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(ABSTRACT) 

This work addresses many problems associated with designing aerodynamic 

shapes using computational fluid dynamics (CFD) codes. The investigation focuses 

in the transonic flow regime where shock waves may have an adverse effect on the 

convergence of the optimization process. In particular, the interaction of the flow 

discontinuity with the discrete representation of the design problem may cause the 

objective function to be non-smooth. Methods for robust optimization of the non- 

smooth functions are presented. 

The dissertation is divided into two parts, The first part investigates a simple 

model problem involving quasi-one-dimensional flow in a duct. The flow field com- 

putation is simple and contains many of the elements present in more complicated 

fluid flow problems. The optimization involves finding the cross-sectional area dis- 

tribution of a duct that produces velocities which closely match a targeted velocity 

distribution containing a shock wave. The objective function which quantifies the 

difference between the targeted and calculated velocity distribution becomes non- 

smooth due to the presence of the shock in the discretized field. Two techniques for 

derivative-based optimization are offered to resolve the difficulties associated with 

the non-smoothness of the objective function. The first technique, shock-fitting, 

involves careful integration of the objective function through the shock wave. The 

second technique, coordinate straining with shock penalty, uses a coordinate trans- 

formation to align the calculated shock with the target and then adds a penalty



proportional to the square of the distance between shocks. These techniques are 

evaluated and tested using several methods to compute the derivatives, including 

finite-differences, direct and adjoint methods. 

The above two techniques rely on accurate estimations of the shock position, 

which may not be available for the general case. In the second part of the dis- 

sertation, we present an optimization method to solve the difficult model design 

problem requiring no information about the shock. The optimization begins with 

the construction of a response surface that smoothly approximates the objective 

function. Here the response surface is a least squares polynomial fit to carefully 

selected design points. By minimizing the response surface we can obtain a first 

guess for a reasonable design. Optimization may continue in one of two ways. In the 

first method, we probe a small region of the design space around the minimum and 

perform another response surface minimization. In the second method we switch to 

a derivative-based method assuming that in the small region around the minimum 

the function is smooth. In addition to the one-dimensional duct problem, two other 

shape design problems involving two-dimensional flow are solved to demonstrate the 

efficacy and robustness of the response surface method. One involves the inverse 

design of a bump in a transonic channel flow. The other involves the design of an 

airfoil for transonic flight.
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INTRODUCTION 
  

Shape optimization problems in aerodynamics have recently captured the 

interest of many researchers as solutions to fluid dynamics problems have be- 

come less computationally restrictive. The increase in computational efficiency 

can be attributed to the incorporation of new procedures such as multigrid’ and 

preconditioning,” but also to computer improvements, such as the development of 

parallel machines. These advances have lead to many new methods to solve the 

design problem as flow solutions for many different configurations are available to 

the designer. Our work here focuses on the modification of existing design proce- 

dures and the implementation of a response surface method applied to transonic 

flow design problems involving shock waves. 

Design problems can be categorized into two main types, inverse and direct. Of 

the inverse type, we speak of flow field design and surface flow design. The flow field 

design problem is formulated by specifying some feature throughout the flow, e.g. 

a shock-free flow. The solution describes the shape of the solid boundary such that 

the flow field satisfies the condition specified. The best known method for flow field 

design is the hodograph method applied to two-dimensional, transonic, shock-free 

airfoils.*—!! This method transforms the partial differential equations governing po- 

tential flow to the hodograph plane, where they appear as linear equations. Then, 

by superposition of simple solutions, complex, shockless flows are constructed. Al- 

though some excellent airfoils have been designed by this method, some “optimized” 

shapes have been known to have open or fish-tail trailing edges. 

Another flow field design method for transonic, shock-free airfoils is the ficti- 

tious gas method invented by Sobiesczky et al..!2 This method uses a false density- 

Mach number relation in regions where the flow would be supersonic. The fictitious 
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relation is defined such that the flow is subsonic in this region, eliminating the pos- 

sibility for the existence of shocks. Along the sonic line the governing equations for 

both regions (the isentropic region and the fictitious gas domain) are satisfied. By 

reverting to the normal isentropic relation in the fictitious gas region, the new airfoil 

shape is determined by forcing the stream function to have a constant value every- 

where along the airfoil surface. The fictitious gas method is easier to implement 

than the hodograph method and does not suffer from designs with open or fish-tail 

trailing edges. Applications of this method can be found in references 13-17. 

Surface flow design is the more common approach to inverse design and more 

work has been done with this problem than the flow field design type. In surface flow 

design, some aerodynamic quantity is specified along a boundary, e.g. pressure on 

an airfoil surface. The solution to the problem describes the shape of the boundary 

that will generate the specified distribution. The list of literature involving shape 

design via surface flow specification in very long. Progress in this field is well 

1,18 and more recently by Dulikravich.?® summarized by Holst et a 

Surface flow inverse design applied to airfoils was first formulated by Lighthill.?° 

Lighthill pointed out that the inverse problem in airfoil design is well-posed pro- 

vided the target velocity (or pressure) distribution satisfies three constraints. Two 

constraints are associated with the airfoil’s trailing edge gap. The third constraint 

requires that the target velocity distribution is compatible with the specified free 

stream velocity. The problem is well-posed provided the target distribution is for- 

mulated in terms of parameters which guarantee the constraints are satisfied. 

In incompressible flow problems, an explicit relationship for the parameters 

exists so that the target distribution satisfies the constraints.?}—?3 For compressible 

flow, these explicit relationships have only been found for Karman-Tsien type gas.”4 

No explicit relationship has been found for compressible perfect gas. Tranen,?°* 
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Carlson,2® and Shankar?’ have been able to design airfoils by satisfying two of the 

three constraints. They were not able to satisfy the target distribution to within 

arbitrarily small tolerances since the free stream condition was not satisfied. Volpe 

and Melnik?’ were able to satisfy all three constraints for a compressible perfect 

gas problem by numerically determining the values of the parameters in the target 

distribution as part of the problem. 

In direct design problems some objective is quantified as a function of one or 

more design variables. In airfoil design typically the drag, formulated as a function 

of the airfoil shape, acts as the objective function. The objective is met when 

the function is minimized (or maximized). The solution to the direct problem is 

the shape described by the set of design variables which minimizes (or maximizes) 

the objective function. One key advantage to solving the direct problem over the 

inverse problem is that the designer does not have to rely on experience to determine 

the aerodynamic target distribution. Also, many times the data specified for the 

inverse problem may not correspond to a feasible design. Progress in this field is 

extensive and is well summarized in references 18 and 19. A brief overview of some 

optimization methods available for solving inverse and direct problems are presented 

in the next few paragraphs. 

Methods for optimization of surface flow inverse types and direct design types 

can be classified according to how they use function, gradient, and Hessian infor- 

mation. Algorithms which use only function values are classified as zeroth-order 

methods. First-order methods use function and gradient information and second- 

order methods include the use of the Hessian. 

There are many zeroth-order methods. Of rising popularity is the genetic 

algorithm (GA). The GA is a search procedure whereby designs are completely 

represented by a string of genes. Instead of starting from a single design point, 
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the GA uses a population of designs that are compared and ranked in relation 

to one another. Using a simple breeding method, two genetic strings from the 

population are recombined to produce a new design of (hopefully) higher merit. 

Breeding continues until the population is replenished. The best design from the 

previous population is added to the population. The algorithm continues over many 

generations, always keeping the best design in the current population set. The GA 

works because the probability of a genetic string being selected for breeding is 

related to its rank in the population. In this way designs of higher quality are 

selected more often for breeding. Also a random chance for genetic mutation is 

usually incorporated to allow for genes not found in the population to enter into 

the design process. GA’s have been used in optimization since the 1980’s,?9 and the 

extension to shape design has been made more recently e.g. references 31-33. A 

drawback of the GA is the large amount of function evaluations required to complete 

an optimization. This can make a design prohibitively expensive if CFD solutions 

are needed to evaluate the objective function. | 

Another zeroth-order method involves probing the design space at locations 

where the optimum is statistically most likely to occur. GROPE (Global R4 Op- 

timization when Probes are Expensive), invented by Elder,** is an extension to 

multiple dimensions of the univariate search method introduced by Kushner.** It 

is an ideal algorithm for multipeak functions in low dimensions as it attempts to 

balance the competing aims of sampling in the vicinity of a known peak and ex- 

ploring new regions. One attractive feature of this algorithm is the apparent low 

number of samples required to locate the minimum. However, implementation to 

higher dimensions is complex. To the author’s knowledge GROPE has not been 

applied to shape optimization problems. 

The response surface or simulation approach is another way to optimize func- 

tions when derivatives are inaccurate or unavailable. Here sequential approxima- 
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tions to the function and constraints are made by sampling a portion of the design 

space. With the acquired data, curves are constructed, usually by a least-squares 

approach, to simulate the objective function and it’s constraints. Minimization will 

lead to an improved design if the curves model the function and constraints accu- 

rately. The size and shape of subsequent subregions can be changed based on the 

results of the minimization. This method is particularly useful when the function is 

noisy as it does not require costly or noise-contaminated derivatives. This approach 

originated from the field of design of experiments and experimental optimization 

where the results and conclusions that can be made rely heavily on the manner 

in which data were collected.*° The application of response surfaces to numerical 

experiments is straight forward as noisy numerics creates the same circumstances 

as experimental tests. The approach has been used successfully in a multitude of 

noisy structural optimization problems.*’~** The extension to other disciplines is 

developed in references 45 and 46. 

Much of the design work today uses derivative-based methods. Many of the 

optimization methods are well established and are covered in text books on the 

subject e.g. reference 47. In aerodynamic shape design, work has focused on ef- 

ficiently and accurately computing the first derivatives, either analytically or by 

numerical means. Due to the excessive cost involved in shape design, the Hessian 

is often approximated, for example by BFGS updates, when second order methods 

are utilized. Recent advances in first-order optimization involving transonic flow 

are presented in references 48-61. 

It was discovered in our earlier work,*® that the shock wave, if ignored as 

a discontinuity, can slow convergence or cause the optimization to fail. In CFD 

solutions the difficulty in representing a discontinuity on a grid can cause noise in 

the evaluation of design derivatives and can cause waviness or discontinuities in the 
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objective function. An important conclusion in reference 48 is that as the quality 

of the flow solution improves and the shock wave resolution sharpens, the more the 

shock wave tends to disrupt the optimization process. Advances in the quality and 

efficiency of CFD codes have allowed the engineer the luxury of designing shapes 

using flow solutions with very sharp shocks. However methods must be developed 

to counter the adverse effects that sharp shocks have on the optimization process. 

This establishes the motivation for this work. 

The motivation began with our initial failure to reproduce the results presented 

by Frank and Shubin.*%»*° In their work, they compared several methods for com- 

puting design derivatives as applied to an inverse design of a duct involving quasi- 

one-dimensional, transonic flow. The comparison was based on the accuracy and 

efficiency of computing the design derivatives. The study included finite-differences, 

direct, adjoint, and all-at-once methods. Some of these methods require differentia- 

tion or integration over sharp discontinuities in the objective function or governing 

equations, yet no special provision was made for the existence of a discontinuity. 

Despite this, Frank and Shubin were reasonably successful in their optimization. 

They were able to improve their design because the shock placement of the initial 

design was very near to the target’s and thus the optimization did not suffer many 

ill-effects from the non-smooth objective function. Any attempt to reproduce their 

converged design from different initial design points will end in failure because the 

discontinuities are not properly accounted for.*® 

_ Others have used slight variations of the design problem of Frank and Shubin 

to propose techniques to avoid convergence difficulties associated with the shock 

wave.°!—®> One method, proposed by Iollo et al.,?! is the shock-fitting technique 

which involves placing a break point at the shock position. Integration and differ- 

entiation are carefully performed around the break point. In this way they were 
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able to successfully recover the target solution to within double precision machine 

accuracy using an adjoint method. Their initial conditions had the shock wave 

significantly far from the target. 

Shenoy and Cliff®? used the shock-fitting technique in an optimum control 

approach to solve Frank and Shubin’s inverse problem. A variation of this work 

by Wu, Cliff, and Gunzburger*®? applied the optimal control problem to a two- 

dimensional version of the inverse design problem. They used the shock-fitting 

technique in the formulation of the control problem, but smoothed the shock in 

the flow solution before the evaluation of the objective function. This gave them a 

well-behaved objective function. 

Borggaard et al.°* successfully solved Frank and Shubin’s problem from ar- 

bitrary initial conditions by using a smoothing function when computing design 

derivatives. The objective function was evaluated using the solution with the sharp 

shock. Borggaard and Burns extended this technique to a two-dimensional case. 

Reuther and J ameson,®2~° dealt with the shock wave indirectly in their work 

on transonic airfoil design. They developed an adjoint approach based on control 

theory for computing the design derivatives. However in their calculations they used 

flow solvers that sufficiently smeared the shock wave. Here, it is enough to smear 

the discontinuity over 4 or 5 grid points. Thus in their formulations, no special 

treatment of the shock wave was necessary. To avoid waviness in the objective 

function resulting from the shock wave, they applied a smoothing transformation 

to the objective function. In this way, differentiation of the objective function did 

not involve differentiation over sharp discontinuities. 

Gilmore and Kelley®? have recently developed a derivative-based optimization 

procedure for dealing with noisy functions with many local minima. This algorithm 

is particularly applicable to objective functions which can be expressed as a sum of 
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a simple function, such as a convex quadratic, and a high frequency, low amplitude 

function. The method works best when the amplitude of the high frequency function 

decays near the minimum of the simple function. Optimization proceeds using a 

finite-difference gradient-based method with the step size of the finite-difference 

derivatives chosen to “step over” the high frequency noise. The gradient-based 

optimization method is repeated several times with each subsequent application 

using decreasing step sizes in the finite-difference calculations. This algorithm has 

been applied to the design of microwave devices in references 63, and 64. 

The objective of this work is to present several optimization strategies for 

the design of shapes submerged in flows containing discontinuities. The obvious 

application is to transonic airfoil design. However, it is my hope that some of the 

strategies discussed herein will be applied within the framework of multidisciplinary 

optimization. This dissertation is divided into two parts. 

Part I is an overview of some existing methods to compute design derivatives 

for derivative-based optimization methods. In particular, we investigate the adjoint 

and direct methods for computing design derivatives and compare the calculations 

to a finite-difference method. Modifications have been made to these methods to 

handle the flow discontinuity. In chapter one of this section, an example inverse 

design problem is introduced to validate the modifications. The problem involves 

the one-dimensional transonic Euler flow through a duct of varying cross-sectional 

area originally studied by Frank and Shubin.*9*° Chapter two presents the method 

of optimization chosen in the design process. In chapter three, the direct and 

adjoint methods are applied to the example problem using a continuous approach. 

In the continuous approach, the derivative methods are applied to the objective 

function and governing equations before they are discretized. To properly account 

for the shock wave, the shock-fitting technique by Iollo is utilized. In chapter 
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four, the direct and adjoint methods are applied to the objective function and 

governing equations after they are put in their discrete form. This is called the 

discrete approach. The flow field is modified by a coordinate transformation so 

that the shock wave is aligned with the target. Optimization is performed on the 

objective function based on the transformed solution and a penalty related to some 

transformation parameters. Chapter five presents design results and a comparison 

of the methods to compute the derivatives. Part I ends in chapter six with some 

important conclusions. 

In part IJ, a response surface optimization procedure for shape design in the 

presence of noise is developed. In this method, a response surface is fitted to the 

objective function within some region of the design space. A minimization of the 

response surface leads to a design with optimal characteristics. In chapter seven, 

an algorithm for multiple response surface cycles is proposed which may lead to 

further improvements in the design. In chapter eight of this section, a recipe for 

construction of the surface is given. This includes selection of the response surface 

shape, selection of the number of points to use in its construction, where to probe 

the design space to achieve the most reliable curve, and a least-squares procedure 

to construct the curve. Selection of the location of the points in the construction 

of the response surface requires the solution to an optimization subproblem. This 

is the D-optimal problem. We solve for D-optimality via a GA which is described 

in chapter nine. The response surface method is applied to the inverse design 

problem described in part I, but also to two-dimensional problems. The flow fields 

for the two-dimensional problems are solved with a self-developed Euler solver, 

ErICA (EuleR Inviscid Code for Aerodynamics). A user’s guide for this code is 

presented in Appendix C. The details of these design problems are described in 

chapter ten. The results of the optimization and a discussion are presented in 
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chapter eleven. The dissertation ends with important conclusions drawn from the 

results presented and suggestions for future work are made. 
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PART 
ONE 

  

DERIVATIVE CALCULATIONS METHODS FOR 
FIRST-ORDER OPTIMIZATION 

“Wisdom is supreme; therefore get wisdom. 

Though it cost all you have, 

get understanding.” 

—Proverbs 4:7 
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CHAPTER 
ONE 

A TRANSONIC INVERSE DESIGN PROBLEM 

  

Before investigating methods which may be useful for calculating the derivatives 

in shape optimization, we first introduce a seemingly simple design problem which 

will allow us to examine difficulties which may arise for problems involving flows 

with steep gradients. The problem chosen is such that flow solutions are very cheap, 

yet it contains many of the elements present in more complex design problems. 

In particular, the problem contains a shock wave. The simplicity of the flow field 

allows us to resolve the shock precisely. Thus, despite the ease of solving the forward 

problem, the design problem is perhaps more difficult to solve than practical design 

problems with more complex flow solutions. 

The problem involves matching a velocity distribution through a duct by 

controlling the cross-sectional area. The velocity is computed using quasi-one- 

dimensional flow theory. The details of the problem are discussed in the remainder 

of this chapter. We begin with a discussion of the governing equations. An analytic 

solution is available and is discussed next. Usually in shape optimization, we do 

not have the luxury of working with exact solutions. For this reason, two numerical 

solutions are presented. One, the Godunov solution, is an upwind solution capable 

of capturing the shock wave to within two grid spacings. The other uses artificial 

viscosity which can smear the shock considerably. Next a formulation of the design 

problem is presented. This subsection includes the definition of the design variables 

and several objective functions used in the optimization. 
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1.1 Governing Equations 

In one-dimensional flow we consider a streamtube where the flow variables are 

allowed to vary in only one direction. As a consequence the cross-sectional area of 

the streamtube must be constant. However for streamtubes where the gradient of 

the area changes slowly, it is possible to neglect the three dimensionality of the flow 

and consider only the variation of the flow properties in the direction of the axis 

of the streamtube. Such a situation is considered as quasi-one-dimensional and an 

example is shown in figure 1.1. 

The governing equations for steady quasi-one-dimensional flow are the Euler 

equations expressed in differential form as 

pua 0 

(pu? + p)A + —pA, >) =0. (1.1) 
(peo + p)ud ) , 0 

The independent variable, z, varies from 0 to I, the length of the duct. The density 

is p, u is the velocity, A is the area, p is the pressure, and e, is the total energy per 

unit mass. The equation of state for a perfect gas closes the system 

p=(y—1)pe, (1.2) 

where e is the internal energy per unit mass, e = e€, — u*/2, and ¥ is the ratio of 

specific heat. In our computations, y is taken to be a constant value equal to 1.4. 

Frank and Shubin** manipulated equations (1.1) and (1.2) to get a single ordinary 

differential equation in the variable u 

df 

  

an +g=0, (1.3) 

where 

—  g Y=) Aho flu) =ut Gai)” (1.4) 
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and 

Equation (1.3) with definitions (1.4) and (1.5) have been normalized. The velocity 

  

  

has been normalized to the speed of sound at the inlet, the total enthalpy, ho, has 

been normalized to the square of the speed of sound, the area has been normalized 

to the square of the length of the duct, and the independent variable has been 

normalized to the length of the duct. 

For the case where a shock exists in the duct, the characteristics of (1.3) are 

such that boundary values must be specified at z = 0 and s = 1. This corresponds 

to the entrance and exit of the duct. Following the details of the problem set forth 

by Frank and Shubin, we specify 

u(0) = 1.299, (1.6) 

and 

u(1) = 0.506. (1.7) 

There are a variety of ways to solve (1.3) with boundary conditions (1.6) and (1.7). 

An analytic solution exists, the derivation of which is presented in the next sub- 

section. For the purpose of simulating more complex fluid problems for which only 

numerical solutions are available, we also solve the quasi-one-dimensional problem 

via two numerical techniques. 

1.2 Exact Solution 

An exact solution to (1.3) can be derived by first substituting the derivative of 

(1.4) along with (1.5) into (1.3). This yields 

~12h A —1 2h ne (FS) AIR ( Bena 
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’ where the subscript z refers to differentiation with respect to the independent vari- 

able. Multiplying (1.8) by the factor —Au?(y + 1)/(7 — 1) gives 

Au,u?(y +1) 
| +2Auzho + Aru (2h, - u”) = 0. (1.9) 

After some algebraic manipulation we can write (1.9) as 

2Au,u? 

y-1 
  + (Auz + Azu) (2h, —u*) =0. (1.10) 

Using the chain rule of differentiation, the second term in (1.10) can be expressed 

as (Au),(2h, — u*). Defining r = 1/(7 — 1) and multiplying by (2h, — u?)"-)) we 

have 

Aur(2h, — u*)"~1(—2uuz) + (Au)2(2ho — u?)” = 0. (1.11) 

The first term in (1.11) is nothing more than Au(2h, —u?)". Again using the chain 

rule we arrive at the perfect differential 

[Au(2h. —u?)"|, =0. (1.12) 

Simple integration through continuous regions of the domain yields 

Au(2h, —u?)" = ky, O<ar<g, 
Au(2h, — u?)" = ko, UsS<xn<l (1.13) 

where k, and k2 are the constants of integration determined by satisfying the bound- 

ary conditions (1.6) and (1.7). The shock position, zs, is determined by satisfying 

the Rankine Hugoniot relation, which when written in our non-dimensional vari- 

ables is 

(y—1) 
(y¥+1)’ 

where ut and u~ are the left and right values of velocity on each side of the shock 

utu- = 2h (1.14) 

wave. This solution was taken from reference 49. Obtaining the exact solution is 

shown graphically in figure 1.2. 
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1.3 Finite-volume Solutions 

Numerical solutions to (1.3) may be obtained by adding a nonphysical time 

derivative and marching to a steady state. Consider a conservation law for a one 

spatial dimensional problem of the form 

where u can be interpreted as the velocity averaged over a cell volume, the flux 

derivative Of /Ozx may be interpreted as the net cell area averaged flux through the 

cell surface, and g interpreted as a volume averaged source term. The semi-discrete 

representation of (1.15) is 

Ou; 1 fj+ay2 — Fj-1/2 

ot Az 
  +9; =0, (1.16) 

where the fluxes f;41/2 are evaluated in one of two ways. The first method is 

called the Godunov scheme, as implemented by Frank and Shubin,*®*® and uses 

the upwind formulation according to 

Fj41 Uj, Ujt1 < Us 
_ f; Uz, Uj+1 > Ux 

Fj+iya — fa uj <u,< Uj41 (1.17) 

max(fj,fj41) Uj > Use > Uj4a 

where fj41 = f(tj41), etc., and * indicates sonic flow. An alternative to the 

Godunov method is the artificial viscosity method where 

1 
Fyaay2 = 5 [feta + fj — a(uj4i — uy). (1.18) 

In (1.18), @ is a parameter related to the artificial viscosity. 
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Time marching is performed using the four-stage Runge-Kutta scheme pre- 

sented below®® 
yu) = uP, 

At ul =u" — Ru), 

ul?) = yr — = Ru), 

ul) = yr — 2" R(u)), “ 

uf) = u® — AtR(u®), 

utd = (4), 

where 

R(u) = BHA Sim-w2 | (1.20) 
Ar a 

A solution using the Godunov scheme is shown in figure 1.3. In figure 1.4 several 

artificial viscosity solutions with various values of a are shown. Solutions with sharp 

shocks can be obtained using the Godunov scheme or the artificial viscosity scheme 

with low values of a. 

1.4 Formulation of the Design Problem 

The design problem presented in this section will roughly describe the problem 

introduced by Frank and Shubin in reference 49, and studied by others°®—*>. The 

objective of the problem is to recover the shape of the duct that will yield a given 

velocity distribution. To describe the shape of the duct, we use a set of design 

variables, €. To insure that the target can be recovered to within machine accu- 

racy, we impose the following requirement: the target velocity distribution must be 

a solution to the governing equation for a feasible area distribution. The require- 

ment is only needed to aid in the evaluation of our methods and generally is not a 

requirement of the methods. 
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To satisfy the requirement, the target velocity distribution is obtained by solv- 

ing the governing equation (1.3) with the boundary condition (1.6) and (1.7) using 

an area distribution described by 

A(z) = —1.3902* + 2.0852? + 1.050. (1.21) 

The distribution has the property that A(0) = 1.05, A(1) = 1.745, and the slopes 

are zero at the ends. The governing equation is solved to get the target velocity 

distribution using either the exact or the numerical methods, depending on which 

flow solver is used during the optimization. For example, if the optimization uses 

the Godunov scheme to obtain solutions to the forward problem, then the target 

solution is obtained using (1.21) and the Godunov scheme. 

