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ABSTRACT 

 

CD4+ T cells are a group of lymphocytes that play critical roles in the immune system. By 

releasing cytokines, CD4+ T cells regulate other immune cells for maximizing the efficiency of 

the system. Naïve CD4+ T cells are activated and become mature upon engagement with antigens, 

and the mature CD4+ T cells have several subsets, which play diverse regulatory functions. For 

the past two decades, our understanding of CD4+ T cells has been advanced through the studies 

on the differentiation process and the lineage specification of various subsets of these cells. 

Although in most experimental studies of CD4+ T cells, researchers focused on how transcription 

factors and signaling molecules influence the differentiation of a particular subset of these cells, 

many evidence have shown that the differentiation of CD4+ T cells can be heterogeneous in terms 

of the phenotypes of the cells involved. This dissertation describes a framework that uses 

mathematical models of the dynamics of the signaling pathways to explain heterogeneous 

differentiation. We show that the mutual inhibitions among the master regulators govern the 

formation of multi-stability behavior, which in turn gives rise to heterogeneous differentiation. 

The framework can be applied to systems with two or more master regulators, and models based 

on the framework can make specific predictions about heterogeneous differentiations. 

In addition, this dissertation describes an experimental study on CD4+ T cell differentiation.  

Being part of the adaptive immune system, the differentiation of CD4+ T cells was previously 

known to be induced by the signals from the innate immune cells. However, the expression of 
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Toll-like receptor in CD4+ T cells suggests that microbial products can also influence the 

differentiation directly. Using an in vitro cell differentiation approach, we show that the 

differentiation and proliferation of CD4+ T cells can be influenced by lipopolysaccharide under 

the condition that would favor the differentiation of induced regulatory T cells. 

These theoretical and experimental studies give novel insights on how CD4+ T cells differentiate 

in response to pathogenic challenges, and help to gain deeper understanding of regulatory 

mechanisms of the complex immune system. 
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We live only to discover beauty. All else is a form of waiting.  

 

–  Kahlil Gibran  
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CHAPTER 1 

INTRODUCTION 

 

The immune system protects the host from diseases by detecting and removing various types of 

pathogens, including viruses, bacteria, parasites, infected host cells and tumors. In order to perform these 

functions, the immune system has a wide variety of professional immune cells, known as leukocytes, or 

while blood cells. Different types of leukocytes have distinct roles in the system. For example, 

macrophages engulf and digest cell debris and pathogens; B cells release antibodies to neutralize and help 

the detection of pathogens; CD8+ T cells kill infected cells [1]. To help to coordinate these activities, the 

immune system also evolved a group of regulatory cells, known as CD4+ T cells. CD4+ T cells can 

maximize the activity of macrophages, help the antibody production by B cells, and activate CD8+ T cells. 

Moreover, they are responsible for modulating the immune activity to avoid excessive inflammatory 

responses, in order to protect healthy host tissues [1]. CD4+ T cells perform their regulatory functions by 

releasing signaling molecules called cytokines. Depending on their functions and cytokine profiles, CD4+ 

T cells can be further classified into several subsets, including T helper 1 (TH1), T helper 2 (TH2), T 

helper 17 (TH17) and induced regulatory T (iTReg) cells [2]. Each subset of the CD4+ T cells has a key 

transcription factor, known as a master regulator, which determines its lineage specification [3]. These 

subsets of cells are differentiated from a common type of precursor cells, known as naïve CD4+ T cells, in 

peripheral tissues such as lymph nodes, and the differentiated CD4+ T cells play diverse and essential 

roles in the immune system [2]. Studying the differentiation of CD4+ T cells is critical for understanding 

the regulatory machineries of the immune system.  

In order to understand the differentiation of CD4+ T cells, it is important to identify the environmental 

cues that influence the differentiation of CD4+ T cells. Many previous experimental studies focused on 

cytokines that regulate the differentiation [3,4], and these studies have shown how pathogens can 

influence the differentiation via the activation of cytokine-releasing cells. To further our understanding of 
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the extracellular regulators of CD4+ cells, we asked whether microbial products can influence the 

differentiation of CD4+ T cells directly. In this dissertation, we demonstrated that (lipopolysaccharide) 

LPS can influence both differentiation and proliferation of CD4+ T cells under the inducing condition for 

iTReg cells, and the results are described in Chapter 5 of this dissertation.  

Equally important is to understand how populations of naïve CD4+ T cells differentiate upon pathogenic 

challenges. It has been shown that the differentiation of CD4+ T cells can be heterogeneous both in vivo 

and in vitro. In other words, more than one phenotypes of CD4+ T cells can be derived from a population 

of naïve CD4+ T cells in a single differentiation event [5-8]. Chapters 2, 3 and 4 of this dissertation are 

about how one could understand this type of phenomena from the viewpoint of systems biology. We 

provide a mathematical basis for heterogeneous differentiation and specific models for CD4+ T cells in 

these chapters.  

Mathematical modeling has been applied to the field of CD4+ T cells to help the understanding of their 

complex behaviors. Early works mainly focused on the interactions among different subsets of cells 

[9,10]. After the identification of the key intracellular molecules involved in the CD4+ T cell 

differentiation, mathematical models were developed to study dynamics the signaling pathways of these 

cells [11-17]. Most of these models were aimed to study the robustness of lineage specifications, and none 

of them provided explanations for heterogeneous differentiation. This dissertation presents a framework 

that can explain both robust lineage commitment of a single cell and heterogeneous differentiation of a 

cell population. Chapter 2 of the dissertation is on a specific model of TH17 and iTReg development, which 

involves heterogeneous differentiation. Chapter 3 provides a more general framework for understanding 

heterogeneous differentiation involving two master regulators. Chapter 4 proposes a framework for 

understanding heterogeneous differentiation involving three or four master regulators. This framework 

helps the understanding of how the CD4+ T cells can be diversified with simple environmental cues, how 

the balance of these cell types can be broken, and how the interactions among the master regulators and 

other signaling molecules play a role in heterogeneous differentiation. These results take us one step 
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further towards linking a model of intracellular signaling pathways to the models of populations of 

immune cells. 
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Abstract 

The reciprocal differentiation of T helper 17 (TH17) cells and induced regulatory T (iTreg) cells plays a 

critical role in both the pathogenesis and resolution of diverse human inflammatory diseases. Although 

initial studies suggested a stable commitment to either the TH17 or the iTreg lineage, recent results reveal 

remarkable plasticity and heterogeneity, reflected in the capacity of differentiated effectors cells to be 

reprogrammed among TH17 and iTreg lineages and the intriguing phenomenon that a group of naïve 

precursor CD4+ T cells can be programmed into phenotypically diverse populations by the same 

differentiation signal, transforming growth factor beta. To reconcile these observations, we have built a 

mathematical model of TH17/iTreg differentiation that exhibits four different stable steady states, governed 

by pitchfork bifurcations with certain degrees of broken symmetry. According to the model, a group of 

precursor cells with some small cell-to-cell variability can differentiate into phenotypically distinct 

subsets of cells, which exhibit distinct levels of the master transcription-factor regulators for the two T 

cell lineages. A dynamical control system with these properties is flexible enough to be steered down 

alternative pathways by polarizing signals, such as interleukin-6 and retinoic acid and it may be used by 

the immune system to generate functionally distinct effector cells in desired fractions in response to a 

range of differentiation signals. Additionally, the model suggests a quantitative explanation for the 

phenotype with high expression levels of both master regulators. This phenotype corresponds to a re-

stabilized co-expressing state, appearing at a late stage of differentiation, rather than a bipotent precursor 

state observed under some other circumstances. Our simulations reconcile most published experimental 

observations and predict novel differentiation states as well as transitions among different phenotypes that 

have not yet been observed experimentally.   
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Authors’ Summary 

In order to perform complex functions upon pathogenic challenges, the immune system needs to 

efficiently deploy a repertoire of specialized cells by inducing the differentiation of precursor cells into 

effector cells. In a critical process of the adaptive immune system, one common type of precursor cell can 

give rise to both T helper 17 cells and regulatory T cells, which have distinct phenotypes and functions. 

Recent discoveries have revealed a certain heterogeneity in this reciprocal differentiation system. In 

particular, treating precursor cells with a single differentiation signal can result in a remarkably diverse 

population. An understanding of such variable responses is limited by a lack of quantitative models. Our 

mathematical model of this cell differentiation system reveals how the control system generates 

phenotypic diversity and how its final state can be regulated by various signals. The model suggests a new 

quantitative explanation for the scenario in which the master regulators of two different T cell lineages 

can be highly expressed in a single cell. The model provides a new framework for understanding the 

dynamic properties of this type of regulatory network and the mechanisms that help to maintain a balance 

of effector cells during the inflammatory response to infection. 
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Introduction 

CD4+ T cells are important components of the adaptive immune system in higher vertebrates. By 

producing various cytokines, they perform critical functions such as helping B cells to produce antibodies, 

activating CD8+ cytotoxic T cells, enhancing the innate immune system, and suppressing the immune 

response to avoid autoimmunity [1-3]. In peripheral tissues, such as lymph nodes, blood and sites of 

infection, antigen-inexperienced (naïve) CD4+ T cells can differentiate into effector cells of specialized 

phenotypes upon stimulation by cognate antigen delivered to the T cell receptor by Antigen Presenting 

Cells (APCs). Proliferation and differentiation of activated naïve T cells depends on their particular 

cytokine microenvironment. These specialized effector T cells produce distinct cytokine profiles tailored 

for their specialized functions. Also, they express lineage-defining transcription factors (“master 

regulators”). In general, high expression level of a particular master regulator is observed only in cells of 

a particular lineage, and the overexpression of a particular master regulator induces the production of the 

corresponding lineage-defining cytokines [4,5].  

The fate of a naïve CD4+ T cell was traditionally thought to be either T helper 1 (TH1) cell or T helper 2 

(TH2) cell [6]. In the last decade, a third type of T helper cell (TH17), derived from naïve CD4+ T cells, 

was discovered [7]. TH17 cells produce IL-17A, IL-17F and IL-22 as their lineage-defining cytokines, and 

the retinoid-related orphan receptor gamma t (RORγt) transcription factor is considered the master 

regulator of this lineage [8,9]. In addition, naïve CD4+ T cells were found to be able to differentiate into a 

fourth lineage of (regulatory) T cells, which were called induced regulatory T (iTreg) cells to distinguish 

them from natural regulatory T (nTreg) cells, which differentiate in the thymus instead of the periphery 

[10]. iTreg cells are characterized by producing IL-10 and transforming growth factor-β (TGF-β) and 

highly expressing forkhead box P3 (Foxp3) transcription factor as their master regulator [11]. TH17 cells 

are pro-inflammatory because they secret cytokines that promote inflammation, whereas iTreg cells are 

anti-inflammatory because their lineage-defining cytokines can reduce the inflammatory response. 
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The differentiation pathways of naïve T cells into TH17 and iTreg lineages are closely related. First, 

stimulation by TGF-β is necessary for the differentiation of both lineages [12]. The differentiation of 

TH17 and iTreg cells are reciprocally regulated in the presence of TGF-β, i.e. inhibiting the differentiation 

pathway of one lineage will result in activation of the pathway for the other lineage. This is due to the 

mutual antagonism between RORγt and Foxp3. Furthermore, polarizing signals, such as interleukin-6 (IL-

6) and retinoic acid, can induce the differentiation of one lineage and repress that of the other one [12]. 

Nonetheless, differentiated iTreg cells can be reprogrammed into TH17 cells in an appropriate cytokine 

environment [13], suggesting significant plasticity of these two lineages. In addition, stable co-expression 

of their master regulators (RORγt and Foxp3) is observed both in vivo and in vitro [14,15]. Interestingly, 

these double-expressing cells were found to possess either regulatory or dual (regulatory and 

proinflammatory) functions in vivo [14,15].  

Perhaps the most intriguing phenomenon is that antigen-activated naïve CD4+ T cells treated with TGF-β 

alone give rise to a heterogeneous population, which may include three phenotypes (Foxp3-only, RORγt-

only, and double-expressing cells) at an intermediate TGF-β concentration [16], or two phenotypes 

(RORγt-only and double-expressing cells) at a higher TGF-β concentration[15]. In combination with 

TGF-β, IL-6 can induce the differentiation of RORγt expressing cells, whereas all-trans retinoic acid 

(ATRA) can induce the differentiation of Foxp3 expressing cells [16,17] (Figure 1). All of these in vitro 

derived phenotypes can be observed in vivo, and at least some of their respective functions have been 

demonstrated, suggesting that these in vitro differentiation assays provide important clues to our 

understanding of the development of TH17 and iTreg cells in the body.  

Mathematical modeling has contributed to our understanding of the differentiation of TH1 and TH2 cells 

[18-24]. Höfer et al. first demonstrated that the dynamics of the key transcription factors can govern the 

robustness of the lineage choice and maintenance [18,19]. Yates et al. later related transcription factor 

dynamics to the mix of TH1 and TH2 cells in a population of differentiating T cells [20]. Recently, Naldi 

et al.  [25] have proposed a Boolean-network model of the comprehensive repertoire of CD4+ T cell 
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phenotypes, including TH17 and iTreg cells. Drawing inspiration from these earlier models, we have 

sought to explain, with a computational model, the remarkable heterogeneity of the TH17-iTreg reciprocal-

differentiation system. 

In terms of this model, we show that a population of naïve CD4+ T cells, with some small cell-to-cell 

variability, can differentiate into a heterogeneous population of effector cells with distinct phenotypes 

upon treatment with the primary differentiation signal (TGF-β).  Polarizing signals, such as IL-6 and 

ATRA, can skew the differentiation to one or two phenotypes. A control system with these properties can 

generate functional diversity of the induced cell populations and can be regulated with great flexibility by 

diverse environmental cues. In addition, the model suggests how treatment with different concentrations 

of TGF-β may favor different responding phenotypes, and how conversions among these phenotypes may 

be guided. Finally, the model gives a new quantitative explanation for double-expressing cells, suggesting 

that they are ‘re-stabilized co-expressing’ cells rather than transient intermediate cells in the 

differentiation pathway. The model predicts that double-expressing cells should appear at a relatively late 

stage of the differentiation process, and they may be intended for specific functions. In all, our model 

provides a novel mathematical framework for understanding this reciprocal differentiation system, and it 

gives new insights into the regulatory mechanisms that underlie the molecular control of certain immune 

responses.   
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Results 

A model with symmetrical interactions predicts three differentiated phenotypes of CD4+ T cells 

induced by TGF-β. 

To illustrate our basic idea, we first construct a model of a simple and perfectly symmetrical regulatory 

network (Figure 2A). In the Methods section we describe how this network is converted into a pair of 

nonlinear ordinary differential equations (ODEs) for the time rates of change of Foxp3 and RORγt. The 

rate functions for this model contain 12 kinetic parameters, whose basal values are specified in the 

Methods section (Table 1) for the “symmetrical model without intermediates”. The solution of these 

ODEs for the basal values, and with [TGF-β] = 0, evolves to a stable steady state where both RORγt and 

Foxp3 have a low level of expression (RORγtlowFoxp3low). This steady state corresponds to a naïve CD4+ 

T cell (Figure 3A). In the presence of a sufficient TGF-β signal, the regulatory network might evolve to 

one of three other steady states, namely RORγthighFoxp3low, RORγtlowFoxp3high and RORγthighFoxp3high 

states, corresponding to RORγt-only, Foxp3-only and double-expressing phenotypes. Note that these 

stable steady states are also referred as ‘cell fate attractors’ in some other studies, and this concept 

facilitates our understanding of cell lineage choice and reprogramming (reviewed in [26]).  Figure 3B 

shows a scenario in which the TGF-β signal triggers the formation of a tri-stable system. In this particular 

case, the RORγtlowFoxp3low state is no longer a stable steady state, and naïve cell, which was previously 

stabilized in the RORγtlowFoxp3low state, would differentiate into the RORγthighFoxp3high state, whose 

basin of attraction (the white region in Figure 2B) contains the naïve state of the cell.  

However, cell-to-cell variability can produce other results. We interpret cell-to-cell-variability as small 

deviations of the parameter values from their basal settings in Table 1. The basal settings correspond to 

the behavior of an “average” cell, but any particular cell will deviate somewhat from this average 

behavior. As consequences of the changing parameter values in any particular cell, the position of the 

RORγtlowFoxp3low state changes, the boundaries of the basins of attractions change, and the fate of the 
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naïve cell may change. The naïve T cell will differentiate into the stable steady state in whose basin of 

attraction it lies. That is, depending on the precise parameter values of the cell, its RORγtlowFoxp3low state 

may lie in any of the three basins of attraction of the TGF-β-stimulated system. Figure 3C depicts three 

cells in the population that adopt three different fates because of the variability among them. With a 

random sample of cells, each of the three differentiated states can be populated by a significant fraction of 

cells (Figure 3D). Although cell-to-cell variability does not make large changes in the position of the 

RORγtlowFoxp3low state, it has a dramatic influence on the basins of attraction of the stable steady states, 

which determines the fate of the cell once the differentiation signal is turned on. 

Since the system has four distinct steady states that correspond to four distinct phenotypes, we next 

looked for the relationships among these steady states using bifurcation analysis of an average cell. 

Because of the symmetrical nature of the interactions, an average cell exhibits sub-critical pitchfork 

bifurcations with TGF-β concentration as the control parameter (Figure 4A). (The notion of a pitchfork 

bifurcation was used earlier, in references [27,28], to explain a system of hematopoietic cell 

differentiation in which multiple lineages might be adopted.) Notably, the RORγtlowFoxp3low state is only 

stable at low TGF-β concentration. At an intermediate concentration of TGF-β (~0.25 units in Figure 3A), 

the system bifurcates into two lineage-specific branches, corresponding to RORγthighFoxp3low and 

RORγtlowFoxp3high states. The fourth type of stable steady state (RORγthighFoxp3high) appears at higher 

TGF-β signal strength (> 0.37 in Figure 3A), when the autoactivation of RORγt and Foxp3 eventually 

overrides their mutual inhibition and makes the double-expressing state the dominant phenotype of the 

population.  

We next checked the influence of TGF-β concentration on the fractions of responding phenotypes in a 

population of induced cells. For various values of [TGF-β], we simulated a population of naïve CD4+ T 

cells with cell-to-cell variability. In agreement with the bifurcation analysis, RORγthighFoxp3low and 

RORγtlowFoxp3high cells appeared simultaneously over an intermediate range of [TGF-β] (between ~0.2 

and ~0.55 units). The fraction of RORγthighFoxp3high cells increases at higher TGF-β concentrations and 
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eventually dominates the population when [TGF-β] > 0.55. In the vicinity of 0.5 units of TGF-β, the cell 

population is heterogeneous, with comparable fractions of all three stable phenotypes (Figure 4A lower 

panel).   

Although this initial model accommodates the presence of dual-positive TH17/iTreg cells, it cannot fully 

explain the fine regulatory effects of varying TGF-β concentrations.  For example, this model predicts 

that double-expressing cells dominate the population when TGF-β concentration is high, and that single-

expressing cells may be converted into double-expressing cells by increasing [TGF-β]. In fact, this is not 

necessarily true if the effects of TGF-β saturate at high [TGF-β]. To take saturation effects into account, 

we incorporated two intermediate signaling proteins between TGF-β and the transcription factors Foxp3 

and RORγt (Figure 2B). In this case, the system can be tri-stable even at high concentrations of TGF-β, 

and the total conversion of single-expressing cells into double-expressing cells would not occur. Instead, 

co-existence of the three phenotypes in comparable fractions might be observed over a wide range of 

[TGF-β] (Figure 4B).  

 

A model with asymmetrical interactions provides a better account of the regulatory functions of 

TGF-β during the coupled differentiation of TH17 and iTreg cells.    

We next considered an asymmetrical model in which the network topology and parameter values differ 

from the symmetrical model. In the model with perfect symmetry, we assumed that the inhibitions 

between Foxp3 and RORγt are equally strong, which is not supported by existing experimental evidence. 

In fact, Foxp3 is better known for its inhibitory function on IL-17, a downstream effector of RORγt, as 

demonstrated by Williams and Rudensky [29]. Therefore, we revised our model by removing the direct 

inhibition of RORγt expression by Foxp3 and adding the inhibition of IL-17 expression by Foxp3. This 

revised model, with broken symmetry (Figure 2C, Table 1-last column, and Figure 3C) shows some new 

features. First, RORγt behaves ultrasensitively in response to varying [TGF-β] because of RORγt’s 
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positive (autoregulatory) feedback loop. Secondly, Foxp3 exhibits multiple saddle-node bifurcations 

derived from the broken symmetries of the pitchforks. Interestingly, the four types of stable steady states 

observed with the symmetrical model have been retained for Foxp3, and thus for the entire system. In fact, 

by varying [TGF-β], it is possible to obtain all three differentiated phenotypes in significant fractions 

simultaneously. Doing the same analysis for the effect of [TGF-β] on the induced cell population (Figure 

4C lower panel), we found that the asymmetrical model behaved similarly to the symmetrical model.  At 

low [TGF-β], Foxp3 single-positive cells are predicted to be the dominant cell type. As [TGF-β] increases 

to intermediate or high levels, the RORγt single-positive cells and the double-positive cells should appear 

and co-exist.   

These simulation results are in agreement with recently published experimental data documenting the 

differential effects of TGF-β on the differentiation of TH17 and iTreg cells [16].   Indeed, at certain 

intermediate concentrations of TGF-β, three phenotypes in comparable fractions have been observed [16]. 

In addition, the maximum percentage of Foxp3 single-positive cells was observed at some lower 

concentration of TGF-β.  As [TGF-β] was increased, the percentage of Foxp3 single-positive cells 

decreased, accompanied by a concordant rise in the percentage of RORγt-expressing cells [16]. At higher 

concentrations of TGF-β, RORγt-only cells and double-expressing cells were found to coexist in 

comparable percentages [15].  

Our model not only validates existing published data on the coexistence of two or more phenotypes in 

mixed T helper cell populations but also predicts that increasing TGF-β concentration will cause the 

transformation of Foxp3 single-positive cells into RORγt-expressing cells. Conversely, decreasing TGF-β 

concentration might result in the reverse transformation.   

