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Nonlinear Dynamics of Systems Involving Widely Spaced Frequencies 

by 

Samir Ali Nayfeh 

Drs. A. H. Nayfeh and D. T. Mook, Co-chairmen 

Engineering Science and Mechanics 

ABSTRACT 

This document focuses on the dynamics of nonlinear oscillatory systems involving 

widely spaced frequencies. First, experiments on the forced oscillations of a cantilever 

beam with a circular cross-section are presented. The beam is excited near its fifth 

natural frequency but sustained large-amplitude oscillations of the first mode accom- 

panied by modulated oscillations of the fifth mode occur. Thus, energy is transferred 

from the fifth to the first mode of the beam, whose natural frequencies are roughly 

in the ratio of 60:1. 

Some simple two-degree-of-freedom systems are studied in an effort to explain the 

strong nonlinear coupling between modes with widely spaced frequencies. In these 

systems, the coupling is found to give rise to some novel phenomena including static 

displacements or sustained oscillations of the low-frequency mode in response to a 

high-frequency excitation. 

The possibility that resonances may occur between a high-frequency excitation 

and a single low-frequency mode is then investigated. A single-degree-of-freedom 

oscillator driven at a frequency much higher than its natural frequency is analyzed. 

It is found that, if the excitation is modulated, resonant excitation of the oscillator 

may occur.
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CHAPTER 1 

Introduction 

In this thesis, we study nonlinear systems in which the ratio of any two frequencies is 

very small. By ‘frequencies’, we mean any frequency involved in the system whether 

it be the natural frequency of a mode or an excitation frequency. In such systems, a 

range of phenomena may occur which cannot occur in systems where all frequencies 

are of the same order. Of primary interest is the transfer of energy between oscillations 

occurring at widely spaced frequencies. 

1.1 Motivation 

Modern flexible structures typically have several modes with very low natural frequen- 

cies. Because these structures are flexible, large-amplitude vibrations may occur, and 

geometric and other nonlinearities become significant. The nonlinearity couples the 

modes and can lead to modal interactions where energy is transferred between modes. 

Previous research on modal interactions has shown that they may occur when a special 

relationship between the natural frequencies of two or more modes and the excitation 

frequency exists. Some recent experiments indicate, however, that a previously un- 

documented type of modal interaction can occur between modes whose frequencies 

are in the ratio of roughly 1:20 and smaller. A theoretical and experimental study of



this interaction between widely spaced modes is presented in Chapters 2 through 4 

of this thesis. 

In many engineering applications, vibrations caused by rotating machinery are 

unavoidable. Often, supporting structures are isolated from this vibration by mount- 

ing the machinery on soft springs in order to form a supporting system with a natural 

frequency much lower than the frequency of operation of the machinery. Such an iso- 

lator may be modeled as a one-degree-of-freedom system with an excitation applied 

at a frequency much higher than its own natural frequency. If the system is linear, 

it operates far from resonance and the force transmitted to the structure is small. 

If, however, nonlinearities are present in the support and the machine operates in a 

nonstationary manner, dangerous resonances may occur. We discuss this possibility 

in Chapter 5 of this thesis. 

1.2 Systems With Frequencies of the Same Order 

In this section, we briefly discuss the dynamics of lightly damped weakly nonlinear 

systems where all frequencies are of the same order. We note that any system with 

smooth nonlinearities may be cast as a weakly nonlinear system for small enough 

displacements. Also, if all of the frequencies are of the same order, we can nondimen- 

sionalize them so that they are all O(1). 

We consider a system of second-order oscillators of the form 

tb; + wPu; = ef;(u, tu, t) (1.1) 

where the f; represent the nonlinearity, damping, excitations, and other perturba- 

tions. That these perturbations are small is made explicit by using a small dimen- 

sionless quantity € as coefficient of the f;. Some insight into the dynamics of the 

system can be gained by introducing the variation-of-parameters transformation 

u; = a;(t)cos(¢,(t)) (1.2) 

UL; = —w;a;(t) sin(¢;(t)) (1.3) 
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where ¢,(t) = w,t + §;(t) to obtain 

a; = ~~ f(a, cos ¢;, —w ja; sin ¢;,t) sin ¢; (1.4) Ww 

a;8; = —= fila; cos $;, —w a; sin ¢;,t) cos ¢; (1.5) 

Under the assumption that the w; are not small, we see from Eqs. (1.4) and (1.5) 

that the a; and 8; are small and therefore conclude that the a; and £; are slowly 

varying. That is, the a; and {; evolve much more slowly than the u;. This fact is very 

useful in the study of weakly nonlinear systems and most perturbation methods are 

built upon it. In the method of averaging, we classify terms as being either slowly 

or rapidly varying and in the method of multiple time scales, we refer to terms as 

evolving on either the slow or fast scales. 

Terms on the right-hand sides of Eqs. (1.4) and (1.5) must act over a long period 

of time in order to have a large effect on the a; and £;. Because rapidly varying 

terms change sign at a high frequency, they have little net effect. In the averaging 

approximation, these rapidly varying terms are smoothed away, yielding a simpler 

mathematical representation of the system. 

The only terms that have a large effect and remain after the averaging approxi- 

mation are the slowly varying terms on the right-hand sides of Eqs. (1.4) and (1.5). 

Thus, in Eqs. (1.4) and (1.5) only the terms in f; of nearly the same frequency and 

phase as sin ¢; and cos ¢,;, respectively, have large effects. These terms are commonly 

referred to as secular or small-divisor terms. 

This discussion forms a framework for the understanding of nonlinear resonance 

phenomena. Large responses to small excitations can occur when one or more ex- 

citation frequency, the values of the w;, and the form of f; are such that terms of 

frequency nearly equal to w; appear. Strong coupling between modes (modal inter- 

actions) can occur when the values of the w; and the form of f; are such that terms 

with frequency nearly equal to w; appear. 
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1.3. Modal Interactions 

Nonlinear modal interactions have been the subject of a great deal of recent research. 

It has been found that, in weakly-nonlinear systems where there exists a special 

relationship between two or more natural frequencies of the linear modes and an 

excitation frequency, the long-time response can contain large contributions from 

several modes. In an analytical model, it is necessary to include all of the modes 

that participate significantly in the response and the larger the number of modes is, 

the more complicated the dynamics of the system can be. More importantly, modal 

interactions can lead to dangerously large responses in modes that are predicted by 

linear analyses to have insignificant response amplitudes. 

Most of the research on modal interactions focuses on internal or autoparametric 

resonances in systems where the linear natural frequencies w; are commensurate or 

nearly commensurate. The types of possible autoparametric resonances depend on the 

degree of the nonlinearity and the number of modes involved. When the nonlinearity 

is cubic, to the first approximation, autoparametric resonances may occur if wy & wm, 

Wy FY 3Wm, Wy | 2wW, +u,|, or w, & | tw, tu, +w,|. If quadratic nonlinearities 

are added, additional resonances may occur if wz, © 2wm Or Wy % Wm + we. These 

autoparametric resonances have been successfully treated with perturbation methods 

(Nayfeh, 1973, 1981; Crespo da Silva, 1980; Bajaj and Johnson, 1990). There also 

exists a large body of experimental results which are in good general agreement with 

the perturbation results (Nayfeh and Mook, 1979; Nayfeh and Balachandran, 1989). 

Autoparametric resonances may provide a coupling or an energy exchange between 

the modes of a system. Consequently, excitation of a high-frequency mode may 

produce a large-amplitude response in a low-frequency mode involved with it in an 

autoparametric resonance. 

In externally excited multi-degree-of-freedom systems, combination resonances 

may occur in response to a simple-harmonic external excitation of frequency 2. The 

type of combination resonance that can be excited depends on the degree of the 
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nonlinearity, the number of modes involved, and 2. For a cubic nonlinearity, to 

the first approximation, combination resonances may occur if Q = $| tum + wal, 

Q =| + 2w,, + w,|, or 0 & | tw, + uw, +]. If quadratic nonlinearities are added, 

additional combination resonances may occur if 2 = | +w,, +w,|. Thus, a high- 

frequency excitation may produce large-amplitude responses in low-frequency modes 

that are involved in the combination resonance. Dugundji and Mukhopadhyay (1973) 

conducted experiments on a cantilever beam subjected to an external base excitation 

at a frequency close to the sum of the natural frequencies of the first bending and 

first torsional modes, which were approximately in the ratio of one to 18. They found 

that the high-frequency excitation can produce a large-amplitude response in the low- 

frequency (first bending) mode. 

In parametrically excited systems, modal interactions can occur when the excita- 

tion frequency is near the sum or difference of two or more linear natural frequencies. 

These so-called combination resonances have been studied extensively in the liter- 

ature (e.g., Nayfeh and Mook, 1979; Schmidt and Tondl, 1986; Nayfeh and Jebril, 

1987). Again, combination resonances can lead to interactions between high- and 

low-frequency modes. 

Often, when the response of a system becomes chaotic, low-frequency modes can 

be excited. Haddow and Hasan (1988) conducted an experiment by parametrically 

exciting a cantilever beam near twice the natural frequency of its fourth mode. They 

found that, as the excitation frequency was decreased, a planar periodic response con- 

sisting essentially of the fourth mode lost stability, giving way to a nonplanar chaotic 

motion. They observed that, as a result, the energy seemed to cascade down through 

the modes, resulting eventually in a very low-frequency component in the steady-state 

response. Burton and Kolowith (1988) conducted an experiment similar to that of 

Haddow anu Hasan. In certain regions of the parameter space, they observed chaotic 

motions where the lowest seven in-plane bending modes as well as the first torsional 

mode were present in the response. Cusumano and Moon (1989) conducted an ex- 
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periment with an externally excited cantilever beam. They observed a cascading of 

energy to low-frequency components in the transition to chaotic non-planar motions. 

A recent study suggests that another type of interaction may occur between high- 

and low-frequency modes. Anderson, Balachandran, and Nayfeh (1992) conducted 

experiments on a parametrically excited cantilever. They found that interactions 

occur between two high-frequency modes and the first mode. The presence of the 

first mode is accompanied by slow modulations of the amplitudes and phases of the 

high-frequency modes. The frequency of the modulations is equal to the frequency 

of oscillation of the first mode. This indicates that the mechanism for the excitation 

of the first mode is neither a classical internal resonance nor an external or para- 

metric combination resonance involving the first mode. Rather, it seems that slow 

modulation of the high-frequency modes allows energy to be transferred to the first 

mode. 

