i (sIn − A)−1B is the transfer function of u(t) relative to the output yi(t), and

Hi(s) , cT
i (sIn − A)−1 is the transfer function of h(t) relative to the output yi(t). Let S(s) ,

[sn−1 . . .s 1]T ∈ Cn, then the denominator and the numerator’s component of Gi(s) are defined

as

D(s), det(sIn−A) = sn +α
TS(s), Ni j(s), cT

i Aa(s)b j = β
T
i jS(s),

where

α , [αn−1 . . .α0]
T ∈Rn, βi j , [0T

ri j−1 β
(i j)
m . . .β

(i j)
0 ]T ∈Rn.

Furthermore, Zi(s) , cT
i Aa(s), where Aa(s) denotes the adjunct matrix of (sIn− A). Then, the

system output can be obtained as follows

y(t) = ω
T
y (t)(α−λ )+β

T
ωu(t)+ z(t), t ≥ 0, (5.3)

where λ ∈Rn and β ∈Rnm×p are defined as

λ ,
[

λn−1 . . . λ0

]T
∈Rn, β ,


β11 · · · βp1

... . . . ...

β1m · · · βpm

 ∈Rnm×p,
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and ωy(t) ∈Rn×p and ωu(t) ∈Rnm are defined as

ωy(t), [ωy1(t) · · ·ωy p(t)], ωu(t), [ωu
T
1 (t) · · ·ωu

T
m(t)]

T,

where ωyi ∈ R
n, i = 1, . . . , p, and ωu j ∈ Rn, j = 1, . . . ,m, are the regression vectors obtained as

follows

ω̇yi(t) = Afωyi(t)−Bfyi(t), ωyi(0) = ωyi0, (5.4a)

ω̇u j(t) = Afωu j(t)+Bfu j(t), ωu j(0) = ωu j0
, (5.4b)

and

Af ,

 −λn−1 ... −λ0

I(n−1) 0n−1

 ∈Rn×n, Bf ,

 1

0n−1

 ∈Rn, (5.5)

such that ∆(s), det(sI−Af) = sn +λ TS(s) is Hurwitz. Finally, z(t) is the inverse Laplace trans-

form of z(s) , [z1(s) . . .zp(s)]T, zi(s) , Zi(s)h(s)/∆(s), i = 1, . . . , p. It follows from Assumption

5.4.1 that z(t), ż(t) and z̈(t) are bounded.

Lemma 5.4.2 It follows from Assumption 5.4.1 and Lemma 5.4.1 that the output of system G can

be obtained by

ẋ(t) = Amx(t)+Bm (µ(t)+η(t)) , x(0), x0, (5.6a)

y(t) =Cmx(t). (5.6b)

where

µ(t) = β
T
Φu(t), η(t) = Φ

T
x (t)α +λn−1y(t)+σ(t), (5.7)

and x(t) , [vec(ωy(t))T yT(t)]T ∈ Rn∗, n∗ , np+ p, is the augmented (measurable) state vector,

and

Am ,

 Āf −B̄f

−λ̄ TĀp −kpIp

 ∈Rn∗×n∗, kp > 0 (5.8a)
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Bm ,

 0np×p

Ip

 ∈Rn∗×p, Cm , BT
m. (5.8b)

where ¯(·), Ip⊗ (·), (·) = {Af, Bf, λ ,Ap}, Ap , Af + kpIn, and

Φx(t), Ax[ω
T
y (t) y(t)]T∈Rn×p, Ax , [Ap −Bf]∈Rn×(n+1),

Φu(t), Auωu(t) ∈Rnm, Au , Im⊗Ap.

Finally, α and β are vectors of unknown parameters, and σ(t), kpz(t)+ ż(t)∈Rp is an unknown,

bounded term.

Proof Differentiating (5.3) along the trajectories of (5.4), and subtracting and adding kpy(t) yields

ẏ =
(
ω

T
y AT

f − yBT
f
)
(α−λ )+β

T(Āfωu + B̄fu)+ ż

=−kpy+
(
ω

T
y (A

T
f + kpIn)− yBT

f
)
(α−λ )+β

T ((Ā f + kpInm)ωu
)
+ ż+ kpz

=−kpy+Φ
T
x (α−λ )+β

T
Φu +σ . (5.9)

where we use the fact that β TB̄f = 0 due to ri j ≥ 2. Finally, augmenting (5.9) with (5.4a) we obtain

(5.6). Since z(t), ż(t) and z̈(t) are bounded by Lemma 5.4.1, σ(t) and σ̇(t) are also bounded, which

concludes the proof. �

Assumption 5.4.2 We assume that α ∈ Θα ⊂ Rn, β ∈ Θβ ⊂ Rnm×p, σ(t) ∈ Θσ ⊂ Rp, where

Θα , Θβ , Θσ are known convex compact sets. In addition, denote

αmax , max
α∈Θα

‖α‖, βmax , max
β∈Θβ

‖β‖,

σmax , max
σ∈Θσ

‖σ(t)‖, dσ , max
σ∈Θσ

‖σ̇(t)‖.

Remark 5.4.1 System (5.6) provides an useful form to develop a predictor to predict the system

output y(t) for an arbitrary admissible input u(t). Hence, designing a tracking control for the

unknown system G is equivalent to constructing a tracking control for the predictor, which is a

virtual system whose dynamics and state are all known.
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One challenge of designing the predictor for (5.6) is the presence of the time-varying term σ(t)

in (5.7). In classical adaptive control approaches, σ̇(t) will lead to a derivative of the Lyapunov

function candidate of unknown sign, which cannot be used to guarantee a bounded prediction error.

This problem often leads to a trade off between reducing the error by increasing the adaptive gains

and sacrificing the robustness of control signals. This problem is addressed in the next section.

5.5 Predictor Design

Lemma 5.5.1 Consider the system defined in (5.6). Let γ > 0 be the adaptation gain, 0 < k(t) ≤

kmax, and P = PT > 0 solve the algebraic Lyapunov equation AT
mP+PAm = −Q for an arbitrary

symmetric positive definite Q. Then, the output predictor

˙̂x(t) = Amx̂(t)+Bm (µ̂(t)+η̂(t))+ k(t)x̃(t), x̂(0)= x0, (5.10a)

ŷ(t) =Cmx̂(t). (5.10b)

where

µ̂(t)= β̂
T(t)Φu(t), η̂(t)=Φ

T
x (t)α̂(t)+λn−1y(t)+σ̂(t), (5.11)

with α̂(t) ∈Rn, β̂ (t) ∈Rnm×p, and σ̂(t) ∈Rp obtained from the adaptive law

˙̂α(t) = γ Proj
(
α̂(t),Φx(t)e(t)

)
, α̂(0) = α̂0, (5.12a)

˙̂
β (t) = γ Proj

(
β̂ (t),Φu(t)eT(t)

)
, β̂ (0) = β̂0, (5.12b)

˙̂σ(t) = γ Proj
(
σ̂(t),e(t)

)
, σ̂(0) = σ̂0, (5.12c)

where e(t) , (x̃T(t)PBm)
T, guarantees that the prediction error x̃(t) , x(t)− x̂(t) is uniformly

ultimately bounded.

Proof It follows from (5.6) and (5.10) that

˙̃x = Amx̃+Bm

(
β̃

T
Φu +Φ

T
x α̃ + σ̃

)
− kx̃, x̃(0) = 0n∗, (5.13)
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ỹ =Cmx̃. (5.14)

where β̃ (t) , β − β̂ (t), α̃(t) , α − α̂(t), and σ̃(t) , σ(t)− σ̂(t). Differentiating the Lyapunov

function

V (x̃, α̃, β̃ , σ̃) = x̃TPx̃+
1
γ
(α̃T

α̃ + β̃
T
β̃ + σ̃

T
σ̃),

along (5.13), and using the adaptive laws (5.12), we obtain

V̇ =−x̃T(Q+2kP)x̃+2tr[β̃ T(ΦueT− γ
−1 ˙̂

β )]+2α̃
T(Φxe− γ

−1 ˙̂α)+2σ̃
T(e− γ

−1 ˙̂σ)+2γ
−1

σ̃ σ̇

=−x̃T(Q+2kP)x̃+2γ
−1

σ̃
T
σ̇ . (5.15)

The projection operator ensures that α(t) ∈ Θα , β (t) ∈ Θβ , σ(t) ∈ Θσ for all t ≥ 0. Therefore,

Assumption 5.4.2 leads to the following upper bound

α̃
T
α̃ + tr[β̃ T

β̃ ]+ σ̃
T
σ̃ ≤ 4(α2

max +β
2
max +σ

2
max), d1,

Furthermore, it follows from Assumption 5.4.2 that ‖σ̇(t)‖≤ dσ . Hence, using the Cauchy Schwarz

inequality yields

2σ̃
T(t)σ̇(t)≤ 2‖σ̃(t)‖‖σ̇(t)‖ ≤ 4σmaxdσ , d2, t ≥ 0.

Moreover,

x̃TQx̃≥ x̃T
λmin(Q)x̃≥ λmin(Q)

λmax(P)
x̃TPx̃ = qpx̃TPx̃,

where qp , λmin(Q)/λmax(P). Hence, substituting the above inequalities in (5.15) yields

V̇ ≤−(qp +2k)V + γ
−1((qp +2k)d1 +d2).

Denote ζ , (x̃, α̃, β̃ , σ̃) and Vmax , 1
γ

(
d1 +

1
qp+2k d2

)
. Note that −(qp + 2k)Vmax + γ−1((qp +

2k)d1 + d2) = 0, hence the set ΩV , {ζ ∈ Rn∗ ×Θα ×Θβ ×Θσ | V (ζ ) ≤ Vmax} is such that

V̇ (ζ ) ≤ 0 for all ζ ∈ Rn∗ ×Θα ×Θβ ×Θσ \ ΩV which according to Lyapunov theory (Theorem

4.1 in [31]) guarantees that ΩV is a positively invariant set and all state trajectories enter and
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remain in ΩV after an initial transient. Since λmin(P)x̃Tx̃≤ x̃TPx̃≤V ≤Vmax, then

‖x̃(t)‖2 ≤ 1
γλmin(P)

(
d1 +

1
qp +2kmin

d2

)
, ‖x̃max‖2, (5.16)

where kmin ,min
t≥0
{k(t)}, which concludes the proof. �

Notice that the prediction error ‖x̃(t)‖ can be reduced by either increasing γ and kmin. Tuning

these adaptive parameters will be addressed in Section 5.7 to obtain both tracking’s accuracy and

smoothness of the control signal.

5.6 Controller Design

The next problem is to control the predictor (5.10) to track the reference system (5.2), where the

reference’s system matrices are chosen as in (5.8). In the following, we summarize the drawbacks

of backstepping like techniques, which also motivate our simple controller structure. For ease of

analysis, we first present the controller for the SISO case, and will extend the result to MIMO case.

