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Data‑driven detection 
of subtype‑specific differentially 
expressed genes
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Among multiple subtypes of tissue or cell, subtype-specific differentially-expressed genes (SDEGs) 
are defined as being most-upregulated in only one subtype but not in any other. Detecting SDEGs 
plays a critical role in the molecular characterization and deconvolution of multicellular complex 
tissues. Classic differential analysis assumes a null hypothesis whose test statistic is not subtype-
specific, thus can produce a high false positive rate and/or lower detection power. Here we first 
introduce a One-Versus-Everyone Fold Change (OVE-FC) test for detecting SDEGs. We then propose 
a scaled test statistic (OVE-sFC) for assessing the statistical significance of SDEGs that applies a 
mixture null distribution model and a tailored permutation test. The OVE-FC/sFC test was validated 
on both type 1 error rate and detection power using extensive simulation data sets generated from 
real gene expression profiles of purified subtype samples. The OVE-FC/sFC test was then applied to 
two benchmark gene expression data sets of purified subtype samples and detected many known 
or previously unknown SDEGs. Subsequent supervised deconvolution results on synthesized bulk 
expression data, obtained using the SDEGs detected from the independent purified expression data 
by the OVE-FC/sFC test, showed superior performance in deconvolution accuracy when compared with 
popular peer methods.

Molecular characterization often applies gene expression profiling to a complex biologic system that includes 
some molecular features that are expressed by all cell or tissue types in the system (such as housekeeping genes)1 
and other features that are specific to one or more cell or tissue subtypes present in the system (marker genes or 
differentially-expressed genes)2–4. An important but frequently underappreciated issue is how best to define a 
cell or tissue subtype-specific expression pattern. Ideally, a subtype-specific expression pattern would be com-
posed of individual features that are most-upregulated in the cell or tissue subtype of interest while in no others 
(subtype-specific differentially expressed genes, SDEGs)5–8.

SDEGs play a critical role in molecularly characterizing and identifying tissue or cell subtypes. For example, 
to support supervised deconvolution of complex tissues5,8,9, the expression patterns of detected SDEGs could 
serve as the supervising information. However, detecting SDEGs using molecular expression profiles of purified/
isolated tissue or cell subtypes remains a challenging task10. For example, the most frequently used methods rely 
on the extension of an ANOVA model where the null hypothesis states that samples in all subtypes are drawn 
from the same population. Consequently, ANOVA detects genes differentially expressed across any of the sub-
types and can identify many false positive SDEGs (subtype-nonspecific classic DEGs) that may not conform to 
the SDEG definition (Supplementary Information). One-Versus-Rest Fold Change (OVR-FC) is another popular 
method based on the ratio of the average expression in a particular subtype to that of the average expression in all 
other samples (rest)10–12, and OVR t-test is occasionally used to assess the statistical significance of the detected 
genes13. However, a gene with a low average expression value in the rest is not necessarily expressed at a low level 
in every subtype in the rest. Expectedly, simulation studies show that Marker Gene Finder in Microarray data 
(MGFM) outperforms OVR t-test14. Alternative strategies include One-Versus-One (OVO) t-test and Multiple 
Comparisons with the Best (MCB)15 that use additional pairwise significance testing or the confidence intervals 
of OVO statistics2,16.
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To address the critical problem of the absence of a detection method explicitly matched to the definition of 
SDEGs, here we introduce One-Versus-Everyone Fold Change (OVE-FC) test to detect SDEGs among many 
subtypes. Previously, the OVE-FC test was proposed as a means to detect SDEGs and improve multiclass clas-
sification, where the selection is based on whether the mean of one subtype is significantly higher or lower than 
the mean from each of the other subtypes5,6. To assess the statistical significance of such a test, we propose a 
scaled test statistic (OVE-sFC) together with a mixture null distribution model. Because the expression patterns 
of non-SDEGs can be highly complex, a tailored permutation test is used to estimate the corresponding distribu-
tion under the null hypothesis.

Consider the measured expression level sk(i, j) of gene j in sample i  across k = 1, . . . , . . .K  subtypes. We 
denote the mean and variance of the logarithmic expression levels logsk

(
i, j
)
 of gene j in subtype k by µk

(
j
)
 

and σ 2(j) , respectively. OVE-FC after the logarithm for gene j is defined as the difference between the log2-
transformed expression value in the two subtypes where j is expressed at the highest and second highest levels, 
respectively5,14,

and where subscript (K) indicates the subtype with the maximum mean among all subtypes. Note that OVE-FC 
has previously been proposed for multiclass classification13,14, and matches well the definition of SDEGs5,8,17,18. 
Conceptually, the null hypothesis for non-SDEGs, and the alternative hypothesis for SDEGs, can be described 
as (see Fig. 1)

SDEG corresponds to the above null hypothesis that dj = 0, because every expression pattern of non-SDEGs 
satisfies dj = 0. Please find more detailed explanations with a toy example in Supplementary Information. Ideal 
SDEGs detected by the OVE strategy with a stringent threshold are also used as the marker genes for supervised 
deconvolution8,17, and are similar to what is detected by the Convex Analysis of Mixtures (CAM) method for 
fully unsupervised deconvolution9,19 (marker genes that reside near the vertices of the scatter simplex). To assess 
the statistical significance of OVE-FC tests and to leverage the information across subtypes or genes, we assume 
that logsk

(
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)
∼ N
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(
j
)
, σ 2(j)

)
 and further define the scaled test statistic OVE-sFC as

where n(K) and nl are the numbers of samples in subtypes (K) and l  , respectively. Modeling the distribution of tj 
under the null hypothesis is challenging for more than two subtypes K ≥ 3 because the expression patterns of 

(1)dj = min
l �=(K)

{
µ(K)(j)− µl(j)

}
,

(2)
Hnull
SDEG: dj = 0;

Halt
SDEG: dj > 0.