 

Our model accommodates the observed effect of IL-6 skewing T cells into a ‘RORγt-only’ 

phenotype. 
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We next simulated the influence of IL-6 on this reciprocal differentiation system. In the asymmetrical 

model (Figure 3C), IL-6 activates STAT3, which favors production of RORγt over Foxp3. In this model, 

IL-6 will not trigger differentiation in the absence of TGF-β. However, IL-6 significantly increases the 

fraction of RORγt-only cells over a wide range of TGF-β concentrations (Figure 4A). Also, it stimulates 

some of the cells in the (simulated) population to produce IL-17. These results are consistent with the 

observations of a few groups [13,16]. In particular, Zhou et al. observed that low level TGF-β favors the 

RORγt-only phenotype and IL-17 production, whereas higher concentrations of TGF-β inhibit the 

production of IL-17. They also reported that the decrease of IL-17 production at higher TGF-β 

concentration is accompanied by an increase of Foxp3-expressing cells. We see this phenomenon in our 

simulation, and we further suggest that the decrease of RORγt-only cells, or the increase of the double-

expressing cells, accounts for the reduced production of IL-17 at high TGF-β concentration, because 

double-expressing cells are known to be much less effective in producing IL-17 than the RORγt-only 

cells, at least in this type of in vitro assay with TGF-β and IL-6 [15,16]. However, Zhou et al. observed a 

pronounced inhibition of IL-17 production at higher TGF-β concentration even when Foxp3 expression 

had not been remarkably raised [16]. This discrepancy suggests that high TGF-β level may trigger Foxp3-

independent repression of IL-17 production.  

Both the observations by Zhou et al. and our simulations demonstrate that only a minor fraction of 

RORγt-only cells exhibit IL-17 production even in the presence of IL-6.  In fact, this is not an 

idiosyncratic phenomenon. Mariani et al. recently discovered that only a subset of TH2 cells produce IL-4 

due to cell-to-cell variability [30], suggesting that the production of lineage-specific cytokines in T helper 

cells can be controlled by stochastic mechanisms. 

 

Our model accommodates the effect of ATRA skewing T cells into a Foxp3-expressing phenotype. 
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In the asymmetrical model (Figure 3C), ATRA favors production of Foxp3 over RORγt. Hence, in our 

simulation of TGF-β + ATRA stimulation, we found that the percentage of Foxp3-only cells and double-

expressing cells significantly increased as compared to TGF-β alone (compare Figure 4B to Figure 3C). 

Like IL-6, ATRA did not trigger differentiation by itself. We next checked if ATRA can suppress the 

polarizing effect of IL-6. In our simulation, ATRA was effective in reducing the IL-6 induced production 

of IL-17. In addition, at high TGF-β concentration, ATRA significantly decreased the percentage of 

RORγt-only cells, and resulted in a population with comparable fractions of RORγt-only cells and 

double-expressing cells (Figure 5C). All of these simulation results are consistent with published data 

[13,15,17,31]. Our model suggests that ATRA can significantly increase the percentage of Foxp3-only 

cells at intermediate TGF-β concentration, and the percentage of double-expressing cells at high TGF-β 

concentration. 

 

Our model predicts that IL-6 may reprogram iTreg cells to IL-17 producing cells, while ATRA may 

prevent this reprogramming effect 

With our model, we next checked whether IL-6 could reprogram differentiated iTreg cells into TH17 cells. 

We first induced a population of naïve CD4+ T cells to differentiate into a population dominated by 

‘Foxp3-only’ cells with an intermediate level of TGF-β (0.28 units). After the cells came to their Foxp3-

only steady state, we raised the IL-6 signal to 10 units and continued the simulation. We found that 

almost all the cells expressing Foxp3 before adding IL-6 stopped producing Foxp3 upon the treatment 

with IL-6, and a subset of ‘RORγt-only’ cells dominated the population. A fraction of these RORγt-only 

cells produced IL-17 (Figure 6A, left panel)  

When we induced the differentiation of iTreg cells with TGF-β + ATRA and performed the same 

reprogramming simulation, we found that ATRA did not prevent the repression of Foxp3 expression by 

IL-6 significantly. However, ATRA prevented the formation of IL-17 producing cells (Figure 6A, right 
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panel).  The reprogramming capability of IL-6 and the inhibitory effect of ATRA have been observed by 

Yang et al. [13]. 

Analyzing the concentration dependence of these reprogramming effects, we found that a high level of 

IL-6 may exclusively down-regulate Foxp3 expression (Figure 6B, left panel) whereas a high level of 

ATRA may predominantly prevent IL-17 expression (Figure 6B, right panel). Interestingly, when both of 

these factors are present in high concentration, our model predicts that, although most cells exhibit high 

expression of RORγt, there are almost no IL-17-producing cells in the population. Future experimental 

studies are warranted to confirm these intriguing predictions.   

Table 12 summarizes the observations that are in agreement with our simulation results and the testable 

predictions that we have made based on the bifurcation analyses and signal-response curves.  
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Discussion 

Previous mathematical models have shown how differentiation signals can trigger a robust switch during 

the development of TH1 or TH2 cells [18-24]. In particular, earlier modeling studies by Höfer et al. 

demonstrated how the interactions among transcription factors can create a memory for TH2 lineage 

commitment and govern the choice of TH1 and TH2 lineages [18,19]. These studies focused on the 

dynamics of transcription factors within a single (average) cell, but the authors also pointed out that cell-

to-cell variability in a CD4+ T cell population can be modeled mathematically by introducing parametric 

variations to the ordinary differential equations (ODEs). In addition to modeling molecular interactions, 

the study by Yates et al. related the dynamics of transcription factors to the phenotypic composition of 

TH1 and TH2 cell populations [20]. The authors built comprehensive ODE-based models which take into 

account cell proliferation, intercellular communication, and cell-to-cell variability. Yates et al. modeled 

cell-to-cell variability by variations in initial conditions, but we consider parametric variations to be a 

more important source of cell-to-cell variability (see Methods). 

The reciprocal differentiation of TH17 and iTreg cells, although a relatively new research field, has already 

been shown to exhibit many interesting and unique features, and yet it has not been studied in quantitative 

detail using mathematical models. The work presented here reveals some of the intriguing regulatory 

mechanisms of this differentiation system. We showed that the four phenotypes of cells, corresponding to 

four different steady states of the dynamical system, are derived from a pitchfork bifurcation with certain 

degree of broken symmetry. A single primary differentiation signal, TGF-β, can give rise to multiple cell 

types with distinct functions, while other polarizing differentiation signals, such as IL-6 and ATRA, skew 

the system to particular type(s) of cells. If we regard TGF-β as tossing dice for the naïve cells, those 

polarizing signals may load the dice, although they may not toss the dice themselves. The remarkable 

advantage of this system is that functionally synergic cells could be generated simultaneously in desired 

fractions with some simple differentiation inducers.  
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Our model suggests that the double-expressing phenotype is a re-stabilized co-expressing state, which 

should be observed in relatively late stages of cell differentiation. Previously, van den Ham and de Boer 

found this type of state in a similar dynamical system, although they chose parameter values to avoid this 

state for their system [24]. With perfectly symmetrical models, some other groups described a double-

expressing state as an intermediate state before the decision making switch, corresponding to some 

bipotent precursor cells [27,32,33]. For the TH17-iTreg paradigm, it is also possible that these double-

expressing cells are at an intermediate state that should be converted into single-expressing cells at a later 

stage of the differentiation process. However, we do not favor this view for the following reasons. 1) A 

few studies have shown that the double-expressing cells are effective in repressing effector cell growth 

and/or secreting pro-inflammatory and anti-inflammatory cytokines [15,34]. It is not likely that a 

differentiation intermediate would perform any conspicuous function in the immune system. 2) There are 

a few reports demonstrating the conversion from iTreg cells to double-expressing cells [13,14], or from 

RORγt-only cells to double-expressing cells [15], and to our knowledge it is not yet established that 

observable double-expressing cells can be converted into single-expressing cells. Assuming that 

differentiation from early stage to late stage is more readily to be observed than the ’dedifferentiation’ 

process, these results indicate that the double-expressing cells might be at a differentiation stage later than 

the single-expressing states. 3) As shown in this report, there is a mathematical basis to support the 

double-expressing state appearing only at relatively high TGF-β concentration and some late 

differentiation stage, and the model is in accord with most published experimental observations. In 

addition, we are aware that the double-expressing cells are also observed for iTreg-TH1 and iTreg-TH2 

paradigms [3]. Therefore, the framework presented here may be helpful for understanding iTreg cells that 

express T-bet or GATA3 as well. Interestingly, conversion of Foxp3-expressing iTreg cells to Foxp3/T-bet 

double-expressing cells has been reported [35]. In fact, these double-expressing cells may play very 

specific and indispensable roles in controlling inflammation. Chaudhry et al. have found that iTreg cells 

require STAT3 for their suppressive function on TH17, and not on other lineages [36]. Koch et al. 

discovered that the T-bet expression is required for the function of iTreg cells during TH1-mediated 
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inflammation [35]. These results suggest that there are subpopulations of iTreg cells expressing various 

master regulators of T helper cells, and they are tailored for different functions [3]. Therefore, the double-

expressing cells might be terminally differentiated effectors performing specific suppressive functions. It 

is possible that the Foxp3-only cells, which mainly appear at low TGF-β concentration, could serve as 

precursors or reservoir for different terminal effectors, in addition to their general suppressive functions. 

Although the detailed physiological significance of this delicate differentiation system is yet to be 

discovered, Lochner et al. have already demonstrated in mice that, during infections and inflammation, 

the number of IL-17 producing RORγt+ cells and double-expressing cells increased in remarkably 

comparable proportions [15]. This suggests the need for balance between different cell types in response 

to pathogenic challenges. A single differentiation network that gives rise to multiple phenotypes might be 

crucial for the maintenance of such balance. Furthermore, it is worth highlighting the common features 

shared by the TH17-iTreg differentiation system and the differentiation control systems of hematopoietic 

cells and of stem cells [27,28,37]. Functionally, these systems have the potential to generate multiple 

phenotypes in a single differentiation event, and these phenotypes may play synergic roles under certain 

physiological conditions.  In addition, it has been shown that cell-to-cell variability within clonal 

populations makes significant contributions to the stochasticity of lineage choice in stem cells [38]. This 

is also concordant with our basic assumptions. 

Pitchfork bifurcations (with broken symmetry) may be the underlying mechanism generating variable 

phenotypes in these dynamical control systems. We will not be surprised if other cell differentiation 

systems possess similar properties. Recently, Heinz et al discovered that the ‘priming factor’ PU.1, which 

is required for both macrophage and B cell differentiation, is responsible for creating some of the lineage 

specific epigenetic markers by itself [39]. Therefore, it is possible that these priming factors not only 

drive the differentiation event, but also help to create a heterogeneous population of cells. 
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One limitation of our model is the assumption that the high concentration of TGF-β used by Lochner et al. 

is above the saturation concentration for TGF-β signaling [15]. We are cautious about extrapolating our 

model to even higher TGF-β concentration because there is no available experimental result for us to 

compare with. In fact, it is possible that at even higher TGF-β concentration either the RORγt-only 

phenotype or the double-expressing phenotype dominates the population, and the conversion between 

these two phenotypes might be possible by adjusting the concentration of TGF-β. Although Lochner et al. 

observed the conversion of RORγt-only cells into double-expressing cells at late time points of induced 

differentiation, we are not sure about the nature of this conversion: it could be a transition from a transient 

intermediate to a stable steady state; it could be a transition triggered by a slow increase of TGF-β 

signaling in RORγt cells, possibly mediated by paracrine signaling (see below); or it may be caused by 

slow fluctuations in the transcriptomes [38]. Nonetheless, when more experimental results become 

available, we should be able to pinpoint the missing pieces in this reciprocal differentiation system and 

make the mathematical model more helpful for our understanding of the system in detail. 

Another limitation of this study is that we have neglected the effects of intercellular communication on 

the differentiation of CD4+ T cells. Cytokines secreted by TH1 and TH2 cells are known to influence the 

differentiation of neighboring T cells [40], and previous modeling work has highlighted the importance of 

these paracrine signaling effects [20]. Relevant to our work, the cytokines secreted by TH17 and iTreg cells 

can influence the differentiation of a population of T cells, and this influence might be reflected in 

changes of the proportions of induced phenotypes. For example, both TH17 and iTreg cells can produce 

TGF-β [41,42], which may increase the percentage of both type of cells, or induce the transition from 

single-expressing cells to double-expressing cells, and this may be causative for the transition observed 

by Lochner et al. [15]. However, it is not yet clear how important are paracrine signals via secreted 

cytokines compared to exogenous cytokine signals, with respect to TH17 and iTreg differentiation. We 

leave the consideration of these factors for future work.  
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In summary, we presented a novel mathematical model of TH17-iTreg differentiation.  Based on the model, 

we show how TGF-β can trigger the differentiation of naïve CD4+ T cells into a heterogeneous population 

containing RORγt-only, Foxp3-only and double-expressing cells, and how polarizing signals can skew the 

differentiation to particular phenotype(s). The model suggests how the conversions among different 

phenotypes can be guided. Additionally, the model gives a new quantitative explanation for the double-

expressing cells, which should appear only at a late stage of the differentiation process. Our model 

provides new insights into the regulatory mechanisms that underlie the molecular control of certain 

immune responses.   
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Methods 

We constructed our mathematical model based on known interactions among key molecules in the 

differentiation system of TH17 and iTreg cells. For illustrative purposes, we first consider a ‘symmetrical’ 

model in which the lineages of TH17 and iTreg have identical corresponding interaction types and strengths. 

Then we added two intermediate proteins for transmitting TGF-β signals in this symmetrical model. Next, 

we modified our model so that it became asymmetrical, and we incorporated two other input signals. 

Using this last model, we compared our simulation results with some published experimental data and 

made several testable predictions.  

In the symmetrical model (Figure 2A) TGF-β upregulates both RORγt and Foxp3, which has been 

demonstrated in a few published experiments [13,43]. The model includes the ‘autoactivation’ of both 

master regulators. Although there is no evidence for direct autoactivation of RORγt and Foxp3, these 

relationships in our model represent known positive feedback loops in their respective pathways. One 

origin of these positive feedback loops is the epigenetic modifications observed in the promoter regions of 

RORγt and Foxp3 in their respective lineages [44,45]. These epigenetic modifications recruit additional 

chromatin remodeling complexes that further stabilize those modifications and help to maintain the gene 

expression, thus forming positive feedback loops [46]. Additionally, master regulators can enhance their 

own production by autocrine effects. For example, RORγt can induce production of IL-21 and IL-23 

which further stimulate the expression of RORγt, as suggested by Murphy and Stokinger [47]. The 

symmetric model also includes the cross-inhibition interactions between Foxp3 and RORγt. Inhibition of 

Foxp3 by RORγt is supported by the recent discovery that RORγt acts as a transcriptional repressor of 

Foxp3 by binding to its promoter [48]. Although a few reports suggest a functional inhibition of RORγt 

by Foxp3 [13,16,49], the presence of Foxp3 was shown to have no pronounced effect on the expression of 

RORγt [50]. Our symmetrical model includes the inhibition of RORγt by Foxp3, but we relaxed this 

assumption in our model with broken symmetry. 



 25 

In the first version of our symmetrical model, TGF-β directly activates RORγt and Foxp3. In the second 

version, we added intermediate proteins between TGF-β and the master regulators. It is known that 

Smad2, Smad3 and Smad4 mediate the TGF-β-induced upregulation of Foxp3 [51,52], but the Smad 

proteins are dispensable for upregulation of RORγt. It is still unclear how the TGF-β signal is transmitted 

to RORγt [52]. Thus, in Figure 1B, we introduce a generalized ‘Smad’ intermediate between TGF-β and 

Foxp3 and an ‘unknown intermediate’ between TGF-β and RORγt. 

The model with broken symmetry also includes IL-17, which is activated by RORγt and STAT3, and 

deactivated by Foxp3 and ATRA [8,13,16,29,53]. As a polarizing signal, IL-6 stimulates RORγt and IL-

17 production, and represses Foxp3 expression through the STAT3 pathway [54]. Conversely, ATRA 

upregulates Foxp3, downregulates RORγt, and inhibits IL-17 production [17,31]. These relations are all 

included in our model with broken symmetry (Figure 2C). 

To model the TH17-iTreg reciprocal-differentiation system, we use a generic form of ordinary differential 

equations (ODEs) that describe both gene expression and protein interaction networks [55-57]. Each ODE 

in our model has the form: 
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influence of protein j  on protein i . N is the total number of proteins in the network. For example, the 

pair of ODEs for the first symmetrical model are: 
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All variables and parameters are dimensionless. One time unit in our simulations corresponds to 

approximately 1 hour.  

All simulations and bifurcation analyses were performed with PyDSTool, a software environment for 

dynamical systems [58]. In the Supplementary Information we provide a Python module file  (Text S1) 

for PyDSTool that completely defines the ODEs we are solving in each case, and an example script (Text 

S2) to reproduce bifurcation diagrams shown in Figure 4A. 

All the experimental results to which our model has been compared were obtained with differentiation 

assays that lasted 2-5 days, and these results are essentially consistent from one experiment to another. 

Thus, we assumed that the observed, differentiated cell phenotypes after 2-5 days are representative of 

stable steady states in our model. 

We have chosen to use generic (phenomenological) ODEs instead of a more detailed kinetic model of the 

biochemical reaction network because we lack sufficient mechanistic and kinetic information on the 

molecular interactions in the TH17-iTreg reciprocal-differentiation system. To build a detailed biochemical 

model, based on mass-action or Michaelis-Menten kinetics, would require us to make many assumptions 

on the underlying mechanism and rate constants with little or no experimental evidence to back up these 

assumptions. In such a case, a phenomenological model seems more appropriate to us. A similar approach 

has been adopted in earlier theoretical studies of T cell differentiation by Mendoza and Xenarios [22], 
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who used a sigmoidal function similar to our F(σW), and by van den Ham and de Boer [21], who used 

Hill functions in place of our F(σW). To be sure that our results are not overly dependent on our 

mathematical approach, we have re-formulated our ‘symmetrical model without intermediates’ using Hill 

functions and confirmed that the model exhibits four types of stable steady states as [TGFβ] is varied. The 

basic features of the bifurcation diagrams and signal-response curves are similar, regardless of which 

formalism is used (details available upon request). 

To account for cell-to-cell variability in a population, we made many simulations of the system of ODEs, 

each time with a slightly different choice of parameter values, to represent slight differences from cell to 

cell. We assumed that the value of each parameter conforms to a normal distribution with CV = 0.05 (CV 

= coefficient of variation = standard deviation / mean). The mean value that we specified for each 

parameter distribution is also referred as the ‘basal’ value of that parameter (see Table 1). In our 

bifurcation analysis of the dynamical system, we consider an imaginary cell that adopts the basal value 

for each of its parameters, and we define this cell as the ‘average’ cell. Note that none of the cells in our 

simulated population is likely to be this average cell, because every parameter value is likely to deviate a 

little (CV = 5%) from the basal value. Note, in addition, that our simulations sample a volume of 

parameter space around the ‘average’ cell, thereby probing the sensitivity/robustness of the differentiation 

process. Because we are varying all parameters simultaneously and randomly, this procedure is more 

indicative of robust behavior than standard sensitivity analysis, which involves estimating the partial 

derivative of some output property (e.g., steady state level of Foxp3) with respect to each parameter 

separately.  

In order to simulate the induced differentiation process, we first solved the ODEs numerically with some 

small initial values of [RORγt] and [Foxp3] state and with [TGF-β] = 0 (and, if applicable, other input 

signals, e.g. IL-6 and ATRA, = 0 as well). After a short period of time, each simulated cell will find its 

own, stable RORγtlowFoxp3low steady state, corresponding to a naïve CD4+ T cell. Next, we changed 

[TGF-β] (and other input signals, if applicable) to a certain positive value and continued the numerical 
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simulation. By the end of the simulation, each cell arrives at its corresponding ‘induced’ phenotype, 

which might vary from cell to cell because of the parametric variability of the population. To simulate the 

reprogramming effect, the concentration of IL-6 was raised after the cells were stabilized in the 

differentiated state. We made the simple definition that a protein is expressed when its level is greater 

than 0.5 units.  

To check the effect of TGF-β concentration on the induced phenotypes, we ran a series of simulations for 

a group of 1000 cells with various values of [TGF-β] and plotted the percentages of cells that adopt each 

terminal phenotype, in order to generate a ‘signal-response’ curve for a population of cells. Note that this 

signal-response curve could only represent a series of induced differentiation experiments with various 

TGF-β concentrations instead of a single experiment with increasing concentration of TGF-β. 

Our simulations of cell-to-cell variability are based on the assumptions that each cell follows a 

deterministic trajectory but that cells differ from one another in the precise values of the kinetic 

parameters that govern the deterministic trajectory. A similar approach was adopted by Höfer et al. in 

their model of transcriptional regulation of T lymphocytes [18]. An alternative view of stochasticity 

assumes that all cells are identical in terms of kinetic constants but they follow unique stochastic 

trajectories because of random fluctuations in the numbers of molecules of the dynamic variables. The 

truth is most likely a combination of these effects (parameter variation and molecular fluctuations), but 

we have adopted the parameter-variation approach for several reasons. First of all, we lack the sort of 

molecular details (e.g., the numbers of molecules of regulatory species per cell) needed for accurate 

stochastic simulations of molecular fluctuations. Second, it is unlikely that T cells are identical with 

respect to parameter values, and there is experimental evidence to the contrary. Peripheral naïve T cells 

undergo a complex developmental process in the thymus, where they likely inherit many stable cell-to-

cell differences, possibly because of the great diversity of T cell receptor specificities generated by VJ or 

V(D)J recombination. Experiments on T cell differentiation are done by selecting cells with some 

common characteristics, but they may nonetheless differ in many other respects. Even monoclonal 
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populations of mammalian cells (derived from a single progenitor cell) exhibit a distribution of properties 

that can affect cell fate determination [38]. Nonetheless, to be sure that our results are not overly 

dependent on our view of cell-to-cell variability, we have re-formulated our ‘symmetrical model without 

intermediates’ as a pair of stochastic differential equations with additive white noise and confirmed that 

the SDEs generate signal-response curves similar to our results in Fig. 4A, bottom panel (details available 

upon request).  

