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Interfacial Debonding From a Sandwiched Elastomer Layer 

(Bikramjit Mukherjee) 

ABSTRACT 

The problem of a thin elastomeric layer confined between two stiff adherends arises 

in numerous applications such as microelectronics, bio-inspired adhesion and the 

manufacture of soft biomedical products.  A common requirement is that the debonding of 

the elastomeric layer from the adherends be controlled to avoid undesirable failure modes. 

This level of control may necessitate understanding the collective role of the interfacial 

adhesion, material properties, part geometries, and loading conditions on the debonding. 

Analytical and numerical approaches using the finite element method and a cohesive zone 

model (CZM) for the interfacial debonding are used in this dissertation to delineate the role 

of the afore-mentioned parameters on the initiation and propagation of debonding for both 

rigid and non-rigid adherends.    

Extensively studied in the dissertation is the debonding of a semi-infinite relatively 

stiffer adherend from an elastomer layer with its other surface firmly bonded to a rigid base. 

The adherend is pulled upwards by applying normal displacements either on its entire 

unbonded surface or on the edge of its part overhanging from the elastomer layer. The 

adherend and the elastomeric layer materials are assumed to be linear elastic, homogeneous 

and isotropic and the elastomer is assumed to be incompressible. Viscoelasticity of the 

elastomer is considered in the first part of the work. Plane strain deformations of the system 

with a bilinear traction-separation (TS) relation in the CZM are analyzed.  Two non-

dimensional numbers, one related to the layer confinement and the other to the interfacial TS 

parameters, are found to determine if debonding initiates at interior points in addition to at 

corner points on the adherend/elastomer interface, and if adhesion-induced instability is 

exhibited.  This work is extended to axisymmetric problems in which debonding can take 

place at both interfaces. Motivated by an industrial demolding problem, numerical 

experiments are conducted to derive insights into preferential debonding at one of the two 

interfaces, including for curved adherends. Results reported herein should help engineers 

design an elastomer layer sandwiched between two adherends for achieving desired failure 

characteristics.         
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1 Introduction 

Understanding the mechanics of interfacial debonding of an elastomeric layer 

sandwiched between two adherends is of widespread interest due to its relevance in science 

and technology.  The research presented in this dissertation was essentially initiated by the 

need to identify key factors governing a soft ophthalmic lens demolding process [1]. 

However, the reported outcomes are envisioned to be useful in contexts of a number of other 

applications. Examples include durability of sealants[2], ensuring integrity of the elastomer 

interlayer in laminated safety glasses[3], restricting potential delamination in flip-chip 

packaging [4], ease of ink release in transfer printing processes[5-7], engineering antifouling 

such as of barnacles to ship-hulls [8, 9], and in the rapidly growing field of bio-inspired 

adhesion [10, 11]. Dictated by the application, interfacial debonding of a sandwiched layer is 

to be either prevented or facilitated under stress. For example, a sealant should be designed so 

that the nucleation of new debonds and growth of pre-existing interfacial flaws are prevented.  

On the other hand, release applications, such as successful demolding during lens fabrication 

or the release of an ink layer from a substrate in a transfer printing process[6], must be 

engineered to facilitate damage-free debonding from an interface. Tunable adhesion may be 

pivotal to the success of applications such as Gecko-inspired adhesives[12], which are 

designed to have a high resistance to debonding in shear but low resistance in the normal 

direction. Regardless of the varying application-specific requirements, the common 

underlying need is to achieve control of the interfacial debonding. This motivates the need to 

understand the collective role of the geometric, material, and interfacial adhesion parameters 

on the mechanics of debonding.  

Previous research [13-20] on debonding of a sandwiched elastomeric interlayer 

suggests that even in the presence of an external debond, debonding may nucleate over the 

interior of the interface/bondline to relieve the imposed lateral constraint when the interlayer 

thickness is small enough relative to a characteristic length scale. Research has shown that 

locations of the nucleation sites [18] and the average spacing between multiple internal 

debonds [19] could be predicted for smooth interfaces as functions of geometric lengths. This 

suggests the importance of capturing, in a mechanistic analysis, debond initiation regardless 

of the presence of pre-existing defects.  

The traditional linear elastic fracture mechanics (LEFM) approach for analyzing 

debonding is based on the premise that a pre-existing debond/crack begins to grow under 
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applied stress when the change in the potential energy per unit growth of crack area, termed 

as the energy release rate (ERR), exceeds a critical value [21] . This critical value is known as 

the fracture energy. The intensity of singular stress fields that may occur near a bi-material 

crack tip [22-25] can be related to the ERR to assess the resistance to debonding. Besides 

being unsuitable for capturing debond nucleation at a defect-free interface, the LEFM 

approach is not amenable to a strict continuum mechanics analysis since the latter cannot 

accommodate the creation of two points from one point as necessitated by 

debonding/cracking. A maximum stress (strength) criterion seems to be helpful at first sight 

but is not sufficient because it (i) may predict spurious results when stresses are singular, (ii) 

does not correctly account for experimentally measured  energy required to create two new 

surfaces, and (ii) cannot predict experimentally observed defect-size-dependence of the 

measured global results such as the failure load [21, 26].  A cohesive zone model (CZM) 

approach,  introduced conceptually by Dugdale [27] and Barenblatt [28] and later coupled 

with a finite element analysis of concrete fracture by Hillerborg et al. [29], helps to bridge the 

gap between the LEFM and the strength-based approach by circumventing limitations of 

each. A CZM approach can model evolution of damage and debonding occurring at a stressed 

interface. This is achieved by prescribing a-priori a relation between the surface traction 

vector and the displacement jump vector (separation) between two adjoining interfacial 

points conceived to be connected by zero-length springs. Such a relation is commonly known 

as a traction-separation (TS) relationship. Enforcing a TS relation makes the approach 

amenable to a continuum analysis and suppresses traction singularities via the prescribed 

peak tractions. One motivation of using a TS relation is to lump the collective influence of 

small-scale dissipative processes which contribute to the interfacial damage accumulation 

leading to debonding. The shape of a TS relation, in particular, the prescribed critical 

separation values can be tailored [30] to capture these mechanisms occurring over various 

length scales. The CZM approach has been successfully used to simulate a large range of 

interfacial as well as bulk fracture problems [31-39]. Recognizing its ease of use in studying 

adhesive debonding of elastomers, a CZM with a bilinear TS relation has been used 

throughout this dissertation.  

This dissertation is written in manuscript-format and consists of four papers (one 

published article, one in review, one ready for submission and one in preparation for 

submission for publication in peer-reviewed journals), included here as Chapters 2-5.  Brief 

outlines of each of these four chapters are listed below.   
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Chapter 2 

This chapter analyzes the well-known wavy/undulatory debonding [40] phenomenon 

that occurs when an elastomeric layer, sandwiched between two stiff adherends, debonds 

from one adherend. A schematic sketch of the phenomenon is shown in Figure 1.1. We 

advance the reported understanding of the problem [19, 20, 40-43] by employing a TS 

relation for the elastomer/adherend interface. The problem is first analyzed for a semi-infinite 

elastomer layer debonding from a rigid adherend. A combination of stability analysis of 

linear equations governing plane strain deformations of the system and the finite element 

method (FEM) leads to the conclusion that the competition between interfacial softening 

(captured by CZM) and the elastic deformation of the film triggers a wavy debonding 

process. A non-dimensional parameter in terms of the CZM parameters and the viscoelastic 

properties, and its lower limit are found to provide a necessary condition for wavy debonding 

to occur. We have augmented the concept further, at least qualitatively, in the context of 

fingerlike debonding phenomenon[44] by analyzing three-dimensional deformations and 

progressive debonding that occurs in a peel test involving a flexible adherend.  However, it is 

found that whether or not fingerlike debonding occurs depends also on the rigidity of the 

plate dictated by the modulus and thickness of the elastomer layer. The outcome of this work 

is hoped to be of value from a materials design perspective as well as in view of modeling 

debonding process of elastomeric materials.  

This work has recently appeared in the International Journal of Adhesion and 

Adhesives. (doi:10.1016/j.ijadhadh.2015.12.006) 

 

Figure 1.1: A schematic sketch of the wavy debonding phenomenon studied in 

Chapter 2 
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Chapter 3 

Motivated by the finding in Chapter 2 that whether or not a fingerlike debonding 

ensues during peeling of a flexible plate is dictated by both the interfacial adhesion and the 

rigidity of the plate for an elastomer layer of given modulus and thickness, this chapter 

investigates the role of the coupling between the geometric and material parameters, and the 

interfacial adhesion on debonding characteristics of an elastomeric layer when an 

overhanging flexible plate is pulled off from it. The deformations are approximated as plane 

strain, and the FEM is used to solve for the deformations. Our computed results reveal the 

collective effects of the two non-dimensional variables:  the confinement parameter, which 

was also identified by previous investigators [20, 44, 45], and the adhesion parameter found 

from the work reported in Chapter 2.  The roles played by these two parameters on the 

interfacial debonding mechanisms and on the maximum load in the load-displacement history 

are delineated through numerical experiments. Results reported here advance our current 

understanding of the peeling phenomenon, may help in developing predictive models for 

complex manufacturing processes involving separation of confined elastomeric layers, shed 

light on the global behavior such as the pull-off force as a function of geometric confinement 

and interfacial adhesion and its transition from a strength-dominated regime to a fracture-

energy dominated regime, and may help in determining the TS parameters for the interface 

between an elastomer layer and a stiff adherend 

Results of several additional numerical experiments in which the elastomer can 

debond from both adherends provide insights into controlling of adhesive debonding in order 

to improve process yield in industrial fabrication of soft elastomeric products such as 

ophthalmic lenses. This is investigated in greater detail in Chapter 5. 

Chapter 4 

An outcome of the numerical experiments conducted in Chapter 3 is that for 

interlayers that are not sufficiently confined, damage initiates at the edge of the interface, 

forms a process zone (cohesive zone (CZ)), and then propagates with a CZ at its front upon 

continued loading. This debonding mechanism is investigated in this chapter using the CZM 

and a semi-analytical method built on the approaches of  Dillard [46] who analyzed bending 

of a flexible plate resting on an elastomeric foundation and Ghatak et al. [47] who later 

extended Dillard‟s work by using an LEFM approach to relate the propagating crack length to 

the work of adhesion. The key outcome of the present work is a non-dimensional parameter 
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in terms of the plate flexibility, the modulus and thickness of the elastomeric layer and the TS 

parameters, which is shown to govern the interfacial peel stress distribution, debond length 

and the reaction force under a chosen normalization scheme. It is also shown that the pull-off 

force transitions from a strength-dominated regime (LEFM invalid) to a fracture energy-

dominated regime (LEFM valid) as the value of this parameter gradually increases.  

Chapter 5 

The research work reported in Chapter 5 is closely related to an industrial demolding 

process used to fabricate an ophthalmic lens. A key processing step during the fabrication is 

the separation of an elastomeric (organogel) layer sandwiched between two flexible molds. 

The demolding process involves prying open the flexible mold-assembly by a displacement-

controlled loading and is engineered for interfacial separation to occur preferentially from 

one desired mold interface. With the use of molds made of the same material in a practical 

manufacturing line, the demolding process runs the risk of causing debonding from the wrong 

interface and/or both interfaces, resulting in an erratic separation process that can damage the 

product. Motivated by the suspicion that edge peeling could be biased towards one interface 

by increasing the amount of opening shear towards the edge of that interface, the primary 

goals of this chapter are to study the roles of (i) the relative flexibilities of the two molds, (ii) 

the curvature when the interlayer is in the shape of a portion of a hemisphere, and (iii) 

preheating the assembly differentially prior to mechanical loading in causing debonding to 

occur preferentially at a desired interface. We use the FEM to analyze axisymmetric 

deformations of a simple configuration consisting of an elastomeric layer of uniform 

thickness with its two surfaces adhered to two overhanging flexible molds that are subjected 

to normal displacements near the edges of the overhangs. Results of numerical  experiments 

suggest that (i) debonding occurs preferentially from the edge of the interface between the 

elastomer and the more flexible mold; however, internal debonding may ensue and grow on 

the other interface when the molds are rigid enough depending on the modulus and the 

thickness of the elastomeric layer, (ii) for a curved assembly, edge debonding is inherently 

biased, for the considered normal loading conditions, to the interface corresponding with the 

inner surface of the interlayer and (iii) preferential debonding can be engineered by 

preheating the assembly differentially; however, a differential large enough dictated by the 

absolute level of heating may cause internal debonding. Sensitivities of the predicted 

debonding mechanisms to prescribed biases in the TS parameters are assessed. The outcomes 
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of this work may be useful in engineering similar demolding processes to achieve a desired 

separation process. 
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Abstract 

Wavy or undulatory debonding is often observed when a confined/sandwiched 

elastomeric layer is pulled off from a stiff adherend. Here we analyze this debonding 

phenomenon using a cohesive zone model (CZM).  Using stability analysis of linear 

equations governing plane strain quasi-static deformations of an elastomer, we find (i) a non-

dimensional number relating the elastomer layer thickness, h, the long term Young‟s 

modulus, E , of the interlayer material, the peak traction, cT , in the CZM bilinear traction-

separation (TS) relation, and the fracture energy, cG , of the interface between the adherend 

and the elastomer layer, and (ii) the critical value of this number that provides a necessary 

condition for undulations to occur during debonding.  For the elastomer modeled as a linear 

viscoelastic material with the shear modulus given by a Prony series and a rate-independent 

bilinear TS relation in the CZM, the stability analysis predicts that a necessary condition for a 

wavy solution is that 
2 /c cT h EG  exceed 4.15 . This is confirmed by numerically solving 

governing equations by the finite element method (FEM).  Lastly, we use the FEM to study 

three dimensional deformations of the peeling (induced by an edge displacement) of a 

flexible plate from a thin elastomeric layer perfectly bonded to a rigid substrate. These 

simulations predict progressive debonding with a fingerlike front for sufficiently confined 

interlayers when the TS parameters qualitatively satisfy the constraint found from the 

stability analysis of the plane strain problem. 

Keywords: Fingerlike instability, wavy or undulatory debond front, cohesive zone model 

(CZM), elastomeric interlayer, debonding 
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List of symbols 

Symbols Meaning 

A  Hamaker constant for van der Waals interaction 

B  Left Cauchy-Green tensor 

d  Distance between an elastic film and an approaching contactor 

d  Damage variable 

D  Bending rigidity of the flexible plate 

E  Young‟s modulus of the elastomeric interlayer 

h  Thickness of the elastomeric interlayer 

i  = 1  

K  Slope of the rising part of the straight line in the bilinear traction-separation law 

k  Wavenumber of the x - dependent part of the perturbation to the stream function 

and the hydrostatic pressure. 
m  Ratio of the modulus of the spring in the spring-dashpot link to the long-time 

modulus for the 1-term Prony series  
p  Hydrostatic pressure not related to strains for incompressible materials 

R   Reaction force on the rigid adherend 

T  Normal traction at the interface 

t  Time 
, ,u v w  Displacement components along x  , y  and z directions, respectively 

, ,x y z  Axes of the rectangular Cartesian coordinate system when the index i of the system 

ix  has values 1, 2 and 3, respectively 

  Magnitude of the slope of the falling part of the straight line portion of the bilinear 

traction-separation relation 

  Applied vertical displacement to the upper adherend 

  Displacement jump at the interface, also called the contact opening 

  Dominant wavelength of debonding undulation 
  Shear modulus of the elastomeric interlayer 
  Stream function introduced to define displacement components u  and w  
  Growth rate of a perturbation  

1a  , 2a  Material constants in the constitutive equation used to model finite strain 

viscoelasticity 

Ta  Shift factor relating the relaxation time at temperature T to that at the  reference 

temperature 

1C  , 2C  Constants in the Williams- Landel-Ferry (WLF) equation for Ta  

( 3 )E  

 

Long term Young‟s modulus (=3 long-term shear modulus) of the viscoelastic 

material 

0 0( 3 )E   Instantaneous Young‟s modulus(=3 instantaneous shear modulus) of the 

viscoelastic material 

tF  Deformation gradient 

cG  Fracture energy 

Rg  Relaxation function normalized by the instantaneous modulus of the viscoelastic 

material 

K  
IK  
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, ,I II IIIK  Initial slopes in the TS relations for the debonding modes I,II and III 

softeningK  
2 /c cT G   

elasticK  /E h   

fingerl   Length of a finger 

nhp  Non-homogeneous perturbation to the hydrostatic pressure 

cT  Peak value of the normal traction at the interface 

ix  Axes of the rectangular Cartesian coordinate system 

c  Critical displacement jump when damage initiates 

f  Displacement jump at the initiation of debonding/separation 

ij  Components of the infinitesimal strain tensor 

i  Shear modulus of the i
th

 term in the generalized Maxwell model used to define the 

relaxation function of the viscoelastic model. 

R  Relaxation function for the elastomeric interlayer when modeled as a linear 

viscoelastic material 

ij  Components of the stress tensor 

i  Characteristic relaxation time of the i
th 

element of the generalized Maxwell model 

1c  The lower limit of   for debonding instability 

2c  The value of   beyond which region III sets in 

nh  Non-homogeneous perturbation of the stream function  

A   Area of the interlayer initially bonded to the rigid adherend  
p  z-dependent part of the hydrostatic pressure perturbation 

T  Temperature 

REFT  Reference temperature 

ix




 

Partial derivative (with respect to ix  ) operator 

x  Distance along the x   axis normalized by the half width of the rigid adherend 

  Rate of the applied vertical displacement to the upper adherend 

  Contact opening normalized by f  

  z  - dependent part of the stream function perturbation 

  The growth rate   normalized by 11/  
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2.1 Introduction 

      Systems consisting of a soft elastic or viscoelastic layer confined between two 

stiff substrates occur in numerous industrial applications. One example is manufacturing of 

bio-implants, which may involve mechanically demolding a soft polymer layer  sandwiched 

between two relatively stiff molds [1]. A frequently observed phenomenon is the occurrence 

of contact undulations when a stiff layer is separated from the soft layer under tensile 

tractions. Classical examples include the formation of ripples when a contactor approaches an 

elastic film bonded to a fixed base [2-4] , and  wavy debonds in peel [5] and probe tack tests 

[6-8].  Experimentally, the characteristic  spacing,  , between two adjacent undulation 

peaks has been found [2, 9] to scale linearly  h43  with the thickness h  of the confined 

interlayer while being independent of the interfacial adhesion properties. The linear stability 

analyses and energy arguments [10-13] have been used to show that undulations result from 

the competition between the strain energy of the system acting as a stabilizing influence, and 

the energy associated with the interfacial forces (such as van der Waals forces) acting as a 

destabilizing influence. These approaches give a threshold value of the interaction energy for 

the onset of instability.  For example, it was shown [10, 14] that the condition 
h

E

d

A

3

2

6 4



 is 

necessary for the onset of contact instabilities when a rigid contactor is gradually brought 

close to  an elastic film of thickness h  and  Young‟s modulus E , where A  is the effective 

Hamaker constant for van der Waals interactions and d  the gap between the contactor and 

the film at the onset of instabilities. Other examples include [15]  morphological changes in 

an elastic film caused by an applied electric field. Combined experimental and linear stability 

approaches have helped identify a threshold value of the effective voltage as a function of the 

film stiffness.   

  As debonding ensues at the interface between an adhesive and an adherend, multiple 

nonlinear processes such as cavitation and fibrillation may occur at the debonding site.  These 

involve different length scales and contribute to the overall energy dissipation during the 

creation of the two new surfaces. In a cohesive zone model (CZM) [16, 17], the collective 

influences of these small-scale mechanisms are lumped together into a traction-separation 

(TS) relation. In this approach the adjoining points on the two sides of an interface are 

conceived to be connected by a spring of zero length that begins softening with extension 

(separation) after reaching a critical extension and subsequently breaks upon reaching a larger 
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limiting value of the extension. In a typical TS relation, it is assumed that the energy 

associated with the softening process is irrecoverable, i.e., upon unloading from extension 

between the critical and the limiting values, the spring stiffness remains constant at the 

reduced value. At the limiting extension value, the area under the TS curve equals the critical 

fracture energy ( cG ) of the interface whose value is generally derived from the test data. 

Works cited above addressing the interplay between the destabilizing contact interaction, and 

the stabilizing elastic deformations of a film and the concomitant debonding instability 

suggest that the threshold for undulatory separation can be modeled by a TS relation.  Hui et 

al. [18] illustrated this in the event of debonding between two blocks made of the same 

material. 

 In order to understand the mechanics of the peeling and demolding processes, 

researchers have often relied on numerical simulations.  Since the use of the CZM coupled 

with the finite element method (FEM) by Hillerborg et al. [19]  to study fracture problems, 

significant progress has been made in modeling interfacial debonding/delamination of a 

polymer interlayer [20-23]. However, there has been limited research [8, 24, 25] on capturing 

progressive interfacial debonding undulations using the CZM. The formation of debonding 

undulations (such as fingering in a peeling problem) adds to the complexity of the mechanics 

of the demolding process.  The development of a tool for capturing such phenomena is 

important for delineating the debonding process and improving our understanding of the 

associated mechanics. The focus of our work is to identify the role of the TS, the material and 

the geometric parameters in causing undulatory debonding.  

The rest of the paper is organized as follows: In Section 2.2, we present a linear 

stability analysis of plane strain deformations of an elastomeric layer debonding from a rigid 

adherend pulled vertically outward. We find a non-dimensional parameter in terms of the TS 

and the elastic film parameters that must exceed a critical value for debonding to exhibit an 

undulatory morphology.  In Section 2.3, we analyze the two-dimensional (2D) problem by 

the FEM to provide details of the debonding evolution and confirm the necessary condition 

derived by the linear stability analysis. In Section 2.4, we use the FEM to analyze a practical 

problem, namely 3D deformations when a flexible plate is peeled off a confined elastomeric 

layer bonded to a rigid substrate.  This necessitates introducing another non-dimensional 

parameter in terms of the plate bending stiffness and elastomer properties.  We correlate 

results of this problem with our learnings from Sections 2.2 and 2.3.  Conclusions are 

summarized in Section 2.5. 
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2.2 Analytical approach 

2.2.1  Problem formulation 

  

Figure 2-1: Schematic sketch of the problem studied. The width W (normal to the page, not shown) is 

large enough to justify studying plane strain deformations in the xz-plane. 

 

We investigate the initiation of wavy debonding using a CZM when a rigid smooth 

adherend bonded to the upper surface of an elastomeric layer is pulled upwards while its 

lower surface stays perfectly bonded to the rigid support. Our analysis is essentially similar to 

those of Shenoy and Sharma [10] and  Huang et al. [14] who used a linear stability approach 

to study instabilities in an elastic layer triggered by van der Waals forces when a rigid probe 

is brought near the layer.  However, we use a TS relation to simulate debonding between the 

elastomeric layer and the upper rigid adherend. The configuration studied is schematically 

shown in Figure 2-1. The perfect bonding between the lower stationary rigid adherend and 

the elastomer layer is modeled by constraining to zero displacements of points on the bottom 

surface of the interlayer.  We assume that the interlayer material is isotropic, incompressible, 

homogeneous and linear elastic/viscoelastic. The problem is first analyzed for a linear elastic 

interlayer, and subsequently for a viscoelastic layer. For the assumed form of the solution 

using the separation of variables with evolution in time represented by a sine (or cosine) 

function, the constitutive relation for a linear viscoelastic material reduces to that of a linear 

elastic material with the shear modulus depending upon a solution variable. 

2.2.1.1 Linear elastic material 

 The constitutive equation for an incompressible, homogeneous and isotropic linear 

elastic material is ijijij p  2 , where ij  is the stress tensor ( i , j  and k  correspond to 

x , y , and z , respectively),  ij  the strain tensor for infinitesimal deformations, p  the 
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hydrostatic pressure not related to strains, and   the shear modulus of the interlayer 

material. Recalling the strain-displacement relation,
























i

j

j

i
ij

x

u

x

u

2

1
 , the incompressibility 

constraint, 0xx yy zz     , and assuming zero body force and negligible inertial effects the 

equilibrium equations 
ij

jx




= 0 (repeated index j is summed over x , y , and z ) reduce to the 

following Navier‟s equations.  

Here and below we denote the displacement components xu  and zu  as u  and w , 

respectively.  Perfect bond with the fixed lower rigid adherend is incorporated by setting u  

and w  equal to zero at the lower interface of the interlayer. For thin confined infinitely wide 

incompressible films under tension, the shear stress over the central region is negligible, e.g., 

see Lindsey et al. [26].  Thus, boundary conditions are: 

The interfacial normal traction  T  is related to the displacement jump  ,0w x     

by the TS relation that characterizes the interface between the interlayer and the upper 

adherend. Here   is the vertical displacement of the upper rigid adherend. We have tacitly 

assumed that the region of interest is far removed from the edges 
2

L
x   and boundary 

conditions at these edges, not specified in Eq. (2-2), do not affect deformations in the interior.   
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2.2.1.1.1 Description of cohesive zone behavior at the interface  

 We consider a bilinear TS relation [27] for the interface, illustrated in Figure 2-2, 

and given by Eq. (2-3). That is, the traction first increases linearly with the displacement 

jump, commonly termed the contact opening/separation, over the region OA. Point A denotes 

initiation of damage/softening beyond which the traction decreases affinely with an increase 

in the contact opening (line AB). Should unloading occur at point M, the traction follows the 

path MO. Subsequent reloading occurs along the path OMB.  

 

Point B signifies complete separation at a point on the interface. The energy release 

rate at debonding (i.e., the fracture energy) equals the area of the triangle OAB.  That is,  

  

Figure 2-2: A bilinear traction-separation relation  

  

A complete description of the bilinear TS relation involves specifying the initial slope

K , the peak traction cT and the fracture energy cG . In general, the value of K  must be large 
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enough to not significantly alter the effective stiffness of the system and prevent inter-

penetration under compression.  A very large value of K can make the system matrices ill-

conditioned when the problem is analyzed by the FEM. While cG  can be obtained directly 

from test data [28, 29], finding values of parameters, cT  and c , is difficult. An indirect 

method, frequently employed [22, 30], is to iteratively find values of these parameters which, 

when used in numerical simulations, can predict reasonable well the experimental load-

displacement traces. Recently, the digital image correlation [31] and the interferometry 

techniques [32] have been used to measure the TS parameters.  

2.2.1.1.2 Homogeneous solution 

 We note that the homogenoeous solution 0, 0, constantu w p    satisfies 

equilibrium equations (2-1) and boundary conditions (2-2) for  T p  .  The corresponding 

stresses are pyyxxzz   and 0zx . The pressure p , found from Eqs. (2a) and 

(3a), is given by Eq. (2-5). This homogeneous solution implies that pulling the upper 

adherend upwards will stretch the fictitious CZ springs while the interlayer will not deform. 

  

2.2.1.1.3 Non-homogeneous solution 

 We now explore the possibility of a non-homogeneous solution of the boundary 

value problem defined by Eqs. (2-1)–(2-3). For the deformation to identically satisfy the 

incompressibility constraint, we write displacements in terms of a stream function    as  

where   is a twice continuously differentiable function of x  and z . In order to find 

necessary conditions for the instability of the homogeneous solution   = constant and 

constantp  (defined by Eq. (2-5)), we perturb it by adding to it the non-homogeneous field:  
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( , ) ( )nh ikxp x z e p z  and  , ( )nh ikxx z e z  . Here the superscript nh  stands for non-

homogeneous, 1i , and k  represents the wavenumber of the perturbation
1
.   The 

perturbed form, when substituted into equilibrium equation (2-1), yields the following system 

of ordinary differential equations (ODEs).  

 

The ODEs (2-7) have the solution 

 

where constants 1 4,...,A A  of integration are determined from the boundary conditions. 

Recalling that   is not perturbed,  ,0 (0)ikxw x ike     . In terms of the non-

homogeneous z- dependent terms, boundary conditions (2-2) become: 

                                                 
1
 The assumed perturbation, in the form of separation of variables with the complex x -dependent term, 

implies a sinusoidal variation in x-direction of wave-number k . Any perturbation can be considered for finding 

necessary conditions.  However, finding sufficient conditions is more challenging.    
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where  

 

We assume that   is increased monotonically during the debonding process. Two 

constants in solution (2-8) are evaluated from boundary conditions (2-9a,b). Enforcing the 

remaining boundary conditions (2-9a,b) we obtain the eigenvalue problem  [ ] {0}C A  that 

has a non-trivial solution if and only if det[ ] 0C  . This gives the following equation for k  of 

which we seek real roots. 

where
   

14

812
)(

24

3222






hkhk

hkhk

hkee

hkeehk
hkf .  Roots of Eq. (2-11) depend upon values of the 

TS parameters through their dependence upon , the interlayer thickness h , and the shear 

modulus,  , of the interlayer material. The function f versus hk , plotted in Figure 2-3, has 

the minimum value 6.22.  Thus Eq. (2-11) has real roots only if 6.22
h


  and   is positive. 

Eq. (2-10) implies that the separation,  , must have values greater than c  and at most equal 

to 
f .  
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For 6.22
h


  , one real root of Eq. (2-11) is less than 2.12 and the other greater than 

2.12.  The perturbed solution can be expressed as a linear combination of these two solutions.  

It is possible that the two perturbations will grow at different rates. 

 

Figure 2-3: The plot of function f (hk). The implication is that a sinusoidal solution with wavenumber 

k  is possible when / 6.22h   . Note that f is a positive valued function of hk.  

2.2.1.2 Linear viscoelastic material 

For a linear viscoelastic interlayer we assume the following constitutive relation.  

Here ( , , ) 0ij x z t   for 0t  , t is the present value of time and 
R  is the relaxation 

function expressed as Prony series [33],  
1

i

tn

R i

i

t e
  







  . Here i and i  denote, 

respectively, the shear modulus and the relaxation time.  For discussion later, the dependence 

of i  upon the temperature
2
 T

~
 is included; i.e.,    i i REF TT T a  , where the thermal shift 

                                                 
2
 We introduce the tilde ( ~ ) notation to distinguish temperature from traction but use the 

conventional notation 
Ta for the thermal shift factor. 
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factor 
Ta  is given by the Williams-Landel-Ferry (WLF) equation: 

REF

REF
T

TTC

TTC
a ~~

)
~~

(
)(log

2

1
10




 , 

1C and
2C are constants, and REFT

~
 is the reference temperature 

[33].  The temperature is assumed to be uniform in the interlayer and stay constant during its 

deformations. Furthermore, for simplicity, we assume that the TS parameters are independent 

of the temperature and the loading rate. 