(3)tj = min
l �=(K)

{
µ(K)(j)−µl(j)

σ(j)
√

1
n(K)

+ 1
nl

}
,

Figure 1.   Illustrative simplex of three subtypes. Given the definition of SDEGs, and for simplicity, consider a 
scenario where three subtypes have the mean values µ(1) ≤ µ(2) ≤ µ(3) and define dj = µ(3) − µ(2) . The SDEGs 
and non-SDEGs can be illustrated in a simplex plot, where yellow/red points are SDEGs under the alternative 
hypothesis dj > 0 and blue/green points are non-SDEGs under null hypothesis dj = 0 . OVE-sFC is to test 
whether dj is significantly larger than zero and thus matches the definition of SDEG.
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non-SDEGs are highly complex; non-SDEGs include both housekeeping genes and various combinatorial pat-
terns of differentially-expressed genes among the subtypes (see “Methods” section).

We first validate the performance of OVE-sFC test on extensive simulation data, in terms of type 1 error rate 
and False Discovery Rate (FDR) control. We then demonstrate the detection power of OVE-FC/sFC in a com-
prehensive set of scenarios and in comparison with top peer methods using the partial area under the receiver 
operating characteristic curve (pAUC) as the performance measure. We show the utility of OVE-FC/sFC using 
benchmark public data, and then assess performance both by comparing with known SDEGs and by the accu-
racy of supervised deconvolution that uses the expression patterns of de novo SDEGs detected by OVE-FC/sFC.

This work aims solely to detect SDEGs among multiple subtypes of interest, no bulk experiment or dataset is 
involved. All tests use the molecular expression data derived from purified/isolated subtypes, where the subtype 
can be a tissue subtype, cell subtype, or biological process. The supervised deconvolution case study provides 
one application that uses SDEGs detected as explicitly defined. The main objective of the proposed OVE test 
is to reduce the high false positive rates of existing methods while ensuring high sensitivity, particularly when 
involving a large number of multiple tests.

Results
Validation of OVE‑sFC test on type 1 error using simulation data sets.  To test whether our OVE-
sFC test can detect SDEGs at appropriate significance levels, we assessed the type 1 error using simulation stud-
ies under the null hypothesis (“Methods” section). Accuracy of type 1 error is crucial for any hypothesis testing 
methods that detect SDEGs based on their p values. If the type 1 error is either too conservative or too liberal, the 
p value is inflated by either too many false positive or false negative estimates, the test loses its intended meaning, 
and the data become difficult to interpret correctly.

In our study, real gene expression data of purified/isolated subtypes were used to create the simulation data 
sets. A flexible simulation program was written to generate the simulation data sets according to user-defined 
parameter settings. The approach used ensures that the simulation data retain the basic patterns of the real 
gene expression data (“Methods” section, and Supplementary Information). In the simulation study to validate 
type 1 error (or FDR control), we varied the parameter settings in the experiments to observe the impact of 
these parameters on the performance of various methods, such as varying the noise level and the percentage of 
housekeeping genes. To validate the OVE-sFC test on type 1 error, the simulation data contained 10,000 genes 
where baseline expression levels were sampled from benchmark microarray gene expression data with replicates 
collected from purified cell subtypes (GSE193808). Using the simulation data sets with various parameter set-
tings, we show that in all scenarios the empirical type 1 error produced by OVE-sFC test closely approximates 
the expected type 1 error (Figs. 2a, 3a,b, S2). The p values associated with OVE-sFC test statistics exhibit the 
expected uniform distribution. Even with unbalanced sample sizes among the subtypes, the mixture null distri-
bution estimated by our posterior-weighted permutation scheme produces the expected empirical type 1 error 
rate (Figure S2 and Fig. 3a). In contrast, the empirical type 1 error produced by the OVR t-test and the OVO 
t-test either over-estimates or under-estimates the expected type 1 error. Moreover, the p values associated with 
the OVR t-test and the OVO t-test deviate from a uniform distribution (Fig. 2b). We also evaluated the type 1 
error associated with each individual subtypes under high noise levels and using small sample sizes. For each 
of these subtypes, experimental results show that the empirical type 1 error produced by OVE-sFC test closely 
matches the expected type 1 error (Fig. 2b and Supplementary Information).

We conducted similar validation studies using five subtypes over a wide range of simulation scenarios (Fig. 3). 
Experimental results again show that the OVE-sFC test produces empirical type 1 error rates that match the 
expected type 1 error rates. Furthermore, subtype-specific p value estimates effectively balance the uneven type 
1 error rates among the subtypes with different numbers of upregulated genes (“Methods” section, Fig. 3b, and 
Supplementary Information).