5.6.1 Drawbacks of Backstepping-like techniques

Step 1: Let e1(t), x̂(t)− xm(t). It follows from (5.10) and (5.2), the error dynamics between

the predictor and the reference system is

ė1(t) = Ame1(t)+Bm(µ̂(t)+ η̂(t)− kgr(t))+ k(t)x̃(t),

which leads to the desired virtual control signal

µ̂(t) = kgr(t)− η̂(t),

or, by substituing (5.11), we obtain

β̂
T(t)Φu(t) = kgr(t)− (ΦT

x (t)α̂(t)+λn−1y(t)+ σ̂(t)). (5.17)
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Since the system relative degree ri j ≥ 2, Φu(t) can not be set directly as in (5.17) but through its

derivative. Following the backstepping procedure, however, we will drop the crossing terms in the

next levels for the purpose of simple explanation.

Step 2: Differentiate (5.17) yields

β̂
T(t)Φ̇u(t) = kgṙ(t)−S1(t), (5.18)

where

S1(t), Φ̇
T
x (t)α̂(t)+Φ

T
x (t) ˙̂α(t)+λn−1ẏ(t)+ ˙̂σ(t)+ ˙̂

β (t)Φu(t),

Note that, ˙̂α(t), ˙̂
β (t), ˙̂σ(t) in (5.18) are the adaptive laws, which contain x̃(t). If ri j ≥ 3, then

further derivatives of (5.18) are required until u(t) appears explicitly.

Step 3: Differentiating (5.18) yields

β̂
T(t)Φ̈u(t) = kgr̈(t)−S2(t), (5.19)

where

S2(t), Ṡ1(t)+
˙̂
β (t)Φ̇u(t)

Note that, Ṡ1(t), and hence S2(t), contain ¨̂α(t), ¨̂
β (t), ¨̂σ(t), which involve ˙̃x(t) or ẏ(t). As seen from

(5.18) and (5.19), higher backstepping levels require the measurements of d(i)y
dt(i)

, i = 1, . . . ,ri j−1.

In many approaches, it is often assumed that output derivatives up to (ri j−1) order are available.

In fact, this assumption is equivalent to the full state measurement assumption. This case, however,

is often unrealistic, especially in biological systems.

Hence, one approach to avoid the explicit need of output derivatives is adaptive backstepping,

which requires redesigning the predictor recursively. However, for system with relative degree

ri j ≥ 3, the adaptive terms will suffer the ”explosion of complexity”, which makes the predictor

extremely complicated. Furthermore, without further assumptions, it is complicated to use the fast

adaptation technique to reduce the prediction errors due to time-varying term σ(t).



98

To overcome the mentioned complexity, other versions of adaptive backstepping, such as dy-

namic surface or command filter backstepping, address the problem by approximating the analyti-

cal derivative with a high-pass filter. For example, follow the steps 2 and 3, one would derive

S2(t), ˙̄S1(t)+
˙̂
β (t)Φ̇u(t), (5.20)

˙̄S1(t) =
1
τ
(−S̄1(t)+S1(t)). (5.21)

Or, in the frequency domain, denoting with S3(t), ˙̄S1(t), then

sS1(s)' S3(s) =
s

1+ τs
S1(t). (5.22)

In order to obtain an acceptable tracking error, one needs τ → 0 so that S3(s)→ sS1(s). This

condition, however, will lead to high gain dynamics caused by 1
τ

in (5.21).

The high gain effect is even more serious when the high-pass filters are cascaded, as the systems

relative degree increases. Consequently, the large number of filters will lead to larger approxima-

tion error. A higher gain 1
τ

for each filter therefore is needed to reduce this accumulated error. As

the result, the control signal suffers severe overshoot and oscillations, especially when high gain

adaptation is simultaneously used.

Notice that the drawbacks of backstepping-like techniques are rooted from the intention of

designing u(t) so that µ̂(t) exactly cancels the mismatch term η̂(t). However, this ends up with

either too complicated analytical solution or high gain approximation approaches.

These mentioned analysis inspires our approach, where the tracking accuracy can be obtained

without exact cancelling the mismatch term. Hence, the solution remains simple regardless of the

system relative degree. The main idea is shown as follow. First, rewrite (5.10) as

x̂(s) = H(s)(µ̂(s)+ η̂(s))+(sI−Am)
−1

χ(s)+ x̂in(s), (5.23)

where x̂in(s) is the exponential decay term due to the initial condition, and

H(s), (sI−Am)
−1Bm, χ(t), k(t)x̃(t). (5.24)
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Notice that H(s) plays a role of a low-pass filter of η̂(s). Therefore, we only need to cancel the

low-frequency components of η̂(s), since the high frequency components outside the bandwidth

of H(s) is already suppressed. Our control approach presented in the next section is designed with

this purpose in mind.

5.6.2 Adaptive Controller

Lemma 5.6.1 Consider the SISO system (5.6) and the following adaptive controller

u(t) =−Kfωu(t)+ v̂(t), (5.25a)

v̂(t) =−kC (µ̂(t)+ η̂(t)− kgr(t)) , (5.25b)

All signals of the closed loop system in Fig 5.1 are bounded if Kf and kC are chosen such that

L‖G(s)‖L1 < 1 and C(s) and Λ(s) are stable, where L, max
α∈Θα

‖αTD+λn−1Cm‖1, and

G(s), H(s)(1−C(s)), C(s),
kCP(s)

Λ(s)+ kCP(s)
, (5.26)

P(s), β
TAuS(s), Λ(s), det(sI− (Af−BfKf)). (5.27)

Proof First, we will evaluate µ̂(s) in the closed loop system. Substituting (5.25a) into (5.4b), we

obtain

ωu(s) = (sI− (Af−BfKf))
−1Bfv̂(s) =

S(s)
Λ(s)

v̂(s) (5.28)

where S(s), [sn∗−1 . . .s 1]T ∈ Cn∗ , and Λ(s) is given in (5.27). Furthermore, (5.11) can be rewrit-

ten as

µ̂(t) = β
TAuωu(t)− µ̃(t), (5.29)

where µ̃(t) = β̃ T(t)Auωu(t). Hence, substituting (5.28) to (5.29), we obtain

µ̂(s) =
β TAuS(s)

Λ(s)
v̂(s)− µ̃(s) = F(s)v̂(s)− µ̃(s), (5.30)
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where F(s), P(s)
Λ(s) , and P(s) is given in (5.27). Substituting (5.30) in (5.25b) yields

v̂(s) =−kC(F(s)v̂(s)− µ̃(s)+ η̂(s)− kgr(s)).

and

v̂(s) =− kC

1+ kCF(s)
(η̂(s)− kgr(s)− µ̃(s)). (5.31)

Substituting (5.31) in (5.30), we can rewrite µ̂(s) as

µ̂(s) =−C(s)(η̂(s)− kgr(s))− (1−C(s))µ̃(s), (5.32)

where C(s) is given in (5.27). Then, substituting (5.32) into (5.23) to obtain the closed loop system

state provides

x̂(s) = H(s)C(s)kgr(s)+H(s)(1−C(s))(η̂(s)− µ̃(s))+(sI−Am)
−1

χ(s)+ x̂in(s). (5.33)

The next step will be to remove the unknown term µ̃(s) from (5.33). Let

ṽ(t), µ̃(t)+ η̃(t), (5.34)

η̃(t), η(t)− η̂(t) = Φ
T
x (t)α̃(t)+ σ̃(t), (5.35)

∆x̂(s), H(s)(1−C(s))ṽ(s)− (sI−Am)
−1

χ(s), (5.36)

then (5.33) can be rewritten as

x̂(s) = H(s)C(s)kgr(s)+H(s)(1−C(s))η(s)+ x̂in(s)−∆x̂(s). (5.37)

Note that, ∆x̂(s) defined in (5.36) contains the estimation error. Hence, it can be rewritten in term

of the prediction error x̃(t). It follows from (5.34), (5.24) and (5.13) that

H(s)ṽ(s) = x̃(s)+(sI−Am)
−1

χ(s),

hence, (5.36) can rewritten as

∆x̂(s) = (1−C(s))x̃(s)−C(s)(sI−Am)
−1

χ(s).
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Finally, we need to prove that all signals in the closed loop system, as seen in Fig 5.1, are bounded.

Let

∆x(s), x̃(s)−∆x̂(s) =C(s)(x̃(s)+(sI−Am)
−1

χ(s)),

it follows from (5.37) that

x(s)= x̂(s)+x̃(s)=H(s)C(s)kgr(s)+G(s)η(s)+x̂in(s)+∆x(s),

where G(s) is defined in (5.26). It follows from the definition of η(t) in (5.7), that

‖η‖L∞
= ‖(αTD+λn−1Cm)x+σ‖L∞

≤ L‖x‖L∞
+‖σ‖L∞

,

which leads to

‖x‖L∞
≤ ‖H(s)C(s)‖L1‖kgr‖L∞

+‖G(s)‖L1L‖x‖L∞
+‖G(s)‖L1‖σ‖L∞

+‖xin‖L∞
+‖∆x(s)‖L∞

.

Since x̃(t) is bounded by Lemma 5.5.1 and C(s) and (sI−Am)
−1 are strictly proper and stable

transfer functions, ∆x(s) is bounded. Furthermore, since σ(t) and r(t) are assumed to be bounded

and G(s) is designed to satisfy ‖G(s)‖L1L < 1, x(t) is bounded by

‖x‖L∞
≤ 1

1−‖G(s)‖L1L
(‖H(s)C(s)‖L1‖kgr‖L∞

+‖G(s)‖L1‖σ‖L∞
+‖xin‖L∞

+‖∆x(s)‖L∞
), xb.

Hence, as x̃(t) is bounded by Lemma 5.5.1, x̂(t) is also bounded. Furthermore, since x(t) is

bounded and α̂(t), σ̂(t) are bounded by the projection operator, it follows from (5.11) that η̂(t)

is also bounded. Because C(s) is stable and x̂(t) is bounded, it follows from (5.33) that µ̃(t) is

bounded, and, it is inferred from (5.31) and (5.32) that v̂(t) and µ̂(t) are also bounded. Conse-

quently, since µ̂(t) is bounded, it follows from (5.11) that ωu(t) is bounded. Finally, it is inferred

from (5.25a) that u(t) is bounded because ωu(t) and v̂(t) are bounded. Hence, all signals of the

adaptive closed loop system are bounded, which concludes the proof. �

Lemma 5.6.1 provides the conditions to ensure all the closed loop signals remain bounded. For

tracking performance, as seen from (5.32), the controller is designed so that µ̂(s) cancels the low
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frequency components of η̂(s) filtered by C(s). Furthermore, it follows from (5.26) that increasing

kC will increase the bandwidth of C(s). Hence, kC needs to be large enough so that the bandwidth

of C(s) covers the bandwidth of H(s). In the next section, the tracking error and transient behavior

will be analyzed to give the guidance of choosing the parameters.

