
SELECTED OPTIMIZATION PROCEDURES FOR
CFD-BASED SHAPE DESIGN INVOLVING SHOCK

WAVES OR COMPUTATIONAL NOISE

By
Robert P. Narducci

A DISSERTATION SUBMITTED TO THE FACULTY OF

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

AEROSPACE ENGINEERING

(KD
\s Are.

NX

B. Grossman, Chairman

R.T. Haftka R.W. Walters

Widhie Moen Cage LY
W.H. Mason ~ E. Cliff’7

May 1995

Blacksburg, Virginia

SELECTED OPTIMIZATION PROCEDURES FOR CFD-BASED
SHAPE DESIGN INVOLVING SHOCK WAVES OR

COMPUTATIONAL NOISE

by
Robert P. Narducci

Bernard Grossman, Chairman
Department of Aerospace and Ocean Engineering

(ABSTRACT)

This work addresses many problems associated with designing aerodynamic

shapes using computational fluid dynamics (CFD) codes. The investigation focuses

in the transonic flow regime where shock waves may have an adverse effect on the

convergence of the optimization process. In particular, the interaction of the flow

discontinuity with the discrete representation of the design problem may cause the

objective function to be non-smooth. Methods for robust optimization of the non-

smooth functions are presented.

The dissertation is divided into two parts, The first part investigates a simple

model problem involving quasi-one-dimensional flow in a duct. The flow field com-

putation is simple and contains many of the elements present in more complicated

fluid flow problems. The optimization involves finding the cross-sectional area dis-

tribution of a duct that produces velocities which closely match a targeted velocity

distribution containing a shock wave. The objective function which quantifies the

difference between the targeted and calculated velocity distribution becomes non-

smooth due to the presence of the shock in the discretized field. Two techniques for

derivative-based optimization are offered to resolve the difficulties associated with

the non-smoothness of the objective function. The first technique, shock-fitting,

involves careful integration of the objective function through the shock wave. The

second technique, coordinate straining with shock penalty, uses a coordinate trans-

formation to align the calculated shock with the target and then adds a penalty

proportional to the square of the distance between shocks. These techniques are

evaluated and tested using several methods to compute the derivatives, including

finite-differences, direct and adjoint methods.

The above two techniques rely on accurate estimations of the shock position,

which may not be available for the general case. In the second part of the dis-

sertation, we present an optimization method to solve the difficult model design

problem requiring no information about the shock. The optimization begins with

the construction of a response surface that smoothly approximates the objective

function. Here the response surface is a least squares polynomial fit to carefully

selected design points. By minimizing the response surface we can obtain a first

guess for a reasonable design. Optimization may continue in one of two ways. In the

first method, we probe a small region of the design space around the minimum and

perform another response surface minimization. In the second method we switch to

a derivative-based method assuming that in the small region around the minimum

the function is smooth. In addition to the one-dimensional duct problem, two other

shape design problems involving two-dimensional flow are solved to demonstrate the

efficacy and robustness of the response surface method. One involves the inverse

design of a bump in a transonic channel flow. The other involves the design of an

airfoil for transonic flight.

ACKNOWLEDGEMENTS

I would like to thank my advisor and committee chairman, Dr. Bernard Gross-

man, for his guidance and his timely reading of this dissertation. Also, many thanks

to the other committee members. Specifically, to Dr. Raphael Haftka for sharing

his deep understanding of optimization, to Dr. Robert Walters for his assistance

in developing the CFD code ErICA, to Dr. Eugene Cliff for all his advice on the

diffuser design problem, and to Dr. William Mason for sharing his experiences with

computational aerodynamics results. In addition I would like to thank Dr. Layne

Watson and Susan Burgee for their suggestions in reference to the parallel computer

work.

I am grateful to M. Salas of NASA Langley for supervising and funding this

work through NASA grant NAG 1-1466.

Special thanks to my father and mother who inspired me to grow in knowledge

and encouraged me along the way; to my wife for her patience and love; and to my

friends in the Sunroom (without whom I would have graduated two months earlier).

Thank you Lord for teaching me to strive for perfection.

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS

Page

List of Tables 2.0.0... ccc ccc cc cee cee cee cece cee cece ence eu eeceseeseecees vil

List of Figures cece ccc cece eee eee ee eee ence eee ects eee eee eeee ix

Introduction 1.0.0... cece ccc cece cece ce ence eee e cence tees eeeeceeceeeesveeacs 1

PART ONE

DERIVATIVE CALCULATION METHODS FOR
FIRST ORDER OPTIMIZATION

Chapter 1. A Transonic Inverse Design Problem cece eee eee eee 12

1.1 Governing Equations ccc cece cece cece eee eeeeneneees 13

1.2 Exact Solution ccc ccc ccc cece cece cence teen eee este eeeeenes 14

1.3 Finite-volume Solutions 0. cece cece cece eect et eee eee eeneeeenas 16

1.4 Formulation of the Design Problem 00 ccc cece cence eens 17

Chapter 2. The Optimization Procedure 0... cece cee cece nee e ee eeees 24

Chapter 3. Continuous Approach to Derivative Calculations 28

3.1 Direct Method ccc cece cc cee tee cece eeeeeeeeeeees 29

3.2 Adjoint Method cece ccc cece cece eteeeeneees 33

Chapter 4. Discrete Approach to Derivative Calculations04. 37

4,1 Direct Method cee cece cece e ene e ee eeeteneenaees 37

4.2 Adjoint Method ccc cece ccc cece eee e ence eee eeeeeeecees 42

Chapter 5. Results: Part 1... . ccc ccc ccc ccc ence eee e een eeneeeeenneee 44

5.1 Designs Using the Continuous Approach cece eee ence eee 45

5.2 Designs Using the Discrete Approach ccc cece cece eeeees 47

Chapter 6. Conclusions: Part I oo... . ii. cece cece een eee e ence eeeeaes 49

TABLE OF CONTENTS Vv

PART TWO

RESPONSE SURFACE METHOD

Chapter 7. Response Surface Optimization Algorithm ccc cece ee wees 54

Chapter 8. Recipe for Response Surface Construction 0.0 e ee eee eee 60

8.1 Selecting Response Surface Types ccc ccc cece cece cece eee eeeees 60

8.2 Number of Function Evaluations for Fit 0... cece ee eee eee eee 62

8.3 Location of Points to Construct Surface 2.2 eee eee ee eee eee 63

8.4 The Least-squares Problemccc cc cee eect cece eeeteeeeeeeees 68

Chapter 9. Genetic Recombination Algorithm for Multiple Point Selection71

Chapter 10. Design Problems 0. cece ccc ce cece eee eee e eee e ee eeees 76

10.1 Inverse Design of a Bump in Transonic Channel Flow 76

10.2 Transonic Airfoil Design 0... cece cee eee eee eeenes 19

Chapter 11. Results: Part I] 2.0... cc cece ee enn ete n eee e eens eeees 81

11.1 Quasi-one-dimensional duct 0... cee ccc ccc cece eee e eee eeeeeas 81

11.2 Bump in Transonic Channel Flow ccc cece cence tence cee 87

11.3 Transonic Airfoil Design 00... c cece eect cece eee eee eeeees 89

Chapter 12. Conclusions: Part IT 2.0... 0... cece eee eee te eee eeeees 92

References 2... cece cc ccc ccc cece cece e eee teen eee e eee nent eee eee eeeeeeneees 96

Tables 0.0... cece cc ee ree eee e eet ne eet eee n eee e este ee eeeeeeeetseeas 103

FIGures 2... cee ccc cece eee cece eee ee eee ee eee eee eee eee eee e nett eee eeeeeees 130

Appendix A. GRAMPS User’s Guide 0. cece eee eee eee eeeees 201

Appendix B. GRAMPS Source Code 2 cece cece etc e ences eneeees 205

Appendix C. ErICA User’s Guide 0... ccc cece cece ee nenneeees 225

Vita Le eee eee eee eee e eee ee eee eee eee eens eeeeeeeeeeereees 235

TABLE OF CONTENTS vi

LIST OF TABLES

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

Initial and target design conditions 00sec e cece cece eee e eee eeees 103

Comparison of design sensitivities and convergence of the continuous approach
using the exact flow solver. One design variable case using the initial design
point described in table 5.1; Ip = 5.436 K 1077 oo. c ccc e eens 104

Comparison of design sensitivities and convergence of the continuous approach

using the exact flow solver. Three design variable case using the initial design
point described in table 5.1; Ip = 5.436 X 1077. oo. cece cece eee ees 105

Comparison of design sensitivities and convergence of the continuous approach
using the Godunov flow solver. One design variable case using the initial design
point described in table 5.1; Ig = 5.312 x 107? 2... ccc eee eee 106

Comparison of design sensitivities and convergence of the continuous approach
using the Godunov flow solver. Three design variable case using the initial
design point described in table 5.1; Ip = 5.312 x 1077 ooo... eee eee 107

Final design parameters for the continuous approach using exact flow solutions

ee ee ee eee eee eee eee eee Eee ee nn ee eee eee eee eee eene 108

Continuous approach shock sensitivities computed with exact and Godunov

flow SO]VETS 2.0... cece ccc eee cece eee e eee e ene e eee e cent eeeeeeeeeees 109

Final design parameters for the continuous approach using Godunov flow solu-

TIONS Loc cece ec eee eee ee eee cece eee e een e nee eet e esses ee eeeeeeeeees 110

Comparison of design sensitivities and convergence of the discrete approach
using the Godunov flow solver. One design variable case using the initial design
point described in table 5.1; Ig = 3.936 x 1077 2... cece cee 111

Comparison of design sensitivities and convergence of the discrete approach
using the Godunov flow solver. Three design variable case using the initial

design point described in table 5.1; Ip = 3.936 x 107? 2.0... . eee eee eee 112

Comparison of design sensitivities and convergence of the discrete approach
using the artificial viscosity flow solver. One design variable case using the
initial design point described in table 5.1; Ip = 4.028 x 107? 113

LIST OF TABLES Vil

5.12

5.13

5.14

8.1

10.1

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10

11.11

Comparison of design sensitivities and convergence of the discrete approach

using the artificial viscosity flow solver. Three design variable case using the
initial design point described in table 5.1; Ip = 4.028 x 107? 114

Final design parameters for the discrete approach using Godunov flow solutions
Lene eee eee eee ee eee ee ee eee eee eee eee eee eee este eee eeees 115

Final design parameters for the discrete approach using artificial viscosity flow

SOLUTIONS 02... cece ccc cette cent teen ee eet eee eee eee ee eee eteeeeeeeees 116

Comparison of different sets of points for response surface construction ..117

B-spline control points for the bump shape functions 118

D-optimal points for a quadratic polynomial response surface in the region

LID SE S170 Lecce cc ccc cece reer t eee e eee e scene eeeeeeeees 119

D-optimal points for a quadratic polynomial response surface in the region

defined by equation (11.6)... cc ccc ccc cece cence eee een eee e ee eeaes 120

D-optimal points for a quadratic tensor product response surface in the region

defined by equation (11.6) 2.0.0... . ec eee e cece cece eee eee e tence ee eneees 121

‘Transonic bump response surface cycle 1 results cece cece enes 122

Transonic bump response surface cycle 2 results 2. cece eeeceees 123

Transonic bump response surface cycle 3 results 0. cc eee eee 124

Transonic airfoil design response surface cycle 1 results0. 125

Transonic airfoil design response surface cycle 2 results0005. 126

Transonic airfoil design response surface cycle 3 results2.- 127

Transonic airfoil design response surface cycle 4 results0.. 128

Transonic airfoil design response surface cycle 5 results0.. 129

LIST OF TABLES Vili

LIST OF FIGURES

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

Application of quasi-one-dimensional flow theory--eeeeeees 130

Supersonic and subsonic branches of the exact solution to fr +g =0131

Godunov solution to f; + g = 0 computed on a 64 point grid 132

Artificial viscosity solution to f, + g = 0 computed on a 64 point grid with

several values Of © 2.2... ccc cece cee eee e eee e ence eee e eee eee eeeeees 133

Design variable parameterization of the quasi-one-dimensional duct 134

Discontinuous objective function for the univariate case using the exact flow
solution with N = 32 and N = 64 2... ccc ccc ccc cece cence eee eeeees 135

Plot of terms in summation of equation (1.24) reveals that terms between
shocks dominate the summation ccc cece cece eee eeeeceeaees 136

Non-smooth objective function for the univariate case using the Godunov flow

solver for N = 64 oo. e cece ccc ccc ccc cece teen e eet e eee teeeenenees 137

Non-smooth objective function for the univariate case using the artificial vis-

cosity flow solver for N = 64 2.0... . ccc eee ccc eee nee c eee e ee neeees 138

Shock-fitted objective function for the univariate case using the exact flow
solver for N = 64 oo... cece cece c ete e teen eee ene eeeeeeeeeeaees 139

Schematic of interpolating the shock position and extrapolating left and right

velocities at the shock 2.1.0.0... . cece cece ccc e eee e eee teen ene eeeeees 140

Shock-fitted objective function for the univariate case using the Godunov flow

solver for N = 64 2... ccc ccc ccc cece cece eect eee eee eeteteteteeeeeeaees 141

Coordinate straining performed for a test case computed from and exact solu-

C0) 6 142

Coordinate-strained objective function for the univariate case using the exact
flow solver for N = 64 oo... ec cece cece center eee ecnseveucecees 143

LIST OF FIGURES 1X

1.15

1.16

2.1

2.2

5.1

5.2

5.3

0.4

5.0

5.6

5.0

7.1

8.1

8.2

8.3

8.4

8.5

Coordinate-strained objective function for the univariate case using the Go-
dunov flow solver for N = 64 2... . cc cece cece ec cece eee eee eee ee eeeeeeees 144

Coordinate-strained objective function for the univariate case using the artifi-

cial viscosity flow solver for N = 64 cece cece cece eee eee eee eens 145

Steepest descent optimization of a quadratic in two variables 146

Conjugate gradient optimization of a quadratic in two variables 147

Initial and target area distribution 22... 00... cee ccc eee eee cece cece eees 148

Initial and target velocity profiles using the exact flow solver 149

Initial and target velocity profiles using the Godunov flow solver 150

Initial and target velocity profiles using the artificial viscosity flow solver 151

Expanded view of the shock-fitted objective function near the minimum. Figure
drawn with exact flow solutions 0. ccc eee cece cette ee eeees 152

Shock position variation with design variable (univariate case) 153

Left and right velocities at the shock position with design variable (univariate
CASC) Lecce eee nee ence eee eee nee e eee e tee eset et eeees 154

Example of reduction and translation of the response surface region during the
optimization cycles 2.2... eee cc cece ener cence renee eeeeeeee 155

Simple example demonstrating how point selection can effect the fidelity of a
TESPOMNSE SUTLACE 20. cee cece cence eee e eee e eee neeteeeeeeeee 156

D-optimal set of points for P = co + c1€1 + co€o + c3€? + cabivéo + c5€2 in a

rectangular domain cece cece cece eee net eee eee eee eset eeeenees 157

D-optimal set of points for a quadratic tensor product in two dimensional

rectangular domain 2.0... cece cece eee reece eee cece e een eenes 158

Possible designs for constructing a response surface in 2-D rectangular space

Least-squares representation in two dimensions shows that the error vector is

perpendicular to the column space-.. cece cece eee eens eeneees 160

LIST OF FIGURES x

9.1

9.2

9.3

9.4

9.5

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

11.1

11.2

11.3

11.4

Probability of designs being selected for parenting based on the rank in a
population of 10 designs cc cece cece eee eee eee e eee tect eee ceeeens 161

Breeding of two parent designs to get one child 0. cee eee eee 162

GA history of convergence to D-optimal set of points for fitting equation (8.3)
IN a Square COMAIN eee eee cee eee eee cence eee reese tenet eenes 163

D-optimal set of points for fitting equation (9.6) in a general shaped domain
wee ene eee eee n een eee e eee e eee ee ee etna eee eee eset eee eee eeees 164

GA history of convergence to D-optimal set of points for fitting equation (9.6)
in the general domain of figure 9.4 0... .. ccc e cece eee e eee e ee eees 165

Channel Geometry 1.0.0... ccc ccc ccc cence eee e eee e een seeeeeeenseneees 166

Shape functions for the inverse design of a bump in transonic channel flow 167

Typical grid to generate the Euler solutions for transonic flow through the
00} 56 8 C) 168

Target pressure contours for Mach 0.8 flow through the channel 169

One-dimensional cut through the design space of a bump in a channel of tran-
10) 95 KOR 8 0) a 170

3 of 6 shape functions for the transonic airfoil design problem 171

3 of 6 shape functions for the transonic airfoil design problem 172

Typical grid to generate the Euler solutions for transonic flow over an airfoil

bee eee eee eee e EER ee eee teen e EE eee eee eee e eee eee eeeeneeeeeeteees 173

Response surface modeling the objective function of the one-dimensional duct
problem parameterized by one design variable-.eeeeeeeeeees 174

Convergence history of the one-dimensional duct problem parameterized by
one design variable and optimized by response surfaces4.. 175

Convergence of the design variable for the one-dimensional duct problem opti-

mized with response surfaces ccc ccc cence cece cece te ceesecceeeees 176

GA history of convergence to D-optimal set of points for fitting a quadratic in
the region defined by equation (11.6) 0... cece cece cence eee eee eeeee 177

LIST OF FIGURES xi

11.5 GA history of convergence to D-optimal set of points for fitting a quadratic

tensor product in the region defined by equation (11.6)66. 178

11.6 Response surface optimization result for the three design variable parameteri-

zation of the diffuser showing the shocks aligned-.05- 179

11.7 Convergence history of the one-dimensional duct parameterized by three design

variables and optimized with quadratic response surfaces followed by derivative-

based optimization 1.0... cece eee c ee eee eect eee e ee ee eee e eee eens 180

11.8 Convergence history of the one-dimensional duct parameterized by three de-

sign variables and optimized with quadratic tensor product response surfaces

followed by derivative-based optimization cece eee cece eee eee 181

11.9 Convergence history of the transonic bump problem optimized with response

SB 2 ok 182

11.10 Convergence of £; and & for the transonic bump problem optimized by response

TOD a 6c 183

11.11 Convergence of £3 and &4 for the transonic bump problem optimized by response

SULLACES Loc cece cee cece eee eee eee e eee eee eee eeeeeeeeeene 184

11.12 Pressure distribution comparison between the first response cycle design and

the target for the transonic bump problem cee eeeeeeees 185

11.13 Pressure distribution comparison between the second response cycle design and
the target for the transonic bump problem 0... eee eee eee 186

11.14 Pressure distribution comparison between the third response cycle design and

the target for the transonic bump problem 0. ccc eee e ee eees 187

11.15 Design of the bump in transonic flow after 1 response surface cycle 188

11.16 Design of the bump in transonic flow after 2 response surface cycle 189

11.17 Design of the bump in transonic flow after 3 response surface cycle 190

11.18 Pressure distribution comparison between the design with the lowest objective

function encountered during the response surface optimization and the target
eoeeereeecer eee ee ee ewe e eee eer eoe see eee eee eeer eee ane ereer seers eesn evs eer eevee seer seeeeae 191

11.19 Design with the lowest objective function encountered during the response sur-
face optimization of the transonic airfoil 2.0... . cece cece cece ee eee eees 192

LIST OF FIGURES Xl

11.20 Speed-up with parallel computations of the Euler solutions to the transonic

bump problem for response surface constructionce eee e ee eeee 193

11.21 Efficiency with parallel computations of the Euler solutions to the transonic
bump problem for response surface construction0eeeeeeee 194

11.22 Convergence of the transonic airfoil design. Lift is computed at M = 0.75, and
HO Lecce cece ee eee eee e eee eee eee e seen eeeeteeennes 195

11.23 Convergence of €; and &2 for the transonic airfoil design optimized by response

SULfACES 2. cee eee eee eee e eee teen tees teeseeneeees 196

11.24 Convergence of €3 and &, for the transonic airfoil design optimized by response

Sp 0 - 197

11.25 Optimized shape for the airfoil at M = 0.75, anda =0° 198

11.26 Surface pressure distribution for the optimized airfoil at Af = 0.75, and a = 0°

Meee eee ee ee ee ee eee eee eee eee eens be eee eee ne teens eeeeteeeeueeeees 199

11.27 Pressure contours in the flow field for the optimized airfoil at AZ = 0.75, and

OO ccc ccc ee eee eee eee eee ee eee eee eee ee eeeeeenees 200

LIST OF FIGURES Xil1

INTRODUCTION

Shape optimization problems in aerodynamics have recently captured the

interest of many researchers as solutions to fluid dynamics problems have be-

come less computationally restrictive. The increase in computational efficiency

can be attributed to the incorporation of new procedures such as multigrid’ and

preconditioning,” but also to computer improvements, such as the development of

parallel machines. These advances have lead to many new methods to solve the

design problem as flow solutions for many different configurations are available to

the designer. Our work here focuses on the modification of existing design proce-

dures and the implementation of a response surface method applied to transonic

flow design problems involving shock waves.

Design problems can be categorized into two main types, inverse and direct. Of

the inverse type, we speak of flow field design and surface flow design. The flow field

design problem is formulated by specifying some feature throughout the flow, e.g.

a shock-free flow. The solution describes the shape of the solid boundary such that

the flow field satisfies the condition specified. The best known method for flow field

design is the hodograph method applied to two-dimensional, transonic, shock-free

airfoils.*—!! This method transforms the partial differential equations governing po-

tential flow to the hodograph plane, where they appear as linear equations. Then,

by superposition of simple solutions, complex, shockless flows are constructed. Al-

though some excellent airfoils have been designed by this method, some “optimized”

shapes have been known to have open or fish-tail trailing edges.

Another flow field design method for transonic, shock-free airfoils is the ficti-

tious gas method invented by Sobiesczky et al..!2 This method uses a false density-

Mach number relation in regions where the flow would be supersonic. The fictitious

INTRODUCTION 1

relation is defined such that the flow is subsonic in this region, eliminating the pos-

sibility for the existence of shocks. Along the sonic line the governing equations for

both regions (the isentropic region and the fictitious gas domain) are satisfied. By

reverting to the normal isentropic relation in the fictitious gas region, the new airfoil

shape is determined by forcing the stream function to have a constant value every-

where along the airfoil surface. The fictitious gas method is easier to implement

than the hodograph method and does not suffer from designs with open or fish-tail

trailing edges. Applications of this method can be found in references 13-17.

Surface flow design is the more common approach to inverse design and more

work has been done with this problem than the flow field design type. In surface flow

design, some aerodynamic quantity is specified along a boundary, e.g. pressure on

an airfoil surface. The solution to the problem describes the shape of the boundary

that will generate the specified distribution. The list of literature involving shape

design via surface flow specification in very long. Progress in this field is well

1,18 and more recently by Dulikravich.?® summarized by Holst et a

Surface flow inverse design applied to airfoils was first formulated by Lighthill.?°

Lighthill pointed out that the inverse problem in airfoil design is well-posed pro-

vided the target velocity (or pressure) distribution satisfies three constraints. Two

constraints are associated with the airfoil’s trailing edge gap. The third constraint

requires that the target velocity distribution is compatible with the specified free

stream velocity. The problem is well-posed provided the target distribution is for-

mulated in terms of parameters which guarantee the constraints are satisfied.

In incompressible flow problems, an explicit relationship for the parameters

exists so that the target distribution satisfies the constraints.?}—?3 For compressible

flow, these explicit relationships have only been found for Karman-Tsien type gas.”4

No explicit relationship has been found for compressible perfect gas. Tranen,?°*

INTRODUCTION 2

Carlson,2® and Shankar?’ have been able to design airfoils by satisfying two of the

three constraints. They were not able to satisfy the target distribution to within

arbitrarily small tolerances since the free stream condition was not satisfied. Volpe

and Melnik?’ were able to satisfy all three constraints for a compressible perfect

gas problem by numerically determining the values of the parameters in the target

distribution as part of the problem.

In direct design problems some objective is quantified as a function of one or

more design variables. In airfoil design typically the drag, formulated as a function

of the airfoil shape, acts as the objective function. The objective is met when

the function is minimized (or maximized). The solution to the direct problem is

the shape described by the set of design variables which minimizes (or maximizes)

the objective function. One key advantage to solving the direct problem over the

inverse problem is that the designer does not have to rely on experience to determine

the aerodynamic target distribution. Also, many times the data specified for the

inverse problem may not correspond to a feasible design. Progress in this field is

extensive and is well summarized in references 18 and 19. A brief overview of some

optimization methods available for solving inverse and direct problems are presented

in the next few paragraphs.

Methods for optimization of surface flow inverse types and direct design types

can be classified according to how they use function, gradient, and Hessian infor-

mation. Algorithms which use only function values are classified as zeroth-order

methods. First-order methods use function and gradient information and second-

order methods include the use of the Hessian.

There are many zeroth-order methods. Of rising popularity is the genetic

algorithm (GA). The GA is a search procedure whereby designs are completely

represented by a string of genes. Instead of starting from a single design point,

INTRODUCTION 3

the GA uses a population of designs that are compared and ranked in relation

to one another. Using a simple breeding method, two genetic strings from the

population are recombined to produce a new design of (hopefully) higher merit.

Breeding continues until the population is replenished. The best design from the

previous population is added to the population. The algorithm continues over many

generations, always keeping the best design in the current population set. The GA

works because the probability of a genetic string being selected for breeding is

related to its rank in the population. In this way designs of higher quality are

selected more often for breeding. Also a random chance for genetic mutation is

usually incorporated to allow for genes not found in the population to enter into

the design process. GA’s have been used in optimization since the 1980’s,?9 and the

extension to shape design has been made more recently e.g. references 31-33. A

drawback of the GA is the large amount of function evaluations required to complete

an optimization. This can make a design prohibitively expensive if CFD solutions

are needed to evaluate the objective function. |

Another zeroth-order method involves probing the design space at locations

where the optimum is statistically most likely to occur. GROPE (Global R4 Op-

timization when Probes are Expensive), invented by Elder,** is an extension to

multiple dimensions of the univariate search method introduced by Kushner.** It

is an ideal algorithm for multipeak functions in low dimensions as it attempts to

balance the competing aims of sampling in the vicinity of a known peak and ex-

ploring new regions. One attractive feature of this algorithm is the apparent low

number of samples required to locate the minimum. However, implementation to

higher dimensions is complex. To the author’s knowledge GROPE has not been

applied to shape optimization problems.

The response surface or simulation approach is another way to optimize func-

tions when derivatives are inaccurate or unavailable. Here sequential approxima-

INTRODUCTION 4

tions to the function and constraints are made by sampling a portion of the design

space. With the acquired data, curves are constructed, usually by a least-squares

approach, to simulate the objective function and it’s constraints. Minimization will

lead to an improved design if the curves model the function and constraints accu-

rately. The size and shape of subsequent subregions can be changed based on the

results of the minimization. This method is particularly useful when the function is

noisy as it does not require costly or noise-contaminated derivatives. This approach

originated from the field of design of experiments and experimental optimization

where the results and conclusions that can be made rely heavily on the manner

in which data were collected.*° The application of response surfaces to numerical

experiments is straight forward as noisy numerics creates the same circumstances

as experimental tests. The approach has been used successfully in a multitude of

noisy structural optimization problems.*’~** The extension to other disciplines is

developed in references 45 and 46.

Much of the design work today uses derivative-based methods. Many of the

optimization methods are well established and are covered in text books on the

subject e.g. reference 47. In aerodynamic shape design, work has focused on ef-

ficiently and accurately computing the first derivatives, either analytically or by

numerical means. Due to the excessive cost involved in shape design, the Hessian

is often approximated, for example by BFGS updates, when second order methods

are utilized. Recent advances in first-order optimization involving transonic flow

are presented in references 48-61.

It was discovered in our earlier work,*® that the shock wave, if ignored as

a discontinuity, can slow convergence or cause the optimization to fail. In CFD

solutions the difficulty in representing a discontinuity on a grid can cause noise in

the evaluation of design derivatives and can cause waviness or discontinuities in the

INTRODUCTION 5

objective function. An important conclusion in reference 48 is that as the quality

of the flow solution improves and the shock wave resolution sharpens, the more the

shock wave tends to disrupt the optimization process. Advances in the quality and

efficiency of CFD codes have allowed the engineer the luxury of designing shapes

using flow solutions with very sharp shocks. However methods must be developed

to counter the adverse effects that sharp shocks have on the optimization process.

This establishes the motivation for this work.

The motivation began with our initial failure to reproduce the results presented

by Frank and Shubin.*%»*° In their work, they compared several methods for com-

puting design derivatives as applied to an inverse design of a duct involving quasi-

one-dimensional, transonic flow. The comparison was based on the accuracy and

efficiency of computing the design derivatives. The study included finite-differences,

direct, adjoint, and all-at-once methods. Some of these methods require differentia-

tion or integration over sharp discontinuities in the objective function or governing

equations, yet no special provision was made for the existence of a discontinuity.

Despite this, Frank and Shubin were reasonably successful in their optimization.

They were able to improve their design because the shock placement of the initial

design was very near to the target’s and thus the optimization did not suffer many

ill-effects from the non-smooth objective function. Any attempt to reproduce their

converged design from different initial design points will end in failure because the

discontinuities are not properly accounted for.*®

_ Others have used slight variations of the design problem of Frank and Shubin

to propose techniques to avoid convergence difficulties associated with the shock

wave.°!—®> One method, proposed by Iollo et al.,?! is the shock-fitting technique

which involves placing a break point at the shock position. Integration and differ-

entiation are carefully performed around the break point. In this way they were

INTRODUCTION 6

able to successfully recover the target solution to within double precision machine

accuracy using an adjoint method. Their initial conditions had the shock wave

significantly far from the target.

Shenoy and Cliff®? used the shock-fitting technique in an optimum control

approach to solve Frank and Shubin’s inverse problem. A variation of this work

by Wu, Cliff, and Gunzburger*®? applied the optimal control problem to a two-

dimensional version of the inverse design problem. They used the shock-fitting

technique in the formulation of the control problem, but smoothed the shock in

the flow solution before the evaluation of the objective function. This gave them a

well-behaved objective function.

Borggaard et al.°* successfully solved Frank and Shubin’s problem from ar-

bitrary initial conditions by using a smoothing function when computing design

derivatives. The objective function was evaluated using the solution with the sharp

shock. Borggaard and Burns extended this technique to a two-dimensional case.

Reuther and J ameson,®2~° dealt with the shock wave indirectly in their work

on transonic airfoil design. They developed an adjoint approach based on control

theory for computing the design derivatives. However in their calculations they used

flow solvers that sufficiently smeared the shock wave. Here, it is enough to smear

the discontinuity over 4 or 5 grid points. Thus in their formulations, no special

treatment of the shock wave was necessary. To avoid waviness in the objective

function resulting from the shock wave, they applied a smoothing transformation

to the objective function. In this way, differentiation of the objective function did

not involve differentiation over sharp discontinuities.

Gilmore and Kelley®? have recently developed a derivative-based optimization

procedure for dealing with noisy functions with many local minima. This algorithm

is particularly applicable to objective functions which can be expressed as a sum of

INTRODUCTION 7

a simple function, such as a convex quadratic, and a high frequency, low amplitude

function. The method works best when the amplitude of the high frequency function

decays near the minimum of the simple function. Optimization proceeds using a

finite-difference gradient-based method with the step size of the finite-difference

derivatives chosen to “step over” the high frequency noise. The gradient-based

optimization method is repeated several times with each subsequent application

using decreasing step sizes in the finite-difference calculations. This algorithm has

been applied to the design of microwave devices in references 63, and 64.

The objective of this work is to present several optimization strategies for

the design of shapes submerged in flows containing discontinuities. The obvious

application is to transonic airfoil design. However, it is my hope that some of the

strategies discussed herein will be applied within the framework of multidisciplinary

optimization. This dissertation is divided into two parts.

Part I is an overview of some existing methods to compute design derivatives

for derivative-based optimization methods. In particular, we investigate the adjoint

and direct methods for computing design derivatives and compare the calculations

to a finite-difference method. Modifications have been made to these methods to

handle the flow discontinuity. In chapter one of this section, an example inverse

design problem is introduced to validate the modifications. The problem involves

the one-dimensional transonic Euler flow through a duct of varying cross-sectional

area originally studied by Frank and Shubin.*9*° Chapter two presents the method

of optimization chosen in the design process. In chapter three, the direct and

adjoint methods are applied to the example problem using a continuous approach.

In the continuous approach, the derivative methods are applied to the objective

function and governing equations before they are discretized. To properly account

for the shock wave, the shock-fitting technique by Iollo is utilized. In chapter

INTRODUCTION 8

four, the direct and adjoint methods are applied to the objective function and

governing equations after they are put in their discrete form. This is called the

discrete approach. The flow field is modified by a coordinate transformation so

that the shock wave is aligned with the target. Optimization is performed on the

objective function based on the transformed solution and a penalty related to some

transformation parameters. Chapter five presents design results and a comparison

of the methods to compute the derivatives. Part I ends in chapter six with some

important conclusions.

In part IJ, a response surface optimization procedure for shape design in the

presence of noise is developed. In this method, a response surface is fitted to the

objective function within some region of the design space. A minimization of the

response surface leads to a design with optimal characteristics. In chapter seven,

an algorithm for multiple response surface cycles is proposed which may lead to

further improvements in the design. In chapter eight of this section, a recipe for

construction of the surface is given. This includes selection of the response surface

shape, selection of the number of points to use in its construction, where to probe

the design space to achieve the most reliable curve, and a least-squares procedure

to construct the curve. Selection of the location of the points in the construction

of the response surface requires the solution to an optimization subproblem. This

is the D-optimal problem. We solve for D-optimality via a GA which is described

in chapter nine. The response surface method is applied to the inverse design

problem described in part I, but also to two-dimensional problems. The flow fields

for the two-dimensional problems are solved with a self-developed Euler solver,

ErICA (EuleR Inviscid Code for Aerodynamics). A user’s guide for this code is

presented in Appendix C. The details of these design problems are described in

chapter ten. The results of the optimization and a discussion are presented in

INTRODUCTION 9

chapter eleven. The dissertation ends with important conclusions drawn from the

results presented and suggestions for future work are made.

INTRODUCTION 10

PART
ONE

DERIVATIVE CALCULATIONS METHODS FOR
FIRST-ORDER OPTIMIZATION

“Wisdom is supreme; therefore get wisdom.

Though it cost all you have,

get understanding.”