Comparative assessment of OVE‑FC/sFC test on power of detecting SDEGs using simulation 
data sets.  Using real gene expression data sets (both microarray and RNAseq data), we simulated a compre-
hensive set of scenarios to compare the power of OVE-sFC and peer methods to detect SDEGs. Simulation data 
are again generated by modifying the expression levels of real gene expression data, where a portion of the genes 
are designated as SDEGs that are upregulated specifically in one of the participating subtypes, with fold change 
drawn in certain ranges. To recapitulate the characteristics of real expression data, we used parameter values 
that are close to that estimated from real data, such as proportions of various non-SDEG expression patterns. 
To retain the mean–variance trend in RNAseq data, we sampled variance directly from the real RNAseq data 
(“Methods” section and Supplementary Information).

False Discovery Rate (FDR) control is an important issue when assessing detection power in large-scale 
multiple testing. For a well-designed significance test, the objective is to maximize power while maintaining the 
FDR below an acceptable level. To test whether the q-value reflects the actual FDR, ‘fdrtool’ was used to estimate 
the q-value for each gene20. The empirical FDR with an estimated q-value of 0.05 is expected to be around 0.05. 
Another informative criterion is the pAUC that emphasizes the leftmost partial area under the receiver operating 
characteristic curve, focusing on the sensitivity at lower False Positive Rates (FPR)21.

Experimental results show that both overall and subtype-specific OVE-sFC tests achieve a well-controlled 
FDR that matches the q-value cutoff (Figure S5, S6). In contrast, OVR t-test underestimates, while OVO t-test 
overestimates, the FDR (Supplementary Information). Subtype-specific OVE-sFC exhibits a more balanced FPR 
for SDEGs across subtypes, while peer methods produce higher FPRs in the subtypes of smaller sample sizes.

For pAUC, the OVE strategy in OVE-FC/sFC achieved the highest power in detecting SDEGs (Figs. 4, S7, S8, 
Table S1–S3), as demonstrated by our simulations with different fold change ranges and two different data types 
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(microarray—low noise level; RNASeq—high noise level). Specifically, for detecting less-stringent SDEGs (with a 
sufficiently large fold change, Fig. 4a,c), OVE-sFC would be the preferred choice. For ideal SDEGs (marker genes 
that exhibit significantly large fold change8,17, Fig. 4b,d), both OVE-FC and OVE-sFC achieve the best perfor-
mance, with a slightly better performance by OVE-FC. In comparison with peer methods, OVE-sFC consistently 
outperforms OVO t-test in the more challenging experiments that use RNAseq data. The improved performance 
of OVE-FC/sFC over the peer methods at a stringent FPR range in ROC analysis is important because the related 
FDR is problematic in many real-world applications where large scale multiple comparisons are involved. In 
contrast, all three OVR methods exhibit lower detection power; ANOVA has the lowest detection power.

While the OVE test aims to reduce high false positive rates produced by the existing methods, it shall also 
ensure high detection power (sensitivity). While the percentage of ideal SDEGs is expected to be small when 
compared with that of non-SDEGs, a high TPR is required to ensure sufficient accuracy of a supervised decon-
volution and subtype enrichment analysis (two major utilities of SDEGs). The experimental results shown that, 
with the desired > 0.9 sensitivity as seen in Fig. 4a,b, peer methods produced much higher false positive rates 
than OVE. In Figure S8 (with the lower end of SDEG fold-change starting 2, 3, 4), our experimental results show 
that OVE-sFC clearly outperforms OVO t-test in all scenarios with different effect size, and OVE-FC clearly 
outperforms all other peer methods except OVO t-test only when the effect size is very small. Since OVE-FC 
neither considers the variance term in the test nor borrows the relevant/useful information cross genes in esti-
mating null distribution, OVE-FC expectedly underperforms OVO t-test when the effect and/or sample size 
is small. We developed OVE-sFC for this reason and also to estimate the significance level for the FDR control 
(Supplementary Information).

When the sample size is small, the OVE-sFC test statistic leverages information across genes by estimating a 
priori variance via the limma method. This approach stabilizes the variance estimate for each gene. Furthermore, 
the OVE-sFC test statistic estimates the parameters of the limma model from all subtypes, producing better 
results than by applying a t-test independently with the limma model for each subtype pair. For small sample 
size cases, our results show that OVE-sFC clearly outperforms OVO t-test (Figs. 4, 6c and Tables S2, S3). Note 

Figure 2.   Assessment on Type 1 error rates and p value distributions using simulated data sets under the null 
hypothesis, involving three subtypes with unbalanced sample sizes . 10,000 non-SDEGs are simulated with a 
portion of housekeeping genes taking the baseline expression levels across all the three subtypes. The remaining 
non-SDEGs are adjusted to exhibiting similar upregulations in two subtypes. The sample size per subtype is 
3, 6, and 9. (a) Bar chart for the mean and 95% confidence interval of type I error rates with p value cutoff at 
0.05 over 150 simulation-based experiments, showing both overall and subtype-specific false-positive rates 
corresponding to different permutation schemes. 30 parameter settings, with 5 replicates for each, adopted 
varying housekeeping gene percentages (95%, 80%, 60%, 40%, or 25%), different prior degrees of freedom ν0 
(5 or 40), and σ0 values (0.2, 0.5, or 0.8). (b) Histograms of p value distributions associated with the five SDEG 
detection methods, where simulation data consisted of 60% housekeeping genes, σ0 = 0.5 and ν0 = 40 . Note 
that subtype-specific p values can be higher than 1.0 after multiple testing correction and thus will be truncated 
(indicated by the blue circle; see Supplementary Information for details).
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that when a large number of genes is involved, a more stringent multiple comparison correction or FPR/FDR 
control is applied.

