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The Decomposition of Rademacher—Walsh Spectra

1 Introduction

Rademacher-Walsh transforms have been used by a number of authors in the
area of digital design, in particular Hurst and Edwards (see [5], (41, [2]
and other work of these authors)., For an n-variable switching function these
transforms are square matrices of order 2n which when multiplied by 2n
entries in the table specifying the function result in a spectral vector
containing 2% spectral coefficients., Since these transforms are orthogonal
it is a simple matter to multiply the spectral vector by the transform again
to recover the table specifying the function (except for a constant scaling
factor). However several of the design techniques involve a manipulation of
the spectral vector transforming it to the spectral vector of a new function,
Clearly we could generate the table specifying the function by use of the
full transform again, but this is a rather extravagent representation of the
function and our motivation below is to try to develop a technique which will
eXpress the function into a much simpler sum of products expression (an "on-array"
for the function). Thig expfession will not in general be minimal but will

hopefully be reasonably close to this.

For our purpose we develop in sections 3 and 4 a general theorem concerning

function. This connection itself turns out, ‘as might be expected, to be
a Rademacher-Walsh transform of the correct order .
In section 5 we develop two cost parameters for evaluating a given

spectrum to decide which variables the decomposition should center upon,



The technique adopted is to successively decompose the function two variables
at a time, the hope being that if the correct variables are chosen several

of the resulting subfunctions will be trivial. The final section looks in
detail at three examples to compare the results we obtain with minimal

expressions and with the minterm expressions.

2, The Transform Background

This is not the place to go into great detail of the theory of
Rademacher-Walsh transforms and their applications to logic design. (see, for
example [l], [3] ) f5] ). However we will give enough of the background
material for the later seétions to be intelligible,

Consider a function of n variables, £(X{s «usy x,) which assumes values
in 0, 1 ., For this réport we shall assume that f is completely specified
although the techniques described below apply directly to partially
specified functions as well. One way of defining f 1s by a table giving
the value assumed by f for all combinations of wvalues of the inputs.

For example f(xl, X9, %x3) 1s defined by the table below. For a

1% X, Xy £ particular function f(xl, «ess X,) we shall
n

denote the 2 entry column vector defining
0 0 0 0

the function for all combinations of values
1 0 0 1

of the variables by F , which will be called
0 1 0 1

the specification vector for the function.
1 1 0 0
0 0 1 1
1 0 1 0
0 i 1 0
1 1 1 1




The orthogonal Rademacher~Walsh transforms which we are considering
are defined below. Our definition is based on the Hadamard ordering,
since this is the most convenient for our burpose ([10]). There are several
different possible orderings for the rows of the transforms which lead to the
various alternate names, though, of course, the information content is the
same in all cases (see [5]);
Definition

A.1'1 = A1 An-1

Ap-1 ~An-1
for each n > 1

b = [1]

Hence An is a 2% x 20 matrix. The first three transforms are listed

below. For convenience we shall adopt the convention of writing negative

numbers as z rather than —Z s0 -1 will appear as 1

Al = ;1" l
1 1 — -
101 1 1
11 1 1
62= — -
101 1 1
101 1 1
L )




1 1 1 1 1 1 ;

I I 1 1 1 71 1 I

11 1 1 1 1 7 1

1 I 1 1 1 71 1 1

A = - - _
3 11 1 1 1 1T 7 73
11 1 1 T 4 1 1

1 1 1 1 1 4 1

| 11 1 1 I q 1 T

-

The nth order transform is applied to the specification vector giving a 2%
entry column vector of spectral coefficients (the "spectrum” of rhe function),

viz

For convenience it is customary to code I by replacing 0© entries by .
I, leaving 1 entries as 1. This makes it much easier to handle "don't c¢ares"
later on.

The entries in R measure the correlation of F with particular
variables and exclusive or functions of these variables. The entries in R

are labelled accordingly. TFor example in the 3-variable case

i RO | where (i) RO is a measure of the number

Ry of 1's in F,

R2 (ii) R1 measures the correlation of the
R = Ry, function with X1

R3 (iii) R12 measures the correlation with

RlB Xl & X2.

R23 (iv) R123 measures the correlation with

R123J x@x; Ox; .



We are presently not interested in the meaning of the spectral coefficients
but in their manipulation of the information content. TFor more details
of the above see [1], [5], [6], or [7].