It is also reasonable to attribute variability among cells to different initial conditions for each simulation 

of the governing ODEs, as suggested by Yates et al. [20]. Since variations of initial conditions can also 

bias cells toward different phenotypes, we presume that this strategy will produce results similar to our 

own. 
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Figure Legends 

Figure 1. Induction of differentiation from naïve CD4+ T cells to TH17 and iTreg. A population of 

antigen-activated naïve CD4+ T cells (white) can be induced by different types of cytokine micro-

environment to produce corresponding differentiated cell populations. TH17 cells (red) express the RORγt 

transcription factor, and iTreg cells (green) express the Foxp3 transcription factor. Some cells (yellow) 

express both master regulators and may possess both regulatory and pro-inflammatory functions. 

Figure 2. Influence diagrams of the mathematical models. A. Symmetrical model without 

intermediates. B. Symmetrical model with intermediates. C. Asymmetrical model with three input signals: 

TGF-β, ATRA, and IL-6. 

Figure 3. Phase plane analysis of the symmetrical model without intermediates. X and Y axes: 

dimensionless quantities that represent the intracellular concentrations of master regulators Foxp3 and 

RORγt respectively. Value = 1 indicates the maximum intracellular concentration of the master regulator, 

and value = 0 indicates the absence of the master regulator. Red Line: nullcline for RORγt. Green line: 

nullcline for Foxp3. Steady states, at the intersections of red and green nullclines, are labeled as ‘u’ 

(unstable) or ‘s’ (stable). Magenta dashed line with arrow: trajectory of a time-course simulation. Semi-

transparent red and green areas: the basins of attractions for RORγthighFoxp3low and RORγtlowFoxp3high 

states, respectively.  A. Phase plane for the average cell with [TGF-β] = 0. Magenta circle: 

RORγlowFoxp3low steady state. B. Phase plane for the average cell with [TGF-β] = 0.5 units. Magenta 

circle is the location of the steady state in Panel A. C. Overlaid phase planes and trajectories for three 

cells adopting distinct fates. D. Simulation trajectories for a population of 30 cells on the plane of RORγt 

and Foxp3.  

Figure 4. Bifurcation diagrams and signal-response curves for three models. Upper and middle 

panels: one-parameter bifurcation diagrams for the average cell. Steady state levels of RORγt and Foxp3 

are plotted as functions of TGF-β concentration. Solid line: stable steady states. Dashed line: unstable 
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steady states.  Lower panels: signal-response curves. For each point on the abscissa (for [TGF-β] = 

constant), we simulate induced differentiation of a population of 1000 cells. Percentages of cells at the 

alternative steady states are plotted as functions of TGF-β concentration used for induction.  Red line: 

RORγt-only cells. Green line: Foxp3-only cells. Yellow line: double-expressing cells. Blue marker: 

Foxp3-expressing cells. Magenta marker: IL-17 producing cells. A. Symmetrical model without 

intermediates. B. Symmetrical model with intermediates. C. Asymmetric model. Dotted vertical lines 

denote representative experimental levels of TGF-β.  

Figure 5. Effects of polarizing signals on the induced differentiation. Simulation of the asymmetric 

model (Figure 1C). Upper and middle panels: one-parameter bifurcation diagrams for the average cell. 

RORγt and Foxp3 steady state levels are plotted as functions of TGF-β concentration. See the legend to 

Figure 3 for the interpretation of the curves. A. Cells treated with [IL-6] = 10 units together with the 

indicated amount of TGF-β. B. Cells treated with [ATRA] = 1.5 units together with the indicated amount 

of TGF-β. C. Cells treated with [IL-6] = 10 units and [ATRA] = 1.5 units together with the indicated 

amount of TGF-β. 

Figure 6. Reprogramming from iTreg to TH17 in the presence of TGF-β. A. Time course trajectories of 

simulated reprogramming effects. 1 time unit ≈ 1 h. [TGF-β] = 0 for t < 10, and [TGF-β] = 0.28 for t > 10. 

[IL-6] = 0 for t < 80, and [IL-6] = 10 for t > 80. At each time point, we plot the percentages of cells at the 

alternative steady states, using the same color scheme as in Figure 3. Left panel: no ATRA added. Right 

panel: 1.5 units of ATRA added together with TGF-β. B. Analysis of concentration dependencies for 

simulations described in Panel A. X axis: amount of IL-6 used for reprogramming. Y axis: amount of 

ATRA used for initial induction of differentiation. Percentages of cells at steady state are shown 

according to a color gradient. Left panel: percentage of Foxp3-expressing cells at steady state. Right panel: 

percentage of IL-17-producing cells at steady state. 
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Figures 

 

Figure 1. Induction of differentiation from naïve CD4+ T cells to TH17 and iTreg 
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Figure 2. Influence diagrams of the mathematical models 
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Figure 3. Phase plane analysis of the symmetrical model without intermediates 
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Figure 4. Bifurcation diagrams and signal-response curves for three models 
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Figure 5. Effects of polarizing signals on the induced differentiation 
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Figure 6. Reprogramming from iTreg to TH17 in the presence of TGF-β   
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Tables 

Table 1 Descriptions and basal values of parameters 

Parameter name Description Basal value in 

symmetrical 

model without 

intermediates 

Basal value in 

symmetrical 

model with 

intermediates 

Basal value in 

model with 

broken 

symmetry 

tRORγ  Relaxation rate of RORγt 1 1 1 

Foxp3  Relaxation rate of Foxp3 1 1 1 

tRORγ  Steepness of sigmoidal function for RORγt 5 5 7 

Foxp3  Steepness of sigmoidal function for Foxp3 5 5 5 

o

tRORγ  Basal activation state of RORγt -0.8 -0.8 -0.84 

o

Foxp3  Basal activation state of Foxp3 -0.8 -0.8 -0.92 

tRORγtRORγ   Weight of autoactivation of  RORγt 1.24 1.2 0.7 

tRORγFoxp3  Weight of inhibition on RORγt by Foxp3 -0.4 -0.4 NA 

Foxp3Foxp3  Weight of autoactivation of  Foxp3 1.24 1.2 1.28 

Foxp3tRORγ  Weight of inhibition on Foxp3 by RORγt -0.4 -0.4 -0.54 

tRORγTGFβ  Weight of activation on RORγt by TGF-β 1.2 NA NA 

Foxp3TGFβ  Weight of activation on Foxp3 by TGF-β 1.2 NA NA 

UI  Relaxation rate of unknown intermediate 

(UI) 

NA 1 1 

Smad  Relaxation rate of Smad NA 1 1 

UI  Steepness of sigmoidal function for UI NA 10 12 

Smad  Steepness of sigmoidal function for Smad NA 10 20 

o

UI  Basal activation state of UI NA -0.2 -0.23 

o

Smad  Basal activation state of Smad NA -0.2 -0.225 

tRORγUI  Weight of activation on RORγt by UI NA 0.62 0.86 

Foxp3Smad  Weight of activation on Foxp3 by Smad NA 0.62 0.68 

UITGFβ  Weight of activation on UI by TGF-β NA 1.2 1 

SmadTGFβ  Weight of activation on Smad by TGF-β NA 1.2 1 

tRORγATRA  Weight of inhibition on RORγt by ATRA NA NA -0.04 

Foxp3ATRA  Weight of activation on Foxp3 by ATRA NA NA 0.035 

IL17  Relaxation rate of IL-17 NA NA 1 

IL17  Steepness of sigmoidal function for IL-17 NA NA 30 

o

IL17  Basal activation state of IL-17 NA NA -0.82 

IL17tRORγ   Weight of activation on IL-17 by RORγt NA NA 0.22 

IL17Foxp3  Weight of inhibition on IL-17 by Foxp3 NA NA -0.8 

IL17STAT3  Weight of activation on IL-17 by STAT3 NA NA 0.6 

IL17ATRA  Weight of inhibition on IL-17 by ATRA NA NA -0.1 

STAT3  Relaxation rate of STAT3 NA NA 0.1 

STAT3  Steepness of sigmoidal function for STAT3 NA NA 10 

o

STAT3  Basal activation state of STAT3 NA NA -0.4 

tRORγSTAT3  Weight of activation on RORγt by STAT3 NA NA 0.2 

Foxp3STAT3  Weight of inhibition on Foxp3 by STAT3 NA NA -0.1 

STAT3IL6  Weight of activation on STAT3 by IL-6 NA NA 0.2 
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[IL6] Concentration of IL-6 NA NA C 

[ATRA] Concentration of ATRA NA NA C 

]TGFβ[  Concentration of TGF-β C C C 

 

C: Values are specified in each simulation and might be changed at certain times during the simulation.  These parameters are not 

subject to cell-to-cell variations. 
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Table 2 Simulation results and comparisons with published experimental results 

Experimental/simulation condition TGF-β 

concentration 

Simulation result Evidence 

Inducing differentiation from naïve 

CD4+ T cells with TGF-β alone 

Intermediate Three phenotypes in comparable 

fractions 

Observed [16]  

 Low-

intermediate 

Low concentration of TGF-β gives 

greater percentage of Foxp3 expressing 

cells than intermediate concentration.  

Observed [16]  

 High RORγt-only and double-expressing 

phenotypes in comparable fractions 

Observed [15]  

 Low Foxp3-only phenotype is the major 

differentiated phenotype 

Prediction 

 From low to 

high 

Transition from Foxp3-only phenotype 

to RORγt-only and double-expressing 

phenotypes 

Prediction 

 From high to 

low 

Transition from RORγt-only or 

double-expressing phenotype to 

Foxp3-only phenotype 

Prediction 

Inducing differentiation from naïve 

CD4+ T cells with TGF-β and IL-6 

Intermediate Mostly RORγt phenotype, with a 

fraction of cells producing IL-17 

Observed [16]  

 High RORγt (major fraction) and double-

expressing (minor fraction) phenotypes 

Observed [15]  

 Low-

intermediate-

high 

Higher concentration of TGF-β inhibits 

IL-17 production 

Observed in more 

extent [16]  

Inducing differentiation from naïve 

CD4+ T cells with TGF-β and 

ATRA 

Intermediate More Foxp3 expressing cells than with 

TGF-β alone 

Observed [17] 

 Intermediate Foxp3-only phenotype is the major 

differentiated phenotype 

Prediction 

 High Double-expressing phenotype is the 

major differentiated phenotype 

Prediction 

Inducing differentiation from naïve 

CD4+ T cells with TGF-β, IL-6 and 

ATRA 

High RORγt-only and double-expressing 

phenotypes in comparable fractions. 

IL-17 production is much lower than 

with TGF-β and IL-6 

Observed [15]  

Inducing differentiation from naïve 

CD4+ T cells to iTreg cells with 

TGF-β, and reprogramming the 

differentiated iTreg cells with IL-6 

Intermediate Foxp3 expressing cells are reduced, 

and IL-17 producing cells appear in 

significant fraction. 

Observed [13]  

Inducing differentiation from naïve 

CD4+ T cells to iTreg cells with 

TGF-β and ATRA, and 

reprogramming the iTreg cells with 

IL-6 

Intermediate Foxp3 expressing cells are reduced, 

and no significant number of IL-17 

producing cells can be observed. 

Observed [13]  

 Intermediate Most cells are in ‘poised’ state at 

which RORγt expression is high, but 

no IL-17 is produced. 

Prediction 
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Supplementary Texts 

 

Text S1 

 
# This module file contains full list of equations and parameters for three 

# models discussed in the paper 

# They can be used as inputs for simulations with PyDSTool 

 

pars = {} # parameters 

varspecs = {} # ODEs 

fnspecs = {} # helper functions 

 

# Symmetrical model without intermediates 

pars['sym_1'] = { 

 'tgf'  : 0, 

 'w_Foxp3_ROR' : -0.4, 

 'w_ROR_Foxp3' : -0.4, 

 'w_Foxp3_Foxp3' : 1.24, 

 'w_ROR_ROR' : 1.24, 

 'w_Foxp3_O' : -0.8, 

 'w_ROR_O' : -0.8, 

 'w_Foxp3_tgf' : 1.2, 

 'w_ROR_tgf' : 1.2, 

 'sigma_Foxp3' : 5, 

 'sigma_ROR' : 5, 

 'gamma_Foxp3' : 1, 

 'gamma_ROR' : 1, 

} 

 

varspecs['sym_1'] = { 

 'Foxp3' : \ 

  'gamma_Foxp3 * ( hbt(sigma_Foxp3, w_Foxp3_O + \ 

  w_Foxp3_Foxp3 * Foxp3 + \ 

  w_Foxp3_ROR * ROR + w_Foxp3_tgf * tgf)\ 

   - Foxp3 )', 

 'ROR' : \ 

  'gamma_ROR * ( hbt(sigma_ROR, w_ROR_O + \ 

  w_ROR_ROR * ROR + \ 

  w_ROR_Foxp3 * Foxp3 + w_ROR_tgf * tgf)\ 

   - ROR )' 

} 

 

fnspecs['sym_1'] = { 

 'hbt': \ 

 (['sigma', 'sum_omega'],'1 / (1 + exp(-sigma * sum_omega))') 

} 

 

 

# Symmetrical model with intermediates 

pars['sym_2'] = { 

 'tgf'  : 0, 
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 'w_Foxp3_ROR' : -0.4, 

 'w_ROR_Foxp3' : -0.4, 

 'w_Foxp3_Foxp3' : 1.2, 

 'w_ROR_ROR' : 1.2, 

 'w_Foxp3_O' : -0.8, 

 'w_ROR_O' : -0.8, 

 'w_Foxp3_Smad' : 0.62, 

 'w_ROR_UI' : 0.62, 

 'sigma_Foxp3' : 5, 

 'sigma_ROR' : 5, 

 'gamma_Foxp3' : 1, 

 'gamma_ROR' : 1, 

 'gamma_Smad' : 1, 

 'sigma_Smad' : 15, 

 'w_Smad_O' : -0.21, 

 'w_Smad_tgf' : 1.2, 

 'gamma_UI' : 1, 

 'sigma_UI' : 15, 

 'w_UI_O' : -0.21, 

 'w_UI_tgf' : 1.2, 

} 

 

varspecs['sym_2'] = { 

 'Foxp3' : \ 

  'gamma_Foxp3 * ( hbt(sigma_Foxp3, w_Foxp3_O + \ 

  w_Foxp3_Foxp3 * Foxp3 + w_Foxp3_ROR * ROR +\ 

  w_Foxp3_Smad * Smad)\ 

   - Foxp3 )', 

 'Smad' : \ 

  'gamma_Smad * ( hbt(sigma_Smad, w_Smad_O + w_Smad_tgf * tgf)\ 

   - Smad )', 

 'UI' : \ 

  'gamma_UI * ( hbt(sigma_UI, w_UI_O + w_UI_tgf * tgf) \ 

   - UI)', 

 'ROR' : \ 

  'gamma_ROR * ( hbt(sigma_ROR, w_ROR_O + \ 

  w_ROR_ROR * ROR + \ 

  w_ROR_Foxp3 * Foxp3 + w_ROR_UI * UI)\ 

   - ROR )', 

} 

 

fnspecs['sym_2'] = { 

 'hbt': \ 

 (['sigma', 'sum_omega'],'1 / (1 + exp(-sigma * sum_omega))') 

} 

 

# Asymetric Model 

pars['asym'] = { 

 'tgf'  : 0, 

 'il6'  : 0, 

 'atra'  : 0, 



 49 

 'w_Foxp3_ROR' : -0.54, 

 'w_ROR_Foxp3' : 0, 

 'w_Foxp3_Foxp3' : 1.28, 

 'w_ROR_ROR' : 0.7, 

 'w_Foxp3_O' : -0.84, 

 'w_ROR_O' : -0.92, 

 'w_Foxp3_Smad' : 0.68, 

 'w_ROR_UI' : 0.86, 

 'sigma_Foxp3' : 5, 

 'sigma_ROR' : 7, 

 'gamma_Foxp3' : 1, 

 'gamma_ROR' : 1, 

 'w_ROR_STAT3' : 0.2, 

 'w_Foxp3_STAT3' : -0.1, 

 'w_ROR_atra' : -0.04, 

 'w_IL17_atra' : -0.1, 

 'w_Foxp3_atra' : 0.035, 

 'sigma_IL17' : 30, 

 'gamma_IL17' : 1, 

 'w_IL17_O' : -0.82, 

 'w_IL17_STAT3' : 0.59, 

 'w_IL17_ROR' : 0.22, 

 'w_IL17_Foxp3' : -0.8, 

 'gamma_Smad' : 1, 

 'sigma_Smad' : 20, 

 'w_Smad_O' : -0.225, 

 'w_Smad_tgf' : 0.8*3.8/3, 

 'gamma_UI' : 1, 

 'sigma_UI' : 12, 

 'w_UI_O' : -0.23, 

 'w_UI_tgf' : 0.8*3.8/3, 

 'gamma_STAT3' : 0.1, 

 'sigma_STAT3' : 10, 

 'w_STAT3_O' : -0.4, 

 'w_STAT3_il6' : 0.2, 

} 

 

 

varspecs['asym'] = { 

 'Foxp3' : \ 

  'gamma_Foxp3 * ( hbt(sigma_Foxp3, w_Foxp3_O + \ 

  w_Foxp3_Foxp3 * Foxp3 + w_Foxp3_ROR * ROR +\ 

  w_Foxp3_atra * atra  \ 

  + w_Foxp3_Smad * Smad +\ 

   w_Foxp3_STAT3 * STAT3)\ 

   - Foxp3 )', 

 'Smad' : \ 

  'gamma_Smad * ( hbt(sigma_Smad, w_Smad_O + w_Smad_tgf * tgf\ 

   )\ 

   - Smad )', 

 'UI' : \ 
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  'gamma_UI * ( hbt(sigma_UI, w_UI_O + w_UI_tgf * tgf\ 

   )\ 

   - UI)', 

 'ROR' : \ 

  'gamma_ROR * ( hbt(sigma_ROR, w_ROR_O + \ 

  w_ROR_ROR * ROR + w_ROR_atra * atra + \ 

  w_ROR_Foxp3 * Foxp3 + w_ROR_UI * UI + \ 

  w_ROR_STAT3 * STAT3)\ 

   - ROR )', 

 'STAT3' : \ 

  'gamma_STAT3 * ( hbt(sigma_STAT3, w_STAT3_O + \ 

  w_STAT3_il6 * il6)\ 

  - STAT3)', 

 'IL17' : \ 

  'gamma_IL17 * ( hbt(sigma_IL17,  w_IL17_STAT3 * STAT3 \ 

   + w_IL17_O +\ 

   w_IL17_ROR * ROR \ 

   + w_IL17_atra * atra + w_IL17_Foxp3 * Foxp3) - IL17)' 

} 

 

fnspecs['asym'] = { 

 'hbt': \ 

 (['sigma', 'sum_omega'],'1 / (1 + exp(-sigma * sum_omega))') 

} 

 

 

class Model_specs: 

 def __init__(self, name): 

  self.name = name 

 def pars(self): 

  return pars[self.name] 

 def varspecs(self): 

  return varspecs[self.name] 

 def fnspecs(self): 

  if fnspecs.has_key(self.name): 

   return fnspecs[self.name] 

  else: 

   return {} 

 def load_model_specs(self, args_obj): 

  args_obj.pars = self.pars() 

  args_obj.varspecs = self.varspecs() 

  args_obj.fnspecs = self.fnspecs() 

  # initialize every state varialbe with 0.001 

  args_obj.ics = {} 

  for key in self.varspecs(): 

   args_obj.ics[key] = 0.001 
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Text S2 

 
# This script produces the 1-parameter bifurcation diagrams shown in Figure 4A 

# It requires a module file 'Model_specs.py' which contains equations for each 

# model 

 

import Model_specs 

import PyDSTool 

import matplotlib.pyplot as plt 

from pylab import show 

from sys import exit 

from matplotlib import mpl 

from matplotlib.ticker import NullFormatter 

 

# Figure format 

mpl.rcParams['font.sans-serif'] =  'Arial' 

mpl.rcParams['mathtext.default'] = 'regular' 

mpl.rcParams['xtick.labelsize'] = 8 

mpl.rcParams['ytick.labelsize'] = 8 

mpl.rcParams['figure.subplot.left'] = 0.2 

mpl.rcParams['figure.subplot.right'] = 0.95 

mpl.rcParams['figure.subplot.bottom'] = 0.08 

mpl.rcParams['figure.subplot.wspace'] = 0.3 

mpl.rcParams['figure.subplot.hspace'] = 0.03 

text_ROR = 'ROR' + r"$\gamma$" + 't' 

text_TGF = 'TGF-' + r"$\beta$" 

nullfmt = NullFormatter() 

 

# load the model specs from Model_specs.py 

DSargs = PyDSTool.args(name='T_cell') # arbitary name 

model_specs = Model_specs.Model_specs(name='sym_1') # Model name in Model_specs.py 

model_specs.load_model_specs(DSargs) # load DSargs with functions and parameters 

 

# set initial state 

naive_state = { 

 'ROR' : 0.0001, 

 'Foxp3' : 0.0001, 

} 

DSargs.ics = naive_state 

 

# setup generator 

ode = PyDSTool.Generator.Dopri_ODEsystem(DSargs) 

 

ctrl_par = 'tgf' # control parameter 

PyCont = PyDSTool.ContClass(ode) 

PCargs = PyDSTool.args(name='EQ1', type='EP-C') # first branch 

PCargs.freepars = [ctrl_par] 

 

# Continuation numerics 

PCargs.MaxNumPoints = 450 

PCargs.MaxStepSize = 0.02 
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PCargs.MinStepSize = 1e-3 

PCargs.StepSize = 1e-2 

PCargs.LocBifPoints = 'all' 

PCargs.SaveEigen = True 

 

# Compute first branch 

PyCont.newCurve(PCargs) 

PyCont['EQ1'].forward() 

    

if PyCont['EQ1'].getSpecialPoint('BP1') is not None: 

 PCargs.name = 'EQ2' # second branch 

 PCargs.initpoint = 'EQ1:BP1' 

 PCargs.initdirec = PyCont['EQ1'].getSpecialPoint('BP1')\ 

  .labels['BP']['data'].branch 

 

 # Compute second branch 

 PyCont.newCurve(PCargs) 

 PyCont['EQ2'].forward() 

 

 

# Plotting two 1-parameter bifurcation diagrams 

 

fig = plt.figure(figsize=(4,8)) 

ax_ROR = fig.add_subplot(2,1,1) 

PyCont.display([ctrl_par, 'ROR'], stability='true',\ 

  linewidth=1.5, color='r', axes=ax_ROR, figure=fig) 

title = '1-parameter bifurcation\ndiagram' 

size = 10 

fp = mpl.font_manager.FontProperties(size=size) 

ax_ROR.set_title(title) 

ax_ROR.set_xlabel('') 

ax_ROR.set_ylabel(text_ROR, fontproperties=fp) 

ax_ROR.set_ylim([-0.1, 1.1]) 

ax_ROR.set_xlim([0.0, 0.7]) 

ax_ROR.xaxis.set_major_formatter(nullfmt) 

 

ax_Foxp3 = fig.add_subplot(2,1,2) 

PyCont.display([ctrl_par, 'Foxp3'], stability='true',\ 

  linewidth=1.5, color='g', axes=ax_Foxp3, figure=fig)  

ax_Foxp3.set_xlabel(text_TGF) 

ax_Foxp3.set_ylabel('Foxp3', fontproperties=fp) 

ax_Foxp3.set_ylim([-0.1, 1.1]) 

ax_Foxp3.set_xlim([0.0, 0.7]) 

 

 

show() 

exit() 
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Abstract 

 

Background 

CD4+ T cells have several subsets of functional phenotypes, which play critical yet diverse roles in the 

immune system. Pathogen-driven differentiation of these subsets of cells is often heterogeneous in terms 

of the induced phenotypic diversity. In vitro recapitulation of heterogeneous differentiation under 

homogeneous experimental conditions indicates some highly regulated mechanisms by which multiple 

phenotypes of CD4+ T cells can be generated from a single population of naïve CD4+ T cells. Therefore, 

conceptual understanding of induced heterogeneous differentiation will shed light on the mechanisms 

controlling the response of populations of CD4+ T cells under physiological conditions. 

