THE FORMATIVE EVALUATICN AND REVISION OF AN
INSTRUCTIONAL MANAGEMENT SYSTEM
FOR BUSINESS COMPUTER COMPETENCIES

by
Andrea Emmot Eason
Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF EDUCATION
in

Vocational and Technical Education

. £

Jeffr8y R. Stewart, Chair

50 . co 1 Dp Sowaits

(B. June Schmidt Dais{ L. Stewart

j/77:>h7\///‘ &L” <

g& Jon Ackley (ﬂ

-

APPROVED:

William G.

March 31, 1993

Blacksburg, Virginia

ACKNOWLEDGEMENTS

First, I wish to thank God for every blessing He has
bestowed on me. I realize that all things come from the
Lord, and I thank Him for His loving sustaining grace
throughout the many months of work on this project.

I wish to extend gratitude to my husband, Mack Eason,
and my daughters, Frances Hope Eason, Andrea Suzanne Eason,
and Lisa Torrence Mills for the love, support, and
sacrifices they have had to make during the years of this
project. A special blessing to Frances and Suzanne who had
to shoulder all household duties while I met the residency
requirement at Virginia Tech.

An extra special thank you is extended to George L.

Hazelton, a colleague and the co-programmer of LessonBank,

who provided friendship, encouragement, and constant help.
I learned a lot about programming from George and without
his expertise and experience this project would have been
much more difficult.

I wish to thank the members of my committee for their
support and encouragement during the completion of this
study: Dr. R. Jon Ackley, College of Business, Virginia
Commonwealth University; Dr. William G. Camp, Dr. B. June
Schmidt, Dr. Daisy L. Stewart, and Dr. Jeffrey R. Stewart,

College of Education, Virginia Tech.

ii

A special debt of gratitude goes to Dr. Jeffrey R.
Stewart who was ultimately responsible for the idea of
building the database and application upon which this
project was established. His guidance and expertise in
business education made this project possible.

My parents, Andrea and Walter (Kayo) Emmot of
Independence, Kansas, share a special place in these
acknowledgments. They have always encouraged me to do my
best all along the way as I pursued an advanced degree.

Thanks are due to my colleagues at Chowan College for
their friendship and encouragement.

To Dr. B. Franklin Lowe, Vice President of Academic
Affairs, and Dr. Jerry Jackson, President, Chowan College,
who provided financial support and encouragement, I owe
special thanks.

This acknowledgment would not be complete without a
genuine thanks to the Burroughs-Wellcome Foundation who
provided me with scholarship funding on several occasions to
pursue and complete this degree. Without their support the

completion of this degree would be unrealized.

iii

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

CHAPTER 1
STUDY OVERVIEW

Statement of the Problem

Background of Established System

Assumptions
Purpose Statement

Project Development Objectives

Definitions of Terms . . .
Limitations . . o . .
Need for the PrOJect

Project Organization . . .

CHAPTER 2
REVIEW OF LITERATURE . . .

Computer Managed Instruction
Background
CMI Defined
Themes of CMI

CMI Features Enhance Instruction
Effectiveness and efficiency
Testing and measurement

Record keeping .
Designing a CMI System

Realities of the Classroom

Information Systems
Elements of a System . . .
Hardware
Programs
Data
Personnel
Procedures . . .

The Role of Software in Problem
Software Design Philosophy

Software Issues . . .
Data Input . . .
Output . . .

Steps in Database De51gn

Flexibility .
System Life Cycle . .
Documentation . . .

iv

Situation

Solving

Page

ix

11
11
13
14
16
17
17

18

18
18
19
20
22
25
25
26
27
29
29
30
30
30
31
32
34
34
35
35
35
36
36
37
38
39

Formative Evaluation e e e e e
Formative Evaluation Deflned o« v e e e e
Terminology . .+ « v ¢ ¢ ¢ « o« « o o o
Purpose of Formative Evaluation
Special Considerations . . .
Process and Procedures of Formatlve Evaluatlon .

SUMMAYY &« ¢ & o o o o o o o o o o o o o =

CHAPTER 3

ELEMENTS OF LESSONBANK . . . e e e e
Course and Competency Banklng .« e e e .
Task Banking« « ¢« ¢ ¢ « « o o o &
Question Banking . . . e e e e e e e .
Performance Test Banklng e e e e s e e e
Test Generation « « . .
Reporting « . « v v « + o « « .

Sample Menus, Screens, and Reports
Example One« ¢ v « & &« « o o o =
Example TWO . . .« ¢ « +« ¢ o o« o o o « &

Design Elements ¢ ¢« ¢ ¢ o o« « « o « &

CHAPTER 4

FORMATIVE EVALUATION PROCEDURES

Project Design . e e e e e e o e .
Formative Evaluatlon De51gn .« e e e e .
Phase One Evaluation
Program Revisions « + « .« .
Phase Two Evaluation
Phase Three Evaluation

Subjects 4t e e e e e e e e e e

Data Collection . . . e e e e e e e .
Developer's Observatlons e e e e e e e .
Structured Application Assignments . . .

Data AnalysSisS . + « « v o« ¢ ¢ o o o o o o o

CHAPTER 5

RESULTS . &« v & « o« o o o o o o o s o o o =

Objective 1 . . .+ ¢« ¢ ¢ ¢ v ¢ o o o o« o o

Objective 2 e e e e e e e e .
Suggested Changes for Data Input (Screen
Suggested Changes for User's Manual . .
Suggested Changes for Reports
Programming Errors « « « « « « &
Suggestions for New Features

Objective 3 . . « ¢ ¢ ¢« ¢ v v v 4 v & o o 4

Objective 4+« + v ¢ v v ¢« o o o« o« o W

Objective 5 ¢ . . « ¢ v« ¢ « o « .

40
40
43
44
45
46
49

51
51
51
52
52
53
53
54
55
61
71

84

84
85
86
87
87
88
89
89
89
90
90

91

91
92
93
96
100
101
102
102
104
104

Objective 6 o o . . .
Suggested Changes for Data Input (Screen Forms)
Suggested Changes for User's Manual
Suggested Changes for Output (Reports)
Processing EXrors ¢ « « « o o o o o« =
Miscellaneous ErrorsS . . « « « o o o o o o o &
Suggestions for New Features

Objective 7 . . e e e e e e e e s e e e e e e e
Task Banklng t e e e e e e e e e e e e e e e s
Competency Banking ¢« « « « « o« « o« &
Course Banking o e e e e e .
Assigning Tasks to Competen01es e s e e e e s
Printing Reports « ¢« ¢« ¢« « « « .« .
Creating Lesson Plans . . e o e = & e
Multiple Choice Question Banklng e e e e e e .
Matching Question Banking
Performance Test Banking
Utilities e e e e e .
Overall Evaluation of LessonBank e e o e e

SUMMAYY &« « ¢ o o o o o o o o o o o « o o « o o o

CHAPTER 6

SUMMARY AND RECOMMENDATIONS . ¢ « « « & & & o o o«
Background e e e s e e e e e e
Project Summary and Dlscu551on e e e e e s s e s
Recommendations . . e e e e e e e e e e e e
Instructional and Research Recommendations
Potential Uses « « « . . e e e e e e e
Suggestions for Getting Teachers to Use the System

REFERENCES . ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o o o o o o o o o o @
APPENDICES . . ¢ ¢ ¢ ¢ ¢ o« o o s o o o o o o o« &
APPENDIX A

ELEMENTS OF
LESSONBANK: THE INSTRUCTIONAL MANAGEMENT SYSTEM

APPENDIX B
MENU CHOICES FROM LESSONBANK « .« « ¢« « .«

APPENDIX C
LETTERS TO SUPERVISORS AND TEACHERS

APPENDIX D
STRUCTURED APPLICATION ASSIGNMENT

APPENDIX E
VOLUNTEER SOLICITATION FORM . . . o &+« ¢ « « o o o &

vi

105
105
107
107
108
109
111
111
115
118
121
121
125
126
128
132
134
135
136
139

141
141
143
153
154
155
156
158

163

164

166

170

175

193

APPENDIX F
SUMMARY EVALUATION FORM « « ¢ « « « o « « « « « 195

APPENDIX G
DATA FROM CHECK SHEET AND EVALUATION FORM

OF SIX SUBJECTS . . ¢ &« &« o o o o o o« o o s o « « » « « 198
ABSTRACT « « ¢« o ¢ o« o o o o o o o o o o o o o« « o« « o 206
VITA © & ¢ o v o o v o« o o o o s o o o o « o o o« « « « 208

vii

LIST OF TABLES
Summary of testing and CMI features 23

Differences between formative and summative
evaluation« ¢ ¢ vt e e e e e e e e e e e 42

A comparison of database and file processing terms 73

Program completion time and successful completion rate
of structured assignment -- Phase 3 114

Overall evaluation of LessonBank . . « « « « o « 138

viii

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

LIST OF FIGURES

Select software type, function, and difficulty

forms . ¢ ¢ ¢ ¢ it e e e e e e e e e e e e e
Enter a new task form« « . ¢ + « « .
Edit task description form

Selecting a task to change the function form .
Change the function of a task form

Change the difficulty of a task form

Course selection form

Competency selection form
Message display screen« « « « o o o « =
Random selection option screen
Random selection heading form
Print menu ¢ ¢ ¢ v 4 4 e e e s e e
Save to a file screen . . . ¢« + ¢ 4 + o o . .
Multiple choice test

Multiple choice answer key
Test basis report
User selects questions heading form
Multiple choice question selection form . . .
Popup menu displaying question count
Select a software type form
Select a function form

Select a difficulty form

ix

56

57

58

59

59

60

62

62

63

63

64

64

65

66

66

66

67

67

68

69

70

70

CHAPTER 1
STUDY OVERVIEW

Microcomputers are now appearing in more of the
nation's classrooms. The Office of Technology Assessment
(1988) reports that nearly all United States public schools
have a computer, and the acquisition of computers by schools
is continuing. The availability of computers in the
classroom has expanded dramatically in the 1980s. In 1981
only 18 percent of schools had purchased computers. By 1987
computers had been purchased by more than 95 percent of all
schools.

According to a survey by the research division of the
National Education Association (1991), more than two-thirds
(68.1 percent) of the teachers reported they had a personal
computer available at their work site for their use.
Teachers are beginning to recognize the possibilities a
computer offers for both instructing and managing
instruction. More than half (61.5 percent) of all teachers
responding to the NEA survey concerning use of selected
teaching resources (1991) showed they used personal
computers regularly. With the increased availability of
classroom computers, teachers will have the technology
necessary to improve the management of instruction. As the
cost of microcomputers has continued to fall, they become
feasible in financial terms. As better software becomes

1

available, microcomputers become more feasible in technical
terms.

A teacher can be categorized as both a deliverer of
instruction and a manager of instruction. A computer
managed instruction (CMI) system will help the teacher with
the management of the classroom. As the deliverer of
instruction, the teacher may give lectures or demonstrations
to aid the learning process. As the manager of instruction,
the teacher sets goals, monitors progress toward the goals,
plans instruction, organizes and controls the activities of
the classroom.

