

Figure 146. The power spectrum of surface pressure fluctuations at $\alpha = 10^\circ$, x/L = 0.772, $\phi = 140^\circ$ made non-dimensional using v/u_τ^2 as the time scale and τ_w as the pressure scale. Also shown is the curve that bounds the Analytical Integral Contribution (AIC) to $\overline{p^2}$ at $\alpha = 10^\circ$, x/L = 0.772, $\phi = 140^\circ$.

FIGURES

Figure 147. The power spectrum of surface pressure fluctuations at $\alpha = 20^\circ$, x/L = 0.772, $\phi = 130^\circ$ made non-dimensional using v/u_τ^2 as the time scale and τ_w as the pressure scale. Also shown are the curves that bound the Analytical Integral Contribution (AIC) to $\overline{p^2}$ at $\alpha = 20^\circ$, x/L = 0.772, $\phi = 130^\circ$.

FIGURES

Figure 148. Variation of RMS wall pressure fluctuations with ϕ position: \diamond , $\alpha = 10^{\circ}$, x/L = 0.600; \bigcirc , $\alpha = 10^{\circ}$, x/L = 0.772; \triangle , $\alpha = 20^{\circ}$, x/L = 0.600; \square , $\alpha = 20^{\circ}$, x/L = 0.772. The solid symbols immediately above the ϕ -axis denote the location of primary separation (Wetzel *et al.*, 1998). The open symbols immediately above the ϕ -axis denote the approximate location of the shed vortex core. The letters R, V, and S denote the location of reattachment, secondary vortex core, and secondary separation, respectively, for $\alpha = 20^{\circ}$, x/L = 0.772.