Application of OVE‑sFC test on two benchmark gene expression data sets detects SDEGs 
(human immune cells).  To detect SDEGs associated with human immune cells, we applied the OVE-sFC 
test to two gene expression microarray data sets acquired from isolated/purified subtypes, GSE28490 (Roche) 
and GSE28491 (HUG)22. The constituent subtypes are composed of seven different human immune cells that 
were isolated from healthy human blood: B cells, CD4 + T cells, CD8 + T cells, NK cells, monocytes, neutrophils, 
and eosinophils. Because Roche and HUG used the same protocols for cell isolation and sample processing 
from two independent panels of donors, the derived gene expression profiles allow the use of a cross-validation 
strategy.

With an FDR control of q-value < 0.05 applied to both data sets, the OVE-sFC test detects n = 28 CD4 + T cell 
marker genes, n = 7 CD8 + T cell marker genes, and multiple marker genes for other more distinctive cell types 
(Tables S4–S6). Between the two data sets, we obtain a Jaccard index (intersection over union) of 36.8% for all 
SDEGs across all seven cell types. Overlap of monocyte and neutrophil marker genes detected from the two 
datasets is > 40% (Fig. 5). The number of SDEGs accounts for approximately one-third of all probesets (Roche: 
39%, HUG: 34%). This result is expected because these subtypes are pure cell types and so more distinctive than 
would be seen with samples from complex multicellular tissues9,19,23. We also applied a Bonferroni multiple 
testing correction and a more stringent p value < 0.001; the number of SDEGs account for 10.7% and 2.7% of all 
probesets in the Roche and HUG data sets, respectively (Table S4), with only one common CD4 + T cell marker 
gene (FHIT) and one common CD8 + T cell marker gene (CD8B).

Figure S9 shows the many combinatorial upregulation patterns among cell types observed under the null 
hypothesis. Probeset-wise posterior probabilities of component hypotheses in the null mixtures (Eq. 4) were 
accumulated and normalized to estimate the probabilities of the alternative hypotheses (Eq. S10). The patterns 
of upregulation in B cells, monocytes, or neutrophils rank the top in both data sets, followed by upregulation in 
lymphoid cells (B cells, CD4 + T cells, CD8 + T cells, NK cells) and T cells (CD4 + T cells, CD8 + T cells) in the 
Roche dataset.

Evaluation of ideal SDEGs detected by OVE‑FC/sFC test via supervised deconvolution.  Accu-
rate and reliable detection of ideal SDEGs has a significant impact on the performance of many supervised 
deconvolution methods that use the expression patterns of ideal SDEGs to score constituent subtypes in hetero-
geneous samples19,24,25. We adopted a Convex Analysis of Mixtures (CAM) score calculated from ideal SDEGs-
guided supervised deconvolution to quantify the proportional abundance of each subtype (Supplementary 

Figure 3.   Assessment on Type 1 error rates using simulation data sets involving five subtypes. The results are 
obtained using the p value cutoff at 0.05 over 150 simulation experiments. 10,000 non-SDEGs are simulated 
with 30 parameter settings and 5 replicates for each. (a) Bar chart of the mean and 95% confidence interval of 
type I error rates with unbalanced sample sizes. A portion of housekeeping genes take the baseline expression 
levels across all the five subtypes. The remaining non-SDEGs are adjusted to exhibiting similar upregulations in 
at least two subtypes. The sample size for subtype S1–S5 is n1 = 3, n2 = 6, n3 = 9, n4 = 12 and n5 = 15, respectively. 
(b) Bar chart of the mean and 95% confidence interval of type I error rates with unbalanced compositions of 
mixture null distribution. Five subtype-specifc profiles are derived from the real gene expression data of two cell 
lines,where two subtypes are associated with one cell line and other three subtypes are associated with another 
cell line, making two subtypes closer to each other and other three close to each other. The data are under the 
null hypothesis thus no SDEGs exist in any of the five subtypes. The sample size is 3 for each subtype.
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Figure 4.   Comparative assessment on detection power (partial ROC curves, FPR < 0.01) using simulations 
produced from real gene expression data (non-SDEG pattern distribution is consistent with the baseline real 
dataset under null hypothesis; variances are sampled from real microarray data GSE28490 or RNAseq data 
GSE60424 with keeping mean–variance trend) involving seven unbalanced subtypes with various parameter 
settings. SDEGs are adjusted to exhibiting upregulations with varying fold changes sampled from [5, 20] or [10, 
20]. (a) and (b) Partial ROC curves across different FPR points on microarray-derived data. (c) and (d) partial 
ROC curves across different FPR points on RNAseq-derived data. (OVR-FC and OVR t-test are not shown here 
due to low pAUC; subtype-specific OVE-sFC test’s performance is quite similar to OVE-sFC test; more complete 
ROC curves can be found in Figure S7; more fold change settings can be found in Figure S8). Both OVE-FC and 
OVE-sFC achieve a better performance than the other methods. OVE-FC achieve the best performance for ideal 
SDEGs with extremely large fold change, and OVE-sFC would be the preferred choice for SDEGs with small 
fold change or low SNR (RNASeq data is noiser than microarray data).