Anderson, Nayfeh, and Balachandran (1993) employed an averaging scheme to 

analyze the energy transfer phenomenon observed in their experiment. In their anal- 

ysis, the two high-frequency modal coordinates were considered to be rapidly varying 

quantities while the low-frequency modal coordinate was treated as slowly varying. 

They found that modulation of the high-frequency modes is necessary for excitation 

of the low-frequency mode to occur. 

1.4 Overview 

This thesis focuses on means by which high-frequency sources can lead to low-frequency 

oscillations. We present some experimental results and then discuss ways in which the 

method of multiple scales and the method of averaging can be used to study systems 

with widely spaced frequencies. 

An experimental study of the response of an axially symmetric cantilever beam to 

planar external excitations is presented in Chapter 2. When the beam is excited near 

one of its high natural frequencies, large first-mode responses accompanied by slow 
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modulations of the amplitudes and phases of the high-frequency modes are observed. 

This is an example of the energy transfer from high- to low-frequency modes reported 

in Anderson, Balachandran, and Nayfeh (1992). 

To investigate this phenomenon, we study some simple two-degree-of-freedom non- 

linear systems with widely spaced frequencies. In Chapter 3, we use the method of 

multiple scales to study a system with quadratic nonlinearities. We find that this 

system does indeed exhibit the energy-transfer phenomenon. Next, we investigate 

the possibility of energy transfer from low- to high-frequency modes and find that it 

will not generally occur. 

In Chapter 4, we use the method of averaging to study a system with cubic nonlin- 

earities. We find that this system may also exhibit the energy-transfer phenomenon 

from high- to low-frequency modes. The dynamics of this system are somewhat more 

complicated than the dynamics of the system with quadratic nonlinearities studied in 

Chapter 3. Various nonlinear phenomena, such as period-doubling bifurcations culmi- 

nating in chaos, symmetry-breaking bifurcations, the existence of multiple attractors, 

and the merging of attractors are found to occur. 

In Chapter 5, we study a one-degree-of freedom system subjected to a modulated 

excitation whose basic frequency is much higher than the natural frequency of the 

system. We find that when a nonlinear system is subjected to an excitation with 

a frequency much higher than its own natural frequency, the system averages the 

excitation, smoothing away the high-frequency carrier but leaving behind any low- 

frequency variations. Under some conditions, these low-frequency components may 

resonantly excite the system. 

Introduction 7



CHAPTER 2 

Experiments on a Cantilever Beam 

2.1 Introduction 

In this chapter, we present experimental results for an externally excited, circular 

cross-section, cantilever beam. Because of the axial symmetry, one-to-one autopara- 

metric resonances occur at each natural frequency of the beam. The mode in the 

plane of the excitation can interact with the out-of-plane mode at the same natural 

frequency and the result is a non-planar whirling motion. This modal interaction has 

been the subject of numerous studies (Haight and King, 1972; Hyer, 1979; Crespo da 

Silva, 1980; Pai and Nayfeh, 1990; Shyu, Mook, and Plaut, 1993). 

In this study, we focus on the dynamics that occur when we excite the beam at high 

frequencies. It is found that when the beam is excited near the natural frequency of 

its third or any higher mode, a large first-mode response occurs. Moreover, the degree 

of the coupling between the first mode and the higher modes is observed to increase 

as progressively higher modes of the beam are excited. As in the study of Anderson 

and coworkers, the appearance of the first mode is accompanied by modulations of 

the amplitudes and phases of the high-frequency modes. The results presented here 

for the case where the excitation frequency is near the fifth natural frequency of the 

beam are representative of the behavior of the beam for excitation frequencies near



Table 2.1 ‘The first five natural frequencies of the test specimen 

  

  

Mode | Natural Frequency (Hz) 

1 1.303 + 0.005 

2 9.049 + 0.005 

3 25.564 + 0.005 

4 50.213 + 0.007 

5 83.150 + 0.011         

any of its higher natural frequencies. 

2.2 Experimental Setup 

We present the results of experiments conducted on a slender, circular cross-section, 

steel, cantilever beam. The length of the cantilever is 34.5” and the diameter of 

its cross-section is 0.0625”. The first five linear natural frequencies of the beam, as 

determined by examination of the frequency spectra of decaying free oscillations, are 

shown in Table 2.1. 

Figure 2.1 is a schematic diagram of the experimental setup. A vertical beam 

is clamped to a 100-lb shaker that supplies a simple-harmonic motion at the base 

so that an external (i.e., transverse to the axis of the beam) excitation is applied. 

The excitation is monitored by means of an accelerometer mounted to the shaker 

head. The motion of the tip of the beam is measured by two linear-array cameras, 

one oriented to measure the motion in the plane of the excitation (camera 0) and the 

other oriented to measure the motion out of the plane of the excitation (camera 1). 

The linear-array camera system, developed by Colbert (1990), employs a hardware- 

impleinented peak detector to determine the location of the target in real-time. At 

a specified sampling frequency, it returns two eleven-bit numbers representing the 

displacements of the tip of the beam in the in-plane and out-of-plane directions. This 

Experiments on a Cantilever Beam 9



Camera O 

   
   

Camera 1 

Beam 

 
 

Shaker 

Accelerometer  
 

Fig. 2.1 Experimental setup 
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data is passed real-time to a personal computer where it is displayed, processed, and 

stored. 

Because the beam constitutes a weakly nonlinear system, its response w(z,t) is 

assumed to be composed of a combination of its linear mode shapes ¢,(2) in the form 

w(z,t) = 5° un(t)¢n(z) 

In addition, if a response spectrum of the beam contains a single peak near its fifth 

natural frequency, we interpret the peak to represent a periodic response that is 

composed mostly of the fifth mode. If the response is periodic, the modal amplitudes 

can be determined directly from an FFT computed with flat-top windowing. If the 

amplitude and phase of a mode are modulated, the frequency response will contain 

side bands and the modal amplitude cannot simply be read from an FFT. In this 

case, we run the signal through a band-pass filter to eliminate the contributions of 

any other modes and then directly compute the root-mean-square amplitude of the 

remaining signal. 

It should be noted that the methods for decomposition of the response into various 

modes outlined in the preceding paragraph can fail for a variety of reasons. The basic 

assumption that the response of the system is composed of a combination of linear 

mode shapes may be invalid. More commonly, the response of the beam may have a 

broad-band character and the modal responses cannot be separated in the frequency 

domain. Even in the case of periodic responses, if the response is sufficiently distorted 

from a simple sinusoid, its frequency spectrum will contain large peaks at harmonics 

of its fundamental frequency that must be considered in order to obtain an accurate 

measure of the mode’s response. For most weakly nonlinear systems (including the 

one considered here), however, these problems don’t often arise and their response 

can be easily decomposed into linear mode shapes. 
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2.3. Frequency-Response Curves 

We present frequency-response curves for the fifth in-plane and out-of-plane modes of 

the cantilever beam. The excitation level was held constant at 2.00g rms (where g is 

the acceleration of gravity) and the excitation frequency was varied in the neighbor- 

hood of the fifth natural frequency. Changes in the excitation frequency were made 

very gradually and, at each excitation frequency, transients were allowed to die out 

before the amplitude of the response was recorded. The data in the plots is a com- 

posite of the responses obtained by performing both forward and backward frequency 

sweeps. In addition, to ensure that even isolated branches of the frequency-response 

curves were located, we performed a third sweep where, at increments in the excita- 

tion frequency, we applied several disturbances to the beam in an effort to find all 

possible long-time responses. 

The results of this procedure are shown in Fig. 2.2. Well away from the fifth 

natural frequency, the only possible response is planar and periodic. The response 

of the beam is strictly in the plane of the excitation and a visual inspection of the 

motion indicates that the response is composed almost entirely of the fifth mode. 

This is confirmed by examination of the response spectrum which shows only a single 

peak at the excitation frequency. 

As the frequency of excitation is swept upward from well below the fifth natural 

frequency, a jump occurs from a planar-periodic to a non-planar strongly modulated 

motion. Here, visual inspection of the response clearly detects the modulation of the 

response of the fifth mode as well as the presence of a low-frequency component in 

the response. 

Increasing the excitation frequency further, we observe a jump to a non-planar 

weakly modulated whirling motion. Again, visual inspection of the motion clearly 

reveals a large low-frequency component in the response. In this case, however, 

visual inspection does not detect any modulation of the fifth mode. A more detailed 

discussion of both the weakly and strongly modulated motions follows. 
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2.4 Weakly Modulated Motion 

As mentioned in the preceding section, the observed weakly modulated responses 

contain a large low-frequency component superimposed on a nearly constant ampli- 

tude fifth-mode whirling motion. Typical time traces of in-plane and out-of-plane 

responses of this type are shown in Fig. 2.3(a). Visual inspection of these plots does 

not readily reveal any modulation of either the high- or low-frequency components of 

the response. 

A typical FFT of this type of response is shown in Fig. 2.4. The FFT shows two 

main peaks, one at the frequency of the excitation (near the fifth natural frequency) 

and the other at the natural frequency of the first mode. The asymmetric side-band 

structure around the peak corresponding to the fifth mode indicates that the response 

of the fifth mode is amplitude- and phase-modulated. Moreover, the frequency spacing 

between the fifth-mode peak and its side bands is equal to the first natural frequency, 

confirming that the frequency of modulation of the fifth-mode response is equal to 

the natural frequency of the first mode. 

As indicated by the dense set of side bands clustered around the peak at the first 

natural frequency, the response of the first mode is also modulated. Examination 

of the time-domain data from which this FFT was computed, shown in Fig. 2.3(b), 

confirms that the amplitude of the first-mode response is not constant. The time 

traces in Fig. 2.3(b) contain 170 seconds of data, illustrating the extremely slow 

variation of the amplitude of the first mode. 

It should be noted that the samples shown are not long enough to give a good 

indication of how the first-mode response amplitude varies. Unfortunately, we are 

currently unable to store longer samples of data. Long-time visual observation reveals 

no simple trend or periodicity in the response. Because of the extremely slow and 

erratic evolution of the first-mode response, it is difficult to obtain an estimate of its 

amplitude in an average sense. The time traces shown in Fig. 2.3(a) do however give 

an indication that the response of the first mode can in many cases be several times 
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Fig. 2.4 Magnitude of the FFT of a typical weakly modulated motion 

larger than that of the directly excited fifth mode. 