No doubt some teachers have made restricted use of
computers for the management of instruction. Keeping
records of student progress on a computer using a
spreadsheet, for example, is one method of managing
information. Using a word processor to store lesson plans
or type a test is another. Editing and updating handouts,
pupil worksheets, and similar documents is time-saving with
a word processor. Output from the reports in a database
system can be saved to a text file and retrieved in a word
processor for further manipulation. This capability should
add to the efficiency and effectiveness of the teacher.

With the emphasis on accountability and competency-
based instruction, keeping track of competencies and
associating or relating these competencies to the tasks that

2

must be mastered in each course can be a complicated record
keeping problem. Creating tests to measure the competencies
taught is a challenge, and knowing which tasks or
competencies have been measured can be a time-consuming
irritation. Computer technology has the potential to help
teachers increase their productivity as managers of
instruction as they prepare for their classes. If teaching
can be viewed as a production function, efficiency is
important.

According to Lancaster (1985), there are three major
uses of microcomputers within school systems: (a) teaching
computer studies as an academic subject, (b) computer
assisted learning in other academic areas, and (c) school
administration. Teachers have been involved with computer
technology primarily in the first two areas while principals
and other administrators have used computers for management
activities such as record keeping, e.g., attendance,
scheduling, and budgeting.

Faculty use of computers for computer managed
instruction has the benefits of increased educational
efficiency and effectiveness in the classroom and capability
of demonstrating the use of computers in a real setting. If
students are taught that microcomputers can be used easily
and beneficially for a wide range of administrative
applications, they might expect such claims to be reflected

3

in the administration and teaching of the school (Lancaster,
1985) .

Problems in managing instruction efficiently and
coordinating large amounts of data so that teaching
effectiveness can improve show a need for the development of
a system in which all data are integrated. A relational
database has the power and sophistication to allow data to
be processed as an integrated whole (Kroenke & Nilson,
1986).

Geisert and Futrell (1990) point out that a teacher who
uses a computer before and during the instruction process is
able to supplement teaching effectiveness and promote
student learning. Teachers can use the computer both in the
testing process and in the record keeping process.

Two reasons for the growth of microcomputers for
management functions in schools include ease of tracking
students for purpose of accountability and the need for
better information to simplify decision making. The quality
of the information is an important factor for decision
makers. Decision support information systems can be used
for performance evaluation. Computers and the appropriate
programs may improve the efficiency with which these tasks
are performed.

The challenge is to establish an instructional
information system that contains information about courses,

4

objectives, tasks, and tests, and to relate all the data in
multiple views. A database application could be developed
to address each of these instructional elements. As a
minimum, users of the system should be able to (a) put
information into the system, (b) retrieve information from
the system, and (c) keep the system up to date (Geisert &
Futrell, 1990).

In 1991 a curriculum guide for Virginia business
educators was developed which contained data related to 22
business courses and 140 computer software related
competencies. In addition, the guide included a taxonomy of
1,100 tasks to be demonstrated to achieve a competency.

This information was published in the Business Computer

Software Curriculum Series by the Virginia Department of

Education. The purpose of the curriculum series was to
assist business educators plan instruction on the sizable
number of computer operations required for occupations in
business.
Statement of the Problem

In Virginia there exists a need for a method of
organizing, maintaining, manipulating, and processing the
many courses, competencies, tasks, and tests that had been
organized for teachers by the State Department of Education.
If an automated system were developed, tested, and revised,
a useful program for educators could be produced.

5

Virginia business educators could use an automated
method of organizing instruction around the sizable number
of computer competencies and tasks required for occupations
in business. A database containing the data would allow
teachers to produce information easily as an aid to managing
instruction. No system with this capability currently
exists. According to the Office of Technology Assessment
(1988), teachers believe that technology eases some aspects
of classroom management.

A system that would have the capacity to store the
volumes of data related to teaching computer software
competencies and allow teachers to maintain and update the
data as times change could be a propitious aid for teachers.
Teachers think that "computer programs such as spreadsheets,
database managers, and desktop publishing can streamline
recordkeeping and material preparation" (OTA, 1988, p. 14).
For example, a system that would have the capability of
generating various reports to assist in the instruction
process would be a valuable supplement for a teacher.
Simplifying the creation of lesson plans based on
competencies and tasks would be a desirable function of the
system. The ability to store many test questions to measure
each competency would assist with the evaluation process of

teaching. A good system would allow teachers to create

parallel versions of tests to measure the competencies
taught.

A research study completed by Kohnken (1987) found that
educators using database applications on microcomputers
perceived benefits including time-savings and improved
instruction management. Computer managed instruction was
ranked as the most valuable use of computers among ten uses
in the classroom (Paulson, 1985). The goal of this project
would be to develop a usable CMI program through a series of
user tryouts.

Background of Established System

A method of identifying and organizing individual
software tasks and assigning these tasks to the competencies
within courses in the curriculum was underwritten by the
Virginia Department of Education in 1989. As a result, a
research team was organized to develop a taxonomy of tasks.

The taxonomy resulted in the Business Computer Software

Curriculum Series published by the Virginia Department of
Education in 1990. This publication was based in part on

computer competencies extracted from the Business Education

Suggested Course Competencies and Performance Objectives,

published by the Virginia Department of Education in 1989.
The competencies in the 1989 publication were developed

to help business educators with the implementation of

updated competency-based courses in administrative systems,

7

business management, and information systems programs. The
competencies were compiled from work by the Business
Education Curriculum Study Committee, basic business
education course outlines committees, publications of
previous competency-based course outlines for business
education, local business education supervisors, and members
of the Business Education Service, Vocational and Adult
Education, Virginia Department of Education.

A subset of competencies that measure computer software
skills was extracted from the 1989 competency-based
curriculum guide and a listing of tasks identifying specific
actions to achieve a competency was developed. The
compilation of 1,100 individual tasks was prepared and
organized by a research project team. A panel of
consultants validated the business computer software tasks
and members of the Virginia Department of Education helped
in research design and publication. The purpose of the

Business Computer Software Curriculum Series was to help

business educators plan instruction on the sizable number of
computer operations required for occupations in business.
Before the tasks were identified, the researchers

categorized business application software as follows:

1. DOS and fundamentals, for internal and external disk
operating system commands, terms, concepts, and procedures
related to hardware and software use

8

2. Word processing, for text production and printing

3. Spreadsheet, for entering and organizing data into rows

and columns for computation and analysis
4. Database, for records management

5. Graphics and graphing, for creation of pictures,

designs, stylized text effects, and charts

6. Data communications, for interaction among computers

7. Desktop publishing, for integrated text and graphics and

production that approaches the quality of commercial
typeset.

In addition, the researchers inspected the
documentation from software vendors for each type of
software, and examined business textbooks and other
materials to develop a preliminary list of computer tasks.
The identified tasks were then categorized and grouped
according to nine common computer software functions: (a)
vocabulary, (b) access software, (c) data/text entry, (d)
editing, (e) formatting, (f) printing, (g) file management,
(h) production, and (i) troubleshooting. Finally, it was
decided that the tasks would be arranged according to
difficulty: (a) beginning, (b) intermediate, and (c)
advanced.

The initial task list of approximately 1,200 tasks was
validated in two stages. First, experts in the use of each
type of software reviewed each task on the list to determine

9

if it should be included in the final taxonomy. Following
this review, a business technical committee validated the
tasks from the standpoint of business and industry
requirements. Extensive revision was made to the original
list that resulted in a validated task list of 1,100 tasks
each identified by software type, function, and difficulty
level.

During the next phase of the project the researchers
reviewed the courses and competencies in the 1989 Business

Education Suggested Course Competencies and Performance

Objectives and determined that 22 courses and 140

competencies required computer operation. The validated
computer tasks were then assigned to the appropriate courses
and competencies according to the competency statement and
performance objective requirements as taken from the 1989
curriculum guide.

Interviews were conducted with a microcomputer database
consultant to determine the practicality and feasibility of
developing a relational database linking the courses,
competencies, and tasks. After determining that a database
management system (DBMS) was the proper vehicle to use in
managing the data, R:Base 3.1, a relational DBMS with its
own programming language, developed by Microrim, Inc,
Bellevue, Washington, 1992, was selected. The system design
was based on methods extracted from textbooks relating to

10

design and development of a relational database and database
application. Following the decision to use R:Base, a
prototype system was designed and programming initiated.

The resulting system was titled LessonBank: The

Instructional Management System. The comprehensive database

application would need to be field tested and revised before
final distribution to business teachers for actual classroom
use.

Assumptions

Certain assumptions were made by the developer in
planning this project.

1. Following consultation with a colleague and
database programmer, it was assumed that a relational
database would be an appropriate method for organizing data
related to courses, competencies, tasks, and test questions
based on software types, software functions, and difficulty.

2. Following a review of the literature, it was
concluded that formative evaluation would be an appropriate
procedure for revising and improving a computer managed
instructional system.

Purpose Statement

The purpose of the project is to evaluate and revise an
automated program for managing instruction. Instructors
would be able to use the system for planning course content
organized around competencies that require instruction in

11

the use of computer software. The automated system will
contain the following data: (a) courses, (b) competencies,
(c) a taxonomy of tasks categorized by software type,
function, and difficulty, (d) a taxonomy of tasks required
to achieve a course competency, (e) objective test
questions, and (f) performance tests. To develop the
computer-based instructional management system that would
ultimately be tested, evaluated, and revised, several
supplementary procedures were undertaken. The developer
participated with others in an initial project which

1. Determined the business education courses in the
Commonwealth of Virginia containing curricular competencies
related to software.

2. Identified types of software currently used in the
business world as listed in business texts and literature.

3. Categorized tasks by software type.

4. Classified tasks by common functions.

5. Graded tasks by difficulty level.
The developer then

1. Designed in 1990 a relational database to establish
a link between course, competencies, tasks, software type,
function and difficulty level.

2. Expanded and revised the database, with the
assistance of a colleague, to include test questions and
answers (developed by other researchers) which would be

12

linked to competencies, software type, function, and
difficulty by task in 1991-92.

3. Developed the database application to access,
manipulate, and process the data contained in the database
during the period from 1990-92. The resulting application

and its associated database were named LessonBank.

Project Development Objectives
At the conclusion of the project, the developer
accomplished the following objectives:

1. Developed written documentation for LessonBank in

the form of a user's manual.
2. Conducted a one-to-one evaluation with an
individual to obtain an initial reaction to all components

of LessonBank and the user's manual.

3. Revised the user's manual into a more comprehensive
document following interaction with the initial user.

4. Revised LessonBank following an analysis of the
one-to-one evaluation.

5. Conducted a field test with a small number of
individual users to check effectiveness of changes made
following the revision process and identified remaining
problens.

6. Made further revisions to the program and user's
manual following responses from individual evaluations in
the field test.

13

7. Conducted a final field test with Virginia business

education teachers to appraise LessonBank individually and

make certain all menu choices perform correctly.
Definitions of Terms

Bank: a system that allows for data collection that is

both structured and formatted.

Column: a relational database term used to describe a
group of characters or a single piece of data with a logical
meaning. May be used interchangeably with term "field."

Competency: a computer-related occupational

assignment. Several tasks may be required to achieve a
competency.

Computer managed instruction: computer involvement

used in assisting teachers with the making of decisions
concerning the instructional process.