Figure 5.   Percentile overlap of cell-type specific SDEGs between Roche and HUG datasets, quantified 
by Jaccard index (intersection over union). SDEGs are detected by subtype-specific OVE-sFC test with 
q-value < 0.05.
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Information). The correlation coefficient between the estimated scores and the true proportions was used to 
assess the accuracy of several SDEGs selection methods.

Both OVE-FC and OVE-sFC were applied to three independent data sets acquired from the purified subtype 
expression profiles (GSE28490 Roche), purified subtype RNAseq profiles (GSE60424), and classified single-cell 
RNAseq profiles (GSE72056), respectively. Ideal SDEGs were detected by six different methods including OVE-
FC, OVE-sFC, OVR-FC, OVR t-stat, OVR t-test, and OVO t-test, and then used to supervise the deconvolution 
of realistically synthesized mixtures with ground truth.

The proportions of constituent subtypes were estimated by the CAM scores derived from expression levels 
of top-ranked SDEGs for each subtype. Supervised deconvolution results show that OVE-sFC, OVE-FC and 
OVO t-test achieved the highest correlation coefficients between the CAM score and the true proportions when 
compared with other methods (Figs. 6a, S10).

To create a more biologically realistic case involving higher between-sample variations, we synthesized a 
set of n = 50 in silico mixtures by combining the subtype expression profiles from bootstrapped samples in the 
RNAseq data set according to pre-determined proportions. Again, supervised deconvolution results show that 
the ideal SDEGs detected by OVE-FC or OVE-sFC or OVO t-test achieved superior deconvolution performance 
(Figs. 6b, S11).

Using the more challenging case of RNAseq data (lower SNR and small sample size), we repeated the simula-
tions where in silico mixtures were synthesized by combining subtype mean expressions (GSE28491 HUG); ideal 
SDEGs were detected from the downsampled RNAseq profiles in GSE60424 (n = 3). Three purified samples were 
randomly selected for each subtype and analyzed by the six methods. In terms of ideal SDEG-guided deconvolu-
tion, OVE-sFC strongly outperforms OVO t-test. OVE-sFC also outperforms OVE-FC for phenotypically closer 
cell types (CD4 + T and CD8 + T cell types) (Fig. 6c).

Across the varying number of ideal SDEGs (5–200) selected, Fig. 6 shows the impact of SDEGs (both at a 
fixed number and the corresponding content) selected by different methods on the performance of supervised 
deconvolution. Different subtypes are expected to have different numbers of ideal SDEGs practically and biologi-
cally, for example e.g., B cell or monocyte versus CD4 + T cell or CD8 + T cell. The fundamental working principle 
of many tissue deconvolution methods is that there is a small number of ideal SDEGs expressed unique to each 
subtype. Thus applying a stringent OVE-sFC test p value threshold, such as p < 0.001 after correction (Table S4), 
is a good option because a suitable number of ideal SDEGs for CD4 + or CD8 + T cells is 5–20, while B cells or 
monocytes often allow a larger number of ideal SDEGs to be used in supervised deconvolution.

Figure 6.   Correlation coefficients between CAM scores and ground truth proportions in simulated 
heterogeneous samples of mixed subtype mRNA expression profiles or RNAseq counts (a–c based on three 
different real gene expression datasets). CAM scores are estimated using the detected SDEGs from independent 
dataset and reflect the proportions of subtypes (Supplementary Information). The mean and 95% confidence 
interval are computed over 20 repeated experiments (OVR t-test results are not shown in (c) due to very poor 
performance).
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Discussion
Interpreting an expression profile of complex tissues requires knowledge of both the relative abundance of the 
different cell or tissue subtypes and their unique molecular characteristics. Understanding the relative contri-
bution of individual cell or tissue subtypes in complex samples can illuminate pathophysiologic mechanisms, 
biologic responses to various stimuli, or transitions in phenotype—especially when cell–cell and cell–matrix 
interactions in a complex system are necessary conditions for appropriate cell or tissue function. The SDEG 
expression patterns of relevant cells or tissues can be used to support supervised deconvolution to estimate the 
relative prevalence of these cell or tissue subtypes. Our present work on SDEGs is restricted to the widely adopted 
SDEG definition7,8,17,18, motivated by the need to obtain such SDEGs to supervise in silico tissue deconvolution19 
and/or tissue subtype characterization9. This is a particulary important goal where the measured data are mix-
tures of the genes expressed by many of the subtypes present in the samples and the SDEGs are used to estimate 
both the proportions of each subtype in individual heterogeneous samples and the averaged subtype-specific 
expression profiles.