2.5 Strongly Modulated Motion 

As its label implies, the most obvious feature of the strongly modulated motions is 

the modulation of the fifth mode. A typical time trace of this type of motion is shown 

in Fig. 2.5(a). In contrast to the case of the weakly-modulated motion of Fig. 2.3, the 

modulation of the fifth mode is clearly distinguishable without the aid of FFT’s. It is 

also apparent from the asymmetry in the envelope of the traces shown in Fig. 2.5(a) 

that there is a significant low-frequency component present in the response. 

In Fig. 2.5(b), a longer time trace of this motion is presented. Here, the scal- 

ing of the time axis is such that both the low-frequency component present in the 

response and the envelope of the fifth-mode response are clearly discernible. The er- 

ratic character of the evolution of the fifth-mode response suggests that the fifth mode 

is chaotically modulated. This assertion can be further substantiated by examination 
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Fig. 2.6 Magnitude of the FFT of a typical strongly modulated motion 

of the FFT of this signal shown in Fig. 2.6. The narrow-band response present in the 

neighborhood of the fifth natural frequency is characteristic of chaotically-modulated 

motions. 

Turning our attention to the low-frequency component present in the response, 

we find that there is a peak at the first natural frequency of the system and conclude 

that the low-frequency component in the response is due to the first mode. As in 

the case of weakly modulated motions, there is a dense set of side bands clustered 

around the first natural-frequency peak, indicating that the first-mode response is 

also modulated. Again, due to the slow modulation of the response of the first mode, 

we are currently unable to obtain an estimate of the amplitude of the first-mode 

response. 
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2.6 Closure 

The results presented here show modal interactions occurring between high- and low- 

frequency modes in a flexible structure. The mechanism for the interaction appears 

to be neither a classical internal resonance nor an external or parametric resonance 

involving the low-frequency modes. Modulations of the amplitudes and phases of the 

high-frequency modes seem to be essential to the occurrence of these interactions. 
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CHAPTER 3 

Interaction Between Widely Spaced 

Modes— Quadratic Nonlinearity 

3.1 Introduction 

In this chapter, by studying a simple two-degree-of-freedom system with quadratic 

nonlinearities, we investigate the interaction between widely spaced modes docu- 

mented in the experiment. We use the method of multiple scales and show that 

energy can be transferred from high- to low-frequency modes in this simple system. 

Then we investigate the possibility that energy can be transferred from low- to high- 

frequency modes and find that this will not generally occur. 

3.2 Excitation of the High-Frequency Mode 

We consider two coupled oscillators of the form 

toy + Quy ut +wruy = —ayus? (3.1) 

iy + Qpowytts +weu, = —2aoutus + f* cosN*t* (3.2) 

where w, /w2 < 1 and the overdot denotes the derivative with respect to t*. The high- 

frequency mode has coordinate u3 and the low-frequency mode has coordinate uj. The 
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system has linear viscous damping given by the coefficients jz; and jt2, quadratic non- 

linearities with the coefficients a, and a2, and an external forcing function f* cos *t* 

which is applied only to the high frequency mode. We wish to investigate the possi- 

bility that a large response in the low-frequency mode be generated by an excitation 

applied to the high-frequency mode near its natural frequency. 

3.2.1 Scaling 

The first step in the perturbation analysis is to identify the relative sizes of the various 

terms in the equations. In order to accomplish this, we introduce dimensionless 

variables given by 

t = wot", uy = ul/c, U2 = uZ/c2, and N = N*/w. (3.3) 

A natural choice for a small parameter is the ratio of the natural frequencies of the 

system. We therefore introduce the small dimensionless parameter 

e=—t (3.4) 
W9 

Substituting these dimensionless quantities into the equations of motion, we obtain 

  

  

. . 2 046 2 Uy + 2p et, +e°u, = oR M2 (3.5) 
2C1 

- . 2Q2C * 
Ug + 2p2eétg+u. = — - , U,U2 + - cos Nt (3.6) 

2 22 

where the overdot. denotes the derivative with respect to t. At this point, we are free 

to choose values for c; and cz and we can thereby scale the system so that the nonlin- 

earities appear at any order. It is important to note that completely different results 

can be obtained for differently ordered problems. If the nonlinearities are placed at 

too low or too high an order, their effects will be either dominant or insignificant 

compared to the linear inertia, damping, and excitation terms. 

We therefore scale the system so that the effects of the inertia, damping, and 

excitation appear at the same order. Such a special scaling is often referred to as 
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a distinguished limit (there may be more than one distinguished limit for any given 

system). By scaling the system in this manner, we ensure that the effects of all of the 

terms in the equations are captured in the expansion. Later, assumptions regarding 

the sizes of the terms appearing in the expansion can be introduced and further 

approximations can be made. 

For this system, a distinguished limit may be obtained by letting 

QW ww, 

cq = » = 
a2 12 

    , and f* = cowywof (3.7) 

Under this scaling, the governing equations become 

ity + 2Qpyjet, + eu, = —e?us (3.8) 

Ug + 2poettg tug = —2euzu2 + ef cosNt (3.9) 

Physical interpretation of this scaling depends on the magnitudes of the coefficients 

a, and a2. For example, if both a; and az are O(w?), c, = O(e) and cz = O(e€?/*). 

Consequently, uy and we are both ‘stretched’ variables. In effect, when we expand 

for O(1) oscillations of u, and uz, we are assuming very small oscillations in the 

dimensional variables. The expansion will only be valid for small oscillations. If 

a, = O(w?) and az = O(wiw2), both c, and cz are O(1). In this case, there is no 

stretching and the expansion will be valid for O(1) oscillations in the dimensional 

variables. 

Finally, we will find it necessary to show explicitly that the excitation frequency 

is close to the natural frequency of the high-frequency mode (which is now nondi- 

mensionalized to unity). We therefore introduce the detuning parameter o defined 

by 
1 

Q = ] + 9°? (3.10) 

3.2.2 Perturbation Analysis 

We use the method of multiple scales (Nayfeh, 1981) to determine a first-order ex- 

pansion for the system response. A novel feature of this analysis is that, whereas the 
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high-frequency mode evolves on the fast scale and its amplitude and phase evolve 

on the slow scale, the low-frequency mode evolves on the slow scale. That is, the 

new independent variables Ty = t, T; = et, and T, = e*t characterize, respectively, 

motions whose frequencies are near the frequency of the high-frequency mode, the 

low-frequency mode, and lower frequencies. Using the chain rule, we rewrite the total 

time derivative in terms of the 7; as 

d 
qm Dot ei +e D2+... (3.11) 

where D,, = 0/OT,,. We assume expansions for the u; of the form 

u;(t) = uio(To, Th, Ta, o- .) + eui(To, Ti, To, +. .) + e*uie(To, Th, To, o. .) +... (3.12) 

Substituting Eqs. (3.11) and (3.12) into Eqs. (3.8) and (3.9) and equating the coeffi- 

cients of equal powers of €, we obtain 

Deu = 0 (3.13) 

Deu, = —2Do(Dyu10 + pat10) (3.14) 

Dewy = —(DP+2DoD2)ur0 — 2DoDyuy1 — 244(Dyui0 + Doty) (3.15) 

—U19 — Uo 

and 

D?un +x = 0 | (3.16) 

Deun +42 = —2Do(Dyu20 + p2t2.0) — 2uiotteo + f cos Nt (3.17) 

Deuce +g = —(D?+2DpD2)u20 — 22(DyuU20 + Dour) (3.18) 

+2uj9U21 + 2U41U29 

Here, we note that Eqs. (3.13)-—(3.15) are not in the form of oscillators; this is because 

the linear restoring force appears at second order in Eq. (3.8). 

The solutions to the leading-order problems, Eqs. (3.13) and (3.16), can be written 

as 

Uo == A(T, T2) + C(T,, T2)To (3.19) 
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Uo = B(T;,T2)e + B(T,,T2)e (3.20) 

We require that the response be free of secular terms and therefore set C = 0. It 

follows from Eqs. (3.19) and (3.20) that, in the approximation, wo is a slowly varying 

function and ug consists of a slowly varying complex amplitude on a rapidly varying 

carrier. 

Next, by eliminating secular terms from the O(€) problem, we determine an equa- 

tion governing the slowly varying complex amplitude B. Substitution of Eqs. (3.20) 

and (3.19) into Eq. (3.17) yields 

l.. 
Deu + ua = (—2i8" — 2i2B —2BA+ sheen?) eo 4 6 (3.21) 

where the prime indicates partial-differentiation with respect to 7; and cc denotes 

the complex conjugate of the preceding terms. Secular terms are those that cause u 

to grow without bound as 7p — oo. In this equation, the secular terms are the terms 

whose time dependence is of the form e*”°. We set them equal to zero to obtain the 

averaged or modulation equation governing B: 

, , 1,; 
— 27 B’ — 2ip2B-2BA+ 5 fern? = 0 (3.22) 

This approximation can be refined by eliminating secular terms from the higher-order 

problem given by Eq. (3.18) but for the purposes of this study we stop here. 

We now write B in terms of the real variables for the amplitude a and phase £ as 

1. 
B= sae ene) (3.23) 

Substituting this expression into the modulation equation governing B and separating 

the result into real and imaginary parts, we obtain 

a= — (1100 + sf sin 6) (3.24) 

api = — (50 — A) a+ sf cos 6| (3.25) 

The expansion for uz may be written in terms of a and £ as 

up = acos(Nt+ B)+... (3.26) 
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Next, we turn to the low-frequency mode and determine an equation governing 

A. Substituting the leading-order solution given by Eq. (3.19) into the O(€) problem 

given by Eq. (3.14), we find that 

Diu, = 0 (3.27) 

Because the solution for 4, has the same form as A, we do not need to include it in 

our expansion and therefore we set u,,; = 0. We note that no secular terms appear at 

this order and therefore no information about A can be obtained. 

We now substitute the leading-order solutions, Eqs. (3.19) and (3.20), into the 

O(e?) problem given by Eq. (3.15) and obtain 

1 . 
Deuy. — [D3A 4 24, D,A 4 A 4 qe (efTton /2+6) + cc) | (3.28) 

In this case, the secular terms are the slowly varying terms (terms that are functions 

of only the slow time scales). Elimination of these terms yields the following averaged 

equation governing A: 

AY +2,A' + A+ 50 = 0 (3.29) 

Thus, we see that the square of the amplitude of the high-frequency mode appears 

as an inhomogeneous term in the averaged equation for the low-frequency mode. 