2 n F

Since A " = 2 L we can easily recover % from R by

= n :
F = 1/2 Ang

However this recovers a table specification for the function which is
often a rather extravagent way to represent it. It is the aim of this report
to present a method of moving directly from E to a sum of products (on—array)
form for f(xl, ey xn) without ever recovering F. The relevance of such a
technique is that many of the spectral design methods involve the manipulation
of R to deduce the spectrum of a new function, From this spectrum it isg

necessary to calculate a specification for the function,

3. The Basic Single Variablé Detachment

Consider a Shannon decomposition of a function of n variables
f(xl, ¢soy X.). We have f(xi, cees X)) = X, f(xl, ceos X _1» O)_+

X f(xl, cees X1 1)

If_f(xl, coey X, £(x1, 2hu, X 1 0) , and f(xl, sess X 4, 1) have

specification vectors F, EO » and El respectively then clearly

ro-
E
E- ]
LE
Now if R 1is the spectral coefficient vector for F, i.e. R = & E
then R = E

vy
Y&



' ' -

- ' An~1 EO *+ An—l £ 1 ;
E .

= A 7 - A g i
- 20 - = l

n-1 n-1 1 N

Let R be partitioned into two equal halves each of 2n-1 entries, denoted

50 and R so that

1
]
ST IR
1
]
=1 f
b -
then !/ Boo T Mg Ey o+ 51
)
S U NI £
§
\
or By E = i/2 ( By ¥ R, )

1/2 ( By — RO

/;
7
et
26t
=

[}

The two left-hand sides here are just the spectral coefficient vectors

for EO and El which will be denoted 50 and 51 respectively, i,e,

0
R = /2 (Ry + Ry )
R - 1/2 (R - R )
~ ~0 ~1
Let us look a little more . at the nature of the arrangement

of the entries in R. The purpose of using the Hadamard ordering is that it
is easy to identify the R entry iIn any particular row from the row number,

(assuming the rows are numbered from 0 to 2% _ 1.



Given row number 1 we express it in binary a al""an*l where
n-1 3
i = L a, 2
=0 7

then the entry in row number 1 ig R(a) where (o) is a string of

up to n digits subject to the constraint that (o) includes L3 0if and

only 1if aj = 1,

For example the entry in row 5 will always be R13 » the entry in
row 7 will be R 123 °

In particular if the entry in row i (ii < 2n—1 - 1) is R

()

then the entry in row 1 + 21‘1"l will be R .
(a)n

Hence we have

0 _

R(a) = 1/2 { R(a) + R(u)n)
R - 1 (R . - g )
{a (a) (o)n

This relationship may be clarified if we give the 3-variable situation
in detail. TFor convenience we shall often write a column vector as a row

vector , the entries being separated by commas.

For the three variable function

f(xl, Xy x3) = x4 f(xl, Xy 0) + Xy f(xl, Xy 1) with corresponding

specification vectors E, EO’ and El we have the three spectral coefficient

vectors R, EO, and gl respectively where



B o= [Rp rps Ry R Ry R, Ry, R )]
0 0 0 0 .0

S [Ry» Bys By» Ry
1 ~1 1 .1 1

R = IRy R, Ry R

and the result above gives us the following:

—_ 1 — —_
Ry = 1/2 (RO + R3} Ry = 1/2 (RO R3)
RS - 1/2 (R, + R,.) r! = 1/

1 1 ¥ Rys 1 = 2 (R -RY)
RO = 1/2 (& +R.) B S (R, - R..)
2 2 7 a3 2 2 23
RO - 1/2 (R, + R, ..) Rl = 1/2 (R,.- R,..)
12 12 ¢ M123 12 127 123

We may write the result rather more succinetly in the following form:

0 A
R F 1 1 R
_f n-1%0 - 1/ - 0
1 A
R I n-1 51 ‘l I &
i.e EO
= 1/2 A, R
R L.

as long as we remembex to partition R into the correct number of equal-sized

vectors.

This is an example of the more general theorem which we deduce in the next

section.