5.7 Transient Behavior

Theorem 5.7.1 Consider the SISO system (5.6) and the adaptive control (5.25). If the damping

k(t) in (5.10) is chosen such that

2
√

γh0 +BT
mPAm(BT

mP)† +max
(

0,
ρ̇(t)
ρ(t)

)
≤ k(t)≤ kmax, (5.38)

where h0 ,
ρmin+ρmax

2 l0, l0 , BT
mPBm, kmax > 0 is a chosen upper bound , and

ρ(t),Φ
T
x (t)Φx(t)+Φ

T
u (t)Φu(t)+1, (5.39)

then the following bounds hold

|ṽ(t)|< c4e−νt +
ũmax√

γ
, (5.40)

‖∆x(t)‖L∞
≤ ‖H(s)C(s)‖L1‖ṽ(t)‖L∞

, (5.41)

‖y(t)− ym(t)‖L∞
≤
‖T (s)‖L1

kC
(‖η(t)‖L∞

+ kg‖r(t)‖L∞
)+‖ein‖L∞

+‖Cm∆x(t)‖L∞
, (5.42)

where T (s),CmH(s) 1
k−1

C +F(s)
, ein(s),Cm(sI−Am)

−1(x0− xm0), and ũmax is a constant defined

in (5.49).

Proof The proof follows the same lines of the proof in [92]. Differentiating (5.34) and substituting

the adaptive laws (5.12) we obtain

˙̃v(t) =−γρ(t)e(t)+ z1(t),

where ρ(t) is defined in (5.39), and
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z1(t), β̃
T(t)Φ̇u(t)+ Φ̇

T
x (t)α̃(t)+ σ̇(t).

Consider the change of variable p(t), [p1(t) p2(t)]T, where

p1(t), ṽ(t), p2(t), ˙̃v(t)− z1(t) =−γρ(t)BT
mPx̃(t).

Differentiating p2(t) and substituting (5.13) to obtain

ṗ2(t) =−γρ̇(t)BT
mPx̃(t)− γρ(t)BT

mP(Amx̃(t)− k(t)x̃(t)+Bmṽ(t)) . (5.43)

Define H , I− (BT
mP)†(BT

mP) to rewrite

BT
mPAmx̃(t) = BT

mPAm

[
H +(BT

mP)†(BT
mP)

]
x̃(t),

then (5.43) can be rewritten as

ṗ2(t) =−γρ̇(t)BT
mPx̃(t)− γρ(t)BT

mPAmHx̃(t)− γρ(t)BT
mPAm(BT

mP)†(BT
mP)x̃(t)

+ γρ(t)BT
mPk(t)x̃(t)− γρ(t)BT

mPBmṽ(t)

=−γρ(t)
(

ρ̇(t)
ρ(t)

+BT
mPAm(BT

mP)†− k(t)
)

BT
mPx̃(t)− γρ(t)BT

mPBmṽ(t)− γρ(t)BT
mPAmHx̃(t)

=−2a(t)p2(t)− γρ(t)l0 p1(t)− γz2(t).

where l0 , BT
mPBm, and

a(t),
1
2

(
k(t)−BT

mPAm(BT
mP)†− ρ̇(t)

ρ(t)

)
, (5.44)

z2(t), ρ(t)BT
mPAmHx̃(t). (5.45)

Then, the dynamics of p(t) can be written as ṗ1

ṗ2

=
 0 1

−γρ(t)l0 −2a(t)

 p1

p2

+
 1

0

z1+

 0

−γ

z2, (5.46)

According to Lemma 5.6.1, all the signals in the closed loop are bounded. Hence, z1(t), z2(t) are

bounded and 0 < h1 ≤ h(t) , ρ(t)l0 ≤ h2 < ∞. Furthermore, it follows from (5.38) that a(t) ≥√
γh0, where h0 = (h1 + h2)/2. Applying Lemma 5.2.1 with extension to the two inputs case, we
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obtain the following bound

|ṽ(t)|= |p1(t)| ≤ c4e−νt +
c1
√

h0

h1
√

γ
‖z1(t)‖L∞

+
1
h1
‖z2(t)‖L∞

, (5.47)

where c1 ≥ 2. The term c4e−νt represents the error due to the initial condition p(0), which decays

exponentially with rate proportional to
√

γ . Furthermore, it follows from (5.45) and (5.16) that

‖z2(t)‖L∞
≤max

t≥0
{‖ρ(t)BT

mPAmHx̃(t)‖} ≤max
t≥0
{‖ρ(t)BT

mPAmH‖‖x̃(t)‖} ≤ wz√
γ
, (5.48)

where

wz , ‖h2L−1BT
mPAmH‖

√
1

λmin(P)

(
d1 +

1
qp +2kmin

d2

)
,

Finally, (5.40) follows from (5.47) and (5.48), and (5.41) follows from (5.36) with ũmax defined as

ũmax ,
c1
√

h0

h1
‖z1(t)‖L∞

+
1
h1

wz. (5.49)

Eq. (5.42) follows directly from (5.6b), (5.33) and (5.41), which concludes the proof. �

Remark 5.7.1 According to Theorem 5.7.1, for a chosen γ , (5.42) clearly shows that the tracking

error can be reduced by increasing kC. For a chosen kC, |ṽ(t)| and hence ‖∆x‖ and ‖y(t)− ym(t)‖

can be reduced as much as needed by increasing the adaptive gain γ , which is limited only by the

computer processor. Furthermore, k(t) plays a vital role, as it needs to be larger than a minimum

value. However, a large k(t) will also increase c1 in (5.49), which leads to the larger upper bound

ũmax and hence affects all other errors.

To guarantee closed-loop stability during the input saturation phase, we implement the approach

described in [50] to modify the reference signal. When the control signal is saturated, the system

is trying to track the desired trajectory, which is out of reach. In this case, the reference trajectory

is modified by appropriately choosing the reference input in order to bring the reference trajectory

within reach. In this way, we can still guarantee uniform boundedness of the tracking error in the

face of the saturation constraint.

Theorem 5.7.2 Consider the SISO system (5.6) and the adaptive control (5.25). For a given de-
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sired reference input rd(t), consider the modified reference input r(t)

r(t) =
vs(t)+ kC(µ̂(t)+ η̂(t))

kCkg
, (5.50a)

vs(t) = us +K f ωu(t), (5.50b)

where us = Sat(u(t),umax) is the saturated control signal. Then the control law (5.25) along with

the modified reference (5.50) guarantees that the tracking error |y(t)−ym(t)| is uniformly bounded

by (5.42), and |u(t)| ≤ umax.

Proof If the input is not saturated, |y(t)− ym(t)| is uniformly bounded by (5.42) as consequence

of Theorem 5.7.1. Otherwise, (5.50) is directly inferred from (5.25). When the control input is

saturated, the closed-loop stability and boundedness of the tracking error (5.42) are guaranteed

by modifying the reference signal r(t), which is treated as a virtual control signal. Details of the

stability proof can be found in ([50]). �

5.8 Illustrative Numerical Examples

Example 5.8.1 Consider the following SISO system

ξ̇ (t) = Aξ (t)+Bu(t)+h(ξ (t), t),

y(t) =Cξ (t),

where ξ (t) , [ξ1(t) · · ·ξ4(t)]T ∈ R4 is the state vector; u(t) ∈ R is the control inputs; matrices

A,B,C are the realization of the following transfer function

G(s),C(sI−A)−1B =
5s+4

(s−0.2)(s−0.3)(s−0.4)(s+6)
,

and h(ξ , t) = [cos(2t)+ tanh(ξ2) 1+0.5sin(3t) 0.2cos(0.2ξ1) 0.3sin(ξ3)cos(0.2ξ1ξ4)]
T ∈R4.

G(s) and h(ξ , t) are unknown and ξ (t) is unmeasurable. It can be seen that G(s) is unstable and

has relative degree r = 3. Furthermore, the uncertainties h(ξ , t) are nonlinear, time varying and
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contain mismatched terms in respect to the control signal.

To implement the proposed controller, the autoregressive vectors are constructed by using the

low-pass filters defined in (5.4) with ∆(s) = sn+λ TS(s) = (s+1)4, so that λ , [−4 −6 −4 −1].

Hence, the reference system defined in (5.2) with the chosen kp = 1 takes the following realization

Am =

 Af −Bf

−λ TAp −kp

=



−4 −6 −1 −1 −1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

6 14 11 3 −1


, Bm =



0

0

0

0

1


,Cm = BT

m.

The following parameters are used to implement the controller: P = I5 , adaptation gain γ =

104; k(t) defined in (5.38) with h0 = 35 and ρ̇(t) is approximated by s
0.01s+1ρ(s); kC , 150 and

Λ(s), s(s+0.8)(s+1)(s+1.2) so that K f = [−1−3.04−3.04−1].

For the adaptation law, we set the following projection bounds and the initial values are chosen

randomly inside the projection bounds.

Ωα = αc±0.8|αc|, αc = [5 −5 2 −0.2]T, α̂0 = [3.2 −3.5 2 −0.15]T,

Ωβ = βc±0.8|βc|, βc = [0 0 6 2]T, β̂0 = [0 0 4 1.5]T,

Ωσ = [−20 20], σ̂0 = 0.

The tracking performance and the control effort for the reference signal r(t) = 3sin(2t) are il-

lustrated in Fig 5.2 and Fig 5.3 respectively. The reference signal r(t) is passed through a low

pass filter 1
(s+1)2 before entering the reference system. The control signal is saturated to avoid the

initial overshoot effect. The time evolving adaptive parameters α̂(t), β̂ (t) and σ̂(t) are illustrated

in Figures 5.4, 5.5, 5.6, respectively.
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Figure 5.2: System trajectories.
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Figure 5.3: Control signal.
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Figure 5.4: Evolution of α̂(t) over time.
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Figure 5.5: Evolution of β̂ (t) over time.
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Figure 5.6: Evolution of σ̂(t) over time.

We can see that the tracking performance is satisfied. All adaptive parameters are inside the

bounded area. Although the control signal is saturated at beginning due to the adaptation process

as σ(t) and β (t) change rapidly, the control signal is smooth after 3s. Furthermore, comparing

to the adaptive backstepping algorithms, the proposed controller structure is significantly simpler

and does not require numerically high order derivatives of the output signals.
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Figure 5.7: kC = 100 and h0 = 3.
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Figure 5.8: kC = 100 and h0 = 20.
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Figure 5.9: kC = 10 and h0 = 3.
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Figure 5.10: kC = 1000 and h0 = 200.