While ideal SDEGs are defined as being uniquely and consistently expressed in a tissue or cell subtype across 
varying conditions, the variability inherent in many tissue samples requires a more relaxed definition that allows 
the SDEGs of a specific tissue or cell subtype to exhibit low or insignificant expression values in all other subtypes. 
We show that SDEGs detected by OVE-FC/sFC using high thresholds or small p values can accurately estimate 
both subtype proportions and expression profiles; thus, these SDEGs can serve as effective molecular mark-
ers (Figs. 6c, S10 and S11). Accuracy of OVE-FC/sFC-based SDEG detection may be affected by batch effects, 
normalization, and outliers present in the expression data. Hence, the reliability of OVE-sFC depends on the 
variance estimate, particularly when sample size is small. In practice, the number of available purified subtype 
samples are usually small (often 3–5) and is one of the challenges in the problem we are addressing. OVE-sFC 
integrates the related information across genes or subtypes. For example, OVE-sFC estimates the variances from 
all subtypes, whereas OVO t-test conducts estimations for only each subtype pair. Consequently, OVE-sFC 
outperforms OVO t-test, especially in those challenging cases with higher expression variability, smaller sample 
size, and the presence of a greater number of subtypes (Figs. 4, 6c).

The three major factors affecting the robustness of SDEG detection are noise level (within-subtype expression 
variability/variance across samples), sample size, and differential expression (fold change) between two subtypes 
expressed at the highest levels. Our experimental results show that OVE-sFC test maintains type 1 error rates 
closely matched to the expectations with varied effects (Figure S2), and tends to exhibit better performance than 
other tools when the noise level is higher and both sample size and fold change are smaller (Fig. 4).

In our study, most of the assumptions applied are widely accepted because they are close to reality. In the 
simulation study to validate the type 1 error rate produced by OVE-sFC under the null hypothesis, a uniform 
distribution of the empirical p values of OVE-sFC is assumed. This assumption holds when all genes are non-
SDEGs and the estimate of the null distribution is sufficiently accurate. OVE-sFC works best when all assump-
tions in the model are valid. For example, while the proposed permutation scheme does not require the data to 
be normally distributed under the null hypothesis, OVE-sFC assumes that samples are drawn from a distribution 
with the same ‘shape’ for different genes. This assumption ensures that the null distributions across genes can be 
combined with variance-based standardization. When data distributions deviate significantly from a common 
shape, limma-voom/vooma/voomaByGroup variance models can be used to accommodate unequal variances 
by appropriate observational-level weights26. When data distributions deviate significantly from normality, a 
permutation ANOVA can be used to estimate the null hypothesis components of the mixture distribution. Fig-
ure S6 shows that with the mean–variance relationship estimated by limma-voom on RNASeq data, OVE-sFC 
can maintain the expected type 1 error rates or specified FDR. For outliers and drop-out zero values in RNAseq 
data, state-of-the-art two-group test methods designed specifically for RNAseq such as edgeR27 and DESeq228 
can be adopted when needed.

While OVE-FC is the simpler version of our OVE strategy and drives the OVE-sFC approach described here, 
we have also demonstrated that OVE-FC is an effective and robust method for detecting SDEGs, particularly 
when sample size is small. OVE-sFC is a critical complement to OVE-FC. Firstly, OVE-FC does not assess 
statistical significance (no p values are estimated) while OVE-sFC provides a significance assessment and can 
improve FDR control. Secondly, OVE-sFC improves detection power in some of the more challenging experi-
mental conditions. Detecting SDEGs with accurate p values is an attractive feature of OVE-sFC that can help 
restrain the FDR to its expected level. Indeed, our experimental results show that OVE-sFC test outperforms 
OVE-FC in the more challenging cases involving nonideal SDEGs (Figure S8) or cell types that are closely related 
phenotypically (Fig. 6c). However, OVE-sFC test may become unstable when the scaling factor is too small or 
estimated inaccurately. OVE-FC will not perform well when pre-exclusion of extremely lowly-expressed genes 
is not done correctly.

ANOVA has been the most commonly used method to test differences among the means of multiple sub-
types, often in conjunction with a post-hoc Tukey HSD test to compare all possible pairs of means29. However, 
this approach is not suitable for detecting SDEGs because the null hypothesis used by ANOVA does not truly 
enforce the definition of SDEGs. ANOVA detects all significant differentially expressed genes rather than the 
unique subset that represents SDEGs. Hence, an ANOVA model produces too many false positives with respect 
to individual subtypes (Supplementary Information).

In addition to the SDEGs discussed here (genes uniquely up-regulated in a specific subtype), the counterpart 
of subtype-specific down-regulated genes (genes uniquely down-regulated in a specific subtype) are also of bio-
logical interest5. OVE-FC/sFC can detect down-regulated SDEGs by reversing the comparison rule5. There are 
alternative definitions of ‘informative genes’ for different analytical purposes, such as when the goal is sample 
classification. In our earlier work on multiclass classification5,6, we have shown that upregulated SDEGs selected 
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by OVE-FC are sufficient to achieve multiclass classification and can often improve classifier performance over 
alternative informative gene subsets of the same size.