4. The General Theorem

Before giving the result a little more notation is required. As before

we consider a function of n variables (x5 «vu, Xn) with specification
vector F and spectral coefficient vector R, i.e. R = AIl Fo.
We shall consider the effect of detaching m variables from f(Xl’ e, xn)

giving a result which gives the spectral coefficient vectors for each of the

2™ Functions resulting from the Shannon decomposition.

f(X1 s e Xn) = X .. Xn—m+l f(x, , .., X 0, ..., ) +
+ Xpoee X o X el f(xl, RIS i, 0, .., 0) + +
+ £ X f(x,, +., X e’ i, .., 1),
Let M = 2™, F may be partitioned into M equal column vectors,
F = Eyr vevs EM—l where E; 1s the specification vector for f(xl, ces
X a,., a a ) with i = mfl a .2j
n-m’ “0° 1 ' Tpg 20 73 )

In the same fashion the spectral coefficient vector can also be

partitioned into M equal column vectors, R = [EO’ +e-5 R M—l] .

Finally the M functions of n-m variables represented by the Ei will

i .
each have a spectral coefficient vector denoted by R ~, viz

R" = 4 F, (each i, 0 gig M-1)

~ n-m ~1
. ]

Theorem R g
. /= 1/M A R
. ’ m ~
BNFl J where R 1s partitioned into M equal-sized
L f |

column vectors.
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The proof of the theorem is by induction on m. The previous section
has established the basis for m = 1. Assume the result for some positive
integral value of m. We shall prove the result for m + 1.

Consider a function which has already had m variables detached. If we
detach one further variable we shall be conéidering 2 M functions.

For example

£ ‘e s scee, A
(xl, » K B m—l)
;n—m f(Xl, vees X1 0, By eevy Ap 1)
+ Xn—m f(xl, s X o 9s 1, 4,5 s am_l)
m-1 .
If 1= ¥ a 23 then we partition
L J
j=0
g
F = 2i
~i
G
21+ 1
80 that G is the specification vector for
k
f(xl, . Xn—mwl’ b, ao, cey am—l) where
m-1 j
k=223 a,2 +5b
j=0 -
Further let § = A 1 Gk 80 that Sk is the spectral coefficient vector for
n-m-1L ~ ~

Now consider the two functions f(xl, cey X 1)

1 0) and f(Xl, ves Xn

-1?

with specification vectors EO* and gl*.
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Rx = A *

Let <0 n—-1 £y
*

and R* = A F

Now by the induction hypothesis

0 M
5 L * 3

‘ = M A R and ’

: m ~0 :

M-l 2M-1
S 3

R x|
B, ) A R
R* | < 2 !
"1
_ N
Consequently
0
'? A "va’t 1
. =1 A 0 |=2f A
. e )
2M-1 R"
s L]
1 A A
= mwm | ™ TR
Am h AIﬂ
1 [ N
= 2M A R
m+ 1"

which establishes the result.
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5 The Decomposition Method

The result of the previous section has direct relevance to the
reexpression of some function defined solely by its spectral coefficient
vector R into sum of produects form.

~

Consider a 4-variable function f(xl, X, Xj’ Xi)

If f(Xg’ % Xj’ Xi) = x; Xj fo + Xy Xj fl + X, Xj f2 + Xy Xj f3
and fo’ fl’ fz, f3 have specification vectors EO’ El’ 52’ E3 then

we have, using our usual notation that

5|
5 /4 A, R
32
B’ i 1T
Nl 1 1 1 1 R,
- a (V0L 1T %
1 1 1 1 R,
11 I 1 R,
" -
L1 1 B R, R R, |
A Ry Ry Ry Ry
11 11 B Rin Ry Rypg
111 1 B3 Rije Rige Rigre
- -~ .

Ideally in this situation we wish to detach two variables X5 x.j to make
the resulting functions EO’ . E4 as simple as possible., This choice must be
based upon the entries in R. We describe below the two heuristic cost
parameters that have been used satisfactorily although this area is still

the subject of current investigation. The above matrix given for a 4—variable
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problem is just as applicable for larger numbers of variables viz

R’ 11 1 1 R,
1 - -
R 1 1 1 1 31
0 = 1 o
R 1 1 1 R
5 ~2
53 1 1 1 1 R4
T — = L
where BO’ Bl’ 52, 53 will be

arranged in the Hadomard ordering of entries which will then be the resulting

2
order of entries in 50, gl, R~ and 53. This is made clear in example 3 in

~

§6 below which is a 6 variable example.

Initially we define the cost parameters in terms of the 4-variable

function f(xﬁ, X s Xj, Xi) used above, following this with the general
definition.