2.2.1.2.1 Homogeneous solution:  

 We note that the trivial solution 0, 0, constantu w p   satisfies governing 

equations for a viscoelastic layer provided that values of the TS parameters are independent 

of the rate of increase of , . 

2.2.1.2.2 Non-homogeneous solution 

 We add to homogeneous fields the perturbation ( , , ) ( )nh ikx tp x z t e p z e  and 

( , , ) ( )nh ikx tx z t e z e  .  The real part of   gives the growth rate of perturbations.  The 

perturbation will grow (decay) if the real part of   is positive (negative). Although 

perturbations are time-dependent, we ignore inertia forces in equations of motion because the 

time of interest is much larger than that taken by an elastic wave to travel through the 

interlayer thickness (see Appendix A). Substitution of the perturbed field into Eq. (2-12) 

gives 

where
1 1

N
i i T

i i T

a

a


 






 


 . Eq. (2-13) is the constitutive equation of the linear elastic 

material with shear modulus  . For one-term Prony series (i.e., Zener‟s model), 1i , and we 

set i  , 
1

1


 


 


 where Ta  . Replacing   by   in Eq. (2-11) and solving 

the resulting equation for , we get  

 ijijij p  2
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where we have set 








h
 and 






1m .   We call  the CZM control parameter; it equals 

the ratio of the interfacial softening stiffness relative to the effective long-term stiffness 

(modulus to thickness ratio) of the interlayer and signifies the potential importance of the 

former relative to the latter.  Eq. (2-10) implies that  equals the magnitude of the slope of 

line AB (softening stiffness) in Figure 2-2.   

2.2.2 Results and discussion 

 We recall that the function f given after Eq. (2-11) is positive-valued (see Figure 

2-3), 0m    for a viscoelastic elastomer, and 0   since  , h  and   are positive. Then 

for the growth rate ~  to be real and positive, the following inequalities must hold since the 

numerator and the denominator of the expression on the right hand side of Eq. (2-14) cannot 

be simultaneously negative.  

  

 

Eq. (2-14) and inequalities (2-15) suggest that the fastest growing wavelength 

corresponds to the minimum value of ( )f hk which is independent of values assigned to the 

CZM parameters and the interlayer material. Either by setting 0
)(


hkd

df
 or from Figure 2-3, 

we get 12.2hk , ( )f hk = 6.22. We call values of variables for k = 2.12/h critical and 

denote them by a subscript c. Thus (2 / ) 2.96c k h   , and for this value of hk ,

0
)( 2

2


hkd

fd
. Between two critical values, 1 6.22c   and  2 6.22 1c m   , the growth rate

 of perturbations is positive for all wavenumbers lying between roots of  f hk  , as 

shown in Figure 2-4a in which we have plotted the growth rate as a function of the 

wavenumber for values of    in the range 1 2[ , )c c  . Thus the interaction parameter    must 

  1f m f  
 

                                               

(2-15) 
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exceed the threshold 1c   for a spatial sinusoidal perturbation to grow.  Beyond the upper 

critical value, 2c , of   the growth rate becomes negative for wavenumbers lying between 

the two roots of  
1


m

hkf


, as illustrated in Figure 2-4b in which we have plotted the 

growth rate as a function of wavenumber for a 2c  . Contours in the wave number-   

plane of the normalized growth rate ~ of perturbations for m=3 and 1Ta   are shown in 

Figure 2-5.  For values of     in region I ( 1c  ), perturbations will not grow and the 

adherend will snap off the interlayer when the debonding criterion is satisfied. In region II (

1 2c c    ), perturbations will grow with growth rate depending upon the wavenumber k . 

For a given value of   the undulation will consist of infinitely many wavenumbers with 

positive growth rates, and the resulting displacement will not be a pure sine curve.  In order 

to delineate this, we need to find amplitudes of perturbations which is beyond the scope of 

the linear analysis. The numerical solution of the problem by the FEM reported in Section 2.3 

provides details of the debond nucleation and evolution.  It is possible that the wavelength 

with the maximum growth rate will determine the minimum spacing between adjacent 

undulations as stipulated by Wright and Ockendon [34] in their study of adiabatic shear 

bands. 

  

It can be noted from Figure 2-4a that the range of wavenumbers with positive growth 

rate increases as a function of   , with the wavenumber 2.12 / h  having the fastest growth rate 

that is independent of . The growth rate as a function of the wavenumber plotted in Figure 

2-4b illustrates an example of the behavior when 2c   , i.e., region labeled III in Figure 

2-5.  While the wavelength 2.96c h    is no longer expected in this region, two wavelengths 

with infinite growth rate will be close to 
1

2
c h





 , and 

2

2
h




 where  1  and 2  are roots of 

 
1

f
m


 


.  

For an elastic interlayer, 1 0   or 0m , we get    which implies that

f  . Thus the right hand side of Eq. (14) approaches 0/0.  Using L‟Hôpital‟s rule, we 

obtain 0 . As depicted in Figure 2-6, the region (II) with positive growth rates collapses 
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gradually with decreasing m to that for a linear elastic interlayer. In region III, it is possible 

that the resulting debond nucleation wavelength will depend on  .  

The growth term 
te
at the onset of softening in the CZM TS relation (i.e., point A in 

Figure 2-2) can be written as T

c

aK

T

e





~

.  At a given value of   , a higher value of the pulling 

rate  implies a smaller amplitude of the sinusoidal oscillation that follows the onset of 

softening. Thus wavy debonding may not be experimentally discernible for very high pulling 

speeds. Since lowering the temperature implies increasing the effective relaxation time ( Ta

), lowering temperature for fixed  will have similar effect as increasing  . This suggests 

the time-temperature equivalence of wavy debonding behavior and agrees with the 

experimental findings of Lakrout et al. [35]. Since the normalized growth rate ~ increases 

from zero to infinity as   is varied from f to    fm 1  for fixed hk , therefore, at a given   

and operating temperature,  can be increased to achieve physically discernible wavy 

debonding. 

 

Figure 2-4: For m = 3, the dimensionless growth rate versus the dimensionless wave number (a) for 

different values, labelled in the figure, of   in 1 2[ , )c c  and (b) for   241.25 c   . Results in Fig. (a) 

imply that larger the value of  , faster is the growth rate and wider is the range of the growing 

wavenumbers. However, the fastest growth rate always corresponds to the wavenumber of 

wavelength 2.96h . Results in Fig. (b) show that for two indicated wavenumbers perturbations grow 

infinitely fast while for wavenumbers lying between them they decay due to their negative growth 

rates. 
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Figure 2-5: Contours in the wavenumber-  plane of the normalized growth rate ~ of perturbations 

for m=3.  Values of ~ are indicated on the contours. These plots imply that a sinusoidal perturbation 

of wavenumber hk  will decay in regions I and III and grow in region II.  
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Figure 2-6: Effect of m: (a) elastic limit with two possible wavenumbers, (b) three regions for m=1, 

and  (c) three regions with a wider region II for m=5.  

  

Recalling that 
h




  , (when )c
c f

f c

T
   

 
  


 and 1K  , the condition 

1 6.22c  
 
gives the following requirement for the wavy debonding to ensue.  

Here 
c

c

softening

T
K

G

2

  is a measure of the slope of the softening portion of the bilinear TS 

relation and elastic

E
K

h

 , where 3E    is the long-term Young‟s modulus of the interlayer 

material. The quantity elasticK  can be thought of as the long-term stiffness of the interlayer. 

  

elasticsoftening KK 15.4  

                                                     

(2-16) 
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On the other hand, 2c   leads to elastic
ins

softening KK 15.4 , where 
h

E
K elastic

ins 0 and 

 10 3   E  is the instantaneous Young‟s modulus of the interlayer material. Eq. (2-16) 

suggests that for a wavy debonding to ensue, the stiffness (units: N/mm
3
) of the interface 

during the softening regime must exceed the effective long-term stiffness of the interlayer by 

at least a factor of 4.15. Thus the TS parameters must satisfy this constraint for a wavy 

debonding. If the softening stiffness (divided by 4.15) lies between the long-term and the 

instantaneous stiffness of the elastomeric layer, the dominant wavelength is expected to be 

independent of the CZM parameters.   

Equation (2-16) provides an interpretation of the debonding instability in terms of the 

CZM parameters.  It stems from the interfacial traction decreasing with an increase in the 

interfacial separation, similar to what previous researchers [10, 14] stated in terms of the 

distance-dependent van der Waals forces acting at the interface that trigger instability when a 

rigid adherend approaches an elastic film. Our results imply that the elastomeric layer 

thickness and the interfacial adhesion can be selected to either avoid or produce wavy 

debonding. Similarly, given the TS relation and values of parameters of the interlayer 

material, one can discern if the necessary condition for undulations to occur is satisfied.  

One needs to analyze the nonlinear problem to study the evolution of debonding. In 

the following section, we use the FEM to analyze plane strain deformations of the interlayer 

material with the bilinear TS relation and furthermore ascertain (i) the validity of Eq. (2-16), 

and (ii) the effect of   on the spacing between the adjacent debonding undulations. 

Advantages of the FE work over the analytical work include no specific form of 

perturbations, using the finite size specimen, considering boundary conditions at specimen 

edges, not assuming a-priori the deformation field, and the capability to simulate material and 

geometric nonlinearities.  

2.3 Debonding of elastomeric layer from a rigid adherend by the 

FEM 

2.3.1 Approach 

 The problem studied in Section 2 is now analyzed by the FEM using the commercial 

software ABAQUS/Standard. To be consistent with the assumption made in Section 2 that 
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the system is infinitely wide in the x  direction, we use a large /L h  ratio
3
. The FE mesh and 

the prescribed boundary conditions are shown in Figure 2-7.  Five 4-node plane strain 

elements with hybrid formulation (CPE4H) are placed through the thickness of the interlayer. 

In order to characterize well the spacing between adjacent undulations, 20 elements are 

placed over the expected characteristic length of the undulation spacing, i.e., 3h. Results for 

three different FE meshes are included in Appendix C.  A uniform vertical displacement, 

w , is applied at the rate of 1 mm/s on the top surface of the rigid adherend while its 

lower smooth (frictionless) surface is bonded to the top surface of the interlayer via the CZM 

interaction and the bilinear TS relation [36] with mode-independent values of TS 

parameters
4
. The bottom surface of the interlayer is held stationary. The remaining bounding 

surfaces of the interlayer are assumed to be traction free. To alleviate numerical instabilities, 

the “Damage Stabilization” option in ABAQUS is used. The value of the stabilization 

parameter was gradually reduced to 10
-8

 and further decrease in this value was found not to 

affect the computed results. The interlayer material is modeled either as linear elastic or 

linear viscoelastic with one term in the Prony series. For the linear viscoelastic material, 

unless otherwise mentioned, values assigned to the material parameters are: 510Ta s  and

3m . Numerical experiments are conducted by varying the parameter 
softening

elastic

K

K
 using 

several combinations of values of the interlayer modulus,  or , thickness, h , and cohesive 

zone parameters, K , cT  and cG
5
.  

 

                                                 
3
 Dimensions of the elastomeric layer used in most of our FE simulations are

23 , 0.25L mm h mm  . The size of the rigid adherend is taken to be 25 10mm mm .   

4
 We assume that I IIK K K  , cI cII cT T T  , and cI cII c G G G , where subscripts signify modes of 

separation; see [36]for details on a mixed mode bilinear TS relation. 
5
 As an example, values of the parameters for the simulation with / 4.15softening elasticK K   are: 

6 30.25 , 0.2 , 3, 10 , 10 / , 0.04 ,T ch mm MPa m a s K N mm T MPa        and 0.1606 /c N mG .  
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Figure 2-7: Details of the FE mesh and boundary conditions.  Applied zero tractions in directions of 

the unconstrained displacement components are not shown.  

2.3.2 Results and discussion 

Wavy debonding is predicted , as shown in Figure 2-8, at sufficiently large  values of 

softeningK . The critical softeningK
  

values plotted in  Figure 2-9 versus the elastic stiffness of 

the interlayer agree with those given by Eq. (2-16).  The predicted debonding nucleates 

periodically
6
 along the x-direction implying long debonding channels along the y-direction 

because of the plane strain assumption. However, in probe tack tests [7] and contact 

experiments [2] , debond is found to nucleate periodically along both the x- and the y- 

directions.  Motivated by the work of Huang et al. [14] we speculate that the condition for the 

onset of wavy debonding remains unchanged for 3D deformations of the interlayer. The 

simulated debonding evolution, in general, consists of the nucleation of interfacial cavities at 

a characteristic spacing, expansion of cavities and lateral propagation of each cavity until the 

                                                 
6
 The inhomogeneity in the distribution of interfacial tractions, singular at the corners [37-40] triggered 

by the free-edges of the elastomer layer and the adjoining traction-free portion of the adherend likely acts as the 

perturbation to the homogeneous solution over the central region. If horizontal displacements at the free edges 

of the interlayer are constrained, then the undulatory debonding is not predicted. We have not attempted to 

capture the correct order of singularity at the corners.  However, our key results are insensitive to further 

refinement of the FE mesh. 
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adherend separates from the elastomeric layer as cavities coalesce. Such debonding behavior 

in probe tack tests has been reported by Lakrout et al. [7]. Two examples of the evolution of 

wavy contact opening are  shown in Figure 2-10 for 25.8  and 25.41 . The discrete 

Fourier transform method (available in the software MATHEMATICA [41]) is used to 

extract the dominant wavelength of the debond nucleation.  Results are plotted in Figure 

2-11 for a range of   values for an elastic interlayer )0( m , and two viscoelastic 

interlayers with 3m and 25. The dominant wavelength is close to 3h and independent of 

  when   lies in region II. This agrees with the value derived from the above analytical 

work and experimental findings of Mönch and Herminghaus [2]. For both the elastic and  the 

viscoelastic layers,  the wavelength to thickness ratio for   near region III is found to be 

larger and dependent on   than that when   is near region II. It is noteworthy that at the 

larger   value, shapes of the nucleated cavities change before they coalesce as was computed 

by Sarkar et al. [24]. Our numerical experiments suggest that the response becomes more 

mesh-dependent as   is increased (see Appendix C).  

 Previous studies [2, 9] suggesting that the characteristic wavelength is independent of 

the adhesion seem to contradict at first sight our results for large values of  . For typical 

experimental [5, 29] values of 310m  , 20.04 0.2 /c J m G , 0.2 2 MPa   , and 

40 400h m  , we get 2.5cT   in the proximity of 2c  . Such large values of the 

critical traction imply probable onset of cohesive debonding mechanisms such as bulk 

cavitation [42] that occurs when ( ) 2.5p   . This suggests that the    values for test 

conditions [2, 9] that exhibited pure interfacial separation were well below 2c  and, therefore, 

the dominant wavelength was indeed independent of the adhesion.  

Results depicted in Figure 2-9 for the interlayer material modeled as neo-Hookean do 

not exhibit any significant difference in the threshold softening stiffness because strains 

induced in the elastomer layer when softening ensues are negligible for the large value of K 

used.   

Results summarized in Table 2-1 indicate that wavy debonding was not predicted 

when either  = 100 mm/s or a higher value of the relaxation time Ta  was used  for a given 

value of  . However, a lower value of Ta  or a higher value of   at  = 100 mm/s resulted 
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in wavy debonding. These results qualitatively confirm the time-temperature equivalence 

discussed at the end of Section 2.2.  

   

Figure 2-8: Deformed and undeformed configurations when a wavy debonding is predicted by the 

model. The FE mesh is shown only on the undeformed configuration. The gap between the adherend 

and the interlayer is due to the displacement jump at the interface. Debond occurs only when this 

jump exceeds its prescribed limiting value.  

 

 

Figure 2-9: The map illustrating that the quantity 
2 /c cT G  must exceed approximately 4.15 /E h  for a 

wavy debond to ensue. This plot was generated for 53, 10 ,m s    and 1 /mm s  . 
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Figure 2-10: Evolution of the contact opening for 3m   and (a)  1 28.25 c c       and (b)

241.25( )c    .  Variables in the plot are: / f    and 2 /x x L .  The deformation shown is 

multiplied by 5 for ease in visualization. Plots correspond to the central portion of the interface of 

non-dimensional length 1.  Deformed configurations are for the interface portion of non-dimensional 

length 0.66.  
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Figure 2-11: Effect of    on the dominant wavelength (normalized by thickness) of the debonding 

undulation  

 

Table 2-1: Qualitative evidence of the time-temperature equivalence in predictions from the model  

14 m   

             (mm/s)     Ta  ( s ) Debonding 

7 1 10 

                

7 100 10 

                

7 1 1000 

                

7 100 0.1 

                

28 100 10 
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2.4 Analysis of 3D deformations for peeling of a flexible plate off a 

soft elastomeric layer by the FEM 

2.4.1 Approach 

 Results presented in the preceding two sections imply that values of parameters in the 

TS relation for the interface between an elastomeric layer and the rigid substrate, the applied 

pulling rate and the characteristic relaxation time determine whether or not a wavy debond 

will occur. In order to delineate fingering instability [4, 5, 9] for a deformable upper 

adherend, we study progressive crack propagation in the configuration of  

Figure 2-12 that resembles the test set up often used to characterize interfacial 

adhesion and/or study mechanics of interfacial separation [5, 29, 43].  Major differences 

between this problem and those studied above include bending and stretching deformations of 

the upper adherend that may induce interfacial failure in all three modes whereas only mode I 

failure was dominant in the problems analyzed in Sections 2 and 3.   

We model the plate/adherend and the interlayer of dimensions, respectively, 

20 30 1mm mm mm   and 20 25mm mm h mm  . Deformations of the interlayer may be 

large but those of the adherend plate are assumed to be infinitesimal. Furthermore, inertial 

effects are neglected.  We use values of the material parameters given by Murray [43] who 

experimentally observed fingerlike debonding during the peeling of a glassy polymer plate 

from a hydrogel interlayer in a wedge test. The plate material is modeled as homogeneous 

and isotropic Hookean with Young‟s modulus, plateE  = 2.1 GPa and Poisson‟s ratio = 0.4. 

However, we also compute results for different values of plateE . The material for hydrogel 

interlayer is modeled as isotropic, homogeneous and incompressible with the constitutive 

relation (2-17) (e.g., see Simo [44]) implemented in ABAQUS [36].   

Here 
1a  and 

2a  are material constants, B the left Cauchy-Green tensor, 
Rg  the normalized 

relaxation modulus expressed as Prony series  
 
 











0R

R
R

t
tg




, IAtrAAdev )(

3

1
)(  , ( )tr A

= sum of the diagonal elements of the matrix A when its components are written with respect 

       2 1

1 2 0

0

t

D T
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s
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  
         

  
I B B F F  

                                                     

(2-17) 
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to an orthonormal basis, I  = the identity matrix, 0

D  the instantaneous deviatoric Cauchy 

stress, and )( stFt    the deformation gradient at time )( st  with respect to the 

configuration at time ( )t , defined as 
)(

)(
)(

tx

stx
stFt




  with x  giving the current position 

of a material point. Based on experimental results [45], the instantaneous elastic response is 

assumed to be neo-Hookean, i.e., 
2a = 0, and 

1a = twice the constant shear modulus of the 

interlayer material. The Prony series parameters determined experimentally [45] at the 

reference temperature of 45°C are listed in Table B 1. The WLF constants at the reference 

temperature REFT
~

 = 45°C are C1=4.57°C and C2=142.2°C.   

We assume a mixed-mode bilinear TS relation [36]  with mode-independent values of 

the initial slope (
610 /K MPa mm ), the peak traction ( 0.04cT MPa ),  and the fracture 

energy ( 20.2 /c J mG ). The value of the damage stabilization parameter for alleviating 

numerical instabilities was gradually reduced to 10
-10

 until a further decrease in this value did 

not affect computed results.  

 The boundary conditions and the FE mesh are shown in  

Figure 2-12. The three displacement components of points on the lower face of the 

interlayer are set equal to zero to simulate its perfect bonding to the stationary rigid adherend. 

The same vertical displacement ∆ is applied at 1 mm/s to all nodes on the plate right edge.  

Tractions on the other bounding surfaces and tangential tractions on the right edge are null.  

 The eight-node brick elements (C3D8R) with reduced integration and the default 

hourglass control option have been used for the cover plate.  Hybrid elements (C3D8RH)
7
 

have been employed for the incompressible interlayer.  The interlayer region is discretized 

into 5 (thickness) x 150 (width) x 100 (length) uniform FE mesh.  This FE mesh is reasonably 

fine as the characteristic spacing between adjacent undulations is expected [5] to be 

3 4 ~1h h mm     for the smallest interlayer thickness used in the study. In order to 

                                                 
7
For the 3D simulations, the overall energy balance applied to the ABAQUS output gave a discrepancy 

of about 20%.  Additional numerical experiments revealed that this was due to our using the default value of the 

hourglass control. The use of selective reduced integration or other hourglass control options satisfied the 

energy balance within 1% error but triggered unphysical oscillations at the contact surface. The physically 

meaningful results computed with the default hour glass control and their agreement with the literature results 

obtained by other methods provide credence to results reported here. 
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demonstrate the effect of the CZM parameters on the debonding characteristics, we have not 

obtained a fully converged solution by successively refining the FE mesh since qualitative 

features of progressive debonding remained independent of the FE mesh.  

 

Figure 2-12: The FE mesh and boundary conditions with zero tractions along unconstrained 

displacement components not exhibited  

 

2.4.2 Results and discussion 

In general, the debond front is either fingerlike or straight as illustrated in Figure 2-13. 

An example of the evolution of the fingerlike debonding process is shown in Figure 2-14 in 

which we have plotted contours of the contact opening   at three different times for a plate 

of bending rigidity, 

3

212(1 )

plate plateE h
D





 = 21 Nm (  = Poisson‟s ratio, 

plateh  = the plate 

thickness) and an interlayer of thickness 250 m . Computed values of  > f  are 

represented in red color. As experimentally observed [5, 9], the development of fingers is 

preceded by the nucleation of debonds spaced at approximately the same distance as that 

between the fingers that will ensue. Decaying plate displacement, undulatory debonding, and 

lateral propagation of debonds give rise to what resembles fingers at the debond front.  

Progressive debonding was also simulated for a plate with D = 2.1 Nm and interlayers 

thicknesses 250 m , 500 m  , 600 m  and 750 m .  The spacing between the adjacent 

fingers, computed using the discrete Fourier transform method (using MATHEMATICA 
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[41]), versus the interlayer thickness is plotted in Figure 2-15a. We note that the computed 

spacing increases with an increase in the interlayer thickness and reasonably agrees with 

experimental findings of Ghatak and Chaudhury [9] who reported the approximate relation: 

4h  . We note that for the highest thickness (750 m ) simulated, fingerlike debonding 

was not predicted. However, debonding exhibited a fingerlike front when a plate of higher 

flexural rigidity (7.5 Nm), consistent with the requirement of a threshold lateral confinement 

 
1/3

3/D h , expressed as the ratio of the two length scales,  
1/3

/D   and h  [9, 12]. 

Simulations conducted for different values of D and a constant interlayer thickness (250 m ) 

revealed that the length of the fingers increased monotonically with the quantity   
1/3

/D 
8
 

which represents the characteristic stress decay distance for a flexible plate bonded to an 

elastomeric foundation [46].  The linear fit to the computed values depicted in Figure 2-15b is 

close to that obtained by Ghatak and Chaudhury [9] for a different materials system.  We 

believe that this quantitative agreement in the finger amplitudes is coincidental because the 

softening zone length (in the y-direction) should also depend on the interfacial adhesion as 

discussed later. We found that the dominant frequency of undulation is relatively insensitive 

to the plate rigidity, consistent with findings of [9].  

In order to demonstrate qualitatively the concept that the CZM parameters for 

confined interlayers determine whether or not contact separation resulting from tension is 

wavy, additional simulations were conducted by varying the TS parameters and the operating 

temperature by keeping the thickness of the interlayer, the plate rigidity and the pulling rate 

constant. The key parameters used in these simulations and the results are summarized in 

Table 2-2 . For cT = 0.04 MPa, setting the temperature equal to -30⁰C results in larger 

relaxation times following the WLF equation, and a fingerlike debond front was not 

predicted. Similarly, a fingerlike front was not predicted when cT = 0.004 MPa was used for 

the operating temperature of 55°C. 

Our computed results suggest that the debonding behavior during peeling a flexible 

plate off an elastomeric layer constrained to a rigid base is dictated by both the lateral 

                                                 
8
 The shear modulus of the interlayer at time t  and temperature T

~
 was estimated as





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confinement  
1/3

3/D h   and the adhesion parameter, 2 /c cT h EG .   A detailed analysis 

probing their collective role in the debonding evolution will be undertaken in a future work.  

 

Figure 2-13: Two main types of debond front predicted by the simulations: debond front (a) with or 

(b) without fingerlike undulations. In these images, the bonded and the debonded regions are shown 

by plotting the damage variable, 
 

 
f c

f c

d
  

  





 defined for the region corresponding to segment 

AB of the TS relation (for segment OA, 0d  ). The value of d equals 1 over the debonded region 

(represented by red color) and varies from 0 to 1 over the region which is yet to debond (represented 

by blue color). Whether or not undulation is exhibited at the debond front depends on the plate 

bending rigidity, the viscoelastic properties and the thickness of the interlayer, temperature, pulling 

rate and values of the TS parameters.  
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Figure 2-14: Contour plots of contact opening at three values of the applied displacement when the 

plate rigidity 21D Nm  and the interlayer thickness 250h m . For easy visualization, deformations 

are exaggerated by a factor of 10 and by a factor of 12 for the cross-section AA
/
 illustrating wavy 

debonding.  

         

Figure 2-15: Dependence of the (a) dominant wavelength, λ, of the fingerlike pattern on the interlayer 

thickness, h, and (b) the fingers length, 
fingerl , on the length scale  

1/3
/D   when 250h m . As 

shown in (a) fingerlike debonding is not predicted when 2.1D Nm and 750h m . However, a 

larger value of D  causes fingerlike debonding. The linear fit of the data points shown in (b) agrees 

with the linear fit of experimental results of Ghatak and Chaudhury [9] ,  
1/3

0.2 / 0.16fingerl D   . The 

intercepts are not important since undulatory debond fronts do not occur for small values of  
1/3

/D  . 
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Table 2-2: Effect of the TS parameters (for plate rigidity = 2.1 Nm, interlayer thickness = 250 m , 

and pulling rate = 1 mm/s), which evince that wavy undulations vanish when the interfacial softening 

is increased relative to the interlayer stiffness (lower effective stiffness at a higher temperature due to 

viscoelasticity). 

 

T  

 C  

cT  

( )MPa  

cG  

 2/ mJ  
Type of debonding front 

55 0.04 0.2 Fingerlike undulations 

55 0.004 0.2 No fingerlike undulations 

-30 0.04 0.2 No fingerlike undulations 

 

 

2.5 Conclusions 

 We have studied debonding of a confined elastomer layer from an adherend using the 

cohesive zone model (CZM) and the bilinear traction-separation (TS) relation for the 

interaction between the elastomer layer and the adjoining adherend.  The stability analysis of 

the homogeneous solution (null displacements and constant hydrostatic pressure) of plane 

strain deformations of the elastomer and the analysis of deformations by the finite element 

method (FEM) have enabled us to conclude that a necessary condition for a wavy/undulatory 

debonding to ensue is 
2 / 4.15c cT h E G , where cT  is the peak traction and cG  the fracture energy 

in the TS relation, h  the thickness and E  the long-term Young‟s modulus of the 

elastomeric layer modeled as linear viscoelastic. This result can help design a materials 

system for avoiding wavy debonding by choosing thickness of the soft adhesive and/or 

altering the interfacial softening by suitable surface treatment. It also serves to tailor the TS 

relation parameters for simulating spatially undulatory debonding evolution. The linear 

stability analysis also predicts that if undulations occur, their dominant wavelength is close to 

3h, when 2 / 4.15c cT G lies between /E h  and 0 /E h  where 0E is the instantaneous modulus of 

the elastomeric layer. Analysis of the problem using the finite element method (FEM) 

provides details of the interfacial debonding evolution and sheds light on the effects of 

pulling rate and temperature.  
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We have also analyzed using the FEM three-dimensional deformations of a thin 

elastomeric interlayer (perfectly bonded to a rigid base) when a flexible plate is peeled from 

it by applying vertical displacements to points on one edge.  This analysis predicts the 

progressive debonding with a fingerlike front is dictated by both the lateral confinement 

 
1/3

3/D h   and the adhesion parameter,   where D equals the plate bending rigidity and 

the interlayer shear modulus at the operating temperature.   
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Appendix A 

Using the non-dimensionalization / , / , / , / , /X x h Z z h U u h W w h P p       

and int/T t t  where int /ft   is the time of interest, equations of motion become  

2
2 2 2

int

2 2 2
0

wave

tU P U U

T t X X Z

       
        

       
,   

2
2 2 2

int

2 2 2
0

wave

tW P W W

T t Z X Z

       
        

       
 

where 
wavet h




   equals the time for an elastic wave to travel through the thickness, h , of 

the interlayer material of density  . For typical representative values  

 ( 310m  , ~ 0  , 4 4000   , 1 /mm s  ,
20.04 0.2 /c J m G , 40 400h m  and 

31 /kg m  ), 

2

int

2 1

4
1 1

3 1

c

wave

t m

t h  

   
     

   

G
.  Thus inertia terms are negligible. 

