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Abstract. American Shad (Alosa sapidissima), Hickory Shad (A. mediocris), and river herrings (Alewife
A. pseudoharengus and Blueback Herring A. aestivalis) are anadromous pelagic fishes, which as adults
spend most of the annual cycle at sea, but enter the coastal rivers in spring to spawn. Once as one of the
most valuable fisheries along the Atlantic coast, Alosa populations have declined in recent decades and cur-
rent populations are at historic lows. Various management actions have been conducted to restore the pop-
ulations, and stocks in different river systems display different demographic trends. Demonstration of
synthetic diagnostics on the factors impacting these populations is important to better conserve this species
group. We developed a Bayesian hierarchical spatiotemporal model to identify the population trends of
these species among rivers in the Chesapeake Bay based on results of surveys conducted by the Virginia
Department of Game and Inland Fisheries and Maryland Department of Natural Resources and to identify
environmental and anthropogenic factors influencing their distribution and abundance. The hierarchical
model structure helped to diagnose river-specific population trends and impacts of surrounding factors,
and decrease uncertainties in rivers with less samples available. The results demonstrate river-specific
heterogeneity of spatiotemporal dynamics of these species and indicate river-specific impacts of multiple
factors, including water temperature, river flow, chlorophyll a concentration, and total phosphorus concen-
tration, on their population dynamics. Atlantic Multidecadal Oscillation and Gulf Stream meanders dis-
played significant influence on the inter-annual trends of Alosa species in rivers with more data available.
The results would help to develop river- and species-specific management strategies to recover these spe-
cies.

Key words: Alosa; Bayesian hierarchical model; climate oscillations; environmental and anthropogenic influence; river-
specific heterogeneity; spatiotemporal dynamics.
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INTRODUCTION

American Shad (Alosa sapidissima), Hickory
Shad (A. mediocris), and river herrings, including

Alewife (A. pseudoharengus) and Blueback Her-
ring (A. aestivalis), are anadromous pelagic fishes
native to estuarine and coastal waters of eastern
North America (Turner and Limburg 2016). As
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adults, these fishes spend most of the annual
cycle at sea, but enter freshwater in spring to
spawn (Turner and Limburg 2016). Emigration
from natal rivers to oceanic waters occurs during
the first year of life (Turner and Limburg 2016).
These Alosa species serve as important forage
fishes for anadromous and marine predators,
such as Striped Bass (Morone saxatilis), Spiny
Dogfish (Squalus acanthias), Atlantic Cod (Gadus
morhua), and Pollock (Pollachius virens), and
seaward-emigrating young-of-year fish encoun-
ter a gauntlet of marine predators (Smith and
Link 2010). Invasive predators such as Blue Cat-
fish (Ictalurus furcatus) and Flathead Catfish
(Pylodictis olivaris) also may impact Alosa popula-
tions (Schmitt et al. 2017). Hence, these species
interactions present a clear trophic link between
inland and marine production (MacAvoy et al.
2000, Walters et al. 2009).

American Shad, known as America’s “found-
ing fish,” and river herring once supported the
largest and most important commercial and
recreational fisheries along the Atlantic coast
(McPhee 2003). Since colonial times, the block-
age of spawning rivers by dams and other struc-
tures (Perley 1852, Kosa and Mather 2001, Hall
et al. 2011), as well as habitat degradation, cli-
mate change, overfishing, and bycatch (Köster
et al. 2007, Limburg and Waldman 2009, Hassel-
man et al. 2015), have severely depleted their
populations (ASMFC 2007, 2012). The coastwide
decline of Alosa stocks culminated in the Atlan-
tic States Marine Fisheries Commission
(ASMFC) requiring moratoria on alosid fisheries
unless a state or jurisdiction developed a sus-
tainable fishery management plan (ASMFC
2009, 2010). States and jurisdictions are also
required to implement fisheries-dependent and
independent monitoring programs to outline
spawning and nursery habitat, identify local
threats to habitat, and develop plans for mitiga-
tion and restoration in each river system
(ASMFC 2009, 2010). Two most serious threats
identified include barriers to migration and cli-
mate change (Capossela 2013, Hilton et al.
2014). Fish passage efforts, including dam
removal and fishway construction, have contin-
ued on the east coast as just one action to try to
reverse the decline in Alosa populations (Chesa-
peake Bay Program 2019, Martin 2019). Between
1989 and 2017, a total of 3746 stream miles have

been reopened to the migration of fish in the
Chesapeake Bay watershed (Chesapeake Bay
Program 2020).
A deep understanding of the critical environ-

mental and anthropogenic factors influencing
populations through space and time in river sys-
tems helps to identify river-specific threats and
aid in future management. Complex life history,
combined with geographic differences in popula-
tion dynamics, complicates assessment of these
species on a coastwide scale (ASMFC 2007,
2012). Ideally, they should be assessed and man-
aged by incorporating river-specific heterogene-
ity (ASMFC 2012), which is likely due to river-
specific environmental factors, including anthro-
pogenic structures and activities. Different recov-
ery trends were observed for river-specific stocks
with data available (ASMFC 2012, 2017). Ogburn
et al. (2017a) also argued for including hetero-
geneity in Alosa management in the Chesapeake
Bay based on differences in genetic and juvenile
abundance data. Given the wide distribution of
shads and river herrings along the Atlantic coast,
a bay-scale study to diagnose the factors that
influence spatiotemporal dynamics of these pop-
ulations, and a study to develop models that con-
sider spatial complexity is critical for
management of these populations. Such a study
should help to better understand population sta-
tus at the local scale, provide a river-specific,
comprehensive illustration of major threats to
Alosa, and develop potential strategies to
enhance stock-specific recovery.
The ongoing fisheries-dependent and indepen-

dent monitoring programs conducted by states
and jurisdictions provide opportunities to
explore river-specific population trends and
identify threats to the local habitat. Analyses on
such spatial structured ecological data often
require complex model structures (Zuur et al.
2009). Hierarchical models have been increas-
ingly used in analyzing complex nested data
(Zuur et al. 2009, Harrison et al. 2018). Hierarchi-
cal models can handle complex interactions by
allowing parameters to vary at more than one
level via an introduction of random effects and
perform partial pooling by borrowing informa-
tion from other groups (Zuur et al. 2009, Har-
rison et al. 2018). Bayesian approaches are
ideally suited for constructing complex hierarchi-
cal models, and parameter estimation is
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straightforward (Gelman et al. 2014a). The
advantages of Bayesian hierarchical models
emerge as complexity increases, when, for exam-
ple, spatiotemporal variability needs to be mod-
eled explicitly (Banerjee et al. 2014).