—Proverbs 4:7

11

CHAPTER
ONE

A TRANSONIC INVERSE DESIGN PROBLEM

Before investigating methods which may be useful for calculating the derivatives

in shape optimization, we first introduce a seemingly simple design problem which

will allow us to examine difficulties which may arise for problems involving flows

with steep gradients. The problem chosen is such that flow solutions are very cheap,

yet it contains many of the elements present in more complex design problems.

In particular, the problem contains a shock wave. The simplicity of the flow field

allows us to resolve the shock precisely. Thus, despite the ease of solving the forward

problem, the design problem is perhaps more difficult to solve than practical design

problems with more complex flow solutions.

The problem involves matching a velocity distribution through a duct by

controlling the cross-sectional area. The velocity is computed using quasi-one-

dimensional flow theory. The details of the problem are discussed in the remainder

of this chapter. We begin with a discussion of the governing equations. An analytic

solution is available and is discussed next. Usually in shape optimization, we do

not have the luxury of working with exact solutions. For this reason, two numerical

solutions are presented. One, the Godunov solution, is an upwind solution capable

of capturing the shock wave to within two grid spacings. The other uses artificial

viscosity which can smear the shock considerably. Next a formulation of the design

problem is presented. This subsection includes the definition of the design variables

and several objective functions used in the optimization.

A TRANSONIC INVERSE DESIGN PROBLEM 12

1.1 Governing Equations

In one-dimensional flow we consider a streamtube where the flow variables are

allowed to vary in only one direction. As a consequence the cross-sectional area of

the streamtube must be constant. However for streamtubes where the gradient of

the area changes slowly, it is possible to neglect the three dimensionality of the flow

and consider only the variation of the flow properties in the direction of the axis

of the streamtube. Such a situation is considered as quasi-one-dimensional and an

example is shown in figure 1.1.

The governing equations for steady quasi-one-dimensional flow are the Euler

equations expressed in differential form as

pua 0

(pu? + p)A + —pA, >) =0. (1.1)
(peo + p)ud) , 0

The independent variable, z, varies from 0 to I, the length of the duct. The density

is p, u is the velocity, A is the area, p is the pressure, and e, is the total energy per

unit mass. The equation of state for a perfect gas closes the system

p=(y—1)pe, (1.2)

where e is the internal energy per unit mass, e = e€, — u*/2, and ¥ is the ratio of

specific heat. In our computations, y is taken to be a constant value equal to 1.4.

Frank and Shubin** manipulated equations (1.1) and (1.2) to get a single ordinary

differential equation in the variable u

df

an +g=0, (1.3)

where

— g Y=) Aho flu) =ut Gai)” (1.4)

A TRANSONIC INVERSE DESIGN PROBLEM 13

and

Equation (1.3) with definitions (1.4) and (1.5) have been normalized. The velocity

has been normalized to the speed of sound at the inlet, the total enthalpy, ho, has

been normalized to the square of the speed of sound, the area has been normalized

to the square of the length of the duct, and the independent variable has been

normalized to the length of the duct.

For the case where a shock exists in the duct, the characteristics of (1.3) are

such that boundary values must be specified at z = 0 and s = 1. This corresponds

to the entrance and exit of the duct. Following the details of the problem set forth

by Frank and Shubin, we specify

u(0) = 1.299, (1.6)

and

u(1) = 0.506. (1.7)

There are a variety of ways to solve (1.3) with boundary conditions (1.6) and (1.7).

An analytic solution exists, the derivation of which is presented in the next sub-

section. For the purpose of simulating more complex fluid problems for which only

numerical solutions are available, we also solve the quasi-one-dimensional problem

via two numerical techniques.

1.2 Exact Solution

An exact solution to (1.3) can be derived by first substituting the derivative of

(1.4) along with (1.5) into (1.3). This yields

~12h A —1 2h ne (FS) AIR (Bena
A TRANSONIC INVERSE DESIGN PROBLEM 14

’ where the subscript z refers to differentiation with respect to the independent vari-

able. Multiplying (1.8) by the factor —Au?(y + 1)/(7 — 1) gives

Au,u?(y +1)
| +2Auzho + Aru (2h, - u”) = 0. (1.9)

After some algebraic manipulation we can write (1.9) as

2Au,u?

y-1
 + (Auz + Azu) (2h, —u*) =0. (1.10)

Using the chain rule of differentiation, the second term in (1.10) can be expressed

as (Au),(2h, — u*). Defining r = 1/(7 — 1) and multiplying by (2h, — u?)"-)) we

have

Aur(2h, — u*)"~1(—2uuz) + (Au)2(2ho — u?)” = 0. (1.11)

The first term in (1.11) is nothing more than Au(2h, —u?)". Again using the chain

rule we arrive at the perfect differential

[Au(2h. —u?)"|, =0. (1.12)

Simple integration through continuous regions of the domain yields

Au(2h, —u?)" = ky, O<ar<g,
Au(2h, — u?)" = ko, UsS<xn<l (1.13)

where k, and k2 are the constants of integration determined by satisfying the bound-

ary conditions (1.6) and (1.7). The shock position, zs, is determined by satisfying

the Rankine Hugoniot relation, which when written in our non-dimensional vari-

ables is

(y—1)
(y¥+1)’

where ut and u~ are the left and right values of velocity on each side of the shock

utu- = 2h (1.14)

wave. This solution was taken from reference 49. Obtaining the exact solution is

shown graphically in figure 1.2.

A TRANSONIC INVERSE DESIGN PROBLEM 15

1.3 Finite-volume Solutions

Numerical solutions to (1.3) may be obtained by adding a nonphysical time

derivative and marching to a steady state. Consider a conservation law for a one

spatial dimensional problem of the form

where u can be interpreted as the velocity averaged over a cell volume, the flux

derivative Of /Ozx may be interpreted as the net cell area averaged flux through the

cell surface, and g interpreted as a volume averaged source term. The semi-discrete

representation of (1.15) is

Ou; 1 fj+ay2 — Fj-1/2

ot Az
 +9; =0, (1.16)

where the fluxes f;41/2 are evaluated in one of two ways. The first method is

called the Godunov scheme, as implemented by Frank and Shubin,*®*® and uses

the upwind formulation according to

Fj41 Uj, Ujt1 < Us
_ f; Uz, Uj+1 > Ux

Fj+iya — fa uj <u,< Uj41 (1.17)

max(fj,fj41) Uj > Use > Uj4a

where fj41 = f(tj41), etc., and * indicates sonic flow. An alternative to the

Godunov method is the artificial viscosity method where

1
Fyaay2 = 5 [feta + fj — a(uj4i — uy). (1.18)

In (1.18), @ is a parameter related to the artificial viscosity.

A TRANSONIC INVERSE DESIGN PROBLEM 16

Time marching is performed using the four-stage Runge-Kutta scheme pre-

sented below®®
yu) = uP,

At ul =u" — Ru),

ul?) = yr — = Ru),

ul) = yr — 2" R(u)), “

uf) = u® — AtR(u®),

utd = (4),

where

R(u) = BHA Sim-w2 | (1.20)
Ar a

A solution using the Godunov scheme is shown in figure 1.3. In figure 1.4 several

artificial viscosity solutions with various values of a are shown. Solutions with sharp

shocks can be obtained using the Godunov scheme or the artificial viscosity scheme

with low values of a.

1.4 Formulation of the Design Problem

The design problem presented in this section will roughly describe the problem

introduced by Frank and Shubin in reference 49, and studied by others°®—*>. The

objective of the problem is to recover the shape of the duct that will yield a given

velocity distribution. To describe the shape of the duct, we use a set of design

variables, €. To insure that the target can be recovered to within machine accu-

racy, we impose the following requirement: the target velocity distribution must be

a solution to the governing equation for a feasible area distribution. The require-

ment is only needed to aid in the evaluation of our methods and generally is not a

requirement of the methods.

TABLE OF CONTENTS 17

To satisfy the requirement, the target velocity distribution is obtained by solv-

ing the governing equation (1.3) with the boundary condition (1.6) and (1.7) using

an area distribution described by

A(z) = —1.3902* + 2.0852? + 1.050. (1.21)

The distribution has the property that A(0) = 1.05, A(1) = 1.745, and the slopes

are zero at the ends. The governing equation is solved to get the target velocity

distribution using either the exact or the numerical methods, depending on which

flow solver is used during the optimization. For example, if the optimization uses

the Godunov scheme to obtain solutions to the forward problem, then the target

solution is obtained using (1.21) and the Godunov scheme.

There are many ways to specify an area distribution. In this work, a cubic

spline is fitted through control points along the duct. The design variables are the

ordinate of the control points and physically represent the cross-sectional area of

the duct at the axial location of the control points. The design cases presented in

this section vary in number of design variables. In each case, the control points are

evenly spaced along the axis of the duct. The inlet and exit area of the duct are fixed

at the normalized values of 1.05 and 1.745 and clamped boundary conditions, i.e.

zero slope at the ends are imposed to determine the spline uniquely. A schematic for

the general case with n design variables is shown in figure 1.5. With this formulation

the target area, (1.21), is an element of the feasible area distributions.

To quantify how well a calculated velocity distribution compares to the target

we define an objective function of the form

I(¢) = ; [(a —u)2de, (1.22)

where tu = a(x) is the target velocity distribution through the duct, and u = u(z; €)

is the calculated velocity distribution at the current values of the design variables.

TABLE OF CONTENTS 18

In the discretization of the problem, the integral is approximated over a uniform

mesh using the trapezoidal rule

1fi1 N-1

(Q=5 3 [(a@—ujf+(@—u)h]+ >> a -wih as (1.23)
~ 1=2

where NV is the number of grid points. Boundary conditions specify u at the inlet

and exit to match the target reducing (1.23) to

1 N-1

Ké) =5 > (a@—u)ZAc. (1.24)
i=2

An optimum design is reached when (1.24) is a minimum. When the requirement

mentioned earlier is satisfied the optimal design is reached when (1.24) is equal to

zero to machine accuracy.

Making the trapezoidal rule approximation without regard to the shock wave

in the velocity distribution can result in a non-smooth or discontinuous objective

function. Consider a univariate design case with the design variable located at

zx = 0.5. The objective function evaluated with the exact solution for both u and

u and plotted over a range from € = 1.1 to € = 1.7 is shown in figure 1.6. The

solid line represents the objective function with N = 64 and the dotted line is

the objective function computed with N = 32. The vertical lines in the figure

are artifacts of the plotting package; no lines should be connecting the stairs of

the function. Here we see that the discontinuity in the velocity distribution causes

discontinuities in the objective function. Further, the number of discontinuities is

dependent on the discretization of the flow solution. In figure 1.7, the terms in

(1.24) are plotted against 2 for € = 1.2 and N = 64. The summation is dominated

by the differences in the target and calculated velocity in the segment between

shocks. For small perturbations of the design variable, provided the shock remains

between the same grid points, the value of the objective function changes very little.

TABLE OF CONTENTS 19

These perturbations occur along a single stair in figure 1.6. For perturbations of

the design variable which cause the shock to move across a grid point, the objective

function changes dramatically as another dominant term is added or removed in

the summation. These perturbations cause the jumps in figure 1.6. The jumps are

less frequent in the case with N = 32 than with N = 64 because there are fewer

grid points for the shock wave to pass through.

In the case of the objective function computed using the exact analysis, the

velocity distribution contains a discontinuity and so the objective function is dis-

continuous as well. The Godunov scheme smears the shock wave over two grid

cells and thus the objective function is not discontinuous. Yet as can be seen in

figure 1.8, the function is non-smooth and contains regions of local minima. As the

resolution of the shock wave diminishes, the objective function becomes smoother.

In figure 1.9, the objective function has been computed using the artificial viscosity

solver with a = 1. The shock wave is smeared enough so that the objective function

appears well-behaved.

In CFD design it is not desirable to obtain a well-behaved objective function

at the expense of the quality of the flow solution. One way to eliminate the non-

smoothness of the objective function is to perform a more exact integration of

(1.22). This involves first dividing the integral at the location of the discontinuities

and then applying the trapezoidal approximation to each segment. The objective

function contains two steep gradient stemming from the target and the computed

shock, and thus the integral is divided into three segments

1 pee 1 ft tr
I(é) = 5 | (a — u)?dz + 5 I. (a — u)?*dzx + 5 I. (% — u)?dz, (1.25)

where Z, and z, are the target and calculated shock positions respectively. Equation

(1.25) is valid if @, < zs, otherwise @, and x, must be interchanged. Further

TABLE OF CONTENTS 20

insight reveals that since only the computed shock wave position interacts with the

discretization, (2, remains constant throughout the optimization) we only need to

divide (1.22) into two parts to get a smoother objective function

I(é) = ; ft (a —u)*dz + 5 [, (a — u)?dz. (1.26)

This is called the shock-fitted objective function. Performing the integration of

(1.26) numerically requires that grid points be placed on either side of the shock.

Using the exact analysis, the position of the shock as well as the left and right values

of the velocity at the shock is known. The smooth shock-fitted objective function

computed using the exact analysis is drawn in figure 1.10.

Using numerical solutions, the shock position and left and right values of the

shock are not clearly defined quantities. For the purposes of computing the shock-

fitted objective function with numerical solutions we fabricate definitions for the

quantities. The shock position is defined as the location where the velocity distri-

bution crosses the sonic line. This position is found by interpolating between the

grid points where the crossover from supersonic to subsonic flow takes place. We

have

Ux —_ Ujs

(rjs41 — Tis), (1.27) ty = 2j,+—7—
Ujs+1 — Ujs

where the subscripts js and js + 1 are the grid index before and after the shock.

The sonic velocity is defined by

Uy, = 2ho——,, (1.28)

The left and right values of the velocity are computed by left and right extrap-

olations to the shock position. Care must be taken when extrapolating so that

information is not taken from a point “trapped” in a shock. A clear picture of the

interpolation and extrapolation is shown in figure 1.11.

TABLE OF CONTENTS 21

These definitions do not remove all the noise generated by the interaction of

the shock wave and the discretization of the flow field yet there is an improvement

in the smoothness of the objective function and the regions of local minima are

gone. The shock-fitted objective function plotted with the Godunov solutions is

shown in figure 1.12. A comparison to figure 1.8 shows the improvement.

The extrapolation for left and right velocities of smeared solutions such as

those of the artificial viscosity with a = 1 has little meaning due to the severity of

the dissipation surrounding the shock. Further, the interaction of the shock wave

with the discretization is not severe in such cases. For this reason, the shock-fitted

objective function is not computed using highly dissipative schemes.

The shock-fitted technique is not the only way to obtain a smooth objective

function. Another clegant method strains the computed flow solution using a coor-

dinate transformation so that the shock position is aligned with the shock position

of the target. This method of coordinate straining was developed by Nixon® and

used in transonic airfoil design by Joh.*!

The implementation of coordinate straining involves defining a straining func-

tion, s(x), which equals 0 at the inlet and exit, and has a value of 1 at the position

of the target shock. The function is not unique. From reference 67, we choose

x 1l—z
s(z) = (=) (; = =) (1.29)

The calculated velocity distribution is strained proportionately to the distance be

tween shocks according to

ui = u(r — sAz,), (1.30)

where ¢& is the strained velocity and Az, = £,—Z, is the distance between computed

and target shock waves. For a numerical solution we apply the transformation to a

discrete set of points representing the velocity distribution on a mesh, we determine

TABLE OF CONTENTS 22

a grid index, M, such that ry < 2;-—sAzr, < 241. Then using linear interpolation,

the strained velocity can be computed as

z; —sAzr, — x =M (uma — Um). (1.31) ui = um +

The coordinate straining transformation is shown in figure 1.13.

The evaluation of the objective function now uses % in place of u, removing

the dominating terms which exist in the region between the calculated and target

shocks. In the process of removing the non-smoothness, the objective function has

become very flat near the minimum. Using this technique we rely on the small

differences in velocities to drive the area to the target. Often this is enough to

improve the design, but not enough to achieve the best possible one.

To shape the objective function to better define the minimum, a shock penalty

proportional to the square of the difference between shock waves is added to the

strained objective function, yielding

N-1
1 A ~\2 1 2

I(é)= 5) (ti — a); Ax + 57Ats, (1.32)
t=2

where o is a positive constant. Values of o can be arbitrarily chosen or defined so

that (1.32) equals (1.24) during the first iteration of optimization. Work presented

here used o = 5. Figure 1.14, 1.15, and 1.16., show the coordinate strained/shock

penalty objective using the three flow solution methods.

TABLE OF CONTENTS 23

CHAPTER
TWO

THE OPTIMIZATION PROCEDURE

In this chapter a first-order optimization method is outlined for minimizing

the unconstrained problems mentioned in chapter 1. The goal of the optimization

study is to compare several different methods for computing design derivatives. The

optimization technique acts as a vehicle for making the comparison. For this reason

the technique chosen is simple, yet robust, so that failure of an optimization can be

easily traceable. In this way we can determine if the design derivative methods are

the cause of the failure or not.

Consider the general unconstrained minimization problem in n-dimensional

space

min I(¢), (2.1)

where J is a differentiable function. One way to solve (2.1) iteratively is to take

steps in the design space in the direction of a descent. For example, a step of size

a (a > 0) from the point €, in the direction of p, leads to I(€, + apo/||po||) which

can be approximated by the two term Taylor Series

I(Eo + a———.

ll2 ol)~ — I(Eo) + aVI"(£o) ipl (2.2)

It becomes obvious from (2.2) that choosing p, so that aVI7(E,)po/||pol| is

large and negative will lead to a large reduction in the function. Thus the aim is to

minimize aVI7(E,)po/|{po||. Since @ is a positive scalar, the problem becomes

min VIT(é,) 2.3
pee Ipoll (2:3)

THE OPTIMIZATION PROCEDURE 24

The solution is dependent on the choice of norms. For the lz norm we solve

min, VIT(£.)—"_,, (2.4)
Pees” (D2 Po)

and the solution is the negative gradient.*’ Thus the negative gradient vector rep-

resents the direction of steepest descent for the objective function.

The algorithm for finding the optimum through the direction of steepest descent

is outlined as follows:

e® provide an initial point and evaluate the objective function at this point,

e test for convergence,

e compute the gradient of the function,

e choose a step size so that I(é, + apz) < I(&),*

e update the solution with 41 = €, + apg.

The method seems effective, yet suffers from poor convergence rates. Its ineffi-

ciencies stem from the fact that no second order information, nor any information

from previous iterations, is used to determine the descent direction. An example of

optimization using the steepest descent method is shown graphically in figure 2.1.

The example solves

_ 1 ¢2 4 £2 min I(1, £2) = 106; + £2 (2.5)

The function was minimized to 107!” in 58 iterations starting from the point (10,2).

Due to the nature of the steepest descent algorithm, the convergence slows consid-

erably near the minimum.

For the purpose of comparing design sensitivity algorithms, the method of

steepest descent is sufficient, however a slight modification to the algorithm can lead

to big payoffs in the convergence rate. To improve the convergence while avoiding

To guarantee convergence with this algorithm, a stronger requirement such as the
Goldstein-Armijo principle*’ is needed here.

THE OPTIMIZATION PROCEDURE 29

to store or approximate the Hessian is to force the descent direction to be conjugate

to the directions of previous iterations. A conjugate direction is one in which the

change in the gradient is perpendicular to the previous descent direction.*” This

is the method of conjugate gradients and is the method used in this work. The

first descent direction chosen is the steepest descent direction. All others follow the

formula®’

pr=—VIg + Be-1pr-1, (2.6)

where

— WV Tell

In theory, the method of conjugate gradients should find the minimum in n steps

or less for an n-variable quadratic function. However, roundoff errors associated

with the computation of the derivatives can quickly cause the descent directions to

lose conjugacy. Thus more than n iterations may be required to find the minimum.

In our algorithm, after n iterations, the method is restarted with a search in the

steepest descent direction to regain conjugacy. The algorithm is outlined as follows

e provide an initial point and evaluate the objective function at this point,

e test for convergence,

e compute the descent direction according to equation (2.6) with restarts

after n iterations,

e choose a step size so that I(& + apr) < I(&x),

e update the solution with €441 = €, + ap x.

The minimization of (2.5) is repeated using the conjugate gradient method.

The function is minimized to 107!” in 3 iterations. Figure 2.2 graphically shows

the minimization process.

In the optimization procedures outlined, we must choose a suitable step size

so that I(€j + appz) < I(€,). There are many procedures available for finding

THE OPTIMIZATION PROCEDURE 26

. the optimal step size. Results presented in this dissertation use Brent’s method®®

coded in FORTRAN by Press, Teukolsky, Vetteling, and Flannery.’ Essentially,

the method fits a quadratic through three data points in an interval containing the

minimum. The formula for the location of minimum of the quadratic through the

points (a, f(a)), (b, f(b), (c, f(c)) is given by

, 1-4)? [f@) ~ f(o)] - @ -— IF) - F@)
~2 @-alf(s)— fo} ~~ oF) — Fla) (2:8)

The algorithm guards against x being a minimum and not a maximum. Several

curve fits are performed to find the exact minimum in the one-dimensional search.

THE OPTIMIZATION PROCEDURE 27

CHAPTER
THREE

CONTINUOUS APPROACH TO
DERIVATIVE CALCULATIONS

The optimization routine outlined in the previous chapter requires the deriva-

tives of the objective function with respect to the design variables. The most straight

forward way to estimate the derivatives is to use finite differences. A first-order for-

ward difference is

Or 1
ae; a AG [T(€1, €2,.--,6; + AE;,...,&n) — I(€1, €2,.--,€n)], (3.1)

and a second-order central difference is

or 1
BE; 2AE;

[Z(é1, €2,-.-,€}) + AG;,.--5€n) — T(r, b2,...,€; — AG;,..-,En)]-

(3.2)

These methods are inefficient. In each iteration of the optimization routine, n + 1

function evaluations are required to compute the first-order derivatives, or 2n func-

tion evaluations for second-order derivatives. Each function evaluation requires a

flow solution which for many fluid dynamics problems can be prohibitively expen-

sive. Many cheaper methods to compute the derivatives are available and are the

topic of this chapter and the next.

We investigate two approaches for computing the derivatives. The first is the

continuous approach which is formulated from equations in their continuous form

and is discussed in this chapter. In the next chapter we investigate the discrete

approach which formulates the derivatives from discretized equations. In each ap-

proach the direct and adjoint methods for computing derivatives are derived.

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 28

3.1 Direct Method

In the continuous approach the shock-fitted objective function defined by (1.26)

is utilized. Analytic differentiation of (1.26) with respect to the j** design variable

requires Liebnitz’ rule as the shock position is a function of the design variables

xB 1

ql _ _ | (a —u)u'dr — (i —u)u'dz
0

Some explanation of the notation is in order. For simplicity, the subscript 7 has been

dropped. Realize that (3.3) can be written for each design variable &1, &,...,&n.

When we utilize the resulting formula, we will interpret 0/0€ as 0/O€; with all

other variables held fixed. The primes indicate differentiation with respect to €; so

that 2, = dx,/d&; and u' = Ou/0€; with x held constant. The subscripts on the

square bracket terms denote where the terms are evaluated.

Equation (3.3) can be used to evaluate the derivatives provided expressions for

u' and 2! can be found. In the continuous direct method, we will obtain an ordinary

differential equation which can be solved for u’ and an algebraic equation for z',.

The ordinary differential equation comes from differentiating the steady-state form

of the governing equation (1.3) with respect to €. In (1.3), f = f(u) and g = g(u, €)

are given by (1.4) and (1.5) respectively. We differentiate (1.3) utilizing the chain

rule and by interchanging the order of the z and € derivatives we obtain

Ou! da Ou ,, Oo
ae + 9g =% (3.4)

where a = df /du and b = 0g/0u. Note that (3.4) is only valid where the solution, u,

is continuous. This linear ordinary differential equation for u'(x) we call the direct

equation. Analytic expressions for the coefficients can be derived from (1.4) and

(1.5)

a=] —- ——— (3.5)

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 29

da _ y—14h,

du y+1 0’ 3-6)
_Azry-i1 2ho
- 42 (1422), (3.7)

and

Og y-1 2hoe\ O '
41" 7) x(a’), (3.8)

We can write the governing equation (1.3) as adu/Ozr + g = 0 so that

Ou g
ar = a

(3.9)

To complete the boundary value problem we differentiate the boundary condi-

tions with respect to €. At the inlet and outlet we have

u'(0, €) = 0, (3.10)

and

u'(1,€) =0, (3.11)

The direct equation may be solved analytically using integrating factors. Dif-

ferentiating Du’ with respect to 2, where D is the integrating factor yields

d(Du') _ du’ dD ,

or

du’ 1dD, 1d(Du') _

Qc * Dade" D de ~° (3-18)
Comparing (3.13) to the direct equation we see that

1dD 1 fdadu
Ddz a (Se +8), (3.14)

and

1 d(Du' 10 1 ddu) _ _109 (3.15)
D_= dz a OF

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 30

From (3.15) we find

d(Du') = =o ae (3.16)

We integrate from both ends using boundary conditions (3.10) and (3.11) to get u’

as a function of the integrating factor,

Woy 1 D 0g
U (zr) = 55 / a a Of O<2r< fz, (3.17)

and

yy Lt D 0g
u(r) = Da) [P wet tg<ar<l. (3.18)

From (3.14) we solve for D,

dD - (5 + 5) dz. (3.19)

Again, we integrate from both ends

* 1 f(dadu
2 = r —_— — — < . D(z) = D(0) exp {| , (< Fa +) ax} ; O<2r<2g. (3.20)

and

D(a) = D(1) exp {_ [2 (5+?) ax}, t,<a<1. (3.21)

Equations (3.17) and (3.18) with (3.20) and (3.21) form the solution to the direct

equation. It can easily be seen by substituting (3.20) into (3.17) that the value of

the integrating factor at x = 0 drops out of the equation. A similar argument holds

for D(1) with equations (3.18) and (3.21).

To find an expression for x, we differentiate the shock jump condition (1.14).

This yields

dut ree du-

Ode de
CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 31

= 0. (3.22)

Note that u* = u(xt,&). Then by the chain rule

du* Ou. , Ou

“(get 18) : (828)
We will adopt the notation (u+)' to be Ou/O€ taken at constant x and evaluated at

+
s°

Note that in (3.23) Ou/O€ evaluated at x = z¥ is discontinuous, with either

r=

the left or right derivatives being infinite for a sharp shock. Equation (3.23) is valid

only for the one-sided finite derivative. That is

Ou . Ou

(Se) = hm () (3.24)

with a similar definition for 0u/O€ at r = r>. We have ensured that our numerical

approximation of these derivatives have taken the above definitions into account.

We can combine (3.22) and (3.23) to develop and expression for 2‘

— +\i + —\i +u
Ls = TTT 3; ce We (3.25) Uy Se leeet t+ Se lecez

In the continuous direct method we calculate the design derivatives using (3.3).

The u! terms are calculated as a solution to the direct equation (3.4) subject to the

boundary conditions (3.10) and (3.11). The z{ term in (3.3) is evaluated from (3.25)

+ with the (u*)’ terms evaluated from u! at 2 = 2?.

In the direct methods we eliminate the burden of computing at least n+ 1 flow

solutions, but we must solve equation (3.4) n times. For stability purposes, the flow

equation (1.3) is solved numerically by adding an unsteady term and marching to

a steady state. Equation (3.4) has the advantage of being a linear system and can

be solved numerically or analytically as an ordinary differential equation. Because

of its linearity the solution to the direct equation is computationally cheaper than

the flow solution.

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 32

3.1 Adjoint Method

The adjoint method avoids computing u!(x) and 2x), directly. This method

defines an augmented functional

I*(é) =5 I * (ag —uPdet fh (a —u)?dz

ef” (Ze + ode | ma(SE + ghd

a fr t=), |
“Cr+ 1)

+ A4 [ug — u(O)] + As [ur — u(1)), (3.26)

where 4;,...,As are Lagrange multipliers. As is customary, the augmented func-

tional is defined by adding terms which are identically zero. Here 4; and A2 multiply

the governing equation over the region where it is valid. For the region at the shock,

we include the shock jump relation. The final terms in the augmented functional

represent boundary conditions for the governing equation. To find the derivative of

the augmented functional, again we apply Liebnitz’ rule to obtain

dI* ve a ! (ti — uy?

=~, @— wae + | 2 |

-f, (a — wulde — [Srl

+f” (Se + 9')dxe +c! coe +0)|

Fo onae at Fal
+ [Ax(ae + g')dz — x, [rai5 + a) _

+ A3 (u~ (ut)! + (u7)'ut) — Agu’(0) — Asu’(1). (3.27)

With the definition of the augmented functional, the design derivative dI/dé will be

equal to dI*/dé. In the adjoint method we choose the multipliers such that u’ and

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 33

z', will not appear in the expression for dI*/d€. First we perform some operations

to simplify (3.27).

The square bracket terms in (3.27) containing 41 and 2 are identically zero

since the governing equation is zero over the region where they are valid. Over

continuous regions we can integrate by parts the integrals involving 1 as

Jo (E+ 3) dz -| Fone + aa! dx — at 5, 1% (3.28)

Likewise for 42 we have

[»u(Z+ ot) de = [GP +9 | de - [Rite (3.29)

‘

Using the chain rule for f = f(u) and g = g(u,é) we can determine f’ = au

and g' = 0g/0€ + bu'. Substituting these relations into (3.27) and evaluating exact

differentials we get

dl* oy _ u! sf

-[. [eee vas f de Wa

+ Aif’ lexer ~ Arf’ |_-=<o + Af’ le=1 — Ao f' ss

“|/(S*)_ -(S*)_
+3 (u7 (ut)! + ut(u7)') — Agu'(0) — Asu!(1). (3.30)

Again we apply (3.22) and (3.23) to the derivative calculation. This allows us to

group terms multiplying (u~)’, (ut)’, and 21,

dI _ Om ' “1 | Og
oo-f0 "[oSt -o +@-u)] wae + | Ar 5g

1

-f [a2 — bs + (a) vader | ra fede xt | Ox
s

+ [Agut + AT a7] (um) + [sum — At at] wy

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 34

_ Ou 4+ Ou

+s (. Ox z=azt dz |

+ d2au'|,—1 _ dyau'| 5 _— dgu'(0) _ Asu'(1). (3.31)

The adjoint problem is specified by picking values for the Lagrange multipliers so

that certains terms in (3.31) are zero. In particular we choose the multipliers such

that u’, (u-)', (ut)', and x, do not appear in the formulation. Specifically, we

enforce

Ori ~ _
az b1,+(a@-u)=0 on O<2rK<2z;j (3.32)

Od2 . +
aa — bar + (d—u) = 0 on 2, <2<1 (3.33)

es) _ Cs)
2 z=z} 2 r=,

A3 = a ; 3 . ’ (3.34)

(u- St lenat tut au) _)

Agut +\Ta” =0, (3.35)

Agu” — Atat =0. (3.36)

Equations (3.32) through (3.36) make up the adjoint problem. Like the direct

problem, equations (3.32) and (3.33) along with boundary conditions (3.35) and

(3.36) can be solved analytically. We find that utilizing an appropriate integrating

factor

a

Ly b

R,(x) = exp ‘/ sax ; (3.38)

; 1 * (i — don) = 5 {ah = / . (u Rady} (3.39)
a

d(x) = ke {a5 + I (a = ax} (3.37)

on 0 <2 < 27; where

and

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 30

on z? <z <1 where

R2(x) = exp {- i ax} . (3.40)
x} @

In this work the integrals solving the direct and adjoint equations are evaluated

using a trapezoidal approximation.

As in the continuous direct method 0u/Oz evaluated to the right and left of the

shock is computed using 0u/Ox = —g/a at c = 2+. Under the conditions specified

by the adjoint problem, the derivative becomes

i * 0 O
-[" Me J ede + [. dg ae tt (3.41)

We see that in the continuous adjoint method we must solve one BVP for u(z, €)

and one BVP for the Lagrange multipliers. The derivatives may then be calculated

from (3.41) by quadrature. In the direct method, recall that we solved one BVP for

u and n BVP for u’. In general, adjoint methods will be computationally cheaper

than direct methods.

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 36

CHAPTER
FOUR

DISCRETE APPROACH TO
DERIVATIVE CALCULATIONS

In the previous chapter, the direct and adjoint methods were applied to the

quasi-one-dimensional duct design problem using the continuous approach and the

shock-fitted objective function. The alternative is to apply the method in a dis-

crete sense. That is the direct and adjoint methods are applied to the discretized

equations. Here we make the formulation using the coordinate-strained and shock-

penalty objective function.

4.1 Direct Method

In the discrete methods we no longer consider the velocity to a be a function

of z, rather it is a vector of dimeusion N whose elements are the velocity values at

the cell centers of the flow domain. To evaluate the objective function the velocity

is strained according to (1.30) to obtain the vector ut. The coordinate-strained

objective function with the shock penalty then has the functional dependence

I= Ilu(€),r.(€)], (4.1)

where

ti=[% tt ... ain]’. (4.2)

Applying the chain rule to (4.1) to compute the derivative, we have

Or _ Ol di , OL ar,
0&; 7 Ou 0&; Ors 0€;°

 (4.3)

DISCRETE APPROACH TO DERIVATIVE CALCULATIONS 37

where

OL _ | ar al... OL
ou Ot, Oit2 Otn }?

and

Ot _ [a Siz... Siw JT
ae; — | 86; 0€; 0&; °

Each element in (4.4) has the form

Ol

oa —(% — ti);Az,

and OI/0z, is simply

OF —o(fs — Zs) Or. —_— 8 s;°

(4.4)

(4.5)

(4.6)

(4.7)

Equation (4.5) can be expanded further. The straining function (1.30) is a function

of u and z,, so that the dependence is

i = a{u(€),«.(6)].

Differentiation with respect to the jth design variable yields

Ou Ou Ou + Ou Oz,

0&; ~ Ou Of; Ox, O€;’

where

Ot, Ot |, Git,
Ou, Ou2 Oun

~ Bin On «s«s«wsté«éCg
Ou _ Ou, Ou2 OuN

Ou : ,

Dity Btn .,, Din
Ou, Ou2 Oun

Ou _ [$2 ug Ou \"
d€; —™ | 0; 0g; 06;)

and

Ou = | di, Din din \r
Or, ™~ | Ox, Oz, Or,

Equation (4.3) can now be written as

a RtoR Ee Ou OI Oz,

dé; 0 Ou Ox, Ou

DISCRETE APPROACH TO DERIVATIVE CALCULATIONS

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

38

The Jacobian 0%/0u is sparse with the elements defined according to

aa. 0 i,j=1,....N; j4AM,M+41
Mio} 1 sicsiAeeew §=1,...,N; j=M (4.14)

Ouj iTsipte iu i=1,...,N; j=M

where M is the grid index such that ry < 2; — sAzr, < 241. Also according to

the straining function we find

Ou; Si

Sat = Fe (umaa — um) (4.15)

where s; is the discretized version of (1.29), te.