There are many ways to specify an area distribution. In this work, a cubic 

spline is fitted through control points along the duct. The design variables are the 

ordinate of the control points and physically represent the cross-sectional area of 

the duct at the axial location of the control points. The design cases presented in 

this section vary in number of design variables. In each case, the control points are 

evenly spaced along the axis of the duct. The inlet and exit area of the duct are fixed 

at the normalized values of 1.05 and 1.745 and clamped boundary conditions, i.e. 

zero slope at the ends are imposed to determine the spline uniquely. A schematic for 

the general case with n design variables is shown in figure 1.5. With this formulation 

the target area, (1.21), is an element of the feasible area distributions. 

To quantify how well a calculated velocity distribution compares to the target 

we define an objective function of the form 

I(¢) = ; [ (a —u)2de, (1.22) 

where tu = a(x) is the target velocity distribution through the duct, and u = u(z; €) 

is the calculated velocity distribution at the current values of the design variables. 
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In the discretization of the problem, the integral is approximated over a uniform 

mesh using the trapezoidal rule 

1fi1 N-1 

(Q=5 3 [(a@—ujf+(@—u)h]+ >> a -wih as (1.23) 
~ 1=2 

where NV is the number of grid points. Boundary conditions specify u at the inlet 

and exit to match the target reducing (1.23) to 

1 N-1 

Ké) =5 > (a@—u)ZAc. (1.24) 
i=2 

An optimum design is reached when (1.24) is a minimum. When the requirement 

mentioned earlier is satisfied the optimal design is reached when (1.24) is equal to 

zero to machine accuracy. 

Making the trapezoidal rule approximation without regard to the shock wave 

in the velocity distribution can result in a non-smooth or discontinuous objective 

function. Consider a univariate design case with the design variable located at 

zx = 0.5. The objective function evaluated with the exact solution for both u and 

u and plotted over a range from € = 1.1 to € = 1.7 is shown in figure 1.6. The 

solid line represents the objective function with N = 64 and the dotted line is 

the objective function computed with N = 32. The vertical lines in the figure 

are artifacts of the plotting package; no lines should be connecting the stairs of 

the function. Here we see that the discontinuity in the velocity distribution causes 

discontinuities in the objective function. Further, the number of discontinuities is 

dependent on the discretization of the flow solution. In figure 1.7, the terms in 

(1.24) are plotted against 2 for € = 1.2 and N = 64. The summation is dominated 

by the differences in the target and calculated velocity in the segment between 

shocks. For small perturbations of the design variable, provided the shock remains 

between the same grid points, the value of the objective function changes very little. 
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These perturbations occur along a single stair in figure 1.6. For perturbations of 

the design variable which cause the shock to move across a grid point, the objective 

function changes dramatically as another dominant term is added or removed in 

the summation. These perturbations cause the jumps in figure 1.6. The jumps are 

less frequent in the case with N = 32 than with N = 64 because there are fewer 

grid points for the shock wave to pass through. 

In the case of the objective function computed using the exact analysis, the 

velocity distribution contains a discontinuity and so the objective function is dis- 

continuous as well. The Godunov scheme smears the shock wave over two grid 

cells and thus the objective function is not discontinuous. Yet as can be seen in 

figure 1.8, the function is non-smooth and contains regions of local minima. As the 

resolution of the shock wave diminishes, the objective function becomes smoother. 

In figure 1.9, the objective function has been computed using the artificial viscosity 

solver with a = 1. The shock wave is smeared enough so that the objective function 

appears well-behaved. 

In CFD design it is not desirable to obtain a well-behaved objective function 

at the expense of the quality of the flow solution. One way to eliminate the non- 

smoothness of the objective function is to perform a more exact integration of 

(1.22). This involves first dividing the integral at the location of the discontinuities 

and then applying the trapezoidal approximation to each segment. The objective 

function contains two steep gradient stemming from the target and the computed 

shock, and thus the integral is divided into three segments 

1 pee 1 ft tr 
I(é) = 5 | (a — u)?dz + 5 I. (a — u)?*dzx + 5 I. (% — u)?dz, (1.25) 

where Z, and z, are the target and calculated shock positions respectively. Equation 

(1.25) is valid if @, < zs, otherwise @, and x, must be interchanged. Further 
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insight reveals that since only the computed shock wave position interacts with the 

discretization, (2, remains constant throughout the optimization) we only need to 

divide (1.22) into two parts to get a smoother objective function 

I(é) = ; ft (a —u)*dz + 5 [, (a — u)?dz. (1.26) 

This is called the shock-fitted objective function. Performing the integration of 

(1.26) numerically requires that grid points be placed on either side of the shock. 

Using the exact analysis, the position of the shock as well as the left and right values 

of the velocity at the shock is known. The smooth shock-fitted objective function 

computed using the exact analysis is drawn in figure 1.10. 

Using numerical solutions, the shock position and left and right values of the 

shock are not clearly defined quantities. For the purposes of computing the shock- 

fitted objective function with numerical solutions we fabricate definitions for the 

quantities. The shock position is defined as the location where the velocity distri- 

bution crosses the sonic line. This position is found by interpolating between the 

grid points where the crossover from supersonic to subsonic flow takes place. We 

have 

Ux —_ Ujs 

(rjs41 — Tis), (1.27) ty = 2j,+—7— 
Ujs+1 — Ujs 

where the subscripts js and js + 1 are the grid index before and after the shock. 

The sonic velocity is defined by 

Uy, = 2ho——,, (1.28) 

The left and right values of the velocity are computed by left and right extrap- 

olations to the shock position. Care must be taken when extrapolating so that 

information is not taken from a point “trapped” in a shock. A clear picture of the 

interpolation and extrapolation is shown in figure 1.11. 
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These definitions do not remove all the noise generated by the interaction of 

the shock wave and the discretization of the flow field yet there is an improvement 

in the smoothness of the objective function and the regions of local minima are 

gone. The shock-fitted objective function plotted with the Godunov solutions is 

shown in figure 1.12. A comparison to figure 1.8 shows the improvement. 

The extrapolation for left and right velocities of smeared solutions such as 

those of the artificial viscosity with a = 1 has little meaning due to the severity of 

the dissipation surrounding the shock. Further, the interaction of the shock wave 

with the discretization is not severe in such cases. For this reason, the shock-fitted 

objective function is not computed using highly dissipative schemes. 

The shock-fitted technique is not the only way to obtain a smooth objective 

function. Another clegant method strains the computed flow solution using a coor- 

dinate transformation so that the shock position is aligned with the shock position 

of the target. This method of coordinate straining was developed by Nixon® and 

used in transonic airfoil design by Joh.*! 

The implementation of coordinate straining involves defining a straining func- 

tion, s(x), which equals 0 at the inlet and exit, and has a value of 1 at the position 

of the target shock. The function is not unique. From reference 67, we choose 

x 1l—z 
s(z) = (=) (; = =) (1.29) 

The calculated velocity distribution is strained proportionately to the distance be 

  

tween shocks according to 

ui = u(r — sAz,), (1.30) 

where ¢& is the strained velocity and Az, = £,—Z, is the distance between computed 

and target shock waves. For a numerical solution we apply the transformation to a 

discrete set of points representing the velocity distribution on a mesh, we determine 
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a grid index, M, such that ry < 2;-—sAzr, < 241. Then using linear interpolation, 

the strained velocity can be computed as 

z; —sAzr, — x =M (uma — Um). (1.31) ui = um + 

The coordinate straining transformation is shown in figure 1.13. 

The evaluation of the objective function now uses % in place of u, removing 

the dominating terms which exist in the region between the calculated and target 

shocks. In the process of removing the non-smoothness, the objective function has 

become very flat near the minimum. Using this technique we rely on the small 

differences in velocities to drive the area to the target. Often this is enough to 

improve the design, but not enough to achieve the best possible one. 

To shape the objective function to better define the minimum, a shock penalty 

proportional to the square of the difference between shock waves is added to the 

strained objective function, yielding 

N-1 
1 A ~\2 1 2 

I(é)= 5 ) (ti — a); Ax + 57Ats, (1.32) 
t=2 

where o is a positive constant. Values of o can be arbitrarily chosen or defined so 

that (1.32) equals (1.24) during the first iteration of optimization. Work presented 

here used o = 5. Figure 1.14, 1.15, and 1.16., show the coordinate strained/shock 

penalty objective using the three flow solution methods. 
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CHAPTER 
TWO 

THE OPTIMIZATION PROCEDURE 

  

In this chapter a first-order optimization method is outlined for minimizing 

the unconstrained problems mentioned in chapter 1. The goal of the optimization 

study is to compare several different methods for computing design derivatives. The 

optimization technique acts as a vehicle for making the comparison. For this reason 

the technique chosen is simple, yet robust, so that failure of an optimization can be 

easily traceable. In this way we can determine if the design derivative methods are 

the cause of the failure or not. 

Consider the general unconstrained minimization problem in n-dimensional 

space 

min I(¢), (2.1) 

where J is a differentiable function. One way to solve (2.1) iteratively is to take 

steps in the design space in the direction of a descent. For example, a step of size 

a (a > 0) from the point €, in the direction of p, leads to I(€, + apo/||po||) which 

can be approximated by the two term Taylor Series 

I(Eo + a———. 
  

ll2 ol )~ — I(Eo) + aVI"(£o) ipl (2.2) 

It becomes obvious from (2.2) that choosing p, so that aVI7(E,)po/||pol| is 

large and negative will lead to a large reduction in the function. Thus the aim is to 

minimize aVI7(E,)po/|{po||. Since @ is a positive scalar, the problem becomes 

  

min VIT(é,) 2.3 
pee Ipoll (2:3) 
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The solution is dependent on the choice of norms. For the lz norm we solve 

min, VIT(£.)—"_,, (2.4) 
Pees” (D2 Po) 

and the solution is the negative gradient.*’ Thus the negative gradient vector rep- 

resents the direction of steepest descent for the objective function. 

The algorithm for finding the optimum through the direction of steepest descent 

is outlined as follows: 

e® provide an initial point and evaluate the objective function at this point, 

e test for convergence, 

e compute the gradient of the function, 

e choose a step size so that I(é, + apz) < I(&),* 

e update the solution with 41 = €, + apg. 

The method seems effective, yet suffers from poor convergence rates. Its ineffi- 

ciencies stem from the fact that no second order information, nor any information 

from previous iterations, is used to determine the descent direction. An example of 

optimization using the steepest descent method is shown graphically in figure 2.1. 

The example solves 

_ 1 ¢2 4 £2 min I(1, £2) = 106; + £2 (2.5) 

The function was minimized to 107!” in 58 iterations starting from the point (10,2). 

Due to the nature of the steepest descent algorithm, the convergence slows consid- 

erably near the minimum. 

For the purpose of comparing design sensitivity algorithms, the method of 

steepest descent is sufficient, however a slight modification to the algorithm can lead 

to big payoffs in the convergence rate. To improve the convergence while avoiding 
  

To guarantee convergence with this algorithm, a stronger requirement such as the 
Goldstein-Armijo principle*’ is needed here. 
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to store or approximate the Hessian is to force the descent direction to be conjugate 

to the directions of previous iterations. A conjugate direction is one in which the 

change in the gradient is perpendicular to the previous descent direction.*” This 

is the method of conjugate gradients and is the method used in this work. The 

first descent direction chosen is the steepest descent direction. All others follow the 

formula®’ 

pr=—VIg + Be-1pr-1, (2.6) 

where 

— WV Tell 

In theory, the method of conjugate gradients should find the minimum in n steps 

or less for an n-variable quadratic function. However, roundoff errors associated 

with the computation of the derivatives can quickly cause the descent directions to 

lose conjugacy. Thus more than n iterations may be required to find the minimum. 

In our algorithm, after n iterations, the method is restarted with a search in the 

steepest descent direction to regain conjugacy. The algorithm is outlined as follows 

e provide an initial point and evaluate the objective function at this point, 

e test for convergence, 

e compute the descent direction according to equation (2.6) with restarts 

after n iterations, 

e choose a step size so that I(& + apr) < I(&x), 

e update the solution with €441 = €, + ap x. 

The minimization of (2.5) is repeated using the conjugate gradient method. 

The function is minimized to 107!” in 3 iterations. Figure 2.2 graphically shows 

the minimization process. 

In the optimization procedures outlined, we must choose a suitable step size 

so that I(€j + appz) < I(€,). There are many procedures available for finding 
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. the optimal step size. Results presented in this dissertation use Brent’s method®® 

coded in FORTRAN by Press, Teukolsky, Vetteling, and Flannery.’ Essentially, 

the method fits a quadratic through three data points in an interval containing the 

minimum. The formula for the location of minimum of the quadratic through the 

points (a, f(a)), (b, f(b), (c, f(c)) is given by 

_,_ 1-4)? [f@) ~ f(o)] - @ -— IF) - F@) 
~2 @-alf(s)— fo} ~~ oF) — Fla) (2:8) 

The algorithm guards against x being a minimum and not a maximum. Several 

curve fits are performed to find the exact minimum in the one-dimensional search. 
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CHAPTER 
THREE 

CONTINUOUS APPROACH TO 
DERIVATIVE CALCULATIONS 

  

The optimization routine outlined in the previous chapter requires the deriva- 

tives of the objective function with respect to the design variables. The most straight 

forward way to estimate the derivatives is to use finite differences. A first-order for- 

ward difference is 

Or 1 
ae; a AG [T(€1, €2,.--,6; + AE;,...,&n) — I(€1, €2,.--,€n)], (3.1) 

and a second-order central difference is 

or 1 
BE; 2AE; 

  

[Z(é1, €2,-.-,€}) + AG;,.--5€n) — T(r, b2,...,€; — AG;,..-,En)]- 

(3.2) 

These methods are inefficient. In each iteration of the optimization routine, n + 1 

function evaluations are required to compute the first-order derivatives, or 2n func- 

tion evaluations for second-order derivatives. Each function evaluation requires a 

flow solution which for many fluid dynamics problems can be prohibitively expen- 

sive. Many cheaper methods to compute the derivatives are available and are the 

topic of this chapter and the next. 

We investigate two approaches for computing the derivatives. The first is the 

continuous approach which is formulated from equations in their continuous form 

and is discussed in this chapter. In the next chapter we investigate the discrete 

approach which formulates the derivatives from discretized equations. In each ap- 

proach the direct and adjoint methods for computing derivatives are derived. 
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3.1 Direct Method 

In the continuous approach the shock-fitted objective function defined by (1.26) 

is utilized. Analytic differentiation of (1.26) with respect to the j** design variable 

requires Liebnitz’ rule as the shock position is a function of the design variables 

xB 1 

ql _ _ | (a —u)u'dr — (i —u)u'dz 
0 

Some explanation of the notation is in order. For simplicity, the subscript 7 has been 

dropped. Realize that (3.3) can be written for each design variable &1, &,...,&n. 

When we utilize the resulting formula, we will interpret 0/0€ as 0/O€; with all 

other variables held fixed. The primes indicate differentiation with respect to €; so 

that 2, = dx,/d&; and u' = Ou/0€; with x held constant. The subscripts on the 

square bracket terms denote where the terms are evaluated. 

Equation (3.3) can be used to evaluate the derivatives provided expressions for 

u' and 2! can be found. In the continuous direct method, we will obtain an ordinary 

differential equation which can be solved for u’ and an algebraic equation for z',. 

The ordinary differential equation comes from differentiating the steady-state form 

of the governing equation (1.3) with respect to €. In (1.3), f = f(u) and g = g(u, €) 

are given by (1.4) and (1.5) respectively. We differentiate (1.3) utilizing the chain 

rule and by interchanging the order of the z and € derivatives we obtain 

Ou! da Ou ,, Oo 
ae + 9g =% (3.4) 

where a = df /du and b = 0g/0u. Note that (3.4) is only valid where the solution, u, 

is continuous. This linear ordinary differential equation for u'(x) we call the direct 

equation. Analytic expressions for the coefficients can be derived from (1.4) and 

(1.5) 

a=] —- ——— (3.5) 
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da _ y—14h, 

  

  

du y+1 0’ 3-6) 
_Azry-i1 2ho 
- 42 (1422), (3.7) 

and 

Og y-1 2hoe\ O ' 
41" 7 ) x(a’), (3.8) 

We can write the governing equation (1.3) as adu/Ozr + g = 0 so that 

Ou g 
ar = a 

(3.9) 

To complete the boundary value problem we differentiate the boundary condi- 

tions with respect to €. At the inlet and outlet we have 

u'(0, €) = 0, (3.10) 

and 

u'(1,€) =0, (3.11) 

The direct equation may be solved analytically using integrating factors. Dif- 

ferentiating Du’ with respect to 2, where D is the integrating factor yields 

d(Du') _ du’ dD , 

  

  

or 

du’ 1dD, 1d(Du') _ 

Qc * Dade" D de ~° (3-18) 
Comparing (3.13) to the direct equation we see that 

1dD 1 fdadu 
Ddz a (Se +8), (3.14) 

and 

1 d(Du' 10 1 ddu) _ _109 (3.15) 
D_= dz a OF 
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From (3.15) we find 

d(Du') = =o ae (3.16) 

We integrate from both ends using boundary conditions (3.10) and (3.11) to get u’ 

as a function of the integrating factor, 

Woy 1 D 0g 
U (zr) = 55 / a a Of O<2r< fz, (3.17) 

and 

yy Lt D 0g 
u(r) = Da) [ P wet tg<ar<l. (3.18) 

From (3.14) we solve for D, 

dD - (5 + 5) dz. (3.19) 

Again, we integrate from both ends 

* 1 f(dadu 
2 = r —_— — — < . D(z) = D(0) exp {| , (< Fa + ) ax} ; O<2r<2g. (3.20) 

and 

D(a) = D(1) exp {_ [2 (5+?) ax}, t,<a<1. (3.21) 

Equations (3.17) and (3.18) with (3.20) and (3.21) form the solution to the direct 

equation. It can easily be seen by substituting (3.20) into (3.17) that the value of 

the integrating factor at x = 0 drops out of the equation. A similar argument holds 

for D(1) with equations (3.18) and (3.21). 

To find an expression for x, we differentiate the shock jump condition (1.14). 

This yields 

dut ree du- 

Ode de 
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Note that u* = u(xt,&). Then by the chain rule 

du* Ou. , Ou 

“(get 18) : (828) 
We will adopt the notation (u+)' to be Ou/O€ taken at constant x and evaluated at 

+ 
s° 

Note that in (3.23) Ou/O€ evaluated at x = z¥ is discontinuous, with either 

r= 

the left or right derivatives being infinite for a sharp shock. Equation (3.23) is valid 

only for the one-sided finite derivative. That is 

Ou . Ou 

(Se) = hm () (3.24) 

with a similar definition for 0u/O€ at r = r>. We have ensured that our numerical 

approximation of these derivatives have taken the above definitions into account. 

We can combine (3.22) and (3.23) to develop and expression for 2‘ 

  

— +\i + —\i +u 
Ls = TTT 3; ce We (3.25) Uy Se leeet t+ Se lecez   

In the continuous direct method we calculate the design derivatives using (3.3). 

The u! terms are calculated as a solution to the direct equation (3.4) subject to the 

boundary conditions (3.10) and (3.11). The z{ term in (3.3) is evaluated from (3.25) 

+ with the (u*)’ terms evaluated from u! at 2 = 2?. 

In the direct methods we eliminate the burden of computing at least n+ 1 flow 

solutions, but we must solve equation (3.4) n times. For stability purposes, the flow 

equation (1.3) is solved numerically by adding an unsteady term and marching to 

a steady state. Equation (3.4) has the advantage of being a linear system and can 

be solved numerically or analytically as an ordinary differential equation. Because 

of its linearity the solution to the direct equation is computationally cheaper than 

the flow solution. 
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3.1 Adjoint Method 

The adjoint method avoids computing u!(x) and 2x), directly. This method 

defines an augmented functional 

I*(é) =5 I * (ag —uPdet fh (a —u)?dz 

ef” (Ze + ode | ma(SE + ghd 

a fr t=), | 
“Cr+ 1) 

+ A4 [ug — u(O)] + As [ur — u(1)), (3.26) 

where 4;,...,As are Lagrange multipliers. As is customary, the augmented func- 

tional is defined by adding terms which are identically zero. Here 4; and A2 multiply 

the governing equation over the region where it is valid. For the region at the shock, 

we include the shock jump relation. The final terms in the augmented functional 

represent boundary conditions for the governing equation. To find the derivative of 

the augmented functional, again we apply Liebnitz’ rule to obtain 

dI* ve a ! (ti — uy? 

=~, @— wae + | 2 | 

-f, (a — wulde — [Srl 

+f” (Se + 9')dxe +c! coe +0)| 

  

Fo onae at Fal 
+ [ Ax(ae + g')dz — x, [rai5 + a) _ 

+ A3 (u~ (ut)! + (u7)'ut) — Agu’(0) — Asu’(1). (3.27) 

With the definition of the augmented functional, the design derivative dI/dé will be 

equal to dI*/dé. In the adjoint method we choose the multipliers such that u’ and 
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z', will not appear in the expression for dI*/d€. First we perform some operations 

to simplify (3.27). 

The square bracket terms in (3.27) containing 41 and 2 are identically zero 

since the governing equation is zero over the region where they are valid. Over 

continuous regions we can integrate by parts the integrals involving 1 as 

Jo (E+ 3) dz -| Fone + aa! dx — at 5, 1% (3.28) 

Likewise for 42 we have 

[»u(Z+ ot) de = [GP +9 | de - [Rite (3.29) 

‘ 

  

Using the chain rule for f = f(u) and g = g(u,é) we can determine f’ = au 

and g' = 0g/0€ + bu'. Substituting these relations into (3.27) and evaluating exact 

differentials we get 

dl* oy _ u! sf 

-[. [eee vas f de Wa 

+ Aif’ lexer ~ Arf’ |_-=<o + Af’ le=1 — Ao f' ss 

“|/(S*)_ -(S*)_ 
+3 (u7 (ut)! + ut(u7)') — Agu'(0) — Asu!(1). (3.30) 

  

Again we apply (3.22) and (3.23) to the derivative calculation. This allows us to 

group terms multiplying (u~)’, (ut)’, and 21, 

dI _ Om ' “1 | Og 
oo-f0 "[oSt -o +@-u)] wae + | Ar 5g 

1 

-f [a2 — bs + (a) vader | ra fede xt | Ox 
s 

+ [Agut + AT a7] (um) + [sum — At at] wy 
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_ Ou 4+ Ou 

+s (. Ox z=azt dz | 

+ d2au'|,—1 _ dyau'| 5 _— dgu'(0) _ Asu'(1). (3.31) 

The adjoint problem is specified by picking values for the Lagrange multipliers so 

that certains terms in (3.31) are zero. In particular we choose the multipliers such 

that u’, (u-)', (ut)', and x, do not appear in the formulation. Specifically, we 

  

enforce 

Ori ~ _ 
az b1,+(a@-u)=0 on O<2rK<2z;j (3.32) 

Od2 . + 
aa — bar + (d—u) = 0 on 2, <2<1 (3.33) 

es) _ Cs) 
2 z=z} 2 r=, 

A3 = a ; 3 . ’ (3.34) 

(u- St lenat tut au) _) 

Agut +\Ta” =0, (3.35) 

Agu” — Atat =0. (3.36) 

Equations (3.32) through (3.36) make up the adjoint problem. Like the direct 

problem, equations (3.32) and (3.33) along with boundary conditions (3.35) and 

(3.36) can be solved analytically. We find that utilizing an appropriate integrating 

factor 

  

a 

Ly b 

R,(x) = exp ‘/ sax ; (3.38) 

; 1 * (i — don) = 5 {ah = / . (u Rady} (3.39) 
a 

d(x) = ke {a5 + I (a = ax} (3.37) 

on 0 <2 < 27; where 

and 
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on z? <z <1 where 

R2(x) = exp {- i ax} . (3.40) 
x} @ 

In this work the integrals solving the direct and adjoint equations are evaluated 

using a trapezoidal approximation. 

As in the continuous direct method 0u/Oz evaluated to the right and left of the 

shock is computed using 0u/Ox = —g/a at c = 2+. Under the conditions specified 

by the adjoint problem, the derivative becomes 

i * 0 O 
-[" Me J ede + [. dg ae tt (3.41) 

We see that in the continuous adjoint method we must solve one BVP for u(z, €) 

  

and one BVP for the Lagrange multipliers. The derivatives may then be calculated 

from (3.41) by quadrature. In the direct method, recall that we solved one BVP for 

u and n BVP for u’. In general, adjoint methods will be computationally cheaper 

than direct methods. 

CONTINUOUS APPROACH TO DERIVATIVE CALCULATIONS 36



  

CHAPTER 
FOUR 

DISCRETE APPROACH TO 
DERIVATIVE CALCULATIONS 

  

In the previous chapter, the direct and adjoint methods were applied to the 

quasi-one-dimensional duct design problem using the continuous approach and the 

shock-fitted objective function. The alternative is to apply the method in a dis- 

crete sense. That is the direct and adjoint methods are applied to the discretized 

equations. Here we make the formulation using the coordinate-strained and shock- 

penalty objective function. 