In this study, we developed quantitative
models to identify population trends of alosines
among the Chesapeake Bay tributaries based
on data from surveys conducted by the Virginia
Department of Game and Inland Fisheries
(VDGIF) and Maryland Department of Natural
Resources (MDNR). We identified environmen-
tal and anthropogenic factors influencing alo-
sine populations in each river system. We
developed models including river as the upper
level of hierarchy and species within river as
the lower level. The hierarchical model struc-
ture helped to diagnose river-specific popula-
tion trends and impacts of surrounding factors
and decrease uncertainties in rivers with less
samples available (Zuur et al. 2009, Harrison
et al. 2018). Environmental factors considered
included both global-scale factors, such as glo-
bal climate oscillations (Nye et al. 2012, Lynch
et al. 2014), and local-scale factors, such as
water temperature and river flow. Anthro-
pogenic factors represented by water quality
data also were considered (Bilkovic et al. 2002,
Madin 2017).

The ASMFC organized data workshops to
solicit survey data that are credible to be used
among states. Here, we followed the list of data
available in the Chesapeake Bay region that the
ASMFC deemed meaningful in both spatial cov-
erage and survey design. The river herrings
spawning in the Chesapeake Bay tributaries are
part of the mid-Atlantic stocks of both Alewife
and Blueback Herring, which have suffered the
most severe declines (Palkovacs et al. 2014).
However, due to insufficient data, the Chesa-
peake Bay region was poorly represented in
coastwide assessments (ASMFC 2012), and fish-
eries were placed under moratoria. Understand-
ing population dynamics of alosines among the
Chesapeake Bay tributaries could improve
future coastwide stock assessments and man-
agement. This study provided a framework for
developing hierarchical models to analyze com-
plex ecological problems, and the methods
could be applied to other species across different
river systems.

METHODS

Data
The VDGIF has conducted boat electrofishing

surveys for alosines in the James, York, and Rap-
pahannock rivers and their tributaries during
February to June since 1994 (Fig. 1, ASMFC
2016). Electrofishing surveys use a boat-mounted
generator and voltage regulator to put an electric
shock into the water to collect fish. The shock
affects fish near the boat’s electric field that is an
area within a few feet around the boat. Elec-
troshocked fish swim toward booms dangling off
the front of the boat, where they are temporarily
stunned and netted by biologists. The primary
objectives of these surveys are to establish a
long-term time series of relative abundance
indices, to monitor the demographic structure of
the spawning runs of American Shad, Hickory
Shad, and river herrings, and to relate recruit-
ment indices to relative year-class strength and
age structure of spawning adults. Data recorded
include catch, effort, environmental factors such
as water temperature, dissolved oxygen and
salinity, and biological information such as sex,
spawning condition, length, weight, and age.
The MDNR has collected fishery-dependent

samples of shads and river herrings from com-
mercial pound and fyke nets in the Nanticoke
River from 1989 to present (Fig. 1), providing rel-
ative indices of abundance for these species.
Pound nets are fixed finfish entrapment net
devices with a fence leader that interrupts fish
movements and a heart that funnels fish into the
pound; the nets consist of an arrangement of net-
ting or wire supported upon stakes or piles and
have the head ropes or lines above the water or
in a frame that is supported by floats and
anchors (MSBE 2020). Fyke nets are hoop nets
with one or more wings or a leader attached and
held in place with anchors or stakes to help
guide finfish into the hoop net (MSBE 2020).
These surveys typically begin in March and end
in April, although there are a few years where
they began in February and/or ended in June.
Prior to 1997, American Shad and Hickory Shad
data were not entered into a digital format, so
the data from 1989 to 1996 include only Alewife
and Blueback Herring. Data recorded include
catch, effort, and gear type, environmental fac-
tors such as water temperature, dissolved

 v www.esajournals.org 3 June 2021 v Volume 12(6) v Article e03544

BI ETAL.



oxygen, and salinity, and biological information
such as sex, length, weight, and age. Due to data
format and quality issues, MDNR data only from
1997 to present were used to investigate the pop-
ulation dynamics of the four-species group.

Water quality data from the Chesapeake Bay
Program were incorporated into our models to
indicate selected anthropogenic influences (Che-
sapeake Bay Program 2017). The chlorophyll a
(chl a), total nitrogen (TN), and total phosphorus
(TP) concentrations were obtained from the near-
est sampling station on the same sampling date
as the VDGIF and MDNR collections.

Daily mean river flow records were obtained
from the U.S. Geological Survey (USGS) National
Water Information System (NWIS) also at the
nearest sampling station on the same sampling
date. River flow was not considered for the

Nanticoke River in Maryland, because the pound
and fyke nets were set for multiple days and the
flow data at the time of fish swimming into the
net were not available.