Xi 1—az;
si= @ € = =) . (4.16)

We can also expand the Or,/O€; term appearing in (4.13). The shock position is

defined by (1.27) and has the functional dependence

t, = 2,[u(€)]. (4.17)

The shock position is dependent on £; through the velocities of the surrounding

cells. However, in general, we may write

Or, Ox, Ou

BE; ~ Ou OG,” (4-18)

where

Ols (dt, du, Or,
Ou = (53 dua |~-——sé«N]. (4.19)

Realize that only two components Or, /Qu of will be non zero

0 ~=1,...,N; t# 7s,jst1
QO (ts—uje) - |

Ae = Taji aupye ae t= Js . (4.20)

i —_fi2 Az t=js+1 —_ Az
jeti—Ujs) (tj s4+1—Uje)

Substituting (4.9) and (4.18) into (4.3) gives us an expression for the design deriva-

tives

OF _ rou 5G = 3e (4.21)

DISCRETE APPROACH TO DERIVATIVE CALCULATIONS 39

where

oe! (2 Ott ore) OI dx, (4.22)
= GG \du * Ox, Ou) * Ox, Ou

Every term in (4.22) is known analytically, namely (4.6), (4.7), (4.10), (4.15), and

(4.19). What remains to be found is an expression of 0u/0€; in (4.21). The discrete

direct method applies the chain rule to the governing equations discretized by some

numerical scheme. We have N discretized equations that are, in general, functions

of the velocity and the design variables. These equations are given the symbol w

Wy = Wi(t1,...,uN,o1,---En) =0

we = wo(u1,-.-,UuNn,€1,---En) = 0

WN = wWN(U4,...,UN,&1,.--&n) = 0. (4.23)

Differentiating (4.23) with respect to the jth design variable, we find

Ow (Fe) Ou
—_ — ——_ + J— = 0, 4,24

0€; Oi), 9G; (424)

where

w=[wi wo... wy’, (4.25)

Ow w w w T 5g, = (ae get 5a], (4.26)
j

and dup wy dw,
our Ou oun

J= (5) _ Oui Ou2 Oun (4.27)

Ou £ : ; ., :

Own Own ,,, Gun
Our Ou? Oun

We can find 0u/0£; by solving the linear system

Ou (Ow)
J—=-—-({—]. 4.28

0€; Ob; / y (4-28)

DISCRETE APPROACH TO DERIVATIVE CALCULATIONS 40

- The (Ow/0€;),, term due to the appearance of the geometry in the governing equa-

tions, is evaluated numerically. The elements of the Jacobian, J, can be expressed

as

Ow; 1 OF 41/2 1 Of ;-1/2 1 Og; (4.29)
Ou; Ag Ou; Ou; Ou;’ "

where

8g; 0 a=1,...,.N; i479
=~ Az, (y-1 h - . 4.30

Ou; {af (1 + 2) t=] ()

The flux derivatives are dependent on the flow solver. For the Godunov scheme we

have

itt ye uy <u Ou; Jo %j+1 *

of ays
Of: Ou; Uz, Uj+1 > Us

ois /e = 0 Uz < Us < Uj41 . (4.31)

Bee Uj > Us > Ups fj > fj4s

oh Uj > Ue > Ustas fy < fj41

where

Of; 0 ~—1,...,.N; if 7
= (y-1) 2h, ;_-; . 4.32

Ou; {stam t=J (4.32)

For the artificial viscosity scheme we have

0 2—1,....N; iA4#j,j4+1
. 1 (7-1) 2h -

Chis —~ 22 2 — Gat) ut a ti=J (4.33)
Uj _ .

SL a [t- GB-e] fast
As in the continuous direct method, (4.28) represents one of n equations which

must be solved to get the derivatives. Having solved (4.28) for 0u/0€;, the deriva-

tives are computed from (4.21). For this problem, the Jacobian is tridiagonal so

that the n solutions to (4.28) are inexpensive. In other design problems, the Jaco-

bian may not be tridiagonal, but if the LU decomposition of J can be stored the n

solutions of (4.28) can come at the expense of approximately one.

DISCRETE APPROACH TO DERIVATIVE CALCULATIONS 41

4.2 Adjoint Method

For the discrete adjoint method we define an augmented objective function

I*=I4)"w, (4.34)

where I is defined by (1.32), A is a row vector of Lagrange multipliers, and w is

the column vector of discretized governing equations. The sensitivity with respect

to the jth design variable is

aI" _ Ol | pow
3 OG BG

Since w is zero in the entire domain, OI/O€; is equal to OI*/0€;. In the adjoint

(4.35)

method we choose A such that the 0u/0€; terms will not appear in the sensitivity

equation.

The first term on the right hand side has been expanded in the derivation of

the discrete direct method (4.21). The derivative of the governing equation has also

been expanded in equation (4.24). Substituting (4.21) and (4.24) into (4.35) yields

7 = oS +X ($2). + 12 | . (4.36)

We rearrange (4.36) to collect terms multiplying 0u/O£; to get

ort
0€;
 T 1)T 7,9, yr (Ow (vt +A* J) ae, +> Car (4.37)

The vector of Lagrange multipliers is arbitrary, but as in the continuous adjoint

case, it may be chosen such that the sensitivity can be computed inexpensively. If

A is chosen such that

JT\ =~, (4.38)

then the sensitivity is

Ol ol* Ow
—= =? ae} . 4.39
Of; 8; O85) u (439)

DISCRETE APPROACI TO DERIVATIVE CALCULATIONS 42

The advantage this method has over the discrete direct method is evident with

very large systems. Equation (4.38) has to be solved only once to calculate the

Lagrange multipliers. The derivatives may then be computed inexpensively using

(4.39) with different right-hand-sides, t.e. different Ow/0O€;.

DISCRETE APPROACH TO DERIVATIVE CALCULATIONS 43

CHAPTER
FIVE

RESULTS: PART I

We now present design sensitivities and optimization results using the continu-

ous and discrete approaches. For each approach we will compare direct and adjoint

calculations with finite-difference calculations. The problem of a non-smooth ob-

jective function is handled through shock fitting with the continuous approach and

with coordinate straining and shock penalty for the discrete approach. For this

reason, continuous sensitivities cannot be compared with discrete sensitivities. A

flow field of 64 grid points is used for this study.

An initial area distribution was chosen so that the computed shock is signifi-

cantly far away from the target. Two case studies are presented in this section. In

the first, we use a single design variable. In the second, we increase the complexity

by using three design variables. Here the design variables represent area values at

z-locations along the duct. A cubic spline fitted through these points describes the

area, completely. The initial area distribution was specifically selected so that both

design cases describe exactly the same initial area. The starting design is shown in

figure 5.1. Also shown in figure 5.1 is the intended optimize design. The optimized

design, defined by (1.21), can also be described by a cubic spline passing through

one or three design variables. Table 5.1 lists the z-locations, the initial value of the

design variables, and the target values. During the design process the z-location of

the design variables remains fixed as does the inlet and exit areas and slopes.

The duct is optimized by matching the velocity distribution calculated from

the area to a target velocity distribution. The case studies investigate designs

RESULTS: PART I 44

performed using exact, Godunov and artificial viscosity flow solutions. These solvers

are described in chapter 1 of this dissertation. Figures 5.2, 5.3, and 5.4 show the

initial velocity distribution in comparison to the target for the three flow solving

algorithms. To avoid any issues which may arise if the target velocity is not a

solution to the governing equations, the target velocity is created using the area

described by equation (1.21) and the flow solver used during the design process.

Optimizations are performed using the conjugate gradient method outlined in

chapter 2. The step size taken in the descent direction is computed by bracketing

the minimum in the search direction and minimizing a fitted quadratic polynomial

within the limits of the bracket. Optimization stops when the objective function is

smaller than 10~?° or when the change in the objective function from one iteration

to the next is insignificant.

5.1 Designs Using the Continuous Approach

The resolution of the shock wave diminishes as we consider the exact, Godunov,

and artificial viscosity solver. In the continuous approach the value of the velocity to

the left and right of the shock is needed. The analytic solution identifies ut and u7

exactly by satisfying the jump condition (1.14) at the shock. The Godunov solver

captures the shock generally over two or three grid cells allowing for estimates of ut

and u~ to be extrapolated to the position where the velocity distribution crosses

the sonic line. The artificial viscosity solver smears the shock to the degree where

ut and wu are poorly defined. For this reason, results using the artificial viscosity

solver and the continuous approach are not presented.

Tables 5.2 through 5.5 list the sensitivities computed using the continuous di-

rect and adjoint methods during the first design iteration for the univariate and

the three design variable cases. Two finite-difference approximations are also in-

cluded for the purpose of checking the accuracy of the design sensitivities. The

RESULTS: PART I 45

forward-difference requires less function evaluations than the more accurate central-

difference, yet the sensitivity shows little effect of the difference approximation used

in the calculations. A step size of 107° was used to compute the differences. Tables

5.2 and 5.3 show results computed using the exact flow solver while the results for

the Godunov solver are in tables 5.4 and 5.5. Also listed in these tables are the

values of the objective function after optimization is complete, and the number of

iterations needed for convergence. In these cases the objective function is defined

by (1.26). The convergence information gives an indication of the accuracy of the

sensitivity derivatives.

In the cases using the exact flow solver, the derivative methods appear to

give results in reasonable agreement with each other. Also the performance of the

optimizer behaves similarly for all sensitivity methods. Table 5.6 lists the final

values of the design variables. All methods converged to similar solutions, yet did

not reach the intended design. The reason for this is apparently related to the nature

of the objective function. The shock-fitted objective function shown in figure 1.10,

expanded near the minimum reveals a cusp (figure 5.5) making convergence to the

minimum difficult. A more robust optimizer should be able to find the minimum of

the function.

Agreement between the sensitivity methods diminishes for optimization involv-

ing the Godunov solution. We feel that the reason for the disparity is related to the

procedure used to locate the shock and fabricated values for ut and u~. Recall,

for numerical solutions to the governing differential equations, the shock position

is found by interpolation between grid points. For the 64 grid point study, the

shock is located to within 1.5%. In figure 5.6 the shock position is plotted over a

small range of the design variable for the univariate case. The fabricated function

used to define the shock position is wavy over the design space and can yield large

RESULTS: PART I 46

errors in the sensitivity calculation. Table 5.7 lists the shock sensitivities computed

via finite-differences and the direct method for the analytic and Godunov solutions

respectively.

There is better agreement with the exact solution as there is no ambiguity

associated with locating the shock. The shock location and values of velocity across

the shock can be found precisely. The agreement lessens in the Godunov derivatives

due to the waviness described above. Note however, in table 5.7 the direct method

computes sensitivities resembling those of the exact solution. This comes about

because the jump relation (1.14) used to locate the shock in the exact solution is

differentiated in the direct and adjoint formulations.

The situation is worsened by the extrapolation for the left and right velocity

values at the shock. We have seen the waviness caused by the interpolation to

get the shock position. The extrapolation compounds the issue not only because

extrapolation is riskier than interpolation, but because the extrapolation is to the

shock position, which itself is wavy. Figure 5.7 shows the waviness of the left and

right values of velocity at the shock over a range of the design space for a univariate

parameterization.

The final values of the design parameters for the Godunov case are listed in

table 5.8. Together with the final values of the objective function in table 5.5, they

indicate that there is still a difficulty in matching the target completely. The errors

associated with locating the shock position and computing the left and right values

of velocity at the shock introduce noise into the objective function and is amplified

in the calculation of the derivatives. Thus with the Godunov flow solution, no

sensitivity method stands out as being more accurate.

5.2 Designs Using the Discrete Approach

In the discrete approach, the sensitivities rely on the discretization of the gov-

RESULTS: PART I 47

erning equations. This approach is not applicable for the use with the exact flow

solver. Results presented here use only the numerical flow solvers.

Tables 5.9 and 5.10 list the design sensitivities using the Godunov flow solver,

while tables 5.11 and 5.12 list the design sensitivities using the artificial viscosity

flow solver. The sensitivities are in excellent agreement and with the exception of the

three design variable case using the Godunov flow solver, the optimizer performed

similarly for each method.

Final design variables are shown in tables 5.13 and 5.14 for all discrete cases.

. One advantage of the coordinate-strained objective function over the shock-fitted

function is clearly demonstrated with tables 5.13 and 5.14 and the final values of

the objective function. That is, the intended design is recovered unlike the shock-

fitted cases. The coordinate-straining transformation, while eliminating the stair-

like structure, flattens out the function, while the shock penalty adds steepness. The

important issue is that the cusp-like nature exhibited in the shock-fitted objective

function is not present.

For most discrete cases presented, the optimization converged quickly. How-

ever, the optimization with finite-difference sensitivities for the case with three

design variables and the Godunov solution showed a marked improvement over the

analytic derivatives. To investigate this, the optimization was repeated using a 16

grid point flow comain in place of the 64 point domain. This experiment effec-

tively smears the shock wave. In the 16 grid point case, all sensitivity calculations

converged the design in 19 iterations. We conclude that the shock position, which

becomes an increasingly wavy function of the design variable with the resolution

of the flow solution, contaminates the derivative calculations. The direct and ad-

joint sensitivities are much more susceptible to the noise than the finite-difference

derivatives since they directly compute shock position sensitivity. Further the noise

in the shock position calculation begins to dominate near the minimum.

RESULTS: PART 1 48

CHAPTER
SIX

CONCLUSIONS: PART I

In this part of the dissertation we have introduced an inverse design problem

involving quasi-one-dimensional flow with a shock. We have demonstrated through

graphic representations of the objective function that without proper consideration

of the flow discontinuity, recovery of the target is difficult with derivative-based

optimization. The objective function becomes non-smooth due to the interaction

between the shock wave and the discretization of the minimization problem. As a

result the sensitivities computed, although accurate for the non-smooth objective

function, may not lead to the global minimum. We have indicated that when the

shock is greatly smeared by the flow solver, the optimization difficulties become less

severe as a result of the smoother objective function. However as the flow is better

resolved, the difficulties will reappear. A robust sensitivity procedure must take

into account the effect of shock waves.

We have presented two techniques to lessen the non-smooth nature of the ob-

jective function. One method involves shock fitting the objective function; the other

involves a coordinate transformation which effectively removes the discontinuities

from the objective function. We have shown these techniques to be more effective

smoothers when the shock is precisely defined. For less sharp shock waves, such as

those appearing in numerical solutions, we have demonstrated that these techniques

only reduce the severity of the waviness. In the shock-fitted objective function, and

where numerical flow solutions are used, the waviness is introduced through the

interpolation routine to find the shock position, and the extrapolation to find the

CONCLUSIONS: PART I 49

left and right velocity values on either side of the shock. In the coordinate-strained

and shock penalty objective function, the waviness enters only through the interpo-

lation of the shock position as the left and right values of the velocity at the shock

are not needed.

Several techniques were applied to the shock-fitted and the coordinate-strained

objective functions. For the shock-fitted function we applied a direct and adjoint

method in a continuous approach. The continuous approach differentiates the ob-

jective function and governing differential equation in their continuous form, i.e.

before they are discretized for evaluation by the computer. The direct approach

requires the solution to the flow equations plus solutions to n ordinary differential

equations to evaluate the sensitivities. Here n is the dimension of the design space

and the ordinary differential equations are called the direct equations. The adjoint

method, by augmenting the objective function, requires the solution to the flow

equation and only one solution to an ordinary differential equation. This is regard-

less of the dimension of the design space. Thus the direct problem grows with the

dimension of the design space and the adjoint remains a constant size. In elemen-

tary design problems, such as this one, the direct and adjoint method are almost

indistinguishable from a CPU stand point since the solutions to the boundary value

problems are computationally inexpensive. In more complex problems the cost of

solving the direct and adjoint equations will increase as analytic solutions may not

be available. The advantage of the adjoint method will become more apparent

from a CPU point of view in large design dimensional problems as only one adjoint

equation needs to be solved for all the sensitivities. The direct method requires the

solution of one direct equation for each design derivative.

The direct and adjoint methods were also applied to the coordinate-strained

and shock penalty objective function. Here the techniques were applied in a discrete

CONCLUSIONS: PART I 50

- sense. Before the sensitivity equations were developed, the flow field was discretized

and the governing differential equation was replaced by a system of N algebraic

equations. The objective function was also replaced by a discrete version. The

direct method requires the solution to the system of flow equations, plus solutions

to n systems of N linear algebraic equations. Unlike the flow equations which

must be time marched, the solution to the direct system of equations involves a

tridiagonal matrix. The adjoint, like its continuous counterpart, augments the

objective function to produce savings in the sensitivity calculations. The adjoint

- method requires: the flow solution plus only one solution to a system of N linear

equations. Again the savings are not very apparent in this problem. However, as

N increases or as the designs involve two- and three-dimensional flows the adjoint

savings will be significant.

We have presented comparisons in the form of sensitivity calculations and

optimization results. The analytic sensitivities were benchmarked against finite-

difference calculations which are much more straight forward to compute, but also

much more inefficient. In the continuous approach we have found that for a very

sharp shock wave, the sensitivities computed by direct and adjoint methods match

to within a few percent to those computed via finite-differences. When the shock

is smeared, the direct and adjoint methods computed sensitivities that were more

accurate than the finite-difference sensitivities. One reason for the discrepancies is

the interpolation of the shock position and the extrapolation of ut and u~. While

these techniques are adequate for computing the shock position, ut and u~, they

are not adequate for computing the sensitivities. The direct and adjoint methods

compute the sensitivities by direct differentiation of the analytic expressions, while

the finite-differences do not. Thus the overall sensitivities are thought to be more

accurate with the direct and adjoint method than with the finite-difference method.

CONCLUSIONS: PART I 51

The agreement between finite-difference sensitivities and the direct and adjoint

sensitivities are much better in the discrete approach. The discrete approach does

not require the extrapolations of ut and u7~ and thus noise generated from this

calculation does not enter in the derivative calculation.

One disadvantage of the shock-fitted objective function is that it exhibits a cusp

shape near the minimum which may hinder convergence with simple optimizers.

The coordinate-strained and shock penalty function exhibited better convergence

properties.

Our research indicated that care must be taken with respect to shock waves

(and other steep gradients) and that problems may become more severe as the

flow solver better resolves the flow field. The discrete methodology used here was

effective when incorporated with a modified objective function based on coordinate

straining and shock penalty. A drawback was that this approach required the

sensitivity of the shock position. The continuous methods discussed here were even

more affected by the shock sensitivity and, for this approach, it was found that

existing interpolation methods are adequate in determining the shock position but

not for the sensitivities.

CONCLUSIONS: PART I 52

PART
TWO

RESPONSE SURFACE METHOD

“but those who hope in the Lord will

renew their strength. They will

soar on wings like eagles”

—Isaiah 40:31

53

CHAPTER
SEVEN

RESPONSE SURFACE OPTIMIZATION
ALGORITHM

The response surface method is an alternative to derivative-based optimization

schemes for noisy or non-smooth functions as it does not use derivative informa-

tion. In this method the objective function and constraints are modeled by analytic

surfaces which are then cheaply minimized using standard techniques. The purpose

of the response surface is to capture the global features of the objective function

while eliminating any small, high frequency noise which may exist. If the response

surface is a good representation of the objective function, its minimum should lie

near the optimum design. To complete the optimization we may proceed in one of

two ways. One is to reduce the design space around the minimum and perform an-

other response surface minimization. A series of response surfaces constructed over

smaller and smaller regions of the design space can locate the minimum. The other

is to switch to a derivative-based optimization using the minimum of the response

surface as the starting point. The reason we can use derivatives to optimize near the

minimum is because on a very fine scale the objective function may be smooth, and

so derivatives become meaningful. It may take several response surface cycles to

get close enough to the minimum for derivative-based optimization to be successful.

There are several advantages to response surface methods. The primary ad-

vantage is its overall robustness. The method does not rely on derivatives of the

objective function which can be corrupt in the presence of computational or exper-

imental noise. Response surfaces are smooth, analytic functions whose derivatives

RESPONSE SURFACE OPTIMIZATION ALGORITHM 54

can be computed accurately and quickly. Noise generated in CFD and applied com-

putational aerodynamics codes can generate errors in the objective function. For

example, noise can be generated by changes in grids, discontinuities in flux limiters,

or changes in the stopping criteria for iterative schemes. Many times noise will

prevent derivative-based optimization from locating the minimum.

Another advantage is that the method probes a large region of the design space.

Derivative-based procedures follow a path through the design space from the initial

design to the final design. No function information from outside the path is ever

used in the procedure. As a result, unless several different starting designs are

investigated, the derivative-based optimization may lead to a local minimization

instead of a global one. The response surface is modeled by sampling the design

space over a relatively large region reducing the chance of converging to a local

minimum.

A third advantage of the response surface method is that it is readily paralleliz-

able. The construction of the response surface requires many independent analyses

over the region of the feasible design space. When the analyses are computer gen-

erated, each data point can be analyzed on a separate processor of a multiprocessor

machine. We will show that in this way, the data needed to construct the response

surface can be gathered in the time it takes to make one analysis on a compara-

ble single processor machine. This advantage is valuable when the analyses are

expensive as they are in aerodynamic shape designs involving complicated flow sim-

ulations.

As with all optimization techniques, there are disadvantages. One stems from

what is termed the “curse of dimensionality.” As the dimension of the problem

increases, the number of coefficients in the response surface rises rapidly as does

the number of function evaluations needed to construct the surface. Further, the

RESPONSE SURFACE OPTIMIZATION ALGORITHM 5D

least-squares problem which is solved to determine the coefficients of the response

surface can become ill-conditioned in high dimensions of the design space. Problems

solved by response surfaces in this work are parameterized in low dimensions. The

solution to higher dimensional problems is an area for future work.

The purpose of the response surface is to capture the general shape of the

objective function. Without experience or prior knowledge of the behavior of the

objective function, it may be difficult to adequately model the function and locate

the general vicinity of the optimum. Thus another disadvantage of this method is

that a poor response surface model may slow or prevent convergence. Yet in small

enough regions, most functions can often be well represented by quadratics.

The response surface method is comprised of one or more cycles. Each cycle

contains the following steps:

e determine the region of the design space to search for the minimum,

e construct a response surface in this region,

@ minimize the response surface,

e check for convergence.

First, we must determine an initial region to start our search. This is an advan-

tage over derivative-based routines which generally require starting the optimization

from a point. Here, instead of guessing the location of the point, we guess an entire

region where the minimum is most likely to occur. However, some experience is

needed to choose a region whose size is not too large or too small. An initial region

which is too large is difficult to model accurately with a single response surface. A

region which is too small has the chance of not including the minimum and will

result in wasted cycles translating through the design space.

The construction of the response surface requires several steps. It requires

determining the response function type, the number of points to use to construct

RESPONSE SURFACE OPTIMIZATION ALGORITHM 56

the surface, the location of the points in the design space to probe the objective

function and constraints, and solving the least-squares problem for the coefficients

to the response surface. These steps are expounded in the next chapter.

Minimization of the response surface is simple. The response surfaces modeling

the function and constraints are smooth analytic functions that are cheap to evalu-

ate. The minimization can be done using any method, however care must be taken

to avoid local minima. In this work, the response surfaces are minimized using

Schittkowski’s sequential quadratic programming (SQP) code.”1 When there are no

constraints, the SQP program reduces to a quasi-Newton method with BFGS Hes-

sian updates. Minimizations are performed from several starting points to insure

that the derivative-based optimization locates the absolute minimum.

Convergence of the response surface method can be detected a number of ways.

For the inverse design problems, the minimum is found when the objective function

is zero. For these designs, the stopping criterion detects when the objective functions

reaches zero to within some small tolerance. For direct designs we observe the

trends in the values of the design variables and objective function. When the values

stabilize, we consider the design converged.

The heart of the response surface method rests in the way the region containing

the surface translates and reduces in the design space. Response surface optimiza-

tion reduces the region around the global minimum. As the design space shrinks,

the variation of the objective function and constraints decreases and can be better

modeled by the response surfaces. The dynamics and size reduction of the region

is based on the minimization from the previous response surface. The design space

region for the 7+ 1 cycle is centered about the minimum of the response surface of

the zth cycle. If the 2th response surface minimum is against the boundary of the

€; design variable, then the design space is not reduced in the 7 direction. On the

RESPONSE SURFACE OPTIMIZATION ALGORITHM 57

other hand, if the minimum is not against the boundary, the region spanning the

9 direction is reduced by a factor of 4. The 75% reduction is an arbitrarily chosen

factor and seems to work well in the cases we explored.

The reduction and translation of the response surface region is clearly demon-

strated through a simple example. For the purpose of illustration we minimize the

function

1 — 2.522 + 272 — 2.52, — 62122 + 10222 + 3x? + 102729 — 122722, (7.1)

where we allow

OS <1. (7.2)

The function can easily be analyzed to find that the minimum lies at rz; = 0.3184,

rq = 0.4281. The response surface we choose for this example is of the form

p= cy + c292) + C322 + 4x? + 5x3 + Cg%122. (7.3)

Note that the response surface will not be able to match the function exactly. The

initial response surface region is chosen to be

This region is purposely chosen so that the minimum lies outside its boundaries.

Typically one would like to choose the initial region to contain the minimum, if

at all possible, to expedite the optimization. However, the choice of initial region

demonstrates the method’s ability to find the minimum even when the minimum lies

outside of it. The response surface is fitted to the function with nine points using

methods to be discussed in the next chapter. The minimum, after one response

surface cycle is approximated to be 2; = 0.5, rz = 0.5. Since this point is on both

the rz; and x» boundary, no reduction of the response surface region is made for the

RESPONSE SURFACE OPTIMIZATION ALGORITHM 58

next iteration. Instead, the region is translated around xz; = 0.5,22 = 0.5. This

leads to the new region

0.25 < 24,2 < 0.75. (7.5)

A new response surface is fitted in this region. Minimization of this surface leads

to the point z; = 0.3037, x2 = 0.4251. Here, the minimum does not lie on the

boundary of the response surface region in either the z; or zr2 directions so that

the new region will span a distance of 0.125 (0.25 times the previous span) in both

directions. The new region is also translated to center around the minimum so that

0.2412 < 2, < 0.3662,

0.3626 < x2 < 0.4876. (7.6)

Contours of the function and a map of the movements of the response surface

region are shown in figure 7.1 for 4 response surface cycles. The circles in the figure

represent where the the function is evaluated for the construction of the first three

surfaces. The minima of the response surfaces are represented by the x’s. After 4

response surface cycles, the function minimizes to 21 = 0.3184, r2 = 0.4281.

RESPONSE SURFACE OPTIMIZATION ALGORITHM 09

CHAPTER
EIGHT

RECIPE FOR RESPONSE SURFACE
CONSTRUCTION

In the previous chapter we explained the general algorithm for response surface

optimization. We presented a simple example that demonstrated the effectiveness

of the response surface region in moving towards and surrounding the minimum.

We now discuss the important details to constructing the response surface. There

are four major steps involved in its construction. The steps are

determine the function type for the response surface,

determine the number of function evaluations to be used as the

database for fitting the response surface,

determine the location of the points used for fitting the response

surface,

fit the function by solving a least-squares problem.

The following chapter sections provide more details.

8.1 Selecting Response Surface Type

This section provides some insight into the selection of the shape of the response

surface. The selection is dependent on the problem and no scientific rules are

available for this. A wise selection of the shape of the response surface requires

some knowledge of how the objective function behaves. Generally this is not known

@ priori, but with experience the selection will become more apparent. In this

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 60

work we experiment with polynomials, specifically quadratics and quadratic tensor

products. The quadratic polynomial is of the form

P =c1,€? + craésr€éo + c1zbiés +... + C22€? + costoes +...

+16) + coo +0363 +... 40. (8.1)

A quadratic tensor product is of the form

P= (6? + cof) + c3)(c4€3 + cs&o + C6) see (8.2)

The coefficients are found by evaluating the objective function at several points

and solving a least-squares problem. For the family of polynomials represented by

(8.1) the least-squares problem is linear, however for (8.2) the coefficients require a

solution to a difficult non-linear system. To avoid this, we multiply out the terms

in (8.2) and solve the larger, yet linear least-squares problem. For example in two

design variables (n = 2), we fit the polynomial

P = cy E763 + crbfla + c3€f + cabr ES + eslilo + cobs + c7€f +cabo+c9. (8.3)

Thus we solve for 9 coefficients instead of 8. In higher dimensions we can expect

to solve for many more coefficients. In general, the number of coefficients rises

as 3" when the quadratic tensor product is expanded. Since the quadratic tensor

product requires 3” coefficients and hence many function evaluations to solve the

least-squares problem, we use this polynomial only in low-dimensional problems

and when the objective function is cheap to compute. In comparison, the quadratic

polynomial has (n + 1)(n + 2)/2 coefficients and thus rises as n?.

Other types of response surfaces have been experimented with. In structures,

8 Toropov®® used intrinsically linear functions in the coefficients. These are func-

tions which are non-linear but can become linear through simple transformations.

Toropov suggests the multiplicative function

P = c0€;'65"....E5", (8.4)

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 61

with the transformation

nr

In(P)=Ineot+) cing, (8.5)
i=1

and the power function

P= (« + ya: ; (8.6)
i=1

with the transformation

(P)* =¢Co + > ci€i. (8.7)
7=1

Certainly non-linear functions may be used to represent the response surfaces such

as (8.2) in product form. In such cases the least-squares estimation for the coeffi-

cients would have to be solved using nonlinear programming. In the work presented

here we will be only considering quadratic and quadratic tensor product response

surfaces of the form (8.1) and (8.2).

8.2 Number of Function Evaluations for Fit

When determining the number of function evaluations which should be used

to generate the response surface, we must consider the following three objectives.

First, we must sample the design space enough times so that the response surface

captures the major features of the objective function. Second, we must keep the

condition number of the least-squares matrix down to an acceptable level so that

we may accurately solve for the coefficients of the response surface polynomial, and

third, we must minimize the amount of function calls to the analysis code to keep

the computational cost down. The first two objectives are opposed to the third.

Assurance that we capture all the features of the design space implies we make as

many function evaluations as possible. Also generally, the condition number of the

least-squares matrix increases as the number of points in the fit decreases, thus we

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 62

can get better conditioned matrices by gathering more data. Yet the many function

evaluations which help us meet the first two objectives can be computationally

intensive.

Although techniques for solving the least-squares problem with high condition

numbers are available, the condition number can become unmanageably large espe-

cially for problems with a large number of coefficients. A polynomial with a large

number of coefficients is characteristic of design problems involving a large number

of design variables. It has been our experience that matrices with high condition

numbers can lead to ill-conditioned solutions for the coefficients which often provide

accurate models of the function, but poor estimates of the derivatives. Thus mini-

mization of the response surface region by derivative-based optimization techniques

becomes difficult.

The solution to the number of points to use is not general, as it depends on

the affordability of evaluating the objective function and the shape of the design

space. With careful selection of points in the design space it is possible to decrease

the condition number of the least-squares matrix, thus requiring less points. It has

been suggested that the number of points used in the fit should exceed the number

of coefficients in the polynomial by 20% to 50%. In this work, we perform our

experiments using roughly 1.5 times the number of coefficients.

8.3 Location of Points to Construct Surface

Once the choice of curves and the number of points has been selected, we must

decide where to evaluate the objective function. The choice of positions to gather

data can have a profound effect on the fidelity of the response surface to model

the objective function. Consider, for example, fitting a line through two points.

Choosing to generate the data with points close together can yield large errors in

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 63

the fit with only small errors in the evaluation of the function. This fact is shown

clearly in figure 8.1. Choosing to gather data at the ends of the domain is a much

wiser choice.

The most general point selection set is the factorial set. With factorial sets, each

axis of the desigi space is divided into k discrete levels. Every combination of the

levels in each design direction makes up the points in the factorial set. For example,

five levels in three-dimensional space (known as the 5° factorial set) leads to 125

points for the response surface. Factorial sets are attractive because they provide a

uniform sampling over the region of interest and generally lead to well-conditioned

least-squares matrices. However, they also lead to sets with large numbers of points,

especially in high-dimensional space.

Alternatives to factorial sets, studied by Carpenter’* and Giunta et al.*° are

central composite sets and optimality sets. Central composite sets can be viable

solutions in low dimensions (< 6). In higher dimensions these sets, like factorial

sets, yicld many points and evaluating the objective function at all the design points

can be prohibitively expensive. Another drawback of the central composite sets is

that the points may exist outside the feasible domain. Often, the design space

has an irregular shape due to constraints and the points which make the central

composite sets may violate the constraints. Central composite sets are intended for

unconstrained domains.

Optimality sets are sets which, based on statistics, yield points that give the

best fit to the objective function for a specified number of points. Because, generally,

the calculation of the objective function involves numerical errors, there will be

errors in the computation of the coefficients of the response surface and errors in

the response surface itself. A measure of the error is the variance. The variance of

the coefficients are the diagonal terms of the variance-covariance matrix given by’?

cov(c) = 07(A? A)7}, (8.8)

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 64

RECIPE FOR RESPONSE SURFACE CONSTRUCTION

where

le ~
o? = - » (I; — I;)?, (8.9)

and A is the least-squares matrix. Details of the A matrix are given in section

8.4. In (8.8) and (8.9), o? is the variance of the objective function, J; is the value

of the objective function at the €; point, and I; is the average value of I; over n

observations. The variance of the response surface, P, evaluated at &;, is given by’?

var(P;) = 0? Al (A? A) Ai, (8.10)

where A; is a row of the A matrix. To keep the variance of both the coefficients

and the response surface low it is advantageous to minimize the matrix (AT A)7!.

Minimization of a matrix is not a well defined concept and this leads to several

optimality criteria. These are discussed in reference 72. One, which is consistent

with picking the end points in the simple example of figure 8.1, is the D-optimal

criteria.

The D-optimal criterion minimizes (A7.A)~! by minimizing the determinant.