Computer managed instruction system: a computer

program that has the capability of storing and relating a
number of different types of information files (Geisert &
Futrell, 1990, p. 155).

Data: raw material from which information is
constructed.

Database: a self-describing collection of integrated

records (Kroenke & Dolan, 1990, p. 165).

14

Database application: an organized set of menus,

reports, forms and programs, plus the database it

manipulates.

Database management system (DBMS): a set of programs

that provide the tools to define a database, access the
database, and define an application to use the database.

Formative evaluation: a systematic process of

planning, developing, revising, and field testing
instructional materials.

Integrity: logical consistency (correctness) of the
data.

Intersect: a relational command that produces a new
table from two source tables when the values in common
columns match.

Join: a relational command that produces a new table
which contains combined rows from two source tables. The
value of a column in the first table is compared to a value
in the second table. If the two values have a relationship
(such as = or >) as specified in the join operation, then
the rows of the source tables are combined to form a third
table.

Key: one or more columns that uniquely determines a

row (all other columns in a row are dependent on it).

15

Projection: a relational command that creates a new

table which has only the desired columns (a subset of
columns) from the source table.

Relational database: a structure composed of named

tables, which may be divided horizontally into unnamed rows
and vertically into named columns. Based on the relational

model of data developed by E. F. Codd.

Relational operations: the ability to manipulate
tables in various ways. Four common operations (defined
elsewhere) are intersect, join, projection, and selection.

Row: a structure corresponding toc a record in a flat
file system (a collection of fields or columns about some
entity).

Selection: a relational command that creates a new
table which has only those rows from the source table whose
columns meet conditions prescribed in the selection
operation (a subset of rows).

Table: a structure corresponding to a file (with rows
and columns).

Task: an activity required to produce something useful
at a computer.

Limitations

The project was limited in the following ways:

1. The primary subjects were business educators who
had access to the required hardware. Hardware requirements

16

include an MS-DOS computer with a 286 (or greater)
microprocessor, 640K of main memory, a hard disk with 5Mb of
free disk space, and DOS 3.1 or higher.

2. LessonBank requires a runtime version of R:Base

3.1C. This program was purchased with unlimited
distribution rights.
Need for the Project
The exploration of a practical way to manage classroom
instruction is needed because of the increasing demand
placed on educators to provide competency-based curricular
materials and a method for measuring the competencies. The
system should be efficient if it is to help business
educators. Teachers would welcome support in organizing
data at their disposal. A computer managed instruction
system with a collection of components should help users
collect and organize data and assemble it into information
which can be used when it is needed.
Project Organization
This chapter provided an overview of the project.
Chapter 2 discusses the literature. Chapter 3 explains the

elements of LessonBank: The Instructional Management System

and the basic database design elements. The data collection
procedures are described in Chapter 4. Chapter 5 contains
the results of the formative evaluation and data analyses.
Chapter 6 presents a summary and recommendations.

17

CHAPTER 2
REVIEW OF LITERATURE

The major components of the review of the literature
are (a) computer managed instruction, (b) information
management, (c) the role of software in problem solving, and
(d) formative evaluation.

Computer Managed Instruction

The capability of the computer to store, process, and
manipulate an abundance of data has joined with the need of
educators to effectively manage instruction. This union has
resulted in the design and development of computer managed
instruction systems. Several such systems are currently
evolving. Daft and Becker (1978) point out that within a
number of school districts there are professionals who,
without knowledge of one another, are developing components
of instructional information systems.

Background

The origins of the term computer managed instruction
(CMI) are vague, but as early as 1965 people began using the
acronym. Around 1968 CMI began appearing in the literature
(Baker, 1978). Terms such as computer-based instructional
management system (CBIMS) have been used but none proved to
be as popular as CMI. The term Instructional Information
Systems (IIS) was popularized at the UCLA Center for the
Study of Evaluation (CSE). The IIS project has been

18

tracking selected aspects of the computer revolution in
education and one of those areas is instructional management
(Bank & Williams, 1987).

Although many sophisticated computer managed
instruction (CMI) programs have been available for a number
of years, educators have not shown a great deal of interest
in them. 1In a study done by Scrogan (1988) through the
Office of Technology Assessment, CMI was not even listed as
a category.

Early CMI systems utilized the mainframe computer as
the computer component. The fact that not many schools had
access to a mainframe has undoubtedly had an impact on the
implementation of CMI systems. The development of the
microcomputer and its easy accessibility may bring a
resurgence of interest in CMI.

CMI Defined

Baker (1978) defines CMI as a "total educational
approach" in which the management functions performed by the
teacher are supported by a computer-based management
information system. This total educational approach
"encompasses the educational goals, the curriculum, the
instructional model, the teacher, and a management
information system" (p. 14). Geisert & Futrell (1990)
define a CMI system as "a computer program that has the
capability of storing and relating a number of different

19

types of information and files" (p. 155). These files
represent various entities that need to be managed. They
may include, but are not limited to, students, objectives,
goals, test questions, learning materials, and
administrative information such as attendance. Geisert &
Futrell (1990) indicate that computer managed instruction
(CMI) refers to computer involvement in the professional
decision-making process--decisions about how students are
performing, which students need further instruction, and
when to move students on to new topics. Baker (1978)
concludes that a CMI has common capabilities for testing,
diagnosing, prescribing and reporting. Yet another writer
postulates that "instructional management takes place
wherever and whenever people make decisions that affect the
substance or organization of instruction" (Bank & Williams,
1987, p. ix).

Baker (1978) makes the point that CMI is not just
computer assisted test construction (CATC) even though it
can be a very important component of CMI. Most CMI systems
have integral CATC components (Egan, 1973; Greisen, 1973;
Lundgren, 1991; Merrill, 1974).

Themes of CMI

Three themes weave throughout the concept of computer
managed instruction: (1) individualization, (2) behavioral
objectives, and (3) technology (Baker, 1978).

20

Baker (1978) characterizes early CMI systems as being
created to show the feasibility of using the computer to
support the management of individualized instruction. Gagne
and Briggs (1974) believe that instruction must be for the
individual. Education needs to be optimized for individual
students rather than the masses. Individualization can be
supported by a comprehensive CMI system.

Expected or planned outcomes of the events of learning
are called behavioral or performance objectives by Gagne
(1974). Emphasis is placed on "task analysis" of a
curriculum or subject matter area and breaking it down into
behavioral objectives (Tyler, Gagne, & Scriven, 1967). The
objectives form the basis for instructional segments
designed to facilitate the attainment of the objectives by
the students. Instructional information systems are needed
to form the backbone of prescriptive or adaptive teaching
(Bloom, 1976; Glaser, 1977). This instructional approach
organizes classrooms to focus on individual student learning
needs. Bank et al (1987) have shown that adaptive
instruction demands that instructional objectives be defined
and that objective-referenced diagnostic tests be created.

The basic assumption underlying adaptive teaching is

that, with good and timely data about student

performance, a teacher can accurately diagnose
achievement deficiencies and, based upon the
curriculum, formulate a plan (prescribe) to remediate
deficient skills. Information on those skills that

students have mastered and on those skills that

21

students have yet to master allows for better lesson

planning and more purposeful grouping of students (Bank

et al, 1978, pp 169-170).

The third theme underlying computer managed instruction
is technology. Technology in education has encountered many
false promises and dashed hopes over the years. Television
was once touted as the solution to all educational problems.
Teaching machines and computer assisted instruction (CAI)
were extolled as the answer to improved educational results.
Technological advances are generally embraced with
enthusiasm and before long expectations are not reached and
the enthusiasm subsides. However, Baker (1978) feels that
"in a very real sense, the digital computer and its
associated technology represents an increase in educational
potential of many orders of magnitude over previous
technologies" (p. 10).

The combining of the three themes resulted in the
configuration of computer managed instruction: behavioral
objectives, which yielded a style of curricular plan;
individualization, which yielded an instructional model
matched to the curricular plan; technology, which enables
CMI developers and implementers to keep track of the many

aspects of instruction.

CMI Features Enhance Instruction

A CMI system may be as small as one teacher using one
microcomputer for word processing or it may a large

22

comprehensive system utilizing a database with communication
capabilities for sharing data over a network of computers.
Table 1 presents a summary of the range of various CMI
systems and CMI features (Geisert & Futrell, 1990, p. 158).

Table 1

Summary of testing and CMI features

Spectrum of Brief descriptions of the program and
testing and CMI the computer and hardware required to
| programs available | use this type of program

Word processor Need any type of computer, printer,
and word processing program. The
word processor makes test typing
easy; tests can be easily changed and
easily stored.

Test generator Need computer, printer, and test
generation program. Need to enter
test questions and answers but the
form for the questions and the test
is provided and there may be easy
generation of alternate forms. Easy
to store, change, and print tests and
work sheets.

Test scoring Need computer with an attached mark-
sense reader and special program.
Special test answer sheets are fed
into the machine. The tests are
automatically scored and the results
recorded and printed out for the

teacher.
Testing included Need computer and printer. Publisher
with a text provides the program and test

questions for the text. No questions
need to be entered, and often one can
pick and choose from an item bank.

23

Spectrum of
testing and CMI
programs available

Brief descriptions of the program and
the computer and hardware required to
use this type of program

CMI included with
a drill or
tutorial lesson

Need lesson program and computer to
run it. Teacher needs to enter
student names and set any
instructional parameters, such as
difficulty level of items.

Simple CMI

No special hardware required, but
would need a CMI program. Teacher is
required to enter aspects of the
curriculum such as goals, objectives,
test items, and student names.

Comprehensive CMI

This requires a powerful computer and
printer capability, and a special CMI
program. Extensive information is
required: goals, objectives, test
items, learning materials, student
information, and other special
aspects.

One of the goals of a CMI system should be to support

quality classroom instruction. Geisert & Futrell (1990)

define characteristics of quality instruction as:

1. Having clear and meaningful purpose

2. Using effective and efficient teaching methods

3. Implementing valid and reliable measures of
outcomes

4. Maintaining a record keeping system "to keep track

of what is happening and to sustain decision

making in the other three areas" (p. 143).

Identifying an instructional goal is the first step in

developing a model of instruction (Dick & Carey, 1985).

24

Creating a systems approach model for designing instruction
should ensure the achievement of purposeful, effective
instruction. The CMI system can be used to supplement
instruction for efficiency and effectiveness, measuring, and
record keeping.

Effectiveness and efficiency. Teachers should be the

immediate beneficiaries of CMI as an effective system should
reduce the paperwork and the time needed to evaluate the
performance of the student (Baker, 1978; Geisert & Futrell,
1990). Further, the teacher's decision-making capability is
made more effective by all the information available for
use. Teachers should gain confidence in their instructional
planning because of the multiple measurement opportunities
provided and the assurance of accuracy in measuring mastery
of objectives (Lundgren, 1991).