Therefore, if the amplitude a of the high-frequency mode is constant, a nonzero static 

deflection will occur in the low-frequency mode. If the high-frequency mode undergoes 

modulated motion, a will be a function of time and oscillations in the low-frequency 

mode will be excited as was observed in the experiments. 

We now introduce the variables 

zg=Aandy=A’' (3.30) 

and write Eq. (3.29) in the first-order form 

vo= y (3.31) 

1 
y= - (« + Quy + 5°) (3.32) 
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The expansion for u; is given by 

We will use Eqs. (3.31) and (3.32) along with Eqs. (3.24) and (3.25) to study the 

dynamics of the system. 

3.2.3 Fixed Points of the Averaged Equations 

The averaged equations, Eqs. (3.31), (3.32), (3.24), and (3.25), can be used to study 

the transient as well as the long-time behavior of the system. In this study, we are 

interested in sustained excitation of the low-frequency mode via nonlinear interaction 

so we focus on the long-time behavior of the system. 

Much insight into the long-time (as well as the transient) dynamics of the system 

can be gained by studying the fixed points or constant solutions of the averaged 

equations. If a fixed point is stable, we expect that any motion with initial conditions 

in its neighborhood will eventually settle to it, resulting in constant-amplitude-and- 

phase motion of the high-frequency mode accompanied by static deflections of the 

low-frequency mode. 

If a fixed point is unstable, trajectories with initial conditions in its neighborhood 

may either diverge from the fixed point or oscillate about it, depending on the nature 

of the instability. If the fixed point is a saddle, trajectories will diverge from it and 

therefore the fixed point does not represent an experimentally attainable state of the 

system. If the fixed point is an unstable focus, motions are expected to oscillate 

about it, resulting in modulated motions of the high-frequency mode accompanied 

by oscillations of the low-frequency mode as observed in the experiments. 

Setting the time derivatives equal to zero in Eqs. (3.31), (3.32), (3.24), and (3.25) 

yields the fixed points of the averaged equations. We find it convenient to solve for 

o, x, and £ in terms of a to obtain 

2 
o = -a’ +4] 2 Ayi3 (3.34) 
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1 
r= 50 (3.35) 

8 = tan” (4) (3.36) 
o+a? 

It is clear that the maximum constant amplitude a is f/2y. and, in correspondence, 

the largest magnitude static deflection x is —f?/8y2. 

The stability of a fixed point can be ascertained from the eigenvalues of the Ja- 

cobian matrix of the averaged equations. Forming the Jacobian matrix, J, by differ- 

entiating each of the expressions for x’, y’, a’, and f’ by z, y, a, and f in that order 

and evaluating at the fixed point, we obtain 

J=— (3.37) 

where 

1 2 

We determine the eigenvalues numerically. If the real parts of all of the eigenvalues 

are negative, the fixed point is stable. The fixed point may lose stability by a real 

eigenvalue crossing into the right half plane; in this case a saddle is formed. Alterna- 

tively, a complex-conjugate pair of eigenvalues may cross transversely into the right 

half plane; in this case an unstable focus is formed (Guckenheimer and Holmes, 1983). 

The latter phenomenon is referred to as a Hopf bifurcation and is of primary interest 

in this study because it indicates that oscillatory motions of z, y, a, and # will occur. 

By using Eqs. (3.34) and (3.35) to evaluate o and z for given values of a, we 

generate frequency-response curves. We plot heavy lines for stable fixed points and 

light lines for saddles. At each unstable focus, we integrate the averaged equations 

and determine the minimum and maximum values of z and a. These are indicated by 

the vertical lines on the plots. In Fig. 3.1, we present the frequency-response curves 

Interaction Between Widely Spaced Modes—Quadratic Nonlinearity 27



      

      

  

      

44 

2 4 

XxX 

3 - 

44 

-§ t T t q ' qT T 

-10 8 4 4 2 0 2 4 6 10 

oO 

3.6 

3 4 

2.6 1 

2 4 

a 

1.5 > 

1- 

0.6 + 

0 v i a | q —  -§ J a 

-10 8 4 4 -2 0 2 4 6 10 

oO 

Fig. 3.1 Frequency-response curves for f =2.0, 4, =1.0, and 4, =0.5 
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for f = 2.0, 4; = 1.0, and pp = 0.5. For these parameter values, no Hopf bifurcations 

occur and therefore no oscillatory motions of z are predicted. 

Increasing the excitation amplitude f to 3.0, we obtain the frequency-response 

curves shown in Fig. 3.2. In this case, a Hopf bifurcation occurs giving rise to a branch 

of unstable foci. Around the unstable foci, oscillatory motions occur with amplitudes 

indicated by the vertical lines. Thus, sustained oscillations of the low-frequency mode 

accompanied by amplitude-and-phase-modulated motions of the high-frequency mode 

occur in this region. 

3.2.4 Numerical Integration 

In this section, by numerically integrating the averaged equations, we study motion 

in the neighborhood of the unstable foci. In addition, in order to validate the pertur- 

bation analysis, we numerically integrate the full equations and compare the results 

with those obtained from the averaged equations. 

To facilitate numerical integration of the full equations, we write them in a first- 

order form through the transformations 

um = 2 (3.39) 

ho o= ey (3.40) 

uz = a(t) cos(Mt + B(t)) (3.41) 

tly = —a(t)Msin (Nt + B(2)) (3.42) 

Substituting these transformations into Eqs. (3.8) and (3.9), we obtain 

  

r= gy (3.43) 

y= —€E (x + Qpy + a* cos? $) (3.44) 

a= 3) sin d (3.45) 

ap = — cats) cos ¢ (3.46) 
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where 

g(t) = cacos ¢ — 2ax cos ¢ + 2p2aN sin d + f cos Nt (3.47) 

and 

o= 2+ B (3.48) 

We choose to write the equations in this form because it is less stiff than other forms. 

Stiffness, caused by the coexistence of slow and fast changes in the system, can be 

gauged by comparison of the magnitudes of the elements of the Jacobian matrix. 

Written in terms of the original variables, the system is very stiff and numerical 

integration is inefficient. However, by introducing z, y, a, and 8, we obtain a system 

whose right-hand side has € as a common factor. Therefore, all terms in the Jacobian 

are of comparable magnitude, and numerical integration is considerably more efficient 

than it would be in terms of the original variables. 

In the numerical study, we use the same parameter values as in Fig. 3.2. For values 

of o between approximately —8.0 and —0.6, unstable foci exist and we therefore expect 

that oscillatory motions will occur. For values of o out of this range, we expect that 

the motion will settle to a fixed point. This was verified for several values of o outside 

the range for both the averaged and full equations. 

In the region of unstable foci, we integrated the averaged equations at increments 

of o as indicated by the spacing of vertical lines in Fig. 3.2. In all cases we found only 

simple periodic orbits; no multiple solutions or bifurcation phenomena were observed. 

A sampling of the orbits obtained during this sweep is shown in the left column of 

Fig. 3.3. 

Integrating the full equations for « = 0.02, we obtain results closely matching those 

obtained from the averaged equations. These orbits are shown in the right column 

of Fig. 3.3 for comparison with the results obtained from the averaged equations. 

For values of € as large as 0.10, good qualitative agreement is maintained although 

quantitative agreement is lost. 
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3.3 Excitation of the Low-Frequency Mode 

In some applications, it may be useful to transfer energy from a low-frequeucy mode 

to a high-frequency mode. In this section, we investigate this possibility. That 1s, 

we apply an excitation to the low-frequency mode and determine whether sustained 

oscillations of the high-frequency mode can occur. We study the system 

Uy + 2pyeu, + eu, = —eua + ef cos Qt (3.49) 

Ug + Qpoetig tug = —2euzU2 (3.50) 

which has the same form as Eqs. (3.8) and (3.9) studied earlier in this chapter with 

the exception that the excitation is now applied to the low-frequency mode. We take 

Q = € so that the low-frequency mode will be resonantly excited. 

Performing an analysis similar to that applied before, we obtain the averaged 

equation 

A” +2, A'+A+2BB = fcosMt (3.51) 

for A and 

27B' + 2ipoB-—-2AB=0 (3.52) 

for B. Substituting the polar form 

1 iz 
B= ae (3.53) 

into Eq. (3.52) and separating the result into real and imaginary parts, we obtain 

a’ = —p2a (3.54) 

af’ = Aa (3.55) 

It is clear from Eq. (3.54) that @ decays to zero as T; — oo. Thus, excitation 

of the low-frequency mode will not cause an energy transfer to the high-frequency 

mode. The modes are strongly coupled, but the nature of the coupling is such that 

oscillations of the low-frequency mode will not excite the high-frequency mode. 
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Inspecting Eq. (3.52), we see that the low-frequency modal displacement A appears 

in a product with the complex amplitude B. That this term has a real coefficient 

indicates that it is in phase with B. In order to drive the high-frequency mode, it 

must appear in phase with a. This can be accomplished through a nonlinear damping 

term as in the system 

ty t+ Qyyet, teu, = —Pupt+efcosNt (3.56) 

tig + Qpoetig tug = —€u,t2 (3.57) 

whose averaged equations are given by Eq. (3.51) and 

a = —(p2— Aja (3.58) 

af’ = 0 (3.59) 

From Eq. (3.51), we conclude that A will be oscillatory. If, as A oscillates, it is positive 

and exceeds ply in magnitude, a will increase and the high-frequency mode will be 

excited. Physical interpretation of the coupling in this system is unclear and it is 

certainly unusual in mechanical systems. By inspection of the full equation given by 

Eq. (3.57), we see that large negative values of uy make the damping of uz negative. 

Thus, we may consider the oscillations of uz to be self excited. 

Regarding the possibility of energy transfer from low- to high-frequency modes, we 

note that countless experiments have been performed on the large forced oscillations of 

the first few modes of continuous systems, but no report of this phenomenon exists in 

the literature. This indicates that excitation of the high-frequency mode, if possible 

in structures, occurs only rarely. It may also be noted that the coupling found in 

Eq. (3.57) is not actually an energy transfer. Rather, the energy which drives u2 is 

added to the system through negative damping. 