Explanatory variable selection
Potential explanatory variables for species

abundance in each river that were considered in
the respective models are listed in Table 1. The
distributions of variables and the correlations
between each pair of variables in each river are
shown in Fig. 2. There were strong linear correla-
tions (|r| > 0.6, Grewal et al. 2004) between water
temperature and dissolved oxygen in all rivers;
between water temperature and chl a, between
water temperature and TP, between chl a and
salinity, between chl a and river flow in the Rap-
pahannock River, and between TN and TP in the

Fig. 1. Sampling stations in the four rivers. There were 46 stations on the James River, 15 stations on the Rap-
pahannock River, 13 stations on the York River, and 44 stations on the Nanticoke River. Some stations were in
the tributaries of the respective rivers. In some tributaries, the sample size was too small to distinguish any pat-
tern, so tributaries are included with their main river. Shapefile data are from OpenStreetMap. Plot is made using
QGIS.
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James and York rivers. The strong correlations
between water quality variables in the Rappa-
hannock River were uncertain due to small sam-
ple size for chl a, TN, and TP concentrations.
Only one variable among water temperature and
dissolved oxygen and one among TN and TP
concentrations were incorporated into analyses,
and otherwise, collinearity could severely distort
model estimation (Dormann et al. 2013). Water
temperature and TP concentration were recorded
for more sampling trips, so these two variables
were incorporated into models. Although month
and water temperature were correlated with each
other, preliminary analyses demonstrated that
models with month and water temperature per-
formed better than models with only one of
them, so both were incorporated to indicate the
effect of temperature and fish behavior. About
half of the sampling trips in all rivers lacked
salinity records, and 90% of salinity records were
within 0 to 0.12, so salinity was not incorporated
into the model. Year was included in the analysis
to explore inter-annual variation. The range of
sampling duration in each river was limited
(Table 1), so we used catch-per-trip instead of
catch-per-hour as the response variable. Consid-
ering the possible effect of fishing effort, sam-
pling duration and sampling method were
regarded as explanatory variables. The distribu-
tions of sampling duration, chl a, TP, and river
flow were skewed positively, so they were nor-
malized through log-transformation. Distance of

each sampling location from the corresponding
river mouth along the river network was calcu-
lated using the R package RIVERDIST (Tyers
2017). RIVERDIST reads river network shapefiles
and provides tools for distance calculation along
river networks. The river shapefiles were created
within QGIS3.10 using OpenStreetMap dataset
(https://www.openstreetmap.org).
The four rivers displayed different ranges of

water quality variables (Fig. 2). For example, the
Nanticoke River had a larger range of chl a
(2.85–32.04 μg/L) than other rivers. The Nanticoke
River is characterized as a “Low Urban, High
Agriculture” river, where nitrogen and phospho-
rous compounds are added to the river through
drainage from surrounding agricultural lands, so
that nitrogen and sediment levels are very high in
comparison with other rivers in Maryland
(MDNR 2014). More ingestible nitrogen and phos-
phorous may trigger phytoplankton bloom, indi-
cated by a high chl a concentration. Records for
chl a and TP were available for only 41% of the
sampling trips; therefore, when these water qual-
ity factors were taken into analyses, nearly 59% of
sampling trips would be filtered out. To obtain
more accurate results, we developed a set of mod-
els for the full dataset (2642 sampling trips) to
detect the spatiotemporal patterns and the effects
of environmental factors without regard to the
water quality variables. Another set of models
was developed and fit to the filtered data (1090
sampling trips) with chl a and TP records

Table 1. Potential explanatory variables (mean � standard deviation) in the models.

Variables

Virginia
Maryland

James Rappahannock York Nanticoke

Year 1994–2017 1994–2017 2000–2002, 2004–2012, 2014 1997–2001, 2003–2009,
2011–2014, 2016, 2017

Month February–June February–June February–May February–May
Latitude (°N) 37.48 � 0.11 38.31 � 0.02 37.81 � 0.02 38.46 � 0.01
Longitude (°W) 77.42 � 0.16 77.47 � 0.04 77.19 � 0.15 75.82 � 0.01
Sampling method Boat electrofishing Boat electrofishing Boat electrofishing Pound, fyke nets
Sampling duration (h) 0.17 � 0.07 0.25 � 0.07 0.24 � 0.04 94.93 � 33.02
Water temperature (°C) 16.71 � 4.11 15.11 � 4.14 12.84 � 4.14 11.76 � 3.78
Dissolved oxygen (mg/L) 10.25 � 1.38 10.32 � 1.36 9.51 � 1.78 9.15 � 1.35
Salinity 0.06 � 0.19 0.03 � 0.02 0.00 � 0.01 1.11 � 1.45
River flow (m3/s) 197.87 � 143.45 56.65 � 36.12 18.02 � 12.88 NaN
Chl a (μg/L) 3.89 � 4.83 2.50 � 1.63 2.88 � 4.54 10.69 � 9.32
TN (mg/L) 0.59 � 0.23 0.41 � 0.06 0.63 � 0.11 3.88 � 0.58
TP (mg/L) 0.07 � 0.05 0.03 � 0.01 0.05 � 0.02 0.08 � 0.02

Notes: Chl a, chlorophyll a; TN, total nitrogen; TP, total phosphorus.
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available to explore the effects of these water qual-
ity factors.

Model structure
Details on data used in the models are listed in

Table 2. There were high percentages of sampling
trips with zero catch for each species in each river.
Hurdle (Cragg 1971), and zero-inflated models
(Lambert 1992) were developed to analyze data
with excessive zeros. Both models can be consid-
ered as mixture models, but they interpret zeros
differently. Zero-inflated models divide extra
zeros into two types: structural and sample zeros.
Structural zeros come from reality, while sample
zeros come from chance or mistake. Hurdle

models consider all zeros as structural zeros. We
conducted a preliminary analysis to compare the
performances of hurdle and zero-inflated models
with different distributions when fitted to the full
data and found zero-truncated Negative Binomial
hurdle model performed better (see Appendix S1
for details), so we focused on this model in the fol-
lowing analyses.
The basic hurdle model has two sub-models:

first, a binomial probability sub-model governs
zeros/non-zero observations, and second, a zero-
truncated sub-model for the non-zero values.
The hurdle model has been widely used to deal
with the high percentage of zero observations in
fishery data (Li and Jiao 2015, Bi et al. 2018).