However, the inertia term will potentially play a significant role for faster pulling speeds for 

which  

2

int

wave

t

t

 
 
 

 is not much greater than 1.  
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Appendix B 

Table B 1: Values of material parameters in the Prony series at the reference temperature of 45°C [45] 

 

 

Appendix C 

As suggested by a reviewer we include here the effect of the FE mesh on results of the 

plane strain problem studied in Section 2.3. Sensitivities of the load-displacement histories 

and the spatial variations of the contact opening for three FE mesh in the interlayer are 

examined. The FE meshes 1, 2, and 3 had, respectively, 5, 5, and 8 elements through the 

thickness with element widths of 0.05, 0.04 and 0.03 mm. Results plotted in Figure C 1 and 

Figure C 2  for 8.25   and 41.25  , respectively, are sensitive to the FE mesh at the 

larger value of . A coarse mesh causes spurious oscillations as can be seen from Figure C 2b. 

However, discrete Fourier transforms of the computed contact openings for mesh 2 and mesh 

3 (Figure C 2-a) yield the same dominant frequency ( 4.1h  ).  

i   
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

i
(MPa)  

4.11 4.11 4.11 4.082 3.194 0.420 0.186 0.052 0.016 0.003 0.001 0.001 0.017 0.014 0.017 0.009 

i
(s) 

10-

10 

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 103 104 105 
   



43 

 

 

Figure C 1:  For 8.25  , sensitivity to the FE mesh of (a) the dimensionless reaction force (

/ cP R T A  ) vs. the dimensionless displacement,   , applied at a rate of 1 mm/s when 3m  , and (b) 

the dimensionless interfacial contact opening when 0.54  .  
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Figure C 2: For 41.25  , sensitivity to the FE mesh of (a) the dimensionless reaction force vs. 

dimensionless displacement applied at a rate of 1 mm/s when 3m  , and (b) the dimensionless 

interfacial contact opening when 1.67  . 
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Abstract 

The finite element method and a cohesive zone model are used to analyze debonding 

at an interface between an elastomeric layer and a deformable plate overhanging on one side 

when a normal displacement at the edge of the overhang is applied and deformations are 

approximated as plane strain.   The collective role of the material and the geometric 

parameters, and those in a bilinear traction-separation (TS) relation on the interfacial 

debonding is studied by using a cohesive zone model. The following two non-dimensional 

parameters are found to play critical roles: (i) the confinement parameter,  , defined in 

terms of the flexural rigidity of the plate, and the modulus and the thickness of the interlayer, 

and (ii)  the adhesion parameter,  , defined in terms of the TS variables, and the modulus to 

thickness ratio of the interlayer. When   is greater than c , damage is found to initiate at an 

interior point on the interface and at the interface corner irrespective of the value of .  

However, when   is greater than c  , the debonding may become wavy/undulatory. The 

critical value, c , of the adhesion parameter agrees with the necessary condition found in our 

previous work on debonding of an elastomeric layer from a rigid block when it is uniformly 

pulled outward. For c  , damage/debonding initiates only from the interface corner, and 

no wavy debonding ensues.  The peak peeling force is found to be a monotonically increasing 

function of /  suggesting its potential use as a design variable and as a guide for 

determining the TS parameters. Results of several additional numerical experiments in which 

the elastomer can debond from both adherends provide insights into designing a demolding 

process for a sandwiched elastomer layer.   

  Keywords: Elastomeric interlayer, debonding, cohesive zone model (CZM), instability

                                                 
*
 Corresponding author, Email: dillard@vt.edu, Tel.:+1- 540-231-4714, Fax: +1- 540-231-9187 

mailto:dillard@vt.edu


49 

 

3.1 Introduction 

A soft elastomeric interlayer sandwiched between two adherends is encountered in a 

wide variety of engineering applications such as manufacturing of bio-implants, micro-

printing processes, and modern bio-inspired adhesive systems. The requirement of controlling 

interfacial separation of the confined interlayer in such applications necessitates 

understanding collective roles of the geometric, the material, and the interfacial adhesion 

parameters on the processes of initiation and propagation of interfacial debonding of the 

interlayer from the adherend(s).     

It is well known that the lateral constraint imposed by the geometric confinement 

plays a crucial role in the adhesion/debonding characteristics of a sandwiched interlayer. An 

often studied problem in this context is the debonding of a rigid cylindrical adherend from a 

deformable interlayer attached to a fixed base, shown schematically in Figure 3-1a. It has 

been shown [1, 2] that the ratio, /a h , of the adherend radius ( )a  to the interlayer thickness

( )h  and the compressibility [3, 4] of the interlayer material quantify confinement and 

determine the traction distribution at  the interface. For small values of /a h  (< ~1), the 

singularity at the corner (edge) dominates the distribution of the normal traction (peel stress) 

at the interface. Therefore, for axisymmetric deformations an annular crack initiates at the 

edge and propagates towards the center. However, for larger values of /a h  (> ~1) and an 

incompressible interlayer, the peel stress has a peak value at the center with a small 

singularity-dominant region at the edge, and the debonding initiates from an interior point. 

Systematic experimental investigations by Webber et al. [5] and Anderson et al. [6] support 

these statements (or observations). Peeling of a flexible plate from an elastomeric interlayer 

(Figure 3-1b) is another problem of practical interest in which the confinement has been 

shown to play a major role in the debonding process [7-9]. Even when stresses in the external 

edge region become high because of the peeling action, the interlayer confinement and the 

internal debonding control the failure process. Several investigations have suggested that the 

ratio of the lengths,  
1/3

/pD  and h  , describes the geometric confinement. Here pD  is the 

flexural rigidity of the deformable plate, and   the shear modulus of the interlayer.  Large 

confinement is found to be relieved by the nucleation of debonding at a location away from 

the edge [10].  
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Figure 3-1: Schematic sketches of (a) a probe-tack configuration, and (b) a flexible plate peeled from 

a thin elastomeric layer bonded to a fixed rigid base 

While the geometric confinement has a significant bearing on the adhesive debonding 

mechanisms of a sandwiched layer, its intricate coupling with the interfacial adhesion must 

be understood to delineate the debonding process. For example, in the debonding phase of a 

probe tact test (Figure 3-1a), the geometric confinement, / ,a h   and the dimensionless 

descriptor of adhesion, /c aG where cG  is the critical strain energy release rate of the 

interface, collectively govern the debonding behavior.  For a large value of /c aG  dictated 

by the degree of confinement [2, 11, 12] cavities have been observed to initiate within the 

bulk interlayer. For highly confined films and relatively weak interfaces, the internal adhesive 

debonding often involved nucleation of multiple cavities at the interface and their eventual 

coalescence into a crack [11, 13]. Even though these internal debonds were initially thought 

to have initiated from local defects, the theoretical analysis by Mönch and Herminghaus [14] 

suggested that they are adhesion-induced instabilities that occur when the interfacial effects 

dominate over elastic deformations of the interlayer. This determines spacing between the 

cavities that scales with the thickness of the interlayer. An approximate analysis showed that 

the coalescence behavior of the adjacent cavities is governed by /c aG  and its large value 

impedes  lateral propagation of the interfacial cracks and results in fibrillation (Creton et al. 

[12]). When a flexible plate is peeled from an elastomer layer (Figure 1b), the adhesion-

induced instability initiating and growing over the stressed zone results in fingerlike 

debonding [10, 15].  The spacing between these fingers scales with the interlayer thickness 

and their length in the peeling direction with  
1/3

/pD  . Adda-Bedia and Mahadevan [8] and 

Ghatak [9] have proposed that the spacing between the fingers does not depend on the 

interfacial adhesion.  However, the coupling between the geometric confinement and the 
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adhesion on debonding for this problem has not been thoroughly studied. Here we attempt to 

address this coupling by numerical simulations of the peeling problem. 

A frequently used technique for studying debonding employs a cohesive zone model 

(CZM) [16-18]. In a CZM the interaction of adjoining points at the interface is 

phenomenologically represented by a spring of zero-length that softens after it has been 

extended by a prescribed value (reached a peak traction) and breaks at a pre-specified value 

of the extension (when the fracture energy criterion is met). It involves prescribing a-priori a 

relation between the traction and the corresponding separation/displacement-jump (relative 

displacement of two adjoining points) at the interface. For a given mode of debonding, two 

parameters, namely the fracture energy (
cG ) and the peak traction (

cT  ) characterize 

commonly used traction-separation (TS) relations [16, 18, 19]. With a CZM both the 

nucleation of debonding and its propagation can be simulated.  The CZM bridges the gap 

between the classical linear elastic fracture mechanics (LEFM) and the stress-based approach 

[20] of predicting failure.  Whereas cG can be deduced from the test data [21, 22], it is not 

easy to estimate values of parameters in the TS relation for a given interface.  An indirect 

(brute-force) approach [23-25] is often used to find the TS relation which, when used in 

numerical simulations, predicts well the experimental load-displacement curve. Digital image 

correlation [26], interferometry [27], and  molecular dynamics simulations [28, 29] have been 

used to extract values of parameters in the TS relation.   

Here we use the finite element method (FEM), the CZM and a bilinear TS relation, to 

study debonding of a flexible plate from an elastomeric layer that is assumed not to debond 

from a rigid base, e.g., see the configuration shown in Figure 3-1b.  Mukherjee et al. [30] 

have recently analyzed with the CZM and a bilinear TS relation wavy debonding during 

plane strain deformations of an infinitely wide confined elastomer layer from a rigid 

adherend pulled upwards using a configuration similar to that shown in Figure 3-1a.  They 

found that the large peeling traction over the central region induced a damage zone (cohesive 

zone) over which wavy/undulatory debonding ensues due to competition between the 

interfacial softening and the elastic deformations of the interlayer. A necessary condition for 

homogeneous deformations of the interlayer to become unstable (undulatory 

debonding/adhesion-induced instability) is that the parameter 
2 /c cT h E  G  exceed 

approximately 4.15, where E = 3  is the Young‟s modulus of the interlayer material. This 

condition implies that for a given adhesion and interlayer material, its thickness must exceed 

a critical value for an interfacial instability to occur.  
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During peeling of an overhanging flexible plate from an elastomeric layer with the 

displacement applied at the edge of the overhang, the bending of the plate results in a stressed 

zone of characteristic length  
1/3

/pD   near the edge of the interlayer. Results of Ghatak and 

Chaudhury [10] and Adda-Bedia and Mahadevan [8] for peeling of a flexible plate suggest 

that the interlayer thickness must be smaller than a critical value dictated by the length 

 
1/3

/pD    for an undulatory debonding to ensue. This and the aforementioned condition,

24.15 /c ch E T G , determine whether or not debonding will be undulatory. This reiterates the 

importance of coupling between confinement and adhesion when studying debonding in this 

problem. The analysis of the peeling of an overhanging beam from an elastomer layer by 

using a TS relation for the interface enables us to probe this coupling.  

Results of numerical experiments for studying the collective effect of confinement 

and adhesion reported here advance our current understanding of the peeling phenomenon, 

help in developing predictive models for complex manufacturing processes involving 

separation of confined elastomeric layers, shed light on the global behavior such as the pull-

off force as a function of geometric confinement and interfacial adhesion and its transition 

from a strength-dominated regime to a fracture-energy dominated regime, and may help in 

determining the TS parameters for the interface between an elastomer layer and a stiff 

adherend.  

The rest of the paper is organized as follows. We describe in Section 2 the problem 

studied, outline  in Section 3 the numerical approach used to solve the problem, and present 

and discuss in Section 3.4 results obtained by the FEM that relate the damage growth and 

debonding to the confinement and the interfacial adhesion. The findings are summarized in 

Section 3.5. The appendices include mesh refinement studies, computed energy balance for 

one example problem, and results of some three-dimensional (3-D) problems that support 

conclusions drawn from the analysis of 2-D problems.  
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3.2 Formulation of the problem 

 

 

Figure 3-2: Schematic sketch of the problem studied.  

 

A schematic sketch of the problem studied is shown in Figure 3-2. The domain of 

interest consists of an elastomeric layer sandwiched between a deformable plate and a fixed 

rigid base. It is assumed that debonding occurs only at the interface between the plate and the 

interlayer. Neglecting body and inertia forces
9
, equations of motion in the rectangular 

Cartesian coordinate axes ( , ,x y z  or 
1 2 3, ,x x x ) are  

 
0

ij

jx





, 

(3-1) 

where ij  is the stress tensor and a repeated index implies summation over the range of values 

of the index.  The plate and the interlayer materials are assumed to be homogeneous, 

isotropic and Hookean
10

, and the elastomer layer is also assumed to be incompressible. 

Constitutive equations are  

Flexible plate: 2
2

(1 2 )

p p

ij kk ij p ij

p

 
    


 


, 

(3-2) 

                                                 
9 Since the time of interest is much larger than the time taken for an elastic wave to traverse the elastomer thickness several times, 

inertia terms are neglected in the equations of motion. 
10 The maximum computed strain, except possibly at points near the edges where singularities may occur, in our simulations is 6%. 

Thus it is reasonable to assume the interlayer material to be linear elastic.  
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Interlayer: 2ij ij ijp      
(3-3) 

Here p and p   are, respectively,  the shear modulus and Poisson‟s ratio of the 

flexible plate,  the shear modulus of the elastomer interlayer, p the unknown hydrostatic 

pressure in the elastomer layer arising due to the incompressibility constraint, ij the 

Kronecker delta, and ij the strain tensor for infinitesimal deformations defined as

1

2

ji
ij

j i

uu

x x


 
     

, where iu  is the displacement component along the ix -axis.  

The system is assumed to be very wide in the y-direction so that a plane strain state of 

deformation prevails
11

 in the xz- (or 1 3x x  -) plane, i.e., 0yu   and the deformation is uniform 

along the y-direction.  All displacement components at points on the lower surface of the 

interlayer are assumed to be zero to simulate no debonding at its interface with the rigid base. 

A monotonically increasing vertical peeling displacement, A , is applied at the tip point, A, of 

the flexible plate. These displacement boundary conditions are written as 

 

Lower surface 

( 0)z  of the interlayer: 

0x zu u   
(3-4) 

Point A: 
z Au   

(3-5) 

The remaining bounding regions that include the overhang AB (of length 0a ) of the 

plate are assumed to be traction-free, i.e.,  

 0i ij jT n   
(3-6) 

where 3( )j jn   denotes the j
th

 component of the unit outward normal at a point on the 

bounding surface.  

                                                 
11

 As will be shown later, a plane strain deformation cannot accurately predict details of debonding after interfacial 

instability has set in. A three-dimensional analysis is needed for finding these details.  

In linear elasticity one should apply displacements on a surface of finite area.  Thus our applying vertical displacement     
at points on the edge of the lower surface of the flexible plate is an approximation.  In the numerical solution of the problem, one can 

easily satisfy this boundary condition. 
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The interaction at the interface between the plate and the interlayer is modelled by a 

TS relation that relates interfacial tractions to the displacement jumps. Following Maugis [31] 

we assume that the interface fails in mode-I
12

. The bilinear TS relation, used herein, is given 

by Eq. (2-3) and plotted in Figure 3-3.   

 

That is, the normal traction, nT , first increases linearly with the displacement jump,

, commonly termed the contact opening/separation, over the region OE. Point E with n cT T  

and c  denotes the initiation of damage/softening beyond which the traction decreases 

affinely with an increase in the contact opening (line EF). Should unloading occur at point R, 

the traction follows the path RO. Subsequent reloading occurs along the path ORF. Point F 

signifies complete separation at a point on the interface. The energy release rate at debonding 

(i.e., the fracture energy) equals the area of the triangle OEF.  That is,  

 

In general, the value of the initial slope eK  must be sufficiently large [33] to minimize 

the artificial compliance introduced into the system and to avoid inter-penetration under 

compression.  A very large value of eK can make the system matrices ill-conditioned when 

the problem is analyzed by the FEM.  

A damage variable, 1 ,
f c

c

f c

D
 

 
  

 
   

  
, is used to quantify the extent of 

damage at an interfacial point; The variation of D with   is illustrated in Figure 3-3.  The 

damage first rapidly increases in  and then very slowly approaches the ultimate value of 1. 

  

                                                 
12 This assumption implies that in the TS relation for mixed-mode damage (see Hibbitt and Sorensen [32]) the peak traction and the 

fracture energy for mode-II damage are much larger than those for mode-I damage. This is a reasonable assumption since the global 

loading is mode-I dominant. 
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fcT 
2

1
cG  

                                                         

(3-8) 
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Figure 3-3: Bilinear traction-separation relation between the interfacial normal traction and the jump 

(contact-opening) in the interface normal displacement. Also included is a plot of the variation of the 

damage variable as a function of the contact-opening.  

 

Equations (3-1)-(2-4) define the boundary value problem (BVP) analyzed in this 

work. The possibility of debonding at a priori unknown points on the interface makes the 

BVP challenging. 

3.3 Numerical Solution of the Problem 

3.3.1 Approach 

The commercial FE software ABAQUS/Standard
13

 [32] is used to numerically 

analyze the BVP by employing 4-node square/rectangular elements in the FE mesh shown in 

Figure 3-4.  In the ABAQUS terminology we use CPE4 (plane strain, 4-point integration) 

elements for the plate and the CPE4H (H stands for hybrid formulation appropriate for 

incompressible materials in which both displacements and the pressure are taken as 

unknowns) elements for the interlayer. Sensitivities of the computed peel stress distributions 

and the load-displacement variations to the FE mesh are reported in Appendix A. The vertical 

                                                 
13 The computed results satisfied energy balance within 8% discrepancy between the external work and the sum of the strain energy, 

the dissipation due to interfacial damage, and the dissipation due to viscous regularization (Appendix B). 
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displacement A  of point A in Figure 3-4 is gradually increased.  A surface-based cohesive 

contact interaction [32] is used for the interface between the flexible plate and the 

interlayer
14

. We have not captured a converged value of the order of singularity [34-36] at the 

initial debond tip ( 0x  ).  However, key findings reported herein are found to be insensitive 

to refining further the FE mesh (see Appendix A).  In order to alleviate numerical instabilities 

and associated convergence difficulties, the “Damage Stabilization” option (viscous 

regularization) in ABAQUS is used. The value of the stabilization parameter was chosen to 

be 10
-7

; using a lower value was found not to affect the computed results but significantly 

increase the computation time. 

 

Figure 3-4: The FE mesh and the boundary conditions on the region whose plane-strain deformations 

are analyzed. 

3.4  Results and discussion 

3.4.1  Choice of Parameters  

The problem 

being studied has the 

following five 

independent length scales
15

:  

                                                 
14 In ABAQUS terminology a node-to-surface discretization is used with the plate surface defined as the „master‟ surface and the 

interlayer surface as the „slave‟ surface ( see Hibbitt and Sorensen [32] for details) . While computing the displacement jump at a slave 

node, the displacement of the closest point on the master surface is computed by using the displacements of neighbouring nodes.    

15
 In order to understand the corner B singularity (cf. Figure 3-4) oscillations in the interfacial tractions, we recall that the 

Williams [37] solution is of the form    (      (
    

    
)    ) where r is the radial distance from point B, and 

   
 

 

  (    )  (     )

  (   )  (    )
 where    is the shear modulus of the flexible plate and   Poisson‟s ratio of the interlayer. For materials of 

interest here                         
  , we get      

h ,  
1/3

/pD  , 0a ,    f  , 
2/c cTG  

Material and geometry    CZM 
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The flexural rigidity of the plate, pD , is given by   3 2/12 1p p pD E t    where pE  is 

Young‟s modulus of the plate material, p  Poisson‟s ratio and t  the plate thickness.  The 

geometric mean of the first two lengths,  
1/3

/ph D  , quantifies the characteristic stress 

decay distance [22, 38] from the edge, and their ratio,  
1/3

3/pD h  , signifies 

confinement [9] of the interlayer. The ratio of h  and the CZM length scale 
2/c cTG  yields the 

parameter
2 /c cT h E  G  (note that 3E  for the incompressible elastomer layer) that 

determines the onset of contact instability [30] during plane strain deformations of the 

elastomer layer sandwiched between two rigid blocks and one rigid block pulled away from it 

and the other kept stationary.  Following Adda-Bedia and Mahadevan [8], Ghatak [9], Vilmin 

et al. [15] , we call   the confinement parameter, and following Mukherjee et al. [30]    the 

CZM/adhesion parameter.  

 In terms of non-dimensional variables the interfacial traction is written as 

  , , , ,i c i AT T T X A    
(3-9) 

where iT  stands for either the normal ( nT ) or the tangential traction ( sT ) at the interface, cT is 

the peak normal traction when damage initiates, /A A f   , X x , 0A a   and

 
1/6

312 / pD h  .  

3.4.2  Analysis of interfacial tractions with no damage allowed at the interface 

In this sub-section, we report interfacial tractions as a function of the confinement 

when the flexible plate is peeled away from the interlayer but no separation is allowed to 

occur at the interface.  Results are computed for constant vertical displacement, 1A m  , at 

different values of the confinement parameter,   , varied by choosing lengths  
1/3

/pD  and 

h   such that
1 1mm   . A very large value is assigned to cT   so that damage does not initiate 
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for 1A m  and the FE mesh used
16

. Unless otherwise specified, we set 0 2.83a mm and the 

length of the plate = 50  mm. 

The distributions (nodal values) of nT   (peel stress) and sT  are plotted in Figure 3-5 as 

functions of the distance x  measured from the corner point B. With an increase in , the 

peel stress, in addition to the large value exhibited at corner B, has a local maximum 

(secondary/internal peak) where the tangential stress is nearly zero. However, for low 

confinement (e.g., 3  ), this local maximum is not exhibited, though evidence of a shoulder 

remains. The computed distribution of the interfacial peel stress is compared in Figure 3-6 

with that from approximate „mechanics of materials‟ solutions of other investigators.  The 

approximate solution of Ghatak et al. [22] captures qualitatively the interfacial normal 

traction distribution for low values of  .  The solution of Ghatak et al. [39], who enforced a 

boundary condition of zero peel stress at point B, captures the location of the secondary peak 

for confined interlayers. Ghatak et al. [22] assumed that the peel stress had a local maximum 

at point B. As shown by Adda-Bedia and Mahadevan [8], the edge singularity must be 

considered to capture details of the interfacial tractions.  

The non-dimensional distance, b , from point B where the local maximum in nT  

occurs for sufficiently confined interlayers, is computed for a range of values of  and  , 

and plotted in Figure 3-7 as a function of  . It can be seen that b becomes relatively 

insensitive to the confinement level for large values of . For the experimental set-up of 

Ghatak et al. [39], 15  , our prediction of this distance lies between the experimentally 

measured, 1.1b  , and the approximate theoretical prediction, 0.74b   [39].  The 

assumption constantb   leads to the relation,      
1/6 1/2 1/2

/pb E E t h , which is similar to 

the characteristic lag distance      
1/2 1/2 1/2

/shear lag pl E E t h   found from Volkersen‟s shear 

lag analysis [40].  This correlation is understandable in that the internal peak in the peel stress 

occurs because shear stresses at the interface transfer load into the elastomer interlayer 

through shear lag but in a decreasing traction field; e.g., see the analysis of a beam on an 

elastic foundation (6
th

 order equation [38]).   

                                                 
16 One example is 5 , 0.67 , 1 , 2.115 , 0.3,ppMPa h mm t mm E GPa      10cT MPa  and 6 310 /eK N mm . For these values of 

parameters, the damage does not initiate when elements of dimensions 0.0125 0.0125mm mm   and 0.1 0.1mm mm   are used 

to discretize the interlayer and the flexible plate, respectively.   
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Figure 3-5: (a) A schematic sketch of the deformed shape of the specimen; the computed (b) 

interfacial normal traction ( nT ) and (c) the interfacial tangential traction ( sT ) as functions of the 

distance x  from the corner point B for different levels of confinement,   ( 5MPa  ).  Note that 

these results correspond to a very high value of the interfacial strength to prevent debonding at the 

interface 
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Figure 3-6: Comparison of present results with those from the literature for 3   and 5  (for

5 MPa  ).  Note that these results correspond to a very high value of the interfacial strength to 

prevent debonding at the interface.  

 

For 8   , the variation with x of the computed hydrostatic pressure, p, plotted in 

Figure 3-5a reveals that the normal traction on the interface essentially equals the hydrostatic 

pressure.  Thus the shear stress, xz  , in the elastomer layer is much smaller than the normal 

stresses, xx and zz , as also evinced by results plotted in Figure 3-5a. 
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Figure 3-7: Non-dimensional location of the internal peak as a function of the confinement level. Note 

that these results correspond to a very high value of the interfacial strength to prevent debonding at 

the interface.  

 

3.4.3 Analysis of damage growth and debonding 

In the CZM, damage initiates at an interfacial point when the peel stress there just 

exceeds the prescribed peak traction, cT . Further increase in the applied displacement δA 

causes the peel stress at that point to follow the softening segment EF of the TS relation in 

Figure 3-3. The region where softening (sometimes called damage) has occurred in the TS 

relation is henceforth referred to as the cohesive zone (CZ). It is conjectured that for large 

values of   the damage/softening initiation at the corner point B is accompanied by the 

initiation of damage at an interior point situated at a distance b  (analogous to the shear-lag 

distance) from point B due to the local peak peel stress there increasing with  .  The 

literature results [30, 41, 42] suggest that the post-damage response will be influenced by the 

value of the parameter . In order to delineate the collective role of   and   on the 

damage/debonding behavior, we simulate progressive debonding with a gradual increase of
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A . Unless specified otherwise, we use
1 1mm   , 0 2.83a mm ,

6 310 /eK N mm , and vary 

  and   . 
17

  

3.4.3.1 Analysis of damage growth and debonding 

Figure 3-8 exhibits the evolution of the peel stress and the damage variable
18

 with a 

monotonic increase in the applied displacement δA when 3  and 0.1 
19

.  With 

increasing A  applied at the plate edge
20

, damage initiates at the corner and forms a CZ 

accompanied by a redistribution of the stress.  Note that the peel stress at point B is now 

limited by the peak traction Tc in the TS bilinear relation. With continued loading, the contact 

opening at point B reaches the ultimate value f  the peel stress vanishes and the plate is 

debonded there from the elastomer. The further increase in A  results in the propagation of 

this debond with a CZ at its front. This edge debonding, named type-1 for later reference, has 

been studied by a semi-analytical method using a CZM by Mukherjee et al. [43] who 

extended techniques of Dillard [38] and Ghatak et al. [22]. Their results reveal that the CZ 

size increases with an increase in the quantity /  . For small values of /  , the CZ size 

becomes vanishingly small and the edge debonding process can be analyzed by the LEFM 

aproach, e.g., see Ghatak et al. [22].  

In Figure 3-9, 10 and 11 we have plotted for 4,5  , and 50, respectively, computed 

evolutions of the interfacial peel stress and the damage variable for a very high level of 

confinement, 100  .  Results shown in Figure 3-9 reveal that the damage initiation and the 

                                                 
17

 The FE height had to be adjusted as the interlayer thickness was modified to vary confinement and adhesion parameters; however, 

at least 10 elements were placed through the thickness of the interlayer.  Rectangular elements had aspect ratio less than 4:1.  

 
18 The distribution of D (CSDMG in ABAQUS terminology) is plotted in Figs. 8-11 in order to exhibit the damaged/debonded region. 

Recalling that    
1

1 / 1 / ,c f c cD      


    ,we obtain D=0 over the bonded region, D=1 over the debonded region and    

    over the CZ. However, D~1 over the CZ on the scale used in these plots because of the following reason. Consider the 

example problem,                                           
      , for which we get        

                     
    . This yields D>0.95 for        . This explains why D appears to be ~ 1 over almost the 

entire CZ(s). For clarity, we have inserted in Figs. 8-11 insets showing variations of  D on magnified scales. Using smaller values of 

Ke while keeping other TS parameters constant gives better distributions of D over the CZ but may introduce artificial compliance 

into the system as stipulated by Song et al. [33] .  

 
19It has been checked that the computed results are stable with respect to variations in the TS parameters. For example, for   

                                         
       , and       ,the maximum % changes in nodal values of 

the peel stress over the internal CZ were found to be 0.02% and 4.58% when                 and      
        was used, 

respectively.  

 
20 Note that an infinitesimal displacement should cause a CZ to initiate at point B since linear elasticity theory implies a singular  

traction at point B. However, in an FE simulation using a CZM, the value of the applied displacement required to initiate a CZ at 

point B depends upon the FE mesh used.  
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concomitant CZ formation over a negligibly small region at the edge are accompanied by the 

damage initiating internally at a distance 0.85 (consistent with the result shown in Figure 3-7) 

from point B and spreading of a CZ due to the local peak peel stress there.  As A  is 

increased further, the internal CZ coalesces with the edge CZ, and the resulting debond 

propagates with one CZ at its front. This qualitatively agrees with the experimental finding 

that debonds initiate internally and eventually coalesce with the edge debond and the 

resulting debond front propagates on continued loading [39]. However, our plane strain 

analysis implies long tunnel-like debond with no undulations in the out-of-plane direction. 

An FE analysis of 3D deformations by Mukherjee et al. [30] indicated that the internal 

debonding process became undulatory (wavy) when the softening stiffness of  the TS relation 

(slope of line EF in Figure 3-3)  was large enough in comparison with the modulus to 

thickness ratio of the elastomer layer. Recalling that the spacing ( )   between undulation 

peaks [9, 14, 44] is expected to be 3h , the size of the CZ in a plane strain analysis must be 

>> 3h  to capture the undulatory debonding phenomenon. Our numerical experiments reveal 

that the size of this CZ decreases with an increase in   and a decrease in . However, as   

is increased,  if the CZ size is several times the interlayer thickness determined by the 

combined values of both   and   , the peel stress begins to oscillate with amplitudes large 

enough to cause wavy debonding. An example of such wavy debonding is illustrated in 

Figure 3-10 for 5  . Multiple debonds initiate over the CZ resulting in traction-free regions 

separated by portions of the damaged interface. The average spacing between these debonds 

is approximately 3h, which agrees with the results of the interfacial instability [9, 14, 44]. A 

comparison of our computed results for 4   and 5  suggests that the threshold  c   

likely occurs in the range (4, 5). This agrees with 4.15c   found [30] for debonding of an 

infinitely confined elastomer interlayer from a rigid block pulled outwards; however, we have 

not conducted sufficient number of simulations to extract the precise value of c . The 

internal debonding process without wavy debonding is named type-2 and that with the 

softening-induced undulations is named type-3. Note that if   is very large, the CZ formed at 

the internal peak location does not spread; instead debonding occurs and the local peel stress 

vanishes as illustrated in Figure 3-11. The redistributed peel stress exhibits a peak at a shear-

lag distance from this debond. Continued loading causes nucleation of a second internal 

debond which, in turn, leads to a third internal debond. This debonding mechanism is named 

type-4. The average spacing between the type-4 debonds is greater than 3h .  However, the 
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spacing converges to 4.6h as   is increased, as evident from the plots of Figure 3-12. It is 

worth mentioning here that the sensitivity of the debonding evolution to the FE mesh 

increases with an increase in the value of   [30]. However, findings regarding the 

mechanisms of damage/debonding remain unaffected.  