In the present study, we have chosen to introduce a method focused on univariate analysis. Our method 
does not consider the network structure among the genes or gene sets. For the future work, we will explore the 
possibility of networked SDEG detection, laveraging the latest advances in gene set analysis approaches based 
on multivariate tests30.

Lastly, when subtype-specific expression patterns are unknown, unsupervised deconvolution techniques such 
as CAM19 are required. An advantage of unsupervised deconvolution is that it can identify both the cell/tissue 
subtype proportions and their specific expression patterns, albeit with potentially less fidelity, when neither is 
known a priori or measured from the same sample.

Methods
OVE‑sFC test statistic and null distribution modeling.  We propose the following mixture distribu-
tion of the OVE-sFC test statistic t  under the null hypothesis (Fig. 7)

where Hnull,m
SDEG  is the mth component of the mixture null hypothesis Hnull

SDEG . We designed a novel nested permu-
tation scheme that approximates the complex null distribution and is consistent with the definition of SDEGs. 
Hnull,m
SDEG  is constructed by permuting the samples in the top (K −m) subtypes with higher mean expressions; 

the samples in the bottom m subtypes with lower mean expressions are removed from the permutation. Note 
that Hnull,0

SDEG corresponds to the same null distribution used in ANOVA where all samples participate in the 
permutation.

This mixture null distribution model is proposed to model unknown but potentially complex expression 
patterns of non-SDEGs under the null hypothesis. The permutation scheme(s) estimates such a mixture null 
distribution. The main advantage of the proposed permutation scheme(s) is its flexibility and comprehensiveness, 
which closely match the mixture null distribution of various types and combinations. With varying proportions 
of different non-SDEG types, the OVE-sFC test can maintain the type 1 error rate close to the expected level 
with the help of the proposed permutation scheme(s) and the conditional probability of each non-SDEG type 
(Figure S2, Supplementary Information).

Note that Hnull,m
SDEG ,m = 0, . . . ,K − 2 represents (K − 1) different null hypotheses, each with an individualized 

null distribution that can be estimated by specific permutation scheme(s); essentially, we permute samples in the 
top (K −m) subtypes. Collectively, a mixture of null distributions is constructed from combinations of different 
null hypotheses in various proportions. In contrast, without conditioning on Hnull,m

SDEG  , all null distributions are 
aggregated equally into the mixture null distribution in the same proportion. This simpler permutation scheme 
produces an equal-weight mixture model that cannot represent the complexity of the null distribution. Thus, 
the null distribution of the OVE-sFC test statistic could be distorted. As a result, a uniform distribution of p 
values in null data is not guaranteed and the observed False Discovery Rate may not match the expected level.

The null distribution of OVESEG-test statistics under Hnull-SDEG,m is estimated from permuted samples 
and aggregated from different genes with weights. Let s

(
j
)
= [s

(
1, j

)
, . . . , s

(
N , j

)
] denote the measured expres-

sion vector of gene j across samples, where N is the total number of samples. These weights are the posterior 

(4)f
{
t|Hnull

SDEG

}
=

∑K−2
m=0 f

{
t|Hnull,m

SDEG

}
P
{
Hnull,m
SDEG |Hnull

SDEG

}
,

Figure 7.   Mixture null distribution of OVE-sFC test statistic for detecting SDEGs. The mixture distribution 
consists of (K − 1) null components, each estimated from the resamples after randomly permuting samples in 
the top (K −m) subtypes of high mean expressions and weighted by the posterior probabilities of component 
null hypotheses.
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probabilities of a component null hypothesis given the observation Pr
{
Hnull-SDEG, m|s(j)

}
 , estimated by the local 

FDR fdrnon-SDEG,m
(
j
)

31, given by

where fdrnon-SDEG, 0
(
j
)
 is the local FDR associated with ANOVA on all subtypes, and fdrnon-SDEG,m

(
j
)
 is the 

local FDR associated with ANOVA on the top (K −m) subtypes, estimated using R package “fdrtool”20 (Sup-
plementary Information).

Assessing statistical significance of candidate SDEGs.  The p values of candidate SDEGs are esti-
mated using the learned ‘mixture’ null distribution

where tobs is the observed OVE-sFC test statistic, and T is the continuous dummy random variable. Specifically, 
Pr
{
T > tobs|H

null,m
SDEG

}
 is calculated by the weighted permutation scores

where P is the number of permutations, J is the number of participating genes, I(·) is the indicator function, and 
Tj,p is the OVE-sFC test statistic in the p th permutation on j th gene. Furthermore, the component weight in the 
mixture null distribution is estimated by the membership expectation of the posterior probabilities over all genes

Lastly, substituting (7) and (8) into (6), the p value associated with gene j is calculated by:

with a lower bound of minj

{∑K−2
m=0 wnon-SDEG,m

(
j
)}

/P
∑K−2

m=0

∑J
j=1 wnon-SDEG,m

(
j
)
 . Supplementary Informa-

tion provides more details on the deviation of OVE-sFC test p values when considering all subtypes together 
(Eq. 9) and when considering one subtype specifically (Eq. S7, S8).