Cost Parameters

(a) For £(x;, Ko Xy Xi) .
) - = I
1. Choose X Xj to maximize Cij where Cij IRij] + zRij2| + | ljk]

IRy s

2. Choose X Xj to maximize Cij* where

Cip* = CIR LRyl + IR+ IRyl

+2(IR | + IRJ,QI+ Ry | + IRij] R+ IRl + R [+ 1R gl

+ 4 C,,
1]
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(b) For f(xl, .es Xn)’ to detach X, and Xj-
1. Choose x,, x. to maximize C,, where
1 J 1]

C,, = I R,,
ij ii (o)
all o

k=0, .., n-2 distinct

where o any string of %{fdigits from {l, .o n} not including i or 3.

2, Choose x., x. to maximize C..* where
i i il
c.." = 1§ R S 2 I( R + R )
ij (o) g 1(B) 3{(B)
all o ' all B
k=0, .., n-2 k=0, .., n-2

+ 4 L R, .
15 (¥)
all ¥
k=0, .., n-2

‘where a, 8,32 are strings of k distinct digits frDﬂl{l, cay n} not
including i or j.

These cost parameters do have some intuitive base behind them in that
high values for both Cij and Cij* indicate correlation with functions of
type x.x, + X.X, or X, X, + X,X, 80 it i1s likely that these product terms

1] | 1] 13
will have to appear explicitly in any final sum of products expression.

Consequently we would hope to not be pPaying too high a penalty in imposing

the partition based on detaching x, and xj .

%
The definition given above for Cij can in practice be modified to one
which is considerably easier to calculate. Since the spectral coefficients

are fixed so is the sum of the absclute values, viz.
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where o 1s a string of k distinct digits from { 1, ..y 0} . 8 is fixed
for any particular function.

For a particular i, j (1 <i, j <n ; i #3)
let

A = % R
' {all o {o)

k=0, .., n-2

b1y T {alzl OO

k=0, .., n~2

where o, B are strings of k distinct digits from {1, .., n} not including

ior j.
Then
%
C = A + 2B + 4C
ij ij ij ij
However A + B + C = §
ij ij ij
%
Hence C,, = 28 + 2¢ - A
13 1] 1j
Since S is fixed for the particular function we can use 2c,, - Ai' as
i] J

b

our C,, cost parameter;
1]

Definition
c* = 2 I R - 5 R
ij {all o ij (@) "all B (B)
k=0, .., n-2 k=0, .., n-2

where o, @ strings of k distinct digits from {1, .., n} not including

i or j.




le

This simplifies the calculation of C*ij since it now involves only half
the spectral coefficients whereas formerly it involved all of them,

The method we are using always detaches two variables at a time though
a similar approach could be used to &etach a higher number of variables.

From the examples we have investigated this does not appear to be such a
good general approach}it being preferable to detach the.variables two at g
time.

The resulting method is consequently to detach two variables determined
by the cost parameter and evaluate the spectral coefficient vectors for the
resulting Ei functions. The method is then repeated for each of the Ei
functions to successively detach all but two of the variables. In practice
we would hope that a number of the Ei %unctions are either 0 or 1. A number

of examples are considered in the next section.
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£ 6. Examples

Two examples will be considered in detail,.both being 4-variable
examples. Tor each of them we shall lock at all 6 possible pairs of variables
to detach and compare the results obtained with our cost parameters and with
both the minimal sum of products form and the minterm form. Since we are
only considering sum of product forms we shall not allow ZOR functions even
when these display obvious advantages. Further the sum of products cost we
use will be the direct one without any further simplification of El’ EZ’
E3; or E4 even though on some occasions this is trivially obvious., The cost
function used to compare the results will be one of the common switching theory

cost functions namely the number of terms plus the number of literals.

Example 6.1

O xpe Bge 20) = xgm 4 Spx b oxmax o+ oxpxgxg

which is a minimal form for the function, with a cost of 14.
The function is illustrated on the map below. Its minterm cost is 45.
We shall assume that the variables being detached in each case below are

x, and Xj in the form

il
i
w1
Hh
+
1
™
H
+
"
"
h
+
b
M
Hn

f(XR, x , Xj, Xi)

k

with corresponding specification vectors EO’ El’ EQ, 23. and corresponding

1 2 3
spectral coefficient vectors go, R, R, R respectively.