Presently computed predictions of the afore-mentioned four types of damage 

growth/debonding mechanisms are plotted in the    plane in Figure 3-13. These results 

suggest that there is a threshold confinement, c , above which the peak peel stress at an 

interior point begins to initiate and spread damage internally. This can be explained as 

follows.  The reduction in the load carrying capacity due to damage at the location of the 

internal peak begins to outweigh that due to the edge peel stress when the confinement is 

sufficiently large. We note that even though the peel stress has a local peak at an interior 

point for confinements greater than 4, the threshold confinement level, c , beyond which a 

CZ forms internally lies between 8 and 9. For the edge initiated debonding mechanism that 

occurs for c  , the interfacial instability is not found to occur.  Results from a semi-

analytical model for such debonding [43] show that the CZ size, d , normalized by the 

characteristic wavelength of undulation ( ~ 3h ) , scales as    / ~ /d    ,  and at 

c  and c  , / 1d   . An increase in the confinement changes the debonding initiation 

mechanism and an increase in   reduces the size of the CZ that is too small to accommodate 

undulations that may ensue due to the softening induced instability. This qualitatively agrees 

with the experimental finding of Ghatak and Chaudhury [10] in that the confinement must 

exceed approximately 18 for the appearance of a fingerlike convoluted crack front. The 

underestimation by our analysis may be due to errors introduced by the assumption of plane 

strain deformations, and the lack of knowledge of contact conditions between the glass cover 

plates and the PDMS layer used in the experiments. 
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Figure 3-8: For 3, 0.1   , distributions of the non-dimensional normal traction ( / )n n cT T T and 

the damage variable ( D ) at the interface as a function of the non-dimensional distance ( X ) measured 

from point B at increasing values of the non-dimensional applied displacement (
A ). The deformed 

configurations, shown on the left, have been exaggerated by a factor of 5. This is an example of the 

type-1debonding mechanism shown in Figure 3-13. The inset included in the top figure illustrates the 

TS relation used and the variation of D as a function of ( )c  normalized by f . The insets included 

in the third and the fourth figures illustrate the variation of D on magnified scales.  
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Figure 3-9: For 100, 4   , distributions of the non-dimensional normal traction ( )nT and the 

damage variable ( )D  at the interface as a function of the non-dimensional distance ( X ) measured 

from point B at increasing values of the non-dimensional applied displacement ( A ). The deformed 

configurations, shown on the left, have been exaggerated by a factor of 25. This is an example of the 

type-2 debonding mechanism exhibited in Figure 3-13. The inset included in the top figure illustrates 

the TS relation used and the variation of D as a function of ( )c   normalized by f . The inset 

included in the third figure illustrates the variation of D on a scale from 0.99 to 1.   
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Figure 3-10: For 100, 5   , distributions of the non-dimensional normal traction ( )nT and the 

damage variable ( )D  at the interface as a function of the non-dimensional distance ( )X  measured 

from point B at increasing values of the non-dimensional applied displacement ( A ). The deformed 

configurations, shown on the left, have been exaggerated by a factor of 25. This is an example of the 

type-3 debonding mechanism displayed in Figure 3-13. The inset included in the top figure illustrates 

the TS relation used and the variation of D as a function of ( )c   normalized by f . The inset 

included in the third figure illustrates the variation of D on a scale from 0.99 to 1.  
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Figure 3-11: For 100, 50   , distributions of the non-dimensional normal traction ( )nT and the 

damage variable ( )D  at the interface as a function of the non-dimensional distance ( X ) measured 

from point B at increasing values of the non-dimensional applied displacement (
A ). The deformed 

configurations, shown on the left, have been exaggerated by a factor of 25. This is an example of the 

type-4 debonding mechanism evinced in Figure 3-13. The inset included in the top figure illustrates 

the TS relation used and the variation of D as a function of ( )c  . The inset included in the third 

figure illustrates the variation of D on a scale from 0.999999 to 1. 
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Figure 3-12: On a semi-log plot, computed average spacing between the internal debonds normalized 

by the interlayer thickness as a function of   when 1100, 1mm     and
0 2.83a mm . 

 
Figure 3-13:  Computed mechanisms of damage growth/debonding in the     plane. Values of 

other parameters are: 0 2.83 ,a mm and 1 1 mm   . 

3.4.3.2 Load-displacement curves 

 In terms of our normalization, the load-displacement  (LD) relation found using an 

LEFM approach by Ghatak et al. [22] is   

 3 2 3
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where the non-dimensional length, A , of a propagating crack is found from the relation  

 
 

3
2 3

2

2 3 4 5
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6.853
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A A A

A A A A A





  
 

    
, and AP  is the reaction force at A. In 

Figure 3-14 we have plotted the computed AP  vs. A from this relation as well as from our FE 

analysis of the debonding problem for 1,3,25,and 60  , / 1   , and 0 2.83A  . With 

increasing values of applied A , AP  increases up to a peak value and then decreases. The 

nonlinearities, if any, in the initial ascending portions of these curves are attributed to the 

formation of the CZ near point B. For type-I (edge initiation) debonding ( 1,and 3  ), the 

descending portions of the LD curves are smooth. Computed AP at a given A  for an edge-

initiated debonding is significantly greater (peak load is greater by 45%) than that predicted 

the LEFM approach because of the consideration of the damage at the interface but the 

presently computed peak loads for 1   and 3 differ, respectively, by less than 3.9% and 

0.1% from those found using a semi-analytical method coupled with a CZM and the FEM 

(Mukherjee et al. [43]). The other two computed LD curves plotted in Figure 3-14 correspond 

to type-4 internal debonding (curves with similar features are obtained for type-2 and type-3 

internal debonding). These LD histories exhibit a saw-tooth behavior which becomes more 

pronounced with an increase in . The LD plots for 100  and 250, 500, and1000  , and 

the corresponding deformed shapes are exhibited in Figure 3-15a. These results reveal that 

values of A  corresponding to local drops in the saw-tooth behavior correlate well with those 

for the nucleation of internal debonds. The subsequent increase of the load with the increase 

in A  until the nucleation of the next debond is due to the retardation of the internal 

debond(s) in the presence of the adjacent debond. This is reminiscent of the experimental 

observations of [39, 45]  during the peeling of a flexible plate from an elastomer layer 

containing incisions.  They observed trapping of nucleated debonds near the incisions. Our 

results suggest that higher values of  at a given level of confinement correspond to slower 

propagation of debonding as evidenced by plots in Figure 3-15b of the non-dimensional X 

coordinate of the debond tip(s) as a function of A  for 250   and 1000. The approximate 

growth rate of the 1
st
 internal debond between its nucleation (p) and coalescence (q) with the 

2
nd

 internal debond is estimated as       / 0.0016q p A Aq p
X X      for 1000  . For 

250  , the corresponding growth rate from 'p  to 'q  equals approximately 0.0045. The 
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increase in resistance to debond growth with increasing    agrees with the saw-tooth 

behavior becoming more pronounced with an increase in  . The growth of one debond in the 

presence of another adjacent internal debond controlled by the parameter   has also been 

reported by Hill et al. [41] in their investigation of the growth of a wedge-driven external 

crack in the presence of an internal void behind the crack tip.  

In order to probe the scaling of the maximum reaction force (pull off force), 

numerous numerical simulations have been conducted by varying and . The non-

dimensional maximum pull-off force,
max

AP , is plotted in Figure 3-16 as a function of /  . 

For small values of /  all data collapse on the same line for types 1 through 3 debonding 

and agree well with predictions of a semi-analytical model of [43] for type-1 debonding. The 

least squares fit to the data for /  < ~2 reveals that for types1, 2 and 3 debonding, 

 
0.8max /AP   and the constant of proportionality depends on the non-dimensional initial 

overhang length, 0A . For larger values of /   (> ~2), it is found that data for the edge-

initiated debonding (type 1) satisfy the following relation derived by Ghatak et al. [22] using 

the LEFM approach.  

2 3
max 0 0 0

2 3 4 5

0 0 0 0 0
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Our computed results suggest that for type - 4 debonding the maximum pull-off force 

begins to increase linearly for / ~ 2   , i.e., max /AP   , although the computed data points 

at different confinement levels suggest additional weak dependence on  . We have 

summarized in Table 1 the collective role of the confinement and the interfacial adhesion on 

the non-dimensional pull-off force. For ease of interpretation, the dependence of the 

dimensional force on the plate flexural rigidity, the interlayer thickness, the interlayer 

modulus, the peak traction ( cT ) and the fracture energy ( cG ) is also included.  These results 

suggest that the pull-off force depends on cT more strongly than on other parameters for small 

values of the adhesion parameter. For small values of the confinement and large values of the 

adhesion parameter, the results can be described by the LEFM - based analysis; the pull-off 

force then strongly depends on the geometric and material parameters, and on cG but does not 

depend on the peak traction. For large value of the confinement and large values of the 

adhesion parameter, the pull off force scales with the cT , shows weak dependence on the 



73 

 

plate rigidity, and depends on the thickness and the modulus of the interlayer in a way 

opposite to that for less confined interlayers and exhibits no dependence on the fracture 

energy. These dependencies can potentially be used to find values of the TS parameters from 

the pull-off force data obtained in suitably designed experiments.  

 

Figure 3-14: Non-dimensional load vs. non-dimensional displacement for / 1   . Values of other 

parameters are: 
0 2.83 ,a mm and 1 1 mm   . 
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Figure 3-15: (a) Non-dimensional load versus non-dimensional tip-displacement plots for 100   

and three values of . Deformed shapes (exaggerated by a factor of 20) corresponding to points

anda,b,c  d are included in the right figure.  Values of other parameters are: 0 2.83 ,a mm and
1 1 mm   ; (b) Plots of X-coordinate of the debond tip as a function of the applied non-dimensional 

tip-displacement for 250,   and 1000.  
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Figure 3-16: Dependence of the non-dimensional pull-off force on the non-dimensional number / 

. 
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Table 3-1: Effect of confinement and adhesion on the pull-off force  

Confinement, 

  

Adhesion,   Classification of 

damage/debonding 

initiation 

The non-

dimensional pull 

off force, P , is 

proportional to 

The dimensional 

pull off force, 

P ,is 

proportional to 

Small 
Ϯ
  Small Type-1  

0.8
/   

7 1 1 1 3

30 30 10 5 5
p c cD h T



G

 
Large Small Type-2,3 

Small Large Type-1  
0.5

/   
1 1 1 1

3 6 2 2
p cD h



G  

Large Large Type-4 /    1 1 1

6 6 2
p cD h T



 

Ϯ 
Small confinement is defined as one for which  <9; edge debonding.  Small adhesion is defined as one for 

which / ~ 2    approximately. 

 

3.4.3.3 Limitations 

Experimental findings [10, 39] and results of  simulations of 3-D deformations [30, 46] 

suggest that the adhesion-induced instability triggers oscillations in the out-of-plane (the y  ) 

direction  resulting in a fingerlike debonding front. However, the assumption of plane strain 

deformations, and hence no variation in the out-of-plane direction, forces the instability to 

develop in the x -direction.  Instabilities in both the x - and the y -directions have been 

experimentally observed for very large values of the confinement ( 67   ) by Ghatak et al. 

[47]. A plane-strain assumption, in general, fails to predict details of pattern formation during 

the debonding process because the inhomogeneity in the out-of-plane traction distribution 

due to the presence of traction-free surfaces and anticlastic bending of the plate lead to (i) 

undulatory debonding in the y-direction and (ii) multiple debonds rather than a tunnel-like 

debond computed for plane-strain deformations. This is confirmed by comparing results of 

analyzing 3-D deformations with and without restraining the y-displacement of points on the 

lateral surfaces.  Nevertheless, results presented here are useful for predicting the onset of 

different types of debonding in a semi-infinite geometry as a function of the confinement and 

the CZM parameters. Results for a few 3-D problems included in Appendix C support 

conclusions drawn from the analysis of plane strain deformations.   
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3.4.4 Debonding at both interfaces of the interlayer  

Industrial fabrication of soft bio-implants such as ophthalmic lenses often involves the 

release of an elastomer interlayer sandwiched between two molds from a desired mold 

interface by mechanically prying open one of the  molds [48]. A potential problem, when the 

interfaces have identical adhesion, is the occurrence of debonding at the undesirable interface 

and/or at both interfaces, resulting possibly in a bridge of the interlayer suspended between 

the two molds. This renders the interlayer susceptible to tearing failure. Computed results of 

some additional numerical experiments are presented that may help design potential 

strategies for engineering a desired release mechanism.  

The configuration analyzed is similar to that depicted in Figure 3-4 except that the 

lower adherend is also made of an isotropic and homogeneous linear elastic material and the 

two adherends have the same overhang length of 2.83 mm
21

. The edge of the upper flexible 

plate is monotonically displaced upwards and the three displacement components of points on 

the bottom surface of the lower plate are set equal to zero to simulate the fixed base as 

schematically shown in Figure 3-17a.  As the upper plate is loaded, the asymmetry of 

materials, loading and boundary conditions on the two adherends causes a shearing bias at 

point B in Figure 17a that results in opening at the upper interface near point B due to 

peeling-shearing coupling. We recall that when the lower interface has infinite strength, the 

confinement has to exceed a threshold value for debonding to initiate at an interior point due 

to the peak stress there.  Before damage initiation the computed distributions of the peel 

stress at the two interfaces reveal that the peel stresses are nearly identical at the two 

interfaces except at points close to the corners.  Due to the opening bias at point B, it is 

speculated that a lower threshold confinement level is needed for the internal debonding to 

ensue at the lower interface than that at the upper interface. When the two interfaces have the 

same strength, the simulation results shown in Figure 17b-d indicate that there is a range of 

confinement values for which internal debonding initiates at the lower interface with the edge 

crack initiated at the upper interface. For 8   the internal debond does not nucleate at the 

upper interface but nucleates and grows at the lower interface thereby causing an undesirable 

bridge of the interlayer suspended between the two adherends as shown in Figure 3-17b.  One 

way to mitigate this is to reduce the level of confinement so that the peak peel stress at 

interior points is small. The simulation results for 2   plotted in Figure 3-17c support this. 

                                                 
21

 4-node square elements of dimensions 0.1 mm × 0.1 mm and 0.025 mm × 0.025 mm have been used to discretize the 

molds (CPE4 elements) and the interlayer (CPE4H elements), respectively. 



78 

 

However, for sufficiently confined interlayers, such as that shown in Figure 3-17d for 10  , 

damage may occur at interior points on both interfaces at locations of peak stresses. 

Continued loading causes the lower interface CZ to become shielded [49] by the growth of 

the CZ on the upper interface. These observations suggest that an improper level of 

confinement may result in an erratic debonding process. In practical situations, however, the 

choice of tailoring the confinement by tuning the mold flexibilities may be limited. As was 

suggested by[50], thermal pre-conditioning can be used to bias debonding to a desired 

interface. For example, pre-cooling the assembly before mechanically pulling the upper mold 

for 8   causes the internal debond to initiate and grow at the upper interface as can be seen 

from the results exhibited in Figure 3-18. Due to the mismatch in the coefficients of thermal 

expansion of the molds and the interlayer and the associated bending of the flexible upper 

mold, the peel stress is compressive near the upper interface corner point B and tensile at the 

lower interface corner point M. As a result of the opening bias at the lower interface corner, 

the edge debond initiates at M and the internal debonding nucleates and grows at the upper 

interface. These debonding characteristics remain unchanged upon refining the FE mesh. A 

detailed investigation of tailoring the confinement, the ratio of the elastic moduli of the two 

adherends, and the thermal pre-conditioning to cause preferential debonding will be reported 

elsewhere [51].  
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Figure 3-17: (a) The configuration analyzed ; snapshots (exaggerated by a factor of 100) of the 

interfacial debonding for (b) 8  ,(c) 2  and (d) 10  , and the same values of the TS parameters 

at both interfaces corresponding to 4  when vertical displacement is monotonically increased at 

point A. The total length of each plate in the numerical simulations is taken to be 50 mm.  Values of 

other parameters are: 0 2.83 ,a mm and 1 1 mm   . 
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Figure 3-18: Snapshots of debond growth (exaggerated by a factor of 100) when the assembly is pre-

cooled homothermally by o2 C followed by a vertical displacement applied at point A while the 

displacement components at the bottom surface of the lower mold equal zero.  The coefficients of 

thermal expansion are assumed to be 5 o7 10 / C  and 4 o6 10 / C for the two molds and the 

interlayer materials, respectively. The pre-cooling stage is simulated by inputting o2T C   and no 

thermal effects are simulated for the mechanical loading stage. These results are for a confinement 

level of 8   and equal values of TS parameters at both interfaces corresponding to 4  . Values of 

other parameters are: 0 2.83 ,a mm 5MPa  , and 1 1 mm   .   Both molds have identical values of 

material parameters.    
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3.5 Conclusions 

We have studied interfacial debonding of a flexible plate from an elastomeric layer 

strongly bonded to a rigid substrate by using a cohesive zone model (CZM) and analyzing 

plane strain infinitesimal deformations of the linear elastic flexible plate and the elastomer 

layer by using the finite element commercial software, ABAQUS/Standard.  The following 

two parameters have been found to govern the interfacial damage growth and debonding at 

the interface between the soft elastomer layer and the flexible plate.    

(i)  Confinement parameter,  
1/3

3/pD h   , relating the plate flexural rigidity,

pD , the shear modulus of the interlayer material,  (= Young‟s modulus E /3,) 

and its thickness, h  . This parameter was also shown to be important by [8, 10, 

15] 

(ii) CZM/adhesion parameter,
2 /c cT h E  G , relating the peak traction cT  for 

damage initiation at an interface point and the fracture energy cG  in the CZM 

traction-separation (TS) relation. Mukherjee et al. [30] have elucidated the 

importance of this parameter for wavy interfacial debonding of a rigid 

adherend from an elastomer interlayer when the adherend is pulled outward. 

Results of numerical simulations have been plotted on the     plane to identify 

values of   and   for four different interfacial debonding types.  For confinement levels 

less than a threshold value (~ 9)  , damage at the interface between the interlayer and the 

deformable plate initiates at the edge, forms a cohesive zone (CZ), and leads to debonding 

which propagates with a CZ at its front. When confinement exceeds the threshold value, the 

damage in addition to occurring at the edge initiates at an internal interface point located at 

dimensionless distance  
1/6

1 3~ / pD h 



 from the edge, which is proportional to the 

characteristic stress decay distance (one can also think of this as a shear-lag distance).  For 

such interlayers a wavy debonding occurs when the adhesion parameter exceeds a critical 

value. However, for large values of   dictated by the confinement two adjacent nucleated 

debonds are separated by a perfectly bonded region rather than by a portion of the damaged 

interface. The spacing,  , between the internal debonds scales with the interlayer thickness.   

The non-dimensional pull-off force is found to increase with the quantity /  and 

depend on the debonding type.  
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For an elastomeric layer sandwiched between a flexible adherend and a rigid substrate 

with the two interfaces having identical TS relations, it was found that for confinement not in 

the appropriate range separation can occur at both interfaces resulting in an erratic release 

process and leading to bridging which can result in undesirable tearing of the interlayer.  
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Appendix D 

Included here are the sensitivities of the interfacial normal traction and the load-

displacement plots to four FE meshes listed in Table D 1. In Figure D 1a, we have plotted the 

distribution of the peel stress at the interface which is yet to damage. It is clear that the peel 

stress distribution is insensitive to the FE mesh used except for the discretization close to 

point B. However, the interfacial damage type is unaltered as evinced by the plot of the 

contact opening shown in Figure D 1b. Figure D 1-Figure D 4 show distributions of the non-

dimensional peel stress upon damage initiation at the interface (a) and the non-dimensional 

load-displacement variations (b) for the debonding types 2, 3 and 4, respectively. As was 

reported in Mukherjee et al. [30], one can observe that the results are more sensitive to the 

changes in the FE mesh for a large   value as compared to that for small  . Nonetheless, 

our conclusions about the type of debonding and the scaling of the pull-off force remain 

unaffected on refining further the FE mesh 2. 

Table D 1: The FE meshes used 
Ϯ
 

 

FE meshes  Dimensions in mm of an element of 

the interlayer 

Dimensions in mm of an 

element of the plate 

Mesh-1 0.025 × 0.025  0.1 × 0.1  

Mesh-2 0.0125 × 0.0125  0.1 × 0.1  

Mesh-3 Height: 0.0125, width: graded from 0.05 

at the farthest end to 0.005 near point B. 

0.1 × 0.1 
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Mesh-4 0.025 × 0.025  0.05 × 0.05  

Ϯ Results reported in this paper were obtained with FE mesh-2 

 

Figure D 1: For 1

08, 1 , 2.83mm a mm     , sensitivity to the FE mesh of (a) distribution of the peel 

stress at the interface (yet to damage) when 1A m  , and  (b) distribution of the contact opening 

when 4, 3.634A    .  
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Figure D 2: For 1100, 4, 1mm      , sensitivity to the FE mesh of (a) the non-dimensional peel 

stress distribution for 0.7A  , and (b) the non-dimensional load-displacement variation until 0.7A 

. This represents a type-2 debonding as illustrated in Figure 3-9.  

 

Figure D 3: For 1100, 5, 1mm      , sensitivity to the FE mesh of (a) the non-dimensional peel 

stress distribution for 1.2A  , and (b) the non-dimensional load-displacement variation until 1.2A  . 

This represents type-3 debonding as illustrated in Figure 3-10.  
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Figure D 4: For 1100, 50, 1mm      , sensitivity to the FE mesh of (a) the non-dimensional peel 

stress distribution for 0.85A  , and (b) the non-dimensional load-displacement variation until

0.85A  . This represents a type-4 debonding as illustrated in Figure 3-11.  
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Appendix E 

The work done by the external force should equal the sum of the increase in the strain 

energy of the system, the energy lost due to interfacial damage/debonding, and the energy 

loss due to the damage stabilization (viscous regularization) option used in ABAQUS. For 

one of the problems studied, the evolutions of these energies are plotted in Figure E 1.   It is 

clear that the energy balance is satisfied with the maximum error of 7.3%.   

 

Figure E 1: Computed energy histories for mesh-1, and 125, 4, 1 , 5 , 0.04cmm MPa T MPa       

, and 0 2.83a mm . The out-of-plane dimension (width) is taken to be 1 mm when computing the total 

energy. As discussed in Section 3.4, the dip in the load-displacement plot corresponds to the initiation 

of internal debonding.  

   

The energy dissipated due to damage dissipation for 4.59A m   agreed well (8% 

difference) with that f6ound from the equation,  
2

2

2

2

4
CZ

c c
c c

c cl

T
DE a x dx

T


  
     
   


G
G G

G
. 

Here the integrand represents, for 1eK  , the area under the portion of the TS curve traced 

by a point in the CZ up to the contact opening of ( and )c f     and the integral is 
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computed using the Trapezoidal rule, a  is the total length of the interfacial debond, CZl  the 

total length of the CZ, and ( )x  the contact opening at a point in the CZ. 

Appendix F  

Three-dimensional (3-D) deformations have been studied for four cases to check if 

predictions of the debonding types on the    plane from analysis of plane strain 

deformations agree with those from the analysis of 3-D deformations. The out-of-plane width 

(y-direction) and the length (x-direction) of the assembly are assumed to be 5 mm and 12.83 

mm, respectively, and the thickness is chosen to get the desired degree of confinement. In 

ABAQUS terminology, the plate and the interlayer are discretized using C3D8R and C3D8H 

elements, respectively. Brick elements of dimensions 0.025 0.025 0.025mm mm mm  , and 

 / 5 (thickness) (length) 0.025 (width)h l mm  are used to discretize the plate and the 

interlayer, respectively, where l  is the element length reducing from 0.075 mm at the farthest 

end of the interlayer to 0.03 mm near the free edge. Results of the 3-D simulations are 

depicted in Figure F 1. For 25  , multiple internal openings appear (type-3) along the y-

direction for 5    whereas only a tunnel-like opening (type-2) occurs for 4  . For 2  , 

debonding initiates from the edge and undulations are not found to occur for both values of   

(type-1).  These simulations support the conclusions drawn from the analysis of plane strain 

deformations in the xz-plane. The above simulations of 3D deformations were conducted by 

setting to zero the y-displacements of nodes on the lateral surfaces of the elastomer layer but 

not those of the plate. The bottom right figure exhibits a snapshot of the computed contact 

opening for 25  and 5   when the lateral surfaces of the plate were also restrained in the 

y-direction. The deformation becomes equivalent to a plane-strain deformation on the xz-

plane and accordingly, a tunnel-like debonding was predicted.  
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Figure F 1: Snapshots of interfacial dimensionless contact opening for 4, and5  and confinement 

levels of 25  , and 2, when the lateral surfaces of the interlayer are prevented to deform in the y-

direction but those of the plate are free.  The bottom right figure corresponds to 25 and 5    

when the lateral surfaces of both the plate and the interlayer are restrained in the y-direction. 
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Abstract 

A cohesive zone modeling (CZM) approach is used to study the peeling of a thin 

overhanging plate from the edge of an incompressible elastomer layer bonded firmly to a 

stationary rigid base. The deformations are approximated as plane strain and the materials are 

assumed to be linear elastic. Furthermore, the governing equations for the elastomer 

deformations are simplified using lubrication theory approximations. A bilinear traction-

separation relation is considered in the CZM.  Our analysis reveals that the peeling is 

governed by one non-dimensional number defined in terms of the interfacial strength, the 

interface fracture energy, the plate rigidity, the elastomer shear modulus, and the elastomer 

layer thickness. Furthermore, increases in this non-dimensional number lead to monotonic 

increases in the size of the CZ ahead of the debond tip, and the pull-off force transitions from 

a fracture energy dominated to a strength dominated regime. These findings could guide 

elastomeric adhesive design for load capacity and may help find experimental configurations 

for extracting the strength and the fracture energy of an interface from test data.  
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4.1 Introduction 

Understanding and controlling factors that affect adhesive/interfacial debonding of 

sandwiched elastomer layers are critical in numerous applications such as fabrication of soft 

ophthalmic lenses, optimizing transfer printing processes, ensuring durability of sealants, 

designing laminated safety glasses and biomimetic adhesives as well as restricting fouling of 

barnacles on ship hulls. The mechanics of interfacial debonding of elastomer interlayers, 

especially the collective role played by the geometric and the material parameters, and the 

interfacial adhesion has been a subject of considerable interest.  

Here we analyze a prototype problem, namely, the peeling off of an overhanging 

flexible plate from an elastomer layer bonded firmly to a stationary rigid base. Previous 

studies on similar problems [1-4] that focused not necessarily on elastomer interlayers 

recognized the importance of the collective role of the flexural rigidity ( pD ) of the plate, and 

Young‟s modulus  E   and the thickness  h of the interlayer on the elastomer deformations 

and on the pull-off force required for peeling. For example, Bikerman [3] treated the 

interlayer as a Winkler elastic foundation, used a critical peel stress (
cT  ) as the debonding 

criterion, and found that the pull-off force per unit plate width was given by  
1/4

~ /c c pP T D h E

where  
1/4

/pD h E quantifies the length scale of the peel stress oscillations decaying along the 

peeling direction. The coupling of a linear elastic fracture mechanics (LEFM) approach with 

the Winkler foundation analysis [5, 6] predicts that   
1/4

~ / /p

c cP D h E E hG  where 
cG is the 

fracture energy of the interface. These studies approximated deformations of the interlayer as 

uniaxial stretching of independent strands (effective Poisson‟s ratio of zero). This assumption 

becomes erroneous for nearly incompressible elastomers.  The state of hydrostatic stress in 

the interlayer causes the displacement of an elastomer point to scale with the Laplacian of the 

hydrostatic stress.   

As illustrated by Dillard [7] for a general loading of a plate supported on an 

elastomeric foundation and extended by Ghatak et al. [8] for the variation of  the peel stress 

in the peeling direction,  stresses in the elastomeric foundation significantly deviate from that 

predicted by the Winkler solution due to the constraint of incompressibility. For 

incompressible elastomers, the governing differential equation becomes 6
th

 order (rather than 

the conventional uncoupled 4
th

 order for Winkler foundations) resulting in exaggerated 

oscillations in displacements and peel stresses.  
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Ghatak et al. [8] employed an LEFM approach to correlate the reaction force and the 

debond length to the fracture energy of the interface and the geometric and material 

parameters.  Their analysis yielded a much slower decay of oscillatory peel stress 

characterized by the length scale  
1/6

3 /pD h E   as opposed to  
1/4

/pD h E predicted by the 

Winkler solution and resulted in a different scaling of the pull off force,  
1/3

~ / /c p cP D E E hG . 

The LEFM approach uses fracture energy, cG , as a single measure of the adhesion integrity. 

This represents the energy required for an existing debond to grow by a unit area and tacitly 

treats the debond tip as a mathematical point. This approach usually breaks down in large-

scale bridging problems [9] in which there is a finite-size zone holding tractions in the wake 

of the debond, as seen, for example, during fibrillation of pressure-sensitive adhesives (PSA) 

or in fiber-bridging in composites.  

An approach better suitable for such problems [9] is the cohesive zone model (CZM). 

It employs a traction-separation (TS) relation to phenomenologically model debonding when 

two adjoining planes are separated. This allows debonding to nucleate and propagate when 

the interface is stressed. The often used TS relations [10-12] involve two significant 

parameters: the fracture energy, cG , and the interfacial peal stress or strength, cT , to 

characterize the interfacial interaction, though other metrics are sometimes explicitly given. 