3.4 Closure 

In this chapter, we studied a two-degree-of-freedom system with widely spaced fre- 

quencies and quadratic nonlinearities. Using the method of multiple scales, we found 
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that in this system, interactions between the modes may occur by which an exci- 

tation applied to the high-frequency mode can cause sustained oscillations of the 

low-frequency mode. The motion in this regime resembles that observed in the 

experiments—a low-frequency motion accompanied by high-frequency oscillations 

modulated at the frequency of the low-frequency motion. 

It was shown that although amplitude and phase modulation of the high-frequency 

mode must occur in order for the low-frequency mode to be excited, the modulation 

does not occur independently of the low-frequency mode. Rather, the modulation is 

a result of an instability involving both the high- and low-frequency modes. 

We also investigated the possibility that oscillations of the high-frequency mode 

may be sustained by driving the low-frequency mode. It was found that this could 

occur through nonlinear damping, but this mechanism is discounted on physical 

grounds. 
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CHAPTER 4 

Interaction Between Widely Spaced 

Modes—Cubic Nonlinearity 

4.1 Introduction 

In this chapter, we analytically investigate the transfer of energy from high- to low- 

frequency modes by studying a representative system made up of two coupled oscil- 

lators given by 

tty + Qepy ty + Puy = —(40,u3 + Qin U3) (4.1) 

tla + 2epottg + u2 = e(a3us + aguru, + f cos Nt) (4.2) 

where ¢, the ratio of the linear natural frequencies of the system, is small. The high- 

frequency mode, whose undamped linear natural frequency is nondimensionalized to 

unity, has coordinate uz and the low-frequency mode, whose normalized undampéd 

linear natural frequency is €, has coordinate u,;. The system has linear viscous damp- 

ing given by the coefficients yz; and jt2, cubic nonlinearities with the coefficients a;, 

and an external forcing function f cos Nt which is applied only to the high- frequency 

mode of the system. Of principal interest is whether an excitation applied to the high- 

frequency mode near its linear natural frequency can, as observed in the experiments, 

generate a large response in the low-frequency mode. 
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4.2 Averaging 

The method of averaging is based on the assumption that small perturbations, such 

as weak nonlinearities or light damping, cause slow (low-frequency) variations in the 

response of a system (see Section 1.2). The fast (high-frequency) variations due to 

the perturbations are assumed to be insignificant. Essentially, the averaging approxi- 

mation yields a simplified mathematical representation of the dynamics of the system 

by smoothing away these fast variations. Thus, it is of basic importance that the 

components that make up the response be correctly classified as either fast or slow. 

As discussed in Chapter 1, the method of averaging (as formulated for weakly 

nonlinear oscillators) breaks down if any of the frequencies are small and therefore can 

not be used for a low-frequency mode. An alternative strategy for the low-frequency 

modes can be developed as follows. Neglecting the damping and nonlinearities, one 

can write the solution to Eq. (4.1) as u; = Ag cos(et + do). In this solution, u; is O(1), 

tt, is O(e) and i, is O(c”). This leads us to assume that u, itself is slowly varying. 

Because the natural frequency of uz is not small, its motion can be treated in the 

usual way by assuming that its amplitude and phase are slowly varying as described 

below. 

To explicitly show that uz is driven near its linear natural frequency, we set Q? = 

1 + eo, where o is a measure of the closeness of the excitation frequency to the 

unperturbed natural frequency of u2. Next, we apply the variation-of-parameters 

transformation 

uz = a(t) cos(Nt + B(t)) (4.3) 

u2 = —a(t)O sin(Nt + B(t)) (4.4) 

to Eqs. (4.1) and (4.2) and obtain 

uy + QE fly U1 + eu, = —e*(4a,u3 + ayu,a" cos?(Mt + B)) (4.5) 

aQ = —egsin(Nt + B) (4.6) 
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aBQ = —egcos(Nt + B) (4.7) 

where 

g = cacos(Qt + B) + a3a* cos*(Nt + B) + aguiacos(Nt + Bf) (4.8) 

+2 p20 sin(Qt + B) + f cos Nt 

Examining Eqs. (4.6) and (4.7), we note that @ and 8 are O(c) whereas 1 is 

O(1) and that therefore a and # are slowly varying. The averaging approximation is 

achieved by integrating Eqs. (4.5)-(4.7) with respect to time from 0 to 27/9 while 

treating the slowly varying quantities a, 8, and u, as well as their derivatives as 

constants. The resulting averaged or modulation equations are 

1 
thy + Qepeyty + Puy = —e (4arui + santa’ ) (4.9) 

and 

. 1... 
a= —€ (usa + sin 6) (4.10) 

: 1 1 3 
B=-e (5° + pouty + gost + i cos 6) (4.11) 

where we have set 2 = 1. Equation (4.9) can be rewritten as a pair of first-order 

equations as 

uy = €V] (4.12) 

. 1 
0, = —E (u + 2,0, + 404u2 + sont a?) (4.13) 

Here, we point out that because € appears as a common factor in the right-hand sides 

of Eqs. (4.10)-(4.13), the character of the motion does not depend on the value of 

€. While € must be small for the averaging approximation to be valid, its value only 

determines the speed at which the motion evolves; the amplitude and stability of the 

response are independent of its value. In Section 4.5, we will investigate the validity 

of the averaging approximation for various values of €. 
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4.3. Fixed Points of the Averaged Equations 

The fixed-point solutions of the averaged equations, Eqs. (4.10)-(4.13), represent 

constant-amplitude-and-phase motions of the high-frequency mode accompanied by 

static responses of the low-frequency mode. Setting the time derivatives in Eqs. (4.10)- 

(4.13) equal to zero and solving for o and u, in terms of a, we obtain 

or 

1 + aga? /2 _4,f_ito2a?/2 4.15 w= hoy (4.15) 

and 

2 
a= Sona? — agu? + LL 43 (4.16) 

4 a? 

Equations (4.14)-(4.16) are used to generate frequency-response curves by solving 

for u; and o for given positive values of a less than f/2p2. In Fig. 4.1, we present 

frequency-response curves for a case where a; and a2 are both positive. In this case, 

the expression under the radical in Eq. (4.15) is always negative and therefore the 

only real solutions are those with u,; = 0. For some other values of the parameters, 

nontrivial solutions for u, are possible. 

If ay is negative and az is positive, nontrivial solutions for uw, will occur for all 

values of a and any value of f as shown in Fig. 4.2. If a, is positive and ag is negative, 

nontrivial solutions for u, will occur when 

f > 2y\/-— (4.17) 

as illustrated in Figs. 4.3 and 4.4. If both a; and ag are negative, nontrivial solutions 

for u, will occur for values of a less than ,/—2/a_ and any value of f. 

The stability of a fixed-point solution is studied by examination of the eigenvalues 
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Fig. 4.1 Frequency-response curves for a,=a@,=1, @,=2, a,=3, 4, =0.25, uw, =0.5, and 
Sf =2.5; solid lines denote stable nodes and dotted lines denote saddles 
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Fig. 4.2 Frequency-response curves for a, =-1, a, =2, a@,=1, a,=—-3, w, =90.25, py =0.5, 
and f =2.5; solid lines denote stable nodes and dotted lines denote saddles 
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Fig. 4.3  Frequency-response curves for a,=a,;=1, @,=-2, a,=3, w,=0.25, nw, =9:5, 
and / =2.5; solid lines denote stable nodes, dotted lines denote saddles, and dashed 

lines denote unstable foci 
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Fig. 4.4 Frequency-response curves for a, =a,;=1, a, =-2, a, =-3, uw, =0.25, uw, =0.5, and 
J =2.5; solid lines denote stable nodes, dotted lines denote saddles, and dashed lines 
denote unstable foci 
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of the Jacobian matrix of Eqs. (4.10)-(4.13) evaluated at the fixed point of interest: 

2 ZfcosB 0 0 

Tr Q4u 0 _¢ 1 Ha 4uy (4.18) 

0 0 0 —] 

Uy, a 0 To. 2py 

where 

r 3 
= 4°34 —_ 9a? cos 2 

and 

lr, = 12a,u3 + sone? +1 

If all of the eigenvalues have negative real parts, then the fixed point is asymptotically 

stable and any motion in the neighborhood of this fixed point is expected to settle 

to it. These solutions are called stable nodes and are denoted by solid lines in the 

frequency-response curves of Figs. 4.1 through 4.5. If a real eigenvalue becomes 

positive, the fixed point loses stability and the motion is expected to diverge from 

it. These unstable solutions are called saddles and are denoted by dotted lines in 

Figs. 4.1 through 4.4. 

If, instead, a Hopf bifurcation occurs by a complex conjugate pair of eigenvalues 

crossing transversely from the left half of the complex plane into the right half of the 

complex plane, the fixed point loses stability, but in this case the motion is expected 

to oscillate about the fixed point. These unstable fixed points (called unstable foci 

and denoted by dashed lines in Figs. 4.3 and 4.4) are of great interest because in their 

neighborhood we expect to find motions where wu, oscillates and uz is modulated at 

the frequency of oscillation of u; as observed in the experiments. 

For fixed points with u,; = 0, the eigenvalues of the Jacobian matrix are given by 

  

  

1 
\=-€ pr Yor janet (4.19) 

A= —-€ + ,| f cos 8 3 3a — 2 cos B (4.20) 
7 Mm PV ges 4a? 
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Because the damping coefficients y,; and pe are always positive, it is clear from 

Eqs. (4.19) and (4.20) that solutions with u; = 0 cannot lose stability through a 

Hopf bifurcation. Therefore we do not expect oscillatory solutions involving u; to 

occur in the neighborhood of fixed points with wu, = 0. 

Returning to Fig. 4.1 in which the only possible solutions for u, are trivial so- 

lutions, we conclude that no Hopf bifurcations can occur for this set of parameters. 

Thus, in this case and in any case where only trivial fixed-point solutions for u, exist, 

no interactions between u, and uz can occur and the long-time behavior of the system 

could be studied using a single-degree-of-freedom equation in which wu, is neglected. 