Testing and measurement. Some process of assessment

must be used by a teacher to determine if and when the
students have achieved the goals and objectives. A computer
program can be used to generate tests that measure
individual objectives to determine if students have mastered
a particular learning goal. Mastery-learning courses
(Geisert, 1974) can easily be developed utilizing the
microcomputer to create parallel versions of tests. The
test generating capability of a CMI system allows
instructors to create nearly unlimited testing and retesting

25

opportunities for students. Test construction capabilities
can be as simple as using a word processing program for
efficiency in typing tests. Word processing programs allow
the user to save documents for future use, to edit work
easily by moving blocks of text around, and rearranging
questions. Test generating programs can enable the
instructor to select the types and numbers of questions to
have in a test. The test maker may be used to generate a
random selection of questions meeting certain objectives. A
program of this type should allow a user to enter and edit
questions so that a test-item bank could be developed and
improved over time (Geisert & Futrell, 1990). In addition,
there are programs that will present the test to a student
on the computer, score it automatically, and save the
results on a diskette (Lundgren, 1991). A disadvantage of
the on-line testing program is that too much of the computer
time may be utilized by students taking and retaking tests
(Geisert & Futrell, 1990).

Record keeping. Adequate record keeping must be

achieved in a quality classroom instruction program.
Examples of record keeping include grade books in which data
are recorded manually, spreadsheet data management records
of students in which data are stored electronically, or a

computerized database program that is tracking a large

26

number of students who may be working on different
objectives.

Designing a CMI Systenm

Developers of a CMI must be aware that users of any CMI
system must be able to accomplish the following:

1. Get information into the system

2. Keep the system current

3. Get information out of the system (Geisert &
Futrell, 1990).
In designing a CMI system the developers and users must work
together to organize the following (Geisert & Futrell,
1990):

1. Establish a curriculum listing with all the
learning goals to a high level of specificity

2. Write five to ten test items for each objective

3. Associate each learning goal with a specific
teacher or course.
Learning objectives should form the core of any CMI system
(Futrell & Geisert, 1984; Tyre, 1989). As CMI systems have
evolved in response to technological advances, the focus on
objectives has remained constant. Objectives are tied to
all other elements of a CMI--testing, learning resources,
and student information. Defining clear objectives supports
the instructional elements of measurements, teaching, and
record keeping.

27

Lundgren (1991) enumerates the following objectives as
being indispensable to the reasonable functioning of a
computerizing testing system in a classroom:

1. Ease of item entry and editing

2. Random selection of a subset of items

3. Accommodation of a variety of input/output formats

4. Security of the test as a disk file

5. Efficient collection and summary of results (p. 2).

Other guidelines as suggested by Lundgren (1991) for
developing a test bank are that it should contain at least
three times the number of items to be selected for the
actual test in order to have the capability of creating
forms that are sufficiently different. On the other hand,
it would not contain more than ten times the number of items
to be chosen to ensure equivalency.

A good test generator will support a variety of types
of questions: multiple choice, matching, true/false,
performance. For output the test generator should be able
to output the test to three teacher-selected formats: (a)
disk file, (b) printer, (c) screen (Lundgren, 1991).

CMI needs sincere commitment on the part of teachers
and administrators. Rethinking the traditional "teach and
test" patterns is a way to improve the quality of education

(Baker, 1978; Geisert & Futrell, 1990).

28

Realities of the Classroom Situation

One of the difficulties faced by those interested in
CMI is developing support at the local level for a long-term
commitment to CMI. As educators work to meet the demand for
accountability, the concepts of achievement gains per dollar
and the cost per pupil dominate the evaluation for
effectiveness (Baker, 1978). Unfortunately, as CMI systems
are developed they do require additional expense in computer
software and hardware.

It would seem that the issue of improved student
performance should be tied directly to the instructional
program that has already been developed and should be
evaluated separately from CMI. The contribution in the
educational process generated by CMI should be to make the
instructional program function properly and to support its
management. With this as a goal it is not possible to show
an increase in student achievement or a reduction in cost
directly attributable to a CMI system (Baker, 1978).

Information Systems

As defined by Kroenke & Dolan (1990) "a system is a
collection of components that interact to achieve some goal"
(p. 24). In the same manner, a computer system is defined
as "a collection of components, including a computer, that

interact to achieve some goal" (p. 24). The point the

29

authors are attempting to make is that a computer is not a
system.

Elements of a System

A computer system is composed of five parts as defined
by Kroenke & Dolan (1990). The five component model
includes hardware, programs, data, procedures, and
personnel. All five of these components are equally
important to the success of a computer system.

Hardware. A computer is a configuration of four types
of devices all connected by cables. The equipment is
categorized as (a) input, (b) output, (c¢) processing, and
(d) storage. The central processing unit (CPU) contains the
"brains" of the computer. The system unit contains the CPU.
The CPU contains main memory or random access memory (RAM).
Main memory holds the programs to be executed and the data
to be processed. Main memory is also called temporary
storage and is frequently described as being volatile
because when the power is turned off whatever was in main
memory is gone. Main memory is measured in terms of bytes.
Microcomputers generally contain between 256,000 bytes
(256K) and 16 million bytes (16 Mb) of RAM. The more RAM a
computer contains the larger a program it is capable of
running.

Programs. Programs are the written instructions for
the computer. Software is another term used to describe

30

programs. Programs are categorized in two basic ways: (a)
system programs, i.e., DOS, 0S/2, UNIX, that coordinate the
execution of all other programs, and (b) application
programs that solve specific problems. Powerful application
programs are currently available for direct purchase "off-
the-shelf." 1In addition, custom programs may be written in
one of the over 200 programming languages available. Some
well-known programming languages are BASIC, COBOL, Pascal
and C. Each custom written program must be designed, coded,
tested, debugged (errors removed), and retested. Custom-
developed software is more expensive, but one of the
benefits is that it fits the user's requirements perfectly
(Kroenke & Dolan, 1990).

Data. The raw material that goes into the computer is
called data. The "finished product" is information.
Information is defined as "knowledge derived from facts"
(Kroenke & Dolan, 1990, p. 51). Data are also categorized
as (a) input, (b) output, (c) processing, and (d) storage.
Input data are the raw facts entered into the computer by an
input device like the keyboard. Output data are information
for human use like a student's transcript or grade report.
Processing data are the data loaded into main memory for
further manipulation. Storage data are saved on disk for

later processing.

31

The bit is the basic building block representing data.
A bit is an abbreviation for binary digit and consists of
only two symbols: 0 and 1. Data are represented in the
microcomputer in a series of 8 bits in a code called ASCII
(American Standard Code for Information Interchange). This
code is a pattern of bits forming a byte used to represent
each character. Data that has been saved in ASCII format
can be read by a program other than the one which created
it.

Data are arranged in a hierarchy as follows: bit, byte
or character, field, record, and file. A bit is the
smallest representation of data, either a 1 or a 0. A byte
is a group of bits forming a character. A field is a group
of related characters representing some fact. Last name of
a student would be one field, the first name another field,
the grade level yet another. (A field may also be referred
to as a column in database terminology.) All three fields
about one person compose a record. A record is a group of
related fields. A record may also be referred to as a row
in database terminology. A collection of related records is
a file. The information about all the students will be
contained in a file.

Personnel. The fourth part of a computer system
involves four types of personnel. These are (a) system
developers, i.e., programmers and/or systems analysts, (b)

32

operators of the computer system, (c) users of the systen,
and (d) clientele (Kroenke & Dolan, 1990). In a small
interactive system using a microcomputer, all four
categories may be contained in the same person. In most
systems the categories are separated. The system developers
write the programs after interviewing the users and
determining the requirements for the new system. The
programmers and systems analysts must work closely with the
users of the system to develop a workable system.

The operator actually runs the computer. Operators
have to know how to start the program, how to input data,
how to stop the program and how to operate hardware like the
printers. Baker (1978) points out that in at least one
large CMI system the use of a teacher as a computer terminal
operator was not cost-effective. Because the operation of
the computer became a routine task, it was felt the job did
not require a professional level person. As CMI systems are
developed using microcomputer configurations rather than
mainframe computers, teachers or aids are likely to serve in
the capacity of computer operator.

The users are categorized as people who use the
computer system as a tool to do their specific jobs. Users
typically have expertise in some specialty. In education
those specialists would be teachers, supervisors, or
administrators. 1In business they would be accountants,

33

managers, Or supervisors. In an interactive microcomputer
system the positions of user and operator may merge into
one.

Procedures. Procedures are the written instructions

for the people who use the system. Procedures are
categorized in two areas: normal operating procedures and
failure recovery procedures. Normal operating procedures
include such things as how the inputs are developed, how to
use the system, how to generate output, and how to make
backups. Failure recovery includes what to do in case of a
system crash, equipment failure, and how to restore data
from backups. Procedures must be written down in the form
of documentation and followed if they are to be effective
(Kroenke & Dolan, 1990). A reliable computer component of a
CMI system depends on several factors. One of those factors
involves procedures. The reliability of a CMI system in
part "depends upon having simple, systematic procedures for
both normal and abnormal operations" (Baker, 1978, p. 328).
The Role of Software in Problem Solving

The computer component of a CMI system is represented
to a large extent by the computer application programs
designed specifically for the project. The programs
determine what the system will be able to do, what its
features are, what reports are generated, and its
flexibility for future growth and expansion.

34

Software Design Philosophy

The design of a program should be based on a modular
approach. Each module should be as self-contained as
possible. If a modular approach to software design is used,
then future program modifications are easier to incorporate
into the overall plan. If a major module has several
functions to perform, this module can be divided into
several smaller submodules. Some functions which are used
in several modules, such as printing, could be designed as
utility routines that are used throughout the program
(Baker, 1978).

Software Issues

Whether one has a quality system or a weak system
depends on the conceptualization of the system by the
developers. Much thought must be put into the design of the
database which forms the core of the system. Several issues
should be considered as the system is being developed. A
good CMI system will be one in which reliability of the
system has been considered. The CMI program must be
protected against those who use it.

Data input. The keyboard is the most popular form of

data input. Data can be entered into the program using the
input routine developed with the program, or, in some cases,
data may be entered using a word processor which generally
has easy to use editing features which may already be

35

familiar to the user. Some CMI systems allow data input by
using optical mark readers and desk top scanners (Baker,
1978). The data input routine should provide adequate
prompts on the screens so that the operator can respond
easily. Baker (1978) points out that when errors are made
the system should make editing as easy as possible.
Sufficient checks and prompts should be used to insure that
the proper sequence of operations is performed.

Output. The computer component should have the
capability of generating various reports. Much of the power
of any database system or management information system is
the ability to generate a variety of reports from the data.
To be useful, data should be available to the user in at
least three formats: (a) to a disk file in ASCII or DOS
text format, (b) to the display screen to be previewed, and
(c) to the printer (Lundgren, 1991). The reports generated
by various CMI systems depend on the subject matter, the
curricular plan, and the instructional model (Baker, 1978).

Steps in Database Design

Undoubtedly the use of sophisticated database
management software (DBMS) packages will increase the
flexibility of a CMI system (Baker, 1978). Using a DBMS
package to build a database requires developing a design
plan or database model. Kroenke and Nilsen (1986) suggest a
simple but effective way to start developing the model:

36

1. List the objects in the work environment you are
modeling (p. 49). Objects are things to keep track of like
courses, students, objectives, and tests.

2. Describe the relationships among the objects. The
data model must show the relationship the objects have to
one another. Relationships can be one-to-one, one-to-many,
or many-to-many (p. 49).