4.1 Direct Method 

In the discrete methods we no longer consider the velocity to a be a function 

of z, rather it is a vector of dimeusion N whose elements are the velocity values at 

the cell centers of the flow domain. To evaluate the objective function the velocity 

is strained according to (1.30) to obtain the vector ut. The coordinate-strained 

objective function with the shock penalty then has the functional dependence 

I= Ilu(€),r.(€)], (4.1) 

where 

ti=[% tt ... ain]’. (4.2) 

Applying the chain rule to (4.1) to compute the derivative, we have 

Or _ Ol di , OL ar, 
0&; 7 Ou 0&; Ors 0€;° 

  (4.3) 
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where 

OL _ | ar al... OL 
ou Ot, Oit2 Otn }? 

and 

Ot _ [a Siz... Siw JT 
ae; — | 86; 0€; 0&; ° 

Each element in (4.4) has the form 

Ol 

  

oa —(% — ti);Az, 

and OI/0z, is simply 

OF —o(fs — Zs) Or. —_— 8 s;° 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Equation (4.5) can be expanded further. The straining function (1.30) is a function 

of u and z,, so that the dependence is 

i = a{u(€),«.(6)]. 

Differentiation with respect to the jth design variable yields 

Ou Ou Ou + Ou Oz, 

0&; ~ Ou Of; Ox, O€;’ 

where 

  

Ot, Ot |, Git, 
Ou, Ou2 Oun 

~ Bin On «s«s«wsté«éCg 
Ou _ Ou, Ou2 OuN 

Ou : , 

Dity Btn .,, Din 
Ou, Ou2 Oun 

Ou _ [$2 ug Ou \" 
d€; —™ | 0; 0g; 06; ) 

and 

Ou = | di, Din din \r 
Or, ™~ | Ox, Oz, Or, 

Equation (4.3) can now be written as 

  

a RtoR Ee Ou OI Oz, 

dé; 0 Ou Ox, Ou 
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(4.10) 

(4.11) 

(4.12) 

(4.13) 
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The Jacobian 0%/0u is sparse with the elements defined according to 

  

aa. 0 i,j=1,....N; j4AM,M+41 
Mio} 1 sicsiAeeew §=1,...,N; j=M (4.14) 

Ouj iTsipte iu i=1,...,N; j=M 

where M is the grid index such that ry < 2; — sAzr, < 241. Also according to 

the straining function we find 

Ou; Si 

Sat = Fe (umaa — um) (4.15) 

  

  

where s; is the discretized version of (1.29), te. 

Xi 1—az; 
si= @ € = =) . (4.16) 

We can also expand the Or,/O€; term appearing in (4.13). The shock position is 

  

defined by (1.27) and has the functional dependence 

t, = 2,[u(€)]. (4.17) 

The shock position is dependent on £; through the velocities of the surrounding 

cells. However, in general, we may write 

  

Or, Ox, Ou 

BE; ~ Ou OG,” (4-18) 

where 

Ols (dt, du, Or, 
Ou = (53 dua  |~-——sé«N ]. (4.19) 

Realize that only two components Or, /Qu of will be non zero 

0 ~=1,...,N; t# 7s,jst1 
QO (ts—uje) - | 

Ae = Taji aupye ae t= Js . (4.20) 

i —_fi2 Az t=js+1 —_ Az 
jeti—Ujs) (tj s4+1—Uje) 

  

Substituting (4.9) and (4.18) into (4.3) gives us an expression for the design deriva- 

tives 

OF _ rou 5G = 3e (4.21) 
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where 

        

oe! (2 Ott ore) OI dx, (4.22) 
= GG \du * Ox, Ou) * Ox, Ou 

Every term in (4.22) is known analytically, namely (4.6), (4.7), (4.10), (4.15), and 

(4.19). What remains to be found is an expression of 0u/0€; in (4.21). The discrete 

direct method applies the chain rule to the governing equations discretized by some 

numerical scheme. We have N discretized equations that are, in general, functions 

of the velocity and the design variables. These equations are given the symbol w 

Wy = Wi(t1,...,uN,o1,---En) =0 

we = wo(u1,-.-,UuNn,€1,---En) = 0 

WN = wWN(U4,...,UN,&1,.--&n) = 0. (4.23) 

Differentiating (4.23) with respect to the jth design variable, we find 

Ow (Fe ) Ou 
—_ — ——_ + J— = 0, 4,24 

0€; Oi), 9G; (424) 

where 

w=[wi wo... wy’, (4.25) 

Ow w w w T 5g, = (ae get 5a], (4.26) 
j 

and dup wy dw, 
our Ou oun 

J= (5) _ Oui Ou2 Oun (4.27) 

Ou £ : ; ., : 

Own Own ,,, Gun 
Our Ou? Oun 

We can find 0u/0£; by solving the linear system 

Ou ( Ow ) 
J—=-—-({—]. 4.28 

0€; Ob; / y (4-28) 
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- The (Ow/0€;),, term due to the appearance of the geometry in the governing equa- 

tions, is evaluated numerically. The elements of the Jacobian, J, can be expressed 

    

  

  

  

as 

Ow; 1 OF 41/2 1 Of ;-1/2 1 Og; (4.29) 
Ou; Ag Ou; Ou; Ou;’ " 

where 

8g; 0 a=1,...,.N; i479 
=~ Az, (y-1 h - . 4.30 

Ou; {af (1 + 2) t=] ( ) 

The flux derivatives are dependent on the flow solver. For the Godunov scheme we 

have 

itt ye uy <u Ou; Jo %j+1 * 

of ays 
Of: Ou; Uz, Uj+1 > Us 

ois /e = 0 Uz < Us < Uj41 . (4.31) 

Bee Uj > Us > Ups fj > fj4s 

oh Uj > Ue > Ustas fy < fj41 

where 

Of; 0 ~—1,...,.N; if 7 
= (y-1) 2h, ;_-; . 4.32 

Ou; {stam t=J (4.32) 

For the artificial viscosity scheme we have 

0 2—1,....N; iA4#j,j4+1 
. 1 (7-1) 2h - 

Chis —~ 22 2 — Gat) ut a ti=J (4.33) 
Uj _ . 

SL a [t- GB-e] fast 
As in the continuous direct method, (4.28) represents one of n equations which 

must be solved to get the derivatives. Having solved (4.28) for 0u/0€;, the deriva- 

tives are computed from (4.21). For this problem, the Jacobian is tridiagonal so 

that the n solutions to (4.28) are inexpensive. In other design problems, the Jaco- 

bian may not be tridiagonal, but if the LU decomposition of J can be stored the n 

solutions of (4.28) can come at the expense of approximately one. 
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4.2 Adjoint Method 

For the discrete adjoint method we define an augmented objective function 

I*=I4)"w, (4.34) 

where I is defined by (1.32), A is a row vector of Lagrange multipliers, and w is 

the column vector of discretized governing equations. The sensitivity with respect 

to the jth design variable is 

aI" _ Ol | pow 
3 OG BG 

Since w is zero in the entire domain, OI/O€; is equal to OI*/0€;. In the adjoint 

(4.35) 

method we choose A such that the 0u/0€; terms will not appear in the sensitivity 

equation. 

The first term on the right hand side has been expanded in the derivation of 

the discrete direct method (4.21). The derivative of the governing equation has also 

been expanded in equation (4.24). Substituting (4.21) and (4.24) into (4.35) yields 

7 = oS +X ($2). + 12 | . (4.36) 

We rearrange (4.36) to collect terms multiplying 0u/O£; to get 

  

ort 
0€; 
  T 1 )T 7,9, yr (Ow (vt +A* J) ae, +> Car (4.37) 

The vector of Lagrange multipliers is arbitrary, but as in the continuous adjoint 

case, it may be chosen such that the sensitivity can be computed inexpensively. If 

A is chosen such that 

  

JT\ =~, (4.38) 

then the sensitivity is 

Ol ol* Ow 
—= =? ae} . 4.39 
Of; 8; O85) u (439) 
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The advantage this method has over the discrete direct method is evident with 

very large systems. Equation (4.38) has to be solved only once to calculate the 

Lagrange multipliers. The derivatives may then be computed inexpensively using 

(4.39) with different right-hand-sides, t.e. different Ow/0O€;. 
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CHAPTER 
FIVE 

RESULTS: PART I 
  

We now present design sensitivities and optimization results using the continu- 

ous and discrete approaches. For each approach we will compare direct and adjoint 

calculations with finite-difference calculations. The problem of a non-smooth ob- 

jective function is handled through shock fitting with the continuous approach and 

with coordinate straining and shock penalty for the discrete approach. For this 

reason, continuous sensitivities cannot be compared with discrete sensitivities. A 

flow field of 64 grid points is used for this study. 

An initial area distribution was chosen so that the computed shock is signifi- 

cantly far away from the target. Two case studies are presented in this section. In 

the first, we use a single design variable. In the second, we increase the complexity 

by using three design variables. Here the design variables represent area values at 

z-locations along the duct. A cubic spline fitted through these points describes the 

area, completely. The initial area distribution was specifically selected so that both 

design cases describe exactly the same initial area. The starting design is shown in 

figure 5.1. Also shown in figure 5.1 is the intended optimize design. The optimized 

design, defined by (1.21), can also be described by a cubic spline passing through 

one or three design variables. Table 5.1 lists the z-locations, the initial value of the 

design variables, and the target values. During the design process the z-location of 

the design variables remains fixed as does the inlet and exit areas and slopes. 

The duct is optimized by matching the velocity distribution calculated from 

the area to a target velocity distribution. The case studies investigate designs 
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performed using exact, Godunov and artificial viscosity flow solutions. These solvers 

are described in chapter 1 of this dissertation. Figures 5.2, 5.3, and 5.4 show the 

initial velocity distribution in comparison to the target for the three flow solving 

algorithms. To avoid any issues which may arise if the target velocity is not a 

solution to the governing equations, the target velocity is created using the area 

described by equation (1.21) and the flow solver used during the design process. 

Optimizations are performed using the conjugate gradient method outlined in 

chapter 2. The step size taken in the descent direction is computed by bracketing 

the minimum in the search direction and minimizing a fitted quadratic polynomial 

within the limits of the bracket. Optimization stops when the objective function is 

smaller than 10~?° or when the change in the objective function from one iteration 

to the next is insignificant. 

5.1 Designs Using the Continuous Approach 

The resolution of the shock wave diminishes as we consider the exact, Godunov, 

and artificial viscosity solver. In the continuous approach the value of the velocity to 

the left and right of the shock is needed. The analytic solution identifies ut and u7 

exactly by satisfying the jump condition (1.14) at the shock. The Godunov solver 

captures the shock generally over two or three grid cells allowing for estimates of ut 

and u~ to be extrapolated to the position where the velocity distribution crosses 

the sonic line. The artificial viscosity solver smears the shock to the degree where 

ut and wu are poorly defined. For this reason, results using the artificial viscosity 

solver and the continuous approach are not presented. 

Tables 5.2 through 5.5 list the sensitivities computed using the continuous di- 

rect and adjoint methods during the first design iteration for the univariate and 

the three design variable cases. Two finite-difference approximations are also in- 

cluded for the purpose of checking the accuracy of the design sensitivities. The 
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forward-difference requires less function evaluations than the more accurate central- 

difference, yet the sensitivity shows little effect of the difference approximation used 

in the calculations. A step size of 107° was used to compute the differences. Tables 

5.2 and 5.3 show results computed using the exact flow solver while the results for 

the Godunov solver are in tables 5.4 and 5.5. Also listed in these tables are the 

values of the objective function after optimization is complete, and the number of 

iterations needed for convergence. In these cases the objective function is defined 

by (1.26). The convergence information gives an indication of the accuracy of the 

sensitivity derivatives. 

In the cases using the exact flow solver, the derivative methods appear to 

give results in reasonable agreement with each other. Also the performance of the 

optimizer behaves similarly for all sensitivity methods. Table 5.6 lists the final 

values of the design variables. All methods converged to similar solutions, yet did 

not reach the intended design. The reason for this is apparently related to the nature 

of the objective function. The shock-fitted objective function shown in figure 1.10, 

expanded near the minimum reveals a cusp (figure 5.5) making convergence to the 

minimum difficult. A more robust optimizer should be able to find the minimum of 

the function. 

Agreement between the sensitivity methods diminishes for optimization involv- 

ing the Godunov solution. We feel that the reason for the disparity is related to the 

procedure used to locate the shock and fabricated values for ut and u~. Recall, 

for numerical solutions to the governing differential equations, the shock position 

is found by interpolation between grid points. For the 64 grid point study, the 

shock is located to within 1.5%. In figure 5.6 the shock position is plotted over a 

small range of the design variable for the univariate case. The fabricated function 

used to define the shock position is wavy over the design space and can yield large 
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errors in the sensitivity calculation. Table 5.7 lists the shock sensitivities computed 

via finite-differences and the direct method for the analytic and Godunov solutions 

respectively. 

There is better agreement with the exact solution as there is no ambiguity 

associated with locating the shock. The shock location and values of velocity across 

the shock can be found precisely. The agreement lessens in the Godunov derivatives 

due to the waviness described above. Note however, in table 5.7 the direct method 

computes sensitivities resembling those of the exact solution. This comes about 

because the jump relation (1.14) used to locate the shock in the exact solution is 

differentiated in the direct and adjoint formulations. 

The situation is worsened by the extrapolation for the left and right velocity 

values at the shock. We have seen the waviness caused by the interpolation to 

get the shock position. The extrapolation compounds the issue not only because 

extrapolation is riskier than interpolation, but because the extrapolation is to the 

shock position, which itself is wavy. Figure 5.7 shows the waviness of the left and 

right values of velocity at the shock over a range of the design space for a univariate 

parameterization. 

The final values of the design parameters for the Godunov case are listed in 

table 5.8. Together with the final values of the objective function in table 5.5, they 

indicate that there is still a difficulty in matching the target completely. The errors 

associated with locating the shock position and computing the left and right values 

of velocity at the shock introduce noise into the objective function and is amplified 

in the calculation of the derivatives. Thus with the Godunov flow solution, no 

sensitivity method stands out as being more accurate. 

5.2 Designs Using the Discrete Approach 

In the discrete approach, the sensitivities rely on the discretization of the gov- 
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erning equations. This approach is not applicable for the use with the exact flow 

solver. Results presented here use only the numerical flow solvers. 

Tables 5.9 and 5.10 list the design sensitivities using the Godunov flow solver, 

while tables 5.11 and 5.12 list the design sensitivities using the artificial viscosity 

flow solver. The sensitivities are in excellent agreement and with the exception of the 

three design variable case using the Godunov flow solver, the optimizer performed 

similarly for each method. 

Final design variables are shown in tables 5.13 and 5.14 for all discrete cases. 

. One advantage of the coordinate-strained objective function over the shock-fitted 

function is clearly demonstrated with tables 5.13 and 5.14 and the final values of 

the objective function. That is, the intended design is recovered unlike the shock- 

fitted cases. The coordinate-straining transformation, while eliminating the stair- 

like structure, flattens out the function, while the shock penalty adds steepness. The 

important issue is that the cusp-like nature exhibited in the shock-fitted objective 

function is not present. 

For most discrete cases presented, the optimization converged quickly. How- 

ever, the optimization with finite-difference sensitivities for the case with three 

design variables and the Godunov solution showed a marked improvement over the 

analytic derivatives. To investigate this, the optimization was repeated using a 16 

grid point flow comain in place of the 64 point domain. This experiment effec- 

tively smears the shock wave. In the 16 grid point case, all sensitivity calculations 

converged the design in 19 iterations. We conclude that the shock position, which 

becomes an increasingly wavy function of the design variable with the resolution 

of the flow solution, contaminates the derivative calculations. The direct and ad- 

joint sensitivities are much more susceptible to the noise than the finite-difference 

derivatives since they directly compute shock position sensitivity. Further the noise 

in the shock position calculation begins to dominate near the minimum. 
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CHAPTER 
SIX 

CONCLUSIONS: PART I 

  

In this part of the dissertation we have introduced an inverse design problem 

involving quasi-one-dimensional flow with a shock. We have demonstrated through 

graphic representations of the objective function that without proper consideration 

of the flow discontinuity, recovery of the target is difficult with derivative-based 

optimization. The objective function becomes non-smooth due to the interaction 

between the shock wave and the discretization of the minimization problem. As a 

result the sensitivities computed, although accurate for the non-smooth objective 

function, may not lead to the global minimum. We have indicated that when the 

shock is greatly smeared by the flow solver, the optimization difficulties become less 

severe as a result of the smoother objective function. However as the flow is better 

resolved, the difficulties will reappear. A robust sensitivity procedure must take 

into account the effect of shock waves. 

We have presented two techniques to lessen the non-smooth nature of the ob- 

jective function. One method involves shock fitting the objective function; the other 

involves a coordinate transformation which effectively removes the discontinuities 

from the objective function. We have shown these techniques to be more effective 

smoothers when the shock is precisely defined. For less sharp shock waves, such as 

those appearing in numerical solutions, we have demonstrated that these techniques 

only reduce the severity of the waviness. In the shock-fitted objective function, and 

where numerical flow solutions are used, the waviness is introduced through the 

interpolation routine to find the shock position, and the extrapolation to find the 
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left and right velocity values on either side of the shock. In the coordinate-strained 

and shock penalty objective function, the waviness enters only through the interpo- 

lation of the shock position as the left and right values of the velocity at the shock 

are not needed. 

Several techniques were applied to the shock-fitted and the coordinate-strained 

objective functions. For the shock-fitted function we applied a direct and adjoint 

method in a continuous approach. The continuous approach differentiates the ob- 

jective function and governing differential equation in their continuous form, i.e. 

before they are discretized for evaluation by the computer. The direct approach 

requires the solution to the flow equations plus solutions to n ordinary differential 

equations to evaluate the sensitivities. Here n is the dimension of the design space 

and the ordinary differential equations are called the direct equations. The adjoint 

method, by augmenting the objective function, requires the solution to the flow 

equation and only one solution to an ordinary differential equation. This is regard- 

less of the dimension of the design space. Thus the direct problem grows with the 

dimension of the design space and the adjoint remains a constant size. In elemen- 

tary design problems, such as this one, the direct and adjoint method are almost 

indistinguishable from a CPU stand point since the solutions to the boundary value 

problems are computationally inexpensive. In more complex problems the cost of 

solving the direct and adjoint equations will increase as analytic solutions may not 

be available. The advantage of the adjoint method will become more apparent 

from a CPU point of view in large design dimensional problems as only one adjoint 

equation needs to be solved for all the sensitivities. The direct method requires the 

solution of one direct equation for each design derivative. 

The direct and adjoint methods were also applied to the coordinate-strained 

and shock penalty objective function. Here the techniques were applied in a discrete 
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- sense. Before the sensitivity equations were developed, the flow field was discretized 

and the governing differential equation was replaced by a system of N algebraic 

equations. The objective function was also replaced by a discrete version. The 

direct method requires the solution to the system of flow equations, plus solutions 

to n systems of N linear algebraic equations. Unlike the flow equations which 

must be time marched, the solution to the direct system of equations involves a 

tridiagonal matrix. The adjoint, like its continuous counterpart, augments the 

objective function to produce savings in the sensitivity calculations. The adjoint 

- method requires: the flow solution plus only one solution to a system of N linear 

equations. Again the savings are not very apparent in this problem. However, as 

N increases or as the designs involve two- and three-dimensional flows the adjoint 

savings will be significant. 

We have presented comparisons in the form of sensitivity calculations and 

optimization results. The analytic sensitivities were benchmarked against finite- 

difference calculations which are much more straight forward to compute, but also 

much more inefficient. In the continuous approach we have found that for a very 

sharp shock wave, the sensitivities computed by direct and adjoint methods match 

to within a few percent to those computed via finite-differences. When the shock 

is smeared, the direct and adjoint methods computed sensitivities that were more 

accurate than the finite-difference sensitivities. One reason for the discrepancies is 

the interpolation of the shock position and the extrapolation of ut and u~. While 

these techniques are adequate for computing the shock position, ut and u~, they 

are not adequate for computing the sensitivities. The direct and adjoint methods 

compute the sensitivities by direct differentiation of the analytic expressions, while 

the finite-differences do not. Thus the overall sensitivities are thought to be more 

accurate with the direct and adjoint method than with the finite-difference method. 
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The agreement between finite-difference sensitivities and the direct and adjoint 

sensitivities are much better in the discrete approach. The discrete approach does 

not require the extrapolations of ut and u7~ and thus noise generated from this 

calculation does not enter in the derivative calculation. 

One disadvantage of the shock-fitted objective function is that it exhibits a cusp 

shape near the minimum which may hinder convergence with simple optimizers. 

The coordinate-strained and shock penalty function exhibited better convergence 

properties. 

Our research indicated that care must be taken with respect to shock waves 

(and other steep gradients) and that problems may become more severe as the 

flow solver better resolves the flow field. The discrete methodology used here was 

effective when incorporated with a modified objective function based on coordinate 

straining and shock penalty. A drawback was that this approach required the 

sensitivity of the shock position. The continuous methods discussed here were even 

more affected by the shock sensitivity and, for this approach, it was found that 

existing interpolation methods are adequate in determining the shock position but 

not for the sensitivities. 
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PART 
TWO 

  

RESPONSE SURFACE METHOD 

“but those who hope in the Lord will 

renew their strength. They will 

soar on wings like eagles” 

—Isaiah 40:31 
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CHAPTER 
SEVEN 

RESPONSE SURFACE OPTIMIZATION 
ALGORITHM 

  

The response surface method is an alternative to derivative-based optimization 

schemes for noisy or non-smooth functions as it does not use derivative informa- 

tion. In this method the objective function and constraints are modeled by analytic 

surfaces which are then cheaply minimized using standard techniques. The purpose 

of the response surface is to capture the global features of the objective function 

while eliminating any small, high frequency noise which may exist. If the response 

surface is a good representation of the objective function, its minimum should lie 

near the optimum design. To complete the optimization we may proceed in one of 

two ways. One is to reduce the design space around the minimum and perform an- 

other response surface minimization. A series of response surfaces constructed over 

smaller and smaller regions of the design space can locate the minimum. The other 

is to switch to a derivative-based optimization using the minimum of the response 

surface as the starting point. The reason we can use derivatives to optimize near the 

minimum is because on a very fine scale the objective function may be smooth, and 

so derivatives become meaningful. It may take several response surface cycles to 

get close enough to the minimum for derivative-based optimization to be successful. 

There are several advantages to response surface methods. The primary ad- 

vantage is its overall robustness. The method does not rely on derivatives of the 

objective function which can be corrupt in the presence of computational or exper- 

imental noise. Response surfaces are smooth, analytic functions whose derivatives 
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can be computed accurately and quickly. Noise generated in CFD and applied com- 

putational aerodynamics codes can generate errors in the objective function. For 

example, noise can be generated by changes in grids, discontinuities in flux limiters, 

or changes in the stopping criteria for iterative schemes. Many times noise will 

prevent derivative-based optimization from locating the minimum. 

Another advantage is that the method probes a large region of the design space. 

Derivative-based procedures follow a path through the design space from the initial 

design to the final design. No function information from outside the path is ever 

used in the procedure. As a result, unless several different starting designs are 

investigated, the derivative-based optimization may lead to a local minimization 

instead of a global one. The response surface is modeled by sampling the design 

space over a relatively large region reducing the chance of converging to a local 

minimum. 

A third advantage of the response surface method is that it is readily paralleliz- 

able. The construction of the response surface requires many independent analyses 

over the region of the feasible design space. When the analyses are computer gen- 

erated, each data point can be analyzed on a separate processor of a multiprocessor 

machine. We will show that in this way, the data needed to construct the response 

surface can be gathered in the time it takes to make one analysis on a compara- 

ble single processor machine. This advantage is valuable when the analyses are 

expensive as they are in aerodynamic shape designs involving complicated flow sim- 

ulations. 

As with all optimization techniques, there are disadvantages. One stems from 

what is termed the “curse of dimensionality.” As the dimension of the problem 

increases, the number of coefficients in the response surface rises rapidly as does 

the number of function evaluations needed to construct the surface. Further, the 
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least-squares problem which is solved to determine the coefficients of the response 

surface can become ill-conditioned in high dimensions of the design space. Problems 

solved by response surfaces in this work are parameterized in low dimensions. The 

solution to higher dimensional problems is an area for future work. 

The purpose of the response surface is to capture the general shape of the 

objective function. Without experience or prior knowledge of the behavior of the 

objective function, it may be difficult to adequately model the function and locate 

the general vicinity of the optimum. Thus another disadvantage of this method is 

that a poor response surface model may slow or prevent convergence. Yet in small 

enough regions, most functions can often be well represented by quadratics. 

The response surface method is comprised of one or more cycles. Each cycle 

contains the following steps: 

e determine the region of the design space to search for the minimum, 

e construct a response surface in this region, 

@ minimize the response surface, 

e check for convergence. 

First, we must determine an initial region to start our search. This is an advan- 

tage over derivative-based routines which generally require starting the optimization 

from a point. Here, instead of guessing the location of the point, we guess an entire 

region where the minimum is most likely to occur. However, some experience is 

needed to choose a region whose size is not too large or too small. An initial region 

which is too large is difficult to model accurately with a single response surface. A 

region which is too small has the chance of not including the minimum and will 

result in wasted cycles translating through the design space. 

The construction of the response surface requires several steps. It requires 

determining the response function type, the number of points to use to construct 
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the surface, the location of the points in the design space to probe the objective 

function and constraints, and solving the least-squares problem for the coefficients 

to the response surface. These steps are expounded in the next chapter. 