Another advantage of the proposed controller is that there are only 2 parameters that need

to be tuned: h0 and kC, which are proportional to the frequency of the reference signal r(t), while
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γ is chosen as large as needed. To illustrate the effect of kC and h0, we consider the reference

r(t) = 3tanh(5sin(0.3t)). The reference signal r(t) is passed through a low pass filter 1
(s+1)2 before

entering the reference system. Figures (5.7 - 5.10) present the tracking results and the control

signals for different values of kC and h0. The results confirm our theoretical analysis. Figure

5.7 and Figure 5.9 show that a larger kC can yield better tracking results while a small kC yields

poorer tracking results but smoother control signal. However, as seen from Figure 5.8 and Figure

5.10, if kC is chosen too large without appropriate tuning value of h0, the control signals suffer the

chattering effect.

As seen in Example 5.8.1, kC and h0 play a vital role to obtain the control signal’s smoothness

in the presence of fast adaptation. In the next example, we will increase the order and the relative

degree of the system to obtain comparable results without hard effort of tuning the parameters.

Example 5.8.2 Consider the following system

ξ̇ (t) = Aξ (t)+Bu(t)+h(ξ (t), t),

y =Cξ (t),

where ξ (t) , [ξ1(t) · · ·ξ3(t)]T ∈ R3 is the state vector; u(t) ∈ R is the control inputs; matrices

A,B,C are the realization of the following transfer function

G(s),C(sI−A)−1B =
6s+2

(s−0.5)(s−0.6)(s−0.7)
,

and h(ξ , t) = [cos(t) tan(ξ3) 2+ sin(1.5t) 0.2cos(ξ2)]
T ∈R3. G(s) and h(ξ , t) are unknown and

ξ (t) is unmeasurable. It can be seen that G(s) is unstable and has relative degree r = 2.

Now, let consider the following control signal

u(s) = Q(s)ū(s) =
1

s+15
ū(s),

which leads G(s)Q(s) to be a system of order n = 4 and relative degree r̄ = 3 in respect of the

control input ū(t). Hence, we can apply the same controller from example 1.
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Figure 5.11: System trajectories.
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Figure 5.12: Control signal ū(t) and u(t).

To illustrate the simplicity and advantage of the proposed controller, we use the same param-

eters of example 1, except with bad tuning adaptation parameters: γ = 5× 104 and h0 = 1. Fig

5.11 and Fig 5.12 show the tracking performance, the virtual control ū(t) and the control u(t),

respectively. It can be seen that although the virtual control signal ū(t) is heavily chattering, the

true control signal u(t) is smooth.

Notice that, different than the L1 adaptive control, when incorporating the filter to smooth the

control signal, we do increase the order and the relative degree of the system. However, in our

approach, increasing the system order and relative degree still does not complicate the controller

structure. In contrast, the idea of passing a control signal through a low-pass filter in order to keep

it in a desired bandwidth can not be handled easily by using adaptive backstepping. This is because

of doing so will increase the relative degree, hence requiring an extra design step and complicating

the control structure. In fact, any 4th order systems that satisfy our assumptions can be controlled

by using the exact control structure given in Example 5.8.1 and choosing the projection bounds

for the adaptive parameters intuitively. In the next section, we will apply the controller to control

motion of the musculotendon arm model.
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5.9 Control the arm motion

The algorithm is implemented on the Arm26 model provided in OpenSim ([54]) to control the

elbow flexion angle. The system dynamics can be summarized as follow.

θ̈(t) = f (θ(t), θ̇(t))+g(θ(t), θ̇(t))M(t), (5.51a)

M(t) =
3

∑
i=1

Fi(li(t))ri(θ), (5.51b)

l̇M
i (t) = Ψ1(lM

i(t),ai(t)), (5.51c)

ȧi(t) = Ψ2(ai(t),ei(t)), i = 1,2,3, (5.51d)

where in (5.51a), θ is the elbow flexion, and M is the elbow moment as illustrated in Fig 5.13. In

(5.51b), three segments of muscles are considered to contribute to the elbow moment M: lateral

and medial heads of triceps (TRIlat and TRImed), and brachialis (BRA). Each muscle creates a

moment, which is a product of muscle force Fi with a corresponding moment arm ri. Each muscle

force Fi is a nonlinear function of its muscle length lM(t). Eq. (5.51c) describes the muscle

contraction dynamics driven by the muscle activation ai(t). Finally, (5.51d) presents the dynamics

of the muscle activation, which is controlled by the excitation signal ei(t).

Figure 5.13: The Arm26 model with 3 active muscles:TRIlat, TRImed, BRA
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The system dynamics (i.e. functions f ,g,Fi,ri,Ψ1,Ψ2) are unknown, and only the output θ(t)

and the control input ei(t) generated by the FES system are measured. Details of the mathematics

model (used only for the simulation purpose) can be found in ([5, 58]). It can be seen that system

(5.51) has one output θ(t) and three inputs ei(t). Furthermore, due to the properties of human

body, the considered system satisfies all our assumptions.

The simulation is conducted by using the default parameters given from OpenSim Arm26

Model, which include the following maximum isometric forces FM
o , optimal fiber length lM

o and

slack tendon lengths lT
s

Muscles TRIlat TRimed BRA

FM
0 (N) 624.3 624.3 987.26

lM
0 (m) 0.1138 0.1138 0.0858

lM
0 (m) 0.0908 0.0908 0.0535

Since the excitation inputs are bounded by 0≤ ei(t)≤ 1 and have the same relative degree r = 4,

these inputs can be merged into one virtual control u(t), in which the antagonist muscles TRIlat,

Trimed provide u(t)< 0 and the agonist muscle BRA provides u(t)> 0. Hence, the controller can

be implemented by considering the system as a SISO system with the order n = 4 and a virtual

control signal u(t) ∈ [−1 1].

The autoregressive vectors are constructed by using the low pass filter (5.4) with ∆(s) = s4 +

λ TS(s) = (s+10)4, so that the reference system defined in (5.2) is

Am =



−40 −600 −4000 −104 −1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

960 19400 146000 39×104 −1


, Bm =



0

0

0

0

1


, Cm = BT

m.

The following parameters are used to implement the controller: P = I5 , adaptation gain γ =

5× 105; k(t) is defined in (5.38); kC , 100 and Λ(s) , s(s+ 1.2)(s+ 1.3)(s+ 1.5) so that K f =
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Figure 5.14: The time evolution of outputs ym(t), ȳm(t), ŷ(t), and y(t) and the excitation signals
ei(t) for r(t) = π

180(25sin(t)+90).

[−36 −595 −3998 −104].

For the adaptation law, we set the following projection bounds and the initial values as

Ωα =±[100 100 100 100]T, α̂0 = [−4 6 −4 1]T,

Ωβ =±[0 0 0 100]T, β̂0 = [0 0 0 1]T,

Ωσ = [−30 30], σ̂0 = 0.

The virtual control signal u(t) is obtained by (5.25) and saturated in [−1 1], and the excitation

signals are derived as

e1(t) = e2(t) =−u(t), e3(t) = 0, if u(t)< 0,

e1(t) = e2(t) = 0, e3(t) = u(t), if u(t)> 0,

OpenSim can be simulated in MATLAB by using MATLAB scripts ([94]) or Simulink ([95,

96]). In this implementation, the simulation is conducted on OpenSim 3.2 API and MATLAB

2014b by following the MATLAB Scripts tutorial in [94]. MATLAB ODE15s solver is used for

integration.

The system responses and the control efforts for different reference signals r(t) are illustrated
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Figure 5.15: The time evolution of outputs ym(t), ȳm(t), ŷ(t), and y(t) and the excitation signals
ei(t) for r(t) = π

180(−20tanh(4cos(2t)+30).

in Fig 5.14 and Fig 5.15, respectively. The reference input is chosen in order to obtain the desired

trajectory with different ranges of motion. As seen from Fig 5.14 and Fig 5.15, the settling time

for the system output y(t), predictor output ŷ(t), and the reference output ym(t) to converge to each

other is less than 0.5s. Without retuning, the tracking performance in both case are satisfied in a

large range of motion, and confirm the theoretical analysis. The control signals have a bang-bang

effect due to the saturation of control input. In practice, this is how muscles are activated, which

helps reducing the muscle fatigue.

To avoid distortion of the reference output ym(t), when increasing the frequency of the refer-

ence signal r(t), we need to increase the cut-off frequencies of the reference system (5.2) and the

low-pass filter (5.4). As suggested in literature ([97–100]), a limb motion with frequency less than

1Hz is commonly used, so that the low-pass filter bandwidth selected as ∆(s) = (s+ 10)4 is suit-

able for most applications. To further prove the numerical stability, Fig 5.16 shows the tracking

results for the reference r(t) = π

180(15tanh(3sin(5t))+70) over a period of 300s. As seen in Fig

5.16, for a constant kC, increasing the reference frequency will induce a larger tracking error. This

effect is predictable by our theoretical analysis, in particular, (5.32) and (5.37) show that increas-

ing the frequency of r(s) will increase the frequency of η(s). However, µ(s) can only cancel the

low frequency components of η(s) filtered by C(s). Therefore, to obtain a smaller tracking errors,

increasing frequency of r(t) will require increase kC to increase the bandwidth of C(s). Neverthe-

less, without retuning, the tracking performance is satisfied, with the error mean and the standard
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Figure 5.16: The time evolution of output ym(t), ŷ(t), and y(t) and its closed-look in the time
period [290 300(s)] for r(t) = π

180(15tanh(3sin(5t))+70)

deviation of the error |ym(t)− y(t)| given by (Merr,σerr) = (1.81◦,2.48◦).

To further prove the robustness of the proposed controller to unstructured uncertainties, the

Millard musculotendon model ([101]) is used to replace the default Thelen musculotendon model

([57]) in Arm26 model. The force-velocity curve, the fiber force-length curve, and the tendon

force-length curve are set to the Millard model default values. Moreover, the maximum isometric

forces FM
0 , optimal fiber length lM

o and slack tendon lengths lT
s are modified as

Muscles TRIlat TRimed BRA

FM
0 (N) 500 500 1100

lT
s (m) 0.1 0.1 0.09

lM
0 (m) 0.08 0.08 0.05

These modifications of the model represent the uncertainties both in the system dynamics and

the physical parameters. Note that although the two models are different, they have same level

of complexity and the same high relative degrees. The same control parameters are used again

to conduct the simulation study. The system response and a time window over the first 7 seconds

are illustrated in Fig 5.17. As seen from Fig 5.17, although there is a little overshoot in the first

second during the adaptation, the tracking result is satisfied despite of the changes in model and

parameters. These simulations confirm our theoretical analysis about the controller properties of

fast tracking and robustness to uncertainties.
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Figure 5.17: The time evolution of output ym(t), ŷ(t), and y(t) conducted with Millard Model and
its closed-look in the time period [0 7(s)] for r(t) = π

180(−20tanh(3sin(5t))+100).