For fixed points with nontrivial u,; solutions as given by Eq. (4.15), the eigenvalues 

cannot be easily obtained in closed form. Instead, we write the equation for the 

eigenvalues in the form 

{)-n(e)oaQ)-aQJenee 

  

  

where 

ry = —2(t1 + fa) (4.22) 
2 3 f? Tr. = —2—aa*— goat cos 8 + 4a + 44 plo (4.23) 

3 2 

r3 = qinasas cos 8 — aL + 4po + 2p.a2a? (4.24) 

m= — (2 + a2a7)(6a,03 — )f-cos B I f? f 4.25 4 = 16a, 2 1 23 A744) ] COS Pp — 4° _ 22 ( . ) 

Then we use the Routh-Hurwitz criterion to determine the signs of the real parts of 

the eigenvalues of the Jacobian and therefore the stability of the fixed point. For this 

case, the Routh-Hurwitz criterion guarantees that all eigenvalues have negative réal 

parts if 

t. r, <0 

wt. = TT. — 73 <0 (4.26) 

i. = -r3(ryre —173) — rer, > 0 

tv. r4 >0 
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We observe that condition z is always satisfied and test the remaining conditions 

numerically. Of particular interest is the case where condition 222 is violated because 

in this case a complex-conjugate pair of eigenvalues will have a zero or a positive real 

part and a Hopf bifurcation may occur, resulting in oscillatory motions of uj. 

In Fig. 4.2, we present frequency-response curves for a case in which nontrivial 

solutions for u, occur. It should be noted that, although we show only the positive 

fixed-point solutions for u; in Fig. 4.2(b), there exists a second set of solutions with 

the opposite sign in u;. The values of the parameters used in this case differ from 

those used in Fig. 4.1 only in the signs of a; and a2. The solutions in this case 

include a set of nontrivial solutions for u, in addition to the trivial solutions plotted 

in Fig. 4.1. This nontrivial branch is, however, unstable with a positive real eigenvalue 

and therefore does not represent observable states of the system. Because none of the 

fixed points is an unstable focus, no oscillatory motions of u; are predicted for this 

set of parameters. 

By reversing the sign of a2 used in Fig. 4.1, we obtain the frequency-response 

curves depicted in Fig. 4.3. In this case, the trivial solutions shown in Fig. 4.1 exist 

but are unstable with a positive rea] eigenvalue in the central region of the plot. In 

this region, a nontrivial solution for u, exists. The upper branch of this solution 

consists of two regions of stable nodes joined by a region of unstable foci. Where the 

stable nodes exist, the motion will consist of periodic oscillations in ug and either a 

positive or negative static deflection in u,;. Where the unstable foci exist, oscillatory 

u, motions accompanied by modulated uz responses will occur. 

By reversing the sign of a4 used in Fig. 4.3, we obtain the frequency-response 

curves depicted in Fig. 4.4. In this case the nontrivial solutions for uw, do not exhibit 

an overhang and occur in a narrower frequency range than in Fig. 4.3. As in the 

case of Fig. 4.3, there exists a region of unstable foci. Because oscillations in wu, 

occur in this region, it is useful to determine its boundaries for a variety of values 

of the parameters. This can be accomplished by solving for the location of the Hopf 
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bifurcations which bound the region on each end. 

Fixing f, 4;, and a; we use the secant method to solve numerically for the values 

of the frequency detuning o where condition 7222 is on the verge of being violated. 

Repeating this procedure for smoothly varying values of f, we obtain curves in the 

o — f plane which form the boundary between constant-amplitude-and-phase motions 

of uz accompanied by static deflections in u,; and amplitude-and-phase-modulated 

motions of uz accompanied by oscillations of uj. 

In Fig. 4.5, we present curves generated by this method for the values of the a; 

used in Fig. 4.3 and various values of the damping coefficients. Below these curves, 

oscillations in uy decay to a constant value and above them oscillations in u, are 

sustained. From the curves in Fig. 4.5(a), it is apparent that at any particular ex- 

citation frequency, increasing the damping coefficient jz of the high-frequency mode 

increases the critical amplitude of the force required to generate oscillations in uj. 

However, from Fig. 4.5(b) we see that increasing the damping coefficient j; of the 

low-frequency mode does not always increase the critical amplitude of the force. At 

some excitation amplitudes and frequencies, increasing p, actually destabilizes the 

system. 

For the values of the a; used in Fig. 4.4, the boundaries between constant and 

oscillatory motions of u, appear as shown in Fig. 4.6. In contrast to the behavior 

shown in Fig. 4.5, there is in this case a bounded region of values for the forcing 

amplitude f where instability occurs. That is, at some excitation frequencies, an 

increase in f will destabilize the system but a further increase in f will re-stabilize 

it. Also, in Fig. 4.5 an increase in 2 never destabilizes the system but in this case 

an increase in ff2 may do so. 

4.4 Numerical Solutions of the Averaged Equations 

In the preceding section, we studied the fixed points of the averaged equations and 

were able to draw conclusions about motions in their neighborhoods. We can only 
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Fig. 4.5 Boundaries between constant and oscillatory motions of u, for a,=a,=1, a, =-2, 
a, =3, and various damping values 
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Fig. 4.6 Boundaries between constant and oscillatory motions of u, for a, =a, =1, a, =-2, 

a, =-3, and various damping values 
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draw conclusions about the general motion of the system if it tends toward these fixed 

points. While an analytical proof that this is the case does not exist, some confidence 

that the motion tends toward the fixed points can be obtained by numerically inte- 

grating the averaged equations with a variety of initial conditions. We employed a 

fourth-order Runge-Kutta-Fehlberg algorithm and integrated the averaged equations 

using the same values for the parameters that were used to make the preceding fig- 

ures. It was found that, wherever one or more stable fixed points exists, the motion 

settled to a fixed point for all of the initial conditions that were used. 

Next, we study the dynamics of the system in the neighborhoods of unstable foci. 

As predicted by the stability analysis, oscillatory responses of u; are found to occur 

here. The dynamics of the system are very complicated in these regimes and various 

nonlinear phenomena, such as sequences of period-doubling bifurcations culminating 

in chaos, symmetry-breaking bifurcations, the existence of multiple attractors, and 

the merging of attractors were observed. In this thesis, only a small sample of these 

dynamics are presented. 

In Fig. 4.7, we present a sequence of responses obtained for the same parameters 

used in Figs. 4.3 and 4.5, f = 2.5, and various values of o. As shown in Fig. 4.3, as 

o is decreased through o = 0.349 , a Hopf bifurcation occurs. In Fig. 4.7(a) we plot 

the motion in the a — u; plane just before the Hopf bifurcation occurs. As expected, 

the long-time response consists of only the stable fixed point. It should be noted that 

there exists a second fixed-point solution with negative u,; which is not plotted here. 

In Fig. 4.7(b), we show the motion just after the bifurcation. As predicted, the 

response changes from the point in the plane shown in Fig. 4.7(a) to the limit cycle 

shown in Fig. 4.7(b). As o is further decreased, the size of the limit cycle increases 

as shown in Figs. 4.7(b)-(e). Decreasing o further, we obtain the period-doubling 

bifurcation sequence of Figs. 4.7(f)-(g) which culminates in the creation of the chaotic 

attractor shown in Fig. 4.7(h). It should be noted that only a short sample of the 

chaotic attractor is shown. As the motion continues, the trajectory will fill the area 
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Fig. 4.7 Numerical simulation of the averaged equations for a,=a,=1, a, =-2, a,=3, 
H, = 0.25, uw =0.5, f =2.5, and o= (a) 0.350, (b) 0.348, (c) 0.300, (d) 0.200, (e) 0.000, 
(f) -0.170, (g) -0.243, and (h) -0.260 
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Fig. 4.8 Numerical simulation of (a) the averaged equations and (b)-({d) the exact equations for 

a, =a,=1, a, =-2, a, =3, nw, =90.25, pw, =0.5, f =2.5, o=-0.27, and €= (b) 0.01, 

(c) 0.03, and (d) 0.05 

outlined roughly by the portion of the trajectory shown. 

For all of the responses shown in Fig. 4.7, there exists a mirror image with opposite 

signs of u,; and v; in the left half of the plane. Decreasing o further, the chaotic 

attractors in the left and right halves of the a—u, plane merge into a single attractor. 

That is, the motion does not remain in either the left or right half of the plane but 

jumps erratically from one to the other. This response is shown in Fig. 4.8(a). As o 

is further decreased through roughly -0.41, this attractor loses stability. The motion 

is no longer attracted to it but rather diverges from it after some time and jumps to 

another attractor (depicted in Fig. 4.9(a)) which, for values of o less than roughly 

-0.2, coexists with the attractors discussed thus far. 

As shown in Fig. 4.9(a) this attractor is periodic and symmetric at ¢ = —0.41. 
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As a is decreased, a symmetry-breaking bifurcation occurs; one of the two resulting 

nonsymmetric attractors is shown in Fig. 4.9(b). As o is further decreased, these 

attractors undergo a sequence of period-doubling bifurcations leading to chaos as 

shown in Figs. 4.9(c)-(e). The chaotic attractor in Fig. 4.9(e) is unsymmetric and 

an attractor with its mirror image also exists. Another decrease in o causes these 

attractors to merge, resulting in the symmetric attractor shown in Fig. 4.9(f). As a 

is further decreased, a great variety of nonlinear dynamical phenomena are observed 

until a reverse Hopf bifurcation occurs at the end of the unstable branch leading to 

stable fixed-point solutions. 

4.5 Numerical Solutions of the Exact Equations 

To confirm the analytical results, we numerically integrate the equations of motion. 

However, rather than integrate the equations in terms of the original variables u; 

and u2 as given in Eqs. (4.1) and (4.2), we employ the variables uy, a, and £ as 

in Eqs. (4.5)-(4.7). This form of the equations, while still exact, is less stiff than 

Eqs. (4.1) and (4.2) and allows direct comparison to the results obtained from the 

averaged equations. 

In Fig. 4.10, we present results for the same values of the parameters used in 

Fig. 4.7 with « = 0.01. Comparing Figs. 4.7(a)-(b) and 4.10(a)-(b), we conclude that 

the averaging approximation predicts the occurrence of the Hopf bifurcation with good 

accuracy for this value of ¢. Also, following the evolution of the attractor through the 

sequence of period-doubling bifurcations to the formation of the chaotic attractor, 

we find remarkably good agreement as shown in Figs. 4.10(c)~(h). In addition, the 

averaged and exact equations are in good agreement in the prediction of the merged 

attractors of Fig. 4.8 for values of € as large as 0.05. 