This is equivalent to minimizing the product of eigenvalues of (A? A)~? or maximiz-

ing |A? A|. If m is the number of points used to construct the response surface, and I

is the number of points in the mesh to describe the domain of independent variables

then the D-optimal criterion is satisfied when the set of m points chosen for the

least-squares problem from the pool of | points is such that |A7 A| is a maximum.

For example, in a two-dimensional domain for which we wish to model the objective

function using the response surface, P = cy + c1£1 + cote + c3€} + cab? + c5biéo, the

A matrix has the form

1 fi 1 fa Oo €1,162,1
1 f12 €22 9 &o. b1,2€2,2

- — , (8.11)

1 €i9 €9 €f9 €59 61,9€2,9

65

where the first subscript in the € variable represents the design coordinate, and the

second represents the point; there are nine points being used to solve the least-

squares problem. If we discretize the domain into 36 points as shown in figure

8.2, the nine blackened points are those which maximize |A7 Al. The problem of

choosing the best m points from | possible points to fit a curve reduces to choosing

the set of m points which maximizes |A? A]. To reiterate, the criterion is appealing

for choosing the points for the least-squares problem because of the following two

3 properties’

e the set of points that maximizes |A7A| is also the set of points that

minimizes the maximum variance of any predicted value of the objective

function,

e the set of points that maximizes |A? A| is also the set of points that

minimizes the variance of the coefficients,

The D-optimal criterion also has the property that D-optimal points are invariant

to changes in scale of the domain of independent variables. This means the D-

optimal points for a square domain are proportionally in the same position for a

rectangular domain. In addition by forcing the determinant of A‘ A to be large, we

are making the least-squares problem well conditioned. A more detailed discussion

of the D-optimality criterion is presented by Box and Draper.”?

There are other criteria used for minimizing (A7.A)~!. These include A-

optimality which minimizes the trace of (A? A)7!, and E-optimality which mini-

mizes the largest eigenvalue of (A7.A)~!. A discussion of these and other criteria

is presented in reference 72. The conclusion of the study indicated that surfaces

constructed using D-optimal points showed the best fidelity to the actual function.

As an example of the usefulness of the D-optimal criterion, consider the function

y = sin(€,7)sin(&7), (8.12)

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 66

RECIPE FOR RESPONSE SURFACE CONSTRUCTION

defined on the region from

0< G12 <1. (8.13)

We wish to approximate this function with a biquadratic tensor product of the

form of (8.3) using 9 points, the minimum we can use. We choose to discretize the

domain in a rectangular 5 x 5 grid as in figure 8.2 (5? factorial design). To obtain

the D-optimal points we must find the 9 points out of 25 which have the highest

|A7 A|. A brute force method is to check every combination of 9 points from 25.

This leads to 2.0 x 10° combinations according to the rule

() ~ aim (8.14)

This is what is performed here. The result is shown in figure 8.3. The empty circles

represent the points which are used to describe the domain over which the response

surface is to be defined. The blackened points are the D-optimal points. In this

case there is only one set of points in the 2.0 x 10° possibilities that is D-optimal.

Generally, this does not have to be the case. If other sets of points have |A7 A| of

equal value then multiple sets of points satisfy the D-optimal criterion. Figure 8.4

shows four other possibilities of nine points which may have been chosen for the

response surface construction. These are not D-optimal points but serve as a basis

for comparing the quality of fit of D-optimal to non-D-optimal points. Results of a

comparison of the fit to the transcendental function, (8.12), are compiled in table

8.1. An error parameter defined by

V= , (8.15)

is used to measure the quality of fit. In (8.15), J is the function value, P is the

polynomial fit, aud the summation is taken over 10,201 evenly distributed points

in the domain.

67

The general trend is that the higher the value of |A7A| the better the fit,

although there are clearly exceptions to this rule. The D-optimal set of points has

the lowest error as defined by (8.15). This example also shows that points placed

along the edges of the domain tend to increase the fidelity between the response

surface and the function. Yet placing all the points along the edge would have an

obvious disadvantage in modeling the interior of the domain. D-optimal sets do

tend to place many points along the edge of the domain, but usually have interior

points as well.

The problem of finding the m points to satisfy D-optimality requires considering

the (1) = I!/(m\(l — m)!) combinations of m points from the set of | candidate

points. A small problem in two design variables may be to pick 25 points from a

selection of 121 (discretizing the domain into 10 sections in both directions gives

an 11x11 mesh). This leads to a total of 5.26 x 107° possible combinations, one

or more of which are D-optimal. Clearly, even for this small problem, checking all

combinations is infeasible. Standard methods for maximization can run into three

problems. First, the number of variables can be quite large. Each point in the

discretized domain represents a variable in the maximization problem. Second, the

maximization is of an integer type. Each of the points can either be included or

not. Finally, |A7A| may have local maxima. Several researchers have developed

algorithms to search for D-optimality without checking every combination."4:75)76

Perhaps the most popular algorithm is Mitchell’s DETMAX code."§ In this work we

employ a genetic algorithm (GA) which we feel is an improvement over DETMAX.

Details of the GA used to find D-optimality are given in Chapter 9.

8.4 The Least-squares Problem

The least-squares problem, as formulated in reference 78, can be described as

follows: We are given a set of data points in n-dimensional space. We want to write

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 68

these points in a subspace of R", but we cannot since the system is over determined.

The least-squares solution to the over determined system is to find the set of points

in the subspace of #” that most closely matches the data. Say for example, in

two-dimensional space we are given three points which we wish to describe with a

plane passing through the origin,

P=cor+cyy. (8.16)

To determine the coefficients, co and c,, we would need to solve the system of

equations

tT) Yl 21
Co mmf {ab=) ap, (8.17)

t3 Y3 * 23

which, for the general case would be inconsistent (three equations for two un-

knowns). Equation (8.17) can be more concisely represented as Ac = z. The

least-squares solution to the over determined system is to minimize the difference

between the polynomial and the function. The problem can be written as

min ||Ac — 2||,. (8.18)

To minimize (8.18), the error vector, Ac — z, must be perpendicular to the column

space of the matrix A. This means any linear combination of the columns of A

must be perpendicular to Ac — z. This is illustrated in figure 8.5 and represented

as

(Ad)? (Ac — z) = 0, (8.19)

where d represents the coefficients of the linear combination of column vectors of

A. Rearranging we can write that

d?(AT Ac — A?z) =0. (8.20)

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 69

RECIPE FOR RESPONSE SURFACE CONSTRUCTION

If (3.20) is true for every d vector, then

Al Ac— A™z =0, (8.21)

and the least-squares solution to a set of linear, inconsistent equations also satisfies

A! Ac = A? z. (8.22)

If the columns of A are linearly independent, then the matrix can be factored

into an orthogonal matrix, Q, and an upper triangular matrix, R. In this way,

ATA = RTQTQR. Any orthogonal matrix has the property that QT = Q-! so

that Q7Q =I. Thus (8.22) can be simplified to

Re=QTz (8.23)

The vector of coefficients describing the subspace can be easily obtained by back:

wards substitution.

70

CHAPTER
NINE

GENETIC RECOMBINATION ALGORITHM FOR
MULTIPLE POINT SELECTION

GRAMPS, or Genetic Recombination Algorithm for Multiple Point Selection,

is a genetic algorithm (GA) code whose purpose is to assist in the construction

of the response surface by seeking the D-optimal points for sampling the function.

This chapter describes the details of the genetic algorithm. Appendix A is a user’s

guide to the code. A source listing of the code is located in Appendix B.

The GA employed here is roughly modeled after the algorithm described in the

paper by Furuya and Haftka.’® Unlike some conventional optimization techniques

which work in the neighborhood of a design point, the GA works by investigating

several designs over the entire design space. The group of designs sampled by the

GA makes up the population. Each design in the population is evaluated and

ranked according to some cost function. More appealing designs have a higher

rank. The next step in the GA is the breeding process where designs are selected

for parenting child designs. The probability of a design being selected to be a parent

is weighted according to the ranking so that children are made from the best designs.

A child is created by combining parts from two parents. A probability of mutation

is introduced in the GA to allow for the inclusion of certain aspects of the design

not present in the parent generation. Mutation also guards against all designs of the

population becoming the same. A new generation is formed from the child designs

and the best design of the previous generation, with the new generation having the

same population size as the previous. The child generation then becomes the new

GRAMPS val

parent generation and the process continues over many generations. The design

with the best cost function in the end is considered the optimum design.

The specifics of the GA as applied to finding D-optimality are as follows. To

start the algorithm, an initial population of candidate designs is created. Each

candidate is formed by randomly selecting m distinct points from the set of points

describing the region. These candidate designs are then ranked among each other

with the best design having the highest value of |A? A]. The cost function, |AT A|

is efficiently computed by performing a QR factorization on A. In this way the

determinant is calculated by multiplying the square of the diagonal elements of the

R matrix

|A7 A| = |RI?. (9.1)

The population is selected for breeding based on a fitness parameter, f, which

is related to the rank of the design by

f=b+1-—r, (9.2)

where b is the number of designs in the population and r is the rank. In this way,

the design with a #1 ranking will have the highest fitness. The probability of the

rth ranked design being selected as a parent is defined as

__ 2f
Pr O64 1)

(9.3)

The selection process for parenting is completed by generating a uniformly dis-

tributed random number, x, between zero and one, and selecting the rth ranked

design satisfying

Pr<a< Pray, (9.4)

where,

Pe= > pi. (9.5)

GRAMPS 72

This is called the ranked-based fitness technique for selection. For a population

of 10 designs the probability of each design being selected for parenting is shown

graphically in figure 9.1.

After the parents have been selected, the child design is made by combining the

two parents. This is done by describing the designs with a string of genes. Typically,

the genes are coded versions of the design variables and distinguish one design from

another. A random integer, j, ranging between 1 and the number of genes minus

one is generated. The child design is made using the first 7 genes of parent 1; the

remaining genes come from parent 2. Once the child is generated, it goes through a

mutation process. In the work presented, each gene has a 15% chance of mutating.

If a gene is selected for mutation, the gene is replaced with a gene coming randomly

from the set of allowable values for that gene. By this method, baring the chance of

mutation, the child design will have at least one gene from each parent. Finally, the

child is checked against having duplicate points. Since the set of points will be used

to generate surfaces, it is not desirable to have repeated points. If the design has

duplicate points, the child is destroyed and the parent selection process is repeated.

The child breeding process is shown schematically in figure 9.2. In this figure the

genes are represented by integer values. In this case the fifth gene of the string was

selected for mutation.

For a general-shaped space, the string of genes is comprised of the m points

selected for making the response surface. Each point used to describe the space is

assigned a number so that the genetic string is a series of integers as in the example

of figure 9.2. In a genetic string no numbers may be repeated.

If the space is a hypercube, that is we can describe the space by only supplying

a lower and upper limit in all dimensions, we use an alternate description for the

genetic string. In such a case, the string is comprised of the coordinates of the points

GRAMPS 73

chosen to make the response surface. For example, in two-dimensional rectangular

space described by 25 points, the genetic string of a particular design containing 9

points may be

Z2 Y2, L4 Y3, V3 Y2, V5 Yr, V5 Y5, L1 Yr, L1 Y5, La Y5, X2 Ya.

In the above example, the coordinates of some genes are repeated and such a case

is allowed. Duplicate points in the design are not allowed and thus each z and

y pair cannot be repeated. The z and y pairs are separated by commas in the

above genetic string representation. Designs described in this manner tend to find

the D-optimal set of points faster since there is more freedom for the design to

change form throughout the generations. This representation cannot be used for

the general design spaces since the solution from the GA may lead to points defined

outside the allowable region.

After b — 1 children are created, the parent generation is replaced. Only the

best parent design is retained to insure that the best design survives throughout

the generations. After a given number of generations have been bred, or a given

number of |A7 A| have been computed, the candidate with the highest | A? A| is used

for forming the response surface. There is no guarantee that the output of the GA

is truly D-optimal. However, known D-optimal sets of points for test cases have

been recovered.

To show this, we repeat the example done in chapter 2 where we seek nine

D-optimal points for the construction of a two-dimensional response surface using

the quadratic given by (8.3). We set the GA to run with a population of 5 using

the coordinates of the points for the genetic string representation. The GA ran for

500 generations, and the history of max|A7 A| for the population is shown in figure

9.3. The D-optimal set of points was recovered after 243 generations. In the first

GRAMPS 74

generation, |A? A| was computed 5 times, once for each design in the population. In

the ensuing generations, |4A’ A] was computed 4 time per generation, once for each

child. Thus |A7 A| was computed a total of 2001 times; a huge savings compared

to the 2.0710° times required to check every combination of 9 points from 25.

As another example, consider the region described by the 38 points shown in

figure 9.4. Here the region is not a rectangle, so we must represent each design using

points for the genetic string. Here we choose to represent the response surface as

P=cotei¢ + cox” + c3y + cary + e527 y, (9.6)

anticipating a greater variation in the z-direction than in the y. The response

surface requires a minimum of 6 points to define it, here we use 9. There are

1.63210® possible combinations of 9 points from 38. The genetic algorithm ran for

1500 generations using a population of 5 designs. This required 6001 computations

of |ATA|. The history of max|A7 A| is shown in figure 9.5. We speculate that the

D-optimal set of points (the blackened dots of figure 9.5) was reached in the 869th

generation, although we cannot tell with absolute certainty that this is truly D-

optimal without running all 1.632108 possible combinations. Due to the random

nature of the GA, most searches for D-optimal sets should be repeated several times

with various random number seeds. The repeatability of the GA will increase the

confidence that the points selected are D-optimal or nearly D-optimal.

GRAMPS 75

CHAPTER
TEN

DESIGN PROBLEMS

The response surface technique will be demonstrated using three problems.

The first two are of the inverse design type; the last is a direct design problem. The

first problem is the inverse design of a duct using quasi-one-dimensional flow theory.

It is the problem discussed in Part 1 and results of the response surface will be com-

pared to the derivative-based methods discussed earlier. The next design problem

involves the matching of a pressure profile over a bump in a channel of transonic

flow. The third problem involves maximizing lift on a two-dimensional airfoil with

constraints on drag and area. The bump and airfoil problems are discussed in the

next subsections.

10.1 Inverse Design of a Bump in Transonic Channel Flow

For this problem we wish to describe the shape of a bump located inside a

channel so that we may recover a given pressure distribution. This problem, though

academic, serves for two reasons. First, it demonstrates the ease at which the re-

sponse surface technique can be applied to two-dimensional problems. The methods

in Part 1 require a fair amount of calculus in preparing the analytic derivatives in

the extension from one-dimension to two. No part of the algorithm changes in the

response surface method except for the installation of an existing two-dimensional

flow solver. The second reason for the problem is that it acts as a stepping stone

to the airfoil problem to be discussed in the next section.

The geometry of the channel is shown in figure 10.1. It has a length of 5 units

and a height of two units. The bump is centered along the bottom of the channel

DESIGN PROBLEMS 76

and has a length of one. The bump is parameterized with the four shape functions

shown in figure 10.2. These shape functions are generated by fitting a B-spline

through the points listed in table 10.1. The points ensure that the bump will begin

and end at the points (0,0) and (1,0), ¢.e. no gaps on the channel floor. The shape

of the bump is constructed from a weighted sum of the shape functions

4

Y=) éyi. (10.1)
i=l

where y; are the shape functions and the weights, €;, are the design variables.

The flow through the channel is a solution to the Euler equations written for

a perfect gas. In two-dimensions, the conservative form of the governing equations

can be expressed in Cartesian coordinates as

OQ OF , aC _ ey a By 0, (10.2)

where

p pu pv
2 _) pu _}) pur+p _ puv Q= pv (? F= pur , G= pv? +p . (10.3)

Peo (peo + p)u (peo + p)v

The Euler equations are solved using ErICA, a two-dimensional finite-volume, up-

wind, implicit solver. The author has developed ErICA at the Virginia Tech

Aerospace Engineering Computer Laboratory. Details of the code are supplied

in Appendix C. The Euler equations are solved for a Mach 0.80 flow on an 81x31

point grid, with 41 points on the bump. A typical grid is shown in figure 10.3. Mesh

sequencing and multigrid are used to accelerate convergence.

The objective function for this problem is defined as

41

I(g) = 5 Gp - Cp i (10.4)
t=1

DESIGN PROBLEMS (7

where Cy is the target pressure coefficient distribution, C, is the design presure

distribution, and the summation is taken over the grid points on the surface of the

bump. The pressure coefficient is defined in the usual way, Cp = 2(poo — p) / pV2.-

The target profile is created by solving the Euler equations over a bump described

by

§ = J/1.3— (x — 0.5)? — 1.2. O<2<1 (10.5)

Pressure contours of the target solution are shown in figure 10.4.

The minimization of the objective function is subject to constraints on the area

0.03 < A < 0.08. (10.6)

The area constraints keep the shape of the bump in a section of design space where

flow solutions do not suffer from convergence difficulties.

The objective function is non-smooth like the problem involving the one-

dimensional transonic flow through a duct. The adverse effects of the interaction

between the shock wave and the discretization of the domain can be visualized with

a one-dimensional cut through the design space as shown in figure 10.5. Here the

shape of the bump is varied linearly according to

€, = 0.3406 + a(0.2543 — 0.3406),

E. = 0.4640 + a(0.5463 — 0.4640),

£3 = 0.7500 + «(0.5463 — 0.7500),

€4 = 0.1750 + a(0.2543 — 0.1750). (10.7)

DESIGN PROBLEMS 78

10.2 Transonic Airfoil Design

Response surface technology is also useful for more practical applications such

as airfoil design. In this section, we present the model problem of Vanderplaats et

al.”® as implemented by Joh et al.®!

The airfoil shape, of unit chord, is described by a weighted sum of six shape

functions .

Y= S| &iy:(a/c). (10.8)
t=1

Four of the shape functions, y1-y4, are pre-existing airfoils, namely NACA 2412,

NACA 64,-412, NACA 652-415 and NACA 642-A215. The values for y;-y, may be

found in reference 80. The remaining two shape functions are

__ Jj a/e, on upper surface
us 8. on lower surface ’ (10.9)

_ 49, on upper surface 10.10

Y=) _y /c, on lower surface ° (10.10)

These functions are used to close the airfoil at the trailing edge, t.e at the point

(1,0). The shape functions are shown in figures 10.6 and 10.7. By imposing a closed

trailing edge, we can evaluate two of the design variables in terms of the remaining

four. When we set y(l)upper = y(1)tower = 0 we find from (10.7)that

y1(1)tower€1 + y2(1)ower€2 + ¥3(1)iowerés

+ ya(1)iower€s + y5(1)iowerés + Y6(1)iower€e = 0, (10.11)

Yy1(lL)upper€1 + y2(1)upper€2 + y3(1)upper$3+

+ ya(1)upper€s + ¥5(1)upperés + ¥6(1)upper&6 = 0. (10.12)

Equations (10.11) and (10.12) can be solved for €; and & . This yields

Es = [y1(1)tower€1 + Y2(1)tower€2 + y3(1)tower€3 + y4(1)iower&a| (10.13)

DESIGN PROBLEMS 79

and

E6 = [y1(L)tower bs + y2(1)tower&2 + y3(1)tower€s + y4(1)tower€4] . (10.14)

Thus the design problem is formulated in terms of 4 design variables.

Mathematically, we write the design problem as

max C(&), (10.15)

such that

Cp < 0.01, (10.16)

0.075 < A < 0.150. (10.17)

The drag computed is wave drag. The lower limit on the area is imposed so that

the airfoil does not reduce to a flat plate and thus maintaining structural integrity.

The upper limit is imposed so that we avoid analyzing thick, unrealistic airfoils.

As in Joh’s formulation, the airfoils are analyzed for M = 0.75 flow at a = 0

with the Euler equations for a perfect gas. The pressure distributions are obtained

using the Euler code. Lift and drag are computed by numerically integrating the

pressure on the airfoil surface.

The airfoil solutions are performed on 201x53 C-grids with 121 points on the

airfoil. A typical grid is shown in figure 10.8. Curvature corrected boundary condi-

tions formulated by Dadone and Grossman®! are used to enforce tangency on the

airfoil. With the far-field boundary conditions of Thomas and Salas®*, the compu-

tational far field is placed roughly 20 chords away.

DESIGN PROBLEMS 80

CHAPTER
ELEVEN

RESULTS: PART IIT

In this chapter we present results from several optimization problems using

response surface methodology. We begin with a presentation of results from sev-

eral cases involving the quasi-one-dimensional problem studied in Part 1. Next we

present results from the inverse design of a bump in transonic channel flow. Lastly,

we demonstrate the usefulness of response surfaces in transonic airfoil design.

11.1 Quasi-one-dimensional duct

The results of response surface optimization for the one-dimensional duct are

presented in three sections. In the first section the duct is parameterized with one

design variable. This allows for a clear demonstration of the methodology as the

design space is easy to visualize. In the next section, results for a three design vari-

able parameterization is presented. A comparison is made between the quadratic

polynomial response surface (8.1) and the quadratic tensor product response sur-

face (8.2). Following this section, we make a comparison to the derivative-based

optimizations presented in Part 1. All results presented in section 11.1 use the

Godunov flow solver on a 64 point grid to analyze flow conditions in the duct. The

objective function used for the optimization is defined by (1.24).

One Design Variable Case

The design variable is constrained to the positive design space. For the purpose

of probing the design space to construct the response surface we must artificially

RESULTS: PART II 81

RESULTS: PART II

restrict the design space to insure that the shape of the duct is reasonable, 1.e. the

flow solver can find a steady state flow solution for the duct. We define the first

response surface region with the boundaries

1.10 <€ < 1.70. (11.1)

A quadratic of the form

P=otauE+at é’, (11.2)

fitted with 5 data points is used for the response surfaces. To satisfy the D-

optimality condition, the domain is discretized into 13 points evenly spaced along

the €-axis. There are 1287 combinations of 5 points from the set of 13 as computed

from (8.14). Each combination is checked to satisfy the D-optimality condition. In

this case, more than one of the 1287 combinations satisfies D-optimality. Of the

D-optimality sets we randomly selected the points listed in table 11.1. D-optimal

points for response surfaces in later cycles are found by applying the simple linear

transformation of the type

6: = En t+ E(u — En), (11.3)

where €;,2 = 1,...,N are the D-optimal points, the subscript ll refers to the lower

limit of the region, ul refers to the upper limit, and é; are the D-optimal points in

the region defined for a region scaled between 0 and 1. This transformation saves

us from running the GA at every cycle of the optimization.

The response surfaces are constructed using the objective function defined by

(1.24) and repeated below for convenience.

y Na ,
I(é) = 5 » (i —u)sAz. (11.4)

This is the objective function visualized in one dimension in figure 1.6.

The first response surface is found to be

P = 1.725 — 2.467é + 0.886€7. (11.5)

and is graphed along with the objective function in figure 11.1. The response

surface model is able to capture the general location of the minimum, but additional

response surface cycles are required to locate the minimum accurately. In this case 8

cycles are required to drive the objective function to machine zero. The convergence

is shown in figure 11.2. A history of the design variable is shown in figure 11.3. Also

drawn in the figure are the limits of the response surface region.

Three Design Variable Case

The three design variable case is again constrained to the positive design space.

The first response surface region is defined within

1.05 < & < 1.25,

1.30 < €) < 1.50,

1.55 <3 < 1.75. (11.6)

This region permits a. wide variety of duct shapes to be sampled while constraining

the search to reasonable shapes. Most shapes in this region have monotonicly

increasing area distributions.

In this design case, we make a comparison between the quadratic (8.1) and the

quadratic tensor product (8.2) in three design dimensions. The quadratic surface

has 10 coefficients and is fitted with 15 data points. The quadratic tensor product,

with 27 coefficients, is fitted with 41 data points. Thus each polynomial is 50%

overdetermined.

RESULTS: PART II 83

The design space is sampled at D-optimal points to construct the response

surface. To locate D-optimal points, the design domain is discretized into a9x9x9

evenly spaced grid. The D-optimal points are found using the genetic algorithm

code, GRAMPS. In both the quadratic and quadratic tenor product case, the code

ran 3 times with different initial random number seeds. Due to the random nature

of the algorithm, the repeatability of the GA result confirms that the set of points

found are not anomalous. The histories of the GA convergence are documented in

figures 11.4 and 11.5. The D-optimal points for the initial region are listed in tables

11.2 and 11.3 for the quadratic and quadratic tensor product response surfaces

respectively.

Several design cycles are required to converge the design. D-optimal points for

later cycles are found by applying a linear transformation similar to (11.3) to the

D-optimal points listed in tables 11.2 and 11.3.

Optimization with the quadratic polynomial proceeded for 11 cycles before con-

vergence slowed. After the 14th cycle, we switched to derivative-based optimization

via the method of conjugate gradients to complete the design. Here we continued to

use the objective function defined by (11.4) t.e. we did not use any of the techniques

discussed in Part 1 to handle the shock wave. The derivative-based optimization

was successful because the response surface method was able to get very close to the

target and align the design’s shock wave with the target’s. This is evident in figure

11.6 where the design after the response surface cycles is compare to the target.

The complete history of the optimization is shown in figure 11.7.

Optimization with the quadratic tensor product followed a similar pattern.

Here, after 4 cycles the convergence slows. After the 10th cycle we switch to

derivative-based optimization. Again, the response surface optimization is able to

align the shocks so that optimization via the derivative-based methods is successful

RESULTS: PART II 84

without using the techniques of Part 1. The convergence history is shown in figure

11.8.

In a comparison of the performance of the two response surface types, we see

that the quadratic polynomial is better able to locate the minimum. Figure 11.7

and 11.8 show that the response surface optimization with the quadratic polynomial

is able to converge the minimum to approximately 10—" while with the quadratic

tensor product, the objective function only reached 107%. The quadratic tensor

product surface has more terms and thus has more flexibility in modeling the surface,

yet the least-squares problem for this surface has a much higher condition number.

For the first design cycle, the condition numbers associated with the quadratic

polynomial and the quadratic tensor product least-square problem are 4.8 x 10’

and 1.0 x 10%, respectively. For this problem, we conclude that the additional cost

of using the quadratic tensor product does not improve convergence. In fact, the

high condition number associated with the least-squares fit hinders optimization.

Comparison to Derivative-based Optimization

We now make a comparison to the derivative-based optimizations performed

in Part 1. In particular we make the comparison to the optimization with the

objective function defined with the coordinate-straining transformation and shock

penalty. This method tended to have better convergence than the shock-fitting

technique.

In the single design variable formulation, the conjugate gradient optimization

converged the design to the target in 3 iterations whereas the response surface

method took 8 cycles to reach the same level of convergence. In terms of flow

solutions, the response surface method used 5 to construct the surface and one

to evaluate the quality of the design at the response surface minimum. Thus a

RESULTS: PART II 85

total of 48 flow solutions were needed in the optimization. On the other hand, the

derivative-based optimization, using the adjoint method, requires the equivalent of

two flow solutions per iteration to compute the gradient. The line search procedure

requires a minimum of three more function evaluations, each needing a flow solution.

Thus the derivative-based optimization used a minimum of 15 flow solutions.

For this simple design case, the derivative-based method proved to be the

cheaper method. However, the use of parallel computers can improve the attrac-

tiveness of the response surface method. Each function evaluation can be sent to a

separate processor. As will be demonstrated in the airfoil design problem, the par-

allel machine can be used to obtain all solutions required to construct the surface

at the approximate cost of only one. This would effectively reduce the cost of the

design via response surfaces to 16 flow solutions.

The best derivative-based optimization result for the three design variable

formulation used finite differences to compute the derivatives. With forward-

differences, each iteration would require four solutions to compute gradients, plus at

least three more for the line search. The 12 iterations to complete the optimization

used at least 72 flow solutions. The response surface, using the quadratic polynomial

used 224 flow solutions to achieve almost the same level of optimization. However,

with parallel computers, the response surface optimization could have been reduced

to 28 equivalent flow solutions. Likewise, the parallel computer could reduce the

cost of computing derivatives as a processor can be assigned to compute a derivative.

The effective number of solutions for a derivative-based method, taking advantage

of coarse grain parallelization is 60.

While response surface methods can compete with derivative based optimiza-

tions with the use of parallel machines another key advantage especially in tran-

sonic design is that no special handling of the shock is necessary in response surface

RESULTS: PART II 86

methodology. The black-box type approach to optimization with response surface

significantly reduces set-up time.

11.2 Bump in a Transonic Channel Flow

The bump inverse design problem has no bounds on the values of the design

variables, provided the area constraints (10.6) are satisfied. The first step is to

narrow the field to a workable size to commence the response surface algorithm.

We note the symmetry of the shape functions 1 and 4, and 2 and 3. Because of

this symmetry we choose the limits of &; and £4 to be the same, as with & and 3.

We also assume the optimum will be of order 1. Thus we arbitrarily set the first

response region to

0.25 < & < 0.50,

0.50 < f < 1.00,

0.50 < €3 < 1.00,

0.25 < 4 < 0.50. (11.7)

The response surface selected for each cycle is the quadratic curve

P =cq + c1€1 + cole + 0303 + cabs + 5b? + cpl bo

+ cr€is + cgbies + col} + croboés + cirb ots

+ cy2é2 + crzésbs + erat? (11.8)

We chose 23 D-optimal data points (roughly 1.5 x the number of coefficients) to

construct the response surfaces for each cycle.

D-optimal points for fitting the response surface region with (11.8) is found

using GRAMPS. For each cycle, the design space is discretized with 6 points in

RESULTS: PART II 87

RESULTS: PART fl

each direction to define 1296 candidate points. The list of candidate points is

reduced by removing those which do not satisfy the area constraint. This implies

that the design space is no longer a hypercube, but rather has an irregular shape.

We cannot use a simple linear transformation as we had in the previous design to

locate the D-optimal points for future cycles as the shape of the region changes

from cycle to cycle. Thus the GA is rerun for each new response region at the start

of a cycle.

The GA works with a population of 5 point designs over 5000 generations.

After the first cycle, points selected for analysis are not necessarily D-optimal. Any

analyzed design points from previous cycles which are also elements of the newest

response region are reused in later cycles. Thus the GA is set to maximize |A? A|

with any pre-selected points as elements in the least-squares matrix.

Three response cycles are performed for this inverse design. The details are

listed in tables 11.4, 11.5, and 11.6. Each table contains the limits of the response

surface region, the D-optimal data points, and the minimum of the response surface.

A history of the objective function is shown in figure 11.9. The convergence of the

design variables as well as the movement of the upper and lower limit of response

surface region is shown in figure 11.10 and 11.11.

The results of the first response surface are encouraging. The minimum of

the response surface is also the most attractive design of the 23 analyzed to make

the response surface. However, the minimum of the second response surface, when

analyzed with the Euler solver is found to produced a design that is surpassed in

quality by 20 previously analyzed designs! The third response surface was created

about this point despite its high objective function value. The design improved at

the conclusion of the third cycle to yield a design with an objective function lower

then the previous iteration, but higher than the first.

88

The pressure distribution of the designs after each cycle is compared to the

target in figures 11.12, 11.13, 11.14. The corresponding shapes compared to the

target is shown in figures 11.15, 11.16, 11.17. The first response surface cycle

matches the pressure distribution very well except at one point at the shock. This

corresponds to a slight underprediction of the bump height.

Matching the shock precisely is a heavy requirement of the objective function

with differences carrying a heavy penalty. This is an unfortunate consequence of

the least squares objective function. The design with the lowest objective function

is encountered during the construction of the second response cycle (pt.4 in table

11.5). A view of the pressure distribution and shape is shown in figure 11.18 and

11.19. Again, despite its low objective function, the shape is relatively far from

the intended design. The design happened to agree at the shock better than most

other designs. It, however, is not very good away from the shock, hence the poor

agreement with the intended shape.

The conclusion that we draw from this design is that the least-squares objective

function, typical for inverse design, places too much weight on locating the shock.

This tends to make bad designs look more impressive than they really are if the

shock placement is good. Likewise, very good designs are penalized for slight errors

near the shock. Further cycles are not considered for this design as the first response

surface result is considered acceptable in light of the shock requirement.

11.3 Transonic Airfoil Design

The transonic airfoil design problem, like the previous problems, enforces no

bounds on the variables. Any set of values in R* is feasible provided the drag con-

straint (10.16) and the area constraints (10.17) are satisfied. To begin the response

surface optimization we confine the search to

—1.00 < &; < 1.00 ~=1,...,4 (11.9)

RESULTS: PART II 89

Again we use the quadratic function defined by (11.8) to create our response sur-

faces. The D-optimal set of points for the quadratic are selected by discretizing the

domain into 5 levels in each direction. Only points which satisfy the area constraint

are considered as candidate points. This changes the shape of the domain from a

hypercube to an irregular-shaped domain forcing the GA to be rerun at the start

of every design cycle i.e. we cannot apply a transformation to a previously found

set of D-optimal points.

There is no way to enforce the drag constraint at the point selection level. The

drag requires an Euler analysis which can only be afforded at the D-optimal points.

Thus the D-optimal points are selected without regard to whether they satisfy the

drag constraint or not.

The drag constraint is enforced loosely using a surface fit. That is, the drag is

fitted with the data collected from the Euler analyzes at the D-optimal points. In

this case, the drag is fitted using (11.8) since the D-optimal points are optimized

for a quadratic fit. The response surface modeling the lift is maximized subject to

the constraints on the area and the drag modeled by the drag surface. We say the

drag constraint is loosely enforced because the optimum point will satisfy the drag

response surface constraint, but upon analysis we may find that the true drag is

slightly violated. -

In this design, we ran 5 response surface cycles. In each cycle we evaluate 23

designs to obtain data for the lift and drag response surfaces. The Euler analyses are

performed using ErICA on the Virginia Tech 28 node Intel Paragon XP/E parallel

machine. We developed a front end for the code whereby each of 23 processors are

assigned to perform one Euler analysis.

The parallel code was analyzed for speed-up and efficiency using a test problem

defined by the target flow for the transonic bump problem. The test timed how

RESULTS: PART II 90

long the code took to obtain 24 solutions. Speed-up is defined as

t
Speed up = 7 (11.10)

1

where ft, is the time to get 24 solutions on p processors and ¢, is the time to get 24

solutions on one processor. Efficiency is defined as

t
Ef ficiency = hp (11.11)

1

The code ran with 1, 4, 6, 8, 12, and 24 nodes with the results shown graphically in

figure 11.20 and 11.21. On one node, the code ran the Euler analysis sequentially

24 times; on 4 nodes, the code ran through a loop of length 6, with 4 Euler analyses

performed in parallel each time.