3. Decide what facts about the objects are important
(p. 49). The facts will contain the data to produce reports
and will become the names of the columns.

4. Designate the key columns (p.49). Each row in a
data table must be unique. A key is the column that
uniquely identifies the row. If one knows the key, one can
determine the data found in the rest of the row.

5. Record the relationships among the objects (p. 50).
The relationships are represented by the facts that the
objects have in common.

Flexibility. One characteristic of a good CMI software

package is flexibility. As users become familiar with the
program, they want to be able to do other things. They
begin to understand what services the computer can offer,
and they desire to expand these services. Flexibility
should be built into the software from the beginning. Baker
(1978) gives three factors for designing flexibility into
the system:

37

1. The designer must look beyond immediate needs,
concepts, and requirements when creating CMI software. By
looking ahead as far as possible, and borrowing liberally
from other systems, the software designer can provide the
flexibility needed to meet future needs (pp. 344-345).

2. Software modularity is also fundamental to
flexibility and high quality software. A proper software
fractionalization results in modules which are compact and
conceptually independent. With the software structured
around modules, one can add new modules and delete old ones
without affecting the structure of the computer program (p.
345).

3. The final key to software flexibility is good data
base design. One is in a much better position to meet new
requirements when the data base design has some generality
(p. 346).

System Life Cycle

What often happens to a CMI system is that little
thought is given to the life span of the system. In the
beginning all concern is focused on the design of the system
and the implementation. Some consideration should be given
to what will happen after the developmental team is
disbanded (Baker, 1978). All systems have a life cycle.

The life of the system begins when someone recognizes a
need. With the need in mind, and the knowledge of the

38

resources available to meet the need, a system can be
developed and put to use. The system is then used for a
while and its effectiveness is evaluated and changes made.
Changes may be made for three reasons:

1. The user's needs have changed, or the user may
recognize new needs.

2. The system did not meet the user's needs.

3. Technology has changed, providing new ways of
dealing with the user's needs.

When changes to the system are needed, the cycle begins
again. The development of an information system is an
ongoing, iterative process (Kroenke & Dolan, 1990). Baker
(1978) suggests that once the baseline system is
operational, the improvement phase begins. The users
request additional changes and the developers attempt to
find areas of the program where improvements can be made.
However, if the developer responds to each request for a
change, there may become an endless series of small changes
made which have not been evaluated properly and may have a
negative impact upon the quality of the program. All
changes should be carefully evaluated with the goal of
making the program reasonably stable.

Documentation

One of the products to be delivered at the end of the
design stage of system development should be documentation.

39

Documentation should be written for the developer, the user,
and the operator. The documentation written by the
developer should include the schema of the data, how the
data are related, copies of all the programming code
contained in each module, and a data flow diagram.
Documentation for the user and the operation staff should
contain written instructions about how the program works
(Kroenke, 1992).
Formative Evaluation

The following section provides a review of the
literature relating to formative evaluation. Included in
this section is a definition of formative evaluation, a
discussion of various terms, a consideration of the purpose
of formative evaluation, and some special considerations of
formative evaluation and computer utilization. A discussion
of the process and procedures is included.

Formative Evaluation Defined

Formative-summative evaluation was first defined in
1967 by Michael Scriven (cited in Popham, 1988). Scriven's
distinction of the two terms was that formative evaluation
focuses on improvement of a product while summative
evaluation compares two alternate products. Initially
Scriven defined evaluation as "the systematic and objective
determination of the worth or merit of an object" and
labeled this as summative evaluation. He felt that

40

summative evaluation was more important than formative
evaluation. According to Stufflebeam (1983), in a
comparison of his CIPP framework with Scriven's formative-
summative approach, Scriven had placed an emphasis on the
comparative approach of summative evaluations because his
audience included potential users of packages, and they were
interested in the recommendations about which alternatives
they should purchase. 1In direct contrast to Scriven's early
insistence on the importance of summative evaluation,
Stufflebeam (1983) says "the most important purpose of
program evaluation is not to prove but to improve" (p. 117).
Worthen & Sanders (1987, p. 36,) summarized and
distinguished between formative and summative evaluation in

several ways as shown in Table 2 on the following page.

41

Table 2

Differences between formative and summative evaluation

Formative Summative
Domain Evaluation Evaluation
Purpose To improve program To certify program
utility
Audience Program Potential consumer or
administrators and funding agency
staff
Who should do Internal evaluator External evaluator
it
Major char- Timely Convincing
acteristic
Measures Often informal Valid/reliable
Frequency of Frequent Limited
data
collection
Sample size Often small Usually large
Questions What is working? What results occur?
asked What needs to be With whom?
improved? Under what conditions?
How can it be With what training?
improved? At what cost?
Design What information is What claims do you
Constraints needed? wish to make?
When?

Formative evaluation has been defined by Dick (1977) as
a "process of systematically trying out instructional
materials with learners in order to gather information and
data which will be used to revise the materials." The
related literature on formative evaluation describes this

evaluation procedure for the purpose of improving an

42

instructional program to determine any needed revisions
(Baker, 1974; Patterson & Bloch, 1987; Popham, 1988;
Tuckman, 1985). Formative evaluation is sometimes referred
to as "developmental testing" (Golas, 1983) because
alterations that are made to the program are made from
tryout data as development is being conducted.

Since a CMI system is designed specifically for the
teacher(s) rather than the pupils (Baker, 1978), the term
"learners" is replaced by the term "teachers." The term
"instructional materials" will, of necessity, need to be
replaced by "instructional management materials." The
teachers and learners ultimately become the "users" or
beneficiaries of the improved materials whether they are
developed for a classroom learning situation or a classroom
management situation.

Computer managed instruction (CMI) systems have
received a limited amount of consideration in the literature
with respect to formative evaluation. It is critical that
developers of CMI and Computer-Assisted Instruction (CAI)
involve themselves in formative evaluation of computer
materials (Patterson & Bloch, 1987).

Terminology

For a fundamental understanding of the term "formative"
when used to describe an evaluation process, researchers
(Dick, 1977; Dick & Carey, 1985; Gagne & Briggs, 1973) make

43

the distinction that the process is occurring while the
product is being formed or developed rather than after it is
developed. 1In addition, the term "evaluation" does not
imply making a judgment about what a student or user has
gained by using the materials. Summative evaluation would
entail a comparison of alternate methods or systems and an
evaluation of potential gains would be indicated during this
process (Dick, 1977).

Formative evaluation is based upon some "object." 1In
the past, students and teachers have been the objects of
evaluation in education. Now programs or projects or
curricular materials can be the objects of formative
evaluation. In fact, almost everything can be an object of
evaluation. It is important to identify the object clearly
because this helps keep an evaluation focused (Nevo, 1986).

Purpose of Formative Evaluation

The focus of formative evaluation is on the techniques
that are used to improve materials (Worthen & Sanders,
1987). Formative evaluation requires a "feedback
phenomenon" (Baker, 1974; Scriven, 1973; Stufflebeam, 1974)
as data are collected and then a judgment is made as to what
improvements will be used to modify the product. The
purpose of formative evaluation is not to rate the
effectiveness of the materials themselves. The main purpose
is to enhance the product under development. According to

44

Stufflebeam (1974) formative evaluation addresses questions
about vocabulary level, usability, appropriateness of media,
durability of materials, efficiency and other matters.

A testing/revision cycle is a necessary component of
courseware development according to Robelyer (1983). This
evaluation/improvement cycle will help assure quality
courseware. In order to achieve this purpose, systematic,
empirical evidence must be gathered.

Special Considerations

Formative evaluation and computer utilization have some
special considerations which are inherent as enumerated by
several authors: (Golas, 1983; Patterson & Bloch, 1987)

1. Possible crashes of software causing frustration.

2. Possible breakdowns of hardware triggering
postponement of the evaluation process.

3. Time-consuming revision process involving further
programming.

4. A target audience who may be unfamiliar with a
computer or at least may be apprehensive toward using it.

Evaluators should be aware that differences exist
between formative evaluation of print materials and
formative evaluation of interactive computer-based products.
Attention must be paid to screen input formatting, report

formatting, the type of hardware required, etc.

45

Process and Procedures of Formative Evaluation

Formative evaluation by its very definition implies
change. Baker (1974) suggests several guidelines for
conducting formative evaluation:

1. Collect information on areas where something can be
done.

2. Select "very few subjects for early versions of new
programs and expand this number only as there is evidence
that the program is working" (p. 544).

Formative evaluation will require a number of rounds or
phases before completion. Three phases are recommended by
Dick 1977; Dick & Carey, 1985:

1. One to one evaluation with one to three subjects.

2. Small-group evaluations with 5 to 15 subjects.

3. Field tests of 20 or more subjects.

Since reprogramming is required with CAI (and CMI) and
the procedures for conducting the trials can be fairly
complicated, Golas (1983) recommends that the formative
evaluation consist of the following three stages: one-to-
one evaluation with one subject and handwritten materials;
one-to-one evaluation with one subject at the computer; and
small-group evaluation with three subjects at the computer.

The most acceptable method of initial evaluation
involves data gathering in a one-to-one situation and using
this data as base line information for the product being

46

evaluated (Baker, 1974). This base line information can be
used to effect change for the next round of evaluation.
Since formative evaluation is conducted in a decision mode,
considering what to change and what not to change is of
prime importance. The base line data will aid the developer
in making these decisions.

Arenson's model of formative evaluation (cited in
Patterson & Bloch, 1987) suggests that the first step in
formative evaluation should be a technical review in which a
technical expert reviews the material for timeliness,
appropriateness, quality of presentation, and content data
to be followed by major revisions to the original prototype.

Golas (1983) feels that a full-scale field test is
probably not necessary when considering the cost of
conducting such a test may outweigh the wvalue of the
information to be collected. However, a field test may
detect management problems. These problems may either
require further changes to the program or the development of
some additional materials such as a user's guide. Baker
(1974) indicates that the field test is necessary to
determine the functionality of the product under relatively
normal conditions. Establishing satisfaction in using the
program with the teachers and supervisors is important. One
method of accomplishing satisfaction is through interview or
questionnaire procedures. In order to obtain the most

47

complete data, it is suggested that face-to-face contacts
are the most desirable even though they are relatively
expensive. Data analysis should detail exactly what
happened during the tryout period (Baker, 1974). Field
testing should lead to an operationally ready program.

According to Baker (1974), some developers recommend
one subject be involved initially as a "learner-informant"
who can talk through difficulties with the program. Others
suggest using just a few subjects at first and then
increasing the size of the groups as the evaluation
proceeds. Assuming the program is successful and no major
difficulties arise, several subjects should become involved.
However, Baker (1974) does not feel that it is necessary to
involve 30 subjects with a field trial in formative
evaluation. Too much data will have a tendency to cause
unnecessary delays in the development activity.

Scriven (1973) asserts that it is important to assign
the role of formative evaluation to a person who is a
regular part of the program being evaluated. This would be
someone who is familiar with the project and understands the
details.

Researchers must consider the answer to the question
"when is formative evaluation over?" Baker (1974) indicates
that there is no rule limiting the number of field tests
necessary. The completion depends on several factors such

48

as how well the program is working, the resources of the
developer, or how much improvement previous revisions have
been able to generate.