Fig. 2. Scatter plots of explanatory variables in each river. Density plots in the diagonal show the distributions
of each variable in each river. Scatter plots in the lower panel show the linear relationships between each pair of
variables in each river. The number in the upper panel is the overall coefficients of linear relationships across all
rivers and the specific coefficients in each river. Abbreviations are as follow: J, James; R, Rappahannock; Y, York;
N, Nanticoke; Temp, water temperature; DO, dissolved oxygen; Sal, salinity; Flow, river flow; Chl-a, chlorophyll
a; TN, total nitrogen; TP, total phosphorus.
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The probability sub-model assumed that the
events of capturing or not capturing fish belong-
ing to a specific species (s) in a sampling trip in a
specific river (r) followed a binomial distribution
with a logit link:

logitðps,rÞ¼ βps,rþ∑
i
f ps,rðxiÞ

where ps,r is the probability of catching a fish
belonging to species s in river r; βps,r is the
intercept for each species in each river; xi is
the ith explanatory variable. Sampling method,
year, and month were modeled as categorical
variables, and their effects followed normal
distributions with a mean of zero. The effects
of other continuous variables were modeled
using smoothing functions defined through a
first-order random walk (RW1) process (Rue
and Held 2005), which assumes that f(Xt) − f
(Xt−1) ~ N(0, τ−1); where X is a covariate, t is
the tth value of X, τ is a precision parameter.
The RW1 process was constrained to sum to
zero and rescaled to have typical variance 1
when τ = 1. The intercept, year, month, and
other continuous variables were modeled to
follow two-level hierarchies with river as the
upper level and species within river as the
lower level; except for sampling method,
which followed one hierarchy, species, because
it was a categorical variable and was unique
for each state. For details in hierarchical struc-
ture, see Appendix S2.

The positive catch sub-model assumed that the
positive number of fish caught for a specific spe-
cies (s) in a sampling trip in a specific river (r) fol-
lowed a zero-truncated negative binomial
distribution of mean = μs,r with a log link:

logðμs,rÞ¼ βμs,rþ∑
j
f μs,rðxjÞ:

For models fitted to the full data, potential
explanatory variables in the probability sub-
model (xi) and in the positive catch sub-model
(xj) included sampling method, year, month,
sampling duration, water temperature, river
flow, distance to river mouth along river or longi-
tude and latitude. For models fitted to the fil-
tered data, potential explanatory variables
included chl a and TP in addition to the above
variables. Null models with species as the only
hierarchical level were developed to evaluate the
significance of incorporating hierarchical spatial
effects.

Model fitting and comparison
A relatively new Bayesian approach, the inte-

grated nested Laplace approximations (INLA)
methodology, was used to fit the models. The
INLA methodology can decreases the computa-
tional costs of the traditional Markov Chain
Monte Carlo techniques (Besag et al. 1991, Rue
and Held 2005, Rue et al. 2009a, Held et al. 2010).
Its R interface allows us to develop sophisticated
models more easily (Rue et al. 2009b). The default

Table 2. Details on data used in the models.

Type

Virginia
Maryland

James Rappahannock York Nanticoke

Full data
Total number of trips 1387 447 48 760
Number of trips with positive catch
American Shad 597 87 31 383
Hickory Shad 508 263 21 110
Alewife 238 215 29 589
Blueback Herring 584 252 18 358

Filtered data
Total number of trips 669 11 46 364
Number of trips with positive catch
American Shad 345 2 30 197
Hickory Shad 194 6 20 58
Alewife 99 7 27 243
Blueback Herring 234 0 18 156
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and recommended settings for priors were
adopted (Held et al. 2010, Lindgren and Rue
2015, Simpson et al. 2017, Fuglstad et al. 2018).
These priors were vague priors or approxima-
tions of “noninformative” priors that had little
influence on the posterior distributions, and
results were mostly derived from the data. For
details on the priors, see Appendix S2.

We run a forwards stepwise variable selection
process, in which a step involved testing the
addition of each covariate separately. We started
with the model only incorporating the variable
year, because of our interest in the temporal
trends of populations. Support for models with
different explanatory variables was compared
based on the deviance information criterion
(DIC, Spiegelhalter et al. 2002) and Watanabe-
Akaike information criterion (WAIC, Watanabe
2010).

The DIC is defined as:

DIC¼DþpD

where D is the posterior mean of the deviance of
the model, and pD is the effective number of
parameters in the model (Spiegelhalter et al.
2002).

The WAIC is defined as:

WAIC¼�2�ðLPPD�pDÞ

where LPPD is the log posterior predictive den-
sity (Watanabe 2010). The DIC has been recog-
nized for its tendency to under-penalize and
select over-parameterized models (Plummer
2008). It can produce negative estimates of the
effective number of parameters in a model. The
WAIC is fully Bayesian and uses the entire poste-
rior distribution, so it is recommended over the
DIC criterion (Watanabe 2010, Gelman et al.
2014b). A smaller value of DIC or WAIC indicates
a better explanatory quality of the model (Gel-
man et al. 2014b).

Model fit was measured using the conditional
predictive ordinate (CPO, Geisser and Eddy
1979) that is an approximation of leave-one-out
cross-validation:

CPOi ¼ πðyobsi jy�iÞ
where y−i denotes the observations y with the
ith component removed. It expresses the

posterior probability of observing the value of
yi when the model is fitted to all data except
yi. Cross-validation avoids the problem of
overfitting but remains tied to the data (Gel-
man et al. 2014b). The logarithmic score (LS) is
defined by

LS¼�∑
i
logðCPOiÞ

and a smaller value of the LS indicates a better
predictive fit. If LS, DIC, and WAIC all show the
same preference for a model, we have more evi-
dence that the preference is correct.