Results 

We present a simple theoretical framework to show how heterogeneous differentiation in a two-master-

regulator paradigm can be governed by a signaling network motif common to all subsets of CD4+ T cells. 

With this motif, a population of naïve CD4+ T cells can integrate the signals from their environment to 

generate a functionally diverse population with robust commitment of individual cells. Notably, two 

positive feedback loops in this network motif govern three bistable switches, which in turn, give rise to 

three types of heterogeneous differentiated states, depending upon particular combinations of input 

signals. We provide three prototype models illustrating how to use this framework to explain 

experimental observations and make specific testable predictions. 

Conclusions 

The process in which several types of T helper cells are generated simultaneously to mount complex 

immune responses upon pathogenic challenges can be highly regulated, and a simple signaling network 

motif can be responsible for generating all possible types of heterogeneous populations with respect to a 
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pair of master regulators controlling CD4+ T cell differentiation. The framework provides a mathematical 

basis for understanding the decision-making mechanisms of CD4+ T cells, and it can be helpful for 

interpreting experimental results. Mathematical models based on the framework make specific testable 

predictions that may improve our understanding of this differentiation system. 
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Background 

 

CD4+ T helper cells serve as key players in host immune responses by regulating and coordinating a large 

repertoire of immune cells, such as macrophages, B cells and CD8+ T cells. Consequently, CD4+ T helper 

cells are critical in human health ranging from homeostasis to pathogenesis of diseases [1,2]. Central to 

the functions of CD4+ T cells is their ability to produce a wide range of extracellular immunomodulating 

agents including cytokines and chemokines [3]. In order to correctly direct the immune response to 

antigen stimulation, CD4+ T cells have to secrete appropriate types of cytokines in appropriate amounts, 

and they achieve this by differentiating into various subtypes of functional CD4+ T cells from a pool of 

precursor cells, known as naïve CD4+ T cells. These subsets primarily include T helper 1 (TH1), T helper 

2 (TH2), T helper 17 (TH17) and induced regulatory T (iTReg) cells. Each subtype of CD4+ T cells 

produces a distinctive spectrum of cytokines, and in each of these subtypes there is typically one key 

transcription factor, or master regulator, that is highly expressed and controls the expression of 

downstream genes, including those encoding the lineage specific cytokines. The master regulators for the 

four functional subsets are T-bet, GATA3, RORγt and Foxp3, respectively [3]. 

The differentiation of CD4+ T cells is a highly controlled process, and the lineage specificity of the 

differentiation process is determined by integrating micro-environmental cues that activate various 

signaling pathways. These pathways include the T cell receptor (TCR) pathway and the Signal 

Transducer and Activator of Transcription (STAT) pathways [4,5], which are activated by cognate 

antigens and cytokines, respectively. Other pathways, such as those associated with Notch and Toll-like 

receptors (TLRs), are also involved in differentiation of CD4+ T cells into distinct lineages [6-8]. 

In a few types of chronic infections, the dominance of one subtype of CD4+ T cells can be observed [9]. 

However, most immune responses elicit balanced phenotypes of functional CD4+ T cells and their 
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effector molecules, suggesting the importance of maintaining the diversity and flexibility of functional 

CD4+ T cells [10,11]. The importance of balancing the phenotypic composition is further corroborated by 

the fact that inappropriate dominance of particular subtype(s) of CD4+ T cells is often associated with 

inflammatory disorders [12-14]. It is not surprising to observe the balanced phenotypes of CD4+ T cells in 

vivo, given the plausible heterogeneous micro-environments of the naïve CD4+ T cells, which may 

stimulate the differentiation into multiple subtypes of functional CD4+ T cells. Interestingly, however, 

highly purified naïve CD4+ T cells can be induced to differentiate into multiple subtypes simultaneously 

in certain homogeneous in vitro experimental conditions [15-21]. Also interesting are the observations 

that optimum experimental conditions for generating homogeneous subsets of CD4+ T cells often include 

conditions that block the differentiation of undesired subsets [3]. These observations suggest that some 

highly regulated mechanisms, intrinsic to naïve CD4+ T cells, generate and maintain phenotypic 

heterogeneity of functional CD4+ T cells. In vitro assays showing heterogeneous differentiation 

recapitulate, at least in part, the balanced CD4+ T cell populations observed in vivo. Understanding 

situations of induced heterogeneous differentiation will shed light on the mechanisms controlling the 

response of populations of CD4+ T cells under physiological conditions. 

Although the overexpression of one type of master regulator is generally considered the hallmark of the 

differentiation of one subtype of CD4+ T cells, it has been recently discovered that cells highly expressing 

two types of master regulators exist in vivo [16,17,22-26], and some of these 'double-positive' phenotypes 

have been shown to be important in responding to pathogens [16,17,26]. Consistent with in vivo studies 

showing that the numbers of single-positive and double-positive CD4+ T cells can be increased in 

comparable proportions upon pathogenic challenges [16], in vitro induction of the differentiation of 

double-positive CD4+ T cells often requires heterogeneous differentiation, which is accompanied by the 

differentiation of single-positive phenotypes [15-17]. Some double-positive CD4+ T cells can be 

generated by reprogramming the single-positive phenotypes, which also results in a heterogeneous 

population containing both single-positive and double-positive cells [23,24]. These experiments provide 
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us with the clues to the conditions for generating double-positive phenotypes and highlight the intimate 

link between the double-positive phenotype and heterogeneous differentiation. 

In most experiments demonstrating induction of heterogeneous differentiation, the expression levels of 

master regulators controlling two population subsets are examined at the single cell level. Despite the 

limited scope of these experiments in terms of the number of subsets considered, significant diversity of 

heterogeneous differentiation has been revealed. In a particular differentiation event, one can obtain one 

of the following types of heterogeneous populations (Figure 1): a population containing two types of 

single-positive cells [18], a population containing one type of single-positive cells and double-positive 

cells [17], and a population containing two types of single-positive cells and double-positive cells [15]. 

The diversity of heterogeneous differentiation in this minimum paradigm might be only the tip of an 

iceberg of complexity involving heterogeneous differentiation of all subsets of CD4+ T cells, but 

understanding a minimal system with only two classical subtypes is surely the place to start. 

Previously, mathematical modeling has advanced our understanding of CD4+ T cell differentiation [27-

32]. In particular, Höfer et al. [27] used a mathematical model to explain TH2 cell fate memory created by 

positive feedbacks in the signaling network; Mariani et al. [28] used a similar model to demonstrate the 

robust lineage choice between TH1 and TH2 cells; Yates et al. [29] linked the dynamics of master 

regulators to the phenotypic composition of TH1 and TH2 cells during differentiation and reprogramming; 

van den Ham et al. [30] used a generic model to describe the switches among all CD4+ T cell lineages; 

and Naldi et al. [32] developed a Boolean-network model that takes all four lineages of CD4+ T cells into 

consideration. We recently used a mathematical model to study the reciprocal differentiation of TH17 and 

iTReg cells, in which heterogeneous differentiation is observed [33]. It is unclear, however, how a broader 

spectrum of CD4+ T cells can be involved in heterogeneous differentiation and what determines the 

observed types of differentiated states. 
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Here, we propose a simple theoretical framework for understanding the heterogeneous differentiation of 

CD4+ T cells. We analyze the dynamic properties of a signaling network motif common to all CD4+ T cell 

lineages. We show that, at the level of cell populations, this motif can generate all possible homogeneous 

and heterogeneous phenotypic compositions with respect to a pair of master regulators, and at the single-

cell level it ensures the robust commitment of a particular choice of differentiated state. Two types of 

positive feedback loops in this network motif govern three types of bistable switches, which in turn, result 

in three types of heterogeneous differentiation upon receiving appropriate combinations of input signals. 

This framework facilitates not only an intuitive understanding of the complex process by which CD4+ T 

cells integrate multiple signals to give rise to multiple functional phenotypes, but also the construction of 

more detailed mathematical models for studying CD4+ T cell differentiation. We provide three prototype 

models illustrating how to use this framework to explain experimental observations and make specific 

testable predictions. 
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Results and Discussion 

 

A basal signaling network motif is proposed to govern the differentiation of all lineages of CD4+ T 

cells 

To consider the heterogeneous differentiation of CD4+ T cells, we introduce a minimal model based on a 

pair of master regulators (proteins X and Y). We neglect the influence of other master regulators during 

the differentiation process. In the undifferentiated (naïve) cell, the expression levels of X and Y are both 

low, and the stable expression of either X or Y marks the differentiation event. Three phenotypes can be 

observed upon differentiation: X single-positive (XSP) cell, Y single-positive (YSP) cell, and double-

positive (DP) cell (Figure 1A). In the model, heterogeneous differentiation is defined as the process in 

which more than one functional (non-naïve) phenotypes can be observed upon uniform treatment of a 

population of simulated naïve cells (see Methods). 

In this minimum paradigm, three types of heterogeneous differentiation can be induced: 1) two different 

types of single-positive cells are differentiated simultaneously from naïve precursors; 2) one type of 

single-positive cells differentiates simultaneously with double-positive cells; and 3) both types of single-

positive cells differentiate simultaneously with double positive cells (Figure 1B). We define these three 

scenarios as Type 1, 2 and 3 heterogeneous differentiations, respectively. 

We next propose a basal network motif that governs cell differentiation in this minimal model. Based on 

known molecular interactions, we notice that the four master regulators of CD4+ T cells are all involved 

in signaling networks of similar topologies (Figure 2A-C). From these examples, we introduce a ‘basal 

motif’ (Figure 2D). In the basal motif, two master regulators (X and Y) mutually inhibit each other’s 

expression, while activating their own production. Two types of signals are responsible for activating the 

expression of the master regulators: a 'primary signal' (S1) which is sufficient to fully upregulate at least 



 61 

one master regulator, and two polarizing signals (S2 and S3) which favor the expression of one master 

regulator or the other (X and Y, respectively) but are not sufficient to upregulate their expression in the 

absence of a primary signal (Figure 2D). Each influence relationship in this basal motif has direct 

biological meaning, but some components in this motif may represent different biological entities in 

different dual-master-regulator networks. For example, in the TH1-TH2 network (Figure 2B) the primary 

signal represents the TCR ligands, whereas in the iTReg-TH17 network (Figure 2C) it represents a 

combined treatment of TCR ligands and TGFβ, which is justified by the fact that both TCR and TGF-β 

signaling pathways activate both Foxp3 and RORγt. Note that the signals, which are treated as parameters 

in our models, represent exogenous cytokine doses only, not endogenous cytokines produced by T cells 

upon activation. The latter are represented in part by the auto-activation relations. 

In Table 1, we list the generic signaling components and their corresponding biological entities for each 

prototype model. Note that a TCR ligand is a typical example of a primary signal, and certain groups of 

cytokines correspond to polarizing signals. In Table 2, we list the evidences for all molecular influences 

of each prototype model. 

Table 1 Signaling components in basal motif and their corresponding biological components in 

prototype models 

Model Generic signaling component Corresponding biological component 

Prototype 1 Primary signal (S1) TCR signal 

Prototype 1 Polarizing signal 1 (S2) Exogenous IL-12 

Prototype 1 Polarizing signal 2 (S3) Exogenous IL-4 

Prototype 1 Master regulator 1 (X) T-bet 

Prototype 1 Master regulator 2 (Y) GATA3 

Prototype 2 Primary signal (S1) TCR signal 

Prototype 2 Polarizing signal 1 (S3-1) Exogenous IL-23 + IL-1 signal 

Prototype 2 Polarizing signal 2 (S3-2) Exogenous TGF-β + IL-6 signal 

Prototype 2 Master regulator 1 (X) T-bet 

Prototype 2 Master regulator 2 (Y) RORγt 

Prototype 3 Primary signal (S1) TCR + Exogenous TGF-β signal 

Prototype 3 Polarizing signal 1 (S2) Exogenous ATRA/IL-2 signal 

Prototype 3 Polarizing signal 2 (S3) Exogenous IL-6 signal 

Prototype 3 Master regulator 1 (X) Foxp3 

Prototype 3 Master regulator 2 (Y) RORγt 
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Table 2 Evidences for molecular influences in prototype models 

Model Molecular Influence Evidence 

Prototype 1 TCR signal upregulates T-bet expression [34] 

Prototype 1 TCR signal upregulates GATA3 expression [35] 

Prototype 1 IL-12 signal upregulates T-bet expression 

in the presence of TCR signal 
[34] 

Prototype 1 IL-4 signal upregulates GATA3 expression 

in the presence of TCR signal 
[18,36] 

Prototype 1 T-bet inhibits GATA3 expression [37] 

Prototype 1 GATA3 inhibits T-bet expression [38] 

Prototype 1 T-bet promotes its own expression [39] 

Prototype 1 GATA3 promotes its own expression [40] 

Prototype 2 TCR signal upregulates T-bet expression [34] 

Prototype 2 TCR signal upregulates RORγt expression in the presence of TGF-β [41,42] 

Prototype 2 IL-23 + IL-1 signal upregulates RORγt expression in the presence of TCR 

signal 
[17] 

Prototype 2 TGF-β signal upregulates RORγt expression 

in the presence of TCR signal 
[17] 

Prototype 2 TGF-β signal downregulates T-bet expression [43] 

Prototype 2 T-bet inhibits RORγt expression [44] 

Prototype 2 RORγt inhibits T-bet expression [45] 

Prototype 2 T-bet promotes its own expression [39] 

Prototype 2 RORγt promotes its own expression [11,46] 

Prototype 3 TCR signal upregulates Foxp3 expression 

in the presence of TGF-β 
[41,42] 

Prototype 3 TCR signal upregulates RORγt expression 

in the presence of TGF-β 
[41,42] 

Prototype 3 TGF-β signal upregulates Foxp3 expression 

in the presence of TCR signal 
[41,42] 

Prototype 3 TGF-β signal upregulates RORγt expression 

in the presence of TCR signal 
[41,42] 

Prototype 3 IL-6 upregulates RORγt expression [47] 

Prototype 3 IL-6 downregulates Foxp3 expression [47] 

Prototype 3 ATRA/IL-2 upregulates Foxp3 expression [48,49] 

Prototype 3 ATRA/IL-2 downregulates RORγt expression [48,49] 

Prototype 3 Foxp3 inhibits RORγt expression [50] 

Prototype 3 RORγt inhibits Foxp3 expression [51] 

Prototype 3 Foxp3 promotes its own expression [11] 

Prototype 3 RORγt promotes its own expression [11,46] 

We first analyze Type 1 heterogeneous differentiation using the core motif, in the absence of auto-

activation, and then we use the full version of the basal motif to explain all three types of heterogeneous 

differentiation. 
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The basal motif without auto-activations can generate Type 1 heterogeneous differentiation 

The symmetric case 

Consider first the case of perfectly symmetrical parameter settings (Additional file 1: Table S1 Generic 

Model 1) for the core motif without self-activations. (See the Methods section for a description of our 

mathematical model of the signaling motifs.) In the absence of exogenous signals, the system persists in 

the stable ‘double-negative’ state corresponding to naïve cells (Figure 3A). Small positive values of the 

primary signal (0 < S1 < 0.704) drive the expression of modest amounts of both master regulators in a 

single cell. Larger values (0.704 < S1 < 2.396) destabilize the co-expression state and give rise to two new 

(alternative) stable steady states: the X-high-Y-low state and the X-low-Y-high state, which correspond to 

XSP and YSP cells, respectively (Figure 3B). The basins of attraction of these two states are separated by 

the diagonal line (X = Y) through the state space. When the primary signal is extremely strong 

(S1 > 2.396), the system is attracted to a unique stable steady state (X-high-Y-high), corresponding to a 

DP cell (Figure 3C). Bifurcation analysis on these steady states shows that the system undergoes 

pitchfork bifurcations at S1 = 0.704 and at S1 = 2.396 (Figure 3D), a typical type of bifurcation obtained 

for dynamical systems with perfect symmetry [52-54]. Saturation of the primary signal may prevent cells 

from reaching the DP state (Additional file 2: Figure S1A and B). 

The presence of a polarizing signal breaks the symmetry of the system, resulting in a pitchfork bifurcation 

with broken symmetry (Additional file 3: Figure S2A and B). To analyze the influence of polarizing 

signals on this dynamical system, we plot two-parameter bifurcation diagrams with respect to the primary 

signal and to each of the polarizing signals (e.g., Figure 3E, for S1 and S2). In Figure 3F we plot a 

‘bidirectional’ two-parameter bifurcation diagram, with S2 versus S1 plotted ‘up’ and S3 versus S1 

plotted ‘down’ (see Methods for details). In Figure 3F we see a bistable region (bounded by the red 

curves) for moderate values of the primary signal strength (0.7-2.3 units) and for low values (0–0.35 

units) of either of the polarizing signal strengths. Within the bistable region are found the two types of 
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single-positive states. Outside the bistable region are found unique steady state solutions that vary 

continuously from the naïve state on the left to the double-positive state on the right, through intermediate 

region (0.7 < S1 < 2.3) dominated by XSP cells (for S2 > 0) or by YSP cells (for S3 > 0). Because of the 

perfect symmetry of the parameters, both of the cusps of the bistable region lie on the X-axis. 

In order to predict the response of this regulatory system to changing stimuli (S1 and S2, or S1 and S3), 

we must be careful in interpreting the effects of trajectories crossing the two-parameter bifurcation 

diagram in Figure 3F. If we fix the polarizing signals at S3 = 0, S2 = 0.1 and increase the primary signal 

from 0 to 3, as in Additional file 3: Figure S2A and B, we see that the regulatory system passes smoothly 

from the naïve state (X-low-Y-low) to the XSP state (X-high-Y-low) to the DP state (X-high-Y-high). 

The regulatory system passes over the bistable region without undergoing any abrupt changes of the state 

(bifurcation) or exhibiting hysteresis effects. On the other hand, if we fix the primary signal at S1 = 1.5 

and increase one of the polarizing signals (either S2 or S3), as in Additional file 3: Figure S2 C and D, we 

see that the regulatory system starts in one of the single-positive state and jumps abruptly to another 

single-positive state at a saddle-node bifurcation point. Also, the system exhibit hysteresis because, if the 

polarizing signal is reduced to zero after the jump occurs, the regulatory system remains stuck in the 

stable ‘flipped’ state (XSP if S2 increases/decreases, YSP if S3 increases/decreases). We call this type of 

response a ‘reprogramming’ switch, because the control system flips irreversibly between alternative 

single-positive states. On the contrary, transitions from the naïve or the DP state to either one of the 

single-positive states are smooth and reversible (they do not invoke reprogramming). 

We next show that this network motif can generate heterogeneous differentiation and identify the 

parameter region in which a heterogeneous population can be obtained. To this end we simulate the 

induced differentiation process in a group of cells (with small cell-to-cell variability) exposed to various 

combinations of primary (S1) and polarizing signals (either S2 or S3). For each combination of S1 and S2 

(or S3), we compute the percentages of cells of different phenotypes in the final (steady state) 

differentiated population. We plot these percentages (as heat maps) over the coordinates of the 
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bidirectional two-parameter bifurcation diagram (see Additional file 4: Figure S3A-D). We summarize 

these results with a ‘heterogeneity score’ (see Methods) to highlight the region of parameter space that 

can generate heterogeneous populations (Figure 3G). Not surprisingly, in the absence of strong polarizing 

signals (S2 ≈ 0 and S3 ≈ 0), the primary signal can induce heterogeneous differentiation of two single-

positive phenotypes (Figure 3G, bright area). This is because of the close proximity of the naïve states to 

the separatrix, and the presence of cell-to-cell variability which can bias individual cells towards different 

phenotypes (Additional file 4: Figure S3E). The polarizing signal, on the other hand, makes the 

differentiation into one single-positive phenotype more likely, which can result in homogeneous 

differentiation once it is sufficiently strong (Figure 3G, dark area). 

We next explore how the cell population responds to sequential stimuli rather than simultaneous stimuli. 

If the population is stimulated first by a polarizing signal and then, after the cells have reached their 

steady states, the simulations are continued in the presence of primary signal, we find that the response to 

sequential stimuli is very similar to the response to simultaneous stimuli (Figure 3H). But when we switch 

the sequence of the stimuli, the polarizing signal fails to influence cell fate in the bistable region, resulting 

in heterogeneous populations in this region (Figure 3I). This is due to a hysteresis effect, which prevents 

reprogramming by polarizing signals that are insufficiently strong. These results suggest that polarizing 

signals can influence cell fate determination until the induction of differentiation, after which their 

influence is greatly reduced. 

Broken symmetry 

The preceding analysis is based on a set of perfectly symmetrical parameters in the signaling network, 

although the exogenous polarizing signals can act as ‘symmetry breakers’. How differently does the 

regulatory system behave if its intrinsic kinetic parameters are not perfectly symmetrical? For illustrative 

purposes, we use a representative set of asymmetrical parameter values (Additional file 1: Table S1 

Generic Model 2). Because of the asymmetries, the primary signal upregulates the two master regulators 
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at different thresholds (Figure 4A and B), and the bistable region of the bidirectional two-parameter 

bifurcation diagram is re-oriented so that its cusps are located on different sides of the X-axis (Figure 4C). 