By using these two parameters, the CZM approach bridges the gap between a strength based 

criterion and the fracture energy based LEFM approach to model failure/debonding.  For 

cohesive cracking in a medium of Young‟s modulus *E and characteristic length l  Bao and 

Suo [9] pointed out  that in the CZM  approach the non-dimensional group  2 *( ) /c cT l EG  

governs the transition from large-scale bridging (large process zone, strength driven, LEFM 

not valid) to small-scale bridging conditions (small process zone, fracture energy driven, 

LEFM applicable).  

Tang and Hui [13] analyzed the debonding of a rigid cylindrical punch (of radius a ) 

from an elastic interlayer using a Dugdale-type TS relation, and showed that the single non-

dimensional number    2 / /c cT a E g a h  G  governs the global response under suitable 

normalization of variables. With the process zone (CZ) size monotonically decreasing with 

this quantity, the global response transitions from a strength ( cT ) - dominated regime to an 

energy ( cG ) - dominated regime. The pull-off force scales as  / 1/ /c E a g a hG  in the energy 

dominated region (  >>1), and equals 
2

ca T in the strength dominated region.  
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The CZM has been widely used to analyze peeling problems [14-20].  These studies 

modeled adherends as bonded to a Winkler spring foundation with the interface failure 

characterized by either a force-elongation or a TS relation. However, a Winkler foundation 

approach, as mentioned earlier, is unsuitable when analyzing peeling from an elastomeric 

layer. Mukherjee et al. [21] used the finite element method (FEM) coupled with a CZM to 

analyze the peeling of a flexible plate from an elastomeric layer and delineated the collective 

role of the geometric and the material parameters as well as the interfacial adhesion on the 

interfacial damage/debonding and the global response such as the pull-off force. In agreement 

with the earlier findings [22, 23] they showed that for the system studied here with the 

interlayer thickness  
1/3

~ / / 9ph D  , damage initiates at the edge, forms a CZ and propagates 

with a CZ at its front with continued loading at the plate edge.  Here we use a CZM and a 

bilinear TS relation to analyze this debonding mechanism by a semi-analytical method built 

on earlier approaches of Dillard [7] and Ghatak et al. [8] for modeling elastomeric 

foundations.  

4.2 Problem description and analysis 

The problem exhibited in Figure 4-1a consists of a flexible plate adhered to an 

elastomer layer (interlayer) that is firmly bonded to a stationary rigid base so that debonding 

can occur only at the plate/elastomer interface when a monotonically increasing vertical 

displacement A is applied at point A of the plate edge. Plane strain deformations of the 

system are described and analyzed by using a rectangular Cartesian coordinate system, xyz , 

with origin at the moving debond tip shown in Figure 4-1a.  The origin of the fixed 

rectangular Cartesian coordinate system xyz  is at the corner point G.  It is thus tacitly 

assumed that the system extends to infinity in the y-direction and deformations of the plate 

and the elastomer layer in the xz - plane are analyzed.   

Following previous works [13, 24] we assume that damage/debonding is triggered 

only by the peel stress at the interface and study only mode-I failure at the interface. The 

debonding between the interlayer and the flexible plate is simulated by a CZM with a bilinear 

TS relation depicted in Figure 4-2 and described by Eq.(4-1).   
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(4-1) 

 

Here eK is the slope of the portion OM of the TS curve and  /s c f cK T     where 

cT is the maximum normal traction supported by the interface when the relative normal 

displacement between the two adjoining surfaces equals c .  The point M  ,c cT signifies the 

initiation of damage (softening) and the point N  ,0f  the onset of debonding.   The energy 

release rate at the initiation of debonding equals area of the triangle OMN, i.e.,   

 
c / 2c fT G  (4-

2) 

 The initial slope eK  in Eq. (4-1) is assigned a large enough value to not influence the 

debond initiation and propagation at the plate/elastomer layer interface.  Because of 

monotonically increasing displacement A applied at point A, no unloading at any point of the 

interface is expected.   

 

Figure 4-1: Sketch of (a) the problem studied, and (b) various zones near the debond tip B after it has 

moved in the x  direction by the distance 0a a .  Also schematically plotted are variations of the peel 

stress (normal traction) and the corresponding contact opening (displacement jump) along the x -axis.   



97 

 

 

Figure 4-2: A bilinear TS relation  

It is anticipated that a CZ will develop near the corner B followed by debonding there.  

The subsequent propagation of the debond with a CZ at its front and the associated 

distribution of the interfacial peel stress and the separation at the interface are schematically 

illustrated in Figure 4-1b.  

4.2.1 Governing Equations 

Plane strain deformations of the thin flexible plate are assumed to be governed by the 

following Kirchhoff-Love (KL) equation [25] for infinitesimal bending deformations with the 

y-displacements set equal to zero.    

 4 /p pw T D                                    

(4-3) 

 Here n  = /n nd dx , and pw is the vertical displacement of a point in the plate, T the 

normal traction acting on the plate, and  3 2/12 1p pD E t     is the plate flexural rigidity in 

terms of its thickness t, Young‟s modulus pE and Poisson‟s ratio  . 

Plane strain deformations of the homogenous, incompressible, isotropic, and linear 

elastic elastomer layer with the body and the inertia forces neglected are governed by  

    ,x xx zz z xx zzp u u p w w    

 

(4-4) 

 

  

 0x zu w   (4-5) 

 

 

where p is the hydrostatic pressure not determined by the deformations,   (= E/3, where E is 

Young‟s modulus) is the shear modulus, u and w the displacement components in the x- and 



98 

 

the z- directions, respectively, 
xp =
  

  
, and Eq. (4-5) expresses the incompressibility 

constraint.  The following boundary conditions for the elastomer layer are presumed.   

  ( ,0) ( ,0) 0,  , 0u x w x u x h    (4-6) 

 

 That is, the elastomer particles are firmly bonded to the rigid base, there is no slip at 

the elastomer/plate interface, and horizontal displacements of the plate particles are 

negligible. 

4.2.2 Approximate solution of the governing equations 

Using assumptions analogous to those made in the classical lubrication theory [26] for 

thin films, i.e., zz xxu u  , and 0zp  , Eq. (4-4) simplifies to  

  , 0x zz zp u p   (4-7) 

 

When employing the lubrication theory, deformations cannot be accurately predicted 

over a length-scale of order h from the edge [26]. Nevertheless, we use these assumptions for 

simplicity. In the approximate solution sought here, no attempt is made to satisfy the 

boundary condition of null traction on the free surface x =0. Similar assumptions were used 

by Ghatak et al. [8] in their LEFM analysis of this problem.  

         

Integrating Eqs. (4-5) and (4-7) and using boundary conditions (4-6) gives 

 

 
     

2 3 2
2

2

1 1
, , ,

2 2 3 2

dp d p z z
u x z z hz w x z h

dx dx 

 
     

 

 

(4-8) 

 

Vertical displacement, fw , of points on the elastomer top surface is given by
22

  

 
   

3 2

2
,

12
f

h d p
w x h w x

dx
   

(4-9) 

 

The normal stress,  ( , ) , /zz x z p x z w z      , at the elastomer top surface 

becomes  ( , )zz x h p x   . The continuity of normal traction across the elastomer/plate 

interface implies that  p T    where 

                                                 
22 Zero-friction condition at the upper interface leads to    3 2 2/ 3 /fw x h d p dx , the rest of the analysis remains the same.  
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p fw w                                   (4-10) 

is the separation/opening at an interfacial point. Substitution for pw from Eq. (4-10) and for 

fw from Eq. (4-9) into Eq. (4-3) results in the following 6
th

 order ordinary differential 

equation (ODE) forT . 

 
6 4

3

12 1
0

p

T T
Dh




 
     

 
 

 

                       (4-11) 

 

Substitution for T in terms of  from Eq. (4-1) into Eq. (4-11) gives a 6
th

 order ODE 

in which is solved under the pertinent boundary conditions.  In principle, any TS relation 

can be used and the resulting non-linear ODE can be solved numerically using, for example, 

a shooting method.   

Corresponding to the three relations in Eq. (4-1) that hold, respectively, in the 

free/debonded zone  0, fa x      , the CZ  0 , c fx d        and the bonded 

zone  , cd x     , three ODEs from Eq. (11) are deduced.  The variables are non-

dimensionalized (normalized) as ,X x  and / f    where  
1/6

312 / pD h  . The 

normalized debond length, a  ( A a ), and the CZ size, d ( D d ), are denoted by A and D, 

respectively. The three ODEs and their solutions are listed below. 

Debonded region  0 XA : Since 0T  , Eq. (4-11) becomes  

 4 0    (4-12) 

where n  = /n nd dX .  However,  '  is also sometimes used to denote a derivative 

with respect to X.   The solution of Eq. (4-12) is  

   3 2

1 2 3 4X D X D X D X D      (4

-13) 

where 1 4,...,D D  are integration constants.  The same notation with different numeric 

subscripts will be used below for other integration constants.  

Cohesive zone  DX 0 : Now Eq. (4-1)2 holds, and Eq. (4-11) reduces to   

  6 2 4 1 1 0s       (4-

14) 
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where  
1/2

3 112 /s sK h    . The solution of Eq. (4-14) depends on roots of the 

characteristic cubic equation,    
3 2

2 2 2 1 0s     . The three roots for 2 are real and 

distinct if   1/6
27 / 4c

s s   , they are real and at least two are equal if 
c

s s  , and  one 

root is real and the other two are complex conjugates otherwise.  Listed below are the general 

solutions of Eq. (4-14) for these three cases: 

Case-I: 

c

s s   

      

    

5 6 7 8

9 10

cos sin

cos sin 1

pX pX qX

qX

X D e D e e D qX D qX

e D rX D rX

      

 
 

(

4-15) 

 

Case-II: 

c

s s   

      

    

5 6 7 8

9 10

cos sin

cos sin 1

pX pXX D e D e D qX D qX

X D rX D rX

     

 
 

(

4-16) 

 

Case-III: 

c

s s   

      

    

5 6 7 8

9 10

cos sin

cos sin 1

pX pXX D e D e D qX D qX

D rX D rX

     

 
 

(

4-17) 

 

Here p, q and r are found from roots of the characteristic cubic equation. 

Bonded zone   XD : Using Eq. (4-1)1, Eq. (4-9) becomes   

  6 2 4 1 0e       (4-

18) 

where  
1/2

3 112 /e eK h    . For 1eK  , and assuming that 4   is finite, Eq. 

(4-18) reduces to the ODE,  6 1 0    , which was analyzed in [7, 8] that considered 

perfect bonding at the interface.  The general solution of Eq. (4-18) for 1eK  is  

   1̀1 12

2 2
13 14 15 16

3 3 3 3
cos sin cos sin

2 2 2 2

X X

X X

X D e D e

e D X D X e D X D X





  

          
                       

          

 

(4-

19) 

Boundary conditions on   :  

The 16 integration constants appearing in Eqs. (4-13)-(4-19), the size D of the CZ, 

and either the separation ΔB at point B prior to the initiation of debonding or the crack length 

A during propagation of the debonded region are determined from the following 18 

conditions. 
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The bending moment at the left end where the vertical displacement is prescribed is 

assumed to be zero.  Thus 

    , '' 0AA A        (4-

20) 
The continuity of the plate deflection (

pw ) , the slope ( 'pw ), the bending moment  (

~ ''pw ), the shear force ( ~ '''pw ) and the normal traction ( ~ ''''pw ) at points B and C shown in 

Figure 4-1 gives the following 10 conditions at these points where superscripts   and   

denote, respectively, the location just on the right and on the left side of a point. 

At point B: 

At point C: 

The relative vertical displacements at these points can be written as  

 

with 1B when debonding initiates at point B. Until then, B is treated as a variable with 

length 0A A  of the debond known. The non-dimensional contact opening c at point C 

equals
2 / 2c c eT KG .  

The assumption of zero displacement at points far away from point C can be stated as 

 

Finally the overall equilibrium requires that the reaction (or the shear) force, Ap  , at 

point A, equal the total restoring force exerted by the elastomer interlayer. From the KL plate 

theory, one gets   3''' '''( )A p fp Dw a D A      . It equals the peel stress integrated over the 

interface, i.e.,  1

0

T dX 




 . Thus  

                  

           
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''' 0 ''' 0 ''''' 0 , '''' 0 '''' 0 '''''' 0

s s s

s s
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 

           

       

              

         
 

                                                      

(4-21) 
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           

     

             

             

      

 

                                                      

(4-22) 

      20 and ''B e cD D          

 

          (4-23) 

 0
X
Lim


   (4-24) 
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The decay condition (4-24) implies that constants
12 15 16, ,D D D  must be zero. Eq. (4-20) 

gives Eq. (4-26) upon eliminating D2, and Eq. (4-1) is used to reduce Eq. (4-25) to Eq. (4-27). 

Constants 1D ,…, 14D  are found in terms of A and D by simultaneously solving  

algebraic equations resulting from conditions (4-21)-(4-23) using the software 

MATHEMATICA [27]. Eq. (4-27) is simplified by substituting for   from Eqs. (4-15) - 

(4-17) and (4-19).  The transcendental equations (4-26) and (4-27) are then numerically 

solved using the function FINDROOT. 

4.3 Results and discussion  

Recall that  
1/2

3 112 /s sK h     where 2 / 2s c cK T G  and  
1/6

1 312 / pD h 


  . Thus

  
1/3

2 63.238 / /s c c pT D h   G . The length scale 
1 
is related to the deformability of the 

interlayer [7, 8] relative to that of the flexible plate. Values of , A, D and AP  are numerically 

evaluated by solving Eqs. (4-26) and (4-27).  The effects of 
e and 

c are assumed to be 

negligible since 
e s  and

C B    when 1eK  .  

Unless stated otherwise results given below are for the initial debond length 0 2,A   

and 2s  . One combination of values of the material, the geometric and the TS parameters 

that give 0 2,A  and 2s   are: 

0

2 6 3

Plate : 2 , 1 , 1201.5 , 0.3

Elastomer : 817 , 5 ,

Interface : 0.04 , 0.029 / , 10 /

p p

c c e

a mm t mm E MPa

h m MPa

T MPa J m K N mm



 

   

 

  G
 

Evolutions of the plate deflection, /p p fW w  , and the non-dimensional peel stress, 

/ cT T , are plotted in Figure 4-3 as functions of the global horizontal distance measured from 

point G shown in Figure 4-1. As expected for the bending of a plate on an elastomer 

 
   

4

0

1
'''

p f

T dX A
D


 



  

 

                     (4-25) 

 3

1 32 0B AD A D A                          (4-26) 

 2 2 2

1

0

6 0

D

s s e

D

D dX dX D  


          
(4-27) 
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foundation, the plate deflection exhibits decaying oscillatory distribution.  The computed 

deflection profile agrees well with  that reported by  Ghatak et al. [8] and with that computed 

using the FEM [21]. Plots exhibited in Figure 4-3b reveal that with continued loading, a CZ 

develops and the peel stress reduces to zero at the initial debond tip, i.e., 0X  , at a critical 

value, 0 3.1A  , of the applied non-dimensional displacement. The comparison of the present 

results with the LEFM solution of  Ghatak et al. [8] is also exhibited in Figure 4-3b for the 

propagating debond at 4.0A  . Whereas the debond tip in their work is the point with the 

maximum peel stress, it is the point of zero peel stress in our analysis. The point with the 

maximum peel stress, cT , in the present work is the tip of the CZ.  The presently predicted 

peel stress distribution at 4.0A  agrees reasonably well with that computed using the FEM 

[21] with the FEM predicting 0.6% smaller debond length A and 24% smaller CZ length D

than that given by the current approximate analysis. These differences are possibly due to 

using the lubrication theory and neglecting shearing deformations of the plate in the present 

work.  For example, deformations computed with the FEM reveal that at       , the values 

of     and     at the point (x = location of predicted damage tip, z=h/2) are -0.00069 and -

0.00096, respectively. Thus lubrication theory approximation,|   |  |   |, is not 

appropriate.  However, as shown later in the paper, the presently computed pull-off force 

agrees well with that found from the solution of the plane strain deformation equations using 

the FEM. 

The computed dimensionless debond length A as a function of the displacement A

and predictions of the  LEFM analysis with [8] and without [28] considering the interlayer 

deformability are exhibited in Figure 4-4.  For a deformable interlayer the crack length A can 

be found from 

  

 

4 2 3 4 5

2 2 4

3
2 3

8 12 46 72 56 21 3
/ 9 ( ) where ( ) .

3 6 12 9 2
A s

A A A A A A
A A A

A A A
 

    
    

  
 

 

[PA is in both sides 

(

(4-28) 

 

In the limit of a rigid interlayer (A→∞, ( )A →1), Eq. ((4-28) reduces to Obreimoff‟s 

[28] result 
2 2 4 / 9A s A    in terms of the current non-dimensional variables. As can be 

observed from Figure 4-4, the debond length at a given displacement is over-predicted if the 

deformability of the interlayer is neglected. Our results predict even smaller debond length at 

a given displacement due to the consideration of the CZ at the debond tip.  
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Evolutions of the CZ size, the opening at the debond tip, and the slope of the plate at 

the debond tip as functions of the applied displacement are exhibited in Figure 4-5. The 

dashed lines in these plots correspond to the damage growth at point B until debonding 

occurs there and the solid lines with the subsequent propagation phase. Each dashed line 

intersects with the corresponding solid one at 1B  when f  . One can observe that the 

CZ size increases with the applied displacement until debonding ensues at point B. During 

the propagation phase, the CZ size slowly decreases. This trend was also noted [19, 20] when 

the interlayer was modeled as a Winkler foundation and in the context of cohesive cracking  

[29]. The slow decrease in the CZ size during propagation agrees with the observation that 

the slope at debond tip (B) increases while the plate deflection stays constant. The maximum 

CZ size 0( )D  at the onset of debonding is plotted in Figure 4-6a as a function of s  for three 

values of the initial overhang length,
0A , and as a function of 

0A for two values of s . One can 

see that the CZ size increases with s  and decreases with
0A , although the latter dependence is 

much weaker. Recalling   
1/3

2 6~ / /s c c pT D h  G , the former is attributed to an increase in 

the cohesive length  2/c cTG  relative to the length  
1/3

6/pD h arising from the material and the 

system geometry. The slow decrease of the CZ size with the debond length is similar to the 

dependence of the near-tip tensile zone size ( D ) on the debond length ( A ) predicted by 

Ghatak et al.‟s [8] LEFM analysis and exhibited in Figure 4-6b. The decrease is the CZ size 

observed with increasing debond length could be attributed to deformations moving from 

being force-dominated to moment-dominated [30] as the lever arm (of length a  ) increases.  
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Figure 4-3: For three values of the non-dimensional applied displacement, A , distributions of the 

non-dimensional (a) plate deflection and (b) peel stress ( / cT T  ) on the global horizontal axis 

X x .  For 4.0A  , the three regions around a debond are marked in (b)  

 

 

Figure 4-4: Non-dimensional debond length as a function of the applied non-dimensional 

displacement.  

 

Figure 4-5: Non-dimensional CZ size, the plate deflection at the debond tip and the plate slope at the 

debond tip versus the non-dimensional applied displacement. The dashed lines represent results prior 

to the initiation of debonding.   
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Figure 4-6: (a) The CZ size at debond initiation versus s for three values of the initial overhang 

length 0A (solid lines) and versus 0A for two values of s (dashed lines).  (b) Peel stress distribution at 

4.0A   and the size of the tensile region near the debond tip as a function of the debond length 

given by Ghatak et al.‟s [8] solution.  

 

Figure 4-7: Non-dimensional load versus the applied non-dimensional displacement. The dashed lines 

represent results prior to the initiation of debonding.  

 

The dimensionless load-displacement relation from Ghatak et al.‟s analysis is given 

by  2 36 / 6 2 9 2A AP A A A      which for a rigid interlayer reduces to 33 /A AP A  . The load-

displacement results are plotted in Figure 4-7 in which dashed lines correspond to results 
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prior to debonding initiation and solid lines are for the propagation phase. The nonlinearity in 

the ascending portion of the load-displacement curve can be attributed to the softening 

associated with the damage/growth of the CZ at the tip of the initial debond. The maximum 

value of 
AP  (pull-off force) is plotted on a log-log scale in Figure 4-8 as a function of the 

quantity   
1/3

2 6 2/ / / 3.497c c p sT D h    G . One can observe that the pull-off force deviates 

significantly from that predicted by the LEFM analyses of Ghatak et al. [8] for small values 

of   but the two sets of results are close to each other for large values of  . This is 

consistent with the variation of the CZ size suggesting a transition from small-scale bridging 

to large-scale bridging conditions [9]. A power-law fit of the data points ( 2 0.9904R  ) 

reveals the approximate scaling of the dimensionless pull-off force, 
max 0.8

AP  or in 

dimensional units,
7 1 1 1 3

max 30 30 10 5 5~A p c cp D h T


G  (exponents are approximate). Thus the pull-off 

force is dominated by the cohesive strength, cT , and weakly depends on the fracture energy cG

and other parameters. On the contrary, the LEFM results [8] give
1 1 1 1

max 3 6 2 2~A p cp D h


G  

(exponents are exact). That is, the pull-off force at very large values of   does not depend on 

the cohesive strength and is dominated by the fracture energy. This knowledge can 

potentially be utilized to extract fracture energy values from the pull-off force data for a very 

thick (
2h  ) elastomer layer, and interface strength for a thin elastomer layer.   The close 

agreement of the present pull-off force values with those from the solution of the plane strain 

deformations using the FEM provide credence to the approximate model. 

Our analysis assumed initiation of debonding at the corner B. However, as reported in 

[21, 22] debonding may initiate at interior points of the interface for elastomer interlayers that 

are sufficiently confined laterally. The confinement is quantified by  
1/3

/ /pD h  . For

~ 9  , a CZ may begin to form over the interior of the interface at a distance ~
1 
from the 

edge; this is not captured by the present approach which considers the formation of only one 

CZ at the edge. Moreover, the internal opening begins to exhibit waviness when the 

parameter 2 /c cT h E  G  exceeds a critical value ≈ 5. The numerical solution of plane strain 

deformations using the FEM [21] gave values of   and  when interfacial debonding will 

initiate from the edge and at interior points, and also of the pull-off force. Noting that 

1 / 3  , computed values of the pull-off force for the strength-dominated region in 
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Figure 4-8 corresponded to internal rather than edge debonding for  > 9. However, it is 

encouraging to see that the present data-points are on the same power-law fit as those from 

the FEM solution of the problem but not on the fit derived from the LEFM based approach.  

Additional discussion is available in Mukherjee et al. [21].  

 

 

Figure 4-8: For
0 2.83A  , the peak load (pull-off force) as a function of the non-dimensional number

 on a log-log scale.    

4.4 Conclusions  

We have studied the initiation of damage and debonding at the corner of a flexible 

plate overhanging on and peeled from an elastomer layer firmly bonded to a rigid base. The 

analysis employs a bilinear traction-separation relation in a cohesive zone model (CZM) for 

the plate/elastomer interface and builds on the works of Dillard [7] and Ghatak et al. [8] . 

The key finding is that the single non-dimensional number   
1/3

2 6/ /c c pT D h   G  

governs the interfacial opening normalized by
f , the debond length and the CZ size 

normalized by  
1/6

1 312 / pD h 


  , and the load normalized by
3

p fD   .  Here 
cT  is the 

interfacial strength,
cG the fracture energy of the interface,   the shear modulus of the 

elastomer, h its thickness, pD the flexural rigidity of the plate, 1   the length scale of 

oscillations of the interfacial peel stress for bending of a Kirchhoff-Love plate on an 
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elastomer foundation, and 2 /f c cT  G  the debond tip opening. The CZ size decreases as 

increases.  Consequently, the response transitions from a strength dominated regime to an 

energy dominated regime. For small CZ sizes, the predicted pull-off force agrees well with 

that found by Ghatak et al. [8] from the linear elastic fracture mechanics analysis.    

Besides its potential use as guiding design for load capacity, the scaling of the pull-off 

force could be utilized to extract values of cT  and cG for the interface by suitably designing 

interlayer thickness and/or the flexural rigidity of the plate.  

4.5 Acknowledgments 

The authors thank the department of Biomedical Engineering and Mechanics at 

Virginia Tech for support of BM and the use of its facilities, and Macromolecules and 

Interfaces Institute at Virginia Tech for fostering interdisciplinary research in adhesion 

science. 

References 

[1] Kaelble, D., Theory and analysis of peel adhesion: mechanisms and mechanics. 

Transactions of The Society of Rheology (1957-1977), 1959. 3(1): p. 161-180. 

[2] Kaelble, D., Theory and analysis of peel adhesion: bond stresses and distributions. 

Transactions of The Society of Rheology (1957-1977), 1960. 4(1): p. 45-73. 

[3] Bikerman, J., Theory of peeling through a Hookean solid. Journal of applied physics, 

1957. 28(12): p. 1484-1485. 

[4] Spies, G., The peeling test on redux-bonded joints: A theoretical analysis of the test 

devised by aero research limited. Aircraft Engineering and Aerospace Technology, 

1953. 25(3): p. 64-70. 

[5] Kaelble, D., Peel Adhesion: Micro‐Fracture Mechanics of Interfacial Unbonding of 

Polymers. Transactions of The Society of Rheology (1957-1977), 1965. 9(2): p. 135-

163. 

[6] Budzik, M., J. Jumel, K.I. ´ nska, and M. Shanahan, Effect of adhesive compliance in 

the assessment of soft adhesives with the wedge test. Journal of Adhesion Science and 

Technology, 2011. 25(1-3): p. 131-149. 

[7] Dillard, D., Bending of plates on thin elastomeric foundations. Journal of applied 

mechanics, 1989. 56(2): p. 382-386. 

[8] Ghatak, A., L. Mahadevan, and M.K. Chaudhury, Measuring the work of adhesion 

between a soft confined film and a flexible plate. Langmuir, 2005. 21(4): p. 1277-

1281. 

[9] Bao, G. and Z. Suo, Remarks on crack-bridging concepts. Applied Mechanics 

Reviews, 1992. 45(8): p. 355-366. 

[10] Xu, X.-P. and A. Needleman, Numerical simulations of dynamic crack growth along 

an interface. International Journal of Fracture, 1995. 74(4): p. 289-324. 

[11] Geubelle, P.H. and J.S. Baylor, Impact-induced delamination of composites: a 2D 

simulation. Composites Part B: Engineering, 1998. 29(5): p. 589-602. 

[12] Dugdale, D., Yielding of steel sheets containing slits. Journal of the Mechanics and 

Physics of Solids, 1960. 8(2): p. 100-104. 



110 

 

[13] Tang, T. and C.Y. Hui, Decohesion of a rigid punch from an elastic layer: Transition 

from “flaw sensitive” to “flaw insensitive” regime. Journal of Polymer Science Part 

B: Polymer Physics, 2005. 43(24): p. 3628-3637. 

[14] Williams, J. and H. Hadavinia, Analytical solutions for cohesive zone models. Journal 

of the Mechanics and Physics of Solids, 2002. 50(4): p. 809-825. 

[15] Georgiou, I., et al., Cohesive zone models and the plastically deforming peel test. The 

Journal of Adhesion, 2003. 79(3): p. 239-265. 

[16] Blackman, B., H. Hadavinia, A. Kinloch, and J. Williams, The use of a cohesive zone 

model to study the fracture of fibre composites and adhesively-bonded joints. 

International Journal of Fracture, 2003. 119(1): p. 25-46. 

[17] Ouyang, Z. and G. Li, Local damage evolution of double cantilever beam specimens 

during crack initiation process: a natural boundary condition based method. Journal 

of Applied Mechanics, 2009. 76(5): p. 051003. 

[18] Plaut, R.H. and J.L. Ritchie, Analytical solutions for peeling using beam-on-

foundation model and cohesive zone. Journal of Adhesion, 2004. 80(4): p. 313-331. 

[19] Stigh, U., Damage and crack growth analysis of the double cantilever beam 

specimen. International Journal of Fracture, 1988. 37(1): p. R13-R18. 

[20] Biel, A. and U. Stigh, An analysis of the evaluation of the fracture energy using the 

DCB-specimen. Archives of Mechanics, 2007. 59(4-5): p. 311-327. 

[21] Mukherjee, B., D.A. Dillard, R.B. Moore, and R.C. Batra, Effect of confinement and 

interfacial adhesion on peeling of a flexible plate from an elastomeric layer. In 

preperation, 2016b. 

[22] Ghatak, A., L. Mahadevan, J.Y. Chung, M.K. Chaudhury, and V. Shenoy, Peeling 

from a biomimetically patterned thin elastic film. Proceedings of the Royal Society of 

London. Series A: Mathematical, Physical and Engineering Sciences, 2004. 

460(2049): p. 2725-2735. 

[23] Adda-Bedia, M. and L. Mahadevan, Crack-front instability in a confined elastic film. 

Proceedings of the Royal Society A: Mathematical, Physical and Engineering 

Science, 2006. 462(2075): p. 3233-3251. 

[24] Maugis, D., Adhesion of spheres: the JKR-DMT transition using a Dugdale model. 

Journal of colloid and interface science, 1992. 150(1): p. 243-269. 

[25] Timoshenko, S., Theory of Plates and Shells. 1940: McGraw-hill Book Company. 

[26] Reynolds, O., On the Theory of Lubrication and Its Application to Mr. Beauchamp 

Tower's Experiments, Including an Experimental Determination of the Viscosity of 

Olive Oil. Proceedings of the Royal Society of London, 1886. 40(242-245): p. 191-

203. 

[27] Wolfram Research, I., Mathematica. 2014, Wolfram Research, Inc.: Champaign, 

Illinois. 

[28] Obreimoff, J., The splitting strength of mica. Proceedings of the Royal Society of 

London. Series A, Containing Papers of a Mathematical and Physical Character, 

1930: p. 290-297. 

[29] Ha, K., H. Baek, and K. Park, Convergence of fracture process zone size in cohesive 

zone modeling. Applied Mathematical Modelling, 2015. 39(19): p. 5828-5836. 

[30] Li, S., J. Wang, and M. Thouless, The effects of shear on delamination in layered 

materials. Journal of the Mechanics and Physics of Solids, 2004. 52(1): p. 193-214. 