Influence of global climate oscillations
Global climate oscillations—including the

North Atlantic Oscillation (NAO), the Atlantic
Multidecadal Oscillation (AMO), and the Gulf
Stream index—were examined to see whether
they were related to the population trends of
shads and river herrings. These climate indices
have been associated with changes in sea sur-
face temperature, precipitation, wind fields, sea
ice formation, phytoplankton, and zooplankton
abundance, and consequently with changes in
the abundance of marine fishes (Taylor 1995,
O’Brien et al. 2000, Drinkwater et al. 2003). The
NAO index was taken from the National Center
for Atmospheric Research (NCAR 2019). The
winter (i.e., December–March mean) NAO index
was incorporated into our analysis because the
signal:noise ratio of the NAO was strongest in
winter (Hurrell et al. 2003). The annual AMO
index based on the Kaplan Sea Surface Tempera-
ture dataset was from the Earth Science
Research Laboratory (ESRL 2019). The annual
Gulf Stream North Wall (GSNW) index, a metric
of the latitudinal position of the Gulf Stream as
it leaves the northeast coast of the United States
as meanders, was obtained from personal com-
munication with Dr. Arnold H. Taylor at Ply-
mouth Marine Laboratory in the UK. The
relationships between these climate indices and
the standardized relative abundance indices of
different Alosa species in different rivers were
analyzed through their cross-correlation func-
tion (CCF), a statistical approach commonly
used to investigate the possible time-lagged
dependence between two variables (Probst et al.
2012). A P value ≤ 0.05 of the CCF was consid-
ered significant.
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RESULTS

Model comparison
The DIC, WAIC, and LS values for models

with different combinations of explanatory vari-
ables are presented in Tables 3, 4. When fitted to
the full data, models with two-level hierarchies

performed better than null models with species
as the only level of hierarchy. The best-supported
model (M7) retained year, longitude, month,
water temperature, log-transformed river flow,
log-transformed sampling duration, and sam-
pling method as explanatory variables of the
probability sub-model; year, latitude, month,

Table 3. DIC, WAIC, and LS values for models with different explanatory variables that fitted to full data.

Probability Positive catch ID DICz DICy WAICz WAICy LSz LSy

Year Year M1 12,443 26,142 12,438 26,170 6219 14,538
NM1 13,712 26,712 13,710 26,728 6855 15,489

Year, Lon Year, Lat M2 10,016 25,574 10,002 25,596 5002 13,885
NM2 10,522 25,660 10,517 25,675 5266 14,139

Year, Lon, Month Year, Lat, Month M3 8111 25,272 8089 25,275 4052 13,749
NM3 8753 25,373 8748 25,391 4428 14,097

Year, Lon, Month, Temp Year, Lat, Month, Temp M4 7696 25,136 7663 25,147 3843 13,629
NM4 8441 25,298 8432 25,310 4267 14,012

Year, Lon, Month, Temp, L-Flow Year, Lat, Month, Temp,
Lon

M5 7570 24,971 7529 25,011 3775 13,547
NM5 8164 25,216 8151 25,239 4089 13,915

Year, Lon, Month, Temp, L-Flow, L-
Dur

Year, Lat, Month, Temp,
Lon, L-Dur

M6 7562 24,968 7520 25,008 3770 13,542
NM6 8145 25,191 8130 25,219 4072 13,878

Year, Lon, Month, Temp, L-Flow, L-
Dur, Sampling method

Year, Lat, Month, Temp,
Lon, L-Dur, L-Flow

M7 7556 24,952 7514 24,992 3766 13,529
NM7 8140 25,151 8124 25,178 4067 13,815

Notes: L-Dur, log-transformed sampling duration; Temp, water temperature; L-Flow, log-transformed river flow; Lat, lati-
tude; Lon, longitude; DIC, deviance information criterion; WAIC, Watanabe-Akaike information criterion; LS, logarithmic
score. Models M follow two-level hierarchies with river as the upper level and species within river as the lower level, and mod-
els NM with species as the only level of hierarchy. DICz, WAICz, and LSz are for probability sub-model, DICy, WAICy, and LSy
are for positive catch sub-model. Top performing models in each step are listed for brevity.

Table 4. DIC, WAIC, and LS values for models with different explanatory variables that fitted to filtered data (in-
cluding only those trips where water quality was available).

Probability Positive catch ID DICz DICy WAICz WAICy LSz LSy

Year Year F1 5059 8707 5055 8724 2528 5440
NF1 5355 8864 5354 8878 2677 5564

Year, Lon Year, Lat F2 3933 8506 3922 8521 1962 5228
NF2 3993 8515 3986 8533 1994 5237

Year, Lon, Temp Year, Lat, Sampling method F3 3281 8501 3256 8515 1631 5219
NF3 3365 8508 3351 8522 1676 5227

Year, Lon, Temp, L-Flow Year, Lat, Sampling method, Lon F4 3253 8495 3226 8509 1616 5196
NF4 3351 8503 3336 8519 1668 5218

Year, Lon, Temp, L-Flow, Month Year, Lat, Sampling method,
Lon, Temp

F5 3117 8398 3089 8418 1553 5094
NF5 3181 8445 3165 8461 1583 5140

Year, Lon, Temp, L-Flow, Month, L-
Chl-a

Year, Lat, Sampling method,
Lon, Temp, L-TP

F6 3112 8355 3084 8376 1547 5055
NF6 3171 8382 3154 8401 1578 5107

Year, Lon, Temp, L-Flow, Month, L-
Chl-a, Sampling method

Year, Lat, Sampling method,
Lon, Temp, L-TP, Month

F7 3106 8334 3077 8355 1541 4970
NF7 3170 8362 3153 8380 1576 5006

Notes: Temp, water temperature; L-Flow, log-transformed river flow; L-Chl-a, log-transformed chl a concentration; L-TP, log-
transformed total phosphorus concentration; Lat, latitude; Lon, longitude; DIC, deviance information criterion; WAIC,
Watanabe-Akaike information criterion; LS, logarithmic score. Models F follow two-level hierarchies with river as the upper
level and species within river as the lower level, and models NF with species as the only level of hierarchy. DICz, WAICz, and
LSz are for probability sub-model, DICy, WAICy, and LSy are for positive catch sub-model. Top performing models in each step
are listed for brevity.
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water temperature, longitude, log-transformed
sampling duration, and log-transformed river
flow as explanatory variables of the positive
catch sub-model (Table 3).