Minimization of the response surface is simple. The response surfaces modeling 

the function and constraints are smooth analytic functions that are cheap to evalu- 

ate. The minimization can be done using any method, however care must be taken 

to avoid local minima. In this work, the response surfaces are minimized using 

Schittkowski’s sequential quadratic programming (SQP) code.”1 When there are no 

constraints, the SQP program reduces to a quasi-Newton method with BFGS Hes- 

sian updates. Minimizations are performed from several starting points to insure 

that the derivative-based optimization locates the absolute minimum. 

Convergence of the response surface method can be detected a number of ways. 

For the inverse design problems, the minimum is found when the objective function 

is zero. For these designs, the stopping criterion detects when the objective functions 

reaches zero to within some small tolerance. For direct designs we observe the 

trends in the values of the design variables and objective function. When the values 

stabilize, we consider the design converged. 

The heart of the response surface method rests in the way the region containing 

the surface translates and reduces in the design space. Response surface optimiza- 

tion reduces the region around the global minimum. As the design space shrinks, 

the variation of the objective function and constraints decreases and can be better 

modeled by the response surfaces. The dynamics and size reduction of the region 

is based on the minimization from the previous response surface. The design space 

region for the 7+ 1 cycle is centered about the minimum of the response surface of 

the zth cycle. If the 2th response surface minimum is against the boundary of the 

€; design variable, then the design space is not reduced in the 7 direction. On the 
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other hand, if the minimum is not against the boundary, the region spanning the 

9 direction is reduced by a factor of 4. The 75% reduction is an arbitrarily chosen 

factor and seems to work well in the cases we explored. 

The reduction and translation of the response surface region is clearly demon- 

strated through a simple example. For the purpose of illustration we minimize the 

function 

1 — 2.522 + 272 — 2.52, — 62122 + 10222 + 3x? + 102729 — 122722, (7.1) 

where we allow 

OS <1. (7.2) 

The function can easily be analyzed to find that the minimum lies at rz; = 0.3184, 

rq = 0.4281. The response surface we choose for this example is of the form 

p= cy + c292) + C322 + 4x? + 5x3 + Cg%122. (7.3) 

Note that the response surface will not be able to match the function exactly. The 

initial response surface region is chosen to be 

This region is purposely chosen so that the minimum lies outside its boundaries. 

Typically one would like to choose the initial region to contain the minimum, if 

at all possible, to expedite the optimization. However, the choice of initial region 

demonstrates the method’s ability to find the minimum even when the minimum lies 

outside of it. The response surface is fitted to the function with nine points using 

methods to be discussed in the next chapter. The minimum, after one response 

surface cycle is approximated to be 2; = 0.5, rz = 0.5. Since this point is on both 

the rz; and x» boundary, no reduction of the response surface region is made for the 
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next iteration. Instead, the region is translated around xz; = 0.5,22 = 0.5. This 

leads to the new region 

0.25 < 24,2 < 0.75. (7.5) 

A new response surface is fitted in this region. Minimization of this surface leads 

to the point z; = 0.3037, x2 = 0.4251. Here, the minimum does not lie on the 

boundary of the response surface region in either the z; or zr2 directions so that 

the new region will span a distance of 0.125 (0.25 times the previous span) in both 

directions. The new region is also translated to center around the minimum so that 

0.2412 < 2, < 0.3662, 

0.3626 < x2 < 0.4876. (7.6) 

Contours of the function and a map of the movements of the response surface 

region are shown in figure 7.1 for 4 response surface cycles. The circles in the figure 

represent where the the function is evaluated for the construction of the first three 

surfaces. The minima of the response surfaces are represented by the x’s. After 4 

response surface cycles, the function minimizes to 21 = 0.3184, r2 = 0.4281. 

RESPONSE SURFACE OPTIMIZATION ALGORITHM 09



  

CHAPTER 
EIGHT 

  

RECIPE FOR RESPONSE SURFACE 
CONSTRUCTION 

In the previous chapter we explained the general algorithm for response surface 

optimization. We presented a simple example that demonstrated the effectiveness 

of the response surface region in moving towards and surrounding the minimum. 

We now discuss the important details to constructing the response surface. There 

are four major steps involved in its construction. The steps are 

determine the function type for the response surface, 

determine the number of function evaluations to be used as the 

database for fitting the response surface, 

determine the location of the points used for fitting the response 

surface, 

fit the function by solving a least-squares problem. 

The following chapter sections provide more details. 

8.1 Selecting Response Surface Type 

This section provides some insight into the selection of the shape of the response 

surface. The selection is dependent on the problem and no scientific rules are 

available for this. A wise selection of the shape of the response surface requires 

some knowledge of how the objective function behaves. Generally this is not known 

@ priori, but with experience the selection will become more apparent. In this 
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work we experiment with polynomials, specifically quadratics and quadratic tensor 

products. The quadratic polynomial is of the form 

P =c1,€? + craésr€éo + c1zbiés +... + C22€? + costoes +... 

+16) + coo +0363 +... 40. (8.1) 

A quadratic tensor product is of the form 

P= (6? + cof) + c3)(c4€3 + cs&o + C6) see (8.2) 

The coefficients are found by evaluating the objective function at several points 

and solving a least-squares problem. For the family of polynomials represented by 

(8.1) the least-squares problem is linear, however for (8.2) the coefficients require a 

solution to a difficult non-linear system. To avoid this, we multiply out the terms 

in (8.2) and solve the larger, yet linear least-squares problem. For example in two 

design variables (n = 2), we fit the polynomial 

P = cy E763 + crbfla + c3€f + cabr ES + eslilo + cobs + c7€f +cabo+c9. (8.3) 

Thus we solve for 9 coefficients instead of 8. In higher dimensions we can expect 

to solve for many more coefficients. In general, the number of coefficients rises 

as 3" when the quadratic tensor product is expanded. Since the quadratic tensor 

product requires 3” coefficients and hence many function evaluations to solve the 

least-squares problem, we use this polynomial only in low-dimensional problems 

and when the objective function is cheap to compute. In comparison, the quadratic 

polynomial has (n + 1)(n + 2)/2 coefficients and thus rises as n?. 

Other types of response surfaces have been experimented with. In structures, 

8 Toropov®® used intrinsically linear functions in the coefficients. These are func- 

tions which are non-linear but can become linear through simple transformations. 

Toropov suggests the multiplicative function 

P = c0€;'65"....E5", (8.4) 
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with the transformation 

nr 

In(P)=Ineot+ ) cing, (8.5) 
i=1 

and the power function 

P= (« + ya: ; (8.6) 
i=1 

with the transformation 

(P)* =¢Co + > ci€i. (8.7) 
7=1 

Certainly non-linear functions may be used to represent the response surfaces such 

as (8.2) in product form. In such cases the least-squares estimation for the coeffi- 

cients would have to be solved using nonlinear programming. In the work presented 

here we will be only considering quadratic and quadratic tensor product response 

surfaces of the form (8.1) and (8.2). 

8.2 Number of Function Evaluations for Fit 

When determining the number of function evaluations which should be used 

to generate the response surface, we must consider the following three objectives. 

First, we must sample the design space enough times so that the response surface 

captures the major features of the objective function. Second, we must keep the 

condition number of the least-squares matrix down to an acceptable level so that 

we may accurately solve for the coefficients of the response surface polynomial, and 

third, we must minimize the amount of function calls to the analysis code to keep 

the computational cost down. The first two objectives are opposed to the third. 

Assurance that we capture all the features of the design space implies we make as 

many function evaluations as possible. Also generally, the condition number of the 

least-squares matrix increases as the number of points in the fit decreases, thus we 
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can get better conditioned matrices by gathering more data. Yet the many function 

evaluations which help us meet the first two objectives can be computationally 

intensive. 

Although techniques for solving the least-squares problem with high condition 

numbers are available, the condition number can become unmanageably large espe- 

cially for problems with a large number of coefficients. A polynomial with a large 

number of coefficients is characteristic of design problems involving a large number 

of design variables. It has been our experience that matrices with high condition 

numbers can lead to ill-conditioned solutions for the coefficients which often provide 

accurate models of the function, but poor estimates of the derivatives. Thus mini- 

mization of the response surface region by derivative-based optimization techniques 

becomes difficult. 

The solution to the number of points to use is not general, as it depends on 

the affordability of evaluating the objective function and the shape of the design 

space. With careful selection of points in the design space it is possible to decrease 

the condition number of the least-squares matrix, thus requiring less points. It has 

been suggested that the number of points used in the fit should exceed the number 

of coefficients in the polynomial by 20% to 50%. In this work, we perform our 

experiments using roughly 1.5 times the number of coefficients. 

8.3 Location of Points to Construct Surface 

Once the choice of curves and the number of points has been selected, we must 

decide where to evaluate the objective function. The choice of positions to gather 

data can have a profound effect on the fidelity of the response surface to model 

the objective function. Consider, for example, fitting a line through two points. 

Choosing to generate the data with points close together can yield large errors in 
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the fit with only small errors in the evaluation of the function. This fact is shown 

clearly in figure 8.1. Choosing to gather data at the ends of the domain is a much 

wiser choice. 

The most general point selection set is the factorial set. With factorial sets, each 

axis of the desigi space is divided into k discrete levels. Every combination of the 

levels in each design direction makes up the points in the factorial set. For example, 

five levels in three-dimensional space (known as the 5° factorial set) leads to 125 

points for the response surface. Factorial sets are attractive because they provide a 

uniform sampling over the region of interest and generally lead to well-conditioned 

least-squares matrices. However, they also lead to sets with large numbers of points, 

especially in high-dimensional space. 

Alternatives to factorial sets, studied by Carpenter’* and Giunta et al.*° are 

central composite sets and optimality sets. Central composite sets can be viable 

solutions in low dimensions (< 6). In higher dimensions these sets, like factorial 

sets, yicld many points and evaluating the objective function at all the design points 

can be prohibitively expensive. Another drawback of the central composite sets is 

that the points may exist outside the feasible domain. Often, the design space 

has an irregular shape due to constraints and the points which make the central 

composite sets may violate the constraints. Central composite sets are intended for 

unconstrained domains. 

Optimality sets are sets which, based on statistics, yield points that give the 

best fit to the objective function for a specified number of points. Because, generally, 

the calculation of the objective function involves numerical errors, there will be 

errors in the computation of the coefficients of the response surface and errors in 

the response surface itself. A measure of the error is the variance. The variance of 

the coefficients are the diagonal terms of the variance-covariance matrix given by’? 

cov(c) = 07(A? A)7}, (8.8) 
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where 

le ~ 
o? = - » (I; — I;)?, (8.9) 

and A is the least-squares matrix. Details of the A matrix are given in section 

8.4. In (8.8) and (8.9), o? is the variance of the objective function, J; is the value 

of the objective function at the €; point, and I; is the average value of I; over n 

observations. The variance of the response surface, P, evaluated at &;, is given by’? 

var(P;) = 0? Al (A? A) Ai, (8.10) 

where A; is a row of the A matrix. To keep the variance of both the coefficients 

and the response surface low it is advantageous to minimize the matrix (AT A)7!. 

Minimization of a matrix is not a well defined concept and this leads to several 

optimality criteria. These are discussed in reference 72. One, which is consistent 

with picking the end points in the simple example of figure 8.1, is the D-optimal 

criteria. 

The D-optimal criterion minimizes (A7.A)~! by minimizing the determinant. 

This is equivalent to minimizing the product of eigenvalues of (A? A)~? or maximiz- 

ing |A? A|. If m is the number of points used to construct the response surface, and I 

is the number of points in the mesh to describe the domain of independent variables 

then the D-optimal criterion is satisfied when the set of m points chosen for the 

least-squares problem from the pool of | points is such that |A7 A| is a maximum. 

For example, in a two-dimensional domain for which we wish to model the objective 

function using the response surface, P = cy + c1£1 + cote + c3€} + cab? + c5biéo, the 

A matrix has the form 

1 fi 1 fa Oo €1,162,1 
1 f12 €22 9 &o. b1,2€2,2 

- — , (8.11) 

1 €i9 €9 €f9 €59 61,9€2,9 
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where the first subscript in the € variable represents the design coordinate, and the 

second represents the point; there are nine points being used to solve the least- 

squares problem. If we discretize the domain into 36 points as shown in figure 

8.2, the nine blackened points are those which maximize |A7 Al. The problem of 

choosing the best m points from | possible points to fit a curve reduces to choosing 

the set of m points which maximizes |A? A]. To reiterate, the criterion is appealing 

for choosing the points for the least-squares problem because of the following two 

3 properties’ 

e the set of points that maximizes |A7A| is also the set of points that 

minimizes the maximum variance of any predicted value of the objective 

function, 

e the set of points that maximizes |A? A| is also the set of points that 

minimizes the variance of the coefficients, 

The D-optimal criterion also has the property that D-optimal points are invariant 

to changes in scale of the domain of independent variables. This means the D- 

optimal points for a square domain are proportionally in the same position for a 

rectangular domain. In addition by forcing the determinant of A‘ A to be large, we 

are making the least-squares problem well conditioned. A more detailed discussion 

of the D-optimality criterion is presented by Box and Draper.”? 

There are other criteria used for minimizing (A7.A)~!. These include A- 

optimality which minimizes the trace of (A? A)7!, and E-optimality which mini- 

mizes the largest eigenvalue of (A7.A)~!. A discussion of these and other criteria 

is presented in reference 72. The conclusion of the study indicated that surfaces 

constructed using D-optimal points showed the best fidelity to the actual function. 

As an example of the usefulness of the D-optimal criterion, consider the function 

y = sin(€,7)sin(&7), (8.12) 

RECIPE FOR RESPONSE SURFACE CONSTRUCTION 66



RECIPE FOR RESPONSE SURFACE CONSTRUCTION 

defined on the region from 

0< G12 <1. (8.13) 

We wish to approximate this function with a biquadratic tensor product of the 

form of (8.3) using 9 points, the minimum we can use. We choose to discretize the 

domain in a rectangular 5 x 5 grid as in figure 8.2 (5? factorial design). To obtain 

the D-optimal points we must find the 9 points out of 25 which have the highest 

|A7 A|. A brute force method is to check every combination of 9 points from 25. 

This leads to 2.0 x 10° combinations according to the rule 

() ~ aim (8.14) 

This is what is performed here. The result is shown in figure 8.3. The empty circles 

represent the points which are used to describe the domain over which the response 

surface is to be defined. The blackened points are the D-optimal points. In this 

case there is only one set of points in the 2.0 x 10° possibilities that is D-optimal. 

Generally, this does not have to be the case. If other sets of points have |A7 A| of 

equal value then multiple sets of points satisfy the D-optimal criterion. Figure 8.4 

shows four other possibilities of nine points which may have been chosen for the 

response surface construction. These are not D-optimal points but serve as a basis 

for comparing the quality of fit of D-optimal to non-D-optimal points. Results of a 

comparison of the fit to the transcendental function, (8.12), are compiled in table 

8.1. An error parameter defined by 

V= , (8.15)   

is used to measure the quality of fit. In (8.15), J is the function value, P is the 

polynomial fit, aud the summation is taken over 10,201 evenly distributed points 

in the domain. 
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The general trend is that the higher the value of |A7A| the better the fit, 

although there are clearly exceptions to this rule. The D-optimal set of points has 

the lowest error as defined by (8.15). This example also shows that points placed 

along the edges of the domain tend to increase the fidelity between the response 

surface and the function. Yet placing all the points along the edge would have an 

obvious disadvantage in modeling the interior of the domain. D-optimal sets do 

tend to place many points along the edge of the domain, but usually have interior 

points as well. 

The problem of finding the m points to satisfy D-optimality requires considering 

the (1) = I!/(m\(l — m)!) combinations of m points from the set of | candidate 

points. A small problem in two design variables may be to pick 25 points from a 

selection of 121 (discretizing the domain into 10 sections in both directions gives 

an 11x11 mesh). This leads to a total of 5.26 x 107° possible combinations, one 

or more of which are D-optimal. Clearly, even for this small problem, checking all 

combinations is infeasible. Standard methods for maximization can run into three 

problems. First, the number of variables can be quite large. Each point in the 

discretized domain represents a variable in the maximization problem. Second, the 

maximization is of an integer type. Each of the points can either be included or 

not. Finally, |A7A| may have local maxima. Several researchers have developed 

algorithms to search for D-optimality without checking every combination."4:75)76 

Perhaps the most popular algorithm is Mitchell’s DETMAX code."§ In this work we 

employ a genetic algorithm (GA) which we feel is an improvement over DETMAX. 

Details of the GA used to find D-optimality are given in Chapter 9. 

8.4 The Least-squares Problem 

The least-squares problem, as formulated in reference 78, can be described as 

follows: We are given a set of data points in n-dimensional space. We want to write 
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these points in a subspace of R", but we cannot since the system is over determined. 

The least-squares solution to the over determined system is to find the set of points 

in the subspace of #” that most closely matches the data. Say for example, in 

two-dimensional space we are given three points which we wish to describe with a 

plane passing through the origin, 

P=cor+cyy. (8.16) 

To determine the coefficients, co and c,, we would need to solve the system of 

equations 

tT) Yl 21 
Co mmf {ab=) ap, (8.17) 

t3 Y3 * 23 

which, for the general case would be inconsistent (three equations for two un- 

knowns). Equation (8.17) can be more concisely represented as Ac = z. The 

least-squares solution to the over determined system is to minimize the difference 

between the polynomial and the function. The problem can be written as 

min ||Ac — 2||,. (8.18) 

To minimize (8.18), the error vector, Ac — z, must be perpendicular to the column 

space of the matrix A. This means any linear combination of the columns of A 

must be perpendicular to Ac — z. This is illustrated in figure 8.5 and represented 

as 

(Ad)? (Ac — z) = 0, (8.19) 

where d represents the coefficients of the linear combination of column vectors of 

A. Rearranging we can write that 

d?(AT Ac — A?z) =0. (8.20) 
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If (3.20) is true for every d vector, then 

Al Ac— A™z =0, (8.21) 

and the least-squares solution to a set of linear, inconsistent equations also satisfies 

A! Ac = A? z. (8.22) 

If the columns of A are linearly independent, then the matrix can be factored 

into an orthogonal matrix, Q, and an upper triangular matrix, R. In this way, 

ATA = RTQTQR. Any orthogonal matrix has the property that QT = Q-! so 

that Q7Q =I. Thus (8.22) can be simplified to 

Re=QTz (8.23) 

The vector of coefficients describing the subspace can be easily obtained by back: 

wards substitution. 
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CHAPTER 
NINE 

GENETIC RECOMBINATION ALGORITHM FOR 
MULTIPLE POINT SELECTION 

  

GRAMPS, or Genetic Recombination Algorithm for Multiple Point Selection, 

is a genetic algorithm (GA) code whose purpose is to assist in the construction 

of the response surface by seeking the D-optimal points for sampling the function. 

This chapter describes the details of the genetic algorithm. Appendix A is a user’s 

guide to the code. A source listing of the code is located in Appendix B. 

The GA employed here is roughly modeled after the algorithm described in the 

paper by Furuya and Haftka.’® Unlike some conventional optimization techniques 

which work in the neighborhood of a design point, the GA works by investigating 

several designs over the entire design space. The group of designs sampled by the 

GA makes up the population. Each design in the population is evaluated and 

ranked according to some cost function. More appealing designs have a higher 

rank. The next step in the GA is the breeding process where designs are selected 

for parenting child designs. The probability of a design being selected to be a parent 

is weighted according to the ranking so that children are made from the best designs. 

A child is created by combining parts from two parents. A probability of mutation 

is introduced in the GA to allow for the inclusion of certain aspects of the design 

not present in the parent generation. Mutation also guards against all designs of the 

population becoming the same. A new generation is formed from the child designs 

and the best design of the previous generation, with the new generation having the 

same population size as the previous. The child generation then becomes the new 
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parent generation and the process continues over many generations. The design 

with the best cost function in the end is considered the optimum design. 

The specifics of the GA as applied to finding D-optimality are as follows. To 

start the algorithm, an initial population of candidate designs is created. Each 

candidate is formed by randomly selecting m distinct points from the set of points 

describing the region. These candidate designs are then ranked among each other 

with the best design having the highest value of |A? A]. The cost function, |AT A| 

is efficiently computed by performing a QR factorization on A. In this way the 

determinant is calculated by multiplying the square of the diagonal elements of the 

R matrix 

|A7 A| = |RI?. (9.1) 

The population is selected for breeding based on a fitness parameter, f, which 

is related to the rank of the design by 

f=b+1-—r, (9.2) 

where b is the number of designs in the population and r is the rank. In this way, 

the design with a #1 ranking will have the highest fitness. The probability of the 

rth ranked design being selected as a parent is defined as 

__ 2f 
Pr O64 1) 

  

(9.3) 

The selection process for parenting is completed by generating a uniformly dis- 

tributed random number, x, between zero and one, and selecting the rth ranked 

design satisfying 

Pr<a< Pray, (9.4) 

where, 

Pe= > pi. (9.5) 
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This is called the ranked-based fitness technique for selection. For a population 

of 10 designs the probability of each design being selected for parenting is shown 

graphically in figure 9.1. 

After the parents have been selected, the child design is made by combining the 

two parents. This is done by describing the designs with a string of genes. Typically, 

the genes are coded versions of the design variables and distinguish one design from 

another. A random integer, j, ranging between 1 and the number of genes minus 

one is generated. The child design is made using the first 7 genes of parent 1; the 

remaining genes come from parent 2. Once the child is generated, it goes through a 

mutation process. In the work presented, each gene has a 15% chance of mutating. 

If a gene is selected for mutation, the gene is replaced with a gene coming randomly 

from the set of allowable values for that gene. By this method, baring the chance of 

mutation, the child design will have at least one gene from each parent. Finally, the 

child is checked against having duplicate points. Since the set of points will be used 

to generate surfaces, it is not desirable to have repeated points. If the design has 

duplicate points, the child is destroyed and the parent selection process is repeated. 

The child breeding process is shown schematically in figure 9.2. In this figure the 

genes are represented by integer values. In this case the fifth gene of the string was 

selected for mutation. 

For a general-shaped space, the string of genes is comprised of the m points 

selected for making the response surface. Each point used to describe the space is 

assigned a number so that the genetic string is a series of integers as in the example 

of figure 9.2. In a genetic string no numbers may be repeated. 

If the space is a hypercube, that is we can describe the space by only supplying 

a lower and upper limit in all dimensions, we use an alternate description for the 

genetic string. In such a case, the string is comprised of the coordinates of the points 
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chosen to make the response surface. For example, in two-dimensional rectangular 

space described by 25 points, the genetic string of a particular design containing 9 

points may be 

Z2 Y2, L4 Y3, V3 Y2, V5 Yr, V5 Y5, L1 Yr, L1 Y5, La Y5, X2 Ya. 

In the above example, the coordinates of some genes are repeated and such a case 

is allowed. Duplicate points in the design are not allowed and thus each z and 

y pair cannot be repeated. The z and y pairs are separated by commas in the 

above genetic string representation. Designs described in this manner tend to find 

the D-optimal set of points faster since there is more freedom for the design to 

change form throughout the generations. This representation cannot be used for 

the general design spaces since the solution from the GA may lead to points defined 

outside the allowable region. 

After b — 1 children are created, the parent generation is replaced. Only the 

best parent design is retained to insure that the best design survives throughout 

the generations. After a given number of generations have been bred, or a given 

number of |A7 A| have been computed, the candidate with the highest | A? A| is used 

for forming the response surface. There is no guarantee that the output of the GA 

is truly D-optimal. However, known D-optimal sets of points for test cases have 

been recovered. 

To show this, we repeat the example done in chapter 2 where we seek nine 

D-optimal points for the construction of a two-dimensional response surface using 

the quadratic given by (8.3). We set the GA to run with a population of 5 using 

the coordinates of the points for the genetic string representation. The GA ran for 

500 generations, and the history of max|A7 A| for the population is shown in figure 

9.3. The D-optimal set of points was recovered after 243 generations. In the first 
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generation, |A? A| was computed 5 times, once for each design in the population. In 

the ensuing generations, |4A’ A] was computed 4 time per generation, once for each 

child. Thus |A7 A| was computed a total of 2001 times; a huge savings compared 

to the 2.0710° times required to check every combination of 9 points from 25. 

As another example, consider the region described by the 38 points shown in 

figure 9.4. Here the region is not a rectangle, so we must represent each design using 

points for the genetic string. Here we choose to represent the response surface as 

P=cotei¢ + cox” + c3y + cary + e527 y, (9.6) 

anticipating a greater variation in the z-direction than in the y. The response 

surface requires a minimum of 6 points to define it, here we use 9. There are 

1.63210® possible combinations of 9 points from 38. The genetic algorithm ran for 

1500 generations using a population of 5 designs. This required 6001 computations 

of |ATA|. The history of max|A7 A| is shown in figure 9.5. We speculate that the 

D-optimal set of points (the blackened dots of figure 9.5) was reached in the 869th 

generation, although we cannot tell with absolute certainty that this is truly D- 

optimal without running all 1.632108 possible combinations. Due to the random 

nature of the GA, most searches for D-optimal sets should be repeated several times 

with various random number seeds. The repeatability of the GA will increase the 

confidence that the points selected are D-optimal or nearly D-optimal. 
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CHAPTER 
TEN 

  

DESIGN PROBLEMS 

The response surface technique will be demonstrated using three problems. 