Empirical Bayes moderated variance estimator of within‑subtype expressions.  The impor-
tance of an accurate estimator on pooled within-subtype variance σ 2(j) is twofold—calculating the OVE-sFC 
test statistic tj and determining the local false discovery rate fdrnon-SDEG,m

(
j
)
 , particularly with a small sample 

size. We assume a scaled inverse chi-square prior distribution σ 2(j) ∼ ν0σ
2
0 /X

2
ν0

 , where ν0 and σ 2
0  are the prior 

degrees of freedom and scaling parameter, respectively32. We then adopt the empirical Bayes moderated variance 
estimator σ̃ 2(j) that leverages information across all genes, as used in limma and given by

where N is the total number of samples, and σ̂ 2(j) is the pooled variance estimator, given by

The prior parameters ν0 and σ 2
0  are estimated from the pooled variances. The moderated variances shrink the 

pooled variances towards the prior values depending on the prior degrees of freedom and the number of samples. 
Note that t-stat

(
j
)
 with moderated variance estimator σ̃ 2

(
j
)
 follows a t-distribution with ν0 + N − K degrees of 

freedom (Supplementary Information).

Brief review of the most relevant peer SDEG selection methods.  The OVR-FC uses a simple test 
defined by

where s̄k
(
j
)
 and s̄−k

(
j
)
 are the geometric means of the j th gene expressions within subtype k and associated with 

the combined remaining subtypes, respectively. The OVR t-test uses a statistical test given by

(5a)wnon-SDEG, 0

(
j
)
= Pr

{
Hnull,0

SDEG|s
(
j
)}

= fdrnon-SDEG, 0
(
j
)
,

(5b)
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(
j
)
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(
j
)}

=

{
1−

m−1∑

n=0

wnon-SDEG, n

(
j
)
}
fdrnon-SDEG, m

(
j
)
, 0 < m < K−2,

(6)p-value = Pr
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}
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}
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,
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where µ̂k

(
j
)
 and µ̂−k

(
j
)
 are the sample means of the j th gene expressions within subtype k and associated with 

the combined remaining subtypes, respectively; nk is the number of samples in subtypes k ; and σ̂k
(
j
)
 and σ̂−k

(
j
)
 

are the sample variances of the  th gene expressions within subtype k and associated with the combined remaining 
subtypes, respectively. The OVO t-test conducts t-tests among all subtype pairs and selects genes upregulated in 
one subtype for all the tests, where the variances are estimated only from every pair of subtypes16 (Supplemen-
tary Information). In contrast, OVE-sFC exploits all subtypes in estimating the variances. The benefit of using 
all subtypes for modeling is significant in challenging cases with higher variance, smaller sample size, and more 
subtypes (Supplementary Information).

Simulation study for validating OVE‑sFC test statistics on type 1 error.  Among the 10,000 simu-
lated genes, a portion are housekeeping genes that take the baseline expression levels across all subtypes under 
Hnull,0
SDEG . The expression levels of the remaining genes are proportionally adjusted to exhibit similar levels of upreg-

ulation as seen in at least two subtypes depending on m values, mimicking all types of non-SDEGs under the 
participating null hypotheses Hnull,m>0

SDEG  . The mean upregulation levels are drawn from a properly bounded uni-
form distribution in scatter space, with variance following an inverse chi-square distribution σ 2(j) ∼ ν0σ

2
0 /X

2
ν0

 , 
where the prior degree of freedom ν0 takes 5 or 40, and σ0 takes 0.2, 0.5, or 0.8 (Supplementary Information).

Simulation study for asscessing OVE‑FC/sFC on the power of detecting SDEGs.  Among the 
10,000 simulated genes, ratios of non-SDEG patterns were consistent with the estimation from the base real data-
set; microarray data GSE28490 or RNAseq data GSE60424. 100 SDEGs were mimicked with their upregulations 
sampled from a fold change range [5, 20], or [10, 20]. Variances were sampled from base real dataset according 
to gene expression levels, preserving the potential mean–variance trend (Supplementary Information).

Gene expression data of human immune cells (GSE28490 and GSE28491).  In these data sets, 
each cell subtype consists of at least five samples, excluding a few outliers (Table S7). Following preprocessing of 
the raw measurements, 12,022 probesets in Roche and 11,339 probesets in HUG were retained and used in the 
analyses (Supplementary Information).

Realistic synthetic data for supervised deconvolution.  Five subtypes (B cell, CD4 + T cell, CD8 + T 
cell, NK cell, monocytes) were included in synthesizing n = 50 in silico mixtures, where purified subtype mean 
expression data from the GSE28491 HUG dataset were combined according to pre-determined proportions with 
additive noise, simulating heterogeneous biological samples (Supplementary Information).

Data availability
A Bioconductor approved R package of OVE-sFC is freely available at http://bioco​nduct​or.org/packa​ges/OVESE​
G. A detailed user’s manual and a vignette are provided within the package. In addition, public gene expression 
data analyzed in this paper are also available from the Gene Expression Omnibus Database under Accession 
Number GEO: GSE19380, GSE28490, GSE28491, GSE60424, and GSE72056.
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