When we stimulate cell populations with combinations of primary and polarizing signals, we find that the 

parameter region that gives rise to heterogeneous populations is not coincident with the X-axis. Instead, 

the ‘heterogeneous’ region forms a patch that intersects the X-axis (Figure 4D). In this situation, the 

system requires a specific range of primary signal strength to generate a heterogeneous population. On the 

other hand, the primary signal now gains some control over cell fate determination, in addition to its 

ability to trigger the differentiation. For a similar network in B cells, Sciammas et al. [55] recently 

showed that the strength of the B cell receptor signal (primary signal) can determine cell fate because of 

the asymmetry of the network. 

The effects of sequential stimuli in the asymmetrical model are similar to their effects in the symmetrical 

model (Figure 4E and F). 

Up to this point, we have assumed that the relaxation rates of X and Y are identical (𝛾X = 𝛾𝑌 = 5). 

Breaking this symmetry changes the parameter combinations that generate heterogeneous differentiation 

without changing the bifurcation diagram (Additional file 5: Figure S4). This result, together with the 

responses to sequential stimuli discussed earlier, shows that although the bistable region is critical to 

obtaining heterogeneous differentiation, the exact phenotypic composition within the bistable region also 

depends on the kinetics of the signal inputs and the intrinsic relaxation rates of the master regulators. 

We suggest that biological signaling networks of this type (i.e., those resembling the basal motif) may 

have evolved to take advantage of either symmetrical or asymmetrical types of behavior. A typical 

asymmetrical design is found in the TH1 and TH2 paradigm, in which TCR signaling not only triggers the 

heterogeneous differentiation of both TH1 and TH2, but also regulates their phenotypic compositions 

depending on signal strength (discussed in detail in later section). With this understanding, one can design 
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experiments to study more detailed signal-control principles of a particular signaling network governing 

heterogeneous differentiation. 

The basal network motif with additional positive feedback loops can generate all types of 

heterogeneous differentiation 

Previously, mathematical modelers found that interconnected positive feedback loops can give rise to 

complex multistability in CD4+ T cell differentiation [28] and elsewhere [54]. It is still not clear, however, 

how these different multistable regions depend on the interconnection of multiple positive feedback loops, 

nor how one can use biologically relevant signals to guide cells into various multistable regions, where 

heterogeneous differentiation might occur. In this section, we show that our basal motif can give rise to 

complex multistability, we clarify the effects of the additional positive feedback loops using bifurcation 

analysis, and we explain the biological meaning of each parameter region in the context of the 

heterogeneous differentiation of CD4+ T cells. 

For illustrative purpose, we first choose another set of perfectly symmetrical parameters (Additional file 

1: Table S1 Generic Model 3). This model differs from Generic Model 1 in that the double-negative 

feedback (mutual inhibition) is not strong enough to create bistability. Nonetheless, with the addition of 

symmetrical increase of auto-activation loops, a bistable region first appears in the intermediate range 

(1.7 < S1 < 2.4) of the primary signal (Additional file 6: Figure S5A), similar to the case of Generic 

Model 1 (Figure 3D). Further increase of the auto-activation weights enlarges the bistable region, and at a 

critical point (weights = 1.8), the pitchfork bifurcation changes from supercritical (Additional file 6: 

Figure S5A, weights = 1.5) to subcritical (Additional file 6: Figure S5B, weights = 3.2). Beyond the 

transition from supercritical to subcritical, each pitchfork bifurcation gives rise to two saddle-node 

bifurcation points (Additional file 6: Figure S5B and C). On the bidirectional (S1-S2-S3) two-parameter 

bifurcation diagram (Figure 5A), each cusp region 'folds back' to form three interconnected cusp regions, 

which govern two new bistable regions and one tristable region (Figure 5A). Further increase of the auto-



 68 

activation weights enlarges the original bistable region as well as the newly formed multistable regions. 

Eventually, the plane on the bidirectional two-parameter bifurcation diagram is divided into 11 regions 

with distinct stability features (Figure 5B). 

We clarify this unique two-parameter bifurcation diagram as follows. If the autoactivation loops are 

absent or weaker, the parameter region outside of the reprogramming switchbistable region (Figure 3F) is 

continuous and monostable, although it can represent four types of steady states. Essentially, strong auto-

activation loops create folding in this monostable region so that it is divided into four monostable regions 

separated by four new bistable regions. This structure effectively creates an additional level of robustness 

of cell fate commitment, which is rendered by two new types of bistable switches, in addition to the 

reprogramming switch. One type of switch consists of the two bistable regions located at lower range of 

the primary signal (Figure 5B, light blue areas), which controls differentiation/dedifferentiation 

commitment, i.e. the switches from or to the naïve state (Additional file 6: Figure S5D and E). Another 

type of switch consists of the two bistable regions located at higher range of the primary signal (Figure 

5B, light yellow areas), which controls co-expression commitment, i.e. the switches from or to the 

double-positive state (Additional file 6: Figure S5D and E). We define these two switches as the 

‘differentiation switch’ and the ‘co-expression switch’ respectively. The tri-stable regions in this diagram 

are the overlapping areas between the bistable regions governed by the reprogramming switch and either 

the differentiation or the co-expression switch. In fact, extremely high weights (>4) of auto-activation 

may give rise to a tetra-stable region, where the three types of the bistable regions overlap (Additional file 

6: Figure S5C). 

In summary, the positive feedback loop involving mutual inhibition of the master regulators can create the 

reprogramming switch, and additional feedback loops involving auto-activation can enhance the 

robustness of the reprogramming switch and create the differentiation switch and the co-expression 

switch. The features of the three bistable switches are listed in Table 3. 
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Table 3 Features of three bistable switches obtained with the basal motif 

Bistable switch Phenotypic transition 

controlled by the switch 
Underlying positive feedback loops Type of related 

heterogeneous 

differentiation 

Differentiation Naïve ⟺ XSP or YSP Auto-activation NA 

Reprogramming XSP ⟺ YSP Created by mutual inhibition and 

enhanced by auto-activation 
Type 1 

Co-expression XSP or YSP ⟺ DP Auto-activation Type 2 

We next ran simulations to check whether these regions of multistability are correlated to various types of 

heterogeneous differentiation. Our results show that Type 1 heterogeneous differentiation can be induced 

in the reprogramming switch region (Figure 5C) (this is consistent with the results obtained with the core 

motif), Type 2 heterogeneous differentiation can be induced in the co-expression bistable switch regions 

(Figure 5D and E), and Type 3 heterogeneous differentiation can be induced in the tri-stable region 

consisting of three functional (non-naïve) states (Figure 5F). These types of heterogeneous 

differentiations are all robust in terms of single cell commitment because the corresponding parameter 

regions admit a variety of stable steady states. 

Positive feedback loops have long been recognized as mechanisms for biological switches [56-58]. We 

have demonstrated that two types of positive feedback in the CD4+ T cell differentiation network underlie 

three types of bistable switches that govern the transitions among different phenotypes of those T cells. In 

addition to ensuring the robust commitment, the multistability created by positive feedback loops may be 

used to generate phenotypic diversities of various types. In this context, the biological functions of the 

positive feedback loops are seen as more versatile than giving rise to simple on-or-off switches. 

Our theoretical analysis of the basal regulatory motif (Figure 2D) started with symmetrical parameter 

values and then considered the effects of broken symmetries. In the next section, we show how non-

symmetrical prototype models of heterogeneous differentiation among real lines of CD4+ T cells can be 

studied within this unifying framework despite their diverse features. 
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Mathematical models based on the theoretical framework can be used to understand experimental 

results and make testable predictions 

In this section we discuss three prototype models for studying heterogeneous differentiation of CD4+ T 

cells. The first two models are aimed to explain some interesting biological phenomena that were not 

studied previously with mathematical modeling. The third one is a simplified version of our previous 

model [33], but we have made it more accessible by using the framework presented here. Because of their 

limited scope, none of these models are intended to provide a comprehensive understanding of the 

corresponding biological systems. Rather, our intention is to illustrate how to use the modeling 

framework to explain observed heterogeneous differentiation and make testable predictions. 

Prototype Model 1: Heterogeneous differentiation of TH1 and TH2 cells 

Previous mathematical models successfully described the dynamic behavior and the underlying molecular 

control system of the reciprocal differentiation of TH1 and TH2 cells [27-31]. However, heterogeneous 

differentiation of TH1 and TH2 cells and its underlying molecular controls were not studied with these 

models. Yamashita et al. [18] discovered that the heterogeneous differentiation of TH1 and TH2 cells can 

be obtained with antigenic stimulations. Similar observations were obtained by Hosken et al. [20], and 

Messi et al. [21]. We have built a mathematical model, based on the influence diagram in Figure 2A, to 

describe heterogeneous differentiation of TH1 and TH2 cells. The parameter values for the model are listed 

in Additional file 1: Table S2. 

Figure 6A shows the bidirectional two-parameter bifurcation diagram, and Figure 6B shows the 

simulation results as the heterogeneity score with respect to the two single-positive phenotypes. Our 

simulation results suggest that exogenous polarizing signals, i.e. IL-4 and IL-12, are not sufficient to 

trigger differentiation. They must be accompanied by a sufficiently high dose of antigenic stimulant (TCR 

signal) to trigger the differentiation into the corresponding phenotypes. This conclusion is in agreement 
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with previous experimental results [18]. High strength of TCR signal alone (>1 unit) or with intermediate 

level of IL-4 (0.3 unit) was sufficient to induce the differentiation of two single-positive phenotypes. With 

increasing strengths of TCR signal, our simulations show a spectrum of heterogeneous populations with 

increasing percentages of TH2 cells and decreasing percentage of TH1 cells. The following experimental 

findings are consistent with our simulation. Messi et al. [21] observed the heterogeneous differentiation of 

TH1 and TH2 with IL-4 and antigenic stimulant. Yamashita et al. [18] observed a similar pattern of 

heterogeneous populations with increasing doses of antigenic stimulant in the presence of an intermediate 

level of IL-4. Hosken et al. [20] also observed such pattern with a different type of antigenic stimulant, 

although only a narrow range of stimulant concentrations could give rise to heterogeneous populations. 

Clearly, our model predicts that in order to achieve comparable proportions of TH1 cells and TH2 cells, 

one would need a higher dose of antigenic stimulant without exogenous IL-4 as compared to with 

exogenous IL-4. Based on the bifurcation diagram, we also predict that a slow increase of stimulant 

concentration favors the differentiation of TH1 cells. Additionally, the simulation results and bifurcation 

analysis show that the double-positive phenotype can be obtained in the presence of TH1 polarizing 

signals. Hegazy et al. [24] have discovered that exogenous TH1 polarizing signals can reprogram TH2 cells 

into T-bet+GATA3+ cells in the presence of antigenic stimulant. Our model predicts that the 

differentiation of such double-positive phenotype can be directly induced by high dose of antigenic 

stimulant (>2 units) in the presence of exogenous TH1 polarizing signals (0.5 unit), and the differentiation 

is likely to be heterogeneous with the concurrent induction of two types of single-positive cells, in 

addition to the double-positive cells. If we reduce the auto-activation weight of GATA3 (see Methods), 

then the TCR signal primarily triggers the differentiation of TH1 cells instead of a heterogeneous 

population (Figure 6C and D). Maruyama et al. [59] demonstrated that TCR signal alone can induce a 

significant fraction of GATA3+ cells (this is consistent with the experimental findings mentioned above), 

and blocking the auto-activation feedback between GATA3 and IL-4 prevents the induction of GATA3+ 

cells. Our model predicts that the population may be dominated by TH1 cells under this condition. 
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Table 4 summarizes the published observations consistent with our simulation results and new predictions 

based on the bifurcation analyses and simulation results. 

Table 4 Summary of simulation results of Prototype Model 1 

Conditions of differentiation induction Induced cell population Evidence 

Exogenous polarizing signals alone No induction of differentiation [18] 

Low dose of antigenic stimulant (TCR 

signal <1 units) and exogenous 

polarizing signals 

Homogeneous differentiation (induced phenotype 

corresponds to type polarizing signal) 
[18] 

Antigenic stimulant in the presence of 

IL-4 
Heterogeneous differentiation of TH1 and TH2 [18,21] 

Increasing strengths of TCR signal A spectrum of heterogeneous populations with 

increasing percentages of TH2 cells and decreasing 

percentage of TH1 cells. 

[20] 

Increasing strengths of TCR signal in 

the presence of IL-4 
A spectrum of heterogeneous populations with 

increasing percentages of TH2 cells and decreasing 

percentage of TH1 cells. 

[18] 

TCR signal alone vs. TCR signal with 

IL-4 
Stronger TCR signal is required to achieve a balanced 

population of TH1 and TH2 in condition without IL-4 

than in condition with IL-4 

Prediction 

TCR signal + TH1 polarizing signals Double-positive phenotype can be observed (via 

reprogramming from TH2 cells) 
[24] 

TCR signal + TH1 polarizing signals Direct induction of double-positive phenotype can be 

achieved with strong TCR signal and TH1 polarizing 

condition 

Prediction 

Blocking GATA3-IL4 feedback by 

antibodies against IL-4 and inducing 

with TCR signal 

No TH2 cells are observed [59] 

Blocking GATA3-IL4 feedback by 

antibodies against IL-4 and inducing 

with TCR signal 

Homogeneous differentiation of TH1 cells Prediction 

Prototype Model 2: Heterogeneous differentiation of TH1 and TH17 cells 

We build a prototype model to study the heterogeneous differentiation of TH1 and TH17 cells that was 

recently demonstrated by Ghoreschi et al. [17]. The influence diagram of the model is shown in Figure 

2B, and the parameter values are listed in Additional file 1: Table S3. In the presence of TCR signal 

alone, the simulated population is dominated by TH1 cells (Figure 7A and B). When the TCR signal is 

combined with IL-23 + IL-1 polarizing signal, the induced population contains both the T-bet+RORγt- 

single-positive phenotype and the T-bet+RORγt+ double positive phenotype (Figure 7A and B). When the 
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TCR signal is combined with TGF-β (another polarizing signal), the population is dominated by the T-

bet-RORγt+ single-positive phenotype (Figure 7C and D). These results are consistent with the 

observations of Ghoreschi et al. [17]. Our model predicts that lowering the TCR signal strength may 

result in the reprogramming from T-bet+RORγt+ double positive phenotype to T-bet+RORγt- single 

positive phenotype even in the presence of a strong IL-23 + IL-1 signal and that when low dose of TGF-

β + IL-6 (≈0.4 unit) is used, one may observe the heterogeneous differentiation of TH1 and TH17 cells. 

Also, the model recapitulates the scenario in which knocking out T-bet genes resulted in the 

homogeneous differentiation into T-bet-RORγt+ single-positive phenotype when either of the polarizing 

signals is used (Additional file 7: Figure S6) [17]. 

Simulation results with testable predictions are summarized in Table 5. 

Table 5 Summary of simulation results of Prototype Model 2 

Conditions of differentiation 

induction 
Induced cell population Evidence 

TCR signal alone` The cell population is dominated by the TH1 cells [17] 

TCR signal and IL-23 + IL-1 signal Heterogeneous differentiation of T-bet+RORγt- cells and 

T-bet+RORγt+ cells. 
[17] 

TCR signal and TGF-β + IL-6 

signal 
The cell population is dominated by T-bet-RORγt+ cells [17] 

Lowering TCR signal after 

differentiation 
Reprogramming from T-bet+RORγt+ cells to T-bet+RORγt- 

cells 
Prediction 

TCR signal and low dose of TGF-

β + IL-6 (≈0.4 unit) 
Heterogeneous differentiation of TH1 and TH17 cells Prediction 

Knocking out T-bet genes and 

inducing with TCR signal 
Homogeneous differentiation of T-bet-RORγt+ cells with 

either TGF-β signal or IL-23 + IL-1 signal 
[17] 

Prototype Model 3: Heterogeneous differentiation of iTReg and TH17 cells 

Heterogeneous differentiation of iTReg and TH17 cells has been observed in many experiments [15,16,19]. 

Here we present a prototype model based on the influence diagram (Figure 2C) and the parameter values 

(Additional file 1: Table S4). The model shows that a combination of TGF-β and TCR signal can drive a 

heterogeneous population containing Foxp3+RORγt-, Foxp3-RORγt+ and Foxp3+RORγt+ phenotypes 

(Figure 8A and B, tri-stable region at TCR + TGF-β signal ≈ 1.8). Raising the strength of TGF-β + TCR 
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signal or adding IL-6 (a TH17 polarizing signal) can skew the population into Foxp3-RORγt+ and 

Foxp3+RORγt+ phenotypes (Figure 8A and B, bistable region in the upper plot at highest level of 

TCR + TGF-β signal). These results are in agreement with previous experimental observations [15,16]. 

Predictions made from the model include: 1) an intermediate TGF-β + TCR signal (1–1.5 units) favors 

heterogeneous differentiation of Foxp3+RORγt- and Foxp3-RORγt+ populations; 2) an intermediate level 

of TGF-β + TCR signal (1–1.5 units) with an iTReg polarizing signal produces a homogeneous 

Foxp3+RORγt- population; and 3) a high level of TGF-β + TCR signal (>2 units) with an iTReg polarizing 

signal induces heterogeneous Foxp3+RORγt- and Foxp3+RORγt+ populations. 

Simulation results with testable predictions are summarized in Table 6. 

Table 6 Summary of simulation results of Prototype Model 3 

Conditions of differentiation 

induction 
Induced cell population Evidence 

Intermediate TGF-β + TCR signal 

(1.5-2 units) 
Heterogeneous differentiation of Foxp3+RORγt-, Foxp3-

RORγt+ and Foxp3+RORγt+ cells 
[15] 

High TGF-β + TCR signal (2.5 

units) 
Heterogeneous differentiation of Foxp3-RORγt+ and 

Foxp3+RORγt+ cells 
[16] 

Low-Intermediate TGF-β + TCR 

signal (1–2 units) and IL-6 signal 
Heterogeneous differentiation of Foxp3-RORγt+ and 

Foxp3+RORγt+ cells 
[15] 

Low TGF-β + TCR signal (1–1.5 

units) 
Heterogeneous differentiation of Foxp3+RORγt-, Foxp3-

RORγt+ cells 
Prediction 

Low-intermediate level of TGF-

β + TCR signal (1–2 units) and IL-2 

or ATRA 

Homogeneous differentiation of Foxp3+RORγt- cells Prediction 

High TGF-β + TCR signal (2.5 

units) and IL-2 or ATRA 
Heterogeneous differentiation of Foxp3+RORγt- and 

Foxp3+RORγt+ cells 
Prediction 
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Conclusions 

In this study, we have demonstrated that a simple signaling network motif can be responsible for 

generating all possible types of heterogeneous populations with respect to a pair of master regulators 

controlling CD4+ T cell differentiation. We showed how naïve CD4+ T cells can integrate multiple types 

of signals to differentiate into populations of diverse phenotypes. We illustrate the theoretical framework 

with three specific cases and made testable predictions. 

It is becoming evident that certain signals can drive the differentiation of multiple lineages of T cells, 

whereas other environmental cues can skew the outcome to specific phenotypes [60]. Because the 

proposed basal motif appears commonly in the signaling networks controlling CD4+ T cell differentiation, 

biological examples of this framework are clearly not limited to the prototype models we presented here. 

For example, it has been recently demonstrated that STAT3 activation is required for TH2 differentiation 

[61]. This gives the possibility that IL-6, which upregulates RORγt via STAT3 activation [62], can act as 

a primary signal giving rise to heterogeneous TH2 and TH17 populations if the cells are primed with 

certain amount of other signals, such as TCR, TGF-β and IL-4. 

Our study suggests the importance of regulated cell-to-cell variations that can be exploited to generate 

phenotypic diversity in CD4+ T cells. The significance of such variations in some other biological systems 

has been highlighted by other groups. Feinerman et al. [63] discovered that the cell-to-cell variations in 

the expression levels of some key co-receptors in CD8+ T cells can be critical for achieving diversity in 

TCR responses. Similarly, Chang et al. [64] demonstrated that variations in the expression of stem cell 

markers can influence the fate of the cell. We have used a simple generic form to account for cell-to-cell 

variability in this study (i.e. parametric variations), it would be interesting to study which specific variable 

factors in naïve CD4+ T cells can be predictive of the phenotypic compositions in an induced population. 

Harnessing such factors might be useful for fine-tuning the immune system to prevent and treat diseases. 
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Our modeling approach has the advantage of describing non-linear responses in biochemical reactions 

without knowing detailed biochemical mechanisms and kinetics, which are generally unavailable for T 

cell differentiation. It has the disadvantage that parameters in the equations are phenomenological and 

cannot be related to biochemical reaction rate constants. We expect that other modeling approaches, such 

as ordinary differential equations with Hill function nonlinearities, will produce results similar to ours. 

We are aware of the following limitations of this framework. First, all master regulators of CD4+ T cell 

may influence each other during differentiation. Thus considering only a pair of master regulators may 

not be sufficient to describe all important components governing the heterogeneous differentiation of 

CD4+ T cells. Secondly, cell-to-cell communication is neglected in our models of cell population. We 

assume that our models describe the initial phase of differentiation and that the phenotypic compositions 

of the population do not change significantly during the differentiation process. The validity of this 

assumption needs to be examined in future studies. 
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Methods 

Dynamical model 

We modeled the signaling network motifs with a generic form of ordinary differential equations (ODEs) 

that describe both gene expression and protein interaction networks [65-67]. Each ODE in our model has 

the form: 
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iX is the activity or concentration of protein i i, Xi(t) relaxes toward a value 

determined by the sigmoidal function, F, which has a steepness set by i . The basal value of F, in the 

absence of any influencing factors, is determined by 
o
i . The coefficients ij   determine the influence 

of protein j  on protein i . N is the total number of proteins in the network. 

All variables and parameters are dimensionless. One time unit in our simulations corresponds to 1.5 days. 

Parameter values are listed in supplementary tables. 