For the less robust attractors, such as the period-two, period-four, and chaotic 

attractors of Figs. 4.7(f)-(h), the agreement between the averaged and exact equations 

breaks down for larger values of «. For example, the period-four response predicted 
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Fig.4.9 Numerical simulation of the averaged equations for a,=a,=1, a,=-2, a,=3, 
HM, = 0.25, wy =0.5, f =2.5, and o= (a) -0.41, (b) -1.10, (C) -1.28, (d) -1.31, (e) -1.32, 
and (f) -1.36 
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Fig. 4.10 Numerical simulation of the exact equations for e=0.01, a, =a, =1, a, =-2, a, =3, 
Hy, = 0.25, uw, =0.5, f =2.5, and o= (a) 0.350 , (b) 0.348, (c) 0.300, (d) 0.200, (e) 0.000, 
(f) -0.170, (g) -0.243, and (h) -0.260 
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Fig. 4.11 Numerical simulation of the exact equations for a, = a, =1, a, =-2, a, =3, wy, =90.25, 
HH, =90.5, f =2.5, c=-0.243, and €= (a) 0.03 and (b) 0.05 

in Fig. 4.7(g) is in good agreement with that shown in Fig. 4.10(g) where e€ is 0.01. 

However, when € is 0.03, as shown in Fig. 4.11(a) the exact equations yield a chaotic 

attractor in the right half-plane. For larger values of €, a greater divergence between 

the results obtained from the averaged and exact equations occurs. When € is 0.05, the 

exact equations yield a merged chaotic attractor rather than the period-four attractor 

which the averaged equations predict. 

Nonetheless, the averaging approximation appears to be valid in most regimes 

for values of € as large 0.05. The averaging procedure removes the high-frequency 

oscillations that are clearly visible on the trajectories for « greater than or equal to 

0.03. Naturally, as « becomes larger and these oscillations increase in amplitude and 

decrease in frequency, the accuracy of the averaging approximation is expected to 

suffer. 

4.6 Closure 

In this chapter, the method of averaging was used to study a simple two-degree-of- 

freedom system with cubic nonlinearities. Like the system with quadratic nonlin- 

earities studied in Chapter 2, this system exhibits an energy transfer from high- to 

low-frequency modes. However, the dynamics of this system are far more complicated 
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than those of the system considered in Chapter 2. Importantly, the results presented 

here indicate that the use of conventional methods to decrease a modal amplitude, 

such as increasing the damping coefficient or decreasing the excitation amplitude, 

may have undesirable effects. 
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CHAPTER 5 

Modulated High-Frequency Excitation 

5.1 Introduction 

In this chapter, we consider a single-degree-of-freedom oscillator with cubic nonlin- 

earity given by 

ib + 2Cwtt + w*u + aw*u® = F(wt) cost (5.1) 

where t is nondimensionalized so that the excitation frequency is unity and the natural 

frequency w of the system is small. To show explicitly that the amplitude of the 

excitation F' is slowly varying, we write it as a function of wt. 

We use the method of multiple scales to analyze the dynamics of the system and 

obtain a second-order nonlinear equation governing the low-frequency response of the 

system. This equation can be used to study the dynamics of the system for any slowly 

varying amplitude F’. As a first example, we study the case where the amplitude is 

not modulated. We then treat the case of a harmonically modulated excitation for 

both weak and strong nonlinearity. This case is shown to be equivalent to the well 

known external combination resonance. 
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5.2 Perturbation Analysis 

We determine a first-order approximation for the system response by the method 

of multiple scales (Nayfeh, 1981). We begin by introducing the new independent 

variables Ty = t, T; = wt, and T, = w*t which characterize, respectively, motion 

near the excitation frequency, near the natural frequency of the system, and at lower 

frequencies. Using the chain rule, we write the time derivative in terms of the 7; as 

J | 
qm Dot wD +w*Dr+... (5.2) 

where D,, = 0/OT,,. We assume an expansion for u in the form 

u(t) = uo(To, 71, To, ee ) + wui(To, Ti, To, oe .) + wu2(To, Th, To, .- .) +... (5.3) 

Substituting Eqs. (5.2) and (5.3) into Eq. (5.1) and equating coefficients of equal 

powers of w, we obtain 

Duo = F(T) cos To (5.4) 

Deu, = —2( DoD U0 + € Dotto) (5.5) 

Dru2 = —- [(D? + 2DoD2)uo _— 2DoDivwy4 + 2¢(D uo + Dour) + uo + ous (5.6) 

The general solution to Eq. (5.4) may be written as 

Ug = A(T, T2) + Bh, T2)To _ F(T) cos To (5.7) 

We require that the response be free of secular terms and therefore set B = 0. We note 

that, in Eq. (5.7), the term F(T) cos To represents the direct response to the high- 

frequency external forcing function and the term A(T;), which will be determined 

at higher order, captures low-frequency motion near the natural frequency of the 

system. We will find that, through the nonlinearity, the high-frequency motion can 

influence the low-frequency motion, causing resonant responses to occur under certain 

conditions. 
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Next, we substitute the expression for ug given in Eq. (5.7) into Eq. (5.5) and 

obtain 

Deu, = —2(F" + CF) sin To (5.8) 

whose solution is 

uy = 2(F' + CF) sin To (5.9) 

where the primes denote differentiation with respect to 71. We have included only 

the particular solution because the homogeneous solution has the same form as A. 

At this order, no secular terms appear, and no information about A can be obtained. 

Substituting Eqs. (5.7) and (5.9) into Eq. (5.6), we obtain 

Doug = —A" —2F" cosTy — 2¢[A’ + F’ cos To + 2(¢F + F’) cos To] 

—(A— F cosTp) — a(A — F cos Ty)? (5.10) 

Secular terms are those which cause u2 to grow without bound as 7p — oo. .In this 

case, the secular terms are the slowly varying terms. Eliminating them, we obtain 

the averaged equation governing A: 

3 
AY 420A! + (1 + saF*] A+aA®=0 (5.11) 

For the purposes of this study, we will keep only the first two terms in the expan- 

sion and write 

u=A— Fcost+ 2w(F’+CF)sint+... (5.12) 

Thus, the response of the system consists of components at the frequency of the 

excitation and a low-frequency component governed by Eq. (5.11). We note that 

the amplitude of the high-frequency excitation appears as a parametric excitation on 

the low-frequency component of the response and that therefore a modulated high- 

frequency excitation can cause resonant responses. Parametrically excited systems 

have been the subject of extensive study in recent years (e.g., Nayfeh and Mook, 

1979; Ibrahim, 1986; and Schmidt and Tondl, 1986). 
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5.3. Response to Constant-Amplitude Excitation 

Equation (5.11) can be used to study the dynamics of the system for any slowly 

varying amplitude F. In this section we consider the case where the excitation is 

not modulated (F is constant). In this case, Eq. (5.11) has the form of an unforced, 

damped, Duffing oscillator. If a is positive, A will always decay to zero. For negative 

a, unbounded motions are possible under two scenarios. If F? is greater in magnitude 

than 2/3a, the system is linearly unstable and the motion will be unbounded. If the 

foregoing condition is not satisfied, unbounded motions can still occur for sufficiently 

large initial conditions. 

Phase portraits of A for a = —1, light damping, and increasing values of F' are 

shown in Fig. 5.1. In Fig. 5.1(a), F = 0 and the phase portrait is the same as would 

be obtained from Eq. (5.1). The portrait is dominated by the sink at A = 0 and the 

saddles at A = +1. Any initial conditions between the insets of the saddles will lead 

to the sink at the origin. Outside this region, all initial conditions lead to unbounded 

motions. As the excitation amplitude is increased, the saddles move inward and the 

basin of attraction to the sink is considerably decreased as shown in Fig. 5.1(b). As 

F is increased beyond 2/3, the saddles converge to the sink and a reverse pitchfork 

bifurcation occurs. For larger values of F’, the origin is linearly unstable and all initial 

conditions lead to unbounded motions, as shown in Fig. 5.1(c). 

For oscillatory motions, the free-oscillation component of the response is not at the 

natural frequency of the system but rather its frequency is affected by the excitation 

as well as the nonlinearity. For weak nonlinearity (small a) or small amplitudes 

(small A), a perturbation method can be used to expand the averaged equation and 

determine the frequency of free oscillations. 

For strong nonlinearity, we resort to numerical integration of Eq. (5.11) to com- 

pute the free-oscillation component of the response and then add particular solutions 

according to Eq. (5.12). In Fig. 5.2, we plot the undamped free response of the 

system for positive a and increasing values of F. We see that as F' increases, the 
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Fig. 5.2 Free, undamped oscillations for @=0.02, a@=1.00, and F = (a) 0.00, (b) 0.50, and (c) 
1.00 
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frequency of the free-oscillation component of the response increases dramatically. 

Thus, the frequency of free oscillations can be controlled by modification of the exci- 

tation amplitude. This result is similar to that reported by Nayfeh and Mook (1979) 

for nonresonant hard excitations. 

The perturbation approximation is valid for small w. To investigate the validity of 

the averaged equation, we compare the free responses predicted by numerical integra- 

tion of the full and averaged equations. In Fig. 5.3, we plot the predicted responses 

for T; = 0 to 6. For w = 0.02 (Fig. 5.3(a)), there is no visible difference between the 

two predictions. For larger w, as shown in Figs. 5.3(b) and (c) for w = 0.4 and 0.6, 

respectively, the trajectories diverge at successively earlier times. This divergence 

confirms that increasing w degrades the accuracy of the perturbation analysis. 

5.4 Response to Harmonically Modulated Excitation 

In this section, we study the case where the excitation amplitude undergoes simple- 

harmonic modulation. We therefore let 

F=f+gcosQT, (5.13) 

We note that the excitation F cost can in this case be written as a sum of harmonics 

as 

1 “ L 

f cost + 59 [cos(Y + Quwt) + cos(1 — Qwt)] (5.14) 

Thus, the modulated excitation studied in this case can be viewed as a three-frequency 

excitation and the results interpreted as such. 

5.4.1 Weak Nonlinearity 

If the nonlinearity is weak and the damping is light, we can introduce € to denote 

smallness and cast Eq. (5.11) in the weakly nonlinear form 

A” + 26€CA' + 1 + sear] A+ eaA*® =0 (5.15) 
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where we will later set ¢ = 1. 