Summary

As microcomputer technology becomes more powerful, less
costly, and universally available in the classroom, its use
for managing instruction has great potential. CMI should be
of greater interest to educators as a method that can be
used to improve instruction and contribute to efficiency and
effectiveness in areas such as testing and measurement,
record keeping, and instruction.

A system contains several components designed to
achieve a goal. A computer information system is composed
of five parts: hardware, programs, data, procedures, and
personnel. All five of these components are equally
important to the success of a CMI system. The planners and
developers of a CMI system should plan for the life cycle of
the systemn.

The formative evaluation process is a necessary step in
the development of computer-based materials. Formative
evaluation is generally a time-consuming process, but the
evaluation and subsequent strengthening of the materials
will ensure the quality of computer programs that educators
can trust to achieve the desired results. Even though a
many studies have been conducted utilizing formative

49

evaluation, none were found by the author relating

specifically to computer managed instruction (CMI).

50

CHAPTER 3

ELEMENTS OF LESSONBANK

LessonBank: The Instructional Management System

(Virginia Department of Education, 1993) is identified by
the developers as a computer managed instruction (CMI)
system. A system generally incorporates a number of

components. The components of LessonBank are: (a) course

and competency banking, (b) task banking, (c) question
banking, (d) performance test banking, (e) test generation,
and (f) reporting. The elements of the system are
summarized in Appendix A.

A bank is a system that allows for data collection that
is both structured and formatted. The data in all banks
have the capability of being added to, revised, deleted,

selected, sorted, and printed. LessonBank provides the

capability of banking with four separate components:
Course and Competency Banking

The first bank contains a collection of structured
competencies related to specific courses. Twenty-two courses
and 140 competencies were established initially in

LessonBank.

Task Banking

Another bank within the system includes a collection of
a structured set of tasks. The tasks are each categorized
according to variables software type, function, and

51

difficulty. The task bank currently contains 1,100 tasks
categorized by these variables. The system allows the
assignment of tasks to course competencies.

Question Banking

The question banking component of the system contains a
collection of a structured set of multiple choice and
matching questions. The questions are stored by the key
element of the task bank, i.e., task number. The test
questions may be used for (a) creating formal tests by the
variables software type, function, difficulty, or
competency, (b) reviewing topics by each variable and (c)
diagnosing weaknesses by student. Questions in the bank are
not numbered. A routine for numbering the questions was
written for the test generation program.

Currently the multiple choice question bank contains
359 questions and the matching question bank contains 272
questions. Multiple choice and matching tests may be
generated by course competency and software type.

Performance Test Banking

The performance test bank is a collection of
structured, enumerated instructions for the printing of a
performance test based on software type and difficulty level
variables. The system contains 17 performance tests. In
addition, this bank stores short question quizzes with
questions to be answered after completing each performance

52

test. When adding a new performance test, the user is asked
to assign tasks being measured by the performance test. A
report of the tasks may be used for diagnosing weaknesses by
a student or the class.

Test Generation

The system allows the user to generate a test based on
two main choices: (1) course and competency or (2) software
type, function, and difficulty. Generating parallel

versions of a test is possible with LessonBank. The tests

may be generated randomly from the questions that match the
variables chosen or the user may individually select the
questions that match the criteria specified in the
variables. The logic of the program creates a temporary
grouping of questions that match all specified variables.
From this group the user can specify the number of questions
desired. A test key is printed listing correct answers as
well as tasks measured. A menu choice lets the user print
multiple copies of the test (without a key) for student use
rather than going to another source to prepare additional
copies of the test.

Reporting

Another function of LessonBank is the ability to

produce various reports. Reports available are (a) task
listings by variables course and competency, software type,
function and difficulty, (b) competency listing by course,

53

(c) competency and task listing by course, (d) lesson plans
by course and competency, and (e) test bank question
listing.

All reports and tests may direct the output to: (a)
the screen, (b) a printer, or (c) a file. The file output
may be stored on a hard disk or a floppy disk. This file is
a DOS text (ASCII) file and may be retrieved and reformatted
in any word processor.

The final menu choice provides the capability of
completing various utility disk operating system commands
including backup, format, directory, copy, check disk, and
restore. A database "packing" routine is provided by the
DBMS and is necessary to restrict the file size of the
database from becoming inflated with unused space as the
data are manipulated.

Sample Menus, Screens, and Reports

The system provides a main menu with seven choices as
shown on the next page. Each of the seven choices from the
main menu leads the user to another menu. The menu on level
two may or may not generate a third level menu. Examples
one and two on the following pages lead the user through a
hierarchy of menus. A complete listing of menus is found in

Appendix B.

54

Example One

[Main menu]:

Task, Competency, and Course Data
Lesson Plan

Multiple Choice Tests

Matching Tests

Performance Tests

Utilities

Exit

[Task, Competency, and Course Data] menu:

Add/update task data

Add/update competency data

Add/update course data

Assign tasks to competencies within courses
Print reports

Exit to main menu

[Add/update task data] menu:

Add task data

Edit task data

Delete task data

Look at task information
Exit to previous menu

In order to add a new task, the user must decide on
three things: one software type, one function, and one
difficulty. The [Add/update task data] menu option displays
three screen forms with prompts to guide the user through
the process of selecting choices that assign the variables
software type, function and difficulty to the task to be
added as shown in Figure 1. The user does not have to type
any data into the system and chance a misspelling. The

system is designed to make it simple for a user to view the

55

existing software type, functions, and difficulty and press

a key to select each. This procedure is designed to protect

the integrity of the data. The DBMS uses the function keys

[F7] and [F8] to move to the previous and next rows in an

existing table rather than the up and down arrow keys.

Figqure 1. Select software type, function, and difficulty

forms.

Note: Mark only one software type.
Press ([S] to mark selection; [spacebar]} to unmark

Mark
Chofce Press (F8) to move down; (F7) to move up
v DOS and Fundamentals

Hord Processing
Spreadsheet

Database

Graphics and Graphing
pata Communications
Desktop Publishing

NAVAWNM

Press (ALT) when finished.

Note: Select only one function

Mark Press [S] to mark selection; (spacebar] to unmark
Choice Press (F8) to move down; (F7] to move up

Vocabulary

Access Software/Data
Data/Text Entry
Edfting

Formatting

Printing

File Management
Production
Troubleshooting

VONANAWN M

Press (ALT] when finished.

Note: Select only one difficulty level.

Mark Press {S] to mark selectfon; (spacebar)' to unmark i
Choice Press (F8] to move down; (F7] to move up !
v b} Beginning

2 Intermediate
3 Advanced

Press (ALT] when finished.

56

After selecting
difficulty, the user
complete description
system supports word

processor.

software type, function, and
views the screen shown in Figure 2. A
of the new task should be entered. The

wrap as would be found in a word

Figure 2. Enter a new task form.

YOU ARE ADDING TASK DESCRIPTIONS FOR:

Software type:
Function:
Difficulty:

Enter the complete task
assigns the task number.

DOS and Fundamentals
Vocabulary
Beginning

description below. The program automatically

Task No.

Task Description [

2192

Press [ALT] when finished and
1) choose Add Row to save. (User may add additional tasks)
2) choose Add Row and Exit if not adding more tasks.

To edit the description:

Press {ALT] to return to area. The current mode is overstrike. However,
the [Insert] key may be used for editing.

[Edit task data] menu:

Change the description of a task
Change the function of a task
Change the difficulty of a task
Exit to previous menu

After choosing the [Edit task data] menu option from

the [Add/update task data] menu, the user is cycled through

the screens shown in Figure 1 on page 56 that let the user

select the variables software type, function, and difficulty

57

of the task to be edited. The screen that follows is shown
in Figure 3. One task is displayed that matches the
variables selected. The user presses the [F7] key for a
previous description and [F8] to see the next description.
Figure 3. Edit task description form.

_ You are editing Task Descriptions for:

Software type: DOS and Fundamentals
Function: Printing
pifficulty: Beginning

Edit the task description(s) as desired
Press (F8) to move down; (F7] to move up; [ALT) when finished

Task Description

You may enter a complete description of the task here. It will
wrap automatically. The description should fit in the space

shown? No.

To [Change the function of a task] from the [Edit task
data] menu, the user selects the three variables as shown in
Figure 1 on page 56. Following the selection by the user,
all tasks are displayed that match the criteria. The form
used which displays the listing of tasks is shown in Figure
4 on the next page. The user selects the one to change by
pressing an alphabetic key to mark the desired task. The
form indicates that the user should press the [S] key;
however, any alphabetic key will work. The form in Figure 5

58

displays the current function for the task selected and
prompts the user to mark the new function by pressing the
[S] key to mark. Upon exit from the form, the new function
is automatically assigned and the database updated.

Figure 4. Selecting a task to change the function form.

-You are picking the task to change
Press {ALT] when finished.

R Mark Press [S] to mark selection; (spacebar) to unmark
Choice | Press [F8] to move down; [F7] to move up

1151 Identify backup (copy of a file to a disk)
1152 Identify bit

1153 . Identify boot

1154 Identify byte

1155 Identify central processing unit

1157 Identify the clear screen (CLS) command
1158 Identify cold boot/start

1159 Identify command

1160 Identify the copy (COPY) command

1161 Identify cursor

1162 Identify the date (DATE) command

1163 Identify default disk drive

Figure 5. Change the function of a task form.

You are choosing a new function for:

Software type: DOS and Fundamentals

Function: Printing Code: [
pifficulty: Beginning Code: 1
Mark Press [S] to mark selection; (spacebar] to unmark
Choice Press [F8] to move down; {F7] to move up
v 1 Vocabulary
2 Access Software/Data
3 Data/Text Entry
4 Editing
S Formatting
6 Printing
7 File Management
8 Production
9 Troubleshooting

Press [ALT) when done finished.

59

To [Change the difficulty of a task] from the [Edit
task data] menu, the user selects software type, function,
and difficulty as shown in Figure 1 on page 56. After
selecting the three variables, all tasks are displayed that
match the criteria as shown in Figure 4. The user marks the
one to change and Figure 6 is displayed.

Figure 6. Change the difficulty of a task form.

You are choosing a new difficulty level for:
Task: Identify backup (copy of a
: file to a disk)
Software type: DOS and Fundamentals
Function: Vocabulary Code: 1
pDifficulty: Beginning Code: 1

Note: Select only one difficulty level.

Mark Press [S] to mark selection; (spacebar] to unmark
Choice Press (F8] to move down; (F7)] to move up
v 1 Beginning
2 Intermediate
3 Advanced

Press [ALT] when finished.

After marking the new difficulty level and exiting from the

screen, changes are recorded in the task table of the

database.

60

Example Two

[Main menu]:

Task, Competency, and Course Data
Lesson Plan

Multiple Choice Tests

Matching Tests

Performance Tests

Utilities

Exit

[Multiple Choice Tests] menu:

Create a multiple choice test

Add new multiple choice questions

Print questions from test bank by software type
Edit or delete existing multiple choice questions

[Create a multiple choice test] menu:

By course and competency

By software type, function, difficulty or combination
Print student copies of previous test

Exit to previous menu

In example two of the menus, the user selects [Multiple
Choice Tests] from the main menu in one of three ways. The
user may double click with the left mouse button, type the
first letter of the menu choice and press enter, or cursor
up/down to the choice and press the enter key.