In practice, each processor solves a slightly different problem. One problem

may take more iterations to reach steady state then others. In such a case, the

processors which finishes first remains idle until the last problem is finished.

The data from the five cycles are listed in tables 11.7 through 11.11. Each table

contains the limits of the response surface region, the D-optimal design points, and

the maximum of the lift surface subject to the drag surface and area constraint. A

history of the objective function is plotted in figure 11.22 and the convergence of

the design variables shown in figures 11.23 and 11.24.

Although the lift peaked in the fourth cycle, it violated the true drag constraint

by 3.1%. Despite the lower lift in cycle 5, the drag constraint is satisfied to a closer

degree (1.5%). The design variables do not seem to be converged completely as

there are still small variations in the second and third decimal place. Nevertheless,

the optimization stopped because of the small variation in the lift. The shape of

the final design is shown in figure 11.25. The pressure distribution on the surface is

shown in figure 11.26. Pressure contours of the flow field are shown in figure 11.27.

RESULTS: PART II 91

CHAPTER
TWELVE

CONCLUSIONS: PART IT

In this section of the dissertation, we presented a method of optimization using

response surfaces. The response surface method involves curve fitting the design

space with a simple polynomial function. The surface is minimized using conven-

tional techniques. Minimization of the response surface often yields a design in the

vicinity of the optimum. Performing other response surface cycles, or continuing the

optimization using derivative-based methods generally leads to the optimum design.

The first problem involves the design of a duct with mixed supersonic/subsonic flow.

The second involves the design of a bump in a channel of transonic flow, and the

final example is a design of a transonic airfoil. Each problem has a flow with a

shock wave. The interaction of the shock wave with the discretization of the flow

field introduces noise in the objective function.

Often in aerodynamic shape design, optimization via derivative-based methods

is expensive and prone to failures due to numerical inaccuracies in computing the

objective function. These inaccuracies are amplified in the calculation of the deriva-

tives. The advantage of response surface methodology lies in that minimization of

the response surfaces can be performed very cheaply and robustly since they are

smooth analytic functions.

The choice of response surface can have a profound impact on the success of

the optimization. Large polynomials have the flexibility to model many objective

functions, but suffer from ill-conditioning in the least-squares problem. While the

ill-conditioning may not prevent the polynomial from modeling the function well, it

CONCLUSIONS: PART II 92

may cause difficulties in the optimization of the response surface. A simple quadratic

polynomial worked well in the design cases presented.

While response surfaces are cheap to optimize, they can be expensive to make.

The expense can be reduced by carefully selecting points to use in the fitting pro-

cedure. For this we use D-optimal points. D-optimal points can produce a high

quality fit with few function evaluations. Locating D-optimal points, however, is

not trivial as it leads to an optimization of a large, integer subproblem. However,

an effective and efficient genetic algorithm was developed to solve the subproblem.

The cost of generating the response surface can also be reduced by simple

coarse-grained parallelization. Evaluating data points for surface construction can

be computed simultaneously by assigning each point to a separate processor. The

use of parallel computers makes response surfaces an attractive alternative to

derivative-based optimization.

The dissertation ended with the presentation of the design results. The first

case involved the design of the cross sectional area of a duct to match a given

velocity distribution. The results for several cases varying in number of design vari-

ables were encouraging as the target shape was recovered using several response

surface cycles or a mixture of response surfaces and derivative-based optimization.

In a comparison to pure derivative-based optimization, we found that response sur-

face methodology has the advantage that Pre special treatment of the shock wave

was necessary. In the derivative-based optimization, the objective function had

to be smoothed, either by shock-fitting or by coordinate-straining. We also found

the response surface methodology could be made competitive with derivative-based

optimization from a CPU point of view by taking advantage of coarse-grained par-

allelization.

Optimization of the second problem was performed very quickly using response

surfaces. In this inverse design problem, where the pressure over the bump was

CONCLUSIONS: PART II 93

matched to a target, we found that the least-square objective function made some

designs appear much worse than they really were. This is a result of a slight smearing

of the shock wave. As a result the target could not be recovered precisely.

Finally, results for a transonic airfoil are presented. The design required 120

Euler analyses, 24 at each iteration. However, 23 analyses could be performed at

once on the Virginia Tech Intel Paragon. This effectively reduced the cost to 10

Euler analyses. For the design of a Mach 0.8 airfoil with a maximum 10 drag counts,

the lift coefficient at zero degrees angle of attack was maximized to 0.62.

Weaknesses of the response surface methodology are associated with what is

termed the “curse of dimensionality.” As the dimension of the design space in-

creases, the feasibility of optimization by response surfaces decreases. In large

design dimensions, the number of coefficients required to describe the response

surface also becomes large. To achieve a well-conditioned fit to the polynomial re-

quires many function evaluations and hence many CFD solutions. Giunta et al.®°

began addressing this issue by taking two approaches. First, they use a variable-

complexity approach whereby refined, expensive codes and simple, cheaper codes

are used together to develop the response surface. Second, they use regression anal-

ysis and analysis of variance to eliminate terms of the polynomial response surface

that are not insignificant. In this way a smaller polynomial, and hence a cheaper

one to construct, can be used to locate the general area of the minimum. Future

work in response surface methodology will include using these techniques in higher

dimensional problems.

A strength of response surface optimization is the ease at which it can be

applied to a variety of problems. Design problems which may involve three-

dimensional flows or viscous flows can easily be optimized using the same codes

developed for the one-dimensional duct problem. The only modification which

CONCLUSIONS: PART II 94

needs to be done is to swap the one-dimensional flow solver with a flow solver ap-

propriate for the current design problem i.e. a three-dimensional or viscous flow

solver.

CONCLUSIONS: PART II 95

REFERENCES

[1.] Anderson, W.K., Implicit Multigrid Algorithms for the Flux Split Euler Equa:

tions, Ph.D. Dissertation, Mississippi State University, Aug. 1986.

(2.] Godfrey, A.G., Topics on Spatially High-order Accurate Methods and Precon-

ditioning for the Navier Stokes Equations with Finite-rate Chemisiry, Ph.D.
Dissertation, VPI&SU, Dec. 1992.

[3.] Nieuwland, G.Y., “The Computation by Lighthill’s Method of Transonic Po-
tential Flow Around a Family of Quasi-elliptical Aerofoils,” NLR TR T.83,

1964.

[4.] Nieuwland, G.Y., “Transonic Potential Flow Around A Family of Quasi-

elliptical Aerofoil Sections,” NLR TR T.172, 1967.

[5.) Takanaski, S., “A Method of Obtaining Transonic Shock-Free Flow Around

Lifting Aerofoils,” Transactions, Japan Society for Aeronautical and Space Sci-
ences, vol. 16, No. 34, pp. 246-263, 1973.

[6.] Boerlstoel, J.W., and Huizing, G.H., “Transonic Airfoil Design by an Analytic

Hodograph Method,” AIAA Paper 74-539, 1974.

{7.| Hobson, D.E. “Shock-free Transonic Flow in Turbomachinery Cascades,” Uni-

versity of Cambridge, UK, CUED/A TURBO/TR 65, 1974.

[8.] Sobieczky, H., “Entwurf tberkritischer Profile mit Hilfe der Rhoe-Elektrische
Analogie,” DLR-FB 75-43, 1975.

[9.] Eberle, A “Eine Exakte Hodographenmethode zum Entwurf tiberkritische Pro-
file,” MBB UFE 1168-75 0, 1975.

[10.] Bauer, F., Garabedian, P., and Korn, D., Supercritical Wing Section III,

Springer Verlag, 1977.

[11.] Schrier, S., Compressible Flow, John Wiley and Sons, New York, 1982

[12.] Sobieczky, H., Fung, K.Y., and Seebass, A.R. “A New Method for Designing
Shock-free Transonic Configurations,” AIAA Paper No. 78-1114, 1978.

REFERENCES 96

[13.] Yu, N.J., “Efficient Transonic Shock-free Wing Redesign Procedure Using a
Fictitious Gas Method,” AIAA Paper No. 79-0075, 1979.

[14.] Eberle, A., “Transonic Flow Computations by Finite Elements: Airfoil Opti-
mization and Analysis,” in Recent Developments tin Transonic and Experimen-

tal Fluid Mechanics, Springer Verlag, 1979.

[(15.] Fung, K.Y., Sobieczky, H., and Seebass, A.R., “Shock-free Wing Design,”

AIAA Paper No. 79-1557, 1979.

[16.] Rai, P., Miranda, L-R., and Seebass, A.R., “A Cost Effective Method for Shock-

free Supercritical Wing Design,” AIAA Paper No. 81-0383, 1981.

[17.] Fung, K.Y., Seebass, A.R., Dickson, L.J., and Pearson, C.F., “An Effective
Algorithm for Shock-free Wing Design,” AIAA Paper No. 81-1236, 1981.

(18.] Holst, T.L., Sloof, J.W., Yoshihara, H., and Ballhaus, W.F.Jr., “Computational

Procedures in Transonic Aerodynamic Design,” AGARDograph No. 266, pp.

52-67, 1982.

(19.] Dulikravich, G.S., ‘Aerodynamic Shape Design,” AGARD Report No. 780,

Nov. 1990.

[20.] Lighthill, M.J., “A New Method of Two-dimensional Aerodynamic Design,”

ARC R&M 2112, 1945.

(21.] Van Ingen, J.L., “A Program for Airfoil Section Design Utilizing Computer
Graphics,” AGARD Short Course Notes, 1969.

(22.] Arlinger, B., “An Exact Method of Two-dimensional Airfoil Design,” TN67,
Saab, Sweden 1970.

(23.] Strand, T., “Exact Method of Designing Airfoils with Given Velocity Distribu-
tion in Incompressible Flow,” Journal of Aircraft, 10 651-659, 1973.

[24.] Woods, L.C., “Airfoil Design in Two-dimensional Subsonic Flow,” R & M 2845
Aeronautical Research Council, London England, 1952.

[25.| Tranen, T.L., “A Rapid Computer Aided Transonic Airfoil Design Method,”
AIAA Paper 74-501, 1974.

[26.] Carlson, L.A., “Transonic Airfoil Analysis & Design Using Cartesian Coordi-
nates,” Journal of Aircraft, 13, 1976.

REFERENCES 97

[27.] Shankar, V., “A Full Potential Inverse Method Based on a Density Lineariza-
tion Scheme for Airfoil/Wing Design,” AIAA Paper 81-1234, 1981.

[28.] Volpe, G., & Melnik, R.M., “The Design of Transonic Airfoils by a Well-posed

Inverse Method,” Journal for Numerical Methods in Engineering, 22, pp. 341-

361.

[29.] Sloof, J.W., “Computational Methods for Subsonic and Transonic Aerody-
namic Design,” AGARD Report No. 712, pp. 3.2-3.40, 1983.

(30.] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine

Learning, Addison Wesley, 1989.

[31.] Mosetti, G., Poloni, C., “Aerodynamic Shape Optimization by Means of a
Genetic Algorithm,” Proceedings of the 5th Int. Symp. on Computational

Fluid Dynamics, Sendai, vol. II, JSCFD, 1993.

[32.] Chen, H.Q., Periaux, J., Stoufflet, B., Mantel, B., “An Implementation of
Genetic Algorithms for Aerodynamic Optimum Shape Design, to appear.

(33.] Gage, P.J., Kroo, I.M., Sobieski, I.P., “A Variable-Complexity Genetic Algo-
rithm for Topological Design,” AIAA Paper 94-4413, Sept. 1994.

[34.] Elder, J.F., “Global R? Optimization when Probes are Expensive: the GROPE
Algorithm,” Proceeding IEEE International Conference on System, Man and
Cybernetics, Chicago, Illinois, Oct 18-20, 1992.

(35.] Kushner, H.J., “ A New Method of Locating the Maximum of an Arbitrary
Multipeak Curve in the Presence of Noise,” Journal of Basic Engineering,

March 97-106, 1964.

[36.] Montgomery, D.C., Design and Analysis of Experiments, John Wiley and

Sones, New York, 1976.

[37.] Toropov, V.V., “Simulation Approach to Structural Optimization,” Structural
Optimization, vol. 1, pp. 37-46, 1989.

[38.] Toropov, V.V., Filatov, A.A., Polynkin, A.A., “Multiparameter Structural Op-
timization Using FEM and Multipoint Explicit Approximations,” Structural
Optimization, vol. 6, pp. 7-14, 1993.

[39.] Toropov, V.V., “Multipoint Approximation Method for Structural Optimiza-
tion and Identification,” Proceedings of The World Congress on Optimal Design
of Structural Systems, vol. 1, Rio de Janeiro, Aug. 1993.

REFERENCES 98

[40.] Toropov, V.V., Van der Giessen, E., “Parameter Identification for Nonlinear
Constitutive Models: Finite Element Simulation - Optimization - Nontrivial

Experiments,” Proceedings of the IUTAM Symposium on Optimal Design with
Advanced Materials, Lyngby, Denmark, Aug. 1992.

[41.] Toropov, V.V., Markin, V.L., Carlsen, Henrik, “Discrete Structural Opti-

mization Based on Multipoint Explicit Approximations,” Proceedings of the

IUTAM Symposium on Discrete Structural Optimization, Zakopane, Poland,

Aug. 1993.

[42.] Polynkin, A.A., Van Keulen, F., and Toropov, V.V., “Optimization of Geo-

metrically Nonlinear Shells,” extended abstracts of the Third World Congress

on Computational Mechnaics, Chiba, Japan, Aug. 1994.

[43.] Van Keulen, F., Toropov, V.V., and Polynkin, A.A., “Optimization of Geo-

metrically Nonlinear Shell Structures Using Multi-meshing and Adaptivity,”

AIA A-94-4361 Sept. 1994.

[44.] Markine, V.L., Meijers, P., Meijaard, J.P., and Toropov, V.V., “Multilevel

Optimization of Dynamic Behaviour of a Linear Mechanical System with Mul-

tipoint Approximation,” LTM 1054, Nov. 1994.

[45.] Giunta, A.A., Dudley, J.M., Narducci, R.P., Grossman, B., Haftka, R.T., Ma-

son, W.H., Watson, L.T., “Noisy Aerodynamic Response and Smooth Approx-

imation in HSCT Design,” AIAA Paper 94-4376, Sept. 1994.

[46.] Healy, M.J., Kowalik, J.S., Ransay, J.W., “Airplane Engine Selection by Opti-
mization on Surface Fit Approximations,” Journal of Aircraft, vol. 12, No. 7,

1975, pp. 593, 599.

[47.] Gill, Murray & Wright, Practical Optimization, Academic Press, New York,

1981.

[48.] Narducci, R., Grossman, B., Haftka, R.T., “Sensitivity Algorithms for an In-

verse Design Problem Involving a Shock Wave,” AIAA Paper 94-0096, Jan.

1994, also to appear in Inverse Problems in Engineering.

[49.] Frank, P.D., Shubin, G.R., “A Comparison of Optimization-based Approaches
for a Model Computational Aerodynamics Design Problem, ” Journal of Com-

putational Physics, vol. 98, 1992, pp. 74-89.

(50.] Frank, P.D., Shubin, G.R., “A Comparison of the Implicit Gradient Approach

and the Variational Approach to Aerodynaimc Design Optimization,” Applied

REFERENCES 99

Mathematics and Statistics Technical Rept. AMS-TR-163 Boeing Computer
Services, Seattle, WA, April 1991.

[51.] Iollo, A., Salas, M., Ta’asan, S., “Shape Optimization Governed by the Euler

Equations using an Adjoint Method,” ICASE Report No. 93-78.

[52.] Shenoy, A., Cliff, E., “An Optimal Control] Formulation for a Flow Matching

Problem,” AIAA Paper 94-4306.

[53.] Wu, X., Cliff, E., and Gunzburgwer, M.D., “An Optimal Design Problem for
a Two-dimensional Flow in a Duct,” ICAM 94-4376.

[54.) Borggaard, J., Burns, J.A., Cliff, E., and Gunzburger M., “Sensitivity Calcu-
lations for a 2-D, Inviscid, Supersonic Forebody Problem,” ICASE Report No.

93-13, March 1993.

[55.] Borggaard, J., Burns, J., “A Sensitivity Equation Approach to Optimal Design
of Nozzles,” AIAA Paper 94-4274.

(56.] Jameson, A., “Aerodynamic Design via Control Theory,” ICASE Report No.
88-64, MAE Report No. 1824, Journal of Scientific Computing, vol. 3, 1988

pp. 233-260.

(57.] Jameson, A., “Computational Algorithms for Aerodynamic Analysis and De-
sign,” MAE Report 1966, Dec. 1992.

(58.] Reuther, J., Jameson, A., “Control Theory, Based Airfoil Design for Potential
Flow and a Finite-Discretization,” AIAA Paper 94-0499, Jan. 1994.

(59.] Jameson, A., “Computational Algorithms for Aerodynamic Analysis and De-
sign,” MAE Report 1966, Dec. 1992. —

[60.] Reuther, J., Jameson, A., “Control Theory Based Airfoil Design using the Euler
Equations,” AIAA Paper 94-4272.

(61.] Joh, C -Y., Grossman, B., Haftka, R.T., “Design Optimization of Transonic
Airfoil,” Engineering Optimization, 21, No. 1, 1993, pp. 1-20.

(62.| Gilmore, P., Kelley, C.T., “An Implicit Filtering Algorithm for Optimization
of Functions with Many Local Minima,” SIAM Journal on Optimization, Vol.

5, No. 2, May 1995, pp. 269-285.

[63.] Stoneking, D., Bilbro, G., Trew, R., Gilmore, P., and Kelley, C.T., “Yield

Optimization Using a GaAs Process Simulator Coupled to a Physical Device

REFERENCES 100

Model,” in Proceedings IEEE, Cornell Conference on Advanced Concepts in

High Speed Devices and Circuits, IEEE, 1991, pp. 374-383.

[64.] Winslow, T.A., Trew, R.J., Gilmore, P., and Kelley, C.T., “Doping Profiles

for Optimum Class B Performance of GaAs Mesfet Amplifiers,” in Proceedings
IEEE/ Corncll Conference on Advanced Concepts in High Speed Devices and
Circuits, IEEE, 1991, pp. 188-197.

(65.] Nixon, D., “Perturbations of a Discontinuous Transonic Flow,” AIAA Journal,
16, No. 1, 1978, pp. 47-52.

(66.| Hirsch, C., Numerical Computation of Internal and External Flows, vol. 1,

John Wiley & Sons, New York, 1989.

(67.] Strahara, S.S., “A Rapid Approximation Procedure for Nonlinear Solu-
tions: Application to Acrodynamic Flows and Design /Optimization Problems,”
Chapter 18 in Transonic Aerodynamics, 81, Progress in Astronautics and Aero-

nautics, D. Nixon, Ed., ATAA, New York, 1982.

[(68.] Hestenes, M.R., Stiefel, E., “Methods of Conjugate Gradients for Solving Linear

Systems,” Journal of Research of the Natural Bureau of Standards, 49, pp. 409-

436, 1952.

(69.] Brent, R.P., Algorithms for Minimization without Derivatives Prentice-Hall,

New Jersey, 1974.

[70.] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical

Recipes in FORTRAN, The art of Scientific Computing, Cambridge Univer-

sity Press, New York, 1992.

[71.] Schittkowski, k.. “NLPQL, A FORTRAN Subroutine Solving Constrained Non-
linear Programming Problems,” Annals of Operations Research, vol. 5, pp.
485-500., 1985-1986.

[72.] Carpenter, W.C. “Effect of Design Selection on Response Surface Perfor-
mance”, NASA CR 4250, 1993.

[73.] Box, M. J. and Draper, N. R., “Factorial Designs, the |K7X| Criterion, and
Some Related Matters,” Technometrics, vol. 13, No. 4, 1971, pp. 731-742.

[(74.] Welch, W.J. “Branch and Bound Search for Experimental Designs Based on
D-optimality and Other Criteria,” Technometrics 24 1982, 41-48.

REFERENCES 101

[(75.] Fedorov, V.V., Theory of Optimal Experiments, Academic Press, New York
1972.

(76.] Mitchell, T.J. “An Algorithm for the Construction of ‘D-optimal’ Experimental
Designs,” Technometrics 16, No. 2, 1974, pp. 203-210.

(77.] Furuya, H., and Haftka, R.T., “Locating Actuators for Vibration Suppression
on Space Trusses by Genetic Algorithms,” ASME Winter Annual Meeting,
1993.

[78.] Strang, G. Linear Algebra and its Applications, Academic Press, New York,

1976, pp. 96-125.

(79.] Vanderplaats, G.N. “Approximation Concepts for Numerical Airfoil Optimiza-

tion,” Engineering Optimization, 21, No. 1, 1988, pp. 1-20.

[80.] Abbott, I.H., & von Doenhoff, A.E., Theory of wing sections, including a sum

mary of atrfoil data Dover Publications, New York, 1959.

[81.] Dadone, A., & Grossman, B., “Surface Boundary Conditions for the Numerical

Solution of the Euler Equations,” AIAA Journal 32, No. 2, 1994, pp. 285-293.

(82.] Thomas, J.L., & Salas, M.D., “Far-Field Boundary Conditions for Transonic
Lifting Solutions to the Euler Equations,” AIAA Paper 85-0020, Jan. 1985.

[(83.] Giunta, A.A., Narducci, R., Burgee, S., Grossman, B., Mason, W.H., Watson,

L.T., & Haftka, R.T., “Variable-Complexity Response Surface Aerodynamic
Design of an HSCT Wing,” AIAA Paper 95-1886, June, 1995.

REFERENCES 102

TABLES

i Xj Initial €; Target €;

Case 1 1 0.50 1.2500 1.3975

2 0.25 1.0848 1.1586

Case 2 3 0.50 1.2500 1.3975

4 0.75 1.5627 1.6364

Table 5.1: Initial and target design conditions.

103

Forward Central

Difference Difference Direct Adjoint

oT Jo -0.2849 -0.2849 -0.2998 -0.2799

Teinal 8.237x104 | 8.237x104 | 8.237x104 | 8.237x104

Iterations 3 3 3 3

Table 5.2: Comparison of design sensitivities and convergence of the continuous
approach using the exact flow solver. One design variable case using
the initial design point described in table 5.1; 1, = 5.436x10°2.

TABLES 104

Forward Central

Difference Difference Direct Adjoint

a fog 0.0177 0.0177 0.0199 0.0167

dl foe, -0.1951 -0,1951 -0.2067 -0.1916

dt /o& -0.1972 -0.1972 -0.2062 -0.1931

lsinal 8.236x104 | 8.236x10-4 | 8.256x10-4 | 8.240x10-4

Iterations 31 35 28 16

Table 5.3: Comparison of design sensitivities and convergence of the continuous
approach using the exact flow solver. Three design variable case using
the initial design point described in table 5.1; J, = 5.436x10-2.

TABLES 105

Forward Central

Difference Difference Direct Adjoint

AI fog -0.4286 -0.4288 -0.2915 -0.2890

TFinat 8.129x104 | 8.129x104 | 8.129x104 | 8.129xi04

Iterations 3 3 4 4

Table 5.4: Comparison of design sensitivities and convergence of the continuous
approach using the Godunov flow solver. One design variable case
using the initial design point described in table 5.1; Jy = 5.3120x10-2.

TABLES 106

Forward Central

Difference Difference Direct Adjoint

al fo€, 0.0440 0.0440 0.0232 0.0196

A foe -0.3137 -0.3137 -0.2060 -0.2019

ol [oe -0.2776 -0.2776 -0.1944 -0.1937

lfinal 8.389x104 | 8342x104 | 9.417x104 | 8.827x10+

Iterations 19 36 13 20

Table 5.5: Comparison of design sensitivities and convergence of the continuous
approach using the Godunov flow solver. Three design variable case
using the initial design point described in table 5.1; J, =5.3120x10-2.

TABLES 107

Forward Central

Target Difference Difference Direct Adjoint

cr 1.3975 1.3994 1.3994 1.3994 1.3994

€1 1.1586 1.1586 1.1587 1.1606 1.1572

&2 1.3975 1.3993 1.3993 1.3997 1.3993

&3 1.6364 1.6354 1.6354 1.6449 1.6322

Table 5.6: Final design parameters for the continuous approach using exact flow solutions.

TABLES 108

Forward

Difference Direct

Exact Solver -0.67318 -0.70355

Godunov Solver -0.95425 -0.68037

Table 5.7: Continuous approach shock sensitivities computed with the exact and

TABLES

Godunov flow solvers.

109

Forward Central

Target Difference Difference Direct Adjoint

G1 1.3975 1.3969 1.3969 1.3969 1.3969

gi 1.1586 1.1601 1.1600 1.1499 1.1723

o2 1.3975 1.3982 1.3981 1.4010 1.3983

c3 1.6364 1.6727 1.6693 1.7089 1.6890

Table 5.8: Final design parameters for the continuous approach using Godunov

TABLES

flow solutions.

110

Forward Central

Difference | Difference Direct Adjoint

ol fog -0.5495 -0,5496 -0.5495 -0.5495

I ginal 1.045x10-19 | 1.153x10-!! | 1.048x10-19 | 1.048x10-10

Iterations 3 3 3 3

Table 5.9: Comparison of design sensitivities and convergence of the discrete
approach using the Godunov flow solver. One design variable case
using the initial design point described in table 5.1; Jy = 3.936x10-2-

TABLES 111

Forward Central

Difference | Difference Direct Adjoint

a fog 0.0834 0.0834 0.0834 0.0834

a fae, -0.4248 -0.4248 -0.4248 -0.4248
dl /oé, -0.3367 -0.3367 -0.3367 -0.3367

Trinal 8.675x10-9 | 5.303x10-!0 | 5.186x10-!1 | 5.186x10-1!

Iterations 12 12 55 55

Table 5.10: Comparison of design sensitivities and convergence of the continuous
approach using the Godunov flow solver. Three design variable case
using the initial design point described in table 5.1; J, = 3.9363x10-2.

TABLES 112

Forward Central

Difference Difference Direct Adjoint

al fog -0.4224 -0.4224 -0.4224 -0.4224

I sinat 7.865x10-33 | 7.715x10-13 | 7.717x10-13 | 7.717x10-13

Iterations 3 3 3 3

Table 5.11: Comparison of design sensitivities and convergence of the discrete
approach using the artificial flow solver. One design variable case using
the initial design point described in table 5.1; 1, = 3.9363x10-2.

TABLES 113

Forward Central

Difference Difference Direct Adjoint

ot fog 0.0554 0.0554 0.0554 0.0554

dl og, -0.3203 -0.3203 -0.3203 -0.3203

A /o& -0.2599 -0.2599 -0.2599 -0.2599

T Final 5.147x10°9 | 5.591x10°9 | 5.595x10°9 | 5.595x10°?

Iterations 11 11 11 11

Table 5.12: Comparison of design sensitivities and convergence of the discrete
approach using the artificial viscosity flow solver. Three design variable
case using the initial design point described in table 5.1;
4,0280x 10-2.

TABLES

I, =

114

Forward Central

Target Difference Difference Direct Adjoint

FF 1.3975 1.3975 1.3975 1.3975 1.3975

G1 1.1586 1.1586 1.1586 1.1586 1.1586

&2 1.3975 1.3975 1.3975 1.3975 1.3975

G3 1.6364 1.6370 1.6363 1.6364 1.6364

Table 5.13: Final design parameters for the discrete approach using Godunov flow

TABLES

solutions.

Forward Central

Target Difference | Difference Direct Adjoint

ci 1.3975 1.3975 1.3975 1.3975 1.3975

g1 1.1586 1.1585 1.1585 1.1584 1.1584

&2 1.3975 1.3975 1.3975 1.3975 1.3975

o3 1.6364 1.6367 1.6368 1.6368 1.6368

Table 5.14: Final design parameters for the discrete approach using artificial viscosity

TABLES

flow solutions.

116

rw V
D-optimal 5.960x10°8 0.10705

D-optimal/center hybrid 9.3132x10-10 0.11406
Center 1.4552x10°11 0.14466

Diamond 3.5527x10-!5 0.49095

Interior 8.6736x 10-19 0.13738

Table 8.1: Comparison of different sets of points for response surface construction.

TABLES 117

Control Shape Shape Shape Shape
Point 1 2 3 4

1 (0,0) (0,0) (0,0) (0,0)

2 (0,0) (0,0) (0,0) (0,0)

3 (0,0) (0,0) (0,0) (0,0)

4 (0.2,0.1) (0.4,0.1) (0.6,0.1) (0.8,0.1)

PS) (1,0) (1,0) (1,0) (1,0)

6 (1,0) (1,0) (1,0) (1,0)

7 (1,0) (1,0) (1,0) (1,0)

Table 10.1: B-spline control points for the bump shape functions

TABLES 118

Table 11.1: D-optimal points for a quadratic polynomial response surface in the

TABLES

Index €

1 1.1

2 1.35
3 1.4

4 1.65

5 1.7

region 1.10 < € < 1.70.

119

Table 11.2: D-optimal points for a quadratic polynomial response surface in the
region defined by (11.6).

TABLES

Index ci &2 &3
1 1.15 1.50 1.55

2 1.05 1.40 1.55

3 1.25 1.30 1.55

4 1.05 1.50 1.55

5 1.15 1.30 1.55

6 1.05 1.50 1.65

7 1.05 1.30 1.55

8 1.25 1.30 1.75

9 1.25 1.50 1.75

10 1.25 1.50 1.55

11 1.15 1.40 1.75

12 1.05 1.50 1.75

13 1.05 1.30 1.75

14 1.25 1.40 1.65

15 1.100 1.30 1.65

120

Index 1 62 $3
I 1.10 1.30 1.75
2 1.15 1.35 1.55
3 1.05 1.30 1.75
4 1.05 1.40 1.65
5 1.05 1.30 1.70
6 1.20 1.45 1.75
7 1.10 1.35 1.55
8 1.05 1.40 1.60
9 1.25 1.50 1.75
10 1.05 1.30 1.55
il 1.20 1.50 1.55
12 1.25 1.30 1.55
13 1.15 1.45 1.70
14 1.15 1.30 1.70
15 1.25 1.40 1.70

16 1.15 1.30 1.75
17 1.15 1.40 1.65
18 1.25 1.40 1.55
19 1.05 1.30 1.65
20 1.25 1.50 1.55
21 1.05 1.40 1.55
22 1.05 1.50 1.65
23 1.25 1.30 1.75
24 1.25 1.40 1.65
25 1.05 1.35 1.55
26 1.25 1.40 1.75
27 1.20 1.35 1.65
28 1.25 1.30 1.65
29 1.15 1.30 1.65
30 1.20 1.40 1.65
31 1.05 1.50 1.75
32 1.15 1.50 1.75
33 1.10 1.50 1.60
34 1.15 1.30 1.55
35 1.15 1.35 1.75
36 1.15 1.50 1.60
37 1.25 1.50 1.65
38 1.05 1.50 1.55
39 1.15 1.40 1.55
40 1.05 1.40 1.75
41 1.05 1.45 1.65

Table 11.3: D-optimal points for a quadratic tensor product response surface in
the region defined by (11.6).