When fitted to the filtered data, models with
two-level hierarchies also performed better than
null models with species as the only level of hier-
archy. Model F7 was chosen as the best-
supported model for the filtered data, and
retained year, longitude, water temperature, log-
transformed river flow, month, log-transformed
chl a concentration and sampling method as
explanatory variables of the probability sub-
model, year, latitude, sampling method, longi-
tude, water temperature, log-transformed TP
concentration, and month as explanatory vari-
ables of the positive catch sub-model (Table 4).

Impacts of explanatory variables
Model results were plotted using the R pack-

age ggplot2 (Wickham 2016). The impacts of
sampling method, sampling duration, water tem-
perature, river flow, and month on catch proba-
bility and positive catch derived from model M7
fitted to the full dataset were combined to esti-
mate their impacts on fish relative abundance
(see Appendix S2 for details), which are shown
in Fig. 3. The pound net was associated with
greater relative abundance for Hickory Shad,
Alewife, and Blueback Herring (Fig. 3a), indicat-
ing a greater catchability. The MDNR survey is a
fishery-dependent survey, and commercial
watermen determine the type, number, and loca-
tion of the nets based on their fishing needs, so
the pound and fyke nets tend to be set in

Fig. 3. (a) Effects of sampling method, (b) log-transformed sampling duration, (c) water temperature, (d) log-
transformed river flow, and (e) month on relative abundance indices of each species in each river derived from
model M7 fitted to full data. Lines and points represent posterior mean values; ribbons and ranges represent 95%
credible intervals. Abbreviations of sampling methods are as follows: EB, boat electrofishing; FYKE, fyke net;
PNDN, pound net.

 v www.esajournals.org 10 June 2021 v Volume 12(6) v Article e03544

BI ETAL.



locations with more fish. Among the two nets
used, pound nets were used twice as often as
fyke nets and were observed to catch more fish.
Sampling duration showed a positive effect on
relative abundance of American Shad in the
James, Rappahannock, and Nanticoke rivers;
Hickory Shad in the Nanticoke River; Alewife in
the Rappahannock River; and Blueback Herring
in the James, Rappahannock, and Nanticoke riv-
ers (Fig. 3b). Water temperature between 10°C
and 20°C was associated with greater relative
abundance of American Shad and Hickory Shad
in all rivers, except for the large uncertainties at
low temperature in the Rappahannock and Nan-
ticoke rivers; lower water temperature was asso-
ciated with greater relative abundance of
Alewife, while higher water temperature was
associated with greater relative abundance of
Blueback Herring (Fig. 3c). River flow displayed
diverse effects on relative abundance for differ-
ent species in different rivers; river flow effects in
the York River had large uncertainties due to
small sample size (Fig. 3d). The effect of month
on relative abundance for different species
showed river-specific heterogeneity: for Ameri-
can Shad, the month effects peaked in May in the
Rappahannock and York rivers and peaked in
April in the James and Nanticoke rivers; for
Hickory Shad, month effects peaked in April in
all rivers; for Alewife, month effects peaked in
March in the Rappahannock, York, and Nanti-
coke rivers and peaked in April in the James
River; for Blueback Herring, month effects
peaked in May in the James, Rappahannock, and
Nanticoke rivers, and peaked in April in the York
River (Fig. 3e).

The impacts of chl a and TP concentrations on
catch probability and positive catch derived from
model F7 fitted to the filtered data were com-
bined to obtain their impact on fish relative
abundance, which are shown in Fig. 4. The
impacts of these water quality factors displayed
large uncertainties due to the small sample sizes
and high variance of the metrics over time. There
were only 11 sampling trips in the Rappahan-
nock River and 46 sampling trips in the York
River with water quality data (Table 2). The rela-
tively larger sample sizes in the James River (669
sampling trips) and Nanticoke River (364 sam-
pling trips) helped to derive more accurate esti-
mates of the effects of these variables and what

they index. In the James River, relative abun-
dance of American Shad was greater under
lower chl a concentration (Fig. 4a); relative abun-
dance of Alewife was greater under lower TP
concentration (Fig. 4b). In the Nanticoke River,
relative abundance of American Shad and Ale-
wife was greater under lower chl a concentration
(Fig. 4a); relative abundance of Alewife was
greater under lower TP concentration (Fig. 4b).
Large uncertainties blurred the impacts in other
cases.
The effects of latitude and longitude on catch

probability and positive catch derived from
model M7 fitted to the full data were computed
together to obtain the changes of relative abun-
dance indices over latitude and longitude
(Fig. 5). In the James River, relative abundance
of American Shad was greater in the northern
inland area; relative abundance of Hickory Shad
was greater in the Appomattox River; relative
abundance of Alewife and Blueback Herring
was greater near the coastal area. In the Rappa-
hannock River, relative abundance of Alewife
was greater in the inland area; relative abun-
dance of Blueback Herring was greater near the
coastal area. In the York River, relative abun-
dance of Alewife was greater in the coastal area.
Two main sampling sites in the James River (i.e.,
Belle Isle and Bosher’s Dam) that were located
in the fall zone and observed to have zero prob-
ability of capturing Hickory Shad and Alewife
and slight probability of capturing Blueback
Herring showed low spatial effects on the three
species.

Standardized relative abundance indices and
correlations with long-term climate oscillations
The estimates of intercepts and year effects

from two sub-models of model M7 fitted to the
full dataset gave the standardized relative abun-
dance indices for the four species in all rivers
(Fig. 6; see Appendix S2 for details). Each species
displayed different population trends in the
respective rivers. The standardized indices and
geometric mean survey indices showed similar
patterns, but with some differences. Hickory
Shad was usually caught in small numbers by
fyke and pound nets, since they tended to
actively avoid these gears as observed by sam-
pling crews. The data captured by the MDNR
survey for Hickory Shad might not represent
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Fig. 4. (a) Effects of chlorophyll a concentration and (b) total phosphorus concentration on relative abundance
indices of each species in each river derived from model F7 fitted to filtered data. Lines represent posterior mean
values; ribbons represent 95% credible intervals.
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their abundance effectively, potentially reflected
by the low relative abundance indices of Hickory
Shad in the Nanticoke River. We correlated the
standardized relative abundance indices of each

species in each river with long-term climate indi-
cators. The annual trends of the respective Alosa
species were significantly cross-correlated with
the climatic variables only in a few cases: In the