X1 % 3 %4
00 01 11 10
00 0 1 1 0
01 1 0 1 1
11 1 0 1 0
10 0 1 1 0

The spectral coefficient vector

a)

R= [RO’ Rys Rys Rigs Ry,
Ri34> Rozgr Ripsy |
= [2, 2, 2, 2, 2,3, 2, 2,
Ifi=1, j=2.

i gd— 1 1 1
RU ” A
52 11 1
§3 1 1 I

e o

?{ 1 o1 1 )
7% L A S 2
1 1 1 1 2

1 1 1 1 2

S0 that BO = (0,
B = (2,

= (o,

R - (o,

18

We have

F = [i, 1, 1,1, 1,

i, 1, 1, 1, 1,

1,1, 1,1,
i, é]recalling

that 0 is coded as 1.

R132 Rogo Rppgs Rys RS R, R o4

2, 10, 3,6, 7, 8, 2]
™
Ry Ry R,
Ry Ry3 By,
Ry Ryz Ry,
Ri2 Rz Ryoy
65 6 0 0
06 _ 2 3
2 2 0 0
7 2 0 0
&, 0)
2, 2)
4, 0)
0, 4)

> R343
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Most of the two-variable spectra are immediately recognizable though to

evaluate the functions in detail we use

- 1/, L
EO = 1/4 Az R = (1, 1, 1, 1)
s$o fO = X4
similarly fl = XB + X,
f2 = X4
f3 = X3 x4 + x3 X4
so that
f(xl, Xy Xy x4) = X %, %, -+ %) %, (X3 + X4) + X X, ¥, + X X, (X3 %,
+ X3 x4)
which has a cost of 26,
b) 1=1,3=3
- - - el -~ -
R0 11 1 1 2 37 § 15 0 0 0 3
Rl 1 I 1 1 2 2 6 & 2 3 3 3
2=1/4 - _ =
R 1 1 1 1 2 2 2 2 0 0 0 4
53 1 1 1 1 2 2 3 2 0 0 % 0
Hence f0 = X, x4 + X, x4
fl = X2 + X4
f2 = x2 X4 5+ X2 X4
£ = x4
so f = X X3(X2 x, + %, Xﬁ) + X X4 (X2 + X4) + X X, (x2 %, + X, X4)
+ Xl X3 X4

which has a cost of 32, though in practice fO = f2 would be noticed leading to

an obvious simplification.



FP 1 1 1 1 F_Z
1 . - -
~ |=1aft 11
2 1 1 I 71
g3 1 1 01 1
Hence fO = x2
f1 = % + x
£y = %y %,
By = % + x
so f = Xl‘X4 X, + X X, (x2 + XB)
which?haS'a'cQst 0f:25,"
d) i=2, 3=13
RO 1 1 1 1 B
1 - -
R =1/4 11 1 1 1
R? 1 1 1 1
R> i I 1 1
Henge fO = X4
f1 = x4
f2 = x4
f3 = x +x,
so f = x2 3 x4 + x2 x3 x4 + x2

which has a cost of 20.

N L
LI N Y
L1

Dot
(Y}
bS]

"ol

[L%]
[A%]
1

OSTRE Y
N oy
fi

£~




g’ 1
1
VAL
3* 1
8’ 1
Hence f;h
fl
f2
f3

so f =

which has a cost of 15.

) 1=23,3=14

r0 1
1
S S
R 1
N
Hence fO
5
£y
f3
so f = x3 x4~xé +

X

3

which has a cost of 16.

| =

1

-

i1

i

1

= =

(o]

21

X, x4 + X, X, Cxl + x3) + x,

2 2
65 2
2 2
0 2z
X
[y 2
6 2
2 2
6 2
g ¥, *p X

=2t

7]

ba

bl

M2l

g1

it

i

-
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Let us compare the results obtained for the six possible choices of variables

detached. . T
- - - o - : ? - o -
variables C, . . C.. cost of 1
1] - 19 .
detached _expression
Xqs Xq | 8 4 32
X1 x4 , 8 8 25
Xy g 12 12 20
X2, X4 20 32 15
X X, 16 24 i6
minimal expression cost i4
minterm expression cost 45

The table shows that, at least for this one example the cost parameters
used are a very reasonable reflection of the cost of the resulting expression,
with Cij* being rather more discriminating. Further we have expressions in-
both"s(e) and (f) that are reasonably close to the minimal sum of products

expression for the function.
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Example 6.2

This example does not have quite so much simplification available

as example 6.1.

f(Xl, Xy Xy x4) = X, X4 + X, X, %, + % %, X, 4 X %, x4

X, X, X, X
17273 7%
minterm cost for the expression is

in the map below.