To create a multiple choice test based on course and
competency, the user selects the course on which to base the
test as shown in Figure 7. Figure 8 displays all the

competencies for the course selected.

61

Figure 7. Course selection form.

Mark Press (S] to mark selection; spacebar to unmark
Choice Press (F8] to move down; {F7) to move up

6320 Accounting

v 6613 Accounting Computer Applications
6612 Business Computer Applications
6430 Business Supervision and Management
6340 Clerical Accounting X

6611 Computer Concepts

6640 Data Processing X

6650 Data Processing II

6625 Information/Word Processing
6610 Keyboarding

6735 Legal Office Procedures

6635 Hanagement Information Systems

When finished, press (ALT). 3

Figure 8. Competency selection form.

Press [ALT) when finished.

Mark Press S§ to mark selection; spacebar to unmark
Choice Press [F8) to scroll down; {F7) to scroll up

v 1 Using a spreadsheet software package, create a
payroll template for salaried employees.
Include soc. sec. number, name, beg date, end

7 Develop bar graphs for expenses (salaries,
travel, shipping charges, etc.) spent during a
specific period .

22 Complete an electronic spreadsheet application

23 Complete and verify business forms and records

LessonBank begins searching the database for questions

in the test bank that match the choices made. If no
questions are found that match the selections, the user is

shown the messages in Figure 9.

62

Figure 9. Message display screen.

No questions in the database
Match the criteria.

Press any key to continue.

If questions are found that match the criteria chosen, the
user is prompted to indicate if the program should randomly

select the questions. Figure 10 displays the screen as seen

by the user.

Figure 10. Random selection option screen.

L

Do you want the program to randomuly select the questions?

If the user selects "yes" from the screen, Figure 11
appears, displaying the number of questions that match the
criteria, and asks for the number of questions to be

63

selected. The number must be between 1 and the number shown
as matching the criteria. An error message will caution the
user if a number is entered that is larger than the number
of possible questions. 1In addition, this form prompts the
user to enter the lines for the heading that will appear at
the top of the test.

Figure 11. Random selection heading form.

Add/diecard Go to Exit

The number of questions that match your criteria is 137"

How many questions shall the program select for you? 20

Line 1:| Word/Information Processing
Line 2:] Test I
Line 3:

Enter the test heading with a maximum of three lines.

When finished, press [ALT] and
(1) choose Add/Discard to save and exit.
(2) choose GoTo and press [ENTER] to edit heading or number.

LessonBank will rahdonly select the test questions for you.
(Note: [ALT) key toggles between form and menu.)

Figure 12 displays the printing menu asking the user to
choose the output location.

Figure 12. Print menu.

Screen
Printer

File

Exit this menu

64

If the [File] option is chosen from the print menu, the
user is asked to select a destination drive by highlighting
the choice and pressing enter. Figure 13 displays the
destination drive menu and a dialog which follows. The
program indicates the drive letter selected and prompts the
user to make sure the correct disk is in the drive. A valid
DOS file name is requested. The test is saved to a DOS text
(ASCII) file and may be retrieved in a word processor.

Fiqure 13. Save to a file screen.

Destination Drive ——— Press [Esc] To Leave This Menu
l A: B: R C: D: E: : '

Sending Report to drive A:
Make sure the correct disk is in the drive
Are you sure? (Y/N) y

Enter valid DOS filename: courses.txt

Figure 14 shows a sample multiple choice test format.
Figure 15 displays the answer key. Figure 16 displays a
report generated for the teacher indicating the competencies

selected as the basis for the test.

65

Fiqure 14. Multiple choice test.

Accounting Computer Applications
Test on Competency 22
October 1, 1992

Multiple Choice: Write the letter of your answer in the answer column.

1. After creating a spreadsheet, the program will allow the user to
retain the spreadsheet by:
A. saving
B. scrolling
C. starting
D. gquitting

2. Normally, the user may access the anytime while
working in a spreadsheet.
A. file function
B. shift print directory
C. scroll menu
D. help function

Figure 15. Multiple choice answer key.

ANSWER KEY
MULTIPLE CHOICE TEST
Question Task Smart
No. Answer No. No.
1. A 1022 321
2. D 1024 321
3. B 1027 321
4. D 1028 321
S. . D 1028 321
6. A 1029 331
7. A 1031 331
8. A 1036 331
9. C 1038 332
10. D 1050 341
11. C 1053 341
12. B 1059 351
13. A 1061 351
14. D 1114 341

Figure 16. Test basis report.

Date Printed: 0873171992

Accounting Computer Applications
Test on Competency 22
October 1, 1992

The test is based on the following course and competencies:
6613 Accounting Computer Applications

22 Complete an electronic spreadsheet applicatfon

66

If the answer is "No" for random selection, the number
of questions matching the criteria is shown and the user is
prompted to enter up to three lines in the test heading as

shown in Figure 17.

Figure 17. User selects questions heading form.

Add/discard Go to Exit

i

The number of questions that match your criteria is 10.

Line 1:| Computer Applications

Line 2:| TEST X
Line 3:| Mrs. Smith's first period

Enter the test heading with a maximum of three lines.

When finished, press (ENTER] and
1) choose Add/Discard to save and exit.
2) choose GoTo and press [ENTER] to edit heading.

You may then choose the exact test questions.

(Note: ([ALT) key toggles between form and menu.)

The form in Figure 18 is displayed and the teacher may mark
as many questions as desired.

Figure 18. Multiple choice question selection form.

Press [S8) to select as many questions as you desire; {spacebar) to uniark.
Press [F8] or [ENTER] to move down; {F7) to move up through the data.

When the user wants to leave a spreadsheet program, he/she can -
select the:
A. leave command
*B. quit command
C. remove command
D. function command

The process of moving horizontally or vertically through the
worksheet is:

A. windowing

B. menuing

*C. scrolling

D. editing

Asterisk [*] marks correct answver.
Press [ALT] to verify the number of questions selected.

To mark, press [S) and [ENTER]; to unmark press ([SPACEBAR].

67

To verify the number of questions already selected or

prepare

the test, the user must press the [Alt] key and a

popup menu appears. The menu is shown in Figure 19 as it

appears

over the question selection form.

Fiqure 19. Popup menu displaying question count.

Press Continue--Prepare test now : e; [spacebar) to unmark.
Press | Redo——Add or subtract questions p through the data.

v

A.
B.
Cc.
*D.

pr————im=| Stop--Cancel and return to previous menu

Nor| Question count = § _ anytime while
wor
file function

shift print directory
scroll menu

help function

v

*A.
B.
C.
D.

A series of choices that appear on the control panel:

main menu

main cell address
label menu
formula

Asterisk [*] marks correct answer.

Press (ALT] to verify the number of questions selected.

Make a choice and press [ENTER].

In example two of the menus, the user selects [Multiple

Choice Tests] from the main menu. The user makes the

appropriate menu choice to [Create a multiple choice test]

based on software type, function, and difficulty or

combination.

[Multiple choice tests] menu:

Create a multiple choice test

Add new multiple choice questions

Print questions from test bank by software type
Edit or delete existing multiple choice questions

68

[Create a multiple choice test] menu:

By course and competency

By software type, function, difficulty or combination
Print student copies of previous test

Exit to previous menu

The second option on this menu allows the user to build a
test based on three choices: software type, function, and
difficulty. 1In addition, users may choose a combination of
any of the three options. Figure 20 displays the form for
the user to select questions based on one or more types of
software.

Figure 20. Select a software type form.

Mark
Choice SELECT A SOFTWARE TYPE:

DOS and Fundamentals
Word Processing
Spreadsheet

Database

Graphics and Graphing
Data Communications
Desktop Publishing

NS WN

Press [S] to mark selection; [spacebar] to unmark
Press [Enter] or [F8] to move down; {F7] to move up
Select as many choices as you desire.

Press [ALT] when finished.

69

Figure 21 displays the form used to select one or more

functions.

limiting the matching data.

Selecting a function will have the effect of

Selecting no function by

pressing the [Alt] key will choose them all. Figure 22

displays the difficulty selection form. Users may select as

many choices

as desired or select none.

Figqure 21. Select a function form.
Mark
Choice SELECT A FUNCTION:
1 Vocabulary
v 2 Access Software/Data
v 3 Data/Text Entry
v 4 Editing
v s Formatting
6 Printing
7 File Management
8 Production
9 Troubleshooting

Press [S] to mark selection; [spacebar] to unmark
Press [Enter] or [F8] to move down; [F7] to move up

Select as many choices as you desire. Making one or more selections

will limit the matches.

Making NO selection actually chooses them ALL.

Press (ALT] when finished to move to difficulty level.

Figure 22.

Select a difficulty form.

Mark
Choice

SELECT A DIFFICULTY:

v

1 Beginning

2 Intermediate

3 Advanced

Press [S] to mark selection; [spacebar] to unmark
Press [Enter) or (F8] to move down; [F7) to move up

Select as many choices as you desire. Making one or more
selections will limit the matches.
actually chooses them all.

Press [ALT] when finished,

Making NO selection

70

For example, choosing spreadsheet (software type),
vocabulary (function), and beginning (difficulty) will
generate a listing of questions that match specifically
those three criteria. Choosing spreadsheet, vocabulary, and
no difficulty will generate questions matching ALL
spreadsheet terms.

The questions matching the criteria will be searched
and selected by the system. A popup menu as shown in Figure
10 on page 63 will be displayed asking the user for a yes or
no response to a randomly generated test. After the user
makes the yes or no selection, the program proceeds as
displayed in Figures 12-~19.

LessonBank Design Elements

This instructional management system was written to
help teachers and administrators realize the potential of

using a database in education. LessonBank has the purpose

to help teachers, administrators, and supervisors take
advantage of the capability of the computer as a tool and to
assist effectively in the administration of their duties.
This project is unique in its application as it is directly

associated with the Business Computer Software Curriculum

Series published by the Virginia Department of Education in

1991 and the Business Education Suggested Course

Competencies and Performance Objectives, published by the

71

Virginia Department of Education in 1989. The application
should help teachers to better manage their instruction.

The program uses a menu-driven application based upon a
relational database management system. Users should
understand there is a difference between a database, a
database management system, and an application.

A database is a self-describing collection of
integrated records (Kroenke, 1992); the database consists of
the raw data itself (fields and records or columns and
rows), the overhead data or schema (the physical description
of the structure of the database), and the meta data
(structure of forms and reports). The database management
system (DBMS) is a sophisticated, powerful program that a
user or developer purchases "off the shelf" to create a
specific database and database application. The database
management system should allow the developer to define the
database, create various reports and forms, and the
application. The application normally has menus from which
a user makes selections. Using an application is a way of
controlling what processing the user is able to do and
allows users to store, retrieve, and manipulate data without
having to understand the underlying structure of the
database itself. The application allows users to input data
with user-friendly on-screen forms and allows output to one
of three resources (screen, a hard copy printout, or to a

72

text file). A relational database establishes ways of
linking and integrating the data into useful information for
the teachers.