Fig. 5. Latitudinal and longitudinal effects (mean and standard error [SE]) on relative abundance indices of
each species in each river derived from model M7 fitted to full data.
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Rappahannock River, the GSNW index of the
previous year displayed a significant positive
effect on the standardized relative abundances of
Alewife, the GSNW index of the current year

displayed a significant positive effect on the stan-
dardized relative abundances of Blueback Her-
ring, the AMO index of the previous year
displayed a significant negative effect on the

Fig. 6. Z scores of standardized relative abundance indices and geometric mean survey indices of the four spe-
cies in the four rivers derived from model M7 fitted to full data. Lines represent posterior mean values; ribbons
represent 95% credible intervals.
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standardized relative abundances of Blueback
Herring; and in the Nanticoke River, the AMO
index of the previous year displayed a significant
negative effect on the standardized relative
abundances of Alewife and Blueback Herring
(P < 0.05).

DISCUSSION

Impacts of explanatory variables
Our analyses demonstrate the river-specific

effects of environmental factors on relative abun-
dance indices of Alosa species in selected tribu-
taries of the Chesapeake Bay. Previous studies
have documented that the optimal spawning
temperature for Alewife is 4–19°C and for Blue-
back Herring is 14–22°C (O’Connell and Anger-
meier 1999, Ogburn et al. 2017b). Our results
indicate that relative abundance of Alewife adult
was greater under lower water temperature; in
comparison, relative abundance of Blueback Her-
ring adult was greater under relative higher
water temperature, which is consistent with
these previous findings. It also was found that
relative abundance of Alewife peaks in earlier
months, when water temperature is lower, while
that of Blueback Herring peaks in later months,
which is consistent with previous observations
(Plough et al. 2018).

Variations in river flow have shown effects on
the energy expenditure of migrating Alosa adults
and spawning habitat availability (Haro et al.
2004, Walsh et al. 2005). High river flow could
decrease feeding efficiency and migration distance
of anadromous clupeids (Limburg 1996, Haro
et al. 2004). Low river flow could also influence
movements of Alosa populations, and it was
observed that adult river herring moved down-
stream out of spawning areas on the Choptank
River during low and declining flows (Ogburn
et al. 2017b). Large river systems rarely become
dewatered, and thus, fish might be less susceptible
to stranding than in small systems (Kosa and
Mather 2001). Previous studies also hypothesized
the effect of river flow to be site- and species-
specific (Tommasi et al. 2015). Alewife tend to use
low-flow habitats, while Blueback Herring could
use both high- and low-flow habitats (Walsh et al.
2005), which is consistent with the effects of river
flow on relative abundance indices of these spe-
cies, especially in the Rappahannock River.

More primary production tends to benefit fish
larvae and juveniles (Grimes and Finucane 1991).
However, extremely high chl a concentration
might cause hypoxia and eutrophication and
decrease trophic transfer efficiency, which would
negatively influence shad and river herring pop-
ulations (Havens et al. 2000, Cai et al. 2011).
Although with large uncertainties due to small
sample size, our results indicate that Alosa spe-
cies, American Shad in the James and Nanticoke
rivers and Alewife in the Nanticoke River in par-
ticular, are negatively influenced by extreme
high chl a and TP concentrations. More informa-
tion on water quality is necessary to obtain more
accurate results.

Management implications
The sampling surveys conducted by VDGIF

and MDNR provide data on the spatiotemporal
dynamics of Alosa populations and allow us to
assess environmental and anthropogenic effects
on their populations in different river systems. A
key benefit of this study is that each species in
each river system is found with its threats charac-
terized, and a corresponding habitat restoration
is able to be developed for each species within a
river. Stocks in different rivers display different
trends: Blueback Herring in the James River,
American Shad, Hickory Shad, and Blueback
Herring in the Rappahannock River have been
increasing in recent years; American Shad and
Alewife in the James River, American Shad in the
Nanticoke River are still at lows; time-series
trends of stocks in the York River are difficult to
distinguish due to missing observations in many
years. For stocks not showing a recovery trend,
extra habitat restorations need to be considered.
The impacts of environmental and anthro-

pogenic factors on river-specific stocks provide
useful information to develop habitat restoration
strategies. American Shad in the James River are
negatively influenced by high water tempera-
ture, low river flow, and high chl a concentration.
It was found that within Virginia land use pres-
sure is highest along the James River at Rich-
mond, followed by the confluence of the James
and Chickahominy rivers and the peninsula sep-
arating the James River from the York River (Hil-
ton et al. 2014), where with higher relative
abundance of American Shad (Fig. 5). Land use
around rivers is likely associated with water
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pollution including nitrogen and phosphorous
yields, sediment load, and thermal effluent (Hil-
ton et al. 2014), which would negatively affect
American Shad. Land use regulations associated
with water quality are expected to help to
recover this shad stock (Hilton et al. 2014). Ale-
wife in the James River are negatively influenced
by high water temperature and high TP concen-
tration; American Shad in the Nanticoke River
are negatively influenced by high water tempera-
ture and high chl a concentration. Similarly, land
use regulations associated with water quality
would benefit the two stocks.

The estimated spatial effects indicate habitat
preference of each species within rivers. Spatial
locations with greater effects on relative abun-
dance of Alosa species could be considered by
managers as they consider how to focus on habi-
tat restoration efforts. For example, restorations
in inland areas of the James and Nanticoke rivers
could help to recover American Shad stocks;
restorations in coastal areas of the James River
could help to recover Alewife stock. State and
federal agencies deal on a regular basis with
time-of-year restrictions for in-stream work to
protect anadromous fish spawning runs. The
month effects estimated from our model could
be factored into such decision making. To be
more specific, restrictions for in-stream work in
April would benefit American Shad stocks in the
James and Nanticoke rivers; restriction in March
and April would benefit Alewife stock in the
James River.