5.10 Discussion

The most valuable advantage of our proposed approach is that it is based on an output feedback

control as opposed to open-loop and feed-forward controllers commonly used for FES systems.

Furthermore, it can deal with complex nonlinearities, large uncertainties of the musculoskeletal

system without the need of system dynamics and full state measurements, such as individual mus-

cle forces, muscle lengths and activations. For example, in [100, 102, 103], the authors proposes

open-loop and feed-forward controllers to stabilize the arm motion based on an optimization pro-

cess to control joints’ stiffness. These approaches assumes that muscle force is linearly propor-

tional to the activation (i.e. Equ. (3) in [103])

f m(α,q) = α f m
0 (q)

where f m(α,q) is the muscle force, α is the vector of muscle activation, and f m
0 (q) is the posture

dependent maximum achievable muscle forces. This assumption has several drawbacks. First, it

ignores the intrinsic nonlinearity of the muscle contraction dynamics and the delay of the muscle

activation, which significantly simplify the problem that we attempt to solve. Furthermore, it re-

quires a time-consuming calibration to obtain the functions f m
0 (q). In [98], a Dynamic Surface

control is proposed to compensate for the nonlinearity of the contraction dynamics and the de-

lay of the neuromuscular activation dynamics. However, the approach would require a full-state

measurement, such as the angular velocity and the activation. In practice, muscle activation is

not measurable and designing an observer to estimate the activation is very challenging because
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Figure 5.18: The tracking performance using the sliding mode control (Fig. 5 [5]) and the proposed
controller for r(t) = π

180(−35cos(πt))+70).

the muscle contraction dynamics is highly nonlinear and unknown. Furthermore, the controller

does not consider the case of agonist-antagonist muscles group. In [5], although the controller

uses the adaptive sliding mode to deal with the dynamics uncertainties, it still relies heavily on the

system dynamics through the back-stepping control process and full state measurements. Since

the simulation study in [5] is conducted using the same model Arm26, the corresponding tracking

results are shown in Fig 5.18 to compare the performance between our proposed controller and

that presented in [5].

Note that, without retuning, without the need of model dynamics as in [5], and without model

identification procedures as in [100], the new proposed controller can obtain faster tracking than

the controller proposed in [5]. Furthermore, no output derivatives are required to implement the

controller, as opposed to [98]. Only output measurement, such as the elbow angle, and the exci-

tation signals simulated by FES are used to construct the predictor. To our best knowledge, this is

the first output feedback FES controller that can theoretically prove stability when applied to the

complete Hill-type musculostendon models, such as Thelen and Millard model ([57, 101]). This

advantage provides more practical approach for closed-loop control of FES application.

5.11 Conclusion

This chapter presents an output feedback control for a class of unknown dynamics systems with

unmatched uncertainties and high relative degree. The algorithm relies on an adaptive predictor,
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which can predict the system output for any admissible input. The prediction error is proved

to be ultimately bounded using the Lyapunov direct method. Then, the control law is derived

to cancel the unmatched uncertainty estimation. This control law avoids the recursive step-by-

step design of backstepping and therefore remains simple regardless of the system relative degree.

Theoretical analysis shows that fast convergence, accurate tracking and a smooth control signal can

be obtained simultaneously. Simulation results of controlling the elbow flexion angle conducted

in OpenSim validate the performance of the proposed control algorithm. Further implementation

and experimental results will be presented in the next section to verify the control performance for

MIMO systems.



Chapter 6

Adaptive Predictor-Based Output Feedback

Control for a Class of High Relative Degree

Uncertain Nonlinear Systems with Fast

Adaptation and Simple Control Structure:

Experimental Results for MIMO Systems

The following results will be submitted for consideration to the International Journal of Robust

and Nonlinear Control.

6.1 Introduction

The results for SISO systems from Chapter 5 are extended for MIMO systems in this chapter.

Specifically, the predictor remains similar to that of the SISO case. The MIMO predictor will then

be decoupled into independent SISO systems for which the results from Chapter 5 can be applied to

119
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obtain the virtual control signals. Consequently, these virtual control signals are transformed back

to the real control signals applied to the physical MIMO system. Simulation and experimental

results are reported to verify the controller performance for MIMO systems.

This chapter is organized as follows. Section 6.2 summarizes the main results and presents

the controller structure for MIMO systems. Section 6.3 provides simulation demos in Gazebo

environment and experimental results to control a robotics arm to illustrate the algorithm’s efficacy.

Section 6.4 presents the experimental results for the Quanser helicopter and Section 6.5 concludes

this chapter.

6.2 Adaptive Predictor-based Control for MIMO Systems

The result obtained for the SISO case can be easily extended to the MIMO case by making the

following assumption

Assumption 6.2.1 The system is at least square, i.e. m ≥ p. For each output, all inputs have the

same relative degree, i.e ri j = ri, i = 1, . . . , p, j = 1, . . . ,m.

Lemma 6.2.1 Consider the MIMO system (5.6), and the following adaptive control

u(t) =−K̄fωu(t)+v̂(t), v̂(t) = F−1(t)(τ(t)− ς(t)), (6.1a)

τ̂(t) =−Kc(µ̂(t)+ η̂(t)− kgr(t)), (6.1b)

ς(t) =
[ m

∑
j=2

ς1 j(t) · · ·
m
∑
j=2

ςp j(t)
]T

∈Rp, (6.1c)

where K̄f , 1m⊗Kf ∈Rm×nm, Kc , diag([kc1 · · · kc p]) ∈Rp×p, and F(t) ∈Rp×m is defined as

F(t),


1 ¯̂p12(t) · · · ¯̂p1m(t)
...

...
...

...

1 ¯̂pp2(t) · · · ¯̂ppm(t)

 , ¯̂pi j(t),
p̂i j(t)
p̂i1(t)

, (6.2a)

P̂i j(s, t), β̂
T
i j(t)ApS(s), p̂i j(t) ¯̂Pi j(s), S(s), [sn−1 . . .s 1]T ∈ Cn, (6.2b)
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¯̂Pi j(s, t), sli + p̂(li−1)
i j (t)sli−1 + · · ·+ p̂(1)i j (t)s+ p̂(0)i j (t), (6.2c)

where Ap , Af + kpIn, li , n− ri, and ςi j(t) is the output of the system

ϑ̇i j(t) = Ai(t)ϑi j(t)+Biv j(t), ϑi j(0) = ϑi j0, (6.3a)

ςi j(t) =Ci j(t)ϑi j(t), (6.3b)

where Ai(t),Bi,Ci j(t) are the state-space realization of the transfer function

Vi j(s, t) = ¯̂pi j(t)Wi j(s, t), Wi j(s, t),
¯̂Pi j(s, t)− ¯̂Pi1(s, t)

¯̂Pi1(s, t)
. (6.4)

All signals of the closed loop system remain bounded if Kf and KC are chosen such that C(s) is

stable and ‖G(s)‖L1L<1.

Proof Similar to (5.30) for the SISO case, µ(s) has the form

µ(s),


µ1(s)

...

µp(s)

=


F11(s) · · · F1m(s)

... . . . ...

Fp1(s) · · · Fpm(s)




v1(s)
...

vm(s)

 , (6.5)

where Fi j(s) =
Pi j(s)
Λ(s) is a minimum phase transfer function, and Λ(s) , det(sI− (Af−BfKf)) is

Hurwitz. Without loosing generality, by defining

τi(s), v1(s)+
m

∑
j=2

Fi j(s)
Fi1(s)

v j(s), (6.6)

(6.5) takes the form µi(s) = Fi1(s)τi(s). Therefore, the MIMO system is decoupled into p indepen-

dent SISO systems, each of which has a control input τi(t). Hence, the results from Lemma 5.6.1

and Theorem 5.7.1 are hold for each single system, which proves (6.1b).

It follows from Assumption 6.2.1 that Pi j(s) has the same order for all j = 1, . . . ,m, i.e.

Pi j(s) = pi jP̄i j(s), P̄i j(s), sli + p(li−1)
i j sli−1 + · · ·+ p(1)i j s+ p(0)i j ,

so that
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Fi j(s)
Fi1(s)

=
pi j

pi1
(1+Wi j(s)),

where

Wi j(s),
P̄i j(s)− P̄i1(s)

P̄i1(s)
=

w(li−1)
i j sli−1 + · · ·+w(1)

i j s+w(0)
i j

sli + p(li−1)
i j sli−1 + · · ·+ p(1)i1 s+ p(0)i1

,

and w(q)
i j , p(q)i j − p(q)i1 , q = 1, . . . ,(li− 1). Note that Wi j(s) are strictly proper stable transfer

function. Let p̄i j ,
pi j
pi1

and ςi j(s), p̄i jWi j(s)v j(s), then

Fi j(s)
Fi1(s)

v j(s) = p̄i jv j(s)+ ςi j(s), (6.7)

where ςi j(t) can be obtained by the state-space realization (6.3), where Ai ∈ R(li−1)×(li−1), Bi ∈

R(li−1) and Ci j ∈R1×(li−1) are defined as

Ai ,

 −p(li−1)
i1 ... −p(0)i1

Ili−1 0li−1

 , Bi ,

 1

0li−1

 ,
Ci j , p̄i j

[
w(li−1)

i j · · ·w(0)
i j

]
. (6.8)

The realization (6.3) holds for both ideal case in which Ai, Ci j are assumed to be known constants

and for adaptive case in which entries of matrices Ai, Ci j are time-varying and obtained from (6.2).

To derive the control v̂(t), it follows from (6.6) and (6.7) that
1 ¯̂p12 · · · ¯̂p1m
...

...
...

...

1 ¯̂pp2 · · · ¯̂ppm




v1
...

vm

+


∑
m
j=2 ς1 j

...

∑
m
j=2 ςp j

=


τ1
...