+

is a minimal form for the function with a cost of 20, The

45, The function is illustrated in

374

x, X, 00 01 11 10
00 0 1 1 0
01 1 0 1 1
11 0 1 1 0
10 1 0 1 0

For this function F = [1,1,1,1,1,1,1, 1,1, I, 1,1, 1,1,1, 1]
= T
and B = MRes Rps Rys Rpps Ryy Rpgs Ryyy Riooy Ry, Roa Rags Rigys Byps Rogs

Ro342 Riggsd

[2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 3, 10, 6, 2, 2, 6]

— e

The table of our cost parameters is given below

 variables Cij Céij
detached
X5 X, 20 24
X1» X3 12 4
Xl, X, 20 32
Xz, X3 12 12
Xys X, 20 32
%3, %, |16 24
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In this case Cij gives no discrimination between three possible pairs

ot

* P %
while C ., still does not discriminate C" from C . This is to be
i] 14 24

expected since an interchange of §1 and X, in the minimal form leaves

the function unchanged.

As in example 1 we shall consider all 6 possible detachments in order

to compare the results.

[ 0 101 1 1 2 3 6 6 0 0 I o]
1 - - - — -
Ri_q, |01 101 3 2 7 2 2 3 2 2
gz 11 1 1 2 2 2 ZiT00 0 0 ¢4
53 1 I 1 1 2 2 10 6 0 0 & 0
L~ n 4L _ N ]
fO = Xé
7 %+t x5
S0
f2 = x3 x4 + x3 x4
g = %
S0 f = XX, X, + % XZ(X3 + X4) + %, X2(X3 %, + x, x4) + X, Xy X,

which has a cost of 26,



i

i

i

50

S0

S0

= 1/4

= 1/4

L]

25

11 o1l 2 3 3 3 Toe o

1 1 1 2 2 6 2 2 2

101 I 2 2 2 7% 0 o0

i1 1 2 2 2 % 0 0
- — e b

X4 -+ Xz x4

+ X4

3 (x2 x4 + %, X4) + X, Xg (X2 + X4) +

i

%4) + x x %, which has a cost of 32.

173

_ ~ - -
1 1 1 2 2 2 9 0 4
11 1 6 2 6 2| |2
1 1 7 2 2 2 2 2 2
I 1 1 2 16 2 & 2 2
+ X
3
};3
+ x

0 4
2 2
0 4
4 0

0 0
2 2
2 2
2 2
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so f = El §4 xy + El x4(§2 + x3) + X) %, §2 §3 + #l XA(KZ + x3)

which has a cost of 25.

0 ~ S I T _
R 1 1 1 1 2 2 & 2 0 0 0 &
l. - e - -
2 0 0 & . 90
R loq )2 T 1 1 226-
R 11 T I 7 2 3@ (1o 0o o 4
Lg;” 1 I T 1 2 2 2 § 2 2 I 2
f0 = X, x4 + e x4
fl = x4
80
f2 = xl x4 + xl x4
f3 = xl + x4

so f = X, X4 (xl x, + X; x4) + x

2 X3 %, + X, x3(xl X, + Xy x4)}+
X, x3(xl + x4). which has a cost of 32,

i



-

1=

27

1 1 1 1 2 2 2 7 E 2 2 3
1 1 1 I 6 2 6 2 2 2 2 2
1 1 1 1 2 2 2 2 0 4 0 0
11 1 1 2 10 2 & 2 2 2 3
R T
= Xl + X3
- ;{1
B
= % % X - X X % -
Xy X, X Xy + X, X, (Xl + x3) + Xy X, X + X, %, (X1 X3)
which has a cost of 25.
1 1 1 1 2 2 2 3 0 0 o0 &
11 1 1 6 2 3 10 0 0 0 4
1 1 1 I 2 2 2 2 2 2 2 7
11 1 1 6 2 2 & A 0 0 0
- I _ » .
= Xl XZ + Xl X2