Inter-annual demographic trends of some
Alosa stocks are related to large-scale climate
oscillation—AMO and Gulf Stream meanders.
These types of relationships are observed for
river herrings in the Rappahannock and Nanti-
coke rivers. The discontinuity of samplings in the
York River makes it difficult to observe any
potential relationships. A positive phase of the
AMO index may bring about warming water,
increased drought severity, loss of flood plain
spawning habitat, and negatively affect Alosa
populations (NCDMF 2014). A larger GSNW
index indicates the Gulf Stream meanders follow
a more northerly track and would attract fish to
the river in a higher latitude. Under global
warming scenarios, Alosa populations may move
northward, or the spawning timing may shift to
an earlier month. The situation will be more

severe for Alewife, because they tend to stay in
habitats with lower temperature. These shifts
may lead to other factors affecting their abun-
dance and cause changes in managements, such
as changes in Time of Year restrictions for in-
stream work. The specific effects of climate
change should be noticed and further investi-
gated.
The ASMFC completed a coastwide bench-

mark stock assessment in 2012, concluding the
overall coastwide population of river herring
stocks on the U.S. Atlantic coast is depleted to
near historic lows (ASMFC 2012). As indicated in
the stock assessment, river herring should be
assessed and managed by individual river sys-
tems; however, for the majority of rivers, data
were not available to conduct a model-based
stock assessment (ASMFC 2012). Instead, tempo-
ral trend analysis was used to identify recovery
patterns in the available data (ASMFC 2012).
River herring were assessed at a river scale for
three stocks only, including the Monument River
in Massachusetts, the Nanticoke River in Mary-
land, and the Chowan River in North Carolina
(ASMFC 2012). With more data being collected
and powerful statistical approach being devel-
oped (such as the hierarchical models) in the
future, it will be possible to conduct model-
based stock assessment in more river systems,
and incorporate river-specific heterogeneities in
population dynamics to facilitate development of
coastal stock assessment.

Recommendations for data collection
The fisheries-dependent and independent mon-

itoring programs conducted by states and juris-
dictions provide a database for river-specific
trend analyses. However, there are some limita-
tions in the datasets used in this study. First, data
in the York and Nanticoke rivers have gaps in
some years, which hinder us from getting yearly
continuous trends of stocks in these two rivers.
More consistent samples help to derive time-
series trends. Second, these surveys take weekly
sampling strategies. However, anadromous
spawning runs are generally highly episodic
(Ogburn et al. 2017b), so the current sampling
strategies often yield high variabilities. To capture
more accurate trends, higher-frequency sampling
strategies are needed. Some techniques such as
imaging sonar can record run counts over shorter
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periods and provide more informative data
(Ogburn et al. 2017b). Third, the current spatial
coverage is insufficient. The numbers of sampling
stations in the Rappahannock and York rivers are
limited; the sampling stations in the Nanticoke
River are close in space. Additional separate sta-
tions are needed to cover a larger spatial field and
improve the picture of population trends. Fourth,
our results indicate that Alosa species are likely
negatively influenced by high chl a and TP con-
centrations, but the results have large uncertain-
ties due to small sample size on the water quality
data. It is suggested that water quality metrics be
taken in association with fish samples. In addi-
tion, Alewife have been observed to move on and
off of spawning grounds during the spawning
season (McCartin et al. 2019). It is likely that fish
move back and forth between tidal and non-tidal
areas during the spawning season, particularly as
flow increases or decreases. However, tidal status
was not recorded in most sampling trips, and
based on the trips with tidal status, its impact was
not significant. More records in tidal status in the
future sampling may help to diagnose its impact.
Fifth, there are other datasets including long-term
data in the Potomac River and shorter time-series
data in several other rivers (Northeast, Choptank,
Patapsco, etc.). There are also juvenile abundance
indices data available in the Chesapeake Bay
region. We consider to incorporate these data into
analyses in the future. Future management could
be better informed by models derived from more
consistently collected and more informative data.

Although it was expected that the relationship
between the number of fish caught and sampling
duration is non-negative, our analyses show that
the number of fish caught in a sampling trip is
lower under longer sampling duration for Ale-
wife in the James River and Hickory Shad in the
Rappahannock River. In the James River, the low
catch number under greater sampling duration
in the data occurred in May 1994 and April 2014
in inland areas. In the Rappahannock River, the
low catch number under greater sampling dura-
tion in the data occurred in March 2000 near
coastal areas. Sampling crews sampled estab-
lished stations consistently based on a predeter-
mined time duration. Variation in the sampling
duration could occur if anglers were in the area
or the current moved the boat through the sta-
tion at faster rates, either resulting in shorter

samples time wise. Given the variation in current
velocity, sampling duration might not be a per-
fect index for sampling effort, and a more appro-
priate index such as a formula combining pedal
time (number of minutes electric current is
applied during electrofishing surveys) and area
covered is needed for future surveys.

Model improvements
The present study developed a computationally

efficient and statistically powerful approach to
analyze river-specific heterogeneity of the spa-
tiotemporal dynamics of Alosa and identify river-
specific impacts of environmental and anthro-
pogenic factors on these stocks in some Chesa-
peake Bay rivers. Spatial studies of species within
river systems are complex and difficult to imple-
ment, because spatial correlation can exist between
rivers and within rivers. Under the current model
structure, the within river effects of latitude and
longitude could be conflated with the between
river effects of location. A one-dimensional process
linked at the points where streams join, and a two-
dimensional process linked to more general spatial
features can be combined to address spatial effects
at different scales in the future. More sampling
locations across the region help to extend the
model to space.
In summary, Alosa stocks display different

trends in selected river systems of the Chesapeake
Bay. Environmental and anthropogenic factors,
including water temperature, river flow, chl a con-
centration, and TP concentration, play river-
specific impacts on these populations. The river-
specific impacts of these factors should be consid-
ered when we detect population status in specific
rivers and develop potential recovery strategies.
River-specific stock trends could help to facilitate
development of coastal population models.
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