All simulations and bifurcation analyses were performed with PyDSTool, a software environment for 

dynamical systems [68]. 
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Bifurcation diagrams 

In order to visualize the response of the T cell differentiation network to multiple signals (a primary 

differentiation signal and two types of polarizing signals), we have employed bidirectional two-parameter 

bifurcation diagrams, as in [69]. The two two-parameter bifurcation diagrams share the same primary 

bifurcation parameter (the primary differentiation signal, S1) on the horizontal axis. The secondary 

bifurcation parameters (the polarizing signals, S2 and S3) are plotted on the vertical axis: one in the 

upward direction and the other in the downward direction. The bidirectional two-parameter bifurcation 

diagram allows one to analyze the response of the regulatory system to the primary signal alone or in 

combination with either of the polarizing signals. Although this two-dimensional representation does not 

allow a full analysis of the responses to all three types of signals simultaneously, it is very useful in 

understanding the complex interplay between signals and responses in these heterogeneous differentiation 

systems. We ran simulations for a population of naïve CD4+ T cells, and we overlaid the simulation 

results on the bidirectional two-parameter bifurcation diagrams, allowing one to visualize the bifurcation 

analyses and simulation results simultaneously (detailed below). 

Cell-to-cell variability 

To account for cell-to-cell variability in a population, we made many simulations of the system of ODEs, 

each time with a slightly different choice of parameter values, to represent slight differences from cell to 

cell. We allowed all of the parameters in our model to change simultaneously, and we assumed that the 

value of each parameter conforms to a normal distribution with CV = 0.05 (CV = coefficient of 

variation = standard deviation / mean). The mean value that we specified for each parameter distribution 

is also referred as the ‘basal’ value of that parameter. In our bifurcation analysis of the dynamical system, 

we considered an imaginary cell that adopts the basal value for each of its parameters, and we defined this 

cell as the ‘average’ cell. Note that none of the cells in our simulated population is likely to be this 

average cell, because every parameter value is likely to deviate a little (CV = 5 %) from the basal value. 
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In order to simulate the induced differentiation process, we first solved the ODEs numerically with some 

small initial values of master regulator concentrations in the absence of any exogenous signals. After a 

short period of time, each simulated cell will find its own, stable ‘double-negative’ steady state, 

corresponding to a naïve CD4+ T cell. Next, we changed the primary and/or polarizing signals to certain 

positive values and continued the numerical simulation. If needed, we continued the simulation again with 

a second change of primary and/or polarizing signals. By the end of the simulation, each cell arrives at its 

corresponding ‘induced’ phenotype, which might vary from cell to cell because of the parametric 

variability of the population. We repeated this simulation 200 times for a given set of exogenous signals 

to represent the responses of 200 cells in a population. We made the simple definition that a protein is 

expressed when its level is greater than 0.5 units. The simulations for a cell population were repeated 

40x40 times with primary and polarizing signals of various strengths, and we overlaid the final steady 

state phenotypic composition on the point with corresponding coordinates on the bidirectional two-

parameter bifurcation diagram. 

Mutant simulation 

The experiment of knocking out GATA3-IL-4 feedback was simulated with reduced weight of auto-

activation of GATA-3 to one-tenth of the original value. The experiment of knocking out T-bet genes was 

simulated by setting 
o

bet-T = −17 (10 times its value in the basal model) 

Heterogeneity score 

To summarize simulations results with multiple phenotypes and to highlight heterogeneous and 

homogeneous populations in parameter space, we compute a ‘heterogeneity score’ for a simulation as 

follows. 
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The scoring function takes a list of ‘phenotypes of interest’ (P1,…,Pn), and computes the sum of the 

pairwise heterogeneities, which are based on the numbers of cells of any two different phenotypes (
iPC  

and 
jPC  ). The score is normalized with respect to the number of phenotypes of interest (n) and the total 

number of cells in the population (N). SH ≈ 1 when there are comparable numbers of cells of the 

phenotypes of interest in the population, SH ≈ −1 when the population is dominated by one phenotype out 

of all the phenotypes of interest, and SH ≈ 0 when there are few cells with the phenotypes of interest in the 

population, or the degree of heterogeneity is moderate. 
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Figure Legends 

Figure 1 Induced heterogeneous differentiation of CD4+ T cells with respect to a pair of master 

regulators (X and Y). A. Diversity of cell phenotypes during induced differentiation. In the 

undifferentiated cell, the expression levels of both X and Y are low. When the cell is differentiated, three 

possible functional phenotypes can be obtained: X single-positive cell, Y single-positive cell and double-

positive cell. B. Three types of induced heterogeneous differentiation. In a differentiation event, a group 

of naive cells can be differentiated into two types of single-positive cells (Type 1), one type of single-

positive cell and DP cell (Type 2) or all three functional phenotypes (Type 3). 

Figure 2 Basal network motif controlling heterogeneous differentiation in the two master regulator 

paradigm. Solid green arrow: activation influence in which the activator alone can switch on the 

expression of the target protein. Dashed green arrow: activation influence in which the activator alone 

cannot switch on the expression of the target protein. Red arrow: inhibition influence. Protein name in 

parenthesis: possible intermediate protein for the positive feedback loop. A. Prototype Model 1: 

heterogeneous differentiation of TH1 and TH2. B. Prototype Model 2: heterogeneous differentiation of TH1 

and TH17. C. Prototype Model 3: heterogeneous differentiation of iTReg and TH17. D. The basal network 

motif. 

Figure 3 Analyses of the core motif with symmetrical parameters. A-C. Phase plane portraits for three 

values of primary signal strength (zero, intermediate, high), in the absence of polarizing signals 

(S2 = S3 = 0). Green curve: X nullcline; red curve: Y nullcline; blue arrow: representative vector in the 

phase space; closed circle: stable steady state; open circle: unstable steady state; gray curve: separatrix. D. 

One-parameter bifurcation diagram for steady state level of X as a function of primary signal S1. Solid 

curve: stable steady state; dashed curve: unstable steady state. E. Two-parameter bifurcation diagram with 

respect to primary signal S1 and polarizing signal S2, with S3 = 0. Solid curve: locus of pitchfork 

bifurcation points. The pitchfork bifurcation points coalesce and disappear at S2 = 0.357. F. Bidirectional 
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two-parameter bifurcation diagram with respect to primary signal S1 and polarizing signals S2 and S3. 

Top half: S1—S2 diagram, with S3 = 0, as in panel E. Bottom half: S1—S3 diagram, with S2 = 0. The 

types of stable steady states in each region are annotated as colored circles. Adjoined circles: 

multistability. See Figure 1 for interpretation of the color scheme. G. Simulation results for treatment of a 

population of cells simultaneously with primary and polarizing signals. H. Simulation results for 

sequential treatment: polarizing signal followed by primary signal. I. Simulation results for sequential 

treatment: primary signal followed by polarizing signal. In G-I, the heterogeneity scores with respect to 

XSP and YSP are plotted. 

Figure 4 Analyses of the core motif with asymmetrical parameters. A and B. One-parameter 

bifurcation diagram for steady state levels of X and Y as functions of primary signal S1 (S2 = S3 = 0). C. 

Bidirectional two-parameter bifurcation diagram with respect to primary signal S1 and polarizing signal 

S2 or S3. See legend of Figure 3 panels D and E for the interpretation of curves and colored circles. D-F. 

See legend of Figure 3 Panels G-I for simulation conditions. 

Figure 5 Analyses of the basal motif with auto-activation relations. A. Bidirectional two-parameter 

bifurcation diagram with respect to primary signal S1 and polarizing signals S2 and S3 for intermediate 

weight of auto-activation relations (ω = 1.8). Insets show the zoomed-in view of the cusp regions of the 

bistable region. B. Bidirectional two-parameter bifurcation diagram with respect to primary signal S1 and 

polarizing signals S2 and S3 for high weight of auto-activation relations (ω = 3.2). The types of stable 

steady states in each region are annotated as colored circles. Adjoined circles: multistability. See Figure 1 

for interpretation of the color scheme. Light blue area: bistable region governing differentiation switch. 

Light green area: bistable region governing reprogramming switch. Light yellow area: bistable region 

governing co-expression switch. C-F. Various types of heterogeneity scores are plotted for high weight of 

auto-activation relations (ω = 3.2). C. The heterogeneity scores with respect to XSP and YSP. D. The 

heterogeneity scores with respect to XSP and DP. E. The heterogeneity scores with respect to YSP and 

DP. F. The heterogeneity scores with respect to XSP, YSP and DP. 
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Figure 6 Analyses of Prototype Model 1 (heterogeneous differentiation of TH1 and TH2 cells). A. 

Bidirectional two-parameter bifurcation diagram with respect to primary signal TCR and polarizing 

signals IL-12 and IL-4. B. Simulation results for induced differentiation. The heterogeneity scores with 

respect to T-bet single-positive phenotype and GATA3 single-positive phenotype are shown. C. Same 

legend as Panel A. The GATA-3 auto-activation relation is blocked in the model. D. Same legend as 

Panel B. The GATA-3 auto-activation relation is blocked in the model. In Panels A and C: Adjoined 

circles: multistability. Blue circle: naïve phenotype. Green circle: T-bet single-positive phenotype. Red 

circle: GATA3 single positive phenotype. Yellow: DP phenotype. 

Figure 7 Analyses of Prototype Model 2 (heterogeneous differentiation of TH1 and TH17 cells). A. 

Two-parameter bifurcation diagram with respect to primary signal TCR and polarizing signal IL-23 + IL1. 

B. Simulation results for induced differentiation. The heterogeneity scores with respect to T-bet single-

positive phenotype and DP phenotype are shown. C. Two-parameter bifurcation diagram with respect to 

primary signal TCR and polarizing signal TGF-β + IL-6. D. Simulation results for induced differentiation. 

Heterogeneity scores with respect to T-bet single-positive phenotype and RORγt single-positive 

phenotype are shown. In Panels A and C: Adjoined circles: multistability. Blue circle: naïve phenotype. 

Green circle: T-bet single-positive phenotype. Red circle: RORγt single-positive phenotype. Yellow: DP 

phenotype. 

Figure 8 Analyses of Prototype Model 3 (heterogeneous differentiation of iTReg and TH17 cells). A. 

Bidirectional two-parameter bifurcation diagram with respect to primary signal TCR + TGF-β and 

polarizing signals ATRA/IL2 and IL-6. Adjoined circles: multistability. Blue circle: naïve phenotype. 

Green circle: Foxp3 single-positive phenotype. Red circle: RORγt single-positive phenotype. Yellow: DP 

phenotype. B. Simulation results of induced differentiation. The heterogeneity scores with respect to 

Foxp3 single-positive phenotype, RORγt single-positive phenotype and DP phenotype are shown. 
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Figure 1. Induced heterogeneous differentiation of CD4+ T cells with respect to a pair of master regulators 

(X and Y).  
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Figure 2. Basal network motif controlling heterogeneous differentiation in the two master regulator 

paradigm. 
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Figure 3. Analyses of the core motif with symmetrical parameters 
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Figure 4. Analyses of the core motif with asymmetrical parameters 
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Figure 5. Analyses of the basal motif with auto-activation relations   
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Figure 6. Analyses of Prototype Model 1 (heterogeneous differentiation of TH1 and TH2 cells)   
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Figure 7. Analyses of Prototype Model 2 (heterogeneous differentiation of TH1 and TH17 cells) 

 

 

 

 

 
 

 

Figure 8. Analyses of Prototype Model 3 (heterogeneous differentiation of iTReg and TH17 cells) 
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Additional Files 
 

Additional file 1 

4 supplementary tables and legends for supplementary figures. 

 

 
Table S 1 Parameter values for an average cell in three different generic models 

Parameter 

name 
Description Generic Model 1 Generic Model 2 Generic Model 3 

X  Relaxation rate of X 
5 5 5 

Y  Relaxation rate of Y 
5 5 5 

X  Steepness of sigmoidal function for X 
5 5 2 

Y  Steepness of sigmoidal function for Y 
5 5 2 

o

X  Basal activation state of X 
-0.8 -0.6 -2.4 

o

Y  Basal activation state of Y 
-0.8 -1 -2.4 

XX  Weight of autoactivation of  X 
0 0 3.2 

XY  Weight of inhibition on X by Y 
-1.5 -2.5 -1 

YY  Weight of autoactivation of  Y 
0 0 3.2 

YX  Weight of inhibition on Y by X 
-1.5 -1 -1 

X1S   Weight of activation on X by S1 
1 1 1 

Y1S   Weight of activation on Y by S1 
1 0.8 1 

X2S   Weight of activation on X by S2 
1 1 1 

Y3S   Weight of activation on Y by S3 
1 1 1 

S1
 

Strength of primary signal S1 
0 - 3* 0 - 3 0 - 2.5 

S2
 

Strength of polarizing signal S2 
0 - 0.4 0 - 0.6 0 - 1.3 

S3
 

Strength of polarizing signal S3 
0 - 0.4 0 - 0.6 0 - 1.3 

 

* S1 is replaced by sigmoidal function )1(5.1 )S11(2  e in Figure S 1A and B to illustrate the effect of primary signal 

saturation. 
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Table S 2 Parameter values for an average cell in Prototype Model 1 (TH1-TH2) 

Parameter name Description Value 

bet-T  Relaxation rate of T-bet 
5 

GATA3  Relaxation rate of GATA3 
5 

bet-T  Steepness of sigmoidal function for T-bet 
4 

GATA3  Steepness of sigmoidal function for GATA3 
6 

o

bet-T  Basal activation state of T-bet 
-1.7 

o

GATA3  Basal activation state of GATA3 
-2 

bet-Tbet-T   Weight of autoactivation of  T-bet 
2 

bet-TGATA3  Weight of inhibition on T-bet by GATA3 
-2 

GATA3GATA3  Weight of autoactivation of  GATA3 
2.5 (0.25) 

GATA3bet-T   Weight of inhibition on GATA3 by T-bet 
-1 

bet-TTCR  Weight of activation on T-bet by TCR 
1 

GATA3TCR  Weight of activation on GATA3 by TCR 
1 

bet-T12IL   Weight of activation on T-bet by IL-12 
1 

GATA34IL   Weight of activation on GATA3 by IL-4 
1 

TCR
 

Strength of  TCR signal 
0 - 2.3 

IL-12
 

Strength of IL-12 signal 
0 - 0.7 

IL-4
 

Strength of IL-4 signal 
0 - 1.2 

 

 



 102 

Table S 3 Parameter values for an average cell in Prototype Model 2 (TH1-TH17) 

Parameter name Description Value 

bet-T  Relaxation rate of T-bet 
5 

tRORγ  Relaxation rate of RORγt 
5 

bet-T  Steepness of sigmoidal function for T-bet 
4 

tRORγ  Steepness of sigmoidal function for RORγt 
3 

o

bet-T  Basal activation state of T-bet 
-1.7 

o

tRORγ  Basal activation state of RORγt 
-2.7 

bet-Tbet-T   Weight of autoactivation of  T-bet 
2 

bet-TtRORγ   Weight of inhibition on T-bet by RORγt 
-1 

tRORγtRORγ   Weight of autoactivation of RORγt 
2 

tRORγbet-T   Weight of inhibition on RORγt by T-bet 
-0.8 

bet-TTCR  Weight of activation on T-bet by TCR 
2.2 

tRORγTCR  Weight of activation on RORγt by TCR 
2.2 

tRORγIL1IL23   
Weight of activation on RORγt by IL-23+IL-

1 

1 

tRORγIL6TGFβ   
Weight of activation on RORγt by 

TGFβ+IL-6 

1 

bet-TIL6TGFβ 
 

Weight of inhibition on T-bet by TGFβ+IL-6 
-1 

TCR
 

Strength of TCR signal 

)1(1 )S18.01(3  e  

3S10   

IL23+IL1
 

Strength of IL-23+IL-1 signal 
0 - 1 

TGFβ+IL6 Strength of TGFβ+IL-6 signal 
0 - 1 
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Table S 4 Parameter values for an average cell in Prototype Model 3 (iTReg-TH17) 

Parameter name Description Value 

Foxp3  Relaxation rate of Foxp3 
5 

tRORγ  Relaxation rate of RORγt 
5 

Foxp3  Steepness of sigmoidal function for Foxp3 
2.8 

tRORγ  Steepness of sigmoidal function for RORγt 
3 

o

Foxp3  Basal activation state of Foxp3 
-2.5 

o

tRORγ  Basal activation state of RORγt 
-2.5 

Foxp3Foxp3  Weight of autoactivation of Foxp3 
3 

Foxp3tRORγ   Weight of inhibition on Foxp3 by RORγt 
-1 

tRORγtRORγ   Weight of autoactivation of RORγt 
3 

tRORγFoxp3  Weight of inhibition on RORγt by Foxp3 
-0.8 

Foxp3TGFβTCR   
Weight of activation on Foxp3 by 

TCR+TGF-β 

2.6 

tRORγTGFβTCR   
Weight of activation on RORγt by 

TCR+TGF-β 

2.6 

Foxp3ATRA/IL2  
Weight of activation on Foxp3 by ATRA/IL-

2 

1.5 

tRORγIL6  Weight of activation on RORγt by IL-6 
1 

tRORγATRA/IL2
 

Weight of inhibition on Foxp3 by ATRA/IL-

2 

-1 

Foxp3IL6
 Weight of inhibition on Foxp3 by IL-6 

-1.5 

TCR+TGFβ
 

Strength of TCR+TGFβ signal 

)1(1 )S18.01(5.2  e  

6.2S10   

ATRA/IL2
 

Strength of ATRA/IL-2 signal 
0 - 1 

IL6 Strength of IL-6 signal 
0 - 1 
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Legends for supplementary figures 

Figure S 1. Effects of primary signal saturation. A. One-parameter bifurcation diagram for steady state 

level of X as a function of primary signal S1, which saturates at 1.5 units. Solid curve: stable steady state; 

dashed curve: unstable steady state. B. Bidirectional two-parameter bifurcation diagram with respect to 

primary signal S1 and polarizing signals S2 and S3. S1 saturates at 1.5 units. Solid curve: locus of 

bifurcation points in Panel A. The types of stable steady states are annotated as colored circles. Adjoined 

circles: multistability. See Figure 1 for interpretation of the color scheme. 

Figure S 2. Hysteresis effect of the ‘reprogramming’ bistable switch. A. One-parameter bifurcation 

diagram for steady state level of X as a function of primary signal S1 in the presence of polarizing signal 

S2. B. One-parameter bifurcation diagram for steady state level of Y as a function of primary signal S1 in 

the presence of polarizing signal S2. C. One-parameter bifurcation diagram for steady state level of X as a 

function of polarizing signals S2 and S3 in the presence of primary signal S1=1.5. D. One-parameter 

bifurcation diagram for steady state level of Y as a function of polarizing signals S2 and S3 in the 

presence of primary signal S1=1.5. E. Bidirectional two-parameter bifurcation diagram with respect to 

primary signal S1 and polarizing signals S2 and S3. Horizontal line: reference to diagram shown in Panels 

A and B. Vertical line: reference to diagrams shown in Panels C and D. The types of stable steady states 

are annotated as colored circles. Adjoined circles: multistability. See Figure 1 for interpretation of the 

color scheme. 

Figure S 3. Simulation results for the core motif with symmetrical parameters. A. Percentages of 

naïve cells at the end of the simulations plotted on the bidirectional two-parameter bifurcation diagram. B. 

Percentages of XSP cells at the end of the simulations plotted on the bidirectional two-parameter 

bifurcation diagram. C. Percentages of YSP cells at the end of the simulations plotted on the bidirectional 

two-parameter bifurcation diagram. D. Percentages of DP cells at the end of the simulations plotted on the 

bidirectional two-parameter bifurcation diagram (compare Panels A-D with Figure 3G). E. Overlaid 
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phase plane portraits. The small cell-to-cell variability make the naïve states (magenta circles) of 

individual cells lie on different sides of the separatrices (gray curves), thereby resulting different fates of 

the cells. Green curve: X nullcline. Red curve: Y nullcline. Closed circle: stable steady state. Open circle: 

unstable steady state. 

Figure S 4. Simulation results with different relaxation rates of X and Y. A.  Simulation results for 

the core motif with symmetrical parameters (compare with Figure 3G). B. Simulation results for the core 

motif with asymmetrical parameters (compare with Figure 4D).  In each panel, heterogeneity scores with 

respect to XSP and YSP are shown. In both simulations, the relaxation rate of Y (
Y ) is changed to 10 

(twice of the rate of X). 

Figure S 5. Additional bifurcation analyses of the full basal motif. A. One-parameter bifurcation 

diagram for steady state level of X as a function of primary signal S1 (S2=S3=0) for the case of 

intermediate weights (=1.5) of auto-activation relations. B. One-parameter bifurcation diagram for steady 

state level of X as a function of primary signal S1 (S2=S3=0) for higher weights (=3.2) of auto-activation 

relations. C. Two-parameter bifurcation diagram with respect to the weights of auto-activation relations 

and the primary signal S1 (S2=S3=0). Purple curve: locus of the supercritical pitchfork bifurcation points. 

Orange curve: locus of the subcritical bifurcation points. Red curve: locus of the saddle-node bifurcation 

points. Gray lines: reference to diagrams shown in Panels A and B. D. One-parameter bifurcation diagram 

for steady state level of X as a function of primary signal S1 in the presence of polarizing signal S2. E. 

One-parameter bifurcation diagram for steady state level of Y as a function of primary signal S1 in the 

presence of polarizing signal S2. F. Bidirectional two-parameter bifurcation diagram with respect to 

primary signal S1 and polarizing signals S2 and S3. Gray lines: references to diagram shown in Panels D 

and E. In Panels A, B, D and E: Sold curve: stable steady state; dashed curve: unstable steady state. In 

Panels C and F, the types of stable steady states are annotated as colored circles. Adjoined circles: 

multistability. See Figure 1 for interpretation of the color scheme. 
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Figure S 6. Simulation results of Prototype Model 2 (heterogeneous differentiation of TH1 and TH17 

cells) with T-bet knocked-out. A. Two-parameter bifurcation diagram with respect to primary signal 

TCR and polarizing signal IL-23 + IL1. Adjoined circles: multistability. Blue circle: naïve phenotype. 

Green circle: T-bet single-positive phenotype. Red circle: RORγt single positive phenotype. Yellow: DP 

phenotype. B. Simulation results for induced differentiation. Heterogeneity scores with respect to T-bet 

single-positive phenotype and RORγt single-positive phenotype are shown. (Bifurcation diagram and 

simulation results with respect to primary signal TCR and polarizing signal TGF-β + IL-6 are identical to 

Panels A and B.) 
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Additional file 2  

 

 

Figure S1. Effects of primary signal saturation. 

 

Additional file 3 

 

Figure S2. Hysteresis effect of the ‘reprogramming’ bistable switch. 
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Additional file 4 

 

Figure S3. Simulation results for the core motif with symmetrical parameters. 