TABLES 12]

‘sy[nsod
|
aJoAo

aoeypins
asuodsar

duinq
stuosueIL

“p']T
A
G
U

vS90S0'0
00SZ'0

000s "0
997S'0

€60€'0
ydo

0€0709'0
O9S9LS'0

000s
"0

00090
0
0
0
0

00S7'0
€Z

706860'0
OSPEOT'O

00S7'0
000S'0

000s‘
000s ‘0

TZ
7LbL60'0

SZES60'O
00S7'0

000L'0
000s‘0

OOSr'0
IZ

OPLEOE'O
09S

167'0
o0or’0

000$'0
000s

‘0
00SZ'0

07
OPOEOT'O

800S60'0
00SZ'0

o00s’0
0008'0

00S7'0
61

016890
OILT6S'°0

000s‘0
000s‘0

oo0s'0
00S7'0

SI
S9L%60'0

8b6S60'0
00S7'0

000L'0
000s‘0

00S7'0
LI

088560'0
~9S060'0

00SZ'0
00080

000s‘0
O0SE'0

91
O6SL8Pr'0

OOTS8r'0
o0sr’O

00020
000s

‘0
00S7'0

CI
1O60SLT'O

O9LLLT'O
00S7Z'0

000sS‘0
O00L'0

O0Sr'0
vl

OL8P9T'0
OZSE9T‘O

00Sz'0
000s‘0

0008'0
OO0SE'0

el
O1€907'0

0
9
7
0
7
0

o00r’0
000s‘0

000s‘0
000s

0
ZI

0989S €'0
OrBl9€'0

0
0
S
’

000S’0
000L'0

00SZ'0
I

6€66P0'0
8S77S0'0

00S7°0
000s‘0

0005‘0
OOS€'0

Ol
8Ev160'0

SEPESO'O
000€'0

000$'0
0005

‘0
000r'0

6
OILOP7Z'0

OLOPET'O
o00r'0

000s‘0
000L'0

OO00E'0
8

OSE6T
EO

O68ErE'0
000r’0

QO00L'0
000S°0

O00E'0
L

O@POCr'0
O6r0Er'0

000s"
000s

‘0
00050

o00r’0
9

787S90'0
LOETLO'O

00S7'0
000s‘0

OO00L'0
00Sz'0

¢
O10P9I'0

O€SL9T‘O
00S7'0

oo00s‘0
0006'0

00S7‘0
v

SOP6SO0'0
1196S0'0

00S7'0
000s‘0

000S
‘0

00Sz'0
€

O67SET
‘0

OOIVET'O
00ST'0

0006'0
000S'0

00SZ'0
z

OSLOZT'O
OSLOZI'O

00S7'0
000L'0

000L'0
00S7'0

I
000S ‘0

0000'1
0000'I

000s
0

xeul
00Sz'O

000s‘
000s

0
00S7'0

uw
Uy

‘NN
‘faO

73
€R

73
13

T
A
T
O
A
D

122 TABLES

synsal
7

a[oA9
soejns

asuodsos
dung

a1uOsueIL
‘ST]

aIqeL

986710
SLECO

rsrs'0
OPor'0

I8LZ'0
ido

OOTSSE'T
OOLSPE

I
OSZI'0

00Sz'0
06850

18L7'0
€@

000676'T
O06PL6'1

OSZI'0
00S7Z'0

oror'0
90rE'0

tZ
O8Ssst‘O

OELEET'O
OSLE'0

00S7'0
Or9r'0

OSTEO
IZ

990600'0-
LI6€P0'0

OSZI‘0
OOSL‘O

OvIS‘0
T8LZ'°0

07
OTOLLE'O

OPOPLT'0
OSLE0

00S9°0
or9s'0

18ZZ'0
61

OZP9TI‘0
0L6980'0

OS7Z'0
OOSL'0

06850
18LZ°0

gI
OOOLET'O

1$8960'0
OSLI‘0

00SL'0
0685°0

90PE'0
LI

8Z007Z0'0-
7$7090'0

OS7Z'0
00s9'0

06850
1870

91
O%6EET

‘0
06061

‘0
OSLE0

ooss’0
oves’0

90rE'0
SI

90SZ€0'0-
O9STOT'O

OSLE'0
OOse'0

068¢°0
OSTEO

a
8806S0'0

OSZ8ET'0
Oste0

OOSL'0
OrOr'0

18270
El

€9LZL0'0
LOTTLO'O

Osz1'0
OOSL'O

ores'0
T€0€0

Zl
O1086€'0

0666Z€'0
OSLE0

OOSL'0
068r'0

18270
Il

060S9€'0
O8E9TZ'0

OSZI'0
00ss'0

OPor'o
1870

Ol
001906'I

O00€S6'T
OSZI'0

0
0
7
0

068r'0
I8LZ°0

6
O9Ssse'0

OZELOE'0
OSLE0

OOSL'0
OPOr'0

OSTEO
8

O€OSTT‘O
O€LSZI1°0

OSLE'0
00S7'0

OPor'0
90PE'0

L
OZ9887'0

OZSP9T'O
OSLZ'0

00S7'0
068S°0

90PE'0
9

OOZLZI'0
000601

‘0
OSLE'O

00S7'0
06850

18270
S

IL9TP0'0
ZZ1ZPO'O

OSLI'0
O0SL'0

Ob9r'0
90rE'0

4
OLOEST'O

OZE90T'0
Osz1‘0

ooss’0
068S'0

90P¢'0
€

Og0Esr’0
O8SZ8Pr'0

Osze0
00sz'0

068r'0
182470

z
9788L0'0

7S90S0'0
00SZ'0

000S"0
997S'0

p60E0
1

OSLE'0
00SL'0

06850
90PE'0

xeul
OSZI‘0

0
0
7
0

OP9r'0
18270

Ulu
Wy

‘Nd
‘faO

3
€3

z3
T3

ZAIOAD

123 TABLES

S}INSoI
¢
dJOAd

sdRJINs
ssuOdsai

dung
sTUOSUBIL

OT]
B
Q
V
L

€L8780'0
990€'0

OLES‘0
99750

r60E'0
ido

O61801'0
OZS8SOT'0

990€°0
61090

9TOr'0
v60E'0

€T
OOTOTT'O

OO8L0T‘O
990€'0

6L09'0
910S°0

69070
tz

OrrOst'0
0800810

169€°0
678r'0

91SP'0
61L7'0

IZ
OSES9T'O

OLP097'0
169€'0

6L09'0
99750

vr8T'0
0@

OI8E8T'O
O8S78Z'0

169€0
6L09'0

99@P'0
ry8Z'0

61
O€rhrr7'0

OL69~7'0
169¢'0

6L0S'0
910r'0

69¢7'0
SI

950880'0
L78%60'0

990€'0
62090

997S'0
vr87'0

Li
OIPSEI'0

O86EPT'0
990€'0

678S'0
910r'0

v6S70
91

OS988I'0
0789610

169€'0
6LSS'0

99Lr'0
P60€0

SI
O€LLLI'0

0999L1'0
169€'0

678r'0
910r'0

v60€0
rl

0968710
OIPEzl'0

9TEC0
6LSS'0

997S'0
69r7'0

El
S€7680'0

Z1L760'0
990€'0

678r'0
997S'0

61LZ'0
ZI

OrSZOI'0
80$660'0

9IEE0
6LSS‘0

997S'0
6967'0

Il
OZ890I'0

OS9LOT‘O
990€'0

6780
99%r'0

y60e0
Ol

O81691'0
OOSOLT‘O

169€0
678P'0

997$'0
69r7'0

6
O8€9€I'0

OISTEI‘0
169€'0

6Z8r'0
99750

69670
8

067E87'0
098887'0

169€'0
6L09'0

9970
69P7'0

L
161060'0

18€Z60'0
9I€E0

6c8r'0
997S'0

6967 'U
9

O99LZE'0
O9Ssze'0

169€°0
6L09'0

910r'0
69¢7'0

S
OZL99T‘O

OLE99T'0
990€'0

6400
910r'0

69070
4

0996910
OPP99T'O

I61€0
6780

99%'0
69P7'0

€
OOZEET'O

06P6Z1'0
BLEEO

pSrs'0
0r9r'0

18Z7'0
z

6LETSO'O
pS90S0'0

00$7'0
000s"0

99%S'0
760€'0

I
169€0

6L09'0
99750

P60E0
xeu

990€'0
678r'0

910r'0
69¢7'0

ul
We

‘NN
‘fdO

r3
€3

73
T
R

€ATOAO

124 TABLES

Sj[nsol
| ajoAo

soepns
osuodsoal

UZIsap
[lojsre

otuosuel],
“LTT

aTqey

0000T0'0
009900'0

009LSS
‘0

0084960
L106'0-

SLIS'I
0000'T-

6LYT
I

ido
879€60'0

0%Z160'0
09L186'0

OIL6S6'0
0000'T

0000°0
0000'Z

0
0
0
0

€Z
19€F00'0

OS €S00'0
OZ6S0T '0-

OS6Z0T
'0-

00007
000s '0

0000'I-
0000 'T-

wZ
9¢7L00'0

017900'0
TZPTLO'O

00L780'0
000$'0

0000'T-
000S'0-

0000°Z
1Z

ILL9€0'0
OSSL£€0'0

089908'0
OSOETS'0

0000'T-
0000'I

000S'0
000S‘0

0Z
965790'0

O71 €90'0
009L76'0

O0ZLS6'0
0000'I-

0000 'I-
0000°7

000s’!
61

L78€00'0
0187000

O€6ERT
‘0

O09S9T‘O
000s

I
0000'T-

0
0
0
0

0000'0
gI

¢S$0600'0
085600'0

OSLS8E'0
OLPR6E0

000$'0
0000'0

0000°0
000¢'0

LI
$616S0°0

OO0€190°0
O€089L'0

OIPE8L'0
0000'0

0000 'T-
0000°7

0
0
0
0

91
Lv€Z00'0

06L700'0
08681 1'0-

OZIEIT‘O-
0000'7

0000'0
000s'0-

0000
T-

SI
060700'0

O10P00'0
0£S807'0

O€8981'0
000$'0

0000'0
0000'I-

000S'I
rl

L69Z10°0
0091

10'0
OSS60E'0

OSENTE'0
0000'I

0000'0
0000'0

0000'0
El

9768100
0618100

OL6P8S'0
O8ZS6S'0

0000 'I-
0000'T

0000'T-
0000 'Z

ZI
SE%6S0'0

O1€6S0'0
OT98SL'0

O9E0LL'0
000

‘0-
000$‘0-

0000'T
000

I
I

9700S0'0
O€L670'0

OOTSIL‘0
OZPEOL'0

000
'0-

0000 'T-
0000'T

0000'°7
OI

S9STPO'0
089770'0

Osze9¢
0

008L9¢'0
000s$‘0

000s
‘0

0000'T
0000°I-

6
TZ@6810'0

O8IZ10'0
OPO0ZE'0

OSsZzI€0
000$'0

0000°2
0000 'T-

0000'I-
8

€69010'0
090010°0

OSsoCIr'0
O9STIP'0

0000'T
0000'T-

000s I
000S '0-

L
IZIZ10'0

O€PZ10'0
O6£S6E0

OSOP6E'0
0000'0

0000°2
0000

I-
000¢'0-

9
18LZS0'0

OS6ES0'0
06Z0PL'0

0061PL'0
0000'I-

0000°2
000s

0-
000$'0

¢
L1$900°0

OLT800'0
ZZ89L0'0-

0096r0'0-
0000'T

0000'T-
0000

I-
0000°Z

4
69SP10'0

06€r10'0
061207'0

06L861'0
0000°7

0000'T-
0000'T

0000 'T-
€

vL~L00'0
O€LL00°0

OS 18¢Z'0
O€%SIZ'O

0000'0
000¢'‘0-

000$
0"

0000'°7
z

OS0v00'0
O€EE00'0

OZISI1‘0-
OISLZT‘0-

000s'I
0000'T-

0000
I-

000¢'I
I

00007
0000°7

0000°7
00007

XB
0000'I-

0000'T-
0000

I-
0000'I-

ut
Ww

dao
WJ

TO
p32

€3
73

13
TAFIOAD

125 TABLES

s}nsal
Z ajoXo

soejins
osuodsal

usIsop
[lopste

suosURI],
:8' TT

aqe

0000100
0L6L00'0

OSL88S'0
0810650

7026
0-

ZL7S 1
O£T6'0-

PLLO'l
yo

709700'0
00Z2Z00'0

OL6LYb'O
0966¢r'0

L970"
StPl I

0000'T-
6LP1

I
EZ

709970'0
0669700

OOZ8LS'0
OSZPLS'0

L97S'0-
S%6EI

0000
I-

6Lrl'I
7

SOOLS0'0
OLLLSO'0

0168880
OLES8s'0

LOLT
I-

StPT'I
000s

‘0
67LL0

1Z
108620'0

OS€0€0'0
OS96SL'0

0966S2'0
LOLT I-

SLOT I
000¢'0-

67S
I

07
67L800'0

06€800'0
OI@ZzS'0

OzSZ7ZS'0
L9%S0-

SLIS'
0000’ I-

6TLLO
61

ZPOTZO'O
O801Z0'0

OL6PLS'0
O6£9LS'0

LIS9‘0-
Stl

0000'I-
677S I

gI
Z8S010'°0

OLE0I0'0
OLPSIS‘0

OSLrIs‘0
L9%S0-

StHI'I
0000

T-
6TL7'1

LI
S601 100

OLE0T0'0
O9SZrS

0
OrrlPs'0

LOLL 0-
StrLI

0000'I-
6277S I

91
6170600

O€TIr0'0
0S0769'0

086769'0
L9Z0'I-

S768 'I
0000 'T-

hat
SI

v€ZZ00'0-
060000'0

O€IL870
OL8E8T

0
LOS '0-

StY9
|

0000'7-
6775

I
rl

OrPOb0'0
O£OIr0'0

OSZErL'0
0676€L'0

LOLT I-
S768" I

0000 'T-
6L6E

I
€1

LE9LIO'O
OLO810'0

097S09'0
O8€S09'0

LOLL0-
SLIS'I

0000'I-
6LY1

I
ZI

EZLOIO'O
OL9010°0

09086r'0
090L6+'0

L9ZS‘0-
S768

000$ 'T-
6L68'0

I
L8r100'0

09€000'0
OSLLLEO

O6S9LE'0
LOLL'O-

S768
1

0000'°7-
62S

I
Ol

1€0¢€0'0
O€LS€0'0

OOS8LL'0
O8SLLL'0

LOLT
I-

S768"
000¢'0-

67LL'0
6

0L797Z0'0
0659200

0Z1ZZ9'0
OSL619'0

LOLL'0-
S76E I

0000
T-

6L6E
I

8
18SZZ0'0

OSZL20'0
OSEEZL'0

OSLSZL0
LOLTZ I-

S%68'T
0000'T-

6TLT
I

L
918900

007290'0
0669€8'0

OLI8E8'0
LOLT I~

SLOT I
0000°0

6CLT
I

9
97LP00'0

O€0E00'0
OSOI6E'0

O6EL6E0
LOTS

0-
SLOL I

0000'°7-
67S

I
S

€88EZ0'O
O81 €Z0'0

OPOLPL'0
O9Z6PL 0

LOLTI-
SLIS'T

000¢ '0-
6LYT

I
v

ILLS90°0
Ostr90'0

0S$678'0
O9ZI€8'0

LOLT I-
Str9'l

0000'0
67LL‘0

€
plLS€90'0

096€90'0
OS7ZH8'0

OL9TPB'0
LOLT I-

Strl'I
0000'0

6L6E 1
z

S066¢0'0
O€T0S0'0

OSZPPL'0
OL69¢L'0

LOLL'0-
StrT'I

00000
6TLLO

I
L97@S 0-

S768'T
000S'0

6cCS I
xe

LOLT I-
Str

T
000S

'7-
67LLO

uy
U4

do
Wey

10
pS

€2
z3

13
ZATIOAO

126 TABLES

synsal
¢ Joo

govjIns
osuodsal

UsISap
[IOJITe

otWOsURIL
‘6 TT

Q
e

0000TO'O
OLPOTO'0

OLSO0Z9'0
OrP079'0

€166 0"
Seep’ T

S108'0-
TELY I

ido
rIssoo'0

086000
OSP9PS'0

OZPLPS
‘0

9978'0-
Lrop'I

O8E0 'I-
LITLE

€&Z
9568r0'0

06L8r0'0
OIPZEL'0

OPTEEL'O
67860

O1Z9'T
O8Es'0-

9€86'0
ZZ

9EEPEO'O
OPTPEO'0

O€ELOL'0
OLOSOL'0

Ivl0'T-
O19

O88L'0-
LILU 1

IZ
OLTO€0'0

OISOEO'0
OIZOOL'0

OZ9€0L'0
Ipl0'I-

L68S'I
O88L'0-

WLU
I

Oz
06ZP10'0

OSZPIO'0
OrZ1S9'0

0901S9'0
IPl0'I-

0179
O88L'0-

9€86'0
61

ZEBIIO‘O
OZ9TT0'0

OZELI9'0
OP6ST9'0

1688'0-
096¢'I

0882 '0-
9€86'0

81
0Z8LZ0'0

OS6LZ0'0
O6S8IL0

06607L'0
Ipl0'T-

096¢'T
O8€es‘0-

9€86'0
LI

0996Z0'0
0€66Z0'0

07890L'0
OZOLOL'O

p076'0-
Seer

O8Es‘0-
9€86'0

91
I98€10'0

Oz8EI0'0
Orvi9so'0

OzLSS9°0
Iplo'l-

Seer’ T
0£99°0-

PLLO'l
SI

Z6S010'0
OZPOI0'0

OLS66S'0
O7Z66S'0

9978'0-
Seer’

O88L'0-
9€86'0

rl
T1OPr0'0

0907-00
OLOOOL'0

OSE00L'0
9978 '0-

Lyor'l
O8Es 0-

9€86'0
EI

666$7Z0'0
Ov8SZ0'0

OLLbS9'0
OSL¥S9'0

9978 '0-
Seer’ |

O88L'0-
66ET'I

ZI
SZ8PEO'O

OF9rE0'0
OZPZL9'0

O8ZI1L9°0
9978 '0-

O1z9'T
O88L'0-

9€86'0
Il

957800°0
OTS800'0

OlEr6s'0
O€ZH6S'0

6786 '0-
O1Z9'I

O8€0'I-
LILUI

ol
S8ZETO'0

0967Z10'0
0819190

OSOST9°O
p06 '0-

096
'T

O€16'0-
LILI

6
OLLLEO'O

0618€0'0
O19S89'0

O18L89°0
1688'0-

O1z9'T
O88L'0-

PLLO'l
8

OL8LP0'0
O78L70'0

OLZOEL'0
OIPOEL'0

6786 '0-
096¢' I

O8ES ‘0
66E1'I

L
ZLLLOO'O

OSLLUU'0
OZSELS ‘0

O60PLS
‘0

9978'0-
096P'T

O€16'0-
6r10'T

9
760800'0

OTLLO0'0
O6LSSs'0

OLOSss'0
9978'0-

O1z9'I
O€9T 'I-

66EI'I
S

61€900°0
0€9900'0

Orr6ss'0
0920950

9978 '0-
O1Z9'I

O8€0'I-
9€86'0

v
OLT0v0'0

OOTOr0'0
O9€EBEL'0

O8ISEL'0
IPl0'l-

sess'l
OBES ‘0-

6PI0'1
€

LLybeo'0
oosPe0'0

008ss9'0
OLZSS9'0

9978'0-
L689 1

O€16.0-
I
U

z
Sz7SS¥0'0

O8rSr0'0
OILEZL'0

O€PEZL'0
916 0-

Scer't
O8€S

‘0-
LLU

I
9978

0-
O1z9'T

O8€s
‘0

TILUT
xe

IPl0'I-
Seer’

O8B8Z I-
9€86°0

ur
Wy

ao
Wy

19
3

€2
z3

13
€ FIOAO

127 TABLES

SyNsal
p afoAo

aovyins
asuodsol

USISap
[lope

oUOsURLL
‘OT TT

q
e

0000T0'0
OTEOTO'O

OZEETI'O
068¢29'0

Srl0'T-
ZL7S 1

1vS3'0-
69€1 I

yo
9L.€600'°0

08S600'0
OSP9rs

0
O@PLPS ‘0

€166 0"
Seer'l

€568'0-
6P97

I
EZ

76817200
O€8TZ0'0

OIPZEL'O
OPIEEL ‘0

SrI0'I-
LUST

0F98'0-
697

I
a6

ILZI10'0
0601

100
O€ELOL'O

OTOSOL'O
6L96

0"
20b'I

0r98'0-
697

I
IZ

ELBETO'O
OI8€I0'0

OTZOOL'0
OZ9€0L'0

6L96 0"
L
U
I

€S68'0"
TILT I

07
089810'0

06¢810'0
OvZ1S9'0

0901590
€166'0"

ZL7S'I
S108'0-

66E1'T
61

OT8EI0'0
O89€10'0

OZELI9'0
OP6S19'0

6L96
0-

Seer'l
SL0L'0-

PLLO'!
81

O81 1P0'0
0971700

O6S8IL'0
06607L'0

Srl10'I-
ZLZS'I

SLOL'0-
6r97' I

LI
ZOETIO'O

O9€Z10°0
O7890L'0

OZOLOL'0
Sr10'I-

L
Z

I
Or98'0-

WLU
91

66£L70'0
O6ILZ0'0

OvI9S9°0
OZLSS9'0

S€86'0-
Z70P'I

8L0L'0-
697

I
SI

9791100
OSS110'0

OLS66S'0
07766$'0

SP10'I-
Lyor'l

S108'0-
avaal

rl
?66070'0

0960Z0'0
OLOOOL'O

OS€00L'0
Srl0'I-

LTS
I

SLOL'0-
PLLO'!

El
8ELSZO'0

OT8SZ0'0
OLLbS9'0

OSLPS9'0
6L96 0"

ZLZ
I

8LOL'0-
yLLO'l

ZI
S990€0'°0

OS60€0'0
OCPZL9'0

O8ZIL9'°0
6L96

0"
096'I

€0LL'0-
O€EZ I

Il
SPBPT0'0

OL6P7Z0'0
OLEP6S'O

O€7P6S'0
6L96 0"

OILE I
8L0L'0-

6P97' I
Ol

7S6010°0
000T

10'0
0819190

OSOST9'0
6L96 0"

LEST
0+98'0-

9801'T
6

STETIO‘
OSPT

100
O19¢89°0

OI8L89°0
1666

0-
096'T

€0LL'0-
PLLO'I

g
706700

O8LZ¥0'0
OLZOEL'0

OIPpOEL'0
6L96 0"

ZLZS'I
8LOL'0-

9EET I
L

9
6
7
7
0
0

0697Z0'0
UTSELS'O

O60PLS'0
6900'T-

Scer'l
8LOL'0-

p07
T

9
6>Pr10'0

O%Pr10'0
O6LSSS'0

OLOSSs'0
Sr10'I-

096r'I
€S68'0-

6y97
I

S
1€STIO00

0091
100

OPbP6SS'0
097095

0
6L96'0-

L6EE
I

8LOL‘0-
LILU

1
v

109€20'0
O19€Z0'0

O9EBEL'0
O8ISEL'0

6L96
0"

ZL7S'I
€S68'0"

697
I

€
ZS9ZI0'0

O€9Z10'0
oogss9'0

OLTSS9'0
Sr10I-

LOEE
I

O6€L'0-
6797 I

z
9L610'0

Or6170'0
OILEZL'0

O€PE7L 0
6L96'0"

096r'I
SLOL 0"

6r97
I

I
6L96

0"
ZL7S I

8LOL'0-
6p97

I
xe

Lvl0'I-
LOEE I

€S68'0-
PLLo't

ul
Wy

do
U4

719
p23

€3
z3

13
vATOAO

128 TABLES

sy[nsal
¢

ojoAd
soejins

asuodsal
UBIsep

[lope
omMOsURLL

CTT LT
age

000010'0
OSTOI0'0

8L717Z9°0
099029'0

917Z0'I-
OgEs I

SLL3‘0-
O€09'I

ido
OPLZ10'0

O€LZ10'0
O€SOr9'0

0
9
0
9
0

I8€0'l-
ZL7S I

LOES'0-
€09T'I

€Z
6068100

090610'0
090€99'0

06Z€99'0
Lvl0'I-

Sgss'l
LOE8'0-

€09T'T
7

€OE¥Z0'0
OLEPZ0'0

OZELI'O
OSTELI'O

€166.0-
O1z9'I

SLL8'0-
€09T'T

1Z
ISp110'0

OSPIIO0
OSIZE9'0

OLOZE9'O
I8€0'T-

L685
I

SLL80-
Z
Z

0%
978Z10'0

OSLZ10'°0
O1@zr9'0

OLLI¥9'0
18€0'I-

sess’
LOE8'0-

ZIZTT
61

686010'0
0L6010'0

076079'0
0060790

€166.0-
ZLZS'I

SLL3‘0-
Lyrt'l

gl
€9ZETO'0

O@ZEZO'0
0Z8789'0

067789'0
I8€0'I-

o1z9'!
LO€8'0-

Lyi t
LI

9€1020'0
0870200

O€00L9'0
OSLOL9'0

I8€0'l-
O1Z9'T

L698'0-
€09T'T

91
SOLETO'O

O£9€EI0'0
OPOLED'0

o1s9¢e9'0
€166'0-

096b'T
LOE8'0-

€091'1
SI

€rr610'0
OPvP610'0

0988S9'0
O016S9°0

€166 0-
O1z9'1

SLL8‘0-
rel

I
rl

ILO1T00
0801100

O€1979'0
O8LS7Z9'0

Lyl0'l-
ZLZS I

6198°0-
STS

€l
S€16Z0'0

0Z€6Z0'0
OSZL89'0

O8P889'0
€166'0-

OIZ9'T
LO€S'0-

S7S1
1

ral
SZLOTO'O

O8L010'0
08€979'0

OZILZ9'0
Ly10'T-

096¢'T
LO€3'0-

SZSI'I
I

LI9910°0
019910'0

080669'0
O€86r9'0

€166 0"
Secs

I
€9+8'0-

06711
Ol

SLZSZ0'0
O81S7Z0'0

0609L9'0
06LSL9'0

€166'0-
OIz9'I

L698'0-
€O091'I

6
8E6S10'°0

O€8ST0'0
OZ81S9'0

O8LIS9'0
€0€0'I-

L68S
I

SLL8‘0-
€O9T

I
8

Lv0610'0
006810°0

0612990
0Z999'0

€0€0'I-
OIZ9'T

€9-8'0"
velll

L
€08Z10'0

OPLZI0'0
O16PE9'0

O6rrE9'0
€166 0-

Les
I

LO€8'0-
r
e
l

9
S8LSZ0'0

069$70'0
0L6089'0

O166L9'0
£166 0-

O1zZ9'1
LO€8'0-

ZIZI'T
S

SEPOI0'0
OPSOI0'0

0ZL079'0
0L6079'0

€166'0-
ZLZSI

IvS8'0-
Pell

P
€1P6100

O€P610'0
014799'0

006799'0
Lvyl0T-

O1Z9'T
SLL8'0-

69€1'T
€

SIELZ'0
OOTLZ0°0

OP9889'0
O78L89'0

Lylo'l-
O1Z9'T

LOC8'0-
C091 'T

z
01802Z0'0

OvOTZO'O
OL6PL9'0

OL99L9'0
€0€0

I~
O1z9'I

LO€S‘0-
vEltl

I
£166 0-

O1Z9'
LO€8'0-

€09T'T
xeul

I8€0'I-
Seer

SLL8‘0-
pel

Ur
14

do
Wd

1D
p32

€3
73

13
¢$AIOAO

129 TABLES

Figure 1.1: Application of quasi-one-dimensional flow theory.

PIGURES 130

 1.8 rT tr TU TU TUE vt to TF Le ee ' Fr 4

1.6 ; Supersonic Branch an dees etre 4

c Subsonic Branch =
1.4 | J

i 7

£ 1.2 1
o L : 1

> 1 } 1

0.8 | Barge a
r oe ‘ —

0.6 weed a
r Supersonic Branch: ~*---..! i J
L BB 1

0.4 soa tau y sy Luray _i 44 tivtm-p-4- at 4 i

-0.2 0 0.2 0.4 °& 0.6 0.8 1 1.2

Distance Along Duct

Figure 1.2: Supersonic and subsonic branches of the exact solution to f,+g=0.

131 FIGURES

1 8 E TT TT T T_T TTT TT 7 TTT T_T-7 J

1.6 + wee J

1.4 i r eee

r dooee?™” 7

2B 1.2 f 1
oO - -

3 c 1
> 1 f

0.8

0.6 r ast Perso 1

0.4 Pop pout {44 4 4 1 4 4 14 4 rs |

-0.2 0 02 04 06 #£0.8 1 1.2

Distance Along Duct

Figure 1.3: Godunov solution to f,+g=0 computed on a 64 point grid.

FIGURES 132

1.8 tT t t t fT ? T q T qt qT Fo Ge tT c

i :

16 r ee

aa ine wn ‘ “S

1.2 £ t.
5 C

$ 1 f
r

0.8 F = 1

0.6 f i

0.4 C414 ii 4 _i 1 s 4 5 | tg +i iy Lay |

-0.2 0 02 04 06 08 1 1.2

Distance Along Duct

Figure 1.4: Artificial viscosity solution to f,+g=0 computed on a 64 point grid with

several values of a.

133 FIGURES

Figure 1.5: Design variable parameterization of the quasi-one-dimensional duct

FIGURES 134

 0.12 trgqd reese pee erp rrr pers. Gorge re a ee tre

 0.1

 0.08 .

0.06 \ neff !

 0.04

0.02 tS 1

go bi Et tit | | YY gf Nh daa i fiitiji ¢ i}

Ob
je

ct
iv

e
Fu
nc
ti
on

1 11 612 13 414 #15 #16 #17 = 1.8

Design Variable

Figure 1.6: Discontinuous objective function for the univariate case using the exact flow
solution and N = 32 and N = 64.

FIGURES 135

Figure 1.7: Plot of terms in summation (1.24) reveals that terms between shocks
dominate the summation.

FIGURES

0. 02 Jt qT 7 | U { t v qT TC 4 t ' ' 1 q qv qt tT ut TF J

t
0.015 5 Target Shock 1

r Position . 7

0.01 e. Computed Shock.
. 2 r Position 1

(u-—u)y AX

0.005 1
c 1

o- 7

-0.005 bo Lo prt pou | 1 J

-0.2 0.2 0.4 0.8 1

Distance Along Duct

Ob
je

ct
iv

e
Fu
nc
ti
on

0.12

0.1

0.08

0.06

0.04

0.02

F tT ¢ pr ¢ jj Tg. 7, UT Yeu y TU tt ot F ¢ 4 7

L i

r SS Sf

L NY / 4

\ J
\ y 4

| \ :

1 11 #12 13 14 #15 16 £1.73 1.8

Design Variable

Figure 1.8: Non-smooth objective function for the univariate case using the Godunov
flow solver for N = 64.

FIGURES 137

0.12 rErrtl rrrryprerryprrrs perid 'Yrdy Yeu g TT Gt

0.1

0.08 } 1

0.06 f A

HN 0.04 } \ 7 |

0.02 | Ne ea 7
\Z | go bi Lit ttt i itl tif jot ft tt Ltt

Ob
je

ct
iv

e
Fu

nc
ti

on

1 11612 13 14 #15 #16 #1.7 = 1.8

Design Variable

Figure 1.9: Non-smooth objective function for the univariate case using the artificial
viscosity flow solver for N = 64.

FIGURES 138

 0.12 tre vor? rire ted repryprrers YT Tt Tre?

3

 0.1

fo
 \

<
©

a 0.08

: PN fo: A \ L 2 0.06
a L A

a 0.04 r \ / :

0.02 + 1

0 r iit J tof a oo | ii tft J ji ft ijt ft j ji i ji fj i oe | 7

1 11 12 13 #214 #15 #16 #1.7 ~~ «1.8

Design Variable

Figure 1.10: Shock-fitted objective function for the univariate case using the exact
flow solver for N = 64.

FIGURES 139

xs Sonic Line

Figure 1.11: Schematic of interpolating the shock position and extrapolating left and

right velocities at the shock.

FIGURES 140

0.12 oY tf Trig TYrte tre TT tt rg ior PEerd

0.1 r 7

S L J & 0.08 > Lon nn
5 } NA So |

CL, - a

2 0.06 = [
‘3 [\ /
Q
Oo - -
2 0.04 r \ J PEER TS 0.02 |

QO besrrtrriitiiiitiiis biztrtirests tte Litt

1 1.1 12 1.3 1.4 1.5 1.6 1.7 1.8

Design Variable

Figure 1.12: Shock-fitted objective function for the univariate case using the Godunov
flow solver for N = 64.

FIGURES 141

 1.8 4 ' UJ ' q q tT 1 q UJ coo t q qt t { ' t

1.6 - 4
p AP ly | 1

1.4 F mn cog mn 4

> r sere :
= 1.2 |
3 c 1

"Oo i l :
> -_ Target | 7

0.8 | | — — - Computed J
Bry. Strained ‘

0.6 t > “~

0.4 Po {4 a , 4 4 a or on Lis |

-0.2 0 02 04 O06 0.8] 1.2
Distance Along Duct

Figure 1.13: Coordinate straining performed for a test case computed from an exact
solution.

FIGURES 142

O. 12 _ TTF FoF Ff Tous UT 7 Tu Tt 7 TT 7 ft e Tadd

r \ 1
0.1 } |

8 J:
3 0.08
2 \ /

fL, 4
2 0.06 + /

/ :

= 0.04 :
© L a

0.02 |

O i ii {1 te jt} t t41d 1 til Lidl} dit itl Lira |

1 211 #12 13 14 #15 16 41.7 «128
Design Variable

Figure 1.14: Coordinate-strained objective function for the univariate case using the
exact flow solver for N = 64.

FIGURES 143

 0.12 tT Pet torre oor oe pret turf f corre rT Ut roeod

: :
0.1 PA |

5 c \ 7 1
0.08 }

e 5 r 1
Ly - 4
© 0.06
B rT J
oO L 4 ‘=> 0.04
Oo r \ / :

0.02 | \ |

0 i Lt 114 Li jt Ldiif i tut Litt? Ltd l Lie}

1 211 #12 13 #14 #15 #16 41.7 1.8
Design Variable

Figure 1.15: Coordinate-strained objective function for the univariate case using the
Godunov flow solver for N = 64.

FIGURES 144

Ob
je
ct
iv
e

Fu
nc

ti
on

0.12

0.1

0.08

0.06

0.04

0.02 }

FIGURES

 Ln ae ee Tred Tet rye Tr Pre raga

[

[

\ [

12 #13 #14 #215 £16 = «1.7
Design Variable

Figure 1.16: Coordinate-strained objective function for the univariate case using the
artificial viscosity flow solver for N = 64.

1.8

Figure 2.2: Conjugate gradient optimization of a quadratic in two variables.

FIGURES 146

Figure 2.1: Steepest descent optimization of a quadratic in two variables.

FIGURES 147

Ar
ea

FIGURES

T
R
T
P
P
r
P
r
r
r
p
r
r
r
r
y
r
r
r
y

L
e

e
e

e
e

T
R
U

 —i__t__ L
E
R
R
E
L
E

P
E
L
E

te
rr

i
p
i
t
t

t
i
e

t
t
t

t
t

a

Figure 5.1: Initial and Target area distribution.

0.2 0.4 0.6 0.8
Distance Along Duct

1.2

148

Ve
lo
ci
ty

Figure 5.2: Initial and target velocity profiles using the exact flow solver.

FIGURES

 1.8 To

1.6 F peers 4

1.4 F i

1.2 5 1

1 £ |

0.8 f : :
C MES. 7

0.6 Pracceen

0.4 = i | a | a | {14

-0.2 0 0.2 0.4 0.6 0.8 1.2
Distance Along Duct

149

1 e 8 a % aT t to J v t 5 t é q 7 qT ' c t t ' q a

c 1
1 6 a of eo" ee =

r Pe - x
1

1 . 4 - se Somat - :

a janngtenrcent” 7 > - 4 4
#126 1

oS C :
© . 4
> 1

r - Target 7

0.8 - « Initial a
r "00, a 7

0.6 P
0888 Sueues

c | 1
O . 4 Lg Ltd Lot pi 4 ltd {| _ § Lk

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Distance Along Duct

Figure 5.3: Initial and target velocity profiles using the Godunov flow solver.

FIGURES 150

1 8 t } om tT UE ' T 7 qT ' ' t i T i i T qt c W

1.6 wfc 1

1.4 - eo” Set :

> [enngtaxrrt
a

£ 126 ss
2 - 1

> 1

0.8 F venoms 1
“06 x :

0.6 = * EE 7 a -

0. 4 a | a a | 144 a | Liu4 Lu 4

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Distance Along Duct

Figure 5.4: Initial and target velocity profiles using the artificial viscosity flow solver.

FIGURES 151

10°

10°
S
2 107
S
E 9 o 10
z
9 107

iS
© 19°73

107°

10°!
1.39 1.395 1.4 1.405 1.41

Design Variable

Figure 5.5: Expanded view of the shock-fitted objective function near the minimum.
Figure drawn with the exact flow solutions.

FIGURES 152

Sh
oc

k
Po
si
ti
on

Figure 5.6: Shock position variation with design variable (univariate case).

FIGURES

0.54

0.52

0.5

0.48

0.46

0.44

n
e

|
t
t

t
t

Tr
PF
r
d

1.38 1.4 1.42
Design Variable

153

1.615 a TTT er

[u .