 



111 

 

5 On preferential debonding during demolding of a 

sandwiched elastomeric layer  

Bikramjit Mukherjee 
a
, David A. Dillard 

a
, Robert B. Moore 

b
, Romesh C. Batra 

a
, 

a
Department of Biomedical Engineering and Mechanics, M/C 0219,Virginia 

Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA 
b
Department of Chemistry, M/C 0212,Virginia Polytechnic Institute and State 

University, Blacksburg, Virginia 24061, USA 

 

Abstract 

Separation of an elastomeric layer sandwiched between two flexible molds is a 

processing step in the fabrication of soft bio-implants such as ophthalmic lenses. The 

demolding process typically involves prying open the flexible mold assembly by a 

displacement controlled loading and is engineered so that interfacial separation occurs 

preferentially from a desired interface. When molds made of the same material are used in a 

practical manufacturing line, the demolding process runs the risk of causing debonding from 

the wrong interface and/or both interfaces. These may result in an erratic separation process 

potentially causing tearing of the interlayer. Of primary interest here is to study roles of (i) 

the relative flexural rigidities of the two molds, (ii) the curvature when the interlayer is in the 

shape of a portion of a hemisphere, and (iii) preheating the two molds and the interlayer 

differentially prior to mechanical loading to steer debonding to the desired interface. These 

objectives are accomplished by numerically analyzing axisymmetric deformations of a 

sandwiched elastomeric layer of uniform thickness with its two surfaces bonded to flexible 

molds with flanges where prying displacements are applied. The interaction at the interfaces 

between the molds and the interlayer are modeled using a bilinear traction-separation (TS) 

relation. Results of numerical  experiments suggest that (i) debonding occurs preferentially 

from the edge of the interface between the elastomer and the more flexible mold; however, 

internal debonding ensues and may grow on the other interface when the molds have high 

flexural rigidity that depends on the modulus and the thickness of the elastomeric layer, (ii) 

edge debonding is inherently biased to the interface with the smaller radius mold interface 

when the interlayer is in the shape of a portion of a hemisphere, and (iii) preferential 

debonding can be engineered by preheating the assembly differentially; however, a 

differential large enough dictated by the absolute level of heating may cause internal 

debonding. Sensitivities of the predicted debonding mechanisms to prescribed biases in the 
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TS parameters are assessed. The outcomes of this work may be useful in designing 

demolding processes to achieve desired separation characteristics. 

Keywords: Elastomeric interlayer; debonding; cohesive zone model (CZM); peeling; 

preferential debonding; crack path selection; demolding 

5.1 Introduction 

The separation of the middle layer in a tri-layer structure from a desired interface is 

required in a wide variety of manufacturing processes[1-4]. One example is fabrication of  

soft ophthalmic lenses [5, 6] that involves the release of a sandwiched elastomeric interlayer 

from a chosen interface. A typical process, shown schematically in Figure 5-1, consists in 

casting a polymerizable material into a desired shape dictated by two molds, and a 

subsequent demolding/release process engineered to separate the interlayer from the 

assembly. The demolding step involves peeling one mold from the interlayer using a 

displacement-controlled loading. The interlayer retained on the lower mold is subsequently 

separated by a non-mechanical release process such as hydration. The defect-free separation 

of the interlayer from the desired interface is pivotal to the success of a demolding process.  

 

Figure 5-1: Schematics of a demolding process for fabrication of an ophthalmic lens made of an 

organogel.  

The adhesion at the two interfaces must be weak relative to the cohesive strength of 

the interlayer for the bulk failure not to occur within the confined interlayer under stresses[7] 

generated during the demolding process. However, the presence of two equally weak 

interfaces may render the interlayer susceptible to undesirable failure modes (see Figure 5-2), 

such as debonding from the wrong interface (Figure 5-2b) and/or both interfaces, with the 

latter leading to stretching of a portion of the pliable interlayer material suspended between 

the two molds, as illustrated in Figure 5-2c. One possible strategy for biasing debond to the 

desired interface is to employ sufficient adhesion differential, e.g., via suitable surface 

treatment [8, 9]. However, in practice molds of the same material are used due to a number of 
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desirable attributes[10]. Engineering of the demolding process, therefore, involves challenges 

of identifying the geometric, the material, and the loading parameters that could be tuned to 

bias and restrict debonding to the desired interface even when both interfaces are equally 

weak.  

 

Figure 5-2: Schematic sketches of (a) the desired failure mode of separation from one interface and 

the undesired modes of separation (b) from the wrong interface and (c) from both interfaces resulting 

in „bridging‟. 

 Debonding from a desired surface has been studied in the context of transfer printing 

techniques[1] which rely on interfacial separation of substrates from two different sides of an 

ink layer at different stages during the fabrication process. These studies
10-14

 suggest that the 

preferential debonding can be achieved by adjusting the loading and the geometric 

parameters.  However, there are no similar results available for the above-mentioned 

demolding problem. Here an attempt has been made to understand preferential debonding of 

an elastomer layer sandwiched between two flexible but stiffer molds (or adherends) which 

are mechanically pulled apart by applying axisymmetric displacements at their flat flanges. 

For two interfaces with identical adhesion, the debonding force should be relatively larger on 

the desired interface by an amount sufficient to account for stochastic spatial variations in the 

adhesion expected for real interfaces. There must be at least one source of asymmetry arising 

possibly from the geometry, the material and the loading to result in different traction 

distributions on the two interfaces.  

As illustrated by sketches in Table 1, the sign of the interfacial shear stresses induced 

at the edge and the coupling between them and the peeling stress determine if they will tend 

to open the interface or close it.  These examples are for an elastomeric layer sandwiched 

between two stiff adherends and two loading situations: symmetric normal remote loading 

and remote shear loading. The effect of interfacial shear induced near the edge on 

opening/closing is evinced by experimental observations of Liechti and Wu [11] for 

debonding of a rubber layer sandwiched between metallic adherends, and by Rahul-Kumar et 



114 

 

al. [12] for a glass/polymer interface in a compressive shear strength test. Asymmetry 

between stresses at the two interfaces can be induced so that one interface edge has a greater 

opening shear stress that biases peeling towards it. As potential sources of asymmetric 

deformation and a concomitant debonding bias, we explore effects of relative flexural 

rigidities of the two molds, the characteristic curvature of the assembly (flat vs. curved), and 

differentially preheating the two molds prior to mechanical demolding.  

Table 5-1: Illustration of opening and closing at the edge due to the sign of the shear stress  

Loading Corner A Corner B 

Shear stress Peel stress Shear stress Peel stress 

 

 

Positive 

 

Tensile 

(opening) 

Negative 

 

Tensile 

 

(opening) 

 

 

Positive 

 

Tensile 

(opening) 

Positive 

 

Compressive 

 

(closing) 

  

Analyses[13-15] of the peeling of a flexible plate from an elastomeric layer (firmly 

bonded to a rigid base) reveal that debonding ensues at interior points on the interface due to 

a peak in the peel stress there when the confinement, quantified by  
1/3

3/D h , is very large. 

Here D  is the bending rigidity of the plate,   the shear modulus of the interlayer and h  its 

thickness. The confinement also depends on the system geometry. For example, the 

confinement is given by the ratio /a h  for a rigid circular punch of radius a adhered to an 

elastomeric layer firmly bonded to a rigid base. Interfacial debonding initiates when this ratio 

exceeds a threshold[16]. However, whether or not internal debonding will occur for a 

confined interlayer is dictated also by the loading conditions. For example, in the „cone tests‟ 

conducted by Anderson et al. [17], as the normal component of the applied load on the 

interfaces increased, large peel stresses occurred over the interior of the interface for some 

values of the cone angle. Accordingly, the debonding mechanism began to include internal 
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initiation. This phenomenon of internal debonding for confined interlayers has potential 

implications in the demolding of a sandwiched interlayer. With one debond initiated at the 

edge singularity dominant region at the interface dictated by engineered opening bias, 

internal debonding on the other interface may cause the undesirable failure mode of bridging 

as displayed in Figure 5-2b.  

As a model problem we analyze by the finite element method (FEM) axisymmetric 

deformations of an elastomeric layer of constant thickness sandwiched between two curved 

molds that are parts of spheres and have flat edge overhangs where normal displacements are 

applied to pull apart the assembly. The interaction at the interfaces are simulated using a 

cohesive zone model (CZM)[18, 19] and a bilinear traction-separation (TS) relation[20]. In a 

CZM, two adjoining points at an interface are conceived to be connected by a spring of zero 

length characterized by the TS relation. The spring begins to soften after the traction reaches 

a prescribed peak value (strength) and the separation occurs at that interfacial location when 

the spring breaks at a critical value of the spring extension. The energy dissipated in the 

spring at failure equals the fracture energy of the interface. Unlike linear elastic fracture 

mechanics (LEFM) based methods, the CZM offers the advantage of modeling nucleation as 

well as propagation of interfacial debonding.  

As mentioned above, the objectives are to explore avenues for biasing debonding to 

one of the two interfaces by (i) using one mold relatively stiffer than the other, (ii) the radius 

of curvature, and (iii) differential pre-heating of the two molds.  

5.2 Problem description and computational approach 

A schematic of the problem studied is displayed in Figure 5-3. The domain of interest 

consists of an elastomeric layer of constant thickness h  that is in the shape of a portion of a 

hemisphere with the radius and the semi arc-length of the upper surface equal to 1r  and s , 

respectively. The layer is sandwiched between two molds of the same geometry as the 

interlayer.  Each mold has a small flat flange where pry displacements[10] are applied to pull 

apart the assembly.  The two molds may be made of different materials.     
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Figure 5-3: Schematic of the problem studied     

 

The infinitesimal deformations of the two molds and the elastomeric layer are 

described by using a spherical coordinate system  , ,r    where r is the radial direction from 

the origin O,   the in-plane angular direction, and    the out-of-plane angular direction (not 

shown), and are assumed to be symmetric about the axis  = π/2.  Neglecting body and inertia 

forces the deformations are governed by   
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 
 

(5-1) 

where ,rr    and 
  are normal stresses in the r ,  and  directions, respectively, 

and r the in-plane shear stress.  

For infinitesimal deformations the strain-displacement relations are  
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(5

-2) 

where ,rr   and
 are normal strains and

r is the in-plane shear strain. The radial 

and the circumferential components of the displacement vector are denoted by
ru andu , 

respectively. 

 

We assume that the temperature change, if any, is known.  In linear thermoelasticity 

the normal strains can be split as  

 , , ,e T e T e T

rr rr rr                     (5

-3) 

where superscripts „e‟ and „T‟ denote the elastic and the thermal components, 

respectively. The thermal strains are given by   

 T T T

rr T         (5

-4) 

where   and T  are, respectively, the coefficient of thermal expansion and the 

change in temperature.  

Subscripts „1‟, „2‟, and „elas‟ are used to denote quantities for mold-1, mold-2, and 

the elastomeric interlayer, respectively, unless indicated otherwise.   

The molds and the interlayer materials are assumed to be homogeneous, isotropic and 

Hookean.  Thus their constitutive equations are  

 2
2

(1 2 )

e e

ij kk ij ij


   


 


, 

(5-5) 

Indices i  and j take values ,r   and   with a repeated index implying summation 

over the range of the index.  Furthermore,   and    are, respectively, the shear modulus and 

Poisson‟s ratio of a material, and 
ij is the Kronecker delta. With the shear modulus of the 

interlayer appearing frequently in the paper, we drop the subscript „elas‟ from elas . In order 

to model the nearly-incompressible deformations of the elastomer its Poisson‟s ratio is set 

equal to 0.4999999.  
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The smooth (frictionless) flange of the upper mold is vertically displaced by applying 

to it a monotonically increasing displacement 
0  while the smooth flange of the lower mold 

is restrained from moving vertically.  The assumed axisymmetry of deformations implies that 

the horizontal displacement of points on the axis of symmetry must equal zero. These 

boundary conditions can be written as  

 

Upper flange 
0i iu n   (5-6) 

Lower flange, and axis of 

symmetry 

0i iu n   (5-7) 

 

The remainder of the bounding region is assumed to be traction-free. That is,  

 0ij jn   (5-8

) 

In eqs. (5-6)-(5-8), jn is the j
th

 component of the outward unit normal at a point on the 

bounding surface. 

The interactions between the molds and the interlayer at their interfaces are modeled 

by the bilinear traction-separation (TS) relation (2-3) that is plotted in Figure 5-4. For 

simplicity, it is assumed that the interfaces are much weaker in the normal (or the radial) 

direction than in the tangential traction and, therefore, fail in mode-I when subjected to 

combined tangential and normal tractions[21].   
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Figure 5-4: The bilinear TS relation  

That is, the peel stress ( )nT  increases linearly (with slope eK ) with an increase in the 

jump in the normal component of the interfacial displacement until 
c   and 

n cT T  when 

damage initiates at that point. The peel stress then decreases affinely with further increase of 

  until  =
f when the two surfaces separate from each other. The area under the TS curve 

equals the fracture energy,
cG , of the interface. That is,  

The value of the initial slope eK  must be large enough[22] to minimize the artificial 

compliance introduced into the system and avoid inter-penetration under compression.  

However, a very large value of eK can make the system matrices ill-conditioned when the 

problem is numerically analyzed by the FEM.  An appropriate value of eK is usually found 

by trial and error even though a few guidelines are available in the literature. 

 The boundary value problem (BVP) defined by Eqs. (5-1) - (2-4) is 

challenging due to the possibility of debonding at a priori unknown points. The FEM is used 

to numerically solve the BVP with the commercial software ABAQUS/Standard[23]. In the 

ABAQUS terminology CAX4 (axisymmetric rectangular, 4-node, 4-point integration) 

elementsare used to discretize the molds and the interlayer. A surface-based contact 

interaction[23] is used for the interfaces between the molds and the interlayer. Numerical 

instabilities and the associated convergence difficulties are alleviated by employing the 

“Damage Stabilization” option (viscous regularization) in ABAQUS. The value 10
-7 

of the 

 
c

1

2
c fT G  

                                                         

(5-10) 
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stabilization parameter was found as a compromise between the computation time required to 

solve the problem and the numerical dissipation introduced into the solution.   

The solution of the present BVP depends upon the following non-dimensional 

parameters.  

 

Geometry    
1/3 1/33

1 2 1 1 1 1/ , / , , ,D h D D s r   

 

Thermal expansion effects 
1 1 2 2, , elas elasT T T      

Adhesion (TS parameters) 2

1 1 1 2 1 2/ , / , /c c c c c cT h E T T GG G  

Loading 
0  

 

where 
3 2/12(1 )D Et    is the flexural rigidity of a mold of thickness t  and Young‟s 

modulus E ,  
1/6

1 3

1 1 /12D h   , 
0 0 1/ f    is the critical contact opening for debonding 

initiation at the interlayer/mold-1 interface. A larger value of D implies a lower flexibility.   

In problems involving peeling of a flexible flat plate from an elastomer layer whose 

other surface is firmly bonded to a fixed flat rigid base[13, 24], the parameter 1 = 

 
1/3

3

1 /D h  quantifies the geometric confinement of the interlayer and significantly affects 

the distribution of the peel stress on the interface being debonded. However, in the present 

problem, the effective confinement should also depend on  
1/3

3

2 2 /D h  =  
1/3

1 2 1/D D

since debonding is allowed at both interfaces.  The symbol   is introduced for  
1/3

2 1/D D . 

The length 1

1
  represents the characteristic decay of oscillations[25] of the plate deflection 

along the direction of peeling of one flexible flat plate from an elastomeric layer bonded to a 

fixed base (although there may be additional dependence on the curvature for finite values of 

1r ). Numerical simulations have shown that the parameter[15] 2

1 1/c cT h  G  governs the 

interfacial damage zone size (cohesive zone length) and the onset of adhesion-induced 

instability[15] in debonding of a confined elastomeric interlayer. Quantities 1 2/c cT T  and 

1 2/c cG G are, respectively, ratios of the strengths and the fracture energies of the interlayer 

interfaces with molds 1 and 2, and may be used to quantify bias in the adhesion 
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characteristics of the two interfaces.  Unless otherwise specified identical adhesion at the two 

interfaces with 1 2 1 2/ / 1c c c cT T  G G  is assumed. 

The investigation is started with a flat mold assembly as a special case of curved 

assemblies ( 1r  ) with identical values of material and geometric parameters for both 

molds and 10s mm .  Whereas axisymmetric deformations with both molds deformable are 

studies here, in the previous work[15] the elastomeric layer was firmly bonded to the rigid 

flat mold 2.  As expected, the debonding initiates symmetrically at both interfaces, although 

numerical perturbations introduced in an FE solution may subsequently cause asymmetry. 

With the objective of investigating systematically the possibility of preferential debonding at 

the upper/lower interface by utilizing asymmetric deformations,   is varied at different 

values of 1  to explore the effect of using one mold relatively more flexible than the other at 

different values of the confinement. What emerges is a „map‟ of interfacial debonding modes 

as a function of the relative and the absolute rigidities of the molds for elastomeric layers of 

given modulus and thickness. A similar investigation is then conducted for curved mold-

assemblies to explore how the above results are affected by the curvature.  

Finally, the effect of heating one mold more than the other on debonding bias is 

explored for the flat mold assembly. For simplicity, heating is simulated, instead of solving 

the energy balance equation, by specifying homothermal temperature increments, 1T  and

2T , for the upper and the lower molds, respectively. The interlayer temperature increment is 

set as  1 2 / 2T T  . The temperature increment of the lower mold, 2T , (a lower value 

means a larger temperature differential) is varied for  different values of 1T  to explore the 

effect of differential temperature increment. The outcome is again a „map‟ of debonding 

modes as a function of the absolute level of heating and the temperature differential between 

the molds.  An approximation made here is that there is no heat exchange across the interface 

between two materials at different temperatures.  

The TS parameters are adjusted so that all numerical experiments correspond to a 

constant value 3  . Unless otherwise specified, 6 310 /eK N mm is used. It has been 

checked that the key conclusions remain unaffected upon further increasing the value of eK , 

although interfacial damage accumulation at a given displacement is relatively less for a 

larger eK  value.  For example, the total damaged/debonded length at 
0 2.35  is ~13% 

larger when a 50% larger value of eK  was used for the parameters 
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1

1 110, 0.7, 1 , 20 , 3, 0.08 , 2.35c omm MPa T MPa             and damage was suppressed 

at the lower interface.  

In order to rationalize our findings about damage initiation at the two interfaces, the 

problem is first analyzed by assigning large sufficiently values to 1cT and 2cT  (the value of 

100 MPa was large enough for all the cases investigated and the FE mesh-1) to prevent 

damage initiation at the interfaces. It is critical, therefore, to address the singular stress fields 

near the corners A or B. For our material pairs of interest, the Dundurs[26] parameters are 

~ 1D    and ~ 0D  , which yield[27] 0.406

1~nT H R  where 1H  is the intensity of the singular 

field near the corner and R the radial distance from the corner. The FE mesh 1 used to 

analyze the problem is sufficiently fine close to the corners to capture the correct order of 

singularity. However, for analyses of damage/debonding initiation, a coarser FE mesh 2 is 

used. It has been concluded by comparing the results for the two FE meshes that the 

damage/debonding behavior is essentially the same. The details of these FE meshes and the 

results of mesh refinement studies are included in the following section.   

In order to judge whether the computational approach captures the physics of 

debonding in a confined geometry as a function of geometry/loading changes, the „cone test‟ 

was simulated [28] in light of its relevance to the demolding problem. The predicted 

debonding mechanisms were found to qualitatively agree with the experimental results of  

Anderson et al. [17]. 

For the example problem 1

1 110, 0.7, 1 , 20 , 3, 0.08 ,cmm MPa T MPa          and

9.4o  , the computed results gave the stored energy = 2.04 J  , the energy spent in 

damage/debonding = 5.2 J , and the artificial viscous losses= 0.053 J . These energies add 

up to 7.3 J which is found to differ by 1.55% from the work, 7.41 J , done by external 

forces.  For all problems studied the energy balance was satisfied within ~5% discrepancy. 

The computed strain energy is much smaller that the damage/debonding energy because most 

of the interfacial region is damaged/debonded for the indicated value of the applied 

displacement. Estimating the total dissipated energy as ~ c debondedAG  (where debondedA is the total 

debonded area) shows agreement (~10% difference) with that computed by ABAQUS. 
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5.3 Results and discussion 

5.3.1 Effect of the FE mesh 

Axisymmetric deformations in the xz-plane of the elastomeric layer sandwiched 

between flat molds (
1r  )  are analyzed to establish the adequacy of the FE mesh for (i) 

resolving stress singularities near the corners with interfacial damage suppressed, and (ii) for 

computing the damage and debonding at interfaces between the interlayer and the molds.  

Results are examined for three FE meshes. For each mesh the two mold regions are 

discretized with uniform square elements of side 0.05 mm.  In FE mesh 1, except for a 0.125 

mm wide region abutting the traction free edge, the interlayer region is divided into uniform 

square elements of side 0.0125 mm and the 0.125 mm x h region with non-uniform 

quadrilateral elements of width and height (as defined on the interface and the free edge, 

respectively) varying from 0.0125 mm in the interior to 10
-5 

mm at the corner.  The FE mesh 

3 differs from the mesh 1 only in the 0.125 mm x h region.  In mesh 3 the element height 

varied from 0.0125 mm to 0.5×10
-5 

mm for elements at the corners.  Sketches of FE meshes 1 

and 2 are exhibited in Figure 5-5. 

      

 

Figure 5-5: The FE meshes 1 and 2 used, respectively, for analyzing stresses over interfaces without 

(FE mesh 1) and with (FE mesh 2) the possibility of damage initiation and propagation. 

  

It should be evident from distributions of the peel stress on the interface between the 

elastomeric layer and mold 1 computed with the FE meshes 1 and 2 and displayed in Figure 
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5-6a that the two distributions overlap each other except at points near the corner of the free 

edge.   The distributions of the peel stress at interfacial points near the corner found using FE 

meshes 1 and 3 are exhibited in Figure 5-6b. The orders of singularity obtained by linear fit to 

the data points are -0.408 and -0.407, respectively. They agree well with the theoretically 

predicted order of -0.406. Thus FE meshes 1 and 3 in the region near the corner are fine 

enough to resolve the order of stress singularity at the interface.  

The non-dimensional interfacial openings computed with FE meshes 1 and 2 and 

plotted in Figure 5-7 are close to each other over the entire interface.  Thus the FE mesh 2 is 

reasonable for analyzing damage/debonding even though it is not suitable for finding stress 

singularities near the corner.  The FE mesh 2 is used for most of the simulation results 

reported below. 

 

 

Figure 5-6: Distributions of the peel stress (a) over the upper interface for FE meshes 1 and 2, and (b) 

near the upper interface corner for FE meshes 1 and 3 plotted on a log-log scale. 
1

1 1 1 2 010, 0.2, 1 , 5 , 0, and 4elasmm MPa T T T m                 
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Figure 5-7: Comparison of the non-dimensional interfacial opening computed with FE meshes 1 and 2 

for following values of parameters: 1

1 1 1 2 010, 0.7, 3, 1 , 0, 2.35elasmm T T T                 

 

5.3.2 Flat molds of different flexural rigidities 

5.3.2.1 Interfacial damage suppressed 

Figure 5-8 exhibits distributions of the computed interfacial traction components at 

points close to the interlayer edge for three values of   when 1 10  xxiii
 and 0 4 m  . The 

distributions of the normal (Figure 5-8a) and the tangential tractions (Figure 5-8b) are the 

same for the two interfaces when 1  , i.e., for identical molds (recall   =  
1/3

2 1/D D ).  It is 

evident that for 0.5  , i.e., when the lower mold is twice as flexible (or half as rigid) than 

the upper one, the peel stress at the lower interface decays at a slower rate from corner B than 

that at the upper interface from corner A. This is consistent with a similar bias in the decay 

rate in the opening shear stress near the two corners (the lower interface shear traction is 

multiplied by -1 to facilitate comparison of the opening shear stresses). This asymmetry is 

qualitatively reversed when the upper mold is more flexible than the lower one  2  . 

However, this is not exactly opposite to that for 0.5  since for 2  the flexural rigidity of 

the lower mold is made twice while keeping that of the upper mold fixed.  This results in an 

increase in the overall confinement of the system. The asymmetric deformation and the 

                                                 
xxiiixxiii

 One set of  values for 
1

1 11, 10, 1 ,mm      and 3   is 

1 2 1 2 1 25981.13 , 0.3, 1 ,E E MPa t t mm       20 , 478.48 ,MPa h m   and

6 3 5

1 2 1 210 / , 0.08 , 1.701 10 /e c c c cK N mm T T MPa N mm     G G    
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concomitant opening shear bias can be visualized from the exaggerated deformed shapes 

shown in Figure 5-8c.  

Distributions of the peel and the shear stresses over the entire interfaces exhibited in 

Figure 5-9a-c evince a local peak in the peel stress at interior points of the interfaces away 

from the corners. The points of the internal peak peel stress are situated at a the minimum 

distance 
1~b  
 from the corner, where the shear stress is close to zero as can be seen from 

Figure 5-9c. Here 
1 
is the characteristic stress-decay distance from the edge, and 

 
1/61

1 1~ /D h 
when the lower mold is almost rigid [13, 24]. The hydrostatic stress 

(multiplied by -1) on the upper interface for 1  is also plotted in Figure 5-9a. It reveals that 

the normal traction essentially equals the hydrostatic in the internal peak region as also 

evinced by much smaller values of shear tractions plotted in Figure 5-9c. The magnitude of 

the internal peak and the area over which large internal peel stresses occur increases with an 

increase in the value of   at a fixed value of  1 10   and with an increase in the value of 1  

at a fixed value of ( 1)  . Previous analyses[13, 14, 24] of plane strain deformations of 

peeling of a semi-infinite plate from an elastomeric layer bonded to a rigid base (i.e.,  ) 

gave similar trends. While confinement was quantified in those studies by the single 

dimensionless number 1 , the overall/effective confinement in the present problem depends 

on both 1  and  as evinced by the plots in Figure 5-9a,b. Figure 5-9d exhibits magnitudes of 

the internal peak peel stress at the upper interface, denoted as internal

maxnT , as a function of   for 

three values of 1 . Also plotted is the % difference,     internal internal

max maxlower upper
100 1 /n nT T   , 

between magnitudes of the internal peak peel stresses at the two interfaces. One can observe 

that while magnitudes of the peak peel stress increase monotonically as the overall 

confinement increases with 1  and/or  , the upper interface has a slightly larger magnitude 

of the internal peak when 1  . This suggests that possible debonding initiation at the 

location of the local peak peel stress is slightly biased towards the interface with the less 

flexible mold. However, the absolute value of   decreases as the overall confinement 

increases, implying that internal damage may nucleate at both interfaces for large values of 

the confinement.   
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Figure 5-8: Distributions of the computed interfacial (a) peel and (b) shear stress at interface points 

close to the free edge of the interlayer for three values of   when 1

1 110, 20 , 1 ,MPa mm      and 

0 4 m  . The inset in (b) illustrates directions of the positive interfacial traction components. To 

facilitate comparison in (b), the shear stress at the bottom interface is multiplied by -1.  Deformed 

shapes (exaggerated by a factor of 100) are illustrated in (c) for the three values of . These results are 

for interfaces that are yet to damage.  
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Figure 5-9: Distributions of the interfacial peel stress (a) for three values of   when
1 10  , (b) for 

three values of 
1  when 1  ,(c) distributions of the interfacial shear stress for three values of   

when 
1 10  ; (d) variations of the magnitude of internal peak peel stress at the upper interface as a 

function of   for three values of 1  and the % difference,  , between the magnitudes of internal 

peaks at the two interfaces ( is plotted on the vertical axis on the right hand side). For illustration in 

(c), the shear stress at the bottom interface is multiplied by -1. The plot of hydrostatic tension on the 

upper interface is included in (a). 

 

5.3.2.2 Interfacial damage considered 

Recall that after the peel stress at an interfacial point reaches the prescribed strength

cT , softening for 1 /c eT K   ensues at that point with the two surfaces separating from each 

other when the relative vertical displacement, , equals the critical value f . Henceforth, the 

term cohesive zone (CZ) is used for the region over which the peel stress corresponds to the 

softening portion of the TS relation.  Numerical experiments are conducted by varying   for 



129 

 

three values of 1 . The exaggerated deformed shapes at three values of the applied non-

dimensional displacement, 0 , are exhibited in Figure 5-10 for 1,2,0.7   and 0.2 when

1 10  . As can be seen from Figure 5-10a, the debonding behaviors are identical at the two 

interfaces for 1  . Although it seems to contradict at first sight experimental observations, 

this is expected in a deterministic analysis. Nevertheless, as mentioned before, the debonding 

evolution may become asymmetric in FE simulations due to numerical perturbations. At each 

interface, when the peak peel stress exceeds cT  at an interior point (see Figure 5-9b), the 

damage begins to initiate there and at the corner. Upon continued loading the two CZs 

coalesce to form one single opening which propagates as an edge crack. However, for 2  , 

with the upper mold bending more than the lower mold and the associated peeling bias at 

corner A, the damage near the edge of the interlayer occurs preferentially at A as shown in 

Figure 5-10b. Owing to a very small (~0.2%) difference (see Figure 5-9d) in magnitudes of 

the peak peel stresses at the two interfaces prior to damage initiation, a CZ forms at interior 

points on both interfaces. With continued loading an edge crack forms on the upper interface 

upon the coalescence of the internal CZ with the edge CZ. The internal CZ on the lower 

interface begins to propagate preferentially away from the edge CZ which is shielded by the 

growth of the edge crack on the upper interface. With internal debonding growing at the 

lower interface in addition to the edge crack on the upper interface, the debonding process 

becomes complex and is envisioned to be detrimental to a manufacturing operation as it may 

tear the interlayer due to the bridging phenomenon. The mechanism gets reversed when the 

lower mold is more flexible than the upper mold. An example, 0.7  , is illustrated in Figure 

5-10c. When the overall confinement of the interlayer becomes sufficiently small as the value 

of  is gradually decreased, the internal peak, if any, in the peel stress distribution is no 

longer large enough to cause initiation of damage internally. In such cases, debonding 

initiates and propagates only from the edge that has the opening bias dictated by the relative 

flexural rigidities of the two molds. For example, as exhibited in Figure 5-10d, when the 

lower mold is more flexible than the upper mold, e.g., 0.4  , debonding initiates at corner 

point B and propagates on the lower interface.  Our numerical experiments revealed that for 

some intermediate values of , damage may initiate at interior points on both interfaces and 

one internal CZ may get shielded due to the dominant edge damage at the other interface.  
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The debonding mechanisms are summarized in Figure 5-11 on the 1 2    plane. 