The first two are of the inverse design type; the last is a direct design problem. The 

first problem is the inverse design of a duct using quasi-one-dimensional flow theory. 

It is the problem discussed in Part 1 and results of the response surface will be com- 

pared to the derivative-based methods discussed earlier. The next design problem 

involves the matching of a pressure profile over a bump in a channel of transonic 

flow. The third problem involves maximizing lift on a two-dimensional airfoil with 

constraints on drag and area. The bump and airfoil problems are discussed in the 

next subsections. 

10.1 Inverse Design of a Bump in Transonic Channel Flow 

For this problem we wish to describe the shape of a bump located inside a 

channel so that we may recover a given pressure distribution. This problem, though 

academic, serves for two reasons. First, it demonstrates the ease at which the re- 

sponse surface technique can be applied to two-dimensional problems. The methods 

in Part 1 require a fair amount of calculus in preparing the analytic derivatives in 

the extension from one-dimension to two. No part of the algorithm changes in the 

response surface method except for the installation of an existing two-dimensional 

flow solver. The second reason for the problem is that it acts as a stepping stone 

to the airfoil problem to be discussed in the next section. 

The geometry of the channel is shown in figure 10.1. It has a length of 5 units 

and a height of two units. The bump is centered along the bottom of the channel 
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and has a length of one. The bump is parameterized with the four shape functions 

shown in figure 10.2. These shape functions are generated by fitting a B-spline 

through the points listed in table 10.1. The points ensure that the bump will begin 

and end at the points (0,0) and (1,0), ¢.e. no gaps on the channel floor. The shape 

of the bump is constructed from a weighted sum of the shape functions 

4 

Y=) éyi. (10.1) 
i=l 

where y; are the shape functions and the weights, €;, are the design variables. 

The flow through the channel is a solution to the Euler equations written for 

a perfect gas. In two-dimensions, the conservative form of the governing equations 

can be expressed in Cartesian coordinates as 

OQ OF , aC _ ey a By 0, (10.2) 

where 

p pu pv 
2 _) pu _}) pur+p _ puv Q= pv (? F= pur , G= pv? +p . (10.3) 

Peo (peo + p)u (peo + p)v 

The Euler equations are solved using ErICA, a two-dimensional finite-volume, up- 

wind, implicit solver. The author has developed ErICA at the Virginia Tech 

Aerospace Engineering Computer Laboratory. Details of the code are supplied 

in Appendix C. The Euler equations are solved for a Mach 0.80 flow on an 81x31 

point grid, with 41 points on the bump. A typical grid is shown in figure 10.3. Mesh 

sequencing and multigrid are used to accelerate convergence. 

The objective function for this problem is defined as 

41 

I(g) = 5 Gp - Cp i (10.4) 
t=1 
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where Cy is the target pressure coefficient distribution, C, is the design presure 

distribution, and the summation is taken over the grid points on the surface of the 

bump. The pressure coefficient is defined in the usual way, Cp = 2(poo — p) / pV2.- 

The target profile is created by solving the Euler equations over a bump described 

by 

§ = J/1.3— (x — 0.5)? — 1.2. O<2<1 (10.5) 

Pressure contours of the target solution are shown in figure 10.4. 

The minimization of the objective function is subject to constraints on the area 

0.03 < A < 0.08. (10.6) 

The area constraints keep the shape of the bump in a section of design space where 

flow solutions do not suffer from convergence difficulties. 

The objective function is non-smooth like the problem involving the one- 

dimensional transonic flow through a duct. The adverse effects of the interaction 

between the shock wave and the discretization of the domain can be visualized with 

a one-dimensional cut through the design space as shown in figure 10.5. Here the 

shape of the bump is varied linearly according to 

€, = 0.3406 + a(0.2543 — 0.3406), 

E. = 0.4640 + a(0.5463 — 0.4640), 

£3 = 0.7500 + «(0.5463 — 0.7500), 

€4 = 0.1750 + a(0.2543 — 0.1750). (10.7) 
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10.2 Transonic Airfoil Design 

Response surface technology is also useful for more practical applications such 

as airfoil design. In this section, we present the model problem of Vanderplaats et 

al.”® as implemented by Joh et al.®! 

The airfoil shape, of unit chord, is described by a weighted sum of six shape 

functions . 

Y= S| &iy:(a/c). (10.8) 
t=1 

Four of the shape functions, y1-y4, are pre-existing airfoils, namely NACA 2412, 

NACA 64,-412, NACA 652-415 and NACA 642-A215. The values for y;-y, may be 

found in reference 80. The remaining two shape functions are 

__ Jj a/e, on upper surface 
us 8. on lower surface ’ (10.9) 

_ 49, on upper surface 10.10 

Y=) _y /c, on lower surface ° (10.10) 

These functions are used to close the airfoil at the trailing edge, t.e at the point 

(1,0). The shape functions are shown in figures 10.6 and 10.7. By imposing a closed 

trailing edge, we can evaluate two of the design variables in terms of the remaining 

four. When we set y(l)upper = y(1)tower = 0 we find from (10.7)that 

y1(1)tower€1 + y2(1)ower€2 + ¥3(1)iowerés 

+ ya(1)iower€s + y5(1)iowerés + Y6(1)iower€e = 0, (10.11) 

Yy1(lL)upper€1 + y2(1)upper€2 + y3(1)upper$3+ 

+ ya(1)upper€s + ¥5(1)upperés + ¥6(1)upper&6 = 0. (10.12) 

Equations (10.11) and (10.12) can be solved for €; and & . This yields 

Es = [y1(1)tower€1 + Y2(1)tower€2 + y3(1)tower€3 + y4(1)iower&a| (10.13) 
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and 

E6 = [y1(L)tower bs + y2(1)tower&2 + y3(1)tower€s + y4(1)tower€4] . (10.14) 

Thus the design problem is formulated in terms of 4 design variables. 

Mathematically, we write the design problem as 

max C(&), (10.15) 

such that 

Cp < 0.01, (10.16) 

0.075 < A < 0.150. (10.17) 

The drag computed is wave drag. The lower limit on the area is imposed so that 

the airfoil does not reduce to a flat plate and thus maintaining structural integrity. 

The upper limit is imposed so that we avoid analyzing thick, unrealistic airfoils. 

As in Joh’s formulation, the airfoils are analyzed for M = 0.75 flow at a = 0 

with the Euler equations for a perfect gas. The pressure distributions are obtained 

using the Euler code. Lift and drag are computed by numerically integrating the 

pressure on the airfoil surface. 

The airfoil solutions are performed on 201x53 C-grids with 121 points on the 

airfoil. A typical grid is shown in figure 10.8. Curvature corrected boundary condi- 

tions formulated by Dadone and Grossman®! are used to enforce tangency on the 

airfoil. With the far-field boundary conditions of Thomas and Salas®*, the compu- 

tational far field is placed roughly 20 chords away. 
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CHAPTER 
ELEVEN 

RESULTS: PART IIT 

  

In this chapter we present results from several optimization problems using 

response surface methodology. We begin with a presentation of results from sev- 

eral cases involving the quasi-one-dimensional problem studied in Part 1. Next we 

present results from the inverse design of a bump in transonic channel flow. Lastly, 

we demonstrate the usefulness of response surfaces in transonic airfoil design. 

11.1 Quasi-one-dimensional duct 

The results of response surface optimization for the one-dimensional duct are 

presented in three sections. In the first section the duct is parameterized with one 

design variable. This allows for a clear demonstration of the methodology as the 

design space is easy to visualize. In the next section, results for a three design vari- 

able parameterization is presented. A comparison is made between the quadratic 

polynomial response surface (8.1) and the quadratic tensor product response sur- 

face (8.2). Following this section, we make a comparison to the derivative-based 

optimizations presented in Part 1. All results presented in section 11.1 use the 

Godunov flow solver on a 64 point grid to analyze flow conditions in the duct. The 

objective function used for the optimization is defined by (1.24). 

One Design Variable Case 

The design variable is constrained to the positive design space. For the purpose 

of probing the design space to construct the response surface we must artificially 
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RESULTS: PART II 

restrict the design space to insure that the shape of the duct is reasonable, 1.e. the 

flow solver can find a steady state flow solution for the duct. We define the first 

response surface region with the boundaries 

1.10 <€ < 1.70. (11.1) 

A quadratic of the form 

P=otauE+at é’, (11.2) 

fitted with 5 data points is used for the response surfaces. To satisfy the D- 

optimality condition, the domain is discretized into 13 points evenly spaced along 

the €-axis. There are 1287 combinations of 5 points from the set of 13 as computed 

from (8.14). Each combination is checked to satisfy the D-optimality condition. In 

this case, more than one of the 1287 combinations satisfies D-optimality. Of the 

D-optimality sets we randomly selected the points listed in table 11.1. D-optimal 

points for response surfaces in later cycles are found by applying the simple linear 

transformation of the type 

6: = En t+ E(u — En), (11.3) 

where €;,2 = 1,...,N are the D-optimal points, the subscript ll refers to the lower 

limit of the region, ul refers to the upper limit, and é; are the D-optimal points in 

the region defined for a region scaled between 0 and 1. This transformation saves 

us from running the GA at every cycle of the optimization. 

The response surfaces are constructed using the objective function defined by 

(1.24) and repeated below for convenience. 

y Na , 
I(é) = 5 » (i —u)sAz. (11.4) 

This is the objective function visualized in one dimension in figure 1.6.



The first response surface is found to be 

P = 1.725 — 2.467é + 0.886€7. (11.5) 

and is graphed along with the objective function in figure 11.1. The response 

surface model is able to capture the general location of the minimum, but additional 

response surface cycles are required to locate the minimum accurately. In this case 8 

cycles are required to drive the objective function to machine zero. The convergence 

is shown in figure 11.2. A history of the design variable is shown in figure 11.3. Also 

drawn in the figure are the limits of the response surface region. 

Three Design Variable Case 

The three design variable case is again constrained to the positive design space. 

The first response surface region is defined within 

1.05 < & < 1.25, 

1.30 < €) < 1.50, 

1.55 <3 < 1.75. (11.6) 

This region permits a. wide variety of duct shapes to be sampled while constraining 

the search to reasonable shapes. Most shapes in this region have monotonicly 

increasing area distributions. 

In this design case, we make a comparison between the quadratic (8.1) and the 

quadratic tensor product (8.2) in three design dimensions. The quadratic surface 

has 10 coefficients and is fitted with 15 data points. The quadratic tensor product, 

with 27 coefficients, is fitted with 41 data points. Thus each polynomial is 50% 

overdetermined. 
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The design space is sampled at D-optimal points to construct the response 

surface. To locate D-optimal points, the design domain is discretized into a9x9x9 

evenly spaced grid. The D-optimal points are found using the genetic algorithm 

code, GRAMPS. In both the quadratic and quadratic tenor product case, the code 

ran 3 times with different initial random number seeds. Due to the random nature 

of the algorithm, the repeatability of the GA result confirms that the set of points 

found are not anomalous. The histories of the GA convergence are documented in 

figures 11.4 and 11.5. The D-optimal points for the initial region are listed in tables 

11.2 and 11.3 for the quadratic and quadratic tensor product response surfaces 

respectively. 

Several design cycles are required to converge the design. D-optimal points for 

later cycles are found by applying a linear transformation similar to (11.3) to the 

D-optimal points listed in tables 11.2 and 11.3. 

Optimization with the quadratic polynomial proceeded for 11 cycles before con- 

vergence slowed. After the 14th cycle, we switched to derivative-based optimization 

via the method of conjugate gradients to complete the design. Here we continued to 

use the objective function defined by (11.4) t.e. we did not use any of the techniques 

discussed in Part 1 to handle the shock wave. The derivative-based optimization 

was successful because the response surface method was able to get very close to the 

target and align the design’s shock wave with the target’s. This is evident in figure 

11.6 where the design after the response surface cycles is compare to the target. 

The complete history of the optimization is shown in figure 11.7. 

Optimization with the quadratic tensor product followed a similar pattern. 

Here, after 4 cycles the convergence slows. After the 10th cycle we switch to 

derivative-based optimization. Again, the response surface optimization is able to 

align the shocks so that optimization via the derivative-based methods is successful 
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without using the techniques of Part 1. The convergence history is shown in figure 

11.8. 

In a comparison of the performance of the two response surface types, we see 

that the quadratic polynomial is better able to locate the minimum. Figure 11.7 

and 11.8 show that the response surface optimization with the quadratic polynomial 

is able to converge the minimum to approximately 10—" while with the quadratic 

tensor product, the objective function only reached 107%. The quadratic tensor 

product surface has more terms and thus has more flexibility in modeling the surface, 

yet the least-squares problem for this surface has a much higher condition number. 

For the first design cycle, the condition numbers associated with the quadratic 

polynomial and the quadratic tensor product least-square problem are 4.8 x 10’ 

and 1.0 x 10%, respectively. For this problem, we conclude that the additional cost 

of using the quadratic tensor product does not improve convergence. In fact, the 

high condition number associated with the least-squares fit hinders optimization. 

Comparison to Derivative-based Optimization 

We now make a comparison to the derivative-based optimizations performed 

in Part 1. In particular we make the comparison to the optimization with the 

objective function defined with the coordinate-straining transformation and shock 

penalty. This method tended to have better convergence than the shock-fitting 

technique. 

In the single design variable formulation, the conjugate gradient optimization 

converged the design to the target in 3 iterations whereas the response surface 

method took 8 cycles to reach the same level of convergence. In terms of flow 

solutions, the response surface method used 5 to construct the surface and one 

to evaluate the quality of the design at the response surface minimum. Thus a 
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total of 48 flow solutions were needed in the optimization. On the other hand, the 

derivative-based optimization, using the adjoint method, requires the equivalent of 

two flow solutions per iteration to compute the gradient. The line search procedure 

requires a minimum of three more function evaluations, each needing a flow solution. 

Thus the derivative-based optimization used a minimum of 15 flow solutions. 

For this simple design case, the derivative-based method proved to be the 

cheaper method. However, the use of parallel computers can improve the attrac- 

tiveness of the response surface method. Each function evaluation can be sent to a 

separate processor. As will be demonstrated in the airfoil design problem, the par- 

allel machine can be used to obtain all solutions required to construct the surface 

at the approximate cost of only one. This would effectively reduce the cost of the 

design via response surfaces to 16 flow solutions. 

The best derivative-based optimization result for the three design variable 

formulation used finite differences to compute the derivatives. With forward- 

differences, each iteration would require four solutions to compute gradients, plus at 

least three more for the line search. The 12 iterations to complete the optimization 

used at least 72 flow solutions. The response surface, using the quadratic polynomial 

used 224 flow solutions to achieve almost the same level of optimization. However, 

with parallel computers, the response surface optimization could have been reduced 

to 28 equivalent flow solutions. Likewise, the parallel computer could reduce the 

cost of computing derivatives as a processor can be assigned to compute a derivative. 

The effective number of solutions for a derivative-based method, taking advantage 

of coarse grain parallelization is 60. 

While response surface methods can compete with derivative based optimiza- 

tions with the use of parallel machines another key advantage especially in tran- 

sonic design is that no special handling of the shock is necessary in response surface 
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methodology. The black-box type approach to optimization with response surface 

significantly reduces set-up time. 

11.2 Bump in a Transonic Channel Flow 

The bump inverse design problem has no bounds on the values of the design 

variables, provided the area constraints (10.6) are satisfied. The first step is to 

narrow the field to a workable size to commence the response surface algorithm. 

We note the symmetry of the shape functions 1 and 4, and 2 and 3. Because of 

this symmetry we choose the limits of &; and £4 to be the same, as with & and 3. 

We also assume the optimum will be of order 1. Thus we arbitrarily set the first 

response region to 

0.25 < & < 0.50, 

0.50 < f < 1.00, 

0.50 < €3 < 1.00, 

0.25 < 4 < 0.50. (11.7) 

The response surface selected for each cycle is the quadratic curve 

P =cq + c1€1 + cole + 0303 + cabs + 5b? + cpl bo 

+ cr€is + cgbies + col} + croboés + cirb ots 

+ cy2é2 + crzésbs + erat? (11.8) 

We chose 23 D-optimal data points (roughly 1.5 x the number of coefficients) to 

construct the response surfaces for each cycle. 

D-optimal points for fitting the response surface region with (11.8) is found 

using GRAMPS. For each cycle, the design space is discretized with 6 points in 
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each direction to define 1296 candidate points. The list of candidate points is 

reduced by removing those which do not satisfy the area constraint. This implies 

that the design space is no longer a hypercube, but rather has an irregular shape. 

We cannot use a simple linear transformation as we had in the previous design to 

locate the D-optimal points for future cycles as the shape of the region changes 

from cycle to cycle. Thus the GA is rerun for each new response region at the start 

of a cycle. 

The GA works with a population of 5 point designs over 5000 generations. 

After the first cycle, points selected for analysis are not necessarily D-optimal. Any 

analyzed design points from previous cycles which are also elements of the newest 

response region are reused in later cycles. Thus the GA is set to maximize |A? A| 

with any pre-selected points as elements in the least-squares matrix. 

Three response cycles are performed for this inverse design. The details are 

listed in tables 11.4, 11.5, and 11.6. Each table contains the limits of the response 

surface region, the D-optimal data points, and the minimum of the response surface. 

A history of the objective function is shown in figure 11.9. The convergence of the 

design variables as well as the movement of the upper and lower limit of response 

surface region is shown in figure 11.10 and 11.11. 

The results of the first response surface are encouraging. The minimum of 

the response surface is also the most attractive design of the 23 analyzed to make 

the response surface. However, the minimum of the second response surface, when 

analyzed with the Euler solver is found to produced a design that is surpassed in 

quality by 20 previously analyzed designs! The third response surface was created 

about this point despite its high objective function value. The design improved at 

the conclusion of the third cycle to yield a design with an objective function lower 

then the previous iteration, but higher than the first. 

88



The pressure distribution of the designs after each cycle is compared to the 

target in figures 11.12, 11.13, 11.14. The corresponding shapes compared to the 

target is shown in figures 11.15, 11.16, 11.17. The first response surface cycle 

matches the pressure distribution very well except at one point at the shock. This 

corresponds to a slight underprediction of the bump height. 

Matching the shock precisely is a heavy requirement of the objective function 

with differences carrying a heavy penalty. This is an unfortunate consequence of 

the least squares objective function. The design with the lowest objective function 

is encountered during the construction of the second response cycle (pt.4 in table 

11.5). A view of the pressure distribution and shape is shown in figure 11.18 and 

11.19. Again, despite its low objective function, the shape is relatively far from 

the intended design. The design happened to agree at the shock better than most 

other designs. It, however, is not very good away from the shock, hence the poor 

agreement with the intended shape. 

The conclusion that we draw from this design is that the least-squares objective 

function, typical for inverse design, places too much weight on locating the shock. 

This tends to make bad designs look more impressive than they really are if the 

shock placement is good. Likewise, very good designs are penalized for slight errors 

near the shock. Further cycles are not considered for this design as the first response 

surface result is considered acceptable in light of the shock requirement. 

11.3 Transonic Airfoil Design 

The transonic airfoil design problem, like the previous problems, enforces no 

bounds on the variables. Any set of values in R* is feasible provided the drag con- 

straint (10.16) and the area constraints (10.17) are satisfied. To begin the response 

surface optimization we confine the search to 

—1.00 < &; < 1.00 ~=1,...,4 (11.9) 
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Again we use the quadratic function defined by (11.8) to create our response sur- 

faces. The D-optimal set of points for the quadratic are selected by discretizing the 

domain into 5 levels in each direction. Only points which satisfy the area constraint 

are considered as candidate points. This changes the shape of the domain from a 

hypercube to an irregular-shaped domain forcing the GA to be rerun at the start 

of every design cycle i.e. we cannot apply a transformation to a previously found 

set of D-optimal points. 

There is no way to enforce the drag constraint at the point selection level. The 

drag requires an Euler analysis which can only be afforded at the D-optimal points. 

Thus the D-optimal points are selected without regard to whether they satisfy the 

drag constraint or not. 

The drag constraint is enforced loosely using a surface fit. That is, the drag is 

fitted with the data collected from the Euler analyzes at the D-optimal points. In 

this case, the drag is fitted using (11.8) since the D-optimal points are optimized 

for a quadratic fit. The response surface modeling the lift is maximized subject to 

the constraints on the area and the drag modeled by the drag surface. We say the 

drag constraint is loosely enforced because the optimum point will satisfy the drag 

response surface constraint, but upon analysis we may find that the true drag is 

slightly violated. - 

In this design, we ran 5 response surface cycles. In each cycle we evaluate 23 

designs to obtain data for the lift and drag response surfaces. The Euler analyses are 

performed using ErICA on the Virginia Tech 28 node Intel Paragon XP/E parallel 

machine. We developed a front end for the code whereby each of 23 processors are 

assigned to perform one Euler analysis. 

The parallel code was analyzed for speed-up and efficiency using a test problem 

defined by the target flow for the transonic bump problem. The test timed how 

RESULTS: PART II 90



long the code took to obtain 24 solutions. Speed-up is defined as 

t 
Speed up = 7 (11.10) 

1 

where ft, is the time to get 24 solutions on p processors and ¢, is the time to get 24 

solutions on one processor. Efficiency is defined as 

t 
Ef ficiency = hp (11.11) 

1 

The code ran with 1, 4, 6, 8, 12, and 24 nodes with the results shown graphically in 

figure 11.20 and 11.21. On one node, the code ran the Euler analysis sequentially 

24 times; on 4 nodes, the code ran through a loop of length 6, with 4 Euler analyses 

performed in parallel each time. 

In practice, each processor solves a slightly different problem. One problem 

may take more iterations to reach steady state then others. In such a case, the 

processors which finishes first remains idle until the last problem is finished. 

The data from the five cycles are listed in tables 11.7 through 11.11. Each table 

contains the limits of the response surface region, the D-optimal design points, and 

the maximum of the lift surface subject to the drag surface and area constraint. A 

history of the objective function is plotted in figure 11.22 and the convergence of 

the design variables shown in figures 11.23 and 11.24. 

Although the lift peaked in the fourth cycle, it violated the true drag constraint 

by 3.1%. Despite the lower lift in cycle 5, the drag constraint is satisfied to a closer 

degree (1.5%). The design variables do not seem to be converged completely as 

there are still small variations in the second and third decimal place. Nevertheless, 

the optimization stopped because of the small variation in the lift. The shape of 

the final design is shown in figure 11.25. The pressure distribution on the surface is 

shown in figure 11.26. Pressure contours of the flow field are shown in figure 11.27. 
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CHAPTER 
TWELVE 

CONCLUSIONS: PART IT 
  

In this section of the dissertation, we presented a method of optimization using 

response surfaces. The response surface method involves curve fitting the design 

space with a simple polynomial function. The surface is minimized using conven- 

tional techniques. Minimization of the response surface often yields a design in the 

vicinity of the optimum. Performing other response surface cycles, or continuing the 

optimization using derivative-based methods generally leads to the optimum design. 

The first problem involves the design of a duct with mixed supersonic/subsonic flow. 

The second involves the design of a bump in a channel of transonic flow, and the 

final example is a design of a transonic airfoil. Each problem has a flow with a 

shock wave. The interaction of the shock wave with the discretization of the flow 

field introduces noise in the objective function. 

Often in aerodynamic shape design, optimization via derivative-based methods 

is expensive and prone to failures due to numerical inaccuracies in computing the 

objective function. These inaccuracies are amplified in the calculation of the deriva- 

tives. The advantage of response surface methodology lies in that minimization of 

the response surfaces can be performed very cheaply and robustly since they are 

smooth analytic functions. 

The choice of response surface can have a profound impact on the success of 

the optimization. Large polynomials have the flexibility to model many objective 

functions, but suffer from ill-conditioning in the least-squares problem. While the 

ill-conditioning may not prevent the polynomial from modeling the function well, it 
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may cause difficulties in the optimization of the response surface. A simple quadratic 

polynomial worked well in the design cases presented. 

While response surfaces are cheap to optimize, they can be expensive to make. 

The expense can be reduced by carefully selecting points to use in the fitting pro- 

cedure. For this we use D-optimal points. D-optimal points can produce a high 

quality fit with few function evaluations. Locating D-optimal points, however, is 

not trivial as it leads to an optimization of a large, integer subproblem. However, 

an effective and efficient genetic algorithm was developed to solve the subproblem. 

The cost of generating the response surface can also be reduced by simple 

coarse-grained parallelization. Evaluating data points for surface construction can 

be computed simultaneously by assigning each point to a separate processor. The 

use of parallel computers makes response surfaces an attractive alternative to 

derivative-based optimization. 

The dissertation ended with the presentation of the design results. The first 

case involved the design of the cross sectional area of a duct to match a given 

velocity distribution. The results for several cases varying in number of design vari- 

ables were encouraging as the target shape was recovered using several response 

surface cycles or a mixture of response surfaces and derivative-based optimization. 