1.61 Fone EN ceedevu rune

‘3 1.605 }— |
P ‘. ‘ "< 7

‘
1.6 -

GO wy

1.595 Po i i Lt i a

1.36 «1.38

0.72

0.715

0.71

0.705

0.7

1.42 1.44 1.46
Design Variable

Figure 5.7: Left and right velocity variation at the shock position with design variable
(univariate case).

FIGURES 154

Figure 7.1: Example of reduction and translation

the optimization cycles.
of the response surface region during

Re FIGURES
1

KX)

| >

x

FX)

(902g Geo™

>

X

Figure 8.1: Simple example demonstrating how point selection can effect the fidelity
of a response surface.

FIGURES 156

Figure 8.2: D-optimal set of points for P= Cy + G & + & +636" +046 &) +05 & ina
rectangular domain.

FIGURES 157

Figure 8.3: D-optimal set of points for a quadratic tensor product in two-dimensional
rectangular domain

FIGURES 158

 HEH HEE
D-optimal/center hybrid Center

He HEE
Diamond Interior

Figure 8.4: Possible designs for constructing a response surface in 2-D rectangular space.

FIGURES 159

Figure 8.5: Least squares representation in two dimensions shows that the error vector

Ac-z is perpendicular to the column space.

FIGURES 160

20

2
S 15
S
EB
Ay

S
Oa 10
D>

3
oD
O
dunt

Ax

Figure 9.1: Probability of designs being selected for parenting based on the rank in
a population of 10 designs.

FIGURES

 161

Parent 1 Parent 2

Mutation

Figure 9.2: Breeding of two parent designs to get one child design.

FIGURES 162

Ma
xl
AT
A|

7 10°

610°

510°

410°

310°

210°

110°

r 1
c 7

0 100 200 300 400 500 600
Generation

Figure 9.3: GA history of convergence to D-optimal set of points for fitting equation
8.3 in square domain

FIGURES 163

Figure 9.4: D-optimal set of points for fitting equation 9.6 in a general shaped domain.

FIGURES 164

Ma
xl
AT
AI

2 10"

1.5 10°°

1 10'°

5 10°

L i

CO

200 400 600 800 1000 1200 1400 1600
Generation

Figure 9.5: GA history of convergence to D-optimal set of points for fitting equation
9.6 in the general domain of figure 9.4.

FIGURES

a 5.00 —

A

2.00

aS Y

at—#_—- 2.00 pla 1.00 _rl<«—__ 2.00 —————>

Figure 10.1: Channel geometry.

FIGURES 166

 0.12 vt fF tf vt Fr tor sf roret yf 4 | ¢ tT fF

01 f
r

z 0.08 1

5 0.06 L Monogr hRf

Pon |
" 0.02 F / Me ™\\ 1

+ 3
(0.02 bets po 14 riyrtliy 4 44

-0.2 0 02 04 06 &£0.8] 1.2
Distance Along Bump

Figure 10.2: Shape functions for the inverse design of a bump in transonic channel flow.

FIGURES 167

Figure 10.3: Typical grid to generate the Euler solutions for transonic flow through the
channel.

FIGURES 168

Sane
ie

ce

Figure 10.4: Target pressure contours for Mach 0.8 flow through the channel.

FIGURES 169

0.07

0.065
S
oO

5 0.06
5
ee
© 0.055

‘3B

2g 2 0.05

0.045

0.04

: aaa
r 1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 10.5: One-dimensional cut through the design space of a bump in a channel of
transonic flow.

FIGURES 170

Figure 10.6: 3 of 6 shape functions for the transonic airfoil design problem.

FIGURES 171

Figure 10.7: 3 of 6 shape functions for the transonic airfoil design problem.

FIGURES 172

Figure 10.8: Typical grid to generate the Euler solutions for transonic flow over an

airfoil.

FIGURES 173

 0.12 eorgrit Te ee ne re fT een |

 — Objective Function
 0.1 f

0.08 Le

0.06 f Steg [Go

weeeeeee - Response Surface

Qu
al
it
y

of

De
si
gn

0.04 ‘ f
— ‘So Pad 4

_ . / -
a ‘“ ¢ ~_

0.02 * ts e “y a

— > o”

bee me 4
weep

0 ping Lappy tot ba a tl a ll

|

1 11 12 13 14 #15 16 #1.7 1.8

Design Variable

Figure 11.1: Response surface modeling the objective function of the one-dimensional
duct problem parameterized by one design variable.

FIGURES 174

Ob
je

ct
iv

e
Fu
nc
ti
on

Figure 11.2: Convergence history of the one-dimensional duct problem parameterized

by one design variable and optimized by response surfaces.

FIGURES 175

 —"

oo

4 7
4
 q

—

bo

—

e —
,

1.7 \ Lower Limit —
eeeeeeeee E 7

» ? \ Upper Limit [""~
Q J
"es 1.5 7
5 ‘ :
An ee “ 4

~

50 1
R143 / 1
A 2

—

a
)

a

v
i
d
d

T
T
T
T

o
r
t

T
U
T

St
T
i
e
r

| e
e

a
v
i
g

I)

- an

oo
 o

Figure 11.3: Convergence of the design variable for the one-dimensional duct problem
optimized by response surfaces.

FIGURES 176

fit
e
e
p
i
l

P
O
T

PP
r
e
r
t

 v
r
a
y

L
f

L
i
t
t

10°

Ma
x

|A
TA
I

TT
T
T

Tr
Tt
Tt

1
r
a
t
i
t
a
s
l

 10°

q
C
T
U
r
i
n
y

Led
P
i
t

t
i
t

10° 1 ! ! ! ! L i J 4 14

0 2000 4000 6000 8000 1 10°

Generation

Figure 11.4: GA history of convergence to D-optimal set of points for fitting a quadratic
in the region defined by (11.6).

FIGURES 177

Ma
x

IA
TA
I

0 2000 4000 6000 8000 1 10*

Generation

Figure 11.5: GA history of convergence to D-optimal set of points for fitting a quadratic
tensor product in the region defined by (11.6).

FIGURES 178

 | ee

f
o
o
t

1.6

p
o
p

t
t

1.4

1.2

p
o
p
c
p

p
o
r
e
r
e
r
e
p
p
p
e
r
p
e
t

p
a
e

i
d

|
a

 Ve
lo
ci
ty

i : 1 : . i

2 S
Eis

 06

 0.4 _ ee ee | | Loi : 1 i : po | to. 4 to

-0.2 0 0.2 04 0.6 0.8 I 1.2

Distance Along Duct

Figure 11.6: Response surface optimization result for the three design variable
parameterization of the duct shows the shocks aligned.

FIGURES 179

 10°

103 fb
- 107 IN
©

‘8 -5 NN 2 10 :

© 10 NO 5

& 107 : ‘5

S : _\ 10° -~ Switch to derivative-based a
10° optimization \ se , . x

10°°° pot a _| po | a oe | —__|__1_

0 5 10 15 20
Cycle

Figure 11.7: Convergence history of the one-dimensional duct problem parameterized
by three design variable and optimized by quadratic response surfaces
followed by derivative-based optimization.

FIGURES 180

Ob
je

ct
iv

e
Fu
nc
ti
on

FIGURES

10°

10°

10%

10°

10°

 Switch to derivative-based
optimization

Figure 11.8: Convergence history of the one-dimensional duct problem parameterized
by three design variable and optimized by quadratic tensor product
response surfaces followed by derivative-based optimization.

181

0.2 J v qT t T qT T C 7 ia ‘ ' i ' T i

T
i

a

|

 0.15

 0.1

S
oO —_

5 r
= L e r JN 1

o
>

s
OQ
— 2
©

0.05

r
T

Of

qT

Figure 11.9: Convergence history of the transonic bump problem optimized with
response surfaces.

FIGURES 182

—— 6, Lower Limit

—— , Upper Limit
. 0.5 1 1.5 2 2.5 3 3.5

——— 6, Lower Limit

Figure 11.10: Convergence of €, and € for the transonic bump problem optimized

by response surfaces.

FIGURES 183

1 Lr a |

WFP OG Fnrrnrnnn denne nnn arm 1

0.4 ee yet 1

0.2 Exortiies pope te brit

0.5 1.5 2 2.5 3 3.5

—_ g, Lower Limit

Figure 11.11: Convergence of &3 and &, for the transonic bump problem optimized
by response surfaces.

FIGURES 184

_ wn

T
T
T

y
t

T3

Target

Cycle 1 Design

L
t
t

T
r
y
s
t

L
i
@
£
2

t
s
i

C
r
t
 e

t

i
¢
f

T
U

g
T
T

0.2 0.4 0.6 0.8
Distance Along Bump

1 —

tw

Figure 11.12: Pressure distribution comparison between the first response cycle design
and the target.

FIGURES 185

a
oe
 i

|

Target

Cycle 2 Design

L.

lL

—

r

C

0.2 0.4 0.6 0.8
Distance Along Bump

Figure 11.13: Pressure distribution comparison between the second response cycle design

FIGURES

and the target.

186

 ' i)

15 = Target ts ;
- Cycle 3 Design ° :

1 £ at 1
, :

-0.5 tL ego |

5 : A

of it : 1

0.5 f

1 1 ii J 1 t {4

-0.2 0.2 04 06 0.8
Distance Along Bump

Figure 11.14: Pressure distribution comparison between the third response cycle design
and the target.

FIGURES 187

Sh
ap

e
He
ig
ht

0.16

0.12

0.08

0.04

i i qT ' ' F CE | t ' { { t t t Lc ee | |

r Target ;

wortecnee Cycle 1 Design }.—

/ N
/ \

-0.2 02 04 06 £408 1

Distance Along Bump

Figure 11.15: Design of the bump in the transonic channel flow after 1 response surface

FIGURES

cycle.

188

Sh
ap
e

He
ig
ht

0.16

0.12

0.08

0.04

i T ' t T Yr | tT ‘| qT ' c | C t v _

- Target 1

seeteceee Cycle 2 Design ft —

: :
-0.2 02 04 06 £08 1.2

Distance Along Bump

Figure 11.16: Design of the bump in the transonic channel flow after 2 response surface

FIGURES

cycles.

189

0.16 i 67 t 4 t t qt + ¢) ' YY 1 t | t 4 q | 4 1 u

}- Target 7

0.12 Loner fenenrnnenbane TTT - Cycle 3 Design |]

=
te i Ss .. |

‘D 0.08 So x

mn L / ‘ 1
2 J \
= 0.04
Y r -

0 a
=

L J
-0.04 __f___f__f l l i I I i | l l al l i fl I i i 1

02 0 O02 O04 06 O8 1 12
Distance Along Bump

Figure 11.17: Design of the bump in the transonic channel flow after 3 response surface
cycles.

FIGURES 190

T
r
t

L
i
t
t

c
e
e

p
e
e
]

e

p
i
t

 Cp

o (n
A

U
T

Te

e

T
r
t
 1 if if {te jf jt ji t. Lt

-0.2 0 02 04 06 08 1 1.2
Distance Along Bump

Figure 11.18: Pressure distribution comparison between the design with the lowest objective
function encountered during the response surface optimization and the target.

FIGURES 191

Sh
ap

e
He
ig
ht

 0.16 [a

0.12

TT TTT TT ydTtT ft

0.08

 0.04

0.6 0.8
Distance Along Bump

Figure 11.19: Design with the lowest objective function value encountered during the
response surface optimizaion of the transonic bump problem.

FIGURES 192

25

20

a 415
oO

g
OQ.

nw 10

5

0

[a

0 5 10 15 20 25
Processors

Figure 11.20: Speed-up with parallel computing of Euler solutions to the transonic bump
problem for response surface construction.

FIGURES 193

 1.2 t qt i qT q Li ' q t LT i a q q q qT i ' qT v

 0.8

 0.6

Ef
fi
ci
en
cy

 0.4

 0.2 QC tt tt

0 5 10 15 20 25
Processors

Figure 11.21: Efficiency with parallel computing of Euler solutions to the transonic bump
problem for response surface construction.

FIGURES 194

Li
ft

0.63

0.62

0.61

0.6

0.59

0.58

0.57

0.56

: / :
c a
r 7

7
C y 1

0 1 3 5 6

Figure 11.22: Convergence of the transonic airfoil design. Lift is computed at M = 0.75

anda = 0°.

FIGURES

weeeeeeee E ' Lower Limit

—— &,

uy

wneeeeee - g Upper Limit

eee eeeeee SS Lower Limit

af ——§
eaneeeee - g Upper Limit

Figure 11.23: Convergence of €, and €, for the transonic airfoil design optimized
tby response surfaces.

FIGURES

196

wee eee eee §, Lower Limit

—— , 53

a aeeeeee - g Upper Limit

wena eenee E 4 Lower Limit ——,

wee eeeeee G, Upper Limit

Figure 11.24: Convergence of & and &, for the transonic airfoil design optimized

tby response surfaces.

FIGURES

19

 0.6 ' 7 to oY y, EU aor of Yt tT toro? ' oY od

0.4

0.2

x/c

Figure 11.25: Optimized shape for an airfoil at M = 0.75, ~@=0".

FIGURES 198

Figure 11.26: Surface pressure distribution for optimized airfoil at M = 0.75, ~@ = 0°.

FIGURES 199

 Sa
ss

Figure 11.27: Pressure contours in flow field for optimized airfoil at M = 0.75, a@=0°.

FIGURE wm

200

APPENDIX
A

GRAMPS USER’S GUIDE

This appendix provides some instructions for using GRAMPS, the Genetic Re-

combination Algorithm for Multiple Point Selection. The input decks are explained

fully and some suggestions for parameter values are given. We recommend that the

example problems from the chapter 9 be check to make sure the code is running

properly. Due to the random function calls and the differences in compilers, recov-

ering the D-optimal results in exactly the reported number of generations is not

likely, however, the D-optimal solution should be recovered.

The information which allows GRAMPS to run different problems is read from

a series of input files. The main input deck contains all the information specific to

setting the GA parameters. The secondary file contains the data to describe the

region over which the D-optimal points are to be found. An example of the input

is shown

APPENDIX A

in below.

GRAMPSv1 INPUT DECK
written by R. Narducci

August, 199

Genetic Algorithm Parameters

Population Size No. of Gen. Total No. of A? A Evals.

5 10000 -1
Mutation Rate Random Number Seed
0.15 1001

+ ++ +— ++ + —} ++ +

Curve Fit Parameters
No. of Design DiniType of Curve No. of Pts in Fit No. of Coef.
7 1 54 36

201

APPENDIX A

f { J | __ |
TT tt OF | wT TT +

+

Design Space Description
Cubic Space (0/1)Pts/Limits (0/1) File Name

0 1 limit.dek
+ + + + —F + + “t

Output specification

Print Option File of D-opt Pts Convergence History

0 dv7c.pts dv7c.his

+ —- — —+ — —+ + +

To initiate GRAMPS in UNIX-based environments, type

gramps < filename

where filename is the name of the main input deck.

The input deck is entered as a formatted read, therefore it is critical that the

information stored in it is aligned correctly. Information is read in columns of 20

spaces wide. Each new piece of data should begin in column 1, 21, 41, or 61. The

information is read in 5 cards.

The first two cards contain the GA parameters. The first card contains the

population size, total number of generations and the maximum allowable evaluations

of |A!'A|. The population size for most problems should be in the order of 5 to 10.

Rarely should a problem contain more than 30 as large number of designs in the

population increases the chances of retaining large amounts of poor designs. The

GA will stop after the maximum number of generations has been reached or the

limit of |A? A| evaluations have been reached. The second card sets the mutation

rate and the random number seed. The mutation rate is the probability of a gene in

a string being mutated. As a rough rule of thumh, this number should be between

50-15%. The random number secd initializes the random number generator. Several

starts of the GA can be done for a specific problem by varying the random number

seed. This value should be a large, odd integer.

202

The next card sets the conditions of the GA for a desired response surface

type. The first number on the card tell the GA how many dimensions the design

space spans. The second number is a flag representing the desired type of response

surface. GRAMPS is preprogrammed for the following types of curves:

0.) f = e161 + colo +... + en€n + Cn41

1.) f =e1€? + croliée +... + eindién + 22 +... + conbrtn

C164 + cof. +... + Cn€n + Cn41

2.) f = (e161 + €2)(c3£1 + ca) or

f = (e141 + €2)(e3€1 + c4)(e5€1 + ce)

3.) f = (cr€f + cob +ca)(ca€f testi tes) or

f = (e167 + c2€1 +. 3)(ca€? + c5€1 + 6)(crEj + cgéi + c9)

4.) f = (ci€r + c2)(cs€j + ca€i + cs)

The next number represents the number of points wanted in the least-squares prob-

lem. The last number is the number of coefficients in the curve. This number must

be less than or equals to the previous.

The third card gives information pertaining to the description of the design

space. The first number flags whether the space is a hypercube or not. In other

words, if the flag equal 0 the genes will be represented as coordinates of the points in

the design space or otherwise if equal to 1 the genes will be represented by numbers

assigned to the points. There are two ways to input the points discretizing the

design space. Both ways need another data file. The first way (assign the flag to

0) is by giving a file with a list of points. The second way is to give the lower and

upper limits of the design space in each direction. More will be given on the format

of the data file later.

The final card sets the output option. The first is the print option to the screen.

Set equal to zero, all output to the screen is suppressed. Set equal to one, a history

APPENDIX A 203

of the max|A? A| and ave|A? A| for the population scrolls through the screen for each

generation. Set equal to two, gives a description of all designs in a population, and

the parents the design came from. This is a good option for visualizing the progress

of the GA. The next two pieces of information give the output file names. The first

file stores the D-optimal points; the second stores a history of the maximum and

average |A7 Al.

The file containing the design space description also has some specific formats.

When the design space is given as a set of limits, then the information is given in

a file as shown below

| | | | | | { tf

TT TT a oF i TT TT oT

GRAMPSv1 Design Space Limits Deck
written by R. Narducci

August, 1994
___| —__ i —__| | } j

Lower Limit Upper Limit No. of Levels
1.00 1.10 5
1.10 1.20 5

1.20 1.30 5
1.30 1.40 5
1.40 1.50 5
1.50 1.60 5

1.60 1.70 5

The first coluinn shows the lower limit, followed by the upper limit, followed by

the the number of points in the discretization of that direction. If the description

of the space is not a hypercube type then a list of points must be given. The first

line of the data file is the number if points representing the design space. The list of

points begins on line two. The coordinate of the points should appear in columns.

At the end of each line and intcger should appear. If the integer is 1, then the point

will be selected as a D-optimal point. If the integer is 0, then the point may of

may not be selected for curve fitting. Note that if points are preselected, the set of

points may not be truly D-optimal.

APPENDIX A 204

APPENDIX
B

GRAMPS FORTRAN CODE

The following is a listing of the genetic algorithm GRAMPS or Genetic Recom-

bination Algorithm for Multiple Point Selection. Several subroutines are omitted

because they are lengthy and readily available in other sources or they have copy-

right protection. Of those missing are the LAPACK subroutine dgeqr2.f which

performs QR factorization on a matrix, and sort.f which is found in Ref. 70 and

performs a ranking of an array of numbers.

program main

Co ee ae a a a re eee ee ee me ne me ee ea ee ee en ce ae nae ce ee en oe ce ce one en tae eo ee ie ee we

c Front end for the Genetic Recombination Algorithm code for
c Multiple Point Selection code. Last Update: 8-26-94
Cor ee ane me ne a ee em ee re ne ne re ee ee ee ce oe a a ee

(oe

c Type declarations
CO et ee ae ae a ee ee ee ae ee ee

integer piw, pw

parameter(piw = 232)
parameter(pw = 1292)

integer ndv, ifit, npts, npop, ngen, npool, iprint
integer igenes, ncoef, ireal8, iint, iw(piw), nfcn, ispace
integer piparl, pipar2, pipsp, piord, pitmp, pxpool, px, pxp
integer pxtemp, pxline, pd, pp, ppop, pkid, ptmp

real*8 w(pw)

character*30 convhis, ptsfile, desspace

oe

c Read Input Deck
(oe

call input(npop, ngen, nfcn, ndv, ifit, npts, ispace, npool,
. ncoef, iprint, igenes, desspace, ptsfile, convhis)

APPENDIX B 205

Q a a © Q ~ = eB 5 ® 1Q
 G wr

ry 8 3 tt

call calcmem(npop, npool, ndv, npts, ncoef, igenes, iint, ireal8)
if ((iint .gt. piw) .or. (ireal8 .gt. pw)) then

write(*,902) VP RMKKKEKKKEKHKEKERKEKEKECKEKEKKEKRKEKKKEKRKEEEKEKKEKKEE

write(*,901) 'The parameter piw must be at least:', iint
write(*,901) ‘The parameter pw must be at least: ', ireal8
write(*,902) ‘Adjust these parameters in main.f subroutine’
write(*,902) PH HKEEKEKKEKEKEKEKKEEEKEKKEEEEEKEEKEREEKEEKKEKEEKKEKKEKKEK

stop
end if

Ce ae cee ee ce re ae me ne ce ae a oe we ee ee eo oe ot

Cc Assign Pointers, Integers
CO er er ce ca re ae cre te ae ee ee ee re ee ae re ne ee ee ee

piparl = 1
pipar2 = piparl + npop
pipsp = pipar2 + npop
piord = pipsp + npool
pitmp = piord + npop

Ce ee cea ce cae oes cs ce oe ae ws ann ete Oe ow om one wD OOD OE om

c Assign Pointers, Real*8
CO a ar a sa eee a ee ee a ae ae ae we oe

pxpool = 1
px = pxpool + npool*ndv
pxp = px + npts*ncoef

pd = pxp + (npts-igenes/ndv) *ncoef

= pd + npop
Ppop = pp + npop
pkid = ppop + npop*igenes
pxtemp = pkid + npop*igenes
pxline = pxtemp + ndv
ptmp = pxline + ncoef

Call gramps(npop, ngen, nfcn, ndv, ifit, npts, ispace, npool,
. ncoef, iprint, igenes, desspace, ptsfile, convhis,
. iw(piparl), iw(pipar2), iw(pipsp), iw(piord), w(pxpool),

. w({pxX), w(pxp), w(pd), w(pp), w(ppop), w(pkid), w(pxtemp),

. w(pxline), w(ptmp))

901 format (a,i9)
902 format(a)

end

Cw a a wo we a i ae we a ae ec i ee ee ae oe oe ee a ee ee ne a ee ee ee ns Os a Oa ta ae ee cnn se Oe ee we oe we

subroutine input(npop, ngen, nfcn, iseed, ndv, ifit, npts, ispace,
. ifile, ncoef, iprint, xmut, desspace, ptsfile, convhis)

c This subroutine reads the input deck for GRAMPSvl
c
Cc eee eee ome OE ew ee ee SO ee ee Oe ee oe ee ee

c Variable Definitions
Cf mm ee te nes cnn ae ee me ee ee we a ee On ce es

APPENDIX B 206

= am oe ot 0 oe ow om OF 0 a oe ee

Input variables

npop
ngen

nfcn

xmut

iseed

ndv

ifit

npts
ncoef

ispace
ifile
desspace

iprint
ptsfile
convhis

q
g
q
a
a
a
d
q
a
g
a
a
g
q
a
a
g
a
a
g
a
a
g
a
a
g
a
a
d
g
a
a
d
g
a
a
a
a
g
a
a
g
a
a
a
n
a
a
n
a
a
a
g
a
a
a
n
a
a
a
n

a
a

a
a
 < © HK p » o Ee ® w g n~

No. of designs in a single generation (population)
No. of generations to run GA
Maximum No. of function evaluation to be done in GA
Mutation rate
Random number seed

No. of dimensions in design space
Type of function to describe the response surface

No. of points to be selected for D-optimality
No. of coefficients in polynomial used to describe

the response surface
Flag describing design space
Flag for design space representation
File containing design space description
Print option
File to contain D-optimal points
File to contain convergence history

integer npop, ngen, nfcn, iseed, ndv, ifit, npts, ncoef
integer ispace, ifile, iprint

real*8 x, xmut

character*30 desspace, ptsfile, convhis

character*72 temp

Q w) pe)

Q.

-

o Q
 ti

@O bs)

Qu

@ Hi

open (2, file = ‘gramps.dek', status = 'old')
read (2,901) temp
write(*,901) temp
read (2,901) temp
write(*,901) temp
read (2,901) temp
write(*,901) temp
read (2,901) temp

write(*,901) temp

APPENDIX B 207

c Reading GA Parameters

read (2,901) temp

write(*,901) temp
read (2,901) temp
write(*,901) temp

read (2,901) temp
write(*,901) temp
read (2,902) npop, ngen, nfcn

write(*,903) npop, ngen, nfcn
read (2,901) temp
write(*,901) temp
read (2,911) xmut, iseed
write(*,912) xmut, iseed

op Onn ame Gm om owe oe 0 Oe oe em Oe Om Om Oe Om ae Om oe oe 6m 8 oe 8 ee oe ee

q
a

read (2,901) temp
write(*,901) temp
read (2,901) temp
write(*,901) temp
read (2,901) temp
write(*,901) temp
read (2,904) ndv, ifit, npts, ncoef
write(*,905) ndv, ifit, npts, ncoef

Q wv

® m Q }.

3 WQ Oo

fi)

a fe
.

wQ
 a n ©
 p Q o 0 @ n Q 4 -

oo

c
t
 P-
 QO po

read (2,901) temp
write(*,901) temp
read (2,901) temp

write(*,901) temp
read (2,901) temp
write(*,901) temp
read (2,906) ispace, ifile, desspace

write(*,907) ispace, ifile, desspace

Q Ww © @ Q be
. oS Q
 QO & ct

9 & c
t
 ry

we

~~

© 3 Q p-

Hh

fu
e Q

c
t

ph ° ys w

read (2,901) temp
write(*,901) temp
read (2,901) temp
write(*,901) temp
read (2,901) temp
write(*,901) temp
read (2,908) iprint, ptsfile, convhis
write(*,909) iprint, ptsfile, convhis
read (2,901) temp
write(*,910) temp

close(2)

APPENDIX B 208

901
902
903
904
905
906
907
908
909
910
911
912

A
a
q
n
t
a
a
g
a
a
a
a
g
a
a
g
a
a
g
a
N
n
g
a
n
g
a
a
g
a
a
g
a
a
n
R
g
e
a
n
a
g
a
a
a
n
a
a
a
n
a
a
a
a
n
a
a
a
a
a
a

at ee ee Oe me Oe a ae ee ee ee ee ee ee ee

format (a)

format (3(i20))
format (3(i10,10x))
format (4(i20))
format (3(i10,10x),1i5)
format (2(i20),a20)
format (2(i10,10x),a20)
format (i20,a20,a20)
format (i10,10x,a20,a20)

format(a,//)
format (£20.10,120)
format (f10.4,10x

return

end

,i10)

subroutine limits(ifile, ndv, nlim, nxpool, nipsp, ilim, ipsp,
. ips, npool, xl, xu, xpool, despace)

This subroutine reads in the description of the design space or
computes it based on information from despace.

ipsp
ips
npool
ilim

xl

Working Array

APPENDIX B

Flag for design space representation
No. of dimensions in design space
Length of the arrays ilim, xl, xu
Dimension of array xpool

Dimension of array ipsp
File containing design space description

Array identifying preselected points
No. of preselected points
No. of points to pick D-optimal set from
Array of size (nlim) no. of discrete pts along the

ith design dimension
Array of size (nlim), lower limit of variables
Array of size (nlim), upper limit of variables
Array Of size (nxpool) containing description of

points in design space

209

CO ee ew ae ee ee ee

c i, j Counters
c temp Character temporary array

Cc
Co ow wee rn ee ee ce cr a ee ee ee ee en oe ee a et ee a a ee re en ee et ne ne eo a ee ee Oe ne oe ee 0 one ea ne

Co a eee ae er ee ee

Cc Variable Block
CO ee ce eo cre ae ee we eo

integer i, j, ifile, ndv, nxpool, nipsp, ilim(nlim), ipsp(nipsp)

integer ips, npool, nlim

real*8 xl(nlim), xu(nlim), xpool(nxpool)

character*30 despace
character*72 temp

Co ert ete eae cas ee ay ce ae ame ee eee cre ce atom ge come sem come ome one

c Initialize subroutine
Ce ae ae ca ee ae ae ae na ee a ee ee ate ee ee

open (3, file = despace, status = ‘old')
ips = 0

Ce ee ee re cae ee ec se a er ne cee cae eee ee ee ee ee

c Set up design space description
Cet oe aes Aa a ce Sa Sam at SON ne me ee ee a Se ee ON et wn a ee cae oe ame

if (ifile .eq. 0) then
read(3,*) npool
do 10 3 = 1, npool

read(3,*) (xpool((i-1)*npool+j), i = 1, ndv), ipsp(j)
ips = ips + ipsp(j)

10 continue
else

read(3,901) temp

read(3,901) temp
read(3,901) temp
read(3,901) temp
read(3,901) temp

read(3,901) temp

do 20 i= 1, ndv
read(3,*) x1(i), xu(i), ilim(i)

20 continue
do 30 i= 1, ndv

do 30 j = 0, ilim(i)-1l

xpool(j*ndvt+ti) = x1(i) - real(j)*(xl(i) - xu(i))/
real(ilim(i)-1)

30 continue
npool =
do 40 i

npool
40 continue

end if

1, ndv

npool*ilim(i) o
e

close(3)

901 format(a)

APPENDIX B 210

return

end

Cf Se eet ee eee ly mS SUES ta nD GED RS NA ins GE ENO NS SEES dey GT GORD aN tS SE GS ES SA GE ED GD GED SEN SE eed OS GED OOD Ene Oe MND OND GED SEEPS GD OY Gates GT GED GD OEY GD GE on on On ow on OE On

subroutine calcmem(ifile, npop, npool, ndv, npts, ncoef, ngenes,

. nlim, nxpool, nipsp, nint, nreal, despace)

This subroutines computes the necessary storage space to be
allocated for GRAMPS. This routine also computes the number
of genes to represent thD-optimal designs

ifile Flag for design space representation
npop No. of designs in a single generation (poplulation)
npool No. of points describing entire design space
ndv No. of dimensions in design space
npts No. of points to be selected for D-optimality
ncoef No. of coefficients in polynomial used to describe

the response surface
ngenes No. of genes representing each design
despace File containing design space description

output variables

nlim Length of the arrays ilim, xl, xu
nxpool Length of the array xpool
nipsp Length of the array ipsp
nint Amount of space to be allocated for integers
nreal Amount of space to be allocated for real*8

A
a
q
a
a
q
a
N
q
g
a
a
n
a
n
a
d
n
a
a
A
a
A
a
A
N
A
N
A
N
A
A
N
n
g
A
A
N
A
N
A
N
A
A
N
A
N
A
N
A
N
N
A
N
n
A
A
N
n
N
n
A
a
A
A
N
A
A
N
A
N
A
A
A

i, j counters
ctemp temporary character string
xtemp temporary real*8
itemp No. of discretized points in one design dimension
max Max no. of discretized points in a single design

dimension
Co me cr cee ee ae ee ee re cree oe cae ae ae me re ee ee 0 ee ee oe re st cae ee ee ee ns mn ome ae 0S ts ee te Oo ee ee ee ee ee ee te ee ee

Cc oe te ee oem oe On Oe me we OD Oe oe om

c Variable Block
Co ae eae cae eee et ee ce eee me eee emcee ee ene

integer ifile, npop, npool, ndv, npts, ncoef, ngenes
integer nlim, nxpool, nipsp, nint, nreal
integer i, j, itemp, max

real*8 xtemp

character*30 despace
character*72 ctemp

APPENDIX B 211

Qa Qa
 . & ct @ _
 ® 3 Q ct
 a Oo rh

@ | a he
 @ fH.
 5 m4 ~ “i £ 3 0 pe

 @ 3 Q fh S na ©

open(3, file = despace, status = ‘old')
if (ifile .eq. 0) then

read(3,*) npool
nlim =l1
nxpool = npool*ndv
hipsp = npool

else
max = 0

read(3,901) ctemp

read(3,901) ctemp
read(3,901) ctemp
read(3,901) ctemp
read(3,901) ctemp
read(3,901) ctemp
do 10 i= 1, ndv

read(3,*) xtemp, xtemp, itemp
if (itemp .gt. max) then

max = itemp
end if

10 continue
nlim = ndv
nxpool = max*ndv
nipsp = 1

end if

Co ar ee ee te we ae oe eee eee ee me oe ee we ee ee

c Compute number of Genes
Co mr ae a cae cnet te sae re ae cae ee ee Oe ee a ee ee me oe oe

ngenes = 0
if (ifile .eg. 0) then

do 20 i = 1, npool
read(3,*) (xtemp, j = 1, ndv), itemp
ngenes = ngenes + itemp

20 continue
ngenes = (npts - ngenes)*ndv

else
ngenes = npts*ndv

end if
close(3)

Co re ee se ce cre re oes em ee nee crn ce cane eee ne Sm ween ots Ot ete

c Compute integer memory
Co cr at ae ss ts Sat a eae em me a ST SY ce SD om a

nint = 1 + nlim + 3*npop + nipsp + npool

Co a ce eet ce ee oa a ee same On OD om es aD ee ee ote we me ene

c Compute real*8 memory
Co ce eet tr ane ee ce me ae en ee ew cet UE Seam mnt SOD Ore

nreal = ncoef*(2*npts — ngenes/ndv + 3) + 2*npop*(1 + ngenes) +
. ndv + nxpool + npool + 2*nlim + 2

c nreal = 100*nreal + 1000

APPENDIX B 212

901 format(a)
return
end

Ce re ce re a re cae ae ee ee ee te te a oe ne Swe eae ce em eee ee Oe care cae me Oa ee me Se sm ES OD aes ae Wilms Sm Se SSD en SOS Ne SO OO SND SED SE SD GOD SD GS SER SE NY SOY GUD Ente Some cee

subroutine gramps(npop, ngen, nfcn, iseed, ndv, ifit, npts,
. ispace, npool, nlim, nxpool, nipsp, ncoef, iprint,
. ig, ips, ifile, xmut, idim, ptsfile, convhis, iparl,

° ipar2, ipsp, iord, xpool, x, xp, d, p, pop, kid,
. xtemp, xline, ixdis, xdis, w)

This program implements a variation of the genetic algorithm
discussed in the paper by Furuya and Haftka entitled “Locating
Actuators for Vibration Suppression on Space Trusses by Genetic
Algorithms", ASME Winter Annual Meeting 1993. The purpose of
the code is to find a set of D-optimal points from a region.