 

Additional file 5 

 

Figure S4. Simulation results with different relaxation rates of X and Y. 
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Additional file 6 

 

Figure S5. Additional bifurcation analyses of the full basal motif. 

Additional file 7 

 

Figure S6. Simulation results of Prototype Model 2 (heterogeneous differentiation of TH1 and TH17 cells) 

with T-bet knocked-out.   



 110 

CHAPTER 4 

A mathematical framework for understanding four-dimensional heterogeneous differentiation of 

CD4+ T cells 

(A manuscript in preparation) 
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Abstract 

At least four distinct lineages of CD4+ T cells play diverse roles in immune system. Both in vivo and in 

vitro differentiation of the CD4+ T cells often involve multiple phenotypes of cells. Heterogeneous 

differentiation of two lineages governed by a mutual-inhibition motif can be studied with a mathematical 

framework proposed in Chapter 3. Understanding heterogeneous differentiation of CD4+ T cells involving 

more than two lineages is limited by the lack of a framework for analyzing interconnected mutual-

inhibition motifs. In this chapter, I present a mathematical framework for the analysis of multi-stability 

behavior of multiple state variables with multiple mutual-inhibition motifs. A mathematical model for 

CD4+ T cells based on this framework can reproduce and predict heterogeneous differentiations. 
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Introduction 

Immune responses are often complex in terms of the types of cells involved and the biochemical activities 

elicited in pathogenic events. To achieve accurate regulation of various types of responses, the immune 

system has evolved delicate control mechanisms including the differentiation of various subsets of CD4+ 

T cells [1]. Subsets of CD4+ T cells play diverse and important regulatory roles in immune responses. The 

best known subsets of CD4+ T cells are T helper 1 (TH1), T helper 2 (TH2), T helper 17 (TH17) and 

induced regulatory T (iTReg) cells [2]. Each subset of CD4+ T cells has a unique key transcription factor, 

known as a master regulator, which controls the lineage specification. The master regulators for the four 

subsets are T-bet, GATA3, RORγt and Foxp3 respectively [3-6]. The progenitor cells of all four types of 

CD4+ cells are known as naïve CD4+ T cells. These cells can be activated by antigen presentation and 

cytokines, and they differentiate into functional CD4+ T cells upon the activation. The key event of 

differentiation is the up-regulation of at least one master regulator [7]. The identities and strengths of the 

environmental cues, i.e. the exogenous signals, determine the lineage of the differentiated cell. For 

example, interleukin 12 (IL-12) induces naïve T cells to differentiate into TH1 cells in the presence of 

antigenic agent that activate their T cell receptors (TCRs) [8]. 

It is not surprising that most immune responses elicit balanced phenotypes of CD4+ T cells [7,9]. 

Interestingly, even with the homogeneous treatment with exogenous signals, multiple lineages of CD4+ T 

cells can be differentiated from a single pool of naïve CD4+ T cells. Such ‘induced’ heterogeneous 

differentiation indicates that the balanced immune responses observed in vivo may not be due merely to 

the heterogeneous micro-environments of the cells. Rather, specific regulatory mechanisms may be 

responsible for the heterogeneous type of differentiation. 

Previously, we developed a mathematical framework for analyzing heterogeneous differentiation 

involving two master regulators [10,11]. However, crosstalk among all four master regulators is important 

for the specification of CD4+ T cell lineages. Some recent mathematical models for CD4+ T cells have 
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included signaling networks with more than two master regulators, and they can be used to explain the 

differentiation of naïve CD4+ T cells into each of the four lineages [12,13]. However, these models do not 

explain how the naive CD4+ T cells can differentiate heterogeneously into combinations of the four 

lineages. Moreover, the lack of analytic tools for multi-stability behaviors governed by complex mutual-

inhibition relationships has been a challenge to our understanding of this differentiation system. Here, I 

present a framework that can be specifically used to study multi-stability behavior involving networks 

with multiple interconnected mutual-inhibition motifs involving three or four master regulators. I use this 

framework to build a model of CD4+ T cell differentiation with four master regulators and to explain the 

heterogeneous differentiations that involve these regulators. 
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Results 

A three-fold symmetrical differentiation system 

I first analyzed a simple signaling network motif with three master regulators X, Y and Z. Each pair of 

master regulators interacts by mutual-inhibition, and each master regulator activates its own production. 

A differentiation signal S1 activates the production of all master regulators (Fig. 1A). For detailed 

analysis of a two-dimensional system of a similar kind, please refer to our previous studies [10,11]). The 

basal parameter values used in this study are listed in Supplementary Table 1.  

The bifurcation diagram (Fig. 1B) for the differentiation signal S1 reveals that the system has one stable 

steady state for 0 ≤ S1 < 1.8 (e.g., Fig. 1B vertical line C). This state corresponds to the naïve cell since 

all three master regulators are expressed at low levels (Fig. 1C, radar plots). When a population of cells 

was simulated with the indicated amount of signal S1, all cells in the population were still in the naïve 

state at the end of the simulation (Fig. 1C, bar chart). 

At S1 ≈ 2, there occurs a sub-critical pitchfork bifurcation with three-fold symmetry: the system changes 

from one naïve state (Fig. 1C) to three single-positive stable steady states (Fig.1D) and four other unstable 

steady states (not shown, we focus on analyzing stable steady states in this study). In the range of 1.8 < S1 

< 4.5, the system is tri-stable, and the simulated cell population became heterogeneous, containing 

comparable fractions of three single-positive phenotypes at the end of the simulation (Fig. 1D. bar chart). 

At S1 ≈ 5, two further pitchfork bifurcations occur. Each single-positive state changes to two stable 

steady states via a super-critical pitchfork bifurcation with two-fold symmetry, forming six stable steady 

states in total, and at a slightly higher signal strength (S1≈5.5) the system undergoes additional pitchfork 

bifurcations which change these six stable steady states back to three stable steady states. These three new 

stable steady states correspond to double-positive phenotypes (Fig. 1E). In the range 5.5 < S1 < 7.5, the 

system is tri-stable, and the simulated cell population became heterogeneous, containing comparable 

fractions of three double-positive phenotypes at the end of the simulation (Fig. 1E, bar chart). 
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At S1 ≈ 7.5, the system undergoes another sub-critical pitchfork bifurcation with three-fold symmetry, 

changing the three double-positive stable steady states to one triple-positive steady state, and the system is 

mono-stable S1> 7.5 (Fig. 1F). 

 

An asymmetrical differentiation system 

I next analyzed a system with broken symmetry to illustrate how an asymmetrical model differs from a 

symmetrical one. An asymmetrical model can be obtained by making small perturbations to the model 

described in the previous subsection. In particular, I changed the basal production parameter for X from  

-2 to -2.1 and that for Y from -2 to -1.9. Random perturbations of all parameter values give similar results 

(not shown). Typically, the steady states of an asymmetrical system have profiles similar to the 

bifurcation diagram shown in Fig. 2A. 

Briefly, the asymmetrical model breaks the symmetry of the pitchfork bifurcations obtained with the 

symmetrical model. Similar to the symmetrical model, the system changes from a mono-stable naïve state 

(Fig. 2A vertical lines B and Fig. 2B) to a system with three stable steady states (Fig. 2A vertical lines C 

and Fig. 2C), but two of curves corresponding to the single-positive states are disconnected from the 

naïve state, forming two broken pieces or ‘isolas’, each of which has two saddle-node bifurcation points 

(for best illustration, see left plot of Fig. 2A vertical line C). In terms of cell differentiation, one of the 

three single-positive phenotypes is favored because of the broken symmetry, and is more abundant in the 

final state of the simulation (Fig. 2C, bar chart). 

For larger values of S1, three double-positive states exist in the system (Fig. 2A vertical lines D and Fig. 

2D).  

 

A four-fold symmetrical differentiation system 
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Using the same strategy, I analyzed a system with four master regulators W, X, Y and Z (Fig. 3A). The 

parameter values are listed in Supplementary Table 2.  

I plotted the bifurcation diagram for state variable W (Fig. 3B). The diagrams for the other three state 

variables are similar (as in Fig. 1B). The system is mono-stable with one naïve state for 0 ≤ S1 < 1.8 (Fig. 

3B vertical line C and Fig. 3C). At S1 ≈ 2, the system undergoes sub-critical bifurcations with four-fold 

symmetry, and the system is tetra-stable in the range of 2.5 < S1 < 5.3, with four single-positive stable 

steady states (Fig. 3B vertical line D and Fig. 3D). At S1 ≈ 5.5, the system undergoes a pair of pitchfork 

bifurcations, one with three-fold symmetry and the other with two-fold symmetry, changing the four 

stable steady states to six double-positive steady states (Fig. 3B vertical line E and Fig. 3E). At S1 ≈ 9, the 

system undergoes another pair of pitchfork bifurcations, changing the six stable steady states to four 

triple-positive steady states (Fig. 3B vertical line F and Fig. 3F). At S1 ≈ 12, the system undergoes a 

pitchfork bifurcation with four-fold symmetry and becomes mono-stable for S1 > 12 (Fig. 3B vertical line 

G and Fig. 3G). Due to the symmetrical nature of the system, in each of these multi-stable regions, 

comparable fractions of the phenotypes were obtained in the simulation (bar charts in Fig. 3D-F). 

As an example for an asymmetrical model with four master regulators, I present a model for CD4+ T cell 

differentiation in the next subsection. 

 

A system for CD4+ T cell differentiation with four master regulators 

I built a model for CD4+ T cell differentiation with the network shown in Fig. 4A. Parameter values for 

this model are listed in Supplementary Table 3. These values were chosen to give a good fit to the 

experimental observations listed in Table 1. Basically I performed these experiments by inducing cell 

differentiation with various exogenous signals (conditions are described in Table 1, and values of signals 

are listed in Supplementary Table 3) and observing the derived cell populations. The model can reproduce 
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the experimental results listed in Table 1, and I used my mathematical framework to analyze some of the 

key observations involving heterogeneous differentiation. 

With the T cell receptor signal alone, the system can be bi-stable, containing T-bet-single-positive and 

GATA3-single-positive states (Fig. 4B, vertical lines D). When a population of cells was treated with 

TCR signal, a fraction of the population became become TH1 cells, expressing T-bet, and some others 

became TH2 cells, expressing GATA3 (Fig. 4D). When the population was treated with higher strength of 

TCR signal, a higher fraction of TH2 cells was obtained. These results are in agreement with experimental 

results by Yamashita et al [14]. Heterogeneous differentiation of TH1 and TH17 can be reproduced by the 

model as well. As shown in Fig. 4E and F, in the presence of IL-23 and IL-1, four stable steady states (T-

bet-positive, GATA3 positive, RORγt-positive and T-bet-RORγt double positive) co-exist with the TCR 

signal. The simulation results show that the cells were primarily differentiated into T-bet-RORγt double 

positive phenotype and T-bet-positive phenotype (Fig. 4G), and this is consistent with the observation by 

Ghoreschi et al. [15]. 

The list of simulation results and their corresponding experimental evidence are shown in Table 1. 
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Discussion 

Interconnected mutual-inhibition motifs are not unique to CD4+ T cells. Previous studies of generic motifs 

with four mutually-inhibiting transcription factors suggested that this network can exist in other 

differentiation systems [16,17], such as olfactory development [18,19]. In these theoretical studies, 

Olivier et al suggested that the network governs a multi-stable system when the competitions among the 

master regulators are sufficiently high [16,17]. The framework presented here provides a novel analytic 

tool for understanding the multi-stability behaviors of this type of system. 

The model for a population of CD4+ T cells neglects the fact that T cell differentiation can be influenced 

by inter-cellular communications. In other words, cytokines secreted by one cell can influence the 

behaviors of other cells. A consideration of such crosstalk will be the subject of future studies. 

The framework presented here is useful to analyze the multi-stability behavior of dynamic systems that 

have two or more interconnected mutual-inhibition motifs. It has been applied to CD4+ T cells with four 

master regulators in order explain the heterogeneous differentiations observed experimentally. 

  



 119 

Methods 

Dynamical Models 

In this chapter, I build mathematical models of three different signaling networks motifs (two generic 

motifs and one motif specific to T cell differentiation). For all of these models, I use a generic form of 

ordinary differential equations (ODEs) suitable for describing both gene expression and protein 

interaction networks [20-22]. Each ODE in the model has the form: 

d
( ( ) )

d

1(
(1 )

( )

1

i
i i i i

σW

N
o

i i j i j

j

X
γ F σW X

t

F W)
e

W ω ω X

i , ... ,N

 



 




 





 

Here, iX  
is the activity or concentration of protein i . On a time scale = 1/ i , Xi(t) relaxes toward a value 

determined by the sigmoidal function, F, which has a steepness set by i . The basal value of F, in the 

absence of any influencing factors, is determined by
o

i . The coefficients ij   determine the influence 

of protein j  on protein i . N is the total number of proteins in the network. 

All variables and parameters are dimensionless. One time unit in the simulations corresponds to 

approximately 1 day. Basal parameter values (see ‘Cell-to-Cell Variability’ subsection for details) of each 

model are listed in supplementary tables. 

All simulations and bifurcation analyses were performed with PyDSTool, a software environment for 

dynamical systems [23]. 

 

Bifurcation Diagrams and steady state radar plots 
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One parameter bifurcation diagrams were plotted by following the steady state solution of the ODEs with 

change in the value of a control parameter.  

In order to analyze the complex multi-stability behavior of a high-dimensional system, we use radar plots 

to illustrate the steady state of a particular parameter set. This plot depicts the expression level of each 

key state variable (i.e., master regulator) on one sub-plot, and multiple sub-plots describe multiple steady 

states. In principle, the radar plot can illustrate unstable steady states as well as stable steady states, but I 

plot only the stable steady states, which correspond to observable cell phenotypes. 

 

Cell-to-Cell Variability 

To account for cell-to-cell variability in a population, I made many simulations of the system of ODEs, in 

each cell with a slightly different choice of parameter values, to represent slight differences from cell to 

cell. I assumed that the value of each parameter conforms to a normal distribution with CV = 0.05 (CV = 

coefficient of variation = standard deviation / mean). I refer to the mean value for each parameter 

distribution as the ‘basal’ value of that parameter. In the bifurcation analysis of the dynamical system, I 

consider an imaginary cell that adopts the basal value for each of its parameters, and I define this cell as 

the ‘average’ cell. However, none of the cells in the simulated population is likely to be this average cell, 

because every parameter value is likely to deviate a little from the basal value, corresponding to a CV of 

0.05. 

 

Simulation procedure 

In order to simulate the induced differentiation process, I first solved the ODEs numerically with small 

initial values of master regulator concentrations in the absence of any exogenous signals. After a short 

period of time, each simulated cell found its own, stable ‘naïve’ steady state in which all master regulators 



 121 

are expressed at low level, and this state corresponds to a naïve CD4+ T cell. Next, I changed the 

exogenous signals to the values listed in Supplementary Tables 1, 2 and 3 and continued the numerical 

simulation. Each cell arrived at its corresponding ‘induced’ phenotype, which might vary from cell to cell 

because of the parametric variability of the population. The expression level of the proteins in the network 

ranges from 0 unit to 1 unit, and I made the simple definition that a protein is expressed when its level is 

greater than 0.5 units. I defined the derived population as a ‘heterogeneous’ population if it contained 

cells with more than one phenotype. 
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Tables 

Table 1. Experimental results that are in agreement with the model for CD4+ T cells 

Conditions of differentiation 

induction 
Induced cell population Evidence 

Exogenous polarizing signals 

alone 
No induction of differentiation [14] 

Low dose of antigenic stimulant 

(TCR signal) and IL-12 
Homogeneous differentiation of TH1 [14] 

Low dose of antigenic stimulant 

(TCR signal) and IL-4 
Homogeneous differentiation of TH2 [14] 

Antigenic stimulant in the 

presence of IL-4 
Heterogeneous differentiation of TH1 and TH2 [14,24] 

Increasing strengths of TCR 

signal 

A spectrum of heterogeneous populations with 

increasing percentages of TH2 cells and decreasing 

percentage of TH1 cells. 

[25] 

Increasing strengths of TCR 

signal in the presence of IL-4 

A spectrum of heterogeneous populations with 

increasing percentages of TH2 cells and decreasing 

percentage of TH1 cells. 

[14] 

Blocking GATA3-IL4 feedback 

by antibodies against IL-4 and 

inducing with TCR signal 

No TH2 cells are observed [26] 

TCR signal alone The cell population is dominated by the TH1 cells [15] 

TCR signal and IL-23+IL-1 

signal 

Heterogeneous differentiation of T-bet+RORγt- cells 

and T-bet+RORγt+ cells. 
[15] 

TCR signal and TGF-β+IL-6 

signal 
The cell population is dominated by T-bet-RORγt+ cells [15] 

knocking out T-bet genes and 

inducing with TCR signal 

Homogeneous differentiation of T-bet-RORγt+ cells 

with either  TGF-β signal or IL-23+IL-1 signal 
[15] 

TGF-β+TCR signal and IL-6 

signal 

Heterogeneous differentiation of RORγt+ and Foxp3+  

cells 
[27] 

TGF-β+TCR signal and ATRA 

signal 
Homogeneous differentiation of Foxp3+  cells [28] 
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Figure Legends 

Figure 1. Analysis of a motif with three master regulators. A) Influence diagram of the model. B) 

Bifurcation diagrams with respect to S1. Solid curves: stable steady states. Dashed curves: unstable steady 

states. Vertical gray lines: references to stability analysis with specific control parameter values shown in 

following sub-figures. C-F) Radar plots: representation stable steady states. In each radar plot, expression 

levels of master regulators are plotted on the axes. Bar charts: the phenotypic composition of the cell 

population at the end of the numerical simulation (t = 7). 

Figure 2. Analysis of a motif with three master regulators with broken symmetry. A) Bifurcation 

diagrams with respect to S1. Solid curves: stable steady states. Dashed curves: unstable steady states. 

Vertical gray lines: references to stability analysis with specific control parameter values shown in 

following sub-figures. B-E) Radar plots: representation stable steady states. In each radar plot, expression 

levels of master regulators are plotted on the axes. Bar charts: the phenotypic composition of the cell 

population at the end of the numerical simulation (t = 7). 

Figure 3. Analysis of a motif with four master regulators. A) Influence diagram of the model. B) 

Bifurcation diagram with respect to S1. Solid curves: stable steady states. Dashed curves: unstable steady 

states. Vertical gray lines: references to stability analysis with specific control parameter values shown in 

following sub-figures. C-G) Radar plots: representation stable steady states. In each radar plot, expression 

levels of master regulators are plotted on the axes. Bar charts: the phenotypic composition of the cell 

population at the end of the numerical simulation (t = 7). 

Figure 4. Analysis of the CD4+ T cell model. A) Influence diagram of the model. B) Bifurcation 

diagrams with respect to TCR. Solid curves: stable steady states. Dashed curves: unstable steady states. 

Vertical gray lines: references to stability analysis with specific control parameter values shown in 

following sub-figures. C-E and G) Radar plots: representation stable steady states. In each radar plot, 

expression levels of master regulators are plotted on the axes. Bar charts: the phenotypic composition of 
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the cell population at the end of the numerical simulation (t = 7). F) Bifurcation diagrams with respect to 

TCR in the presence of 5 units of IL23 and 5 units of IL-1.  
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Figures 

 

 

Figure 1. Analysis of a motif with three master regulators 
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Figure 2. Analysis of a motif with three master regulators with broken symmetry   



 131 

 

Figure 3. Analysis of a motif with four master regulators. 
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Figure 4. Analysis of the CD4+ T cell model 
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Supplementary Tables 

 

Table S1. Parameter values for the generic model with three master regulators 

 
Parameter Description Value 

S1 Strength of S1 signal 0 - 10 

X  Relaxation rate of X 5 

Y  Relaxation rate of Y 5 

Z  Relaxation rate of Z 5 

X  Steepness of sigmoidal function for 

X 

3 

Y  Steepness of sigmoidal function for 

Y 

3 

Z  Steepness of sigmoidal function for Z 3 

o

X  
Basal activation state of X -2 

o

Y  Basal activation state of Y -2 

o

Z  
Basal activation state of Z -2 

XX  Weight of autoactivation of X 0.2 

YY  Weight of autoactivation of Y 0.2 

ZZ  Weight of autoactivation of Z 0.2 

XY  Weight of inhibition on X by Y -3 

YX  Weight of inhibition on Y by X -3 

YZ  Weight of inhibition on Y by Z -3 

ZY  Weight of inhibition on Z by Y -3 

ZX  Weight of inhibition on Z by X -3 

XZ  Weight of inhibition on X by Z -3 

X1S   Weight of activation on X by S1 1 

Y1S   Weight of activation on Y by S1 1 

Z1S   Weight of activation on Z by S1 1 

 

 

  



 134 

Table S2. Parameter values for the generic model with four master regulators 

 

 
Parameter Description Value 

S1 Strength of S1 signal 0 - 15 

W  Relaxation rate of W 5 

X  Relaxation rate of X 5 

Y  Relaxation rate of Y 5 

Z  Relaxation rate of Z 5 

W  Steepness of sigmoidal function for W 3 

X  Steepness of sigmoidal function for X 3 

Y  Steepness of sigmoidal function for Y 3 

Z  Steepness of sigmoidal function for Z 3 

o

W  
Basal activation state of W -2 

o

X  
Basal activation state of X -2 

o

Y  Basal activation state of Y -2 

o

Z  
Basal activation state of Z -2 

WW  Weight of autoactivation of W 0.2 

XX  Weight of autoactivation of X 0.2 

YY  Weight of autoactivation of Y 0.2 

ZZ  Weight of autoactivation of Z 0.2 

WX  Weight of inhibition on W by X -3.5 

WY  Weight of inhibition on W by Y -3.5 

WZ  Weight of inhibition on W by Z -3.5 

XW  Weight of inhibition on X by W -3.5 

XY  Weight of inhibition on X by Y -3.5 

XZ  Weight of inhibition on X by Z -3.5 

YW  Weight of inhibition on Y by W -3.5 

YX  Weight of inhibition on Y by X -3.5 

YZ  Weight of inhibition on Y by Z -3.5 

ZW  Weight of inhibition on Z by W -3.5 

ZY  Weight of inhibition on Z by Y -3.5 

ZX  Weight of inhibition on Z by X -3.5 

W1S   Weight of activation on W by S1 1 

X1S   Weight of activation on X by S1 1 

Y1S   Weight of activation on Y by S1 1 
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Z1S   Weight of activation on Z by S1 1 