In a comparison to pure derivative-based optimization, we found that response sur- 

face methodology has the advantage that Pre special treatment of the shock wave 

was necessary. In the derivative-based optimization, the objective function had 

to be smoothed, either by shock-fitting or by coordinate-straining. We also found 

the response surface methodology could be made competitive with derivative-based 

optimization from a CPU point of view by taking advantage of coarse-grained par- 

allelization. 

Optimization of the second problem was performed very quickly using response 

surfaces. In this inverse design problem, where the pressure over the bump was 
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matched to a target, we found that the least-square objective function made some 

designs appear much worse than they really were. This is a result of a slight smearing 

of the shock wave. As a result the target could not be recovered precisely. 

Finally, results for a transonic airfoil are presented. The design required 120 

Euler analyses, 24 at each iteration. However, 23 analyses could be performed at 

once on the Virginia Tech Intel Paragon. This effectively reduced the cost to 10 

Euler analyses. For the design of a Mach 0.8 airfoil with a maximum 10 drag counts, 

the lift coefficient at zero degrees angle of attack was maximized to 0.62. 

Weaknesses of the response surface methodology are associated with what is 

termed the “curse of dimensionality.” As the dimension of the design space in- 

creases, the feasibility of optimization by response surfaces decreases. In large 

design dimensions, the number of coefficients required to describe the response 

surface also becomes large. To achieve a well-conditioned fit to the polynomial re- 

quires many function evaluations and hence many CFD solutions. Giunta et al.®° 

began addressing this issue by taking two approaches. First, they use a variable- 

complexity approach whereby refined, expensive codes and simple, cheaper codes 

are used together to develop the response surface. Second, they use regression anal- 

ysis and analysis of variance to eliminate terms of the polynomial response surface 

that are not insignificant. In this way a smaller polynomial, and hence a cheaper 

one to construct, can be used to locate the general area of the minimum. Future 

work in response surface methodology will include using these techniques in higher 

dimensional problems. 

A strength of response surface optimization is the ease at which it can be 

applied to a variety of problems. Design problems which may involve three- 

dimensional flows or viscous flows can easily be optimized using the same codes 

developed for the one-dimensional duct problem. The only modification which 
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needs to be done is to swap the one-dimensional flow solver with a flow solver ap- 

propriate for the current design problem i.e. a three-dimensional or viscous flow 

solver. 
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TABLES 

          

i Xj Initial €; Target €; 

Case 1 1 0.50 1.2500 1.3975 

2 0.25 1.0848 1.1586 

Case 2 3 0.50 1.2500 1.3975 

4 0.75 1.5627 1.6364     

Table 5.1: Initial and target design conditions. 
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Forward Central 

Difference Difference Direct Adjoint 

oT Jo -0.2849 -0.2849 -0.2998 -0.2799 

Teinal 8.237x104 | 8.237x104 | 8.237x104 | 8.237x104 

Iterations 3 3 3 3     

Table 5.2: Comparison of design sensitivities and convergence of the continuous 
approach using the exact flow solver. One design variable case using 
the initial design point described in table 5.1; 1, = 5.436x10°2. 
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Forward Central 

Difference Difference Direct Adjoint 

a fog 0.0177 0.0177 0.0199 0.0167 

dl foe, -0.1951 -0,1951 -0.2067 -0.1916 

dt /o& -0.1972 -0.1972 -0.2062 -0.1931 

lsinal 8.236x104 | 8.236x10-4 | 8.256x10-4 | 8.240x10-4 

Iterations 31 35 28 16   
  

Table 5.3: Comparison of design sensitivities and convergence of the continuous 
approach using the exact flow solver. Three design variable case using 
the initial design point described in table 5.1; J, = 5.436x10-2. 
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Forward Central 

Difference Difference Direct Adjoint 

AI fog -0.4286 -0.4288 -0.2915 -0.2890 

TFinat 8.129x104 | 8.129x104 | 8.129x104 | 8.129xi04 

Iterations 3 3 4 4     

Table 5.4: Comparison of design sensitivities and convergence of the continuous 
approach using the Godunov flow solver. One design variable case 
using the initial design point described in table 5.1; Jy = 5.3120x10-2. 
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Forward Central 

Difference Difference Direct Adjoint 

al fo€, 0.0440 0.0440 0.0232 0.0196 

A foe -0.3137 -0.3137 -0.2060 -0.2019 

ol [oe -0.2776 -0.2776 -0.1944 -0.1937 

lfinal 8.389x104 | 8342x104 | 9.417x104 | 8.827x10+ 

Iterations 19 36 13 20     
  

Table 5.5: Comparison of design sensitivities and convergence of the continuous 
approach using the Godunov flow solver. Three design variable case 
using the initial design point described in table 5.1; J, =5.3120x10-2. 
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Forward Central 

Target Difference Difference Direct Adjoint 

cr 1.3975 1.3994 1.3994 1.3994 1.3994 

€1 1.1586 1.1586 1.1587 1.1606 1.1572 

&2 1.3975 1.3993 1.3993 1.3997 1.3993 

&3 1.6364 1.6354 1.6354 1.6449 1.6322     

Table 5.6: Final design parameters for the continuous approach using exact flow solutions. 

TABLES 108



  

Forward 

  

      
Difference Direct 

Exact Solver -0.67318 -0.70355 

Godunov Solver -0.95425 -0.68037     

Table 5.7: Continuous approach shock sensitivities computed with the exact and 

TABLES 

Godunov flow solvers. 
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Forward Central 

Target Difference Difference Direct Adjoint 

G1 1.3975 1.3969 1.3969 1.3969 1.3969 

gi 1.1586 1.1601 1.1600 1.1499 1.1723 

o2 1.3975 1.3982 1.3981 1.4010 1.3983 

c3 1.6364 1.6727 1.6693 1.7089 1.6890     

Table 5.8: Final design parameters for the continuous approach using Godunov 

TABLES 

flow solutions. 
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Forward Central 

Difference | Difference Direct Adjoint 

ol fog -0.5495 -0,5496 -0.5495 -0.5495 

I ginal 1.045x10-19 | 1.153x10-!! | 1.048x10-19 | 1.048x10-10 

Iterations 3 3 3 3     

Table 5.9: Comparison of design sensitivities and convergence of the discrete 
approach using the Godunov flow solver. One design variable case 
using the initial design point described in table 5.1; Jy = 3.936x10-2- 
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Forward Central 

Difference | Difference Direct Adjoint 

a fog 0.0834 0.0834 0.0834 0.0834 

a fae, -0.4248 -0.4248 -0.4248 -0.4248 
dl /oé, -0.3367 -0.3367 -0.3367 -0.3367 

Trinal 8.675x10-9 | 5.303x10-!0 | 5.186x10-!1 | 5.186x10-1! 

Iterations 12 12 55 55   
  

Table 5.10: Comparison of design sensitivities and convergence of the continuous 
approach using the Godunov flow solver. Three design variable case 
using the initial design point described in table 5.1; J, = 3.9363x10-2. 
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Forward Central 

Difference Difference Direct Adjoint 

al fog -0.4224 -0.4224 -0.4224 -0.4224 

I sinat 7.865x10-33 | 7.715x10-13 | 7.717x10-13 | 7.717x10-13 

Iterations 3 3 3 3     

Table 5.11: Comparison of design sensitivities and convergence of the discrete 
approach using the artificial flow solver. One design variable case using 
the initial design point described in table 5.1; 1, = 3.9363x10-2. 

TABLES 113



  

  

          

Forward Central 

Difference Difference Direct Adjoint 

ot fog 0.0554 0.0554 0.0554 0.0554 

dl og, -0.3203 -0.3203 -0.3203 -0.3203 

A /o& -0.2599 -0.2599 -0.2599 -0.2599 

T Final 5.147x10°9 | 5.591x10°9 | 5.595x10°9 | 5.595x10°? 

Iterations 11 11 11 11   
  

Table 5.12: Comparison of design sensitivities and convergence of the discrete 
approach using the artificial viscosity flow solver. Three design variable 
case using the initial design point described in table 5.1; 
4,0280x 10-2. 

TABLES 

I, = 
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Forward Central 

Target Difference Difference Direct Adjoint 

FF 1.3975 1.3975 1.3975 1.3975 1.3975 

G1 1.1586 1.1586 1.1586 1.1586 1.1586 

&2 1.3975 1.3975 1.3975 1.3975 1.3975 

G3 1.6364 1.6370 1.6363 1.6364 1.6364   
  

Table 5.13: Final design parameters for the discrete approach using Godunov flow 

TABLES 

solutions.



  

  

  

              
  

Forward Central 

Target Difference | Difference Direct Adjoint 

ci 1.3975 1.3975 1.3975 1.3975 1.3975 

g1 1.1586 1.1585 1.1585 1.1584 1.1584 

&2 1.3975 1.3975 1.3975 1.3975 1.3975 

o3 1.6364 1.6367 1.6368 1.6368 1.6368 

Table 5.14: Final design parameters for the discrete approach using artificial viscosity 

TABLES 

flow solutions. 
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rw V 
D-optimal 5.960x10°8 0.10705 

D-optimal/center hybrid 9.3132x10-10 0.11406 
Center 1.4552x10°11 0.14466 

Diamond 3.5527x10-!5 0.49095 

Interior 8.6736x 10-19 0.13738   
  

Table 8.1: Comparison of different sets of points for response surface construction. 
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Control Shape Shape Shape Shape 
Point 1 2 3 4 

1 (0,0) (0,0) (0,0) (0,0) 

2 (0,0) (0,0) (0,0) (0,0) 

3 (0,0) (0,0) (0,0) (0,0) 

4 (0.2,0.1) (0.4,0.1) (0.6,0.1) (0.8,0.1) 

PS) (1,0) (1,0) (1,0) (1,0) 

6 (1,0) (1,0) (1,0) (1,0) 

7 (1,0) (1,0) (1,0) (1,0) 

Table 10.1: B-spline control points for the bump shape functions 
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Table 11.1: D-optimal points for a quadratic polynomial response surface in the 

TABLES 

  

  

    

Index € 

1 1.1 

2 1.35 
3 1.4 

4 1.65 

5 1.7   
  

region 1.10 < € < 1.70. 
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Table 11.2: D-optimal points for a quadratic polynomial response surface in the 
region defined by (11.6). 

TABLES 

  

  

    

Index ci &2 &3 
1 1.15 1.50 1.55 

2 1.05 1.40 1.55 

3 1.25 1.30 1.55 

4 1.05 1.50 1.55 

5 1.15 1.30 1.55 

6 1.05 1.50 1.65 

7 1.05 1.30 1.55 

8 1.25 1.30 1.75 

9 1.25 1.50 1.75 

10 1.25 1.50 1.55 

11 1.15 1.40 1.75 

12 1.05 1.50 1.75 

13 1.05 1.30 1.75 

14 1.25 1.40 1.65 

15 1.100 1.30 1.65   
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Index 1 62 $3 
I 1.10 1.30 1.75 
2 1.15 1.35 1.55 
3 1.05 1.30 1.75 
4 1.05 1.40 1.65 
5 1.05 1.30 1.70 
6 1.20 1.45 1.75 
7 1.10 1.35 1.55 
8 1.05 1.40 1.60 
9 1.25 1.50 1.75 
10 1.05 1.30 1.55 
il 1.20 1.50 1.55 
12 1.25 1.30 1.55 
13 1.15 1.45 1.70 
14 1.15 1.30 1.70 
15 1.25 1.40 1.70 

16 1.15 1.30 1.75 
17 1.15 1.40 1.65 
18 1.25 1.40 1.55 
19 1.05 1.30 1.65 
20 1.25 1.50 1.55 
21 1.05 1.40 1.55 
22 1.05 1.50 1.65 
23 1.25 1.30 1.75 
24 1.25 1.40 1.65 
25 1.05 1.35 1.55 
26 1.25 1.40 1.75 
27 1.20 1.35 1.65 
28 1.25 1.30 1.65 
29 1.15 1.30 1.65 
30 1.20 1.40 1.65 
31 1.05 1.50 1.75 
32 1.15 1.50 1.75 
33 1.10 1.50 1.60 
34 1.15 1.30 1.55 
35 1.15 1.35 1.75 
36 1.15 1.50 1.60 
37 1.25 1.50 1.65 
38 1.05 1.50 1.55 
39 1.15 1.40 1.55 
40 1.05 1.40 1.75 
41 1.05 1.45 1.65     

Table 11.3: D-optimal points for a quadratic tensor product response surface in 
the region defined by (11.6). 
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Figure 1.1: Application of quasi-one-dimensional flow theory. 
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Figure 1.2: Supersonic and subsonic branches of the exact solution to f,+g=0. 
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Figure 1.3: Godunov solution to f,+g=0 computed on a 64 point grid. 
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Figure 1.4: Artificial viscosity solution to f,+g=0 computed on a 64 point grid with 

several values of a. 
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Figure 1.5: Design variable parameterization of the quasi-one-dimensional duct 
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Figure 1.6: Discontinuous objective function for the univariate case using the exact flow 
solution and N = 32 and N = 64. 
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Figure 1.7: Plot of terms in summation (1.24) reveals that terms between shocks 
dominate the summation. 
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Figure 1.8: Non-smooth objective function for the univariate case using the Godunov 
flow solver for N = 64. 
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Figure 1.9: Non-smooth objective function for the univariate case using the artificial 
viscosity flow solver for N = 64. 
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Figure 1.10: Shock-fitted objective function for the univariate case using the exact 
flow solver for N = 64. 

FIGURES 139



  

  

xs Sonic Line 
  

        
Figure 1.11: Schematic of interpolating the shock position and extrapolating left and 

right velocities at the shock. 
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Figure 1.12: Shock-fitted objective function for the univariate case using the Godunov 
flow solver for N = 64. 
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Figure 1.13: Coordinate straining performed for a test case computed from an exact 
solution. 
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Figure 1.14: Coordinate-strained objective function for the univariate case using the 
exact flow solver for N = 64. 
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Figure 1.15: Coordinate-strained objective function for the univariate case using the 
Godunov flow solver for N = 64. 
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Figure 1.16: Coordinate-strained objective function for the univariate case using the 
artificial viscosity flow solver for N = 64. 
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Figure 2.2: Conjugate gradient optimization of a quadratic in two variables. 
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Figure 2.1: Steepest descent optimization of a quadratic in two variables. 
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Figure 5.1: Initial and Target area distribution. 
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Figure 5.2: Initial and target velocity profiles using the exact flow solver. 
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Figure 5.3: Initial and target velocity profiles using the Godunov flow solver. 
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Figure 5.4: Initial and target velocity profiles using the artificial viscosity flow solver. 
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Figure 5.5: Expanded view of the shock-fitted objective function near the minimum. 
Figure drawn with the exact flow solutions. 
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Figure 5.6: Shock position variation with design variable (univariate case). 
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Figure 5.7: Left and right velocity variation at the shock position with design variable 
(univariate case). 

FIGURES 154



  

  

          
Figure 7.1: Example of reduction and translation 
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Figure 8.1: Simple example demonstrating how point selection can effect the fidelity 
of a response surface. 
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Figure 8.2: D-optimal set of points for P= Cy + G & + & +636" +046 &) +05 & ina 
rectangular domain. 
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Figure 8.3: D-optimal set of points for a quadratic tensor product in two-dimensional 
rectangular domain 
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Figure 8.4: Possible designs for constructing a response surface in 2-D rectangular space. 
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Figure 8.5: Least squares representation in two dimensions shows that the error vector 

Ac-z is perpendicular to the column space. 
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Figure 9.1: Probability of designs being selected for parenting based on the rank in 
a population of 10 designs. 
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Figure 9.2: Breeding of two parent designs to get one child design. 
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Figure 9.3: GA history of convergence to D-optimal set of points for fitting equation 
8.3 in square domain 
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Figure 9.4: D-optimal set of points for fitting equation 9.6 in a general shaped domain. 
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Figure 9.5: GA history of convergence to D-optimal set of points for fitting equation 
9.6 in the general domain of figure 9.4. 
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Figure 10.1: Channel geometry. 
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Figure 10.2: Shape functions for the inverse design of a bump in transonic channel flow. 
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Figure 10.3: Typical grid to generate the Euler solutions for transonic flow through the 
channel. 
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Figure 10.4: Target pressure contours for Mach 0.8 flow through the channel. 
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Figure 10.5: One-dimensional cut through the design space of a bump in a channel of 
transonic flow. 
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Figure 10.6: 3 of 6 shape functions for the transonic airfoil design problem. 
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Figure 10.7: 3 of 6 shape functions for the transonic airfoil design problem. 
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Figure 10.8: Typical grid to generate the Euler solutions for transonic flow over an 

airfoil. 
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Figure 11.1: Response surface modeling the objective function of the one-dimensional 
duct problem parameterized by one design variable. 
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Figure 11.2: Convergence history of the one-dimensional duct problem parameterized 

by one design variable and optimized by response surfaces. 
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Figure 11.3: Convergence of the design variable for the one-dimensional duct problem 
optimized by response surfaces. 

FIGURES 176



  

  

  

fit 
e
e
p
i
l
 

  

  

P
O
T
 

PP 
r
e
r
t
 

    
  

    v
r
a
y
 

L
f
 

L
i
t
t
 

  

10°   

Ma
x 

|A
TA
I 

  

  

TT 
T
T
 

Tr
Tt
Tt
 

1 
r
a
t
i
t
a
s
l
 

  10° 

q 
C
T
U
r
i
n
y
 

Led 
P
i
t
 

t
i
t
             

  

10° 1 ! ! ! ! L i J 4 14 

0 2000 4000 6000 8000 1 10° 

Generation 

  

  

Figure 11.4: GA history of convergence to D-optimal set of points for fitting a quadratic 
in the region defined by (11.6). 
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Figure 11.5: GA history of convergence to D-optimal set of points for fitting a quadratic 
tensor product in the region defined by (11.6). 
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Figure 11.6: Response surface optimization result for the three design variable 
parameterization of the duct shows the shocks aligned. 
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Figure 11.7: Convergence history of the one-dimensional duct problem parameterized 
by three design variable and optimized by quadratic response surfaces 
followed by derivative-based optimization. 
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Figure 11.8: Convergence history of the one-dimensional duct problem parameterized 
by three design variable and optimized by quadratic tensor product 
response surfaces followed by derivative-based optimization. 
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Figure 11.9: Convergence history of the transonic bump problem optimized with 
response surfaces. 
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Figure 11.10: Convergence of €, and € for the transonic bump problem optimized 

by response surfaces. 
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Figure 11.11: Convergence of &3 and &, for the transonic bump problem optimized 
by response surfaces. 
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Figure 11.12: Pressure distribution comparison between the first response cycle design 
and the target. 
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Figure 11.17: Design of the bump in the transonic channel flow after 3 response surface 
cycles. 
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Figure 11.18: Pressure distribution comparison between the design with the lowest objective 
function encountered during the response surface optimization and the target. 
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Figure 11.19: Design with the lowest objective function value encountered during the 
response surface optimizaion of the transonic bump problem. 
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Figure 11.20: Speed-up with parallel computing of Euler solutions to the transonic bump 
problem for response surface construction. 
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Figure 11.21: Efficiency with parallel computing of Euler solutions to the transonic bump 
problem for response surface construction. 

FIGURES 194



  

  

Li
ft
 

0.63 

0.62 

0.61 

0.6 

0.59 

0.58 

0.57 

0.56 

  

  

  

  

  

  

                
  

: / : 
c a 
r 7 

7 
C y 1 

0 1 3 5 6 

  

Figure 11.22: Convergence of the transonic airfoil design. Lift is computed at M = 0.75 

anda = 0°. 
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Figure 11.24: Convergence of & and &, for the transonic airfoil design optimized 

tby response surfaces. 
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Figure 11.25: Optimized shape for an airfoil at M = 0.75, ~@=0". 
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Figure 11.26: Surface pressure distribution for optimized airfoil at M = 0.75, ~@ = 0°. 
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APPENDIX 
A 

  

GRAMPS USER’S GUIDE 

This appendix provides some instructions for using GRAMPS, the Genetic Re- 

combination Algorithm for Multiple Point Selection. The input decks are explained 

fully and some suggestions for parameter values are given. We recommend that the 

example problems from the chapter 9 be check to make sure the code is running 

properly. Due to the random function calls and the differences in compilers, recov- 

ering the D-optimal results in exactly the reported number of generations is not 

likely, however, the D-optimal solution should be recovered. 

The information which allows GRAMPS to run different problems is read from 

a series of input files. The main input deck contains all the information specific to 

setting the GA parameters. The secondary file contains the data to describe the 

region over which the D-optimal points are to be found. An example of the input 

is shown 
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in below. 

GRAMPSv1 INPUT DECK 
written by R. Narducci 

August, 199 

Genetic Algorithm Parameters 

Population Size No. of Gen. Total No. of A? A Evals. 

5 10000 -1 
Mutation Rate Random Number Seed 
0.15 1001 

+ ++ +— ++ + —} ++ +   

Curve Fit Parameters 
No. of Design DiniType of Curve No. of Pts in Fit No. of Coef. 
7 1 54 36 
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+
 

Design Space Description 
Cubic Space (0/1)Pts/Limits (0/1) File Name 

  

0 1 limit.dek 
+ + + + —F + + “t 

Output specification 

Print Option File of D-opt Pts Convergence History 

0 dv7c.pts dv7c.his 

+ —- — —+ — —+ + +   

To initiate GRAMPS in UNIX-based environments, type 

gramps < filename 

where filename is the name of the main input deck. 

The input deck is entered as a formatted read, therefore it is critical that the 

information stored in it is aligned correctly. Information is read in columns of 20 

spaces wide. Each new piece of data should begin in column 1, 21, 41, or 61. The 

information is read in 5 cards. 

The first two cards contain the GA parameters. The first card contains the 

population size, total number of generations and the maximum allowable evaluations 

of |A!'A|. The population size for most problems should be in the order of 5 to 10. 

Rarely should a problem contain more than 30 as large number of designs in the 

population increases the chances of retaining large amounts of poor designs. The 

GA will stop after the maximum number of generations has been reached or the 

limit of |A? A| evaluations have been reached. The second card sets the mutation 

rate and the random number seed. The mutation rate is the probability of a gene in 

a string being mutated. As a rough rule of thumh, this number should be between 

50-15%. The random number secd initializes the random number generator. Several 

starts of the GA can be done for a specific problem by varying the random number 

seed. This value should be a large, odd integer. 
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The next card sets the conditions of the GA for a desired response surface 

type. The first number on the card tell the GA how many dimensions the design 

space spans. The second number is a flag representing the desired type of response 

surface. GRAMPS is preprogrammed for the following types of curves: 

0.) f = e161 + colo +... + en€n + Cn41 

1.) f =e1€? + croliée +... + eindién + 22 +... + conbrtn 

C164 + cof. +... + Cn€n + Cn41 

2.) f = (e161 + €2)(c3£1 + ca) or 

f = (e141 + €2)(e3€1 + c4)(e5€1 + ce) 

3.) f = (cr€f + cob +ca)(ca€f testi tes) or 

f = (e167 + c2€1 +. 3)(ca€? + c5€1 + 6 )(crEj + cgéi + c9) 

4.) f = (ci€r + c2)(cs€j + ca€i + cs) 

The next number represents the number of points wanted in the least-squares prob- 

lem. The last number is the number of coefficients in the curve. This number must 

be less than or equals to the previous. 

The third card gives information pertaining to the description of the design 

space. The first number flags whether the space is a hypercube or not. In other 

words, if the flag equal 0 the genes will be represented as coordinates of the points in 

the design space or otherwise if equal to 1 the genes will be represented by numbers 

assigned to the points. There are two ways to input the points discretizing the 

design space. Both ways need another data file. The first way (assign the flag to 

0) is by giving a file with a list of points. The second way is to give the lower and 

upper limits of the design space in each direction. More will be given on the format 

of the data file later. 

The final card sets the output option. The first is the print option to the screen. 

Set equal to zero, all output to the screen is suppressed. Set equal to one, a history 
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of the max|A? A| and ave|A? A| for the population scrolls through the screen for each 

generation. Set equal to two, gives a description of all designs in a population, and 

the parents the design came from. This is a good option for visualizing the progress 

of the GA. The next two pieces of information give the output file names. The first 

file stores the D-optimal points; the second stores a history of the maximum and 

average |A7 Al. 

The file containing the design space description also has some specific formats. 

When the design space is given as a set of limits, then the information is given in 

a file as shown below 

| | | | | | { tf 
  

  

  

TT TT a oF i TT TT oT 

GRAMPSv1 Design Space Limits Deck 
written by R. Narducci 

August, 1994 
___| —__ i —__| | } j 

Lower Limit Upper Limit No. of Levels 
1.00 1.10 5 
1.10 1.20 5 

1.20 1.30 5 
1.30 1.40 5 
1.40 1.50 5 
1.50 1.60 5 

1.60 1.70 5 

The first coluinn shows the lower limit, followed by the upper limit, followed by 

the the number of points in the discretization of that direction. If the description 

of the space is not a hypercube type then a list of points must be given. The first 

line of the data file is the number if points representing the design space. The list of 

points begins on line two. The coordinate of the points should appear in columns. 