This project was developed using a relational database
composed of named tables, which may be divided horizontally
into unnamed rows and vertically into named columns.

A relational database is structured around the concept
of two dimensional tables. Information systems
professionals utilize one set of the terminology in Table 3.
Table 3

A comparison of database and file processing terms

Relation Table File
Tuple Row Record
Attribute Column Field

The terms in column three are used in most file
processing applications. Database management systems use
the terminology in either columns one or two. R:Base uses
table, row, and column. Teachers should be able to relate
the two dimensional structure of the table to the familiar
spreadsheet structure of rows and columns.

In the following examples, table names are presented in
all capital letters. Column names begin with initial caps
and may contain no more than eight characters. Keys to each

table uniquely determine the contents of the row. Key

73

columns are indicated by underlining them. For example, the
course table contains information about the course number
and the course name:

COURSE

CorsNbr, CorsName

Databases are composed of tables that have a one-to-
many (1:N) relationship allowing the user to link data from
one table to the other. By storing all the information
about one entity in a table, such as the information about
courses, the table can be used later to retrieve
information.

Competencies associated with each course must be
identified. The competencies selected for this project were
competencies involving the use of various software types. A
competency table that contains the course number, competency
number, and competency description was designed as follows:

COMPS

Compnbr, CorsNbr, CompDesc

One course could have many competencies related to it.
This is an example of a one-to-many (1:N) relationship. The
competency itself has a description, a number, and a
particular course to which it is related.

A graphical tool is helpful in depicting the
relationship in a database. The tables in this model were

represented as boxes with the table name in all capital

74

letters. The relationship existing between tables is shown
by drawing a line between the boxes. The relationship
between COURSE and COMPS is one-to-many. This relationship
is indicated by putting a reverse arrow on the "many" side

of the relationship.

COURSE

/

COMPS

A determination was made that in order to achieve a
given competency, a student should complete a number of
tasks. The task is an activity to be completed or mastered
to meet the competency. In 1990 several researchers at
Virginia Polytechnic Institute and State University
developed a validated list of approximately 1,100 tasks
covering a variety of software types. The software types
form another table. The software type was given a number
(for purposes of developing the key, which uniquely
identifies a row in a table), a name, and a code. In
addition, these tasks were also further categorized by what
was called function. Nine function categories were
identified. The functions then became a table with a
function number as a key and a function name or description

as well. The tasks were also to be categorized according to

75

difficulty. Three difficulty categories were chosen and
they formed another table. The tasks themselves were
assigned a key. Each task also had a description.

The following tables were developed as described above:

SOFTTYPE

]

SoftType, SoftName, Kode

FUNCTION X

|Function, FuncName E
DIFFICUL \X \\
Difficul, DiffCode, Diffname :& \

M)

TaskNum, TaskDesc, SoftType, Function, Difficul

H
>
0
=
9]

The developers modeled software type having a 1:N
relationship with tasks as each one of the seven software
types would have many tasks. A function had a 1:N
relationship with tasks as one function had many tasks
associated with it. Difficulty had a 1:N relationship with
tasks as each difficulty level had many tasks associated
with it. To model one-to-many relationships, the key from
the "one" side of the relationship was placed in the table
for the "many" side. The relationship is shown in the TASKS
table where the keys for softtype, function, and difficulty

appear as illustrated above.

76

The following is a model of the 1:N relationship

between software type, function, difficulty, and tasks.

SOFTTYPE FUNCTION DIFFICUL

A A

TASKS

Modeling tasks and competencies was a little more
difficult. A task could have many competencies and a
competency could have many tasks. As a result the
relationship would be many-to-many (M:N). Since M:N
relationships are difficult to model in a relational
database, the relationship needed to be changed to one-to-
many (1:N). The 1:N relationship was established by
creating another table that contained only the keys from the

two tables in the M:N relationship.

COMPS
CompNbr, CorsNbr \ CompDesc

COMPTASK
CompNbr, CorsNbr, Tasknum

TASKS
TaskNum, TaskDesc, Softtype, Function, Difficul

77

Each of the tables, COMPS and TASKS, now have a 1:N
relationship with the third associated table, COMPTASK.

The relationships between tables were established so
the database can be used with either a relational command to
create a new table from existing data or the program can
look up data in the associated table. Relational commands,
such as join, allow the developers to bring the desired
columns and rows from the tables together and eliminate data
redundancy. Temporary tables may be created for the purpose
of printing a report that requires data from several tables.

Each table with a relationship to another must have a
linking column, called the "foreign key." The foreign key
is the key of a table on the "one" side of a one-to-many
relationship. The 1:N relationship may be called a parent-
child relationship. The key of the parent table is placed
in the child table. The SOFTTYPE, FUNCTION, DIFFICUL table
keys are placed in the TASK table as foreign keys. The
placement of the foreign keys established a link between the
tables to allow data look up of names and descriptions.

The database data is controlled by the application.
This application presents the users with menu choices for
maintaining the various components of the database itself.
Those components are the tasks, the courses, the
competencies, and the multiple choice, matching, and
performance question banks. The database application should

78

allow users to add data to all of these areas as well as
delete and modify existing data. Users should be able to
print various reports.

Some developers call these reports "views" because they
represent various ways of looking at the data. For example,
the state supervisor might want a list of all courses taught
and a list of competencies associated with each course. A
teacher might want to see a list of the tasks associated
with a specific competency within a particular course.
Another user might want a list of tasks for a given software
type. Users can select one of the software types and print
a list of tasks associated with that software type (or more
than one type). In addition, a teacher could narrow the
task list to just one or two functions. The teacher might
want to print a list of tasks by difficulty. The list could
contain only the beginning tasks of a software type.

To make the database even more useful, a test bank with
multiple choice and matching questions was developed. Each
test question is associated with a task forming a 1:N
relationship between the test question tables and the task

table as illustrated on the next page.

79

MULCHOIC

Istem, AnswerA, AnswerB, AnswerC, AnswerD, Answer, TaskNum I

TASKS
ITaskNum, TaskDesc, SoftType, Function, Difficul

MATCHING

/

MaStem, MaAnswer, TaskNum

The developers made the decision that for purposes of
database design there would be only one task associated with
a given question. However, a task could have many questions
to support it. The current systems contains 359 multiple
choice questions and 272 matching items. Questions do not
currently exist for all tasks. However, users should keep
in mind that a test is generated based on either
competencies or software type. Both of these categories
will have a number of tasks assigned to them thus generating
a test with a reasonable number of questions.

The questions themselves (of the multiple choice and
matching variety) were separated into two tables because of
their structure. The matching questions contained a
definition (MaStem) and an answer. The multiple choice
questions would contain a stem, four possible choices and an
answer. The matching questions and the multiple choice

questions would each be associated with a task, which would

80

have a number. The task number is the foreign key to both
the MULCHOIC and MATCHING table and is on the parent side or
the "one" side of the 1:N relationship.

A test bank would naturally have the capability for the
teacher to add new questions, modify existing questions, and
delete old questions. This particular application not only
will allow users to process or maintain the test bank but
also will allow for the creation of tests based on various
factors. These factors are (1) software type, (2) function,
(3) difficulty, (4) course and competency.

To make it easy for the teacher to construct (create) a
test, the program developers created a menu allowing the
choices of creating a test by (1) course and competency and
(2) by software type, function, and difficulty. If the
teacher chooses to create a new test by course and
competency, an on-screen form appears where the user selects
the appropriate course and the competency(s) desired. The
application then goes to the COMPTASK table and uses the
relational projection command to create a new table that
contains a subset of rows from the original COMPTASK table
that meet the criteria. For example, if the course number
was 6615 and the competency numbers were 22 and 23, the
database would create a temporary table that contains only
the task number where there is a match (=) on the columns
course number and competency number. This new table will

81

contain a subset of rows and one column (task number). Once
the database management system has created the new table,
then the relational intersect command is used to create
another table containing all the data from the question
table that match the task number. This new table is used to
print the test and the key. The same basic procedure is
used for selecting software type, function, and difficulty.

In addition, the teacher can select the questions
individually by looking at the actual question or the
program will randomly select a number of questions from
among those that meet the given criteria. 1In this case the
teacher indicates the number of questions wanted for the
test.

Another part of the database includes performance
tests. The performance test module can be added to,
deleted, modified, or printed as well.

The application will allow a teacher to create a daily
lesson plan based on competencies and tasks. The lesson
plan can be distributed to the principal, parents, or
students. The lesson plan can be written to a text file.
This file can be retrieved in a word processor where data
can be added or changed.

LessonBank: The Instructional Management System

(Virginia Department of Education, 1993) is a program
written for Virginia business educators, but could be used

82

as the shell for any system identifying courses, tasks, and
competencies. The database and application programs were

written and revised over a two-year period (1991-1993).

83

CHAPTER 4
FORMATIVE EVALUATION PROCEDURES
The purpose of this project was the formative
evaluation and revision of a database application to be used
by business teachers and program developers to provide an
efficient and effective means of managing instruction in the
classroom. The procedures used to complete the project are
delineated in this chapter. The topics discussed include:
(a) project design, (b) subjects, (c) data collection, and
(d) data analysis.
Project Design

A formative evaluation project design was used to field

test and revise the computer program LessonBank: The

Instructional Management System. The program was based in

part on computer competencies extracted from the Business

Education Suggested Course Competencies and Performance

Objectives, published by the Virginia Department of

Education in 1989. The competencies in the curriculum guide
were developed to assist business educators with the
implementation of updated competency-based courses in
administrative systems, business management, and information
systems programs.

A subset of competencies which measured computer
software skills was extracted from the 1989 competency-based
curriculum guide and a listing of tasks identifying specific

84

actions to be demonstrated to achieve a competency was
developed. The compilation of over 1,100 individual tasks
was prepared and organized by a research project team from
Virginia Polytechnic Institute and State University and

resulted in the Business Computer Software Curriculum Series

published by the Virginia Department of Education in 1991.

The purpose of the Business Computer Software

Curriculum Series was to assist business educators plan

instruction on the sizable number of computer operations
required for occupations in business.

LessonBank: The Instructional Management System is a

program written for Virginia business educators, but could
be used as the shell for any system identifying courses,
tasks, competencies, and software types. The database and
application programs were written and revised over a two
year period (1991-1993). The developers used the
programming language that is part of R:Base for DOS, Version
3.1C. A runtime version of R:Base is provided without
charge to each user of the program.

Formative Evaluation Design

A formative evaluation design was followed with a
prototype of the program. Three phases were used: (a)
initial program testing, (b) small group evaluation, and (c)

field testing as suggested by Dick & Carey (1985).

85

Phase One Evaluation

Because of the complexity and size of LessonBank, the

developer used a one-to-one evaluation with one individual
user to obtain an initial reaction to all components of the
system. The developer met with the user for an orientation
session in which the purpose of the instructional management
program and the one-to-one testing was explained. A user's
manual was developed for evaluation during phase one. The
user was informed that objective reaction to the materials
was important to the success of the project. The developer
and user met, loaded the program in the microcomputer, and
the developer explained how the program was to operate. The
developer then observed as the subject used the program.

The developer interacted with the user following each major
choice from the main menu and made notes concerning every
suggestion for improvement. No coaching was allowed