Unfilled circles denote symmetric debonding for 1  .  Green diamonds and blue triangles, 

respectively, are used to represent debonding from points B and A with no internal opening.  

All other mechanisms include internal opening in addition to that at the edge and are 

indicated in Figure 5-11 using red filled circles. It is clear that for each value of 1 there is a 

threshold value of   beyond which internal opening ensues in addition to the edge debonding 

dominant at the interface with the more flexible mold. Similarly, for a given value of 2 , 

internal debonding ensues in addition to the edge debonding at point A when  is small 

enough. It is noteworthy that the threshold value of   decreases (increases) with 1  ( 2 ). 

This implies that interfaces become more susceptible to internal opening as the overall 

confinement increases. Although details of the debonding evolution following internal 

initiation may vary, different mechanisms within this category are not distinguished since this 

debonding mechanism is conjectured to be a pre-cursor to bridging or an erratic debonding 

process.    

While our focus is on problems with identical adhesion at the two interfaces, one may 

argue that there may be stochastic variations of these quantities on the two interfaces owing 

to fabrication, roughness, improper curing, surface cleanliness, and other factors. Therefore, 

it is instructive to assess how sensitive the predictions of debonding mechanisms are to a 

prescribed variation (bias) in the TS parameters. For 1 10  numerical experiments have been 

conducted for 0.4   and 0.7 , and results are summarized in Table 5-2 and Table 5-3 , 

respectively. One can see that the predicted mechanism of debonding from corner B remains 

unchanged even when the strength of the lower interface is 200% larger than that of the upper 

interface. This mechanism is relatively more sensitive to a prescribed bias in the fracture 

energy, although it remains insensitive to a bias as large as 100%. For the imposed cG -bias of 

200%, edge damage is still predominant near corner B, while the weaker upper interface 

begins to debond internally and coalesces with the edge CZ. The dominant edge CZ at the 

lower interface is subsequently shielded. The results summarized in Table 5-3 for the 

debonding mechanism predicted for 0.7  reveal that imposed biases as small as 5% and 

1%, respectively, in the strength and the fracture energy change the debonding mechanism. 

This finding substantiates the conjecture that internal debonding should be avoided from an 
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engineering perspective as local weak regions, if any, are likely to debond internally near the 

region of internal large peel stresses and may lead to bridging.  

 

Figure 5-10: Snapshots of computed deformed shapes for the flat mold assembly at indicated values 

of the applied non-dimensional displacements for (a) 1   , (b) 2  , (c) 0.7  , and (d) 0.5   

when 1 10  . The applied displacements at debonding initiation differ among these cases due to the 

change in the overall confinement when  is varied. 
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Figure 5-11: Debonding mechanisms on the 
1 2    plane for the flat mold assembly. Results 

correspond to the indicated values of 
2 1/    when 

1 5,10  and 20 , and 
2 5,10  and 20 . 

 

Table 5-2: Sensitivity of computed predictions of debonding to a prescribed strength/fracture energy 

bias (lower interface stronger than the upper interface) when 
1 10,   and 0.4  . The biases are 

expressed in terms of % difference. 

Bias in interface strength, cT   

 2 1/ 1 100c cT T    Edge debonding  Internal debonding  

0   Lower - 

200 Lower - 

300 Upper - 

Bias in interface fracture energy, cG   

 2 1/ 1 100c c  G G

 

Edge debonding  Internal debonding  
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0  Lower - 

100 Lower - 

200 CZ formation predominant at the lower 

interface 

Internal debonding occurs at 

the upper interface and 

coalesces with the edge CZ 

 

Table 5-3: Sensitivity of computed predictions of debonding to a prescribed strength/fracture energy 

bias (lower interface stronger than the upper interface)  
1 10,   and 0.7  . The biases are 

expressed in terms of % difference. 

 

Bias in interface strength 

 2 1/ 1 100c cT T  

 

Edge debonding Internal debonding 

0,0.1,1 

Damage/debonding 

predominant at the 

lower interface 

CZ initiates internally at both interfaces; internal 

damage at the upper interface dominates resulting 

in bridging 

5 Internal debonding occurs at the upper interface 

and coalesces with the edge CZ. 

Bias in interfacial fracture energy 

 2 1/ 1 100c c  G G  Edge debonding Internal debonding 

0,0.1% Damage/debonding 

predominant at the 

lower interface 

CZ initiates internally at both interfaces; internal 

damage at the upper interface dominates resulting 

in bridging 

1% Internal debonding occurs at the upper interface 

and coalesces with the edge CZ 

 

5.3.3 Molds as portions of a hemisphere  

5.3.3.1 Interfacial damage suppressed 

For curved mold assemblies, i.e., finite values of 1r , deformations are expected to be 

inherently asymmetric due to curvature since additional shear components are inevitably 

introduced when the vertical displacement 0  is applied. This is confirmed by inspection of 
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the computed interfacial stresses close to the edge of the interlayer. Figure 5-12 shows the 

peel stress and the shear stress distributions at the two interfaces near the free edges for the 

flat mold assembly and the four curved assemblies when 1 2 10   and 0 4 m  . One 

can observe that the peel stress and the magnitude of the shear stress (positive at the upper 

and negative at the lower interface; to facilitate comparison of opening shear, the sign of the 

lower interface shear is reversed in the plots) have slower decay rates at the upper interface 

than that at the lower interface as the curvature increases. An examination of the through-the-

thickness (at the angular location corresponding with the interlayer edge) variations of the 

circumferential strain,   , plotted for these five assemblies and the aforementioned values 

of parameters, shown in Figure 5-13, reveals increasing effect of the in-plane stretching of the 

molds with increasing curvature. This is evinced by the increasing horizontal shifts of the 

plots  with decreasing value of 1r . One can further observe that the asymmetry between 

results plotted on interfaces with the upper and the lower molds becomes more pronounced 

with increasing curvature. As exhibited for 1 10r mm in Figure 5-14a and Figure 5-14c, 

distributions on the interfaces of surface tractions computed for 0.5and0.2   reveal that the 

biases are present even when the lower mold is more flexible ( 1  ) than the upper mold. 

These observations suggest that the additional shearing introduced due to curvature causes an 

opening bias at corner A. This bias may outweigh that introduced due to the lower mold 

being more flexible than the upper one. The variation of the peel stress over the entire 

interface exhibited in Figure 5-14b reveals the occurrence of a peak in the peel stress at 

interior points of the interface as the value of   increases. While this is consistent with 

findings discussed above for the flat mold assembly in that the internal peel stresses begin to 

dominate as confinement increases, this also reminds us of the findings for cone test 

specimens of Anderson et al. [17],which exhibited large internal peel stresses with a slight 

increase in the normal component of the applied loading. Noteworthy is the occurrence of a 

second internal peak near the specimen center in addition to the first internal peak near the 

free edge. These peaks in the peel stress occur at points where the shear stress is nearly zero 

as can be seen from Figure 5-14d. As was observed for flat molds, the internal large peel 

stress equals the hydrostatic tension as also evinced by the plot of the hydrostatic pressure 

(multiplied by -1) for 1   included in Figure 5-14b. 
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Figure 5-12: For 1

1 110, 1, 1 ,mm       5MPa   and 
0 4 m  , and prior to the initiation of 

damage, distributions of the computed interfacial peel and shear stresses close to the free edge of the 

interlayer for one flat and for four curved mold assemblies.  For the flat mold assembly the horizontal 

axis corresponds to the horizontal distance x  measured from the axis of symmetry and for the curved 

cases it corresponds to the angular position,   in degrees, measured from the axis of symmetry. A log 

scale is used on the vertical axis. The shear stress on the lower interface is multiplied with -1 to 

facilitate comparison of the opening shear.   
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Figure 5-13: For 1

1 110, 1, 1 ,mm      5MPa   and
0 4 m  , and prior to the initiation of damage 

through-the-thickness variation of   for one flat and four curved molds with their radii of 

curvatures, 1r , indicated in the plots.  The angular positions at which through-the-thickness variations 

are plotted correspond with those of the interlayer edge. The distance 
0z is measured from the mid-

surface (upper mold: 1 1 / 2r r t  , and Lower mold 1 2 / 2r r h t   )  of each mold.  
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Figure 5-14: For 1

1 110, 1, 1 ,mm       5MPa   and 
0 4 m  , and prior to the initiation of 

damage, distributions of the computed peel stress for 
1 10r mm  (a) close to the free surface of the 

interlayer, and (b) over the entire interface for  = 0.2, 0.5 and 1. The corresponding plots of the 

interfacial shear stress are shown in (c) and (d). For illustration in (c) and (d), the shear stress at the 

bottom interface is multiplied by -1. The plot of the hydrostatic pressure on the upper interface is 

included in (b) for 1   

5.3.3.2 Interfacial damage allowed 

For the mold assembly with 1 10r mm , the predicted mechanisms of debonding are 

summarized on the 1 2    plane in Figure 5-15. Due to the inherent asymmetric in-plane 

deformations due to curvature, symmetric debonding at the two interfaces is not predicted for 

all values of  . As suggested by the inspection of the peel stresses prior to damage initiation, 

edge debonding at corner A is predicted even when the flexural rigidity of the lower mold is 

significantly smaller than that of the upper mold. The damage begins to dominate at corner B 

only when   is small with the exact value determined by the value of 1 . Similar to 

predictions for the flat mold assembly, internal debonding ensues when the value of   is 
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increased at a given 1  and vice versa. Since the opening bias becomes more pronounced 

with an increase in the curvature, the value of   for edge debonding to occur from point B is 

predicted to be 0.2 for 1 20r mm as opposed to 0.1 for 1 10r mm .  For 1 30r mm , the result 

equals that for the flat assembly.  

 

Figure 5-15: Debonding mechanisms on the 
1 2    plane for the curved mold assembly with 

1 10r mm  and 
2 1/   .  

5.3.4 Increasing temperature of the flat molds differentially 

The role of heating the components by different amounts (differential heating) in 

biasing debonding to one of the two interfaces is explored in this subsection. Other sources of 

asymmetry are suppressed by considering a flat mold assembly with identical molds ( 1  ). 

5.3.4.1 Interfacial damage suppressed 

Due to mismatch in coefficients of thermal expansion of the interlayer and the two 

molds, the interfaces become stressed when the three components are at different 

temperatures. With one mold expanding more than the other one due to differential heating, 
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peeling is expected to be biased towards one interface due to the introduction of additional 

opening shear stress. This has been investigated by prescribing a uniform temperature change 

2T of the lower mold and 1T  of the upper one, and assuming that  1 21/ 2elasT T T    .  

Unless otherwise specified, we assume 5

1 2 7 10 / C      and 46 10 /elas C    .   

As in the preceding sub-sections, distributions of tractions at the two interfaces prior 

to their getting damaged are examined. Exhibited in Figure 5-16 are the computed 

distributions of the interfacial peel and shear stresses after the change in temperature occurs 

(see rows I and II) and after a displacement of 0 4 m   is applied subsequently (rows III 

and IV). The columns correspond to three different values of 2T , as indicated. Also plotted 

in rows III and IV for comparison are distributions of the interfacial tractions for the case of 

no heating before applying the mechanical displacement. Inspection of results in row I 

reveals that the upper interface develops an opening bias near the edge, which becomes more 

pronounced as 2T decreases. The figures in row II reveal differentials in the shear stress at 

the two interfaces which are consistent with the bias observed in the peel stresses. These 

asymmetries occur due to different amounts of bending and stretching of the adherends under 

unequal temperature increments. Due to the bias provided by the thermal effect, one observes 

from results in row-III that the peel stresses occurring after the displacement is applied are 

elevated close to the edge at both interfaces but with a bias towards the upper interface. This 

bias becomes more pronounced as 2T  is reduced. The figures in row IV exhibit plots of 

shear stresses at the two interfaces. The increase of the bias in magnitudes of the positive 

shear stress at the upper interface and the negative shear stress at the lower interface with 

decreasing values of 2T  is consistent with the increasing opening bias towards the upper 

interface. Referring to figures in row III, the distribution of the peel stress is seen to become 

relatively more flat at the upper interface due a greater elevation of the peel stresses near the 

edge. On the other hand, the large compressive peel stress that occurs near corner B upon 

heating causes the internal large peel stress at the lower interface to become more localized. 

One can observe, furthermore, that the magnitude of the internal peak becomes slightly 

biased to the upper interface as the value of 2T  decreases; the % difference increases from 

~0.025% to ~0.045% as 2T is reduced from 2 C  to1 C . Figure 5-17a and Figure 5-17b 

exhibit, respectively, the plots of the peel stresses close to the corners at the three indicated 
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values of  1T  with the differential 1 2T T  fixed at 3 C . One can see that the distributions 

of peel stresses at both interfaces become more flat as 1T  increases.  

The afore-mentioned results suggest that increasing the temperature of the upper mold 

by a greater amount than that of the lower mold provides an opening bias at the upper 

interface edge. However, the susceptibility to internal debonding may increase with 

increasing temperature differential between the two molds and may decrease with an increase 

in the level of absolute temperature increment. To investigate the debonding mechanisms, we 

now allow damage to initiate and debonding to occur at both interfaces.  
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Figure 5-16: For
1 10  , 1

1 1mm   , 5MPa   and 
1 4T C   , and no damage allowed at the two 

interfaces, distributions of the interfacial peel and shear stresses after preheating (Figs. I and  II), and 

of the interfacial peel and shear stresses upon applying 0 4 m  with and without preheating (Figs. 

III and IV). The three columns correspond to results for (a) 
2 2T C   , (b) 

2 1T C    and (c) 

2 0T C   .  
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Figure 5-17: Computed distributions of peel stresses after application of 0 4 m   at the (a) upper and 

the (b) lower interfaces at different levels of heating of the upper mold while the difference of 

temperature between the upper and the lower mold stays constant at 3 C except for the black lines 

which correspond to no pre-heating. The values of other input parameters are: 1 10  , 1

1 1mm   ,

5MPa  . These results are obtained when damage is not allowed at the interfaces. 

 

5.3.4.2 Interfacial damage considered 

Results of simulations of damage growth/debonding indeed reveal that if the 

temperature increment of the upper mold is greater than that of the lower mold, debonding 
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occurs preferentially at the upper interface, as exhibited in Figure 5-18a for 1 4T C    and 

2 3T C   . If the temperature increment of the lower mold is reduced, e.g., 2 1T C   , edge 

debonding at the upper interface is followed by nucleation of internal debond at the lower 

interface. The predictions of the debonding mechanisms are summarized in Figure 5-19 on 

the 2 1T T  -plane by using green filled diamonds for edge debonding from corner A, blue 

filled triangles for edge debonding from corner B, red filled circles for edge debonding from 

either interfaces followed by internal debonding, and unfilled circles for the symmetric case 

when there is to temperature differential. Corroborating further predictions from the stress 

analysis when damage was suppressed, it is noted that the threshold differential 1 2T T   

beyond which internal debonding ensues increases with the absolute level of heating 1T .  For 

the flat mold assembly studied, results are symmetric about the line 1 2T T   .  

Sensitivities of the predictions to prescribed biases in the interfacial strength and the 

fracture energy are summarized in Table 5-4. The edge debonding mechanism predicted to 

occur at 1 4T C   and 2 3T C    is sensitive to an imposed bias of 8% in the strength. 

However, it is sensitive to a smaller bias of 1% when the temperature differential is larger, 

i.e., for 1 4T C   and 2 1T C   . However, at the same temperature differential of 3 C , the 

sensitivity is less when the absolute heating is increased, i.e., 1 6T C   . While the results 

show a similar trend in terms of the effects of temperature differential and the absolute 

heating in influencing the sensitivities, a much larger bias (~100%) is required in the fracture 

energy in order to alter the debonding mechanism.   
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Figure 5-18: Snapshots illustrating evolution of debonding for
1 4T C   , and (a) 

2 3T C   and (b) 

2 1T C    

 

Figure 5-19: Debonding mechanisms „map‟ on the 2 1T T  -plane for the curved mold-assembly when 

1 10   and 1  .  
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Table 5-4: Sensitivity of debonding to a prescribed strength/fracture energy bias (lower interface 

stronger than the upper interface) when 1 10,   and the level of heating is varied.  

 Bias in interface strength, cT    

 1 2/ 1 100c cT T    
1 4T C    1 6T C    

2 3T C    2 1T C    2 3T C    

0,0.1 
Edge debonding from 

A 

 

Edge debonding from A 

 
Edge debonding from 

A 
1 

Edge debonding from A 

and internal initiation at 

lower interface 

5 
Edge debonding from 

A and internal initiation 

at lower interface 

8 Edge debonding from 

A and internal initiation 

at the lower interface 

Bias in interface fracture energy, cG   

 1 2/ 1 100c c  G G

 

1 4T C    1 6T C    

2 3T C    2 1T C    2 3T C    

0 Edge debonding from 

A 

 

Edge debonding from A 

 

Edge debonding from 

A 

200 CZ forms at A and B as 

well as internally at the 

lower interface. The 

internal CZ coalesces 

with the edge CZ and 

separation occurs from 

the lower interface. 

300 CZ forms at A and B as 

well as internally at the 

lower interface. The 

internal CZ coalesces 

with the edge CZ and 

finally a single 

debonding grows 

occurs on the lower 

interface.  

CZ forms at A and B as 

well as internally at the 

lower interface. The 

internal CZ coalesces 

with the edge CZ and 

separation occurs from 

the lower interface. 

 

5.3.5 Limitations of the present analysis 

While the present analysis offers insights into how to achieve preferential debonding 

in a demolding process, there are many limitations of this work. Some key limitations are 

listed below.  

(1) It is not clear whether initiations of internal and edge debonding at two interfaces will 

lead to eventual separation from the wrong interface and/or tearing of the interlayer. Detailed 

evolution of progressive debonding while considering failure of the interlayer should be 

studied in a future work to gain more in-depth understanding of the problem.  

(2) Only two-dimensional deformations have been studied in the present work. In 

response to spatial perturbations caused by factors such as a pre-existing weak spot on the 
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interface or non-axisymmetric loading, the debonding may exhibit  adhesion-induced 

instability [29] for highly confined elastomeric layers. While an internal debonding predicted 

under the assumption of axisymmetric deformations implies a circular tunnel-like opening, 

the adhesion-induced instability may trigger nucleation of multiple openings. This may 

eventually lead to a fingerlike debond propagation, adding further complication to the 

debonding evolution. As was also observed in our previous analysis of plane strain 

deformation during peeling of a flexible plate from a highly confined  elastomer layer (

1 ~100 ) bonded to a fixed base[24], an adhesion-induced instability is exhibited when 

~ 5  .  

(3) Viscoelastic effects, both in the bulk elastomer and at its interface with the molds, are 

ignored in the present work. However, they may play an important role in determining 

separation from a desired interface[30, 31].  

5.4 Conclusions 

Axisymmetric deformation of an elastomeric layer sandwiched between two molds 

that are separated by displacement controlled loading have been numerically analyzed using 

the finite element method (FEM). The interfaces are characterized by a bilinear traction-

separation (TS) relation. Numerical experiments have been conducted to gain insights into 

the debonding bias caused by (i) molds of different bending rigidities, (ii) curvature of the 

molds, and (iii) heating the mold-assembly differentially prior to mechanical demolding. The 

key findings are listed below. 

 The elastomeric layer begins to debond preferentially from the edge of its 

interface with the more flexible mold. However, if the overall confinement of 

the system is large enough as dictated by the mold rigidities for an elastomeric 

interlayer of given modulus and thickness, debonding initiates internally in 

addition to that at the edge due to large peel stresses occurring at interior 

points of the interface.  

 For a mold assembly with the interlayer having the shape of a portion of a 

hemisphere and the imposed normal loading conditions, edge peeling is 

inherently biased toward the interface associated with the smaller radius mold.  

 Differential heating can be used to steer debonding to the desired interface. 

Edge peeling becomes biased towards the interface with the mold heated 

more. A sufficiently large temperature differential between the two molds as 
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dictated by the absolute level of temperature increment can result in internal 

debonding to ensue. However, increasing the temperature change at a fixed 

temperature differential makes the system less susceptible to internal 

debonding.   

 The debonding at interior points of an interface is highly sensitive to small 

variations in the interfacial strength and the fracture energy. In light of the 

unavoidable statistical variations of interfacial parameters for real interfaces, it 

is recommended that the molds for an elastomer of given modulus and 

thickness be so designed that debonding at interior points is avoided. 

Although the present analysis is based on many restrictive assumptions, the outcomes 

are envisioned to be useful in understanding interfacial debonding in a demolding process 

involving a sandwiched elastomeric layer. 
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Appendix H 

Included here are the schematic sketch of the configuration (see Figure H 1) of the cone 

test simulated to examine the fidelity of our computational approach, and a tabulated 

summary (see Table H 1) of the predicted debonding mechanisms and the experimentally 

found ones by Anderson et al. [17]. As Figure H 1 shows a cross-sectional view of the 

configuration considered in which an elastomeric adhesive layer in shape of a hollow thin 

cone is sandwiched between two rigid adherends. The inner adherend is subjected to normal 

displacement as shown while the bottom surface of the outer adherend is fixed. The values of 

material parameters are taken from Anderson et al. [17] and the TS parameters are chosen 

assuming, as in our computational approach for problems studied in the paper, that the 

interface fails in tension. Additionally, damage is only allowed at the inner interface for 

simplicity as well as due to the lack of information about which interface failed in the 

experiments[17]. CAX4 elements of dimensions 0.025mm 0.025mm  and 

0.05mm 0.05mm are used to discretize the adhesive interlayer and the adherends, 

respectively.  
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Figure H 1: Schematic sketch of the configuration of Anderson et al.‟s cone test[17] 

 

Table H 1: Summary of computed predictions of debonding in a cone test 

 

  

Cone angle 

(°) 

Debonding mechanism 

Experimental (Anderson et al. [17])  Present study (FEM) 

0 Initiation and propagation from corners 

 

5 Debonding nucleation over the bondline central 

region 

 

45 Debonding nucleation over the bondline central 

region 
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Introduction 

Separation of a soft organogel layer, sandwiched between two relatively stiff 

molds[32], from one desired interface is a common process in manufacturing of hydrogel 

products. The organogel interlayer begins to debond from an interface when stretched beyond 

capacity. For a thin interlayer and similar adhesion at the two interfaces, the debonding can 

switch to the other interface, leaving in the wake region a bridge suspended between the two 

substrates. The bridge, thus formed, may grow in size and render the interlayer susceptible to 

tearing failure caused by the high stresses exceeding the cohesive strength of the bulk 

material. This necessitates the process variables be carefully chosen in order that the 

separation is completed across the desired interface without damaging the interlayer. For rate 

and temperature dependent constitutive behavior of the interlayer, the applied separation rate 

and the operating temperature are two process variables that are believed to influence the 

demolding behavior. In this study, a cohesive zone model is used in a finite element 

framework to numerically simulate axisymmetric demolding of an organogel layer enclosed 

between two plastic molds.  The organogel is in the shape of a portion of a spherical surface 

(shown in Figure I 1), as might be appropriate for a variety of hydrogel applications. 

Sensitivities of the separation behavior to the applied separation speed and the operating 

temperature have been probed. We show that for a given set of interfacial properties, one can 

use a combination of applied separation speed and operating temperature so that the 

demolding is from a desired interface, and the deformation of the bridge is not severe enough 

to cause tears. The rate and temperature dependence of the demolding behavior can be used 

to bias the separation to the desired interface when other variables such as the adhesion, mold 

thickness and interlayer thickness are less accessible. 
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Method 

 

 

Figure I 1: The computational domain 

 

The plastic molds are assumed to be linear elastic with a Young‟s modulus 

2.1 GPaE  and Poisson‟s ratio 41.0 . The organogel is modeled as incompressible and 

viscoelastic with neo-Hookean instantaneous response. The Prony series and the WLF shift 

factors determined from experimental data [33]are, respectively,  listed in Table I 1 and are 

C1=4.57 and C2=142.2 °C at a reference temperature of REFT =45°C. The interfaces are 

modeled by a bilinear traction separation law (Figure I 2) in which we specify the peak 

traction Tc =30.49 kPa and the cohesive energy G0 = 0.2 J/m
2
, consistent with the previous 

work on this material [32]. The entire assembly is specified to be at a uniform operating 

temperature T0. The displacement boundary conditions simulating a pry-opening operation 

are shown in Figure I 1.  The remaining regions of the boundary (except the axis of 

symmetry) are assumed traction-free. A 2D axisymmetric large deformation analysis is 

carried out. 

Table I 1: The Prony series parameters 
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Figure I 2: The bi-linear traction separation law 

 

Even though inertia effects are ignored, effects of different values of the rate of 

applied displacement ∆ and the temperature T0 are simulated to account for the viscoelastic 

behavior of the adhesive and to probe the sensitivity of the separation behavior to the rate of 

loading and temperature. 

Results and discussion 

Figure I 3 shows the separation status at 1 mm of applied displacement (∆) when the 

applied rates are 0.1, 1, 10 and 100 mm/s and the operating temperature is -20 ºC.   At 0.1 and 

1 mm/s, separation is completed across the lower interface, whereas at 100 mm/s, it occurs 

across the upper interface. At the intermediate speed 10 mm/s, debonding initiates at the 

upper interface but switches to the lower, thereby forming a bridge suspended between the 

substrates. A slow debond propagation at the lower interface results in growth of the 

suspended portion until it begins to separate from the upper interface at a vertical 

displacement (∆) of approximately 3 mm, as shown in Figure I 5. The Contour plots of the 

maximum principal stresses are shown on the deformed interlayer profiles at increasing 

values of separation in Figure I 6.  High stresses in the interlayer caused by bridging may lead 

to initiation and propagation of cohesive cracks, especially when the organogel layer is 

fragile. However, one can choose a lower temperature such as -30 ºC, for which results are 

shown in Figure I 4, to achieve complete separation from the upper interface with little 

bridging. Results plotted in Figure I 4 suggest that a lower temperature biases the debonding 

towards the upper interface. 

Further investigation revealed that internal debonding initiation led to bridging in all 

of the above case studies but the interaction of the internal debonding with the external one at 

the edge dictated the final separation interface. From preliminary computed data, significant 
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bridging occurring at intermediate pulling speeds and temperatures was attributed to large 

viscoelastic dissipation occurring in the organogel.  

 

 

Figure I 3: Separation behavior at different separation speeds and -20ºC, shown at 1 mm separation 

 

 

Figure I 4: Separation behavior at different temperatures at 10 mm/s separation speed, shown at 1 mm 

separation 
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Figure I 5: Frames showing the growth and propagation of bridge at -20ºC and 10 mm/s separation speed 

 
Figure I 6: Contours of maximum principal stresses on the deformed shapes of the interlayer at -20ºC and 10 

mm/s separation speed 

Conclusions 

In summary, simulations of pry-opening of an organogel layer sandwiched between 

two plastic molds reveal that a combination of the separation speed and operating 

temperature can be chosen in order that the separation is from a desired interface with little 
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bridging. At a given operating temperature, an increase in the separation speed biases the 

separation toward the upper interface. At a given separation speed, a decrease in the 

temperature biases the separation towards the upper interface. 
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6 Conclusions  

6.1 Summary:  

The thesis is composed of four Chapters (2-5). The contents of Chapter 2 have 

appeared in the International Journal of Adhesion and Adhesives, those of Chapter 3 have 

been submitted for possible publication in a peer-reviewed journal, those of Chapters 4 and 5 

are, respectively, ready and in preparation for submission in peer-reviewed journals.  

Understanding the mechanics of interfacial debonding of an elastomeric layer 

sandwiched between two adherends is of widespread interest due to its relevance in science 

and technology. Regardless of application-specific requirements, a common need is to control 

debonding. Motivated by the common need of achieving control of the debonding, we 

investigated the collective influence of the interfacial adhesion, materials, geometry and 

loading conditions on interfacial debonding.  Methods used in our investigations include 

analytical and semi-analytical ones, and the finite element method (FEM). A cohesive zone 

model (CZM) with a bilinear traction separation (TS) relation is used to phenomenologically 

model the interaction at the interfaces between the elastomer and the adherends.  

We first studied the debonding of a confined semi-infinite elastomeric layer bonded 

perfectly to a rigid base when a rigid adherend is pulled off from the elastomer.  The stability 

analysis of the homogeneous solution (null displacements and constant hydrostatic pressure) 

of plane strain deformations of the elastomer and the analysis of deformations by the FEM 

have enabled us to conclude that a necessary condition for a wavy/undulatory debonding to 

ensue for a rigid  semi-infinite adherend is 2 / 4.15c cT h E  G , where cT  is the peak traction and 

cG  the fracture energy in the TS relation, h  the thickness and E  the long-term Young‟s 

modulus of the elastomeric layer modeled as linear viscoelastic. Analysis of this problem 

using the FEM provides details of the interfacial debonding evolution and sheds light on the 

effects of pulling rate and temperature. These results can help design a materials system for 

producing/avoiding wavy debonding by choosing thickness of the interlayer and/or altering 

the interfacial softening by suitable surface treatment. It also serves to tailor the TS relation 

parameters for simulating spatially undulatory debonding evolution.  Motivated by these 

outcomes, we have also analyzed using the FEM three-dimensional deformations of a thin 

elastomeric interlayer perfectly bonded to a rigid base when a flexible plate is peeled from it 

by applying vertical displacements to points on one edge.  This analysis predicts, in a 
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qualitative sense, that the progressive debonding with a fingerlike front is controlled by both 

the lateral confinement  
1/3

3/pD h    and the adhesion parameter, 2 /c cT h G  where 
pD equals 

the plate bending rigidity and  the interlayer shear modulus at the operating temperature. 

This problem is investigated in detail in Chapter 3.  