Xq X, (xl X, + X X2) + x3 Xy (Xl X, + Xl X Y} + %4 X4 1 % +

Xy X, which has a cost of 28,
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The results in the gix cases are given iIn the table below, the cost
parameters we have used again appearing reasonable although we have not
approached as close to the minimal sum of products expression, In practice

a method would identify equal and closely related subfunctions, for example

in (f) above fo = fl which is obvious from its spectrum.
%
variables Ci' Ci' cost of
detached J _ J expansion
Xl’ xz 20 24 26
2
Xl, x3 12 4 3
Xl’ X4 20 32 25
Xy x3 12 12 32
Xy X4 20 3? 25
Xgs X4 16 24 28
minimal expression cost 20
minterm expression cost 45
Example 6.3

This is a larger six-variable example and we shall only consider the
solution suggested by our method and compare it with both the minterm
realization and a minimal realization.
The function f(xl, Xos X3, X4, xs, X6) has a spectrum containing
64 coefficients which are listed below. The method is very tedious when described

in the detail given here, but is of course perfectly amenable to a computer treat-

ment which is the normal method for such problems.



Spectral

Ry
X3
R4
&5
Ri6

23
24
25
26
34
35
36
45
46

56

Coefficients:

H]
raf

]
AT

I
rok

I i
ST - |

I
b

1l
Bl 8 & 1 o
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{23
R124
Rl2s
R126
K34
135
%136
K145
R 46
R156

234
235
236
245
246
256
345
346
356

456

=2t

]|

R123456
R12345
Ri2346
R12356
R12456
R13456

Ry3456

R1234
R1235
R1236
Ri245
R1246
R1256
R1345
R)346
R1356
R1456
R2345
Ro346
Ry356
Ross6

Ra4s6
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o
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~

o

SN - - Y S
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From this spectrum we can calculate the following cost parameters for
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pairs of variables which could be detached.

Based on these cost parameters we shall detach x

L

variables Cij Cij*
detached

X X, 60 16
Xy, Xg 80 56
%, x, 84 100
K 3 64 8
;s g 48 8
X5 Xy 72 32
Xys %, 68 68
x2, XS 48 A
Xy0 Xg 48 8
X3, X, 104 152
X3y Xg 70 48
X3, X, 84 76
X, Xg 96 112
X g 108 140
X5y Xg 56 16

J =4 in the result given previously, viz if f(x

wt

3 %,

f

1

X3 x4 fQ + x3 x4f3

then we have:

1* %2 %3 X5 Xy %) =

3 and X4, putting i

™



]

=]

¢

W

'zw

Hence

[z~ f4=] I4=<]

o]
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i 1 = |

1 1 1 3 R,

1 I 1 1 B,
= 1/4

1 1 T 7 B,

1 1 1 , | R,

where

5% Ry R Bis  Rys Ry,
16 By Bppy Ry Ry, 245 Bioys
!13 Rys Rp,q Ry, %135 Rygs- Rypas
134 Ro3s RipguRays %1345 Ra45 Rypgss
B Rie  Rog R126 R Rise  Ryse
Ra6 Rise RBoye Ri24s  Ryse Ri456  Royse
%36 Ri3s Ryse Y1236 Rysg  Rygo, R9356
R346 Ryzse R2346 Rio34e R3456 Ri3456 Ro3456
2 10002 2 o4 2 6 3 ¢ 2 1o
2 5 % I8 14 9 6 3 5 3 3 10
0 10 10 3 0 2 2 & 6 6 3 o
10 6 6 18 6 2 3 3F 4 6 2 3
0 0 0 0 0 0 0 16 ¢ o9 o 0
4 0 4 0 5 0 4 19 0 4 o 1z
0 8§ 8 8 8 0 0 0 o ¢ 0 0
6 3 2 10 2 2 2 o, 6 2 2 g

Ry 256
R12456
R12356
R123456
2 2 2 |
2 2 3
2 6 7
2 6 2%_J
0 0 o
0 4 o
0 0 o




the coefficients being in the order
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listed above in R

0

3

X

3

and x

4

of

course no longer appear since these are the variables which were detached.

has R
as R,

Since RO

= 16 and all the remaining coefficients are

immediately that this function is Xe o

0

it follows

For the remaining three functions (fl, f2, and f3) we shall repeat the

procedure to detach 2 wariables.

table below.