=e om am om Oe et Oe om ow oe ey > Oe on oe oe oe

npop No. of designs in a single generation (population)
ngen No. of generations to run GA
nfcn Maximum No. of function evaluations to be done in GA
iseed Random number generator seed
ndv No. of dimensions in design space
ifit Type of function to describe the response surface
npts No. of points to be selected for D-optimality
ispace Flag describing design space

npool No. of points describing entire design space
nlim Length of array ilim
nxpool Length of array xpool

nipsp Length of array ipsp
ncoef No. of coefficients in polynomial used to describe

the response surface
iprint Print option
ig No. of genes representing each design
ips No. of preselected points
ifile Flag for design space representation
xmut Mutation rate

idim Array of dimension (nlim); No. of discrete pts
along the ith design dimension

ptsfile File to contain D-optimal points
conhis File to contain convergence history
xpool Array of dimension nxpool; contains points describing

design space

eos anes cnn Gee: cae nD ND Om OED OR GED Os oe UE ee oe

Working Variables

i, j, k, n, general counters Q
a
a
a
d
q
d
q
d
a
a
d
a
a
N
g
a
N
A
A
N
A
A
A
N
N
N
n
A
a
A
A
N
A
N
n
A
N
A
A
A
A
N
A
A
A
N
A
N
n
A
N
A
N
A
A
A
N
A
N
A
n
N
A
N
A
D
A

APPENDIX B 213

q
Q
a
g
a
n
q
a
g
a
a
g
a
a
g
a
a
a
d
a
a
N
a
R
a
a
N
a
a
a
A
a
A
a
N
n
A
a
A
A
A
N
a
A
N
n
A
A
N
n
A
N
A
N
n
A
N
A
A
N
A
N
A
N
n
A
N
A
N
n
A
N
a
N
g
A
A
A
N
A
N
n
A
A

a
a
a

kk, jj
cc
igen
ix
xr
rand
iparl
ipar2
ipsp

iord

ixdis

xdis

ow ae oe oe Oe ee > ee oe

counter for numbering coefficients
counter for numbering generation
random integer
random real*8

random number function
Array of dimension npop; contains lst parent i.d.
Array of dimension npop; contains 2nd parent i.d.

Array of dimension nipsp; contains id for pre-
selected points

Array of dimension npop; contains ranking of

population
Array of dimension npool; contain ranking for

mutation of general shape region
Array of dimension npool; contains distance info

for mutation of general shape region.
Array of dimension npts x ncoef; contains LS matrix
Array of dimension npts-ig/ndv x ncoef; contains

LS matrix for preselected points
Array of dimension npop; determinant of xTx for

each design in the species
Average determinant over the population
Array of dimension npop; contains probability

function
Array Of dimension npop x ig describing the current

population

Array of dimension npop x ig describing children
designs

Temporary array of length ndv

Array of length ncoef; contains a row of the LS
matrix

Work array
Temporary integer containing rank
Temporary integer of LAPACK subroutines
Temporary real*8 number

Number of combinations of points to be chosen from
pool

Pointer
Pointer
Pointer

evals, srand, rand, getxl, dgeqr2, sort

Written by Bob Narducci

Modified

Virginia Tech
1994 215 Randolph Hall
1995 Blacksburg, VA 24060

integer i, j, k, n, cc, jj, kk, ix, igen

APPENDIX B 214

integer npop, ngen, nfcn, iseed, ndv, ifit, npts, ispace, npool
integer nlim, nxpool, nipsp, ncoef, iprint, ig, ips, ifile

integer idim(nlim), iparl(npop), ipar2(npop), ipsp(nipsp)
integer iord(npop), ixdis(npool), irank, info
integer pwork, ptau, ptmp

real*8 xmut, xpool(nxpool), x(npts,ncoef), xp(npts~ig/ndv,ncoef)

real*8 d(npop), p(npop), aved, pop(npop,ig), kid(npop,ig)
real*8 xtemp(ndv), xline(ncoef), xdis(npool), rand, xr
real*8 denom, xnop, w(1)

character*30 convhis, ptsfile

Co ar rte am ec re se a me ee me ae ee a a ee oe eae ee ee me ee

c Initializing Code & Assign Pointers
Co a ee ne nce ee a ee ae ee een eH ee ee ny Hw ce YM ee Wh OOD ce WP me ce mn

pwork = 1
ptau = pwork + ncoef
ptmp = ptau + ncoef

open (3, file = convhis, status = ‘unknown')
open (7, file = ptsfile, status = ‘'unknown')

Ce a ce a a ee ee SE A SY De Sn ne SS ee SD

c Compute No. of Possible Combinations
CO rr te a nae ee ge SS es eS Meme ae ne Se ee A wR nO OO

call evals(npool, npts, ips, xnop)

Cet ee a a ee a ne me a nc a ee ee

c Computing Probability Function
Co ee cre cee care ane cee ce ne tne ce tee a ree See ee SO ee ee ee oe ee oe ee et ee ee ee ee

call srand(iseed)

denom = dreal(npop*(npop + 1))
p(1) = 0.0d0
do 20 i= 1, npop-1

p(itl) = p(i) + 2.0d0*dreal (npop+1-i)/denom
20 continue

Qa gy ‘a o a © 8 ct @ Q
 tg
 oO oS

ct

a

if (ips .ne. 0) then
n= 0
do 50 i= 1, npool

if (ipsp(i) -eq. 1) then
n=n+e+l1
do 30 j = 1, ndv

xtemp(j) = xpool((j-1)*npoolti)
30 continue

call getxl(ifit, ncoef, ndv, xtemp, xline)
do 40 3 = 1, ncoef

xp(n,j) = xline(j)
40 continue

end if

50 continue

APPENDIX B 215

q
a
a
Q
a
a
a
a

60

70

75

80

90

q
a

q
a
a
a

100

110

Random Selection of Initial Population. Genes are chosen
randomly, but parents are checked against having duplicate

points

do 90 n = 1, npop
iparl(n) = 0
ipar2(n) = 0

if (ifile .eq. 0) then
do 70 i= 0, npts-ips-1

iseed = iseed + 2
ir = int(npool*rand())+1
if (ipsp(ir) .eq. 1) goto 60
ado 70 j = 1, ndv

pop(n,i*ndv+j) = xpool((j-1)*npooltir)
continue

else

do 75 i= 0, npts-l
do 75 j = 1, ndv

iseed = iseed + 2

ir = int(idim(j)*rand())
pop(n,i*ndv+j) = xpool((ir-1)*ndv+j)

continue
end if
CHECK AGAINST DUPLICATE POINTS
do 90 i= 1, npts-ips-1

do 90 3 = itl, npts-ips
cc = 0

do 80 k = l, ndv

if (pop(n,(i-1)*ndvt+k) .eq. (pop(n,(j-1)*ndv+k)))
ce =cc +1

continue

if (cc .eq. ndv) goto 60
continue

Evaluate Objective Function for Entire Population
i.e. compute det |xTx|]

do 150 n = 1, npop

do 120 i = 1, npts-ips
do 100 j = 1, ndv

xtemp(j) = pop(n,(i-1)*ndvtj)
continue
call getxl(ifit, ncoef, ndv, xtemp, xline)

do 110 j = 1, ncoef
X(itips,j) = xline(j)

continue

APPENDIX B 216

120

130

q
a
a
q
a
a
a

140
150

Q

160

Qa

170

180

190

APPENDIX B

continue
do 130 i= 1, ips

do 130 j = 1, ncoef
x(i-3) = xp(i,j)

continue

Compute Det|xTx| via QR Factorization
Det |xTx| = Det|R|*2

call dgeqr2(npts, ncoef, x, npts, w(pwork), w(ptau), info)

d(n) = 1.0d0
do 140 i = 1, ncoef

d(n) = d(n)*x(i,i)*x(i,i)
continue

continue

ee ee cee SE ae eS eee cme ee ee me ee coe en ee es ee ee ee ee ee es One ee ee ee Oe ee oe

call sort(npop, d, iord)
aved = 0.0

do 160 j = 1, npop
aved = aved + d(j)

continue
aved = aved/dreal(npop)

om me ewe ee ee ne oe ee ee ee ee ee ee Oe oe ee oe ee oe oe

if (({igen .egq. 1) .or. (mod(dreal(igen),10) .eq. 0)) then
write(3,915) igen, d(iord(1)), aved

end if
if (iprint .eq. 1) then

write(*,915) igen, d(iord(1)), aved
else if (iprint .eq. 2) then

write(*,*)

write(*,*)
write(*,903) ‘GENERATION NUMBER: ', igen

write(*,904) ‘Child', ‘Genes '
do 170 i= 1, ndv*(npts-ips)-1

write(*,905) ' ‘
continue
write(*,906) 'Par. 1', ‘Par. 2', 'Rank', ‘Det'
do 190 i= 1, npop

do 180 j = 1, npop
if (iord(j) -.eq. i) then

irank = j
end if

continue
write(*,907) i

write(*,908) (pop(i,j), j = 1, ndv*(npts-ips))
write(*,909) iparl(i), ipar2(i), irank, d(i)

continue
write(*,910) ‘MAXIMUM DETERMINANT: ', d(iord(1))

217

220

N
a
a
 aA
A

240

260

270

APPENDIX B

write(*,910) ‘AVERAGE DETERMINANT: ', aved

end if

oe ee et ee en ne ne 0 ey Oe ee 8 ee ee 0 8 OS OD Ot > Se OS Yee 19 0 OD OD Oe ED Oe OO ED ee EE ee ey Oe i se Ee

Making Children Designs; Loop Over Population - 1

do 400 k = 1, npop-l
Ae me cee one eee san OES SE One we EEE EOD OS oD oo ee

iseed = iseed + 2
xr = rand()
do 220 i = 2, npop

if (xr .1t. p(i)) then
iparl(ktl) = iord(i-1)
goto 230

end if
continue
iparl(k+1) = iord(npop)

Selecting Parent #2
Parent 2 .ne. Parent 1

iseed = iseed + 2
xr = rand()

do 240 i = 2, npop
if (xr .lt. p(i)) then

ipar2(k+1) = iord(i-1)
if (ipar2(k+1l) .eq. iparl(kt1)) goto 230
goto 250

end if
continue
ipar2(k+1) = iord(npop)
if (ipar2(k+1) .eq. iparl(k+1)) goto 230

Creating Children (at least 1 gene from both parents)
cae Om mm cane GD owe ete Oe ne OS Sue aD Sie SUE Gee Oe CED OEE Cee SD ame ate ane Oe owe aes GD te OU: ee ae ee ee Om em 68D Sm em Oe ee gee OD Ore oe One en ts ee le ee

ne Oe OD eee AUP ae aap OD ED Gee Os Oe Ge om ene Oe Qe oe oe ee

iseed = iseed + 2
ir = int((ndv*(npts-—ips)-1)*rand()) + 1

do 260 i=1, ir
kid(k,i) = pop(iparl(k+1),i)

continue

do 270 i = ndv*(npts-ips), irtl, -1
kid(k,i) = pop(ipar2(k+1),i)

continue

MUTATIONS

do 280 i = 0, npts-ips-1

do 280 j = 1, ndv

275 iseed = iseed + 2
Xr = rand()
if (xr .1t. xmut) then

iseed = iseed + 2
if (ifile .eq. 0) then

ir = int(npool*rand()) + 1
if (ipsp(ir) .eq. 1) goto 275
kid(k,i*ndv+j) = xpool((j-1)*npooltir)

else
ir = int(idim(j)*rand(j))+1
kid(k,i*ndv+j) = xpool((ixr-1)*ndvt+j)

end if
end if

280 continue

c CHECK AGAIN DUPLICATE POINTS

do 295 i= 1, npts-ips-1
do 295 j = itl, npts-ips

cc = 0

do 290 kk = 1, ndv
if (kid(k, (i-1)*ndv+kk) .eq.

. (kid(k, (j-1) *ndv+kk)))

. cc =cc + 1

290 continue
if (cc .eq. ndv) goto 210

295 continue

else
Cf > eee ome oe oe ee 8 ee es ee ee es ee es

c General Design Space
CT ae ae on oa en cae a ee ce ca na ee ee ee et cnt ce ee ee ome

iseed = iseed + 2
ir = ndv*(int((npts-ips-1)*rand()) + 1)

do 300 i= 1, ir
kid(k,i) = pop(iparl(k+1),1i)

300 continue

do 310 i = ndv*(npts-ips), irt+l, -1
kid(k,i) = pop(ipar2(k+1),i)

310 continue

Cc MUTATIONS

do 380 i = 0, npts-ips-l
320 iseed = iseed + 2

KY = rand()
if (xr .1lt. xmut) then

iseed = iseed + 2
ir = int(npool*rand()) + 1
if (ipsp(ir) .eq. 1) goto 320
do 340 j = 1, ndv

kid(k,i*ndv+j) = xpool({(j-1)*npooltir)
340 continue

end if

APPENDIX B 219

380 continue

Cc CHECK AGAIN DUPLICATE POINTS

do 395 i= 1, npts-ips-1l
do 395 j = itl, npts-ips

cc = 0
do 390 kk = 1, ndv

if (kid(k,(i-1)*ndv+kk) .eq.
. (kid(k, (j-1) *ndv+kk)))
. ce =cc +1

390 continue
if (cc .eq. ndv) goto 210

395 continue

end if
400 continue

Co ee ee are ste ee ate ree ne a SS SO SE OS RE Oe Oa me He

Cc Update Generation (keep best parent, replace parents
c with children
Co cre ee me a ae ce ce ee me me ee a Ha ne en Se a Se Se Oe Oe ee ee OO Se A Sn a em

do 410 i = 1, ndv*(npts~ips)

pop(1,i) = pop(iord(1),i)
410 continue

do 420 i= 2, npop
do 420 j = 1, ndv*(npts-ips)

pop(i,j) = kid(i-1,j)

420 continue

500 continue

CO ne ee ae ee eee ce ae ca ee ee Oe cone ee On fam ate Sh er Sete WA Se ND We Se eu wn SO a Ome ne OE Se ew ee oe Ma Se Sat ee

c Evaluate Objective Function for the Final Generation
oe ee ee en ee

do 600 n = 1, npop

do 530 i= 1, ips

do 530 j = 1, ncoef

x(i,j) = xp(i,j)
530 continue

do 550 i = 1, npts-ips
do 570 j = 1, ndv

xtemp(j) = pop(n, (i-1)*ndv+j)
570 continue

call getxl(ifit, ncoef, ndv, xtemp, xline)
do 560 j = 1, ncoef

x(itips,j) = xline(j)
560 continue
550 continue

Co a a Ht A ee ee ee ee ete

c Compute Determinant
Co ee ct ee a a ce ea at a ce ae me ct es ee oe

call dgeqr2(npts, ncoef, x, npts, w(pwork), w(ptau), info)
d(n) = 1.0d0

APPENDIX B 220

590

do 590 i= 1, ncoef

d(n) = d(n)*x(i,i)*x(i,i)

continue

600 continue

a
Q

700

705

710

903
904
905
906
907
908
909
910
911

write(*,*)
write(*,911) 'THERE ARE ‘, xnop, ‘ COMBINATIONS’

write(*,911) ‘POOL OF ', real(npool), ' POINTS'
write(*,912) ‘POPULATION SIZE: ‘, npop
write(*,912) 'NO. OF GENERATIONS: ', ngen

write(*,913) ‘THE MAXIMUM DETERMINANT IS ', d(iord(1)),
. * USING POINTS'

if (ips .ne. 0) then
do 700 i = 1, npool

if (ipsp(i) -.eq. 1) then
write(*,914) (xpool((j-1)*npoolt+i), j
write(7,914) (xpool((j-1)*npool+i), j
write(7,*)
write(*,*)

end if
continue

end if

1, ndv)

1, ndv)

od

do 710 i= 1, npts-ips
do 705 j = 1, ndv

denom = pop(iord(1),(i-1)*ndv+j)
write(*,914) denom
write(7,914) denom

continue
write(*,*)
write(7,*)

continue
write(*,*)
close(3)
close(7)

format (a,5x,i3)
format (a5,2x,a8,$)

format(a,$)
format (1x,a6,1x,a6,2x,a4,3x,a3)

format(i5,$)
format (1x,f6.2,$)

format (1x,i6,1x,i6,4x,14,1x,1pel10.2)
format (a,1lpel10.2)
format (/a,lpel0.4,a)

APPENDIX B 221

912
913
914
915

a
a

e
a
a
a
d
n
a
a
a
n
a
a
g
a
a
g
a
a
n
a

q
a
g
a
g
q
a
a
a
d
n
n
a
a
n
a

0

10

format (a,i5)
format (a,lipel2.5,a/)
format (2x,f10.5,$)

format (2x, i6, 2x, 2(1pel10.4,2x))

end

me a cee come cre ge ane cee ee ee DD Oe ED ae. oem OE ee te I ae ee ee a ee ee Ee a ee DO ee OD OD es te ee Oe a ee ee ee om ee ee

subroutine evals(npool, npts, ips, Xx)

Computes the number of evaluations of xTx that would have to be
made if every combination were tried to find the D-optimal points

npool number of points to choose from
npts number of points to choose
ips number if preselected points

x number of combinations of (npts-ips) from npool

real*8 x

SOO CUD ne mm ee Se Om Ge ee Se ue CD eee me Oe UD One ee ee OD ED OOD me OD Re Oe Oy ee ee me ee ee es ew oe en a ee ee

x = 1.0d0
do 5 i= 2, npts-ips

x = x*dreal(i)
continue

x = 1.d0/x
do 10 i = npool-npts-2*ipst+1, npool-ips

x = x*dreal(i)
continue

return

end

APPENDIX B 222

subroutine getxi(ifit, ncoef, idim, x, xline)

c This subroutine computes a row of the least-squares matrix given

c one of the data points
c
CO ee ee cre ee ce ee ce ee ee oe ee te

c Variable Definition
CO ee res re coe ee om om ne ce ee ee oe ee em ee com

CO ee ee ee we re oe ee ee ee oe oe oe

c Input Variables
Ca ae ce cat cae a ae SP cate a Sa mm oo

c ifit Type of function to describe the response surface
c ncoef No. of coefficients in polynomial used to describe
c the response surface
c idim dimension of design space
c x Array of dimension idim; contains data point of
c row of least-squares matrix
c
Co ce ere ee cre ce as care ce ee ep oe ee me ee am

c Output Variables
CO at ar arn ee cee oe et oe oe re eet ee ee

c xline Array of dimension ncoef; contains value of row
c for least squares matrix
Co cee cee ee ce ee re ee oe ee see oe oe es ews

c Working Variables
Co a re eee cate em te ce ese ces em cate ne cee

c i, j, k counters

Cc cc counter identifying coefficient
Oe eee

[© ee

c Variable Block
Co rt ae cee cee cae ene en ee one eae an om oe me

integer i, j, k, cc, ifit, ncoef, idim

real*8 x(idim), xline(ncoef)

CO a ee ee ew ee we ow ow oe om ne er re re oe en 0 ts

c Construct row of matrix according to ifit
Ce am ee om ae te ome com re es Oem a com ca ere ae coe ome cae ms ee Oe os om ee oe ee es ae oe On ee tS ee ee eee ee

if (ifit .le. 1) then
cc = 0
if (ifit .eq. 1) then

Cc QUADRATIC TERMS

do 660 i= 1, idim

do 660 j = i, idim
cc = cc +1
xline(cc) = x(i) * x(j)

660 continue
end if

Cc LINEAR TERMS

do 670 i= 1, idim
cc =cc + l
xline(cc) = x(i)

670 continue
Cc CONSTANT

APPENDIX B 223

cc = cc + 1
xline(cc) = 1.0d0

else if (ifit .eq. 2) then
c FULL LINEAR

if (idim .eq. 2) then

cc = 0
do 674 i= 0, 1

do 674 j = 0, 1
cc =cc + 1
Xline(cc) = x(1)**i * x(2)**j

674 continue
else if (idim .eq. 3) then

cc = 0
do 684 i= 0, 1

do 684 j = 0, 1
do 684 k=0, 1

cc = cc + 1

xline(cc) = x(1)**i * x(2)**j * x(3)**k
684 continue

end if

else if (ifit .eq. 3) then
Cc FULL QUADRATIC

if (idim .eq. 2) then
cc = 0

do 675 i= 0, 2
do 675 j = 0,

cc = cc + 1

xline(cc) =
675 continue

else if (idim .eq. 3) then
cc = 0

do 685 i= 0, 2

x(1)**i * KX(2)**3

xline(cc) = x(1)**i * x(2)**} * x(3)**k
685 continue

end if
else if (ifit .eq. 4) then

xline(1) = x(1)*x(2)*x(2)
xline(2) = x(1)*x(2)
xline(3) = x(l)
xline(4) = x(2)*x(2)
xline(5) = x(2)
xline(6) = 1.d0

else if (ifit .eq. 5) then
xline(1) = x(1)}*x(1)*x(2)
xline(2) = x(1)*x(1)
xline(3) = x(1)*x(2)
xline(4) = x(1)
xline(5) = x(2)
xline(6) = 1.d0

end if
return
end

APPENDIX B 224

APPENDIX

C

ErICA USER’S GUIDE

ErICA or EuleR Inviscid Code for Aerodynamics is a two-dimensional Euler

solver for perfect gas flows. ErICA is written in FORTRAN 77 with a C front

end for dynamic memory allocation. It has been validated with a number of flows

from shock reflection problems to flow over transonic airfoils. The code features

a variety of boundary conditions to solve many, diverse types of flows. For exam-

ple, Dadone/Grossman tangency conditions assist in modeling flows around curved

surfaces. Far field boundary conditions are available to solve the small disturbance

potential equation for accurate estimations of the lift and drag of an airfoil. Nu-

merical stability of the code is achieved through upwind MUSCL differencing of

the flux. Riemann inflow/outflow conditions propagate information along charac-

teristic lines and also add numerical stability at the boundaries. Up to third-order

spatial accuracy can be achieved for solutions using the interpolating polynomial

in the upwind solver. ErICA also features a number of convergence accelerators

such as mesh sequencing and multigrid. For flows which do not contain stagnation

points, preconditioning is offered as an alternate convergence accelerator. ErICA’s

output is formatted for the immediate use in TECPLOT!™ or PLOT3D™™. Also

an unformatted solution file is generated for restart or data messaging.

This appendix is intended to explain how to use the code to run analyses for

two-dimensional problems. This includes a description of the set of four data files

useful for running the code.

APPENDIX C 225

C.1 ErICA’s Main Input Deck

ErICA is driven from a series of files which describe the flow problem. The

main input deck supplies general information of the problem and how the problem

will be solved by ErICA. A file containing the computational grid serves to describe

the geometry of the problem. For many problems these files will be enough to run

ErICA. If one or more of the boundaries require user specific information, then a

third file is required to furnish this information. Also, the code can be “warm-

started,” through a restart file.

The code is run on UNIX-based systems by typing

erica < filename

where filename refers to the name of the main input deck. The grid, boundary and

restart file names are supplied to ErICA through the main input deck.

The main input deck is designed to allow the user to run of variety of aerody-

namic problems at various conditions with minimal effort involved in setting up the

problem. The file is segmented into nine sections: reference quantities, free stream

and gas constants, initialization, grid data, time integration, boundary condition

flags, spatial accuracy, residual smoothing, mesh sequencing, multigrid, and output

flags. These sections are listed below with a brief description. All dimensional vari-

ables must be entered using the SI system with angles represented in degrees. A

sample input deck follows. It is important to follow the sample deck carefully as all

the quantities are read with format statements.

Reference Quantities

Calculations for numerically solving the two-dimensional Euler equations are

performed using a non-dimensional system using a reference velocity, temperature

APPENDIX C 226

and pressure. Choosing these to be numerically equal to one results in dimensional

calculations. It is possible to reduce round-off error by choosing the reference con-

ditions so that the non-dimensional flow variables are all of the same order. The

non-dimensionalization scheme used preserves the forms of the governing equations

as well as the ideal gas equation of state. The format statement for this card is

(3(£10.3)).

Free Stream Conditions and Gas Constants

The free stream state is specified using Mach number, angle of attack, temper-

ature and pressure. ErICA uses the gas constant, R, and the ratio of specific heats,

g, to relate thermodynamic properties. Here g is assumed constant over all possible

ranges of temperature. These constants are available for common gases in several

sources, e.g. The Handbook of Chemistry and Physics published by CRC Press.

For air, these constants are 287 J/(kg k) and 1.4 respectively. The format for this

card is (6(f10.3)).

Initialization

ErICA can be initialized to either a free stream state or a general state described

through a restart file. The free stream/restart flag should be set to 0 for a start

from free stream or 1 for a restart. Following the free stream/restart flag is the

name of the restart file (under 20 characters). If no restart file is needed, this space

should read ‘none’. The format for this card is (110,20x,a20).

Grid Data

This section supplies ErICA with information on how to interpret the grid. The

size of the grid is indicated by the first two numbers. The next two numbers must

APPENDIX C 227

be set to zero unless ErICA is to solve the flow around an airfoil using a C-grid.

In this specific case these numbers indicate the j-indices of the trailing edge (lower

and upper surface). Next the file containing the grid points is specified. The format

for this card is (4(110),a20).

Time Integration

Here, the user specifies six quantities associated with the time marching inte-

gration. The first is the maximum number of iterations ErICA will perform. After

this amount, integration will stop and ErICA will exit normally, generating restart

and output files. The next integer is the CFL flag. If set to 0, the time integra-

tion is performed with the constant time step indicated by the next number. If

1 is specified, the integration is performed with the constant CFL defined by the

fourth number. If the CFL flag is 0, the CFL is ignored, else the time step is

ignored. A steady state solution has been reached when the normalized residual

is equal to zero. ErICA will stop time marching when it has reached 0 to within

the user specified stopping tolerance given by the next number. With the correct

conditions ErICA is capable of reaching a double precision machine zero stopping

tolerance, but many times such a tight tolerance is not needed. The final number

specified in this section dictates the tine integration method. If 0, ErICA will use

an implicit approximate factorization method. If between 1 and 4, ErICA will do

that many stages of Runge-Kutta explicit iterations. The format for this card is

(110,i10,3(£10.3),i10).

Boundary Conditions

The next set of flags refers to the conditions to be enforced on each boundary

of the computational domain. The conditions are specified for each boundary in

APPENDIX C 298

the order of j = 1, 7 = jdim, k = 1, and k = kdim. The condition type is set by

assigning the corresponding integer to the boundary:

0.)

1.)

2.)

3.)

4.)

5.)

6.)

7.)

8.)

9.)

10.)

free stream

extrapolate all

fix at specified values

tangency (Dadone/Grossman)

subsonic inflow/outflow

cut-line with tangency (Dadone/Grossman)

Riemann Invariants

tangency (symmetry technique)

cut-line with tangency (symmetry technique)

airfoil far field (kdim only)

cut-line

If any or all boundary conditions are set to 2, the name of the data file con-

taining the user specified values must be given (one file for any and all boundaries).

If no file is necessary, this space should read ‘none.’ The format for this card is

(4(i10),a20).

Spatial Accuracy

Spatial accuracy is set by choosing values for phi and kappa. With phi = 0, the

solution will be first-order throughout. Phi = 1 and kappa = 1/3 yields a globally

third-order solution. Limiters can be turned on to remove unwanted oscillations

near large gradients by making the solutions locally first-order. The choices for the

limiters are

APPENDIX C 229

0.) no limiter

1.) minmod applied to primitive variables

2.) minmod applied to characteristic variables

3.) Van Albada applied to primitive variables

The next flag toggles the entropy modification routine. If set to 0, no entropy

modification is done; if set to 1, the entropy near stagnation points and points where

the velocity reaches the speed of sound will be slightly modified to avoid standing

expansion fans. The format for this card is (£10.3,f10.7,4(i10)).

Residual Smoothing

The residual smoothing flag, when set to 1 will average the residual of a cell to

surrounding neighbors weighted according to a parameter epsilon. Convergence for

certain problems can improve when the residual is smoothed. The next number is

epsilon and should be of the order of 0.5. The format for this card is (i10,f10.5).

Mesh Sequencing

Mesh sequencing is a technique whereby time integration to steady state begins

with using coarse grids. Iterations on coarse grids are cheaper to perform and can

have significant time savings. ErICA is capable of a three level mesh sequence,

provided the grid meets certain specifications. For a two level mesh sequence, all

the grid dimensions (jdim, kdim, TE#:1, TE#2) must satisfy the condition

mod(grid dimension + 1,2) = 0.

Three levels are permitted provided all grid dimensions satisfy

mod(grid dimension + 3,4) = 0.

APPENDIX C 230

The first number in this section of the input deck specifies the levels of mesh se-

quencing desired. If neither of the above conditions can be met, this number must

be zero, otherwise it is set to the number of levels minus one. The next two num-

bers, ims(1) and ims(2), indicate how many iterations are performed on the lower

and medium levels. If one level is performed, ims(1) must be set to 0. If mesh

sequencing is not used, these numbers are ignored. The format for this card is

(4(i10)).

Multigrid

Multigrid is an convergence acceleration technique whereby several grids of

varying density are used in a cycle. For more details on multigrid schemes see

Ref. 1. Up to three levels of grids are available provided the same conditions for

mesh sequencing are met. If two level multigrid is used, a cycle consists of fine grid

iterations followed by medium grid iterations followed by fine grid iterations. If three

level multigrid is used, a cycle consists of fine grid iterations, followed by medium

grid iterations, followed by coarse grid iterations followed by fine grid iterations.

Each cycle makes up one global time iteration. The first number in this section is

the number of multigrid levels minus one. The next four numbers, indicate how

many iterations on each level will be performed during the multigrid cycle. These

numbers are ignored if the multigrid option is not chosen. The format for this card

is (5(i10)).

Output

The output section is broken into three parts. The first part contains three

flags. The first flag, if 0 will print the solution at cell centers, or if 1 will print the

solution at the grid points. The next flag formats the output file for TECPLOT7™

APPENDIX C 231

(0) or PLOT3D?™ (1) applications. The next flag if 0 suppresses all output to the

screen. If 1, then a residual history is written to the screen. The format for this

card is (110,10x,i10,10x,i10).

The residual is sent to the screen or a file at a frequency corresponding to the

first number in this section. For example, if the frequency is 10, the residual history

is updated every 10 iterations. The next piece of information is the name of the file

to contain the residual history. The format for this card is (i10,20x,a20).

Output and restart files are generated at a frequency corresponding the first

number in this section. The next two pieces of data are the name of the output and

restart file to be generated. The format for this card is (i10,20x,2(a20)).

The main input deck is shown below

 + + ErICA Deck + —t +

written by Bob Narducci - June, 1994
Version 1.0

+ + ++ + t + —t +

Reference Quantities
Vref Tref Pref (SI units)
374.16 348.43 l.e+5

1 { | { { | | I
f

oe tT wv Tt a 4 TT

Free Stream Conditions/Gas Quantities

Mach AOA ‘Temp _ Pressure Gamma Gas Constant

0.75 0.00 348.43 le+5 1.4 287.0

+ 7 — + + 7 —t +
Initialization

Freestream/Restart file Restart Filename

0 des2.rst
+ + —- + +— + —h +

Grid Data
jdim kdim T.E.#1 T.E.#42 Filename

201 53 41 161 ../ AIRFOIL /des2.grd

+ 4 “+ + + bh ++ ++
Time Integration

maxiter CFL Flagleltat CFL Stop Tol imp/R-K stages
2 1 5.0d-5 30.0 1.0d-6 0

+ + — + + + + —
Boundary Condition Flags

APPENDIX C 232

j=0 j=jdimk=0 k=kdimFilename

9 5

9 9 none

Spatial Accuracy

phi kappa limiter Flux Ent Fix Precond.

1.0 33333333 0 0 0

Residual Smoothing

On/Off epsilon

0 0.5

Mesh Sequencing

levels CG Iter. MG Iter CG MG Iter

2 200 100 0

Multigrid

levels FG Cycl MG CyclCG Cycl FG Cycl

0 2 3 10 1

Output

Cell Ctr/Grid Pts Tecplot/Plot3d Output to Screen

1 0 1

Freq. Resid sent to file Residual Filename

1 des2.res2

Freq. output files are Gen. Solution FilenameRestart Filename
20 des2.out des2.rst2

+ + + —+ + ++ + +

C.2 Grid File

The grid file consists of two columns which make up the (x,y) pairs of grid

points. The file is read using the following FORTRAN lines

do 300 j = 1, jdim
do 200 k = 1, kdim

read(12,*) x(j,k), yG,k)
200 continue

300 continue

APPENDIX C 233

C.3 Boundary Condition File

The boundary condition file allows point by point specification of the density, z-

and y-components of the velocity, and pressure along the edges of the flow domain..

The flow state must be specified for every cell of each boundary flagged with a 2

in the boundary condition section of the main input deck. ErICA is prepared to

read in the data starting with the 7 = 1 boundary (if necessary), then the j = jdim

boundary (if necessary), followed by the k = 1 boundary (if necessary), and finally

the k = kdim. (if necessary). The file is read using the following FORTRAN line

read(12,*) qbe1(i,1), qbc1(i,2), qbc1(i,3), qbc1(i,4)

C.4 Restart File |

The restart file allows ErICA to be warm started. The restart file generated

by ErICA can be used without modification to continue iterations to steady state.

The file is read using the following FORTRAN lines

read(*) nlast, norm1
do 100 i = 1, ivol

read(*) (q(i,n), n = 1, 4)
100 continue

The first line of the file contains the previous iteration number and the value of

the normalized residual using free stream conditions. These values are not critical

in obtaining a solution. If nlast and norm! are not available, they should be set to

one.

APPENDIX C 234

VITA

The author was born in Worcester, Massachusetts on April 22, 1968. In 1976,

his family moved to the suburbs of Philadelphia, where he became an avid Phillies

fan. He attended Haverford High School specializing in Science and Mathematics.

In Chemistry class, on January 28, 1986, moments after the Challenger explosion,

the Robert decided to pursue a career in aerospace engineering. After completing

his secondary education in 1986, Robert attend Virginia Tech where he majored

in Aerospace and Ocean Engineering. While working on his Bachelors of Science

degree, he participated in the Cooperative Education program, working as a project

engineer at the Naval Air Test Center in Patuxent River, Maryland. After gradu-

ating in 1991 with dual degrees in Aerospace Engineering and Ocean Engineering,

Robert entered the graduate school at Virginia Tech. On July 18, 1993, he married

Erika Markussen. Robert is currently employed with McDonnell-Douglas Aerospace

in Long Beach, California.

VITA 230