Motivated by the qualitative outcome that interfacial debonding mechanisms during 

peeling of a flexible plate are dictated by both the geometric confinement    and the 

interfacial adhesion   , we conducted in Chapter 3 numerical experiments by the FEM to 

study quantitatively effects of these two quantities on the interfacial debonding mechanisms 

while approximating deformations as plane strain and assuming linear elastic materials. The 

computed results suggest that for confinement levels less than a threshold value (~ 9)  , 

damage at the interface between the interlayer and the deformable plate initiates at the edge, 

forms a cohesive zone (CZ), and leads to debonding which propagates with a CZ at its front. 

When confinement exceeds the threshold value, the damage in addition to occurring at the 

edge initiates at an internal interface point located at dimensionless distance 

 
1/6

1 3~ / pD h 


  from the edge, which is proportional to the characteristic stress decay 

distance (one can also think of this as a shear-lag distance).  For such interlayers a wavy 

debonding occurs over the CZ when the adhesion parameter exceeds a critical value. The 

spacing between the internal debonds scales with the interlayer thickness.  The non-

dimensional pull-off force is found to increase with the quantity /  and depend on the 

debonding type.  

We subsequently studied the edge debonding mechanism for less confined interlayers 

using a semi-analytical approach built on the previous works of Dillard [1] and Ghatak et al. 

[2]. The key finding is the single dimensionless number   
1/3

2 6/ /c c pT D h   G which is 

shown to govern the debonding behavior, namely, the interfacial opening normalized by
f , 

the debond length and the CZ size normalized by  
1/6

1 312 / pD h 


   , and the load 

normalized by 3

p fD    . Here 2 /f c cT  G  is the debond tip opening. The CZ size decreases as 

 increases; consequently, the response transitions from a strength dominated regime to an 

energy dominated regime. For small CZ sizes, the predicted pull-off force shows good 

agreement with the linear elastic fracture mechanics (LEFM) predictions made by Ghatak et 
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al. [2]. The results of this semi-analytical work agree well with those predicted by the FEM 

for the edge debonding mechanisms.   

We have also explored preferential debonding in a problem that is related to an 

industrial demolding operation for fabrication of ophthalmic lenses. Demolding during 

fabrication of a soft ophthalmic lens relies on interfacial separation of an elastomeric 

interlayer sandwiched between two flexible molds from a desired interface when the molds 

are pried open. Practical demolding operations use two molds made of the same 

thermoplastic polymer. With identical adhesion at the two interfaces, engineering of a 

demolding process is faced with the challenge of understanding and controlling the factors 

dictating debonding from a desired interface. We analyze using the FEM axisymmetric 

deformation of an elastomeric layer sandwiched between two molds when the molds are 

separated by a displacement controlled loading.  
 
Debonding occurs preferentially from the 

edge of the interface with the more flexible mold; however, if the overall confinement of the 

system is large enough dictated by the absolute values of rigidities of the molds for an 

elastomeric interlayer of given modulus and thickness, debonding may occur internally in 

addition to that at the edge due to large peel stresses occurring over the interior of the 

interface. With the edge debond initiated at the upper interface, the internal initiation may 

nucleate and grow at the lower interface and thus may cause an erratic debonding process. 

For a curved mold-assembly and the imposed normal loading conditions, edge peeling is 

inherently biased towards the interface corresponding with the inner surface of the interlayer. 

Lastly, it is shown that an option to engineer preferential debonding is to conduct differential 

preheating of the assembly. Edge peeling becomes biased towards the interface with the mold 

heated more. However, if the temperature differential between the two molds is large enough 

dictated by the absolute level of heating, internal debonding begins to ensue. Sensitivities of 

the predictions of the debonding mechanisms to prescribed biases in the TS parameters 

(strength and fracture energy) are assessed in a few example problems in light of the 

speculation that „real‟ surfaces may have local biases in these parameters due to fabrication 

issues, roughness and other factors. The computed results suggest that the internal debonding 

mechanism occurring in mechanical debonding is sensitive to much smaller biases in the TS 

parameters as compared to the edge debonding mechanism which remains insensitive to a 

large bias (~200%). It is recommended, therefore, that the molds be so designed that the 

resulting debonding process does not involve internal debonding. Likewise, the edge 

debonding mechanism predicted due to differential heating is relatively less sensitive to 

changes in the TS parameters as compared to the internal debonding mechanism. In essence, 
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it is shown that debonding becomes biased towards the edge of one interface due to the 

introduction of additional opening shear [3] induced due to one mold being more flexible 

than the other, difference in their curvatures, and differential thermal expansion from 

preheating. However, the initiation of internal debonding in addition to edge debonding 

occurring for highly confined systems may complicate the debonding process. For an 

industrial demolding process, it is recommended that the molds be designed against internal 

debonding to improve process yield since such debonding process is highly sensitive to small 

variations of interfacial strength/fracture energy.    

6.2 Future directions: 

6.2.1 Wavy/undulatory debonding:  

Whether or not debonding will be undulatory/wavy depends on the amplitude of 

perturbation to the constant-pressure/zero-deformation field. While in the present work 

concerning debonding of a rigid semi-infinite adherend, the perturbation is provided by the 

interlayer free-edge effects, other factors such as the finite dimensions of the adherend, 

compliance of the adherend or presence of an initial defect/weaker region at the interface may 

influence the perturbation. Applicability of the derived necessary condition should, therefore, 

be judged for such departures from the boundary value problem studied in the present work. 

An example is peeling of a flexible plate, in which the confinement parameter and the 

adhesion parameter collectively dictate whether or not debonding will be wavy.  

Also worth exploring in a future work is the feasibility of using a smeared TS relation 

in order to lump the effect of undulatory debonding without modeling the elastomeric 

adhesive layer. Such an analysis may aid development of multiscale modeling techniques for 

problems involving soft adhesives.  

6.2.2 Three-dimensional (3D) effects: 

We are aware that the predicted results of our two-dimensional (2D) analyses do not 

capture the experimentally observed [4-6] out-of-plane variation in deformations. Instead, a 

predicted in-plane debond implies a long debonding tunnel in the out-of-plane direction.  

When 3D effects are considered in our simulations, undulations are indeed predicted to occur 

in the out-of-plane direction for a confined interlayer ( 25  ) and large enough adhesion 

parameter ( 5  ).  Recalling that an undulatory debonding is triggered by spatial variations 

in the deformations induced by the free-edge effects, simulations of 3D deformations do not 
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predict out-of-plane undulations if the bounding surfaces of the assembly parallel to the plane 

of the paper are constrained in the out-of-plane direction.  

Results of several numerical experiments of 3D deformations conducted without 

constraining the free edges seem to support conclusions drawn from analyses of 2D 

deformations. However, a comprehensive analysis of 3D deformations is envisioned to be 

useful in order to strengthen and/or judge the limitations of our conclusions.  

The reported results of the 2D analyses are hoped to be valuable in developing models 

of 3D deformations in a future effort. 

6.2.3 Flexible plate on elastomeric foundation: 

  A major limitation of our analysis reported in Chapter 4 is that it is valid only for the 

case of edge debonding. In a future effort, one can assume presence of an internal cohesive 

zone for confined interlayers (  >~9) and follow the current approach of solving the 

ordinary differential equations (ODEs) for each region (free/damaged/bonded) by applying 

pertinent boundary and continuity conditions. Another potential extension could be assuming 

a smooth TS relation so that one single ODE governs the interfacial peel stress. Then the 

possibility of fingerlike debonding may be studied by inserting an out-of-plane perturbation 

in the deformations and following an approach similar to that of Ghatak [7]. 

6.2.4 Debonding evolution in the demolding problem: 

While our investigation of the demolding problem focused on identifying factors that 

could be tuned to engineer an edge debonding process initiating preferentially at a desired 

interface, it is important to understand how the debonding evolution could be controlled in 

the event of bridging occurring for confined interlayers so that complete separation occurs 

from the desired interface. Preliminary numerical experiments (reported in a conference 

proceeding [8])  of the demolding process for a viscoelastic hydrogel layer modeled using 

values of material parameters from [6, 9] reveal that the pulling rate and the operating 

temperature dictate the final separation interface when internal initiation occurs. While for a 

lower pulling rate or a higher temperature, the separation is completed from the lower 

interface, it is completed from the upper interface at fast enough pulling speeds or low 

enough temperatures. For intermediate values of pulling speed/temperature, there may be 

significant resistance to crack propagation arising from large viscoelastic dissipations in the 

interlayer, thereby leading to a pronounced bridging effect.  More work is needed in this 

direction. It is anticipated that details of the debonding evolution are controlled by the 
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cohesive length scale 2/c cTG  relative to a characteristic dimension, and the lengths of the 

external and the internal debonds [10] .  

The research on preferential debonding in demolding applications should be extended 

in future by allowing for a number of other factors not accounted for in the present effort. 

Few examples include spatial variation of interlayer thickness, non-axisymmetric 

deformations, and coupled thermoviscoelastic effects, as might be appropriate for industrial 

manufacturing of ophthalmic lenses.   
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Appendix J 

J.1 Sample input file for debonding of a rigid semi-infinite block (Chapter 2) 

*Heading 

** Job name: Gammaeffect_H_25 Model name: h1 
** Generated by: Abaqus/CAE 6.11-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 
** PARTS 

** 

*Part, name=Adherend 
*End Part 

**   
*Part, name=Interlayer 

*End Part 

**   
** 

** ASSEMBLY 

** 
*Assembly, name=Assembly 

**   

*Instance, name=Adherend-1, part=Adherend 
          4.,      0.03125,           0. 

*Node 

      1,        23.75,           5. 
      2,         22.5,           5. 

----------------------------------------- 

    230,           0.,          -5. 
    231,        -1.25,          -5. 

----------------------------------------- 

*Element, type=CPE4R 

  1,   1,   2,  23,  22 

  2,   2,   3,  24,  23 

----------------------------------- 
199, 208, 209, 230, 229 

200, 209, 210, 231, 230 

----------------------------------- 
*Nset, nset=_PickedSet2, internal, generate 

   1,  231,    1 

*Elset, elset=_PickedSet2, internal, generate 
   1,  200,    1 

** Section: Adherend 

*Solid Section, elset=_PickedSet2, material=Adherend 
, 

*End Instance 

**   
*Instance, name=Interlayer-1, part=Interlayer 

      -33.75,     -1.29375,           0. 

*Node 
      1,         60.5,  -3.67499995 

      2,   60.4425011,  -3.67499995 

 ---------------------------------------------- 
   2405,   37.5574989,  -3.95000005 

   2406,         37.5,  -3.95000005 

----------------------------------------------- 
*Element, type=CPE4H 

   1,    1,    2,  403,  402 

   2,    2,    3,  404,  403 
 ---------------------------------------------- 

1999, 2003, 2004, 2405, 2404 

2000, 2004, 2005, 2406, 2405 
----------------------------------------------- 

*Nset, nset=_PickedSet2, internal, generate 
    1,  2406,     1 

*Elset, elset=_PickedSet2, internal, generate 

    1,  2000,     1 
** Section: Interlayer 

*Solid Section, elset=_PickedSet2, material=Elastomer 

, 
*End Instance 

**   

*Nset, nset=_PickedSet15, internal, instance=Interlayer-1, generate 
 2006,  2406,     1 
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*Elset, elset=_PickedSet15, internal, instance=Interlayer-1, generate 

 1601,  2000,     1 
*Nset, nset=Interlayer, instance=Interlayer-1, generate 

   1,  401,    1 

*Elset, elset=Interlayer, instance=Interlayer-1, generate 
   1,  400,    1 

*Nset, nset=_PickedSet36, internal, instance=Adherend-1, generate 

  1,  21,   1 
*Elset, elset=_PickedSet36, internal, instance=Adherend-1, generate 

  1,  20,   1 

*Elset, elset=_Adherend_S3, internal, instance=Adherend-1, generate 
 181,  200,    1 

*Surface, type=ELEMENT, name=Adherend 

_Adherend_S3, S3 
*Elset, elset=_Interlayer_S1, internal, instance=Interlayer-1, generate 

   1,  400,    1 

*Surface, type=ELEMENT, name=Interlayer 

_Interlayer_S1, S1 

*End Assembly 

*Amplitude, name=Amp-1 
             0.,              0.,              1.,              1. 

**  

** MATERIALS 
**  

*Material, name=Adherend 

*Elastic 
20000., 0.3 

*Material, name=Elastomer 
*Elastic, moduli=LONG TERM 

 0.2, 0.5 

*Viscoelastic, time=PRONY 
 0.75,    0., 1e-05 

*Material, name=Elastomer-NH 

*Hyperelastic, neo hooke, moduli=LONG TERM 

 0.1,0. 

*Viscoelastic, time=PRONY 

 0.75,    0., 1e-05 
**  

** INTERACTION PROPERTIES 

**  
*Surface Interaction, name=CZ 

1., 

*Cohesive Behavior, eligibility=SPECIFIED CONTACTS 
 1e+06, 1e+06, 1e+06 

*Damage Initiation, criterion=QUADS 

 0.09, 0.09, 0.09 
*Damage Evolution, type=ENERGY 

 0.000405, 

*Damage Stabilization 
1e-08 

**  

** BOUNDARY CONDITIONS 
**  

** Name: BC-1 Type: Displacement/Rotation 

*Boundary 
_PickedSet15, 1, 1 

_PickedSet15, 2, 2 

**  
** INTERACTIONS 

**  

** Interaction: Int-1 
*Contact Pair, interaction=CZ 

Interlayer, Adherend 

*Initial Conditions, type=CONTACT 
Interlayer, Adherend, Interlayer 

** ---------------------------------------------------------------- 

**  
** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES, inc=100000 
*Visco, cetol=0.0001, creep=EXPLICIT 

1e-05, 1., 1e-70, 1. 

**  
** BOUNDARY CONDITIONS 

**  
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** Name: BC-2 Type: Displacement/Rotation 

*Boundary, amplitude=Amp-1 
_PickedSet36, 2, 2, 1. 

**  

** CONTROLS 
**  

*Controls, reset 

*Controls, parameters=time incrementation 
, , 30, , , , , 30, , ,  

**  

** OUTPUT REQUESTS 
**  

*Restart, write, frequency=0 

**  
** FIELD OUTPUT: F-Output-1 

**  

*Output, field, frequency=2 

*Node Output 

CF, RF, U 

*Element Output, directions=YES 
CE, CEEQ, CEMAG, LE, PE, PEEQ, PEMAG, S 

*Contact Output 

CDISP, CSDMG, CSQUADSCRT, CSTRESS 
**  

** HISTORY OUTPUT: H-Output-1 

**  
*Output, history, variable=PRESELECT 

*End Step 

 

J.2 Sample input file for peeling of a flexible plate (Chapter 3) 

*Heading 

** Job name: Alpha100_phi4_mesh2 Model name: Model-1 

** Generated by: Abaqus/CAE 6.11-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 
** 

*Part, name=Film 

*End Part 
**   

*Part, name="flexible plate" 

*End Part 
**   

** 

** ASSEMBLY 
** 

*Assembly, name=Assembly 

**   

*Instance, name=Film-1, part=Film 

         55.,           1.,           0. 

*Node 
      1,   5.92299986,         9.75 

      2,   5.91050053,         9.75 

--------------------------------------- 
  49074,  -41.2374992,   9.59869099 

  49075,       -41.25,   9.59869099 

---------------------------------------- 
*Element, type=CPE4H 

    1,     1,     2,  3777,  3776 

    2,     2,     3,  3778,  3777 
------------------------------------- 

45287, 45298, 45299, 49074, 49073 
45288, 45299, 45300, 49075, 49074 

-------------------------------------- 

*Nset, nset=_PickedSet2, internal, generate 

     1,  49075,      1 

*Elset, elset=_PickedSet2, internal, generate 

     1,  45288,      1 
** Section: Film 

*Solid Section, elset=_PickedSet2, material=Adhesive 

, 
*End Instance 
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**   

*Instance, name="flexible plate-1", part="flexible plate" 
      53.003,           2.,           0. 

*Node 

      1,  -39.2529984,         9.75 
      2,  -39.2529984,         8.75 

------------------------------------- 

   5422,  -41.1501503,   9.55000019 
   5423,  -41.1501503,   9.64999962 

------------------------------------- 

*Element, type=CPE4 
   1,    1,    7, 1014,  966 

   2,    7,    8, 1015, 1014 

------------------------------------------- 
4919, 5422, 5423,  986,  987 

4920, 5423,  985,    5,  986 

------------------------------------------- 

*Nset, nset=_PickedSet2, internal, generate 

    1,  5423,     1 

*Elset, elset=_PickedSet2, internal, generate 
    1,  4920,     1 

** Section: plate 

*Solid Section, elset=_PickedSet2, material=Plate 
, 

*End Instance 

**   
*Nset, nset=_PickedSet23, internal, instance="flexible plate-1" 

 6, 
*Nset, nset=Film, instance=Film-1, generate 

    1,  3775,     1 

*Elset, elset=Film, instance=Film-1, generate 
    1,  3774,     1 

*Nset, nset=film_lower, instance=Film-1, generate 

 45301,  49075,      1 

*Elset, elset=film_lower, instance=Film-1, generate 

 41515,  45288,      1 

*Nset, nset=_PickedSet199, internal, instance=Film-1, generate 
 45301,  49075,      1 

*Elset, elset=_PickedSet199, internal, instance=Film-1, generate 

 41515,  45288,      1 
*Elset, elset=_adhrened_S2, internal, instance="flexible plate-1", generate 

   10,  4720,    10 

*Surface, type=ELEMENT, name=adhrened 
_adhrened_S2, S2 

*Elset, elset=_film_S1, internal, instance=Film-1, generate 

    1,  3774,     1 
*Surface, type=ELEMENT, name=film 

_film_S1, S1 

*Elset, elset=__PickedSurf72_S2, internal, instance="flexible plate-1", generate 
   10,  4720,    10 

*Surface, type=ELEMENT, name=_PickedSurf72, internal 

__PickedSurf72_S2, S2 
*Elset, elset=__PickedSurf73_S1, internal, instance=Film-1, generate 

    1,  3774,     1 

*Surface, type=ELEMENT, name=_PickedSurf73, internal 
__PickedSurf73_S1, S1 

*Elset, elset=_film_lower_S3, internal, instance=Film-1, generate 

 41515,  45288,      1 
*Surface, type=ELEMENT, name=film_lower 

_film_lower_S3, S3 

*End Assembly 
**  

** MATERIALS 

**  
*Material, name=Adhesive 

*Elastic 

15., 0.5 
*Material, name=CZ 

*Damage Initiation, criterion=QUADS 

 0.01,10.,10. 
*Damage Evolution, type=ENERGY, mixed mode behavior=POWER LAW, power=1. 

 0.0002,2000.,2000. 

*Damage Stabilization 
1e-05 

*Elastic, type=TRACTION 
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 1e+06, 1e+06, 1e+06 

*Material, name=Plate 
*Elastic 

189140., 0.3 

**  
** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=IntProp-1 
1., 

*Cohesive Behavior, eligibility=SPECIFIED CONTACTS 

 1e+06, 1e+08, 1e+08 
*Damage Initiation, criterion=QUADS 

 1.265,100.,100. 

*Damage Evolution, type=ENERGY, mixed mode behavior=POWER LAW, power=1. 
 0.00403546,1000.,1000. 

*Damage Stabilization 

1e-08 

*Surface Interaction, name=IntProp-2 

1., 

*Cohesive Behavior, eligibility=SPECIFIED CONTACTS 
 1e+06, 1e+08, 1e+08 

*Damage Initiation, criterion=QUADS 

 0.04,10.,10. 
*Damage Evolution, type=ENERGY, mixed mode behavior=POWER LAW, power=1. 

 1.42656e-05,2000.,2000. 

*Damage Stabilization 
1e-08 

**  
** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Displacement/Rotation 
*Boundary 

_PickedSet199, 1, 1 

_PickedSet199, 2, 2 

**  

** INTERACTIONS 

**  
** Interaction: Int-1 

*Contact Pair, interaction=IntProp-1 

_PickedSurf73, _PickedSurf72 
*Initial Conditions, type=CONTACT 

_PickedSurf73, _PickedSurf72, Film 

** ---------------------------------------------------------------- 
**  

** STEP: Step-1 

**  
*Step, name=Step-1, inc=10000 

*Static 

0.0001, 0.004466, 1e-50, 0.004466 
**  

** BOUNDARY CONDITIONS 

**  
** Name: BC-2 Type: Displacement/Rotation 

*Boundary 

_PickedSet23, 2, 2, 0.004466 
**  

** CONTROLS 

**  
*Controls, reset 

*Controls, parameters=time incrementation 

, , 30, , , , , 30, , ,  
**  

** OUTPUT REQUESTS 

**  
*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 
**  

*Output, field, frequency=5 

*Node Output 
CF, RF, U 

*Element Output, directions=YES 

FV, LE, MFR, PE, PEEQ, PEMAG, S, SDEG, SDV, STATUS, STATUSXFEM, UVARM 
*Contact Output 

CDISP, CSDMG, CSTRESS 
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**  

** HISTORY OUTPUT: H-Output-1 
**  

*Output, history, variable=PRESELECT 

*End Step 
 

 

J.3 Sample input file for axisymmetric debonding problem (Chapter 5) 

*Heading 
** Job name: rinf_alpha10_s10_phi3_etap7 Model name: Curved axisymmetric_rinf_alpha10-s10 

** Generated by: Abaqus/CAE 6.11-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 

** PARTS 
** 

*Part, name=Interlayer 

*End Part 
**   

*Part, name=Lower 

*End Part 
**   

*Part, name="Upper adherend" 

*End Part 
**   

** 

** ASSEMBLY 
** 

*Assembly, name=Assembly 

**   
*Instance, name=Interlayer-1, part=Interlayer 

          0.,    42.094494,           0. 

*Node 

      1,          10.,           0. 

      2,   9.99499989,           0. 

------------------------------------ 
  47696, 0.0124938171, -0.478480011 

  47697,           0., -0.478480011 

------------------------------------ 
*Element, type=CAX4 

    1,     1,     2,  1225,  1224 

    2,     2,     3,  1226,  1225 
----------------------------------- 

46435, 46472, 46473, 47696, 47695 

46436, 46473, 46474, 47697, 47696 
----------------------------------- 

*Nset, nset=_PickedSet4, internal, generate 

     1,  47697,      1 
*Elset, elset=_PickedSet4, internal, generate 

     1,  46436,      1 

** Section: interlayer 
*Solid Section, elset=_PickedSet4, material=Interlayer 

, 

*End Instance 
**   

*Instance, name="Upper adherend-1", part="Upper adherend" 

          0., 42.0944942764749,           0. 
*Node 

      1,   11.9949999,           0. 

      2,   11.9949999,           1. 
 ------------------------------------ 

   5480, 0.0500000007,  0.899999976 

   5481, 0.0500000007,  0.949999988 
------------------------------------- 

*Element, type=CAX4 
  1,    1,    9,  599,  124 

  2,    9,   10,  600,  599 

------------------------------------ 
5199, 5480, 5481,  381,  382 

5200, 5481,  380,    7,  381 

------------------------------------ 
*Nset, nset=_PickedSet6, internal, generate 

    1,  5481,     1 

*Elset, elset=_PickedSet6, internal, generate 
    1,  5200,     1 
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** Section: Adherend 

*Solid Section, elset=_PickedSet6, material=Adherend 
, 

*End Instance 

**   
*Instance, name=Lower-1, part=Lower 

          0.,    40.616014,           0. 

*Node 
      1,   11.9949999,           0. 

      2,   11.9949999,           1. 

-------------------------------------- 
   5481,   12.9497499, 0.0500000007 

-------------------------------------- 

*Element, type=CAX4 
  1,    1,    9,  599,  124 

  2,    9,   10,  600,  599 

5199, 5480, 5481,  561,  562 

5200, 5481,  560,    7,  561 

*Nset, nset=_PickedSet6, internal, generate 

    1,  5481,     1 
*Elset, elset=_PickedSet6, internal, generate 

    1,  5200,     1 

** Section: Adherend-2 
*Solid Section, elset=_PickedSet6, material=Adherend-2 

, 

*End Instance 
**   

*Nset, nset=_PickedSet144, internal, instance="Upper adherend-1" 
   1,   5, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138 

 139, 140, 141, 142, 143 

*Elset, elset=_PickedSet144, internal, instance="Upper adherend-1", generate 
  820,  1200,    20 

*Nset, nset=_PickedSet151, internal, instance=Lower-1 

   2,   8, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593 

 594, 595, 596, 597, 598 

*Elset, elset=_PickedSet151, internal, instance=Lower-1, generate 

 4801,  5181,    20 
*Nset, nset=Interlayer_l, instance=Interlayer-1, generate 

 46475,  47697,      1 

*Elset, elset=Interlayer_l, instance=Interlayer-1, generate 
 45215,  46436,      1 

*Nset, nset=interlayer_u, instance=Interlayer-1, generate 

    1,  1223,     1 
*Elset, elset=interlayer_u, instance=Interlayer-1, generate 

    1,  1222,     1 

*Nset, nset=_PickedSet427, internal, instance="Upper adherend-1", generate 
    1,  5481,     1 

*Elset, elset=_PickedSet427, internal, instance="Upper adherend-1", generate 

    1,  5200,     1 
*Nset, nset=_PickedSet429, internal, instance=Lower-1, generate 

    1,  5481,     1 

*Elset, elset=_PickedSet429, internal, instance=Lower-1, generate 
    1,  5200,     1 

*Elset, elset=_upper_S4, internal, instance="Upper adherend-1", generate 

 1201,  5181,    20 
*Surface, type=ELEMENT, name=upper 

_upper_S4, S4 

*Elset, elset=_Lower_S2, internal, instance=Lower-1, generate 
  820,  4800,    20 

*Surface, type=ELEMENT, name=Lower 

_Lower_S2, S2 
*Elset, elset=_Interlayer_L_S3, internal, instance=Interlayer-1, generate 

 45215,  46436,      1 

*Surface, type=ELEMENT, name=Interlayer_L 
_Interlayer_L_S3, S3 

*Elset, elset=_interlayer_U_S1, internal, instance=Interlayer-1, generate 

    1,  1222,     1 
*Surface, type=ELEMENT, name=interlayer_U 

_interlayer_U_S1, S1 

*End Assembly 
**  

** MATERIALS 

**  
*Material, name=Adherend 

*Elastic 
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 23924.5, 0.3 

*Expansion 
 7e-05, 

*Material, name=Adherend-2 

*Elastic 
 8206.1, 0.3 

*Expansion 

 7e-05, 
*Material, name=Interlayer 

*Elastic 

60., 0.5 
*Expansion 

 0.0006, 

**  
** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=IntProp-1 

1., 

*Cohesive Behavior, eligibility=SPECIFIED CONTACTS 

 1e+06, 1e+12, 1e+12 
*Damage Initiation, criterion=QUADS 

 0.08,100.,100. 

*Damage Evolution, type=ENERGY, mixed mode behavior=POWER LAW, power=1. 
 1.70126e-05,1000.,1000. 

*Damage Stabilization 

1e-07 
*Surface Interaction, name=IntProp-2 

1., 
*Cohesive Behavior, eligibility=SPECIFIED CONTACTS 

 1e+06, 1e+12, 1e+12 

*Damage Initiation, criterion=QUADS 
 0.08,100.,100. 

*Damage Evolution, type=ENERGY, mixed mode behavior=POWER LAW, power=1. 

 1.70126e-05,1000.,1000. 

*Damage Stabilization 

1e-07 

*Surface Interaction, name=_Int-L-Prop 
1., 

*Cohesive Behavior, eligibility=SPECIFIED CONTACTS 

 1e+06, 1e+12, 1e+12 
*Damage Initiation, criterion=QUADS 

 0.08,100.,100. 

*Damage Evolution, type=ENERGY, mixed mode behavior=POWER LAW, power=1. 
 1.70126e-05,1000.,1000. 

*Damage Stabilization 

1e-07 
**  

** BOUNDARY CONDITIONS 

**  
** Name: BC-1 Type: Displacement/Rotation 

*Boundary 

_PickedSet151, 2, 2 
**  

** INTERACTIONS 

**  
** Interaction: Int-L 

*Contact Pair, interaction=_Int-L-Prop 

Interlayer_L, Lower 
*Initial Conditions, type=CONTACT 

Interlayer_L, Lower, Interlayer_l 

** Interaction: Int-u 
*Contact Pair, interaction=IntProp-1 

interlayer_U, upper 

*Initial Conditions, type=CONTACT 
interlayer_U, upper, interlayer_u 

** ---------------------------------------------------------------- 

**  
** STEP: Step-1 

**  

*Step, name=Step-1, inc=10000 
*Static 

0.001, 0.001, 1e-50, 0.001 

**  
** BOUNDARY CONDITIONS 

**  
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** Name: BC-1 Type: Displacement/Rotation 

*Boundary 
_PickedSet151, 2, 2 

**  

** INTERACTIONS 
**  

** Interaction: Int-L 

*Change Friction, interaction=_Int-L-Prop 
*Friction 

0., 

**  
** CONTROLS 

**  

*Controls, reset 
*Controls, parameters=time incrementation 

, , 30, , , , , 30, , ,  

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 
**  

** FIELD OUTPUT: F-Output-1 

**  
*Output, field, frequency=8 

*Node Output 

CF, RF, U 
*Element Output, directions=YES 

LE, PE, PEEQ, PEMAG, S 
*Contact Output 

CDISP, CSDMG, CSTRESS 

**  
** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=5 

*End Step 

** ---------------------------------------------------------------- 

**  
** STEP: Step-2 

**  

*Step, name=Step-2, inc=100000 
*Static 

0.008, 0.008, 1e-50, 0.008 

**  
** BOUNDARY CONDITIONS 

**  

** Name: BC-2 Type: Displacement/Rotation 
*Boundary 

_PickedSet144, 2, 2, 0.008 

**  
** INTERACTIONS 

**  

** Interaction: Int-L 
*Change Friction, interaction=_Int-L-Prop 

*Friction 

0., 
**  

** OUTPUT REQUESTS 

**  
*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 
**  

*Output, field 

*Node Output 
CF, RF, U 

*Element Output, directions=YES 

LE, PE, PEEQ, PEMAG, S 
*Contact Output 

CDISP, CSDMG, CSTRESS 

**  
** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=5 
*End Step 
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