The cost functions are given in the

variables f3
detached C.. C,.* C.. Lk C.. .
i] ij ij ij ij ij
xl, X2 8 6 8 8 8 4
Xy» X5 8 6 8 8 8 8
X)» X 0 0 0 16 12 8
Xz, X5 8 6 0 0 8 0
Xy» X6 8 8 0 16 8 4
Xe, Xg 8 8. 0 1% 12 12
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Based on these parameters we shall detach Xy X for fl 3 X1s Xg for

f2 ;3 and XS, X6 for f3. A detail investigation of the alternatives reveals

that detaching Xy and X, for fl leads to an identically sized solution to

that resulting form detaching X, and X The same is true if. X, X, are

detached from f2 instead of X1s Kge For f3 detaching X1 % leads to a

solution that has a cost one greater than that resulting form detaching Xgs

X6.
Using the method detailed in examples 1 and 2 and assuming that
By =% %g f1o F %y Rg By T Ey X Byy T x) x £
with similar notation for the other f2 and f3 then we have
g0 111 1 1}j0 % 0 & 4 0 0 0 £19°1
g . 11 T 1 Ij|12 0 & of|_(% 0 0 0 f,=0
12 4 o _ _ _|so
R 111 1 0 4 0 &4 2 2 2 2 £, % +x%
13 - = = = - _ -
“5 i ;E 1 1 1 4 0 4 0 2 2 2 2 f13 =X X
o [ a0 N 7
R 111 1|0 Fo0o0 0% o0 o0 £,0 = %o
21 - _
Lot T 11 8 0 0 0 ) 0 Z 0 0 . £,1 = X,
22{ & - - = -
R 1 1 1 1 0 8 0 O 4 0 0 0 £,,=0
r?3 111 1[{800¢0| 4000 £y =1
—~R36— 111 10l26 3 21 |2 2 3 2=m‘ £, = x +
S 30 F1 7%
531 e 111 2 6 2 2 4 0 0 0 fa=1
32 : - _ _ - _ :
R L A T N 7 32 =X
R 10 2 0 4 0: 0 £y, = %
533 1 I 1 1|8 2 2 2 4 0 0 0 a3 =0
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Hence the final expression for the function is

20 X370 Fyr By Xg) = XX x

+ x3X, {sz + % X (xl + XS) + x. X X X

f (Xl, X

6 26 2767175

-+ XX, {XIXSXZ + X XX, + X%, 1

tagny ¥ G oFox) +xxg 4+ xgxexy |

In any practical implementation there are a nﬁmber of obvious simplifications
which would be incorporated. For example f20 = f21 = x, should be identified
since then f20 and le can be combined into a single term. A slightly more
complex didentification might notice, for example, that both f30 and f32
include §l with a resulting simplification.

If we write f as a sum of products incorporating these two simplifications
we have

f (xl, X5 X3s%,s Xg, X6) = §3§4X6 + §2§3X4§6 + X1X2§3X4§6 +

+ X2X3X4X5X6 + x1x2x3xax5x6 + xlx2x3x4 + xlx3x4X5 +

+ §1x3x4x5 + X2X3X4§5§6 + x3X4§5x6.

Let us consider the cost of the solutions. The cost of the above solution is
54, while the cost prior to the obvious simplification was 68, A detail
consideration of the function, whose map is given below, leads to the
conclusion that a minimal sum of products form has a cost of 44 while the
direct sum of minterm form has a cost of 231,

As a matter of interest when we initially choose x3, x, to detach it was
reasonable to have alternatively chosen.xa,x6 which had almost identical
cost parameters. If we had done so the resulting expression for f would be

as below, which has a cost of 83 as given which reduces to 69 if some obvicus

simplifications are included.



35

1 ¥ % Xy %5 X

000 001 011 010 100 101 111 110
0 0 0 0] 1] 11 0 0 17T 1] 0
0 0 1 T ol o1 0 |0 of 1
0 1 1 I 1] 0] 1 T 1] o] 1
0 1 0 0] 0] 01 o 1 |1 1] 1
1 0 0 o] 1] 11 o 0 [T [ 1] o
1 0 1 11 0 07 1 1 [T ] o] 1
11 1 0] T 0] o L [T T o[ 0
11 0 0] 0 1] 1 0 [0 1] 1

£ (Xl, X5 Xg, Xys Xg, x6) = XX, {§1x2x3 + Xy XXX + Xq XpX3Xg I
+ X4X6 { x1x3 + X1X3X2 =+ XlXS =+ X1X3X5 }

% 3

+ X4§6 {§l§3 (§2 + XS) + £1X3 + X%, + x.x X)X

173 13
+ X, % £x3x5 + Xy¥gX, X, }.

This function was randomly generated subject to the comstraint of having 33

1's on its map.
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