 

 

Table S3. Parameter values for CD4+ T cell model 

 
Parameter name Description Value 

TCR Strength of TCR signal 0 - 3 

TGF-β Strength of TGF-β signal 0 or 5 

IL-12 Strength of IL-12 signal 0 or 5 

IL-4 Strength of IL-4 signal 0 or 5 

IL-6 Strength of IL-6 signal 0 or 5 

IL-23 Strength of IL-23 signal 0 or 5 

IL-1 Strength of IL-1 signal 0 or 5 

ATRA Strength of ATRA signal 0 or 5 

bet-T  Relaxation rate of T-bet 5 

GATA3  Relaxation rate of GATA3 5 

tRORγ  Relaxation rate of RORγt 5 

Foxp3  Relaxation rate of Foxp3 5 

bet-T  Steepness of sigmoidal function for T-bet 2.5 

GATA3  Steepness of sigmoidal function for GATA3 3.3 

tRORγ  Steepness of sigmoidal function for RORγt 2 

Foxp3  Steepness of sigmoidal function for Foxp3 2 

o

bet-T  
Basal activation state of T-bet -2 

o

GATA3  Basal activation state of GATA3 -2 

o

tRORγ  
Basal activation state of RORγt -2 

o

Foxp3  
Basal activation state of Foxp3 -2 

bet-Tbet-T   Weight of autoactivation of T-bet 2 

GATA3GATA3  Weight of autoactivation of GATA3 2 

tRORγtRORγ   Weight of autoactivation of RORγt 2 

Foxp3Foxp3  Weight of autoactivation of Foxp3 2 

bet-TGATA3  Weight of inhibition on T-bet by GATA3 -3.5 

bet-TtRORγ   Weight of inhibition on T-bet by RORγt -1.5 

bet-TFoxp3  Weight of inhibition on T-bet by Foxp3 -3.5 

GATA3bet-T   Weight of inhibition on GATA3 by T-bet -2.5 

GATA3tRORγ   Weight of inhibition on GATA3 by RORγt -3.5 

GATA3Foxp3  Weight of inhibition on GATA3 by Foxp3 -3.5 
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tRORγbet-T   Weight of inhibition on RORγt by T-bet -0.3 

tRORγGATA3  Weight of inhibition on RORγt by GATA3 -3.5 

tRORγFoxp3  Weight of inhibition on RORγt by Foxp3 -3.5 

Foxp3betT   Weight of inhibition on Foxp3 by T-bet -3.5 

Foxp3tRORγ   Weight of inhibition on Foxp3 by RORγt -3.5 

Foxp3GATA3  Weight of inhibition on Foxp3 by GATA3 -3.5 

bet-TTCR  Weight of activation on T-bet by S1 1 

GATA3TCR  Weight of activation on GATA3 by S1 0.98 

tRORγTCR  Weight of activation on RORγt by S1 0.3 

Foxp3TCR  Weight of activation on Foxp3 by S1 0.3 

betTβ-TGF   Weight of inhibition on T-bet by TGF-β -0.8 

GATA3TGFβ  Weight of inhibition on GATA3 by TGF-β -0.8 

tRORγTGFβ  Weight of activation on RORγt by TGF-β 0.11 

Foxp3β-TGF   Weight of activation on Foxp3 by TGF-β 0.15 

bet-T1IL   Weight of activation on T-bet by IL-1 0.18 

tRORγIL1  Weight of activation on RORγt by IL-1 0.1 

bet-T12IL   Weight of activation on T-bet by IL-12 0.1 

GATA321IL   Weight of inhibition on GATA3 by IL-12 -1 

bet-T4IL   Weight of inhibition on T-bet by IL-4 -1 

GATA34IL   Weight of activation on GATA3 by IL-4 0.1 

tRORγIL6  Weight of activation on RORγt by IL-6 0.03 

Foxp3IL6  Weight of inhibition on Foxp3 by IL-6 -0.1 

tRORγATRA  Weight of inhibition on RORγt by ATRA -1 

Foxp3ATRA  Weight of activation on Foxp3 by ATRA 0.02 

tRORγIL23  Weight of activation on RORγt by IL-23 0.03 
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CHAPTER 5 

Dynamic influence of lipopolysaccharide on differentiation and proliferation of CD4+ T cells 

under the inducing condition of induced regulatory T cells  

(A manuscript in preparation) 
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Abstract 

The antigen-presenting-cell-independent influence of lipopolysaccharide (LPS) on the CD4+ T cell 

differentiation and proliferation has important implications on how endotoxin may modulate adaptive 

immune responses. To test this proposal, we examined the effects of varying dosages of LPS on T helper 

cell differentiation and proliferation in vitro. We observed that LPS inhibits the expression of Foxp3 

under the inducing condition of iTReg cells. The timing of engagement of the LPS signal is critical for this 

suppressive effect. In addition, LPS promotes the proliferation of CD4+ T cells under the same condition, 

but not under non-inducing conditions. These results give novel insights on how microbial products can 

directly change the profile of CD4+ cells and skew the host adaptive immune system into a pro-

inflammatory state.  
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Introduction 

Lipopolysaccharide (LPS) is the major molecule constituting the outer membrane of Gram-negative 

bacteria [1]. When massively released into the host during the course of an infection, it acts as a potent 

virulence factor responsible for septic shock in mammals [2]. LPS is known to be sensed by toll-like 

receptor 4 (TLR4) expressed on the surface of antigen-presenting cells (APCs), such as dendritic cells and 

macrophages [3]. The activation of these innate immune cells elicits cytokine production and secretion, 

which in turn provokes the adaptive immune responses, including CD4+ T cell activation, differentiation 

and proliferation [4]. Recent evidences indicate that TLR4 is also expressed by CD4+ T cells [5-9]. 

However, less is known about the direct influence of LPS on CD4+ T cell responses. 

Activities of various subsets of CD4+ T cells are important both for orchestrating the immune responses 

against pathogenic microorganisms and for controlling autoimmunity [10]. Particularly, a subset of CD4+ 

T cells exhibiting characteristics of regulatory T cells, known as induced regulatory T (iTReg) cells, were 

shown to perform important modulating functions in the immune system [11,12]. A previous study has 

shown that LPS can directly promote the suppressive function of natural regulatory T (nTReg) cells and 

enhance their survival and proliferation [6], but it is unclear about the effect of LPS on iTReg cells, which 

may be functionally distinct from nTReg cells [12,13]. 

In this study, we show that LPS modulates, in a dose-dependent manner, the differentiation of iTReg cells 

by inhibiting the expression of Foxp3 in CD4+ T cells.  In the meantime, LPS also dose-dependently 

modulates the proliferation of T helper cells. These phenomena have important implications on how 

direct effects of endotoxin can break the balance between effector CD4+ T cells and iTReg cells and the 

balance between nTReg cells and iTReg cells. 

 

  



 140 

Methods 

Isolation of naïve CD4+ T cells and cell culture 

Splenocytes from C57BCL/6 or 129/Sv mice were pooled, and T cells were purified using a CD4+ T cell 

isolation kit (Miltenyi), then further sorted into naïve CD4+ (i.e. CD4+CD62L+) cells with CD62L 

microbeads (Miltenyi). Naïve CD4+Cells were cultured in wells of 96-well plates (2 × 105 cells/well) for 5 

days in complete RPMI buffer (Sigma), with 5µg/ml plate-coated anti-CD3 (eBioscience), 0.5µg/ml anti-

CD28 (eBioscience), 10 µg/ml anti-IFN (Bio X Cell), 10 µg/ml anti-IL4 (Bio X Cell), with or without   

10 ng/ml recombinant human TGFβ (R&D systems), and 100 pg/ml, 10 ng/ml or 1µg/ml LPS (Sigma). 

 

Flow cytometry 

All cells were fixed and permeabilized with fixation/permeabilization buffer (eBioscience). Intracellular 

staining was performed with Flow Cytometry Staining buffer containing FBS, and sodium azide (0.09%) 

(eBioscience), and PE-conjugated Foxp3 antibody (eBioscience).  Cells were analyzed with FACSCanto 

(BD Biosciences), and data were analyzed with FCM flow cytometry analysis library. The total number 

of T cells in the culture was measured with AccuCheck Counting Beads (Invitrogen). 

 

Statistical test 

All experiments were carried out at least 3 times, and all the results were reported as means ± standard 

errors. Statistical analysis was done using two-tailed unpaired Student's t test. Significance was defined 

when P values were <0.05. 
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Results 

LPS inhibits iTReg differentiation in a dose-dependent manner 

In the presence of TGF-β, a majority of naïve CD4+ cells became Foxp3-positive after 5-day incubation 

(Figure 1A and B), and this observation is in agreement of previous studies [14,15]. In order to examine 

whether LPS has significant effects on the differentiation of iTReg cells, we induced iTReg differentiation 

with or without various doses of LPS (10ng/ml and 1µg/ml). After 5-day incubation, cells with high dose 

LPS (1µg/ml) have significantly lower percentages of Foxp3+ cells (Figure 1C), whereas low dose LPS 

(10ng/ml) did not have a significant effect on the percentages of Foxp3+ cells upon the induction by TGF-

β (Figure 1D). 

 

Simultaneous engagement of LPS signaling and the TCR/TGFβ signaling is important for the suppressive 

effect of LPS 

We next examined the importance of the timing of LPS treatment on the inhibition of iTReg differentiation. 

Neither pre-treatment of high-dose LPS 6-hour before induction nor post-treatment of high-dose LPS 1-

day after the induction had significant effect on the percentages of Foxp3+ cells (Figure 2). This suggests 

that the simultaneous engagement of LPS signaling and TCR/TGFβ signaling is important for the 

suppressive effect of LPS on iTReg differentiation. 

 

The suppressive effect of LPS is more pronounced when the TGF-β is removed from the media after 

differentiating the cells for two days 

To examine how the time course of differentiation signal TGF-β can influence the suppressive effect of 

LPS, we incubated cells for 2 days in TGF-β plus LPS, and then re-suspended the cells in TGF-β-free 



 142 

media, keeping the LPS concentration constant. When TGF-β was removed from the media, the 

frequency of Foxp3+ cells was not reduced in the LPS-free or low-dose LPS conditions, but high-dose 

LPS had much more pronounced suppressive effect on the percentages of the Foxp3+ cells in the 

populations (Figure 3, yellow bars, compare left panel and middle panel). This suggests that the 

suppressive effect of LPS on iTReg differentiation might be sensitive to the concentrations of the TGF-β 

throughout the inhibition process, even though the presence TGF-β is not important for the iTReg 

differentiation after the initial induction of the differentiation. Additionally, when the cells were 

transferred to wells without anti-CD3 after 2-day incubation, the suppressive effect of LPS is significant, 

but not as pronounced as in the TGF-β free condition in wells with anti-CD3 (Figure 3, yellow bars, right 

panel). 

 

High-dose LPS may promote CD4+ T cell proliferation under iTReg inducing condition, but not under non-

inducing condition 

We next examined whether LPS can affect CD4+ T cell proliferation under iTReg inducing condition. As 

shown in Figure 3 and Figure 4, high-dose LPS significantly increased the frequency (Figure 3, red bars) 

and the total number (Figure 4, red bars) of live cells under iTReg inducing condition. However, when the 

naïve CD4+ T cells were incubated in high-dose LPS under non-inducing condition, there is no significant 

change on the total number of live cells (Figure 4).   

 

Effect of LPS on iTReg cell proliferation may be independent of its suppressive effect on Foxp3 expression. 

To show if the observed effects of LPS on iTReg differentiation and proliferation are correlated, we used 

the splenocytes from129/Sv mice. Consistent with the previous observation with C57BL/6 mice, LPS 

increased the total number of the CD4+ cells. However, no significant change in the frequency of Foxp3 
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expressing cells was observed with 129 mice (Figure 5). This suggests that the effect of LPS on iTReg 

proliferation may be independent of its suppressive effect of Foxp3 expression. 
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Discussion 

Although regulation of CD4+ T cells by LPS has been previously considered to be dependent on antigen-

presenting cells (APCs) [16], recent evidences and this study suggest that LPS can directly influence the 

differentiation and proliferation of CD4+ T cells in the absence of APCs. Particularly, we found that LPS 

directly inhibit the expression of Foxp3 in TCR-activated CD4+ T cells. Consequently, even though LPS 

enhanced CD4+ T cell proliferation, it did not increase the number of Foxp3+ cells (Figure 3 and Figure 4). 

Caramalho et al. previously demonstrated that LPS promotes the suppressive activity and the 

survival/proliferation of nTReg cells [6]. Our finding implies that the effect of LPS on iTReg cells may be 

distinct from nTReg cells, in that LPS may enhance nTReg activity but inhibit iTReg activity. Given the 

possible functional differences of these two types of cells [13], the study suggests one possible way in 

which microbial products can break the balance of the adaptive immune system in an early stage of 

inflammation. 

It has been demonstrated that low-dose LPS has significant influence on the activation of macrophages 

[17]. In contrast, the doses of LPS as low as picogram range failed to show significant effect on the Foxp3 

expression or the proliferation of CD4+T cells under iTReg inducing condition. Given the influence of APC 

activation on CD4+ T cells, these results suggest that of LPS may play a key dose-dependent role in the 

differential APC-dependent and APC-independent modulation of CD4+ T cells. 

Our results also indicate that the timing of the engagement of the LPS signal is critical for its inhibitory 

activity on Foxp3 expression. This might be because LPS treatment is most effective in early stages of the 

differentiation process. Interestingly, although TLR4 expression is found in naïve CD4+ T cells, its cell 

surface expression only occurs in activated CD4+ T cells [18], indicating significant variations of the 

capability for the cells to process LPS signals during the course of differentiation. 

The proliferation of cells was examined by measurements of cell numbers in our study. It would be 

beneficial to confirm this observation by CFSE assay for the measurement of proliferation rate. In order 
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to dissect the effects on cell proliferation and survival, it would also be informative to pinpoint the rate of 

apoptosis of the cells during the course of LPS treatment. In addition, we found that LPS enhanced the 

proliferation of activated CD4+ T cells, but not of the Foxp3+ cells, suggesting the possibility that LPS 

may promote the proliferation of other subsets of CD4+ T cells in the presence of TGFβ, so it would be 

interesting to test if LPS can enhance the proliferation of those T helper cells, especially TH17, which 

requires TGF-β for its differentiation. 
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Figure Legends 

 

Figure 1. High dose of LPS inhibits iTReg differentiation. Naïve CD4+ Cells were stimulated with 5 

µg/ml plate-coated anti-CD3, 0.5µg/ml anti-CD28, 10 µg/ml anti-IFN , 10 µg/ml anti-IL4, with or 

without 10 ng/ml recombinant human TGFβ and 10 ng/ml or 1µg/ml LPS. Frequency of Fopx3+ cells 

were counted with respect to the total number of live T cells analyzed in a flow cytometry experiment. A-

D: histograms of the PE-Foxp3 channel. Vertical lines are the gating threshold. 

 

Figure 2 Simultaneous engagement of LPS signaling and the TCR/TGFβ signaling is important for 

the suppressive effect of LPS. Naïve CD4+ Cells were stimulated with 5 µg/ml plate-coated anti-CD3, 

0.5µg/ml anti-CD28, 10 µg/ml anti-IFN, 10 µg/ml anti-IL4, with or without 10 ng/ml recombinant human 

TGFβ and 1µg/ml LPS. For the post-treatment group, LPS was added to the media 24 hours after the start 

of the incubation. For the pre-treatment group, cells were incubated with LPS 6 hours prior to incubation 

with other stimulants. Frequency of Fopx3+ cells were counted with respect to the total number of live T 

cells analyzed in a flow cytometry experiment. 

 

Figure 3 The suppressive effect of LPS is more pronounced when the TGF-β is removed from the 

media after differentiating the cells for two days. Naïve CD4+ Cells were stimulated with 5 µg/ml 

plate-coated anti-CD3, 0.5µg/ml anti-CD28, 10 µg/ml anti-IFN, 10 µg/ml anti-IL4, with or without 10 

ng/ml recombinant human TGFβ and 100 pg/ml, 10 ng/ml or 1µg/ml LPS for 2 days. Left panel: cells 

were subsequently re-suspended in media containing the same stimulants as those in the start media and 

incubated for additional 3 days. Middle panel: cells were subsequently re-suspended in media without 

TGF-β and incubated for additional 3 days. Right panel: cells were subsequently re-suspended in media 
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without TGF-β, transferred to wells without plate-bound anti-CD3 and incubated for additional 3 days. 

Frequency of Fopx3+ cells was calculated with respect to the total number of live T cells analyzed in a 

flow cytometry experiment. Frequency of live T cells was calculated with respect to the total number of 

events of the flow cytometry analysis. 

 

Figure 4 High dose LPS may promote CD4+ T cell proliferation under iTReg inducing condition, but 

not under non-inducing condition. Naïve CD4+ Cells were stimulated with 5 µg/ml plate-coated anti-

CD3, 0.5µg/ml anti-CD28, 10µg/ml anti-IFN, 10 µg/ml anti-IL4, with or without 10 ng/ml recombinant 

human TGFβ and/or 1µg/ml LPS. Frequency of Fopx3+ cells were counted with respect to the total 

number of live T cells analyzed in a flow cytometry experiment. The total numbers of cells in the wells 

were measured by AccuCheckcounting beads.  

 

Figure 5 Effect of LPS on iTReg cell proliferation may be independent of its suppressive effect on 

Foxp3 expression. Naïve CD4+ Cells from 129/Sv mice were stimulated with 5 µg/ml plate-coated anti-

CD3, 0.5µg/ml anti-CD28, 10µg/ml anti-IFN, 10 µg/ml anti-IL4, with or without 10 ng/ml recombinant 

human TGFβ and/or 1µg/ml LPS. Frequency of Fopx3+ cells were counted with respect to the total 

number of live T cells analyzed in a flow cytometry experiment. The total numbers of cells in the wells 

were measured by AccuCheck counting beads. 
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Figures 

 

 

Figure 1. High dose of LPS inhibits iTReg differentiation 
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Figure 2. Simultaneous engagement of LPS signaling and the TCR/TGFβ signaling is important for the 

suppressive effect of LPS 

 

 

Figure 3. The suppressive effect of LPS is more pronounced when the TGF-β is removed from the media 

after differentiating the cells for two days 
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Figure 4. High dose LPS may promote CD4+ T cell proliferation under iTReg inducing condition, but not 

under non-inducing condition 

 

Figure 5. Effect of LPS on iTReg cell proliferation may be independent of its suppressive effect on Foxp3 

expression 
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CHAPTER 6 

Conclusions 

 

Understanding how CD4+ T cells differentiate is critical to unravel the mysteries of how the entire 

immune system is regulated. However, the diversity and plasticity of CD4+ T cells, together with their 

complex signaling pathways, render it difficult to understand and study these cells. Therefore, new 

experimental results and theoretical analysis are needed to advance this field. 

We first took a systems-approach to answer the question of how CD4+ T cells diversify in the response to 

pathogenic challenges. In Chapter 2, we presented a mathematical model of TH17-iTReg differentiation, in 

which three phenotypes of cells can be heterogeneously differentiated from a population of naïve CD4+ T 

cells. The model suggests that mutual inhibition between the two master regulators and the underlying 

pitchfork bifurcation may be responsible for this type of phenomena. In Chapter 3, we demonstrated that a 

simple signaling network motif can be responsible for generating all possible types of heterogeneous 

populations with respect to a pair of master regulators controlling CD4+ T cell differentiation. The motif 

involves the mutual inhibition between two master regulators, the auto-activation of these regulators, and 

various signals that can influence the expression of the two regulators. In Chapter 4, we presented a 

framework that can help to study heterogeneous differentiation involving more than two master 

regulators. The framework enables us to analyze multi-stability behavior in high dimensions. We used the 

framework to analyze generic networks with more than one interconnected mutual inhibition motifs and 

build a model that includes four master regulators of CD4+ T cells. These studies provide a mathematical 

basis for how naïve CD4+ T cells can integrate multiple types of signals to differentiate into populations 

of diverse phenotypes with the intrinsic dynamic properties governed by their signaling pathways.  
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The predictions of these models need to be validated experimentally in future works. All predictions we 

made are under testable in vitro conditions, and the experimental results obtained can be used for further 

optimization of the models. The framework presented here take us one step further towards linking a 

model of intracellular signaling pathways to the models of populations of immune cells. However, in 

order to make the mathematical models more realistic for simulating the immune system, we have to take 

a few more factors into account. First, intercellular communication has to be considered. This includes not 

only the cross-talk among CD4+ T cells but also communication between CD4+ T cells and other immune 

cells, such as dendritic cells, CD8+ T cells and macrophages. To model the intercellular communication, 

experimental data on the extracellular concentrations of cytokines are necessary. Secondly, cell death and 

proliferation have to be considered, because regulation of cell death and proliferation is critical to 

maintain the homeostasis of immune system. The rate of cell death and proliferation for each phenotypes 

under different conditions have to be estimated in order to build a reasonable model. Thirdly, spatial 

dynamics of immune cells and pathogens have to be considered. The spatial distribution and movement of 

the immune cells and pathogens are important when we need to understand the progression of a 

pathogenic event or different types of immune disease. All these extensions can be achieved by scaling up 

our ODE models except perhaps the consideration of cell movement. It is more feasible to use agent-

based modeling strategy to simulate the cell movement, so coupling of ODE models and agent-based 

models may be needed for simulating the immune system with all these factors included. Our current 

models are useful for predicting how genetic variations or external perturbations can affect population of 

CD4+ T cells. When the additional factors are considered, we will be able to use mathematical models to 

predict the outcome of perturbations in the scope of the entire immune system and suggest possible ways 

to overcome the immune diseases.  

In addition to the mathematical models for heterogeneous differentiation, we asked how LPS can 

influence the differentiation of CD4+ T cells. In Chapter 5, we showed that LPS modulates the 

differentiation of iTReg cells by inhibiting the expression of Foxp3 in CD4+ T cells under iTReg inducing 
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condition. LPS also enhances the proliferation of CD4+ T cells under this condition. These phenomena 

imply that endotoxin can break the balance between effector CD4+ T cells and iTReg cells and that 

between nTReg cells and iTReg cells in a direct manner. Identification of key signaling molecules involved 

in these behaviors is warranted in future studies. 