We now apply the method of multiple scales to Eq. (5.15) by introducing the 

independent variables Tt) = 7, and 7, = «7; and expanding A in the form 

A(T1) = Ao(70,71,---) + €Ai(70,71,---) +--- (5.16) 

Equating equal powers of €, we obtain 

AvAg+ Ao = 0 | (5.17) 

AbA, +A, = —2ApA; Ao — 2¢AoAo — “aF? Ap — aAe (5.18) 

where A,, = 0/07,. The general solution of Eq. (5.17) can be written as 

A= G(n)e'? + G(m)e"*” (5.19) 

where the bar denotes complex conjugation. Substituting Eq. (5.19) into Eq. (5.18), 

we obtain 

AoA, +A, = —2(tG'+i¢G4+ 5aG?G)ein — aGre* 4+. ec (5.20) 

3 2 iT; YY tT 
— 30k (Ge °+Ge °) 

where cc denotes the complex conjugate of preceding terms. In order to eliminate 

secular terms and determine an equation governing G, we must choose a form for F’. 

Substituting the specific form for F given in Eq. (5.13) into Eq. (5.20), we find 

that, to this order, resonances may occur if 22 is near either 1 or 2. These conditions 

correspond to modulation frequencies near w and 2w. A higher-order analysis would 

predict the occurrence of resonances for other values of 9. In this section, we consider 

the case where 1) = 1 and therefore set 2 = 1+ eo. Eliminating secular terms from 

Eq. (5.20), we obtain the following modulation equation governing G: 

3 3 = »; - 
2G’ +2 ic + 3a (2 f? t+ *)| G+ gag Germ + 3aG’G = 0 (5.21) 

Here, we note that Eq. (5.21) has the same form as those obtained by previous 

researchers in the study of combination resonances (e.g., Nayfeh, 1985). 
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Next, we separate the modulation equation into real and imaginary parts by writ- 

ing G in terms of an amplitude and phase as 

Liven 
G= saewn 8) (5.22) 

Substituting this expression into Eq. (5.21), we obtain the autonomous system of 

equations 

! 3 265 a’ = —Ca— —aag’* sin 2B . (5.23) 
16 3 

ap’ = oa— 50(2/? + 9’)a— ~cag? cos 23 — gue (5.24) 

Setting € = 1, we now write the system response as 

u = acos(wMt + 8) — Fcost + 2w(F’+¢F)sint+... (5.25) 

Steady-state solutions of A satisfy a’ = 6’ = 0. Solving for a, we find that a = 0 

or 

2 474)? 
a= i - (2f? +9) += (Fas) - a | (5.26) 

Stability of these fixed-point solutions can be determined from the eigenvalues of the 

Jacobian matrix of Eqs. (5.23) and (5.24) evaluated at the fixed points. 

In Fig. 5.4, we plot frequency-response curves of a for positive a and various values 

of the constant component of the excitation f. The frequency-response curves have 

the same shape as would be obtained for a nonlinear Mathieu equation, but they 

are shifted strongly to the right as f is increased. The results presented in Fig. 5.4 

indicate that, under some conditions, an increase in f can cause a decrease in the 

low-frequency response amplitude a. 

We plot a as a function of f in Fig. 5.5. We see that at f = 0 both a trivial and 

a nontrivial solution are possible. As f is increased, the nontrivial solution decreases 

in amplitude and the trivial solution loses stability, causing a jump to the nontrivial 

branch. As f is further increased, the nontrivial solution approaches zero sharply. 

For large enough values of f, only trivial solutions are possible. This figure shows 
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Fig. 5.4 Frequency-response curves for a=0.05, ¢=0.005, g=1.00, and f = (a) 1.00, (b) 1.25, 

and (c) 1.50 

Modulated High-Frequency Excitation



  

        
0 0.5 1 1.5 2 

tI 

Fig. 5.5 Amplitude of low-frequency response as a function of f for a=0.05, ¢=0.005, 
o=0.10, and g=1.00 

clearly that an increase in the amplitude of the constant component of the excitation 

can decrease the amplitude of the low-frequency response. However, because the 

high-frequency component of the response is proportional to f, the total response 

amplitude does not decrease as f is increased. 

Whereas the only effect of f on the amplitude a of the low-frequency response is 

to cause a frequency shift, the term gcos 7, pumps energy into the low-frequency 

oscillations and causes a frequency shift. Neither effect is dominant and we find 

therefore that the dependence of a on g is not simple. In Fig. 5.6, we plot a as 

a function of g while holding o constant. As expected, only the trivial solution is 

possible for small g. As we increase g from this level, a jump to the nontrivial solution 

occurs. We find however that as g is further increased, the nontrivial solution goes 

to zero and beyond that point only the trivial solution is possible. 

The case of 22 = 1 studied in this section corresponds to the case where the 

frequency of modulation is near the frequency of free oscillation as shown in the time 

trace of Fig. 5.7. Other resonances are possible and can be predicted using a higher 

order analysis than was presented in this section. In the next section, we present 

numerical examples of some of these resonances for large values of a. 
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Fig. 5.7 Time trace of the response for a=0.05, €=0.005, o=0.08, w=0.02, f =1.25, and 
g=1.00 
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Fig. 5.8 Time trace of the response for a=0.50, = 0.01, Q=1.58, f =0.00, and g = 2.00 

5.4.2 Strong Nonlinearity 

Here, we consider the case where the nonlinearity is strong. In this case, perturbation 

methods are ineffective for the study of the averaged equation, Eq. (5.11), and we 

resort to numerical integration. This approach has considerable advantages over 

integration of the full equation, Eq. (5.1). Because the averaged equation contains 

only low frequencies, a much larger time-step can be used than in the case of the 

full equation. Moreover, the responses obtained from the averaged equation are far 

more easily identified than those obtained from the full equation because they do 

not contain the high-frequency components which can muddy phase portraits and 

Poincaire sections. 

If f = 0, Eq. (5.11) can be rewritten as a nonlinear Mathieu equation 

" / 3 2 3 2 3 A’ +2¢€A' + (1 + 409 + gag cos 20T, | A+ aA* =0 (5.27) 

which has been studied extensively in the literature. Linearizing, we find that the 

frequency of undamped infinitesimal free oscillations is (1 + 3ag?7/4)1/?. 

The strongest resonance will occur if is near this frequency. This case was 

treated in the previous section for weak nonlinearity. The motion in this case is 

shown in Fig. 5.8, and it can be seen that the low-frequency response undergoes one 
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Fig. 5.9 Time trace of the response for a =0.50, €=0.01, Q=0.79, f =0.00, and g=2.00 
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Fig. 5.10 Time trace of the response for a= 0.50, ¢=0.01, Q=0.53, f =0.00, and g = 2.00 

cycle for every cycle of the high-frequency response (two beats). Other resonances 

may occur if 2 is near one-half or one-third of the frequency of free oscillations. These 

cases are shown in Figs. 5.9 and 5.10, respectively. 

5.5 Closure 

In this chapter, the response of a single-degree-of freedom system with cubic nonlin- 

earities to a modulated high-frequency input was studied. The method of multiple 

scales was used to derive a second-order equation governing the components of the 
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response of the system near its natural frequency. In this equation, the amplitude of 

the excitation, which is a function of time, appears as a parametric excitation. 

The result of the perturbation analysis was used to study the response of the 

system to constant-amplitude and harmonically modulated excitations. For harmon- 

ically modulated excitations, various resonances occur and these were shown to corre- 

spond to external combination resonances. These examples are fairly straightforward, 

but more difficult problems involving aperiodic modulation could be studied with the 

analysis presented here. 
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CHAPTER 6 

Discussion and Conclusions 

6.1 Discussion of the Current Work 

In this thesis, we investigated the nonlinear dynamics of systems where some compo- 

nents of the response evolve on the slow time scale and others evolve on the fast time 

scale. It was found that such systems exhibit a range of phenomena not observed in 

systems where all components evolve on the same time scale, the most significant of 

which is the energy transfer from high- to low-frequency modes. 

This energy transfer is a consequence of the strong coupling between modes evolv- 

ing on different time scales which is similar to the strong coupling that exists between 

modes with a 1:3 frequency ratio in systems with cubic nonlinearities. The resulting 

internal rescnance is often referred to as a 1:3 autoparametric resonance. Because the 

natural frequency of a mode that evolves on the slow time scale is nearly zero, the 

interaction between slow and fast time scales may be viewed as a 0:1 autoparametric 

resonance. 

In contrast to the interactions due to the well-known parametric, external, and 

classical internal resonances, the interactions between the low- and high-frequency 

modes do not require the existence of any precise frequency relationships in the sys- 

tem. Rather, it seems that these interactions can occur if there exist modes whose 
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natural frequencies are much lower than the natural frequencies of the modes being 

directly driven. Also, in contrast to interactions caused by the occurrence of broad- 

band chaos, the interactions described here can occur whenever the amplitudes and 

phases of the high-frequency modes undergo slow modulations. 

One aspect of the response of systems with widely spaced modes that has not been 

emphasized thus far is the occurrence of static deflections in the low-frequency modes, 

which were found to occur even in the absence of even nonlinearities. These static 

deflections may be particularly significant in applications such as robotics where the 

position of a mechanism must be controlled with precision. 

The transfer of energy from high- to low-frequency vibrations studied in this the- 

sis is of great practical importance. In many engineering systems, high-frequency 

excitations can be caused by rotating machinery. Through the mechanisms inves- 

tigated in this thesis, energy from these high-frequency sources can be transferred 

to low-frequency modes of supporting structures or foundations, resulting in danger- 

ously large oscillations. Moreover, the results presented in Chapters 4 and 5 indicate 

that the use of conventional methods for the decrease of a mode’s response, such as 

increasing the dissipation or decreasing the force amplitude, may actually increase 

the amplitude of the low-frequency response. 

6.2 Suggestions for Future Work 

There are many aspects of the dynamics of systems with widely spaced frequencies 

that are not yet understood. Free oscillations of systems with widely spaced modes 

have not yet been investigated although they promise to show some very unusual 

features. The concept of a nonlinear mode shape has gained much interest recently; 

nonlinear mode shapes of systems with widely spaced modes may exhibit mode bi- 

furcations and static streaming in the absence of even nonlinearities. 

Thus far, only systems involving one low-frequency mode have been analyzed, but 

two low-frequency modes were excited in the experiment of Chapter 2. It would be 
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useful to study which of the lowest modes of any given structure may be excited when 

a high-frequency mode is driven. Other systems that may be studied include systems 

where excitations are applied on both the slow and fast time scales. In such cases, 

an energy exchange between the modes should occur but it may be more difficult to 

characterize. 
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