At the end of each line and intcger should appear. If the integer is 1, then the point 

will be selected as a D-optimal point. If the integer is 0, then the point may of 

may not be selected for curve fitting. Note that if points are preselected, the set of 

points may not be truly D-optimal. 
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APPENDIX 
B 

GRAMPS FORTRAN CODE 
  

The following is a listing of the genetic algorithm GRAMPS or Genetic Recom- 

bination Algorithm for Multiple Point Selection. Several subroutines are omitted 

because they are lengthy and readily available in other sources or they have copy- 

right protection. Of those missing are the LAPACK subroutine dgeqr2.f which 

performs QR factorization on a matrix, and sort.f which is found in Ref. 70 and 

performs a ranking of an array of numbers. 

program main 

Co ee ae a a a re eee ee ee me ne me ee ea ee ee en ce ae nae ce ee en oe ce ce one en tae eo ee ie ee we 

c Front end for the Genetic Recombination Algorithm code for 
c Multiple Point Selection code. Last Update: 8-26-94 
Cor ee ane me ne a ee em ee re ne ne re ee ee ee ce oe a a ee 

(oe 

c Type declarations 
CO et ee ae ae a ee ee ee ae ee ee 

integer piw, pw 

parameter(piw = 232) 
parameter(pw = 1292) 

integer ndv, ifit, npts, npop, ngen, npool, iprint 
integer igenes, ncoef, ireal8, iint, iw(piw), nfcn, ispace 
integer piparl, pipar2, pipsp, piord, pitmp, pxpool, px, pxp 
integer pxtemp, pxline, pd, pp, ppop, pkid, ptmp 

real*8 w(pw) 

character*30 convhis, ptsfile, desspace 

oe 

c Read Input Deck 
(oe 

call input(npop, ngen, nfcn, ndv, ifit, npts, ispace, npool, 
. ncoef, iprint, igenes, desspace, ptsfile, convhis) 

APPENDIX B 205



Q a a © Q ~ = eB 5 ® 1Q
 G wr
 

ry 8 3 tt
 

call calcmem(npop, npool, ndv, npts, ncoef, igenes, iint, ireal8) 
if ( (iint .gt. piw) .or. (ireal8 .gt. pw) ) then 

write(*,902) VP RMKKKEKKKEKHKEKERKEKEKECKEKEKKEKRKEKKKEKRKEEEKEKKEKKEE 

write(*,901) 'The parameter piw must be at least:', iint 
write(*,901) ‘The parameter pw must be at least: ', ireal8 
write(*,902) ‘Adjust these parameters in main.f subroutine’ 
write(*,902) PH HKEEKEKKEKEKEKEKKEEEKEKKEEEEEKEEKEREEKEEKKEKEEKKEKKEKKEK 

stop 
end if 

Ce ae cee ee ce re ae me ne ce ae a oe we ee ee eo oe ot 

Cc Assign Pointers, Integers 
CO er er ce ca re ae cre te ae ee ee ee re ee ae re ne ee ee ee 

piparl = 1 
pipar2 = piparl + npop 
pipsp = pipar2 + npop 
piord = pipsp + npool 
pitmp = piord + npop 

Ce ee cea ce cae oes cs ce oe ae ws ann ete Oe ow om one wD OOD OE om 

c Assign Pointers, Real*8 
CO a ar a sa eee a ee ee a ae ae ae we oe 

pxpool = 1 
px = pxpool + npool*ndv 
pxp = px + npts*ncoef 

pd = pxp + (npts-igenes/ndv) *ncoef 

= pd + npop 
Ppop = pp + npop 
pkid = ppop + npop*igenes 
pxtemp = pkid + npop*igenes 
pxline = pxtemp + ndv 
ptmp = pxline + ncoef 

Call gramps(npop, ngen, nfcn, ndv, ifit, npts, ispace, npool, 
. ncoef, iprint, igenes, desspace, ptsfile, convhis, 
. iw(piparl), iw(pipar2), iw(pipsp), iw(piord), w(pxpool), 

. w({pxX), w(pxp), w(pd), w(pp), w(ppop), w(pkid), w(pxtemp), 

. w(pxline), w(ptmp) ) 

901 format (a,i9) 
902 format(a) 

end 

Cw a a wo we a i ae we a ae ec i ee ee ae oe oe ee a ee ee ne a ee ee ee ns Os a Oa ta ae ee cnn se Oe ee we oe we 

subroutine input(npop, ngen, nfcn, iseed, ndv, ifit, npts, ispace, 
. ifile, ncoef, iprint, xmut, desspace, ptsfile, convhis) 

c This subroutine reads the input deck for GRAMPSvl 
c 
Cc eee eee ome OE ew ee ee SO ee ee Oe ee oe ee ee 

c Variable Definitions 
Cf mm ee te nes cnn ae ee me ee ee we a ee On ce es 
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= am oe ot 0 oe ow om OF 0 a oe ee 

Input variables 

npop 
ngen 

nfcn 

xmut 

iseed 

ndv 

ifit 

npts 
ncoef 

ispace 
ifile 
desspace 

iprint 
ptsfile 
convhis 

q
g
q
a
a
a
d
q
a
g
a
a
g
q
a
a
g
a
a
g
a
a
g
a
a
g
a
a
d
g
a
a
d
g
a
a
a
a
g
a
a
g
a
a
a
n
a
a
n
a
a
a
g
a
a
a
n
a
a
a
n
 

a
a
 

a
a
 < © HK p » o Ee ® w g n~

 

No. of designs in a single generation (population) 
No. of generations to run GA 
Maximum No. of function evaluation to be done in GA 
Mutation rate 
Random number seed 

No. of dimensions in design space 
Type of function to describe the response surface 

No. of points to be selected for D-optimality 
No. of coefficients in polynomial used to describe 

the response surface 
Flag describing design space 
Flag for design space representation 
File containing design space description 
Print option 
File to contain D-optimal points 
File to contain convergence history 

integer npop, ngen, nfcn, iseed, ndv, ifit, npts, ncoef 
integer ispace, ifile, iprint 

real*8 x, xmut 

character*30 desspace, ptsfile, convhis 

character*72 temp 

Q w ) pe)
 

Q.
 

-
 

o Q
 ti
 

@O bs)
 

Qu
 

@ Hi 

open (2, file = ‘gramps.dek', status = 'old') 
read (2,901) temp 
write(*,901) temp 
read (2,901) temp 
write(*,901) temp 
read (2,901) temp 
write(*,901) temp 
read (2,901) temp 

write(*,901) temp 
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c Reading GA Parameters 

read (2,901) temp 

write(*,901) temp 
read (2,901) temp 
write(*,901) temp 

read (2,901) temp 
write(*,901) temp 
read (2,902) npop, ngen, nfcn 

write(*,903) npop, ngen, nfcn 
read (2,901) temp 
write(*,901) temp 
read (2,911) xmut, iseed 
write(*,912) xmut, iseed 

op Onn ame Gm om owe oe 0 Oe oe em Oe Om Om Oe Om ae Om oe oe 6m 8 oe 8 ee oe ee 

q
a
 

read (2,901) temp 
write(*,901) temp 
read (2,901) temp 
write(*,901) temp 
read (2,901) temp 
write(*,901) temp 
read (2,904) ndv, ifit, npts, ncoef 
write(*,905) ndv, ifit, npts, ncoef 

Q wv
 

® m Q }.
 

3 WQ Oo
 

fi)
 

a fe
. 

wQ
 a n ©
 p Q o 0 @ n Q 4 -
 

oo
 

c
t
 P-
 QO po 

read (2,901) temp 
write(*,901) temp 
read (2,901) temp 

write(*,901) temp 
read (2,901) temp 
write(*,901) temp 
read (2,906) ispace, ifile, desspace 

write(*,907) ispace, ifile, desspace 

Q Ww © @ Q be
. oS Q
 QO & ct
 

9 & c
t
 ry
 

we
 

~~
 

© 3 Q p-
 

Hh
 

fu
e Q 

c
t
 

ph ° ys w 

read (2,901) temp 
write(*,901) temp 
read (2,901) temp 
write(*,901) temp 
read (2,901) temp 
write(*,901) temp 
read (2,908) iprint, ptsfile, convhis 
write(*,909) iprint, ptsfile, convhis 
read (2,901) temp 
write(*,910) temp 

close(2) 
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901 
902 
903 
904 
905 
906 
907 
908 
909 
910 
911 
912 

A
a
q
n
t
a
a
g
a
a
a
a
g
a
a
g
a
a
g
a
N
n
g
a
n
g
a
a
g
a
a
g
a
a
n
R
g
e
a
n
a
g
a
a
a
n
a
a
a
n
a
a
a
a
n
a
a
a
a
a
a
 

at ee ee Oe me Oe a ae ee ee ee ee ee ee ee 

format (a) 

format (3(i20)) 
format (3(i10,10x)) 
format (4(i20)) 
format (3(i10,10x),1i5) 
format (2(i20),a20) 
format (2(i10,10x),a20) 
format (i20,a20,a20) 
format (i10,10x,a20,a20) 

format(a,//) 
format (£20.10,120) 
format (f10.4,10x 

return 

end 

,i10) 

subroutine limits(ifile, ndv, nlim, nxpool, nipsp, ilim, ipsp, 
. ips, npool, xl, xu, xpool, despace) 

This subroutine reads in the description of the design space or 
computes it based on information from despace. 

ipsp 
ips 
npool 
ilim 

xl 

Working Array 

APPENDIX B 

Flag for design space representation 
No. of dimensions in design space 
Length of the arrays ilim, xl, xu 
Dimension of array xpool 

Dimension of array ipsp 
File containing design space description 

Array identifying preselected points 
No. of preselected points 
No. of points to pick D-optimal set from 
Array of size (nlim) no. of discrete pts along the 

ith design dimension 
Array of size (nlim), lower limit of variables 
Array of size (nlim), upper limit of variables 
Array Of size (nxpool) containing description of 

points in design space 
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CO ee ew ae ee ee ee 

c i, j Counters 
c temp Character temporary array 

Cc 
Co ow wee rn ee ee ce cr a ee ee ee ee en oe ee a et ee a a ee re en ee et ne ne eo a ee ee Oe ne oe ee 0 one ea ne 

Co a eee ae er ee ee 

Cc Variable Block 
CO ee ce eo cre ae ee we eo 

integer i, j, ifile, ndv, nxpool, nipsp, ilim(nlim), ipsp(nipsp) 

integer ips, npool, nlim 

real*8 xl(nlim), xu(nlim), xpool(nxpool) 

character*30 despace 
character*72 temp 

Co ert ete eae cas ee ay ce ae ame ee eee cre ce atom ge come sem come ome one 

c Initialize subroutine 
Ce ae ae ca ee ae ae ae na ee a ee ee ate ee ee 

open (3, file = despace, status = ‘old') 
ips = 0 

Ce ee ee re cae ee ec se a er ne cee cae eee ee ee ee ee 

c Set up design space description 
Cet oe aes Aa a ce Sa Sam at SON ne me ee ee a Se ee ON et wn a ee cae oe ame 

if (ifile .eq. 0) then 
read(3,*) npool 
do 10 3 = 1, npool 

read(3,*) (xpool((i-1)*npool+j), i = 1, ndv), ipsp(j) 
ips = ips + ipsp(j) 

10 continue 
else 

read(3,901) temp 

read(3,901) temp 
read(3,901) temp 
read(3,901) temp 
read(3,901) temp 

read(3,901) temp 

do 20 i= 1, ndv 
read(3,*) x1(i), xu(i), ilim(i) 

20 continue 
do 30 i= 1, ndv 

do 30 j = 0, ilim(i)-1l 

xpool(j*ndvt+ti) = x1(i) - real(j)*(xl(i) - xu(i))/ 
real(ilim(i)-1) 

30 continue 
npool = 
do 40 i 

npool 
40 continue 

end if 

1, ndv 

npool*ilim(i) o
e
 

close(3) 

901 format(a) 
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return 

end 

Cf Se eet ee eee ly mS SUES ta nD GED RS NA ins GE ENO NS SEES dey GT GORD aN tS SE GS ES SA GE ED GD GED SEN SE eed OS GED OOD Ene Oe MND OND GED SEEPS GD OY Gates GT GED GD OEY GD GE on on On ow on OE On 

subroutine calcmem(ifile, npop, npool, ndv, npts, ncoef, ngenes, 

. nlim, nxpool, nipsp, nint, nreal, despace) 

This subroutines computes the necessary storage space to be 
allocated for GRAMPS. This routine also computes the number 
of genes to represent thD-optimal designs 

ifile Flag for design space representation 
npop No. of designs in a single generation (poplulation) 
npool No. of points describing entire design space 
ndv No. of dimensions in design space 
npts No. of points to be selected for D-optimality 
ncoef No. of coefficients in polynomial used to describe 

the response surface 
ngenes No. of genes representing each design 
despace File containing design space description 

output variables 

nlim Length of the arrays ilim, xl, xu 
nxpool Length of the array xpool 
nipsp Length of the array ipsp 
nint Amount of space to be allocated for integers 
nreal Amount of space to be allocated for real*8 
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i, j counters 
ctemp temporary character string 
xtemp temporary real*8 
itemp No. of discretized points in one design dimension 
max Max no. of discretized points in a single design 

dimension 
Co me cr cee ee ae ee ee re cree oe cae ae ae me re ee ee 0 ee ee oe re st cae ee ee ee ns mn ome ae 0S ts ee te Oo ee ee ee ee ee ee te ee ee 

Cc oe te ee oem oe On Oe me we OD Oe oe om 

c Variable Block 
Co ae eae cae eee et ee ce eee me eee emcee ee ene 

integer ifile, npop, npool, ndv, npts, ncoef, ngenes 
integer nlim, nxpool, nipsp, nint, nreal 
integer i, j, itemp, max 

real*8 xtemp 

character*30 despace 
character*72 ctemp 
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open(3, file = despace, status = ‘old') 
if (ifile .eq. 0) then 

read(3,*) npool 
nlim =l1 
nxpool = npool*ndv 
hipsp = npool 

else 
max = 0 

read(3,901) ctemp 

read(3,901) ctemp 
read(3,901) ctemp 
read(3,901) ctemp 
read(3,901) ctemp 
read(3,901) ctemp 
do 10 i= 1, ndv 

read(3,*) xtemp, xtemp, itemp 
if (itemp .gt. max) then 

max = itemp 
end if 

10 continue 
nlim = ndv 
nxpool = max*ndv 
nipsp = 1 

end if 

Co ar ee ee te we ae oe eee eee ee me oe ee we ee ee 

c Compute number of Genes 
Co mr ae a cae cnet te sae re ae cae ee ee Oe ee a ee ee me oe oe 

ngenes = 0 
if (ifile .eg. 0) then 

do 20 i = 1, npool 
read(3,*) (xtemp, j = 1, ndv), itemp 
ngenes = ngenes + itemp 

20 continue 
ngenes = (npts - ngenes)*ndv 

else 
ngenes = npts*ndv 

end if 
close(3) 

Co re ee se ce cre re oes em ee nee crn ce cane eee ne Sm ween ots Ot ete 

c Compute integer memory 
Co cr at ae ss ts Sat a eae em me a ST SY ce SD om a 

nint = 1 + nlim + 3*npop + nipsp + npool 

Co a ce eet ce ee oa a ee same On OD om es aD ee ee ote we me ene 

c Compute real*8 memory 
Co ce eet tr ane ee ce me ae en ee ew cet UE Seam mnt SOD Ore 

nreal = ncoef*(2*npts — ngenes/ndv + 3) + 2*npop*(1 + ngenes) + 
. ndv + nxpool + npool + 2*nlim + 2 

c nreal = 100*nreal + 1000 
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901 format(a) 
return 
end 

Ce re ce re a re cae ae ee ee ee te te a oe ne Swe eae ce em eee ee Oe care cae me Oa ee me Se sm ES OD aes ae Wilms Sm Se SSD en SOS Ne SO OO SND SED SE SD GOD SD GS SER SE NY SOY GUD Ente Some cee 

subroutine gramps(npop, ngen, nfcn, iseed, ndv, ifit, npts, 
. ispace, npool, nlim, nxpool, nipsp, ncoef, iprint, 
. ig, ips, ifile, xmut, idim, ptsfile, convhis, iparl, 

° ipar2, ipsp, iord, xpool, x, xp, d, p, pop, kid, 
. xtemp, xline, ixdis, xdis, w) 

This program implements a variation of the genetic algorithm 
discussed in the paper by Furuya and Haftka entitled “Locating 
Actuators for Vibration Suppression on Space Trusses by Genetic 
Algorithms", ASME Winter Annual Meeting 1993. The purpose of 
the code is to find a set of D-optimal points from a region. 

=e om am om Oe et Oe om ow oe ey > Oe on oe oe oe 

npop No. of designs in a single generation (population) 
ngen No. of generations to run GA 
nfcn Maximum No. of function evaluations to be done in GA 
iseed Random number generator seed 
ndv No. of dimensions in design space 
ifit Type of function to describe the response surface 
npts No. of points to be selected for D-optimality 
ispace Flag describing design space 

npool No. of points describing entire design space 
nlim Length of array ilim 
nxpool Length of array xpool 

nipsp Length of array ipsp 
ncoef No. of coefficients in polynomial used to describe 

the response surface 
iprint Print option 
ig No. of genes representing each design 
ips No. of preselected points 
ifile Flag for design space representation 
xmut Mutation rate 

idim Array of dimension (nlim); No. of discrete pts 
along the ith design dimension 

ptsfile File to contain D-optimal points 
conhis File to contain convergence history 
xpool Array of dimension nxpool; contains points describing 

design space 

eos anes cnn Gee: cae nD ND Om OED OR GED Os oe UE ee oe 

Working Variables 

i, j, k, n, general counters Q
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kk, jj 
cc 
igen 
ix 
xr 
rand 
iparl 
ipar2 
ipsp 

iord 

ixdis 

xdis 

ow ae oe oe Oe ee > ee oe 

counter for numbering coefficients 
counter for numbering generation 
random integer 
random real*8 

random number function 
Array of dimension npop; contains lst parent i.d. 
Array of dimension npop; contains 2nd parent i.d. 

Array of dimension nipsp; contains id for pre- 
selected points 

Array of dimension npop; contains ranking of 

population 
Array of dimension npool; contain ranking for 

mutation of general shape region 
Array of dimension npool; contains distance info 

for mutation of general shape region. 
Array of dimension npts x ncoef; contains LS matrix 
Array of dimension npts-ig/ndv x ncoef; contains 

LS matrix for preselected points 
Array of dimension npop; determinant of xTx for 

each design in the species 
Average determinant over the population 
Array of dimension npop; contains probability 

function 
Array Of dimension npop x ig describing the current 

population 

Array of dimension npop x ig describing children 
designs 

Temporary array of length ndv 

Array of length ncoef; contains a row of the LS 
matrix 

Work array 
Temporary integer containing rank 
Temporary integer of LAPACK subroutines 
Temporary real*8 number 

Number of combinations of points to be chosen from 
pool 

Pointer 
Pointer 
Pointer 

evals, srand, rand, getxl, dgeqr2, sort 

Written by Bob Narducci 

Modified 

Virginia Tech 
1994 215 Randolph Hall 
1995 Blacksburg, VA 24060 

integer i, j, k, n, cc, jj, kk, ix, igen 
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integer npop, ngen, nfcn, iseed, ndv, ifit, npts, ispace, npool 
integer nlim, nxpool, nipsp, ncoef, iprint, ig, ips, ifile 

integer idim(nlim), iparl(npop), ipar2(npop), ipsp(nipsp) 
integer iord(npop), ixdis(npool), irank, info 
integer pwork, ptau, ptmp 

real*8 xmut, xpool(nxpool), x(npts,ncoef), xp(npts~ig/ndv,ncoef) 

real*8 d(npop), p(npop), aved, pop(npop,ig), kid(npop,ig) 
real*8 xtemp(ndv), xline(ncoef), xdis(npool), rand, xr 
real*8 denom, xnop, w(1) 

character*30 convhis, ptsfile 

Co ar rte am ec re se a me ee me ae ee a a ee oe eae ee ee me ee 

c Initializing Code & Assign Pointers 
Co a ee ne nce ee a ee ae ee een eH ee ee ny Hw ce YM ee Wh OOD ce WP me ce mn 

pwork = 1 
ptau = pwork + ncoef 
ptmp = ptau + ncoef 

open (3, file = convhis, status = ‘unknown') 
open (7, file = ptsfile, status = ‘'unknown') 

Ce a ce a a ee ee SE A SY De Sn ne SS ee SD 

c Compute No. of Possible Combinations 
CO rr te a nae ee ge SS es eS Meme ae ne Se ee A wR nO OO 

call evals(npool, npts, ips, xnop) 

Cet ee a a ee a ne me a nc a ee ee 

c Computing Probability Function 
Co ee cre cee care ane cee ce ne tne ce tee a ree See ee SO ee ee ee oe ee oe ee et ee ee ee ee 

call srand(iseed) 

denom = dreal(npop*(npop + 1)) 
p(1) = 0.0d0 
do 20 i= 1, npop-1 

p(itl) = p(i) + 2.0d0*dreal (npop+1-i)/denom 
20 continue 

Qa gy ‘a o a © 8 ct @ Q
 tg
 oO oS
 

ct
 

a 

if (ips .ne. 0) then 
n= 0 
do 50 i= 1, npool 

if (ipsp(i) -eq. 1) then 
n=n+e+l1 
do 30 j = 1, ndv 

xtemp(j) = xpool((j-1)*npoolti) 
30 continue 

call getxl(ifit, ncoef, ndv, xtemp, xline) 
do 40 3 = 1, ncoef 

xp(n,j) = xline(j) 
40 continue 

end if 

50 continue 
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100 

110 

Random Selection of Initial Population. Genes are chosen 
randomly, but parents are checked against having duplicate 

points 

do 90 n = 1, npop 
iparl(n) = 0 
ipar2(n) = 0 

if (ifile .eq. 0) then 
do 70 i= 0, npts-ips-1 

iseed = iseed + 2 
ir = int(npool*rand())+1 
if (ipsp(ir) .eq. 1) goto 60 
ado 70 j = 1, ndv 

pop(n,i*ndv+j) = xpool((j-1)*npooltir) 
continue 

else 

do 75 i= 0, npts-l 
do 75 j = 1, ndv 

iseed = iseed + 2 

ir = int(idim(j)*rand()) 
pop(n,i*ndv+j) = xpool((ir-1)*ndv+j) 

continue 
end if 
CHECK AGAINST DUPLICATE POINTS 
do 90 i= 1, npts-ips-1 

do 90 3 = itl, npts-ips 
cc = 0 

do 80 k = l, ndv 

if (pop(n,(i-1)*ndvt+k) .eq. (pop(n,(j-1)*ndv+k))) 
ce =cc +1 

continue 

if (cc .eq. ndv) goto 60 
continue 

Evaluate Objective Function for Entire Population 
i.e. compute det |xTx|] 

do 150 n = 1, npop 

do 120 i = 1, npts-ips 
do 100 j = 1, ndv 

xtemp(j) = pop(n,(i-1)*ndvtj) 
continue 
call getxl(ifit, ncoef, ndv, xtemp, xline) 

do 110 j = 1, ncoef 
X(itips,j) = xline(j) 

continue 
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continue 
do 130 i= 1, ips 

do 130 j = 1, ncoef 
x(i-3) = xp(i,j) 

continue 

Compute Det|xTx| via QR Factorization 
Det |xTx| = Det|R|*2 

call dgeqr2(npts, ncoef, x, npts, w(pwork), w(ptau), info) 

d(n) = 1.0d0 
do 140 i = 1, ncoef 

d(n) = d(n)*x(i,i)*x(i,i) 
continue 

continue 

ee ee cee SE ae eS eee cme ee ee me ee coe en ee es ee ee ee ee ee es One ee ee ee Oe ee oe 

call sort(npop, d, iord) 
aved = 0.0 

do 160 j = 1, npop 
aved = aved + d(j) 

continue 
aved = aved/dreal(npop) 

om me ewe ee ee ne oe ee ee ee ee ee ee Oe oe ee oe ee oe oe 

if (({igen .egq. 1) .or. (mod(dreal(igen),10) .eq. 0) ) then 
write(3,915) igen, d(iord(1)), aved 

end if 
if (iprint .eq. 1) then 

write(*,915) igen, d(iord(1)), aved 
else if (iprint .eq. 2) then 

write(*,*) 

write(*,*) 
write(*,903) ‘GENERATION NUMBER: ', igen 

write(*,904) ‘Child', ‘Genes ' 
do 170 i= 1, ndv*(npts-ips)-1 

write(*,905) ' ‘ 
continue 
write(*,906) 'Par. 1', ‘Par. 2', 'Rank', ‘Det' 
do 190 i= 1, npop 

do 180 j = 1, npop 
if (iord(j) -.eq. i) then 

irank = j 
end if 

continue 
write(*,907) i 

write(*,908) (pop(i,j), j = 1, ndv*(npts-ips)) 
write(*,909) iparl(i), ipar2(i), irank, d(i) 

continue 
write(*,910) ‘MAXIMUM DETERMINANT: ', d(iord(1)) 
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write(*,910) ‘AVERAGE DETERMINANT: ', aved 

end if 

oe ee et ee en ne ne 0 ey Oe ee 8 ee ee 0 8 OS OD Ot > Se OS Yee 19 0 OD OD Oe ED Oe OO ED ee EE ee ey Oe i se Ee 

Making Children Designs; Loop Over Population - 1 

do 400 k = 1, npop-l 
Ae me cee one eee san OES SE One we EEE EOD OS oD oo ee 

iseed = iseed + 2 
xr = rand() 
do 220 i = 2, npop 

if (xr .1t. p(i)) then 
iparl(ktl) = iord(i-1) 
goto 230 

end if 
continue 
iparl(k+1) = iord(npop) 

Selecting Parent #2 
Parent 2 .ne. Parent 1 

iseed = iseed + 2 
xr = rand() 

do 240 i = 2, npop 
if (xr .lt. p(i)) then 

ipar2(k+1) = iord(i-1) 
if (ipar2(k+1l) .eq. iparl(kt1)) goto 230 
goto 250 

end if 
continue 
ipar2(k+1) = iord(npop) 
if (ipar2(k+1) .eq. iparl(k+1)) goto 230 

Creating Children (at least 1 gene from both parents) 
cae Om mm cane GD owe ete Oe ne OS Sue aD Sie SUE Gee Oe CED OEE Cee SD ame ate ane Oe owe aes GD te OU: ee ae ee ee Om em 68D Sm em Oe ee gee OD Ore oe One en ts ee le ee 

ne Oe OD eee AUP ae aap OD ED Gee Os Oe Ge om ene Oe Qe oe oe ee 

iseed = iseed + 2 
ir = int((ndv*(npts-—ips)-1)*rand()) + 1 

do 260 i=1, ir 
kid(k,i) = pop(iparl(k+1),i) 

continue 

do 270 i = ndv*(npts-ips), irtl, -1 
kid(k,i) = pop(ipar2(k+1),i) 

continue 

MUTATIONS



do 280 i = 0, npts-ips-1 

do 280 j = 1, ndv 

275 iseed = iseed + 2 
Xr = rand() 
if (xr .1t. xmut) then 

iseed = iseed + 2 
if (ifile .eq. 0) then 

ir = int(npool*rand()) + 1 
if (ipsp(ir) .eq. 1) goto 275 
kid(k,i*ndv+j) = xpool((j-1)*npooltir) 

else 
ir = int(idim(j)*rand(j))+1 
kid(k,i*ndv+j) = xpool((ixr-1)*ndvt+j) 

end if 
end if 

280 continue 

c CHECK AGAIN DUPLICATE POINTS 

do 295 i= 1, npts-ips-1 
do 295 j = itl, npts-ips 

cc = 0 

do 290 kk = 1, ndv 
if (kid(k, (i-1)*ndv+kk) .eq. 