τp

 ,

which prove (6.1) and conclude the proof. �

The control structure for MIMO systems are illustrated in Fig 6.1 and Fig 6.2.
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u(t) y(t)

ωu(t)

ωy(t)ωu(t)

τ̂(t)

v̂(t)

+˙̂x(t) −

x̃(t) = x(t)− x̂(t)

Filter

Predictor

Adaptive Law

Controller

System
ξ̇ (t) = f (ξ (t),u(t), t)

y(t) =Cξ (t)

u(t) =−Kfωu(t)+ v̂(t)
ω̇u j(t) = Afωu j(t)+Bfu j(t)

ωu = [ωT
u1
...ωT

um
]T

ω̇yi(t) = Afωyi(t)−Bfyi(t)

ωy = [ωy1 ...ωyp ]
x(t) =

vec(ωy(t))

y(t)


Decouple

τ̂(t) =−KC
(
µ̂(t)+ η̂(t)

−Kgr(t)
)

Φu(t) = Auωu(t) Φx(t) = Ax[ω
T
y (t) y(t)]T

µ̂(t) = β̂ (t)Φu(t)

η̂(t) = ΦT
x (t)α̂(t)+λn−1Cmx(t)+ σ̂(t)

˙̂x(t) = Amx̂(t)+Bm(µ̂(t)+ η̂(t))+ k(t)x̃(t)

ŷ(t) =Cmx(t)

∫
reference

r(t) ∫ ˙̂α(t) = γ Proj
(
α̂(t),Φx(t)e(t)

)
˙̂
β (t) = γ Proj

(
β̂ (t),Φu(t)eT(t)

)
˙̂σ(t) = γ Proj

(
σ̂(t),e(t)

) e(t) = BT
mPx̃(t)

Figure 6.1: Controller structure for MIMO systems

β̂i j(t)

¯̂pi j(t) =
p̂i j(t)
p̂i1(t)

¯̂Pi j(s, t)

v̂ j(s)

Decouple

Adaptive Laws

P̂i j(s, t), β̂ T
i j(t)ApS(s) = p̂i j(t)

(
sli + p̂(li−1)

i j (t)sli−1 + · · ·+ p̂(1)i j (t)s+ p̂(0)i j (t)
)

︸ ︷︷ ︸
¯̂Pi j(s, t)

F(t),


1 ¯̂p12(t) · · · ¯̂p1m(t)
...

...
...

...

1 ¯̂pp2(t) · · · ¯̂ppm(t)


Wi j(s, t),

¯̂Pi j(s)− ¯̂Pi1(s)
¯̂Pi1(s)

ςi j(s), ¯̂pi j(t)Wi j(s)v̂ j(s)

v̂(t) = F−1(t)(τ(t)− ς(t)) ς(t) =
[ m

∑
j=2

ς1 j(t) · · ·
m
∑
j=2

ςp j(t)
]T

∈Rp,
τ̂(t)

Figure 6.2: Decouple control signals for MIMO systems
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6.3 Control Robotics Arm

The algorithm performance is studied by implementation in order to control the motion of the

Fetch Robotics Arm. The robotics arm has 7 joints, as illustrated in Fig 6.3. Each joint can

receive commanded torque as a control input signal. The default rate for the commands streaming

from the robot computer to the joint and the sampling rate of the angular positions are 200Hz.

The simulation is conducted in Gazebo environment ([104]) and Robotic Operating System (ROS)

Indigo version ([105]). For this demonstration, we will select the torque generated at the shoulder

lift joint and the elbow flex joint as the control input signals. The system output can be either

the joints angles or the end-effector position. Hence, the system is a MIMO system with 2 inputs

and 2 outputs. In this implementation, the integration is obtained by using the simplest form

x(t +∆t) = x(t)+ ẋ(t)∆t, where ∆t = 1/200 = 0.05(s).

Figure 6.3: Fetch Robotics Arm (picture is adopted from [6])
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6.3.1 Control Joint Angles

In this experiment, we attempt to simultaneously control two outputs: the shoulder lift joint

angle φ1(t) and the elbow flex joint angle φ2(t). The MIMO system dynamics is unknown, but

we assume that each elementary SISO system is a 2rd order system (n = 2) with relative degrees

ri j = 2, i = 1,2, j = 1,2.

To design the predictor, we chose a 2rd order autoregressive filter defined in (5.4) with parame-

ters ∆(s) = s2 +λT S(s) = (s+6)2, so that λ = [12 36] and

Af =

 −12 −36

1 0

 ∈R2×2, Bf =

 1

0

 ∈R2.

Hence, the reference system is defined according to (5.2), with kp = 1 so that

Am =



−12 −36 0 0 −1 0

1 0 0 0 0 0

0 0 −12 −36 0 −1

0 0 1 0 0 0

96 396 0 0 −1 0

0 0 96 396 0 −1


, Bm =



0 0

0 0

0 0

0 0

1 0

0 1


,

Cm = BT
m, kg = 12I2,

and

Ax =

 −11 −36 −1

1 1 0

 , Au =


−11 −36 0 0

1 1 0 0

0 0 −11 −36

0 0 1 1

 ,

For the adaptation law, we set the following projection bounds and the initial values

Ωα = αc±5|αc|, αc = α̂0 = [−48.0 −6]T,
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Ωβ = βc±0.6|βc|, βc = β̂0 =

 0 1.6 0 12

0 0.3 0 5

T

,

Ωσ =±[0.7 0.5], σ̂0 = 02.

The control law (6.1a) is implemented with the following parameters: P = I, adaptation gain

γ = 3000, and k(t) defined in (5.38). The control signal is saturated in [120 80] (N.m).

We will follow the decouple process described in Fig 6.2 to implement the controller. For this

simple case, since the system is assumed to be a second order system, we obtain

P̂i j(s, t), β̂
T
i j(t)ApS(s) =

[
0 β̂

(0)
i j (t)

] −11 −36

1 1

 s

1

= β̂
(0)
i j (t)(s+1)

Hence, p̂i j(t) = β̂
(0)
i j (t) and ¯̂Pi j(s) = s+1, which yields

F(t) =

 1 ¯̂p12(t)

¯̂p21(t) 1

 , ¯̂p12(t) =
β̂
(0)
12 (t)

β̂
(0)
11 (t)

, ¯̂p21(t) =
β̂
(0)
21 (t)

β̂
(0)
22 (t)

,

Wi j(s) =
¯̂Pi j(s)− ¯̂Pi1(s)

¯̂Pi1(s)
= 0 ⇒ ςi j(t) = 0.

The control signal is then obtained by

u(t) =−K̄fωu(t)+ v̂(t), v̂(t) = F−1(t)τ(t),

τ̂(t) =−Kc(µ̂(t)+ η̂(t)− kgr(t)),

In this experiment, the following values are used KC = 40I2, h0 = 2, Λ(s) = s(s+ 6) so that

K f = [−6 −36] and

K̄ f = 12⊗Kf =

 −6 −36 −6 −36

−6 −36 −6 −36

 .
Fig 6.4 and Fig 6.6 show the tracking results and the control effort for the reference trajectory

r(t) =
π

180
[25sin(t),35sin(0.5t)]T and r(t) =

π

180
[35sin(1.2t),30tanh(3sin(0.4t)]T, respectively.
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Fig 6.5 and Fig 6.7 show the time evolving adaptive parameters for the corresponding case.
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Figure 6.4: System trajectories and control
effort for r(t) =

π

180
[25sin(t),35sin(0.5t)]T.
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Figure 6.5: Time evolving of the adaptive pa-
rameters for r(t) =

π

180
[25sin(t),35sin(0.5t)]T.
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Figure 6.6: System trajectories and control
effort for
r(t) = π

180 [35sin(1.2t),30tanh(3sin(0.4t)]T.
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Figure 6.7: Time evolving of the adaptive
parameters for
r(t) = π

180 [35sin(1.2t),30tanh(3sin(0.4t)]T.

As seen from the Fig 6.5 - Fig 6.7, the adaptive parameters are well bounded, and contain only

low-frequency components. The adaptive terms σ̂(t) are able to capture the nonlinear time varying

uncertainties of the dynamics. The control signal is not very smooth but still lies inside the allowed

bandwidth, as illustrated in Fig 6.8 and Fig 6.9, and yields good tracking results.
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Figure 6.8: A closer look of control signals showed in Fig 6.4 in the time window t = [0 10](s) .
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Figure 6.9: A closer look of control signals showed in Fig 6.6 in the time window t = [0 10](s) .
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6.3.2 Control End-Effector position

In this experiment, we attempt to control the horizontal x and the vertical z positions of the

robot arm end-effector using the joint torques as control inputs. Since we don’t have any sensors

to directly measure the tip position, we rely on the arm forward kinematics to obtain (x,z) from the

measurement of the joint’s angles. We emphasize that the forward kinematics serve as an indirect

sensor, and we still assume the dynamics of the robot arm are unknown. Therefore, the controller

do not use inverse kinematics to obtains the desired joint angles from the desired tip position.

Since we only change the output of the system from joints angle to the end-effector position,

the considered system still remains as a 2 inputs and 2 outputs MIMO system. Therefore, the

controller structure with the same parameters presented in Section 6.3.1 can be used. We select

the adaptation gains γ = 1000, h0 = 20, and the control gain Kc = 60I2, and change the projection

boundary of the adaptive parameters as follow

Ωα = αc±5|αc|, αc = α̂0 = [−48.0 −6]T,

Ωβ = βc±Rβ , βc = β̂0 =

 0 1.6 0 12

0 0.35 0 5

T

, Rβ =

 0 1.2 0 4

0 0.3 0 1

T

,

Ωσ =±[0.04 0.06], σ̂0 = 02.

Fig 6.10 shows the tracking result and the control effort for the reference trajectory r(t) =

[0.1cos(0.5t)+0.95,0.1sin(0.5t)]T. Fig 6.11 shows the time evolving of the adaptive parameters

for the corresponding case. Fig 6.12 and Fig 6.13 shows the joint’s angles trajectory and the end-

effector position trajectory, respectively.

As seen from the figures, the tracking performance is satisfied. All adaptive parameters are

bounded and the joint’s angles also lie within their limits Bφi . Although all adaptive parameters

and output measurement are smooth, the control signal is not very smooth. This effect is sim-

ilar to the previous example, as illustrated in Fig 6.8 and Fig 6.9. Redoing this example using

MATLAB/Simulink and ODE45 yields similar tracking performance but smooth control signals.
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This can be attributed to the fact that the algorithm is implemented in a discrete manner, in which

the integration takes the simplest form x(t +∆t) = x(t)+ ẋ(t)∆t with ∆t = 1/200 = 0.05(s). Nev-

ertheless, the control signal still lies inside the allowed bandwidth, and yields good tracking results.
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Figure 6.10: System trajectories and control
effort for
r(t) = [0.1cos(0.5t)+0.95,0.1sin(0.5t)]T.
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Figure 6.11: Time evolving of the adaptive
parameters for
r(t) = [0.1cos(0.5t)+0.95,0.1sin(0.5t)]T.
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6.3.3 Experimental Results

The predictor-based controller presented in Section 6.3.1 and Section 6.3.2 is implemented on

the physical robot to further verify its performance. However, there are several practical imple-

mentation issues.

The first problem is that the joints of the real robot possess nonneglected static friction, thus the

actuators suffer a dead-zone effect ([106]). Specifically, the shoulder pan joint or the elbow flex

joint can not move if the magnitude of the commanded torques to the joints are less than δ f , where

δ f is a random value in the range [8 12](Nm).

Second, when a joint is moving freely in space, the joint’s motor can not produce a torque

equal to a commanded torque value set by the user. This is because each joint of the Fetch robot’s

arm has a micro controller board (MCB) that controls the motor torque in an effort to track the

commanded torque. However, the MCB can only track the commanded torque accurately if the

joint is statically held by a reacted force. When the joint moves freely, there is no reacted force

feedback to the MCB. Thus, for a freely moving joint, the relationship between the actual torque

output by MCB and the commanded torque is unknown.

The input-output map of the joints induced by these nonlinear effects are illustrated in Fig
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6.14. As seen from Fig 6.14, there are a certain range of joint torque values that can not be set

directly. Instead, the desired motor’s torque can be achieved by imposing the bang-bang effect on

the commanded torque. This rapidly changes the sign of the commanded torque, which makes the

joint move forward and backward continuously, and consequently generates reacted force feedback

to the MCU.
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Figure 6.14: Illustration of Nonlinear Actuator Effect.
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Figure 6.15: Implementation of the Predictor-Based controller on the Fetch robot.

In order to handle these problems, the control signal is saturated to create the bang-bang effect.

Furthermore, we add the following dead-zone compensator to the controller:

uτ = D(u), u+ sgn(u)δ f , δ f = 13;
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Implementation of the controller on the physical robot is illustrated in Fig 6.15. The predictor-

based controller uses the same parameters presented in Section 6.3.1 and Section 6.3.2.
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Figure 6.16: System trajectories and control
effort for r(t) =

π

180
[25sin(t),35sin(0.5t)]T.
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rameters for r(t) =
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Figure 6.18: System trajectories and control
effort for
r(t) = π

180 [35sin(t),30tanh(3sin(0.4t)]T.

0 5 10 15 20 25 30 35 40 45

Time[s]

-50

-40

-30

-20

-10

0

α̂
(t
)

α̂1(t)
α̂2(t)

0 5 10 15 20 25 30 35 40 45

Time[s]

-2

0

2

4

6

8

β̂
(t
)

β̂12(t)

β̂14(t)

β̂22(t)

β̂24(t)

0 5 10 15 20 25 30 35 40

Time[s]

-1

-0.5

0

0.5

1

σ̂
(t
)

σ̂1(t)
σ̂2(t)

Figure 6.19: Time evolving of the adaptive
parameters for
r(t) = π

180 [35sin(t),30tanh(3sin(0.4t)]T.

As seen from Fig 6.16 to Fig 6.19, although the bang-bang effect in the control signal is nec-

essary to create desired the motor’s torque, it also introduces more vibration on the joints, which

affects the prediction error ep(t). Consequently, the vibration leads to chattering σ̂(t) and worsens

the tracking performance. However, we can see that the controller can still handle the unknown
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nonlinear mapping of the actuators, and the tracking performance is satisfied.

To reduce the vibration caused by the bang-bang effect, we set σ̂(t) = 0 and rerun the experi-

ments with the same setup parameters. The results are illustrated in Fig 6.20 - Fig 6.23.
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Figure 6.20: System trajectories and control
effort for r(t) =

π

180
[25sin(t),35sin(0.5t)]T.
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Figure 6.21: Time evolving of the adaptive pa-
rameters for r(t) =

π

180
[25sin(t),35sin(0.5t)]T.
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Figure 6.22: System trajectories and control
effort for
r(t) = π

180 [35sin(t),30tanh(3sin(0.4t)]T.
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Figure 6.23: Time evolving of the adaptive
parameters for
r(t) = π

180 [35sin(1.2t),30tanh(3sin(0.4t)]T.

It can be seen from Fig 6.20 and Fig 6.23, although it takes longer for the tracking error to

converge to 0, the control signal has less chattering, which thus reduces vibration and the steady

tracking error.
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Control Tip Position

This experiment is conducted by controlling the end-effector as it draws circles in the horizontal

plane. The controller structure with the same parameters presented in Section 6.3.3 is used. We

select the adaptation gains γ = 1000, h0 = 1.25, and the control gain Kc = 40I2. The projection

boundary of the adaptive parameters given in Section 6.3.2 is used, except we set σ̂(t) = 0. Fig

6.24 shows that the experiment’s tracking performance is satisfied. All adaptive parameters are

bounded and the joint’s angles also lie within their limits Bφi .
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Figure 6.24: System trajectories and control
torque.

0 10 20 30 40 50 60

Time[s]

-50

-40

-30

-20

-10

0

α̂
(t
)

α̂1(t)
α̂2(t)

0 10 20 30 40 50 60

Time[s]

0

5

10

β̂
(t
)

β̂12(t)

β̂14(t)

β̂22(t)

β̂24(t)

0 10 20 30 40 50 60
-10

-5

0

5

10

u
1
(t
)(
N
.m

)

0 10 20 30 40 50 60

Time[s]

-10

-5

0

5

10

u
2
(t
)(
N
.m

)

Figure 6.25: Time evolving of the adaptive pa-
rameters α̂(t) and β̂ (t) and control input u(t).
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Figure 6.27: End-effector trajectory.

6.4 Control Quanser Helicopter

The controller performance is studied by considering the real time implementation on the

Quanser 3-DOF helicopter depicted in Fig 6.28. The helicopter body is mounted at the end of

an arm and is free to rotate around the arm (pitch). The arm is free to rotate around the y-axis

(elevation) and z-axis (travel) at the pivot point O. Two DC motors with attached propellers gen-

erate driving forces for the helicopter. Hence, the system has 3 outputs, i.e. the pitch φ(t), the

elevation θ(t), the travel ψ(t) angles, all of which are measured via optical encoders, and has 2

control signals v(t) = [vf(t), vb(t)]T where vf, vb are the voltages applied to the front and the back

motor respectively. The controller is implemented using Simulink running on a digital computer

with a Pentium(R) D 3.4Ghz CPU, and the encoder sampling frequency is 1kHz.

6.4.1 Implementation using Second Order System

In this experiment, we attempt to simultaneously control two outputs: the pitch φ(t), the ele-

vation θ(t). The MIMO system dynamics is unknown, but we assume that each elementary SISO

system is a 2rd order system (n = 2) with relative degrees ri j = 2, i = 1,2, j = 1,2. Furthermore,
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we assume that when the v(t) is set at v∗ = [12 12](Vol), the system stays near the equilibrium

point x∗ = 0, and define u(t), v(t)− v∗.

Figure 6.28: The 3D helicopter prototype

To design the predictor, we chose a 2rd order autoregressive filter defined in (5.4) with parame-

ters ∆(s) = s2 +λ TS(s) = (s+1)2, so that λ = [2 1] and

Af =

 −2 −1

1 0

 ∈R2×2, Bf =

 1

0

 ∈R2.

Hence, the reference system is defined according to (5.2), with kp = 1 so that

Am =



−2 −1 0 0 −1 0

1 0 0 0 0 0

0 0 −2 −1 0 −1

0 0 1 0 0 0

1 1 0 0 −1 0

0 0 1 1 0 −1


∈R6×6, Bm=



0 0

0 0

0 0

0 0

1 0

0 1


∈R6,

Cm = BT
m.

For the adaptation law, we set the following projection bounds and the initial values

Ωα = αc±0.8|αc|, αc = α̂0 = [−0.3 0.02]T,
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Ωβ = βc±0.6|βc|, βc = β̂0 =

 0 0.15 0 0.15

0 0.6 0 −0.6

T

,

Ωσ = [[−1 1]; [−1 1]], σ̂0 = 02.

The control law (6.1a) is implemented with the following parameters: P = I, adaptation gain

γ = 1000, and k(t) defined in (5.38). The reference signal r(t) is passed through a low pass filter
1

(s+1)2 before entering the reference system. The control signal is saturated in [−3.5 3.5] (Vol).

We will follow the decouple process described in Fig 6.2 to implement the controller. For this

simple case, since the system is assumed to be a second order system, we obtain

P̂i j(s, t), β̂
T
i j(t)ApS(s) =

[
0 β̂

(0)
i j (t)

] −1 −1

1 1

 s

1

= β̂
(0)
i j (t)(s+1)

Hence, p̂i j(t) = β̂
(0)
i j (t) and ¯̂Pi j(s) = s+1, which yields

F(t) =

 1 ¯̂p12(t)

¯̂p21(t) 1

 , ¯̂p12(t) =
β̂
(0)
12 (t)

β̂
(0)
11 (t)

, ¯̂p21(t) =
β̂
(0)
21 (t)

β̂
(0)
22 (t)

,

Wi j(s) =
¯̂Pi j(s)− ¯̂Pi1(s)

¯̂Pi1(s)
= 0 ⇒ ςi j(t) = 0.

The control signal is then obtained by

u(t) =−K̄fωu(t)+ v̂(t), v̂(t) = F−1(t)τ(t),

τ̂(t) =−Kc(µ̂(t)+ η̂(t)− kgr(t)),

Fig 6.29 and Fig 6.30 shows the tracking results and the control effort for the reference trajectory

r(t) = [10sin(0.1πt),0]T and r(t) = [10square(0.06πt)0]T , respectively. In this experiment, the

following values are used KC = diag([120,60]), h0 = 400, Λ(s) = s(s+ 2) so that K f = [0 − 1]

and K̄ f = 12⊗Kf.
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Figure 6.29: System trajectories and control
effort for r(t) = [10sin(0.1πt),0]T.
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Figure 6.30: System trajectories and control
effort for r(t) = [10square0.1πt),0]T.

As seen from the Fig 6.29 and Fig 6.30, since we choose values of kC1 = 120 > kC1 = 60, the

tracking performance of the output y1(t) is better than the output y2(t) in both cases. Nevertheless,

the maximum error of y2(t) is 3.5o, which happens only when y1(t) abruptly changes.

Fig 6.31 and Fig 6.32 show the tracking performance and the control effort for the same ref-
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Figure 6.31: System trajectories and control
effort using KC = diag([120 60]) and h0 = 400.
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Figure 6.32: System trajectories and control
effort using KC = diag([120 120]) and h0 = 20.

erence trajectory r(t) = [10sin(0.1πt),10sw(0.06πt)] using different values of KC and h0, respec-

tively. The tracking performance in both case are satisfied and confirm the theoretical analysis.

The experimental results from both cases shows that increasing Kc can lead to better tracking per-

formance; however, this also increases the chattering in the control signal. Choosing an exact value

of h0 to obtain a truly smooth signal in practice is challenging, due to the unpredicted disturbance,
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noisy measurements, and the hidden dynamics of the system. Nevertheless, we still can select an

acceptable h0 to obtain good tracking result and the control signal frequency is still in the actuator

bandwidth.

6.4.2 Implementation using low-pass filtered control signals

To illustrate the high order implementation of the proposed controller, similar to Example 5.8.2,

we consider the controller in the form of

Hence, the closed loop system converts to a system of order n̄ = 4 and the relative degree r̄i j = 3

in respect of the control input ū(t).

In this implementation, the autoregressive filters are chosen as in (5.4) with ∆(s) = (s+1.25)4,

so that λ = [5 9.375 7.8125 2.4411] and

Af =


−5 9.375 7.8125 2.4411

1 0 0 0

0 1 0 0

0 0 1 0

 , Bf =


1

0

0

0

 ,

Āf = I2⊗Af ∈R8×8, B̄f = I2⊗Bf ∈R8×2,

Hence, the reference system is defined according to (5.2), with kp = 1 so that

Am ,

 Āf −B̄f

−λ̄ TĀp −kpIp

 ∈R10×10, Bm ,

 08×2

I2

 ∈R10×2, Cm , BT
m.

For the adaptation law, we set the following projection bounds and the initial values

Ωα = αc±0.8|αc|, αc = α̂0 = [1.7 0.42 −0.26 0.02]T,

Ωβ = βc±0.3|βc|, βc = β̂0 =

 0 0 0.3 0.1 0 0 0.3 0.1

0 0 2.4 0.8 0 0 −2.4 −0.8

T

,

Ωσ = [[−1 1]; [−1 1]], σ̂0 = 02.
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We will follow the decouple process described in Fig 6.2 to implement the controller. Since the

system is assumed to be a 4th order system, we obtain

P̂i j(s, t) = β̂
T
i j(t)ApS(s) =

[
0 0 β̂

(1)
i j (t) β̂

(0)
i j (t)

]

−4 9.375 7.8125 2.4411

1 1 0 0

0 1 1 0

0 0 1 1




s3

s2

s

1


= β̂

(1)
i j (t)

s2 +(1+
β̂
(0)
i j (t)

β̂
(1)
i j (t)

)s+
β̂
(0)
i j (t)

β̂
(1)
i j (t)


Hence, p̂i j(t)= β̂

(1)
i j (t) and ¯̂Pi j(s)= s2+ p̂(1)i j (t)s+ p̂(0)i j (t), where p̂(1)i j (t)= 1+ p̂(0)i j (t) and p̂(0)i j (t),

β̂
(0)
i j (t)

β̂
(1)
i j (t)

. Therefore, it follows from (6.2) that

F(t) =

 1 ¯̂p12(t)

¯̂p21(t) 1

 , ¯̂p12(t) =
β̂
(0)
12 (t)

β̂
(0)
11 (t)

, ¯̂p21(t) =
β̂
(0)
21 (t)

β̂
(0)
22 (t)

,

Wi j(s) =
¯̂Pi j(s)− ¯̂Pi1(s)

¯̂Pi1(s)
= (p̂(0)i2 (t)− p̂(0)i1 (t))

1

s+ p(0)i1 (t)
.

Hence, it follows from (6.3) that ς(t) = [ς1(t) ς2(t)]T, which has elements obtained from the

following state space realization

ϑ̇i(t) =−p(0)i1 (t)ϑi(t)+ v̂ j(t), ϑi j(0) = ϑi0,

ςi(t) = ci(t)ϑi(t), ci(t), ¯̂pi2(t)(p̂(0)i2 − p̂(0)i1 ),

Finally, the control signals u(t) can be obtained by the block diagram illustrated in Fig 6.33.

Fig 6.34 shows the tracking results and the control effort for the reference trajectory r(t) =

[10sin(0.1πt),0]T. In this experiment, the following values are used γ = 2000, KC = 1000I2,

h0 = 500, Λ(s) = s(s+1.5)(s+2)(s+2.2) so that K f = [0.8200 1.7696 −0.6634 −2.2153] and

K̄ f = 12⊗Kf.

As seen from the Fig 6.34, since the parameters KC and h0 are not well tuned, the virtual control

signal ū(t) is very noisy. However, the true control signal u(t) to the physical system is significantly
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τ(t)

v̂ j(t)ςi(t)
ϑi(t)

τ̂(t) =−Kc(µ̂(t)+ η̂(t)− kgr(t))
v̂(t) = F−1(t)(τ(t)− ς(t)) u(t) =−K̄fωu(t)+ v̂(t)

ϑ̇i(t) =−p(0)i1 (t)ϑi(t)+ v̂ j(t)

∫
ci(t)

β̂ (t)

Figure 6.33: Decouple control signals for 4th order MIMO systems

smooth, since its bandwidth is limited by the low-pass filter Lp(s).

In order to compare the performances between the 2rd and the 4th controllers, we tuned the

parameters for the 4th controller as follow:

ui(s) = Lp(s)ūi(s) =
3s+1
(s+1)2 ūi(s)

and γ = 1000, KC = 1200I2, h0 = 500, Λ(s) = s(s+1)(s+1.3)(s+1.5) so that K f = [−1.2 −

4.6250 −5.8625 −2.4414] and K̄ f = I2⊗Kf.

Fig 6.35 and Fig 6.36 compares the tracking performances using the 2rd order controller (with

the same parameters as in Fig 6.29) and the 4th controller respectively. The figures show that

the two controllers yield comparable tracking performance, while the 4th order controller yields

significantly smoother control signal.

In our best knowledge, comparing with the other experimental results found in the literatures

([61, 66, 107–111]), the proposed adaptive non-modeled based output feedback controller yields

the most competitive performance in the respect of the combination of control signal smoothness,

fast convergence and tracking accuracy.
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(a) System trajectories.
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Figure 6.34: Tracking performance using the low-passed filtered control signal.
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Figure 6.35: System trajectories and control
effort using the 2rd order controller.
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Figure 6.36: System trajectories and control
effort using the 4th order controller.
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6.5 Conclusion

This chapter extends the results for SISO systems from Chapter 5 to the MIMO systems. Specif-

ically, the controller for the MIMO case still has three components: the predictor, the controller,

and the reference system. The predictor structure remains similar to the SISO case. Next, the

predictor is decoupled into independent SISO systems for which the results from Chapter 5 can be

applied to obtain the virtual control signals. In consequence, these virtual control signals are then

transformed to the real control signals applied to the MIMO system.

The algorithm performance is first validated by controlling motion of the Fetch Robotics Arm

in Gazebo. The simulation shows good tracking results, and all parameters are well bounded.

Furthermore, because the controller does not rely on the system dynamics, switching the desired

output from the joint’s angles to the end-effector position takes minimum effort to adjust the con-

troller. The controller is then implemented on the physical robot to verify its performance. The

experiments demonstrate its good tracking performance in the presence of the actuator’s unknown

nonlinearities. Furthermore, experimental results conducted on the Quanser Helicopter are also

reported and confirm our theoretical analysis. Good tracking performances are obtained while the

control signals remain smooth. Low order and high order structure implementation of the con-

troller are also compared to illustrate the efficiency and flexibility of the proposed algorithm.



Chapter 7

Conclusions and Future Research

This dissertation presents a number of results pertaining to the control of unknown Multi-Input

Multi-Output systems using output feedback with a focus on biomedical applications. In Chapter 2,

an adaptive sliding mode control combined with backstepping framework was introduced to control

the motion of a human arm model by using muscle excitations as control signals. Although the

control algorithm is capable of handling the bounded uncertainties, it requires the knowledge of the

system’s dynamics and fully measurable state. In practice, accurate model of complex biosystems

such as a human arm is almost unable to be obtained. Furthermore, there are no available sensors

that can measure the dynamic state of the considered biosystems in vivo.

Hence, these drawbacks inspired the set of adaptive predictor-based output feedback control

algorithms developed from Chapter 3 to Chapter 6. The novel idea is that the predictor is designed

to predict the system output for any admissible inputs. Hence, the controller can be derived inde-

pendently and applied to control the predictor. Therefore, the problem of controlling systems with

unknown dynamics using only output feedback can be reduced to controlling the predictor, which

has well known dynamics and full state feedback. In Chapter 3, the adaptive predictor based,

output feedback controller was developed for a class of MIMO linear systems. The results were

extended to handle MIMO nonlinear systems in Chapter 4. In Chapter 3 and Chapter 4, the For-

ward Riccati Differential Equation (FRDE) was adopted to control the predictor in order to avoid

150



151

the complexity of adaptive backstepping recursive design. However, FRDE is computationally

expensive and unsuitable for high order systems. Chapter 5 addressed this problem by proposing

a simple control structure for high relative degrees, unknown dynamics nonlinear SISO systems.

A strategy to handle the adaptation problem for time varying nonlinear terms proposed by [91]

were also adopted in this chapter. The results were extended to handle MIMO nonlinear systems

in Chapter 6. Simulation and experimental results were reported in each chapter to verify the pro-

posed approaches.

Future Research

The output feedback adaptive control presented in Chapter 5 and Chapter 6 requires the gain

KC be appropriately tuned to obtain satisfactory tracking results. A larger KC yields small tracking

error. However, too large KC can lead to unnecessary high magnitude control signals at the transient

state, which leads to overshoot problems and may violate the assumption about the bound of the

adaptive parameters. This problem was handled by the saturation mechanism and altering the

reference signal in this work. However, the transient performance of the controller can also be

improved by making KC adaptive. Specifically, the gain K should be adjusted depending on the

current tracking error and the frequency of the reference signals.

As illustrated from Example 5.8.2, the simple control structure allows us to increase the sys-

tem’s orders and relative degrees by adding low pass filters in front of control signals. Hence, we

can obtain smooth control signal without complicating the controller structure. This advantage

suggests to improve the controller performance by replacing the adaptive term σ̂(t) with a switch-

ing function σmaxsgn(e) to suppress the time varying uncertainties σ(t). Hence, this will simplify

the predictor structure and we can obtain the asymptotically stable condition instead of uniformly

ultimately bounded error as seen from the current approach. The final control signal is guaranteed

to be smooth due to the low pass filter. Another extension is to make the adaptive gain be time

varying to obtain better adaptation.
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For MIMO systems presented in Chapter 6, we are currently limitted to the assumption that the

number of inputs must be equal or greater than the number of outputs. We suggest an extension

to use optimal control to handle the problem of under-actuated systems. Another aspect is that

the proposed controllers do not account for actuator nonlinear effects, such dead-zone, backslash

effect or delay. In practice, dead-zone effect often happens when the systems have significant static

friction, and delay is found in the muscle activation process. Incorporating an adaptive inverse

nonlinear compensation to the predictor can extend the application to a larger class of systems.

Most importantly, we would like to implement the controller on the FES systems and evaluate the

performance as the main motivation of the research.
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