. (kid(k, (j-1) *ndv+kk) )) 

. cc =cc + 1 

290 continue 
if (cc .eq. ndv) goto 210 

295 continue 

else 
Cf > eee ome oe oe ee 8 ee es ee ee es ee es 

c General Design Space 
CT ae ae on oa en cae a ee ce ca na ee ee ee et cnt ce ee ee ome 

iseed = iseed + 2 
ir = ndv*(int((npts-ips-1)*rand()) + 1) 

do 300 i= 1, ir 
kid(k,i) = pop(iparl(k+1),1i) 

300 continue 

do 310 i = ndv*(npts-ips), irt+l, -1 
kid(k,i) = pop(ipar2(k+1),i) 

310 continue 

Cc MUTATIONS 

do 380 i = 0, npts-ips-l 
320 iseed = iseed + 2 

KY = rand() 
if (xr .1lt. xmut) then 

iseed = iseed + 2 
ir = int(npool*rand()) + 1 
if (ipsp(ir) .eq. 1) goto 320 
do 340 j = 1, ndv 

kid(k,i*ndv+j) = xpool({(j-1)*npooltir) 
340 continue 

end if 
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380 continue 

Cc CHECK AGAIN DUPLICATE POINTS 

do 395 i= 1, npts-ips-1l 
do 395 j = itl, npts-ips 

cc = 0 
do 390 kk = 1, ndv 

if (kid(k,(i-1)*ndv+kk) .eq. 
. (kid(k, (j-1) *ndv+kk) )) 
. ce =cc +1 

390 continue 
if (cc .eq. ndv) goto 210 

395 continue 

end if 
400 continue 

Co ee ee are ste ee ate ree ne a SS SO SE OS RE Oe Oa me He 

Cc Update Generation (keep best parent, replace parents 
c with children 
Co cre ee me a ae ce ce ee me me ee a Ha ne en Se a Se Se Oe Oe ee ee OO Se A Sn a em 

do 410 i = 1, ndv*(npts~ips) 

pop(1,i) = pop(iord(1),i) 
410 continue 

do 420 i= 2, npop 
do 420 j = 1, ndv*(npts-ips) 

pop(i,j) = kid(i-1,j) 

420 continue 

500 continue 

CO ne ee ae ee eee ce ae ca ee ee Oe cone ee On fam ate Sh er Sete WA Se ND We Se eu wn SO a Ome ne OE Se ew ee oe Ma Se Sat ee 

c Evaluate Objective Function for the Final Generation 
oe ee ee en ee 

do 600 n = 1, npop 

do 530 i= 1, ips 

do 530 j = 1, ncoef 

x(i,j) = xp(i,j) 
530 continue 

do 550 i = 1, npts-ips 
do 570 j = 1, ndv 

xtemp(j) = pop(n, (i-1)*ndv+j) 
570 continue 

call getxl(ifit, ncoef, ndv, xtemp, xline) 
do 560 j = 1, ncoef 

x(itips,j) = xline(j) 
560 continue 
550 continue 

Co a a Ht A ee ee ee ee ete 

c Compute Determinant 
Co ee ct ee a a ce ea at a ce ae me ct es ee oe 

call dgeqr2(npts, ncoef, x, npts, w(pwork), w(ptau), info) 
d(n) = 1.0d0 
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590 

do 590 i= 1, ncoef 

d(n) = d(n)*x(i,i)*x(i,i) 

continue 

600 continue 

a 
Q 

700 

705 

710 

903 
904 
905 
906 
907 
908 
909 
910 
911 

write(*,*) 
write(*,911) 'THERE ARE ‘, xnop, ‘ COMBINATIONS’ 

write(*,911) ‘POOL OF ', real(npool), ' POINTS' 
write(*,912) ‘POPULATION SIZE: ‘, npop 
write(*,912) 'NO. OF GENERATIONS: ', ngen 

write(*,913) ‘THE MAXIMUM DETERMINANT IS ', d(iord(1)), 
. * USING POINTS' 

if (ips .ne. 0) then 
do 700 i = 1, npool 

if (ipsp(i) -.eq. 1) then 
write(*,914) (xpool((j-1)*npoolt+i), j 
write(7,914) (xpool((j-1)*npool+i), j 
write(7,*) 
write(*,*) 

end if 
continue 

end if 

1, ndv) 

1, ndv) 

od 

do 710 i= 1, npts-ips 
do 705 j = 1, ndv 

denom = pop(iord(1),(i-1)*ndv+j) 
write(*,914) denom 
write(7,914) denom 

continue 
write(*,*) 
write(7,*) 

continue 
write(*,*) 
close(3) 
close(7) 

format (a,5x,i3) 
format (a5,2x,a8,$) 

format(a,$) 
format (1x,a6,1x,a6,2x,a4,3x,a3) 

format(i5,$) 
format (1x,f6.2,$) 

format (1x,i6,1x,i6,4x,14,1x,1pel10.2) 
format (a,1lpel10.2) 
format (/a,lpel0.4,a) 
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10 

format (a,i5) 
format (a,lipel2.5,a/) 
format (2x,f10.5,$) 

format (2x, i6, 2x, 2(1pel10.4,2x)) 

end 

me a cee come cre ge ane cee ee ee DD Oe ED ae. oem OE ee te I ae ee ee a ee ee Ee a ee DO ee OD OD es te ee Oe a ee ee ee om ee ee 

subroutine evals(npool, npts, ips, Xx) 

Computes the number of evaluations of xTx that would have to be 
made if every combination were tried to find the D-optimal points 

npool number of points to choose from 
npts number of points to choose 
ips number if preselected points 

x number of combinations of (npts-ips) from npool 

real*8 x 

SOO CUD ne mm ee Se Om Ge ee Se ue CD eee me Oe UD One ee ee OD ED OOD me OD Re Oe Oy ee ee me ee ee es ew oe en a ee ee 

x = 1.0d0 
do 5 i= 2, npts-ips 

x = x*dreal(i) 
continue 

x = 1.d0/x 
do 10 i = npool-npts-2*ipst+1, npool-ips 

x = x*dreal(i) 
continue 

return 

end 
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subroutine getxi(ifit, ncoef, idim, x, xline) 

c This subroutine computes a row of the least-squares matrix given 

c one of the data points 
c 
CO ee ee cre ee ce ee ce ee ee oe ee te 

c Variable Definition 
CO ee res re coe ee om om ne ce ee ee oe ee em ee com 

CO ee ee ee we re oe ee ee ee oe oe oe 

c Input Variables 
Ca ae ce cat cae a ae SP cate a Sa mm oo 

c ifit Type of function to describe the response surface 
c ncoef No. of coefficients in polynomial used to describe 
c the response surface 
c idim dimension of design space 
c x Array of dimension idim; contains data point of 
c row of least-squares matrix 
c 
Co ce ere ee cre ce as care ce ee ep oe ee me ee am 

c Output Variables 
CO at ar arn ee cee oe et oe oe re eet ee ee 

c xline Array of dimension ncoef; contains value of row 
c for least squares matrix 
Co cee cee ee ce ee re ee oe ee see oe oe es ews 

c Working Variables 
Co a re eee cate em te ce ese ces em cate ne cee 

c i, j, k counters 

Cc cc counter identifying coefficient 
Oe eee 

[ © ee 

c Variable Block 
Co rt ae cee cee cae ene en ee one eae an om oe me 

integer i, j, k, cc, ifit, ncoef, idim 

real*8 x(idim), xline(ncoef) 

CO a ee ee ew ee we ow ow oe om ne er re re oe en 0 ts 

c Construct row of matrix according to ifit 
Ce am ee om ae te ome com re es Oem a com ca ere ae coe ome cae ms ee Oe os om ee oe ee es ae oe On ee tS ee ee eee ee 

if (ifit .le. 1) then 
cc = 0 
if (ifit .eq. 1) then 

Cc QUADRATIC TERMS 

do 660 i= 1, idim 

do 660 j = i, idim 
cc = cc +1 
xline(cc) = x(i) * x(j) 

660 continue 
end if 

Cc LINEAR TERMS 

do 670 i= 1, idim 
cc =cc + l 
xline(cc) = x(i) 

670 continue 
Cc CONSTANT 
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cc = cc + 1 
xline(cc) = 1.0d0 

else if (ifit .eq. 2) then 
c FULL LINEAR 

if (idim .eq. 2) then 

cc = 0 
do 674 i= 0, 1 

do 674 j = 0, 1 
cc =cc + 1 
Xline(cc) = x(1)**i * x(2)**j 

674 continue 
else if (idim .eq. 3) then 

cc = 0 
do 684 i= 0, 1 

do 684 j = 0, 1 
do 684 k=0, 1 

cc = cc + 1 

xline(cc) = x(1)**i * x(2)**j * x(3)**k 
684 continue 

end if 

else if (ifit .eq. 3) then 
Cc FULL QUADRATIC 

if (idim .eq. 2) then 
cc = 0 

do 675 i= 0, 2 
do 675 j = 0, 

cc = cc + 1 

xline(cc) = 
675 continue 

else if (idim .eq. 3) then 
cc = 0 

do 685 i= 0, 2 

x(1)**i * KX(2)**3 

xline(cc) = x(1)**i * x(2)**} * x(3)**k 
685 continue 

end if 
else if (ifit .eq. 4) then 

xline(1) = x(1)*x(2)*x(2) 
xline(2) = x(1)*x(2) 
xline(3) = x(l) 
xline(4) = x(2)*x(2) 
xline(5) = x(2) 
xline(6) = 1.d0 

else if (ifit .eq. 5) then 
xline(1) = x(1)}*x(1)*x(2) 
xline(2) = x(1)*x(1) 
xline(3) = x(1)*x(2) 
xline(4) = x(1) 
xline(5) = x(2) 
xline(6) = 1.d0 

end if 
return 
end 
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APPENDIX 

C 

ErICA USER’S GUIDE 
  

ErICA or EuleR Inviscid Code for Aerodynamics is a two-dimensional Euler 

solver for perfect gas flows. ErICA is written in FORTRAN 77 with a C front 

end for dynamic memory allocation. It has been validated with a number of flows 

from shock reflection problems to flow over transonic airfoils. The code features 

a variety of boundary conditions to solve many, diverse types of flows. For exam- 

ple, Dadone/Grossman tangency conditions assist in modeling flows around curved 

surfaces. Far field boundary conditions are available to solve the small disturbance 

potential equation for accurate estimations of the lift and drag of an airfoil. Nu- 

merical stability of the code is achieved through upwind MUSCL differencing of 

the flux. Riemann inflow/outflow conditions propagate information along charac- 

teristic lines and also add numerical stability at the boundaries. Up to third-order 

spatial accuracy can be achieved for solutions using the interpolating polynomial 

in the upwind solver. ErICA also features a number of convergence accelerators 

such as mesh sequencing and multigrid. For flows which do not contain stagnation 

points, preconditioning is offered as an alternate convergence accelerator. ErICA’s 

output is formatted for the immediate use in TECPLOT!™ or PLOT3D™™. Also 

an unformatted solution file is generated for restart or data messaging. 

This appendix is intended to explain how to use the code to run analyses for 

two-dimensional problems. This includes a description of the set of four data files 

useful for running the code. 
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C.1 ErICA’s Main Input Deck 

ErICA is driven from a series of files which describe the flow problem. The 

main input deck supplies general information of the problem and how the problem 

will be solved by ErICA. A file containing the computational grid serves to describe 

the geometry of the problem. For many problems these files will be enough to run 

ErICA. If one or more of the boundaries require user specific information, then a 

third file is required to furnish this information. Also, the code can be “warm- 

started,” through a restart file. 

The code is run on UNIX-based systems by typing 

erica < filename 

where filename refers to the name of the main input deck. The grid, boundary and 

restart file names are supplied to ErICA through the main input deck. 

The main input deck is designed to allow the user to run of variety of aerody- 

namic problems at various conditions with minimal effort involved in setting up the 

problem. The file is segmented into nine sections: reference quantities, free stream 

and gas constants, initialization, grid data, time integration, boundary condition 

flags, spatial accuracy, residual smoothing, mesh sequencing, multigrid, and output 

flags. These sections are listed below with a brief description. All dimensional vari- 

ables must be entered using the SI system with angles represented in degrees. A 

sample input deck follows. It is important to follow the sample deck carefully as all 

the quantities are read with format statements. 

Reference Quantities 

Calculations for numerically solving the two-dimensional Euler equations are 

performed using a non-dimensional system using a reference velocity, temperature 
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and pressure. Choosing these to be numerically equal to one results in dimensional 

calculations. It is possible to reduce round-off error by choosing the reference con- 

ditions so that the non-dimensional flow variables are all of the same order. The 

non-dimensionalization scheme used preserves the forms of the governing equations 

as well as the ideal gas equation of state. The format statement for this card is 

(3(£10.3)). 

Free Stream Conditions and Gas Constants 

The free stream state is specified using Mach number, angle of attack, temper- 

ature and pressure. ErICA uses the gas constant, R, and the ratio of specific heats, 

g, to relate thermodynamic properties. Here g is assumed constant over all possible 

ranges of temperature. These constants are available for common gases in several 

sources, e.g. The Handbook of Chemistry and Physics published by CRC Press. 

For air, these constants are 287 J/(kg k) and 1.4 respectively. The format for this 

card is (6(f10.3)). 

Initialization 

ErICA can be initialized to either a free stream state or a general state described 

through a restart file. The free stream/restart flag should be set to 0 for a start 

from free stream or 1 for a restart. Following the free stream/restart flag is the 

name of the restart file (under 20 characters). If no restart file is needed, this space 

should read ‘none’. The format for this card is (110,20x,a20). 

Grid Data 

This section supplies ErICA with information on how to interpret the grid. The 

size of the grid is indicated by the first two numbers. The next two numbers must 
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be set to zero unless ErICA is to solve the flow around an airfoil using a C-grid. 

In this specific case these numbers indicate the j-indices of the trailing edge (lower 

and upper surface). Next the file containing the grid points is specified. The format 

for this card is (4(110),a20). 

Time Integration 

Here, the user specifies six quantities associated with the time marching inte- 

gration. The first is the maximum number of iterations ErICA will perform. After 

this amount, integration will stop and ErICA will exit normally, generating restart 

and output files. The next integer is the CFL flag. If set to 0, the time integra- 

tion is performed with the constant time step indicated by the next number. If 

1 is specified, the integration is performed with the constant CFL defined by the 

fourth number. If the CFL flag is 0, the CFL is ignored, else the time step is 

ignored. A steady state solution has been reached when the normalized residual 

is equal to zero. ErICA will stop time marching when it has reached 0 to within 

the user specified stopping tolerance given by the next number. With the correct 

conditions ErICA is capable of reaching a double precision machine zero stopping 

tolerance, but many times such a tight tolerance is not needed. The final number 

specified in this section dictates the tine integration method. If 0, ErICA will use 

an implicit approximate factorization method. If between 1 and 4, ErICA will do 

that many stages of Runge-Kutta explicit iterations. The format for this card is 

(110,i10,3(£10.3),i10). 

Boundary Conditions 

The next set of flags refers to the conditions to be enforced on each boundary 

of the computational domain. The conditions are specified for each boundary in 
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the order of j = 1, 7 = jdim, k = 1, and k = kdim. The condition type is set by 

assigning the corresponding integer to the boundary: 

0.) 

1.) 

2.) 

3.) 

4.) 

5.) 

6.) 

7.) 

8.) 

9.) 

10.) 

free stream 

extrapolate all 

fix at specified values 

tangency (Dadone/Grossman) 

subsonic inflow/outflow 

cut-line with tangency (Dadone/Grossman) 

Riemann Invariants 

tangency (symmetry technique) 

cut-line with tangency (symmetry technique) 

airfoil far field (kdim only) 

cut-line 

If any or all boundary conditions are set to 2, the name of the data file con- 

taining the user specified values must be given (one file for any and all boundaries). 

If no file is necessary, this space should read ‘none.’ The format for this card is 

(4(i10),a20). 

Spatial Accuracy 

Spatial accuracy is set by choosing values for phi and kappa. With phi = 0, the 

solution will be first-order throughout. Phi = 1 and kappa = 1/3 yields a globally 

third-order solution. Limiters can be turned on to remove unwanted oscillations 

near large gradients by making the solutions locally first-order. The choices for the 

limiters are 
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0.) no limiter 

1.) minmod applied to primitive variables 

2.) minmod applied to characteristic variables 

3.) Van Albada applied to primitive variables 

The next flag toggles the entropy modification routine. If set to 0, no entropy 

modification is done; if set to 1, the entropy near stagnation points and points where 

the velocity reaches the speed of sound will be slightly modified to avoid standing 

expansion fans. The format for this card is (£10.3,f10.7,4(i10)). 

Residual Smoothing 

The residual smoothing flag, when set to 1 will average the residual of a cell to 

surrounding neighbors weighted according to a parameter epsilon. Convergence for 

certain problems can improve when the residual is smoothed. The next number is 

epsilon and should be of the order of 0.5. The format for this card is (i10,f10.5). 

Mesh Sequencing 

Mesh sequencing is a technique whereby time integration to steady state begins 

with using coarse grids. Iterations on coarse grids are cheaper to perform and can 

have significant time savings. ErICA is capable of a three level mesh sequence, 

provided the grid meets certain specifications. For a two level mesh sequence, all 

the grid dimensions (jdim, kdim, TE#:1, TE#2) must satisfy the condition 

mod(grid dimension + 1,2) = 0. 

Three levels are permitted provided all grid dimensions satisfy 

mod(grid dimension + 3,4) = 0. 
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The first number in this section of the input deck specifies the levels of mesh se- 

quencing desired. If neither of the above conditions can be met, this number must 

be zero, otherwise it is set to the number of levels minus one. The next two num- 

bers, ims(1) and ims(2), indicate how many iterations are performed on the lower 

and medium levels. If one level is performed, ims(1) must be set to 0. If mesh 

sequencing is not used, these numbers are ignored. The format for this card is 

(4(i10)). 

Multigrid 

Multigrid is an convergence acceleration technique whereby several grids of 

varying density are used in a cycle. For more details on multigrid schemes see 

Ref. 1. Up to three levels of grids are available provided the same conditions for 

mesh sequencing are met. If two level multigrid is used, a cycle consists of fine grid 

iterations followed by medium grid iterations followed by fine grid iterations. If three 

level multigrid is used, a cycle consists of fine grid iterations, followed by medium 

grid iterations, followed by coarse grid iterations followed by fine grid iterations. 

Each cycle makes up one global time iteration. The first number in this section is 

the number of multigrid levels minus one. The next four numbers, indicate how 

many iterations on each level will be performed during the multigrid cycle. These 

numbers are ignored if the multigrid option is not chosen. The format for this card 

is (5(i10)). 

Output 

The output section is broken into three parts. The first part contains three 

flags. The first flag, if 0 will print the solution at cell centers, or if 1 will print the 

solution at the grid points. The next flag formats the output file for TECPLOT7™ 
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(0) or PLOT3D?™ (1) applications. The next flag if 0 suppresses all output to the 

screen. If 1, then a residual history is written to the screen. The format for this 

card is (110,10x,i10,10x,i10). 

The residual is sent to the screen or a file at a frequency corresponding to the 

first number in this section. For example, if the frequency is 10, the residual history 

is updated every 10 iterations. The next piece of information is the name of the file 

to contain the residual history. The format for this card is (i10,20x,a20). 

Output and restart files are generated at a frequency corresponding the first 

number in this section. The next two pieces of data are the name of the output and 

restart file to be generated. The format for this card is (i10,20x,2(a20)). 

The main input deck is shown below 

    + + ErICA Deck + —t + 

written by Bob Narducci - June, 1994 
Version 1.0 

+ + ++ + t + —t +   

Reference Quantities 
Vref Tref Pref (SI units) 
374.16 348.43 l.e+5 
  

1 { | { { | | I 
f 

  

  

  

  

oe tT wv Tt a 4 TT 

Free Stream Conditions/Gas Quantities 

Mach AOA ‘Temp _ Pressure Gamma Gas Constant 

0.75 0.00 348.43 le+5 1.4 287.0 

+ 7 — + + 7 —t + 
Initialization 

Freestream/Restart file Restart Filename 

0 des2.rst 
+ + —- + +— + —h + 

Grid Data 
jdim kdim T.E.#1 T.E.#42 Filename 

201 53 41 161 ../ AIRFOIL /des2.grd 

+ 4 “+ + + bh ++ ++ 
Time Integration 

maxiter CFL Flagleltat CFL Stop Tol imp/R-K stages 
2 1 5.0d-5 30.0 1.0d-6 0 

+ + — + + + + — 
Boundary Condition Flags 
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j=0 j=jdimk=0 k=kdimFilename 

9 5 
  

  

9 9 none 

Spatial Accuracy 

phi kappa limiter Flux Ent Fix Precond. 

1.0 33333333 0 0 0 

Residual Smoothing 

On/Off epsilon 

0 0.5 
  

Mesh Sequencing 

levels CG Iter. MG Iter CG MG Iter 

  

  

2 200 100 0 

Multigrid 

levels FG Cycl MG CyclCG Cycl FG Cycl 

0 2 3 10 1 

Output 

Cell Ctr/Grid Pts Tecplot/Plot3d Output to Screen 

1 0 1 

Freq. Resid sent to file Residual Filename 

1 des2.res2 

Freq. output files are Gen. Solution FilenameRestart Filename 
20 des2.out des2.rst2 

+ + + —+ + ++ + +   

C.2 Grid File 

The grid file consists of two columns which make up the (x,y) pairs of grid 

points. The file is read using the following FORTRAN lines 

do 300 j = 1, jdim 
do 200 k = 1, kdim 

read(12,*) x(j,k), yG,k) 
200 continue 

300 continue 
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C.3 Boundary Condition File 

The boundary condition file allows point by point specification of the density, z- 

and y-components of the velocity, and pressure along the edges of the flow domain.. 

The flow state must be specified for every cell of each boundary flagged with a 2 

in the boundary condition section of the main input deck. ErICA is prepared to 

read in the data starting with the 7 = 1 boundary (if necessary), then the j = jdim 

boundary (if necessary), followed by the k = 1 boundary (if necessary), and finally 

the k = kdim. (if necessary). The file is read using the following FORTRAN line 

read(12,*) qbe1(i,1), qbc1(i,2), qbc1(i,3), qbc1(i,4) 

C.4 Restart File | 

The restart file allows ErICA to be warm started. The restart file generated 

by ErICA can be used without modification to continue iterations to steady state. 

The file is read using the following FORTRAN lines 

read(*) nlast, norm1 
do 100 i = 1, ivol 

read(*) (q(i,n), n = 1, 4) 
100 continue 

The first line of the file contains the previous iteration number and the value of 

the normalized residual using free stream conditions. These values are not critical 

in obtaining a solution. If nlast and norm! are not available, they should be set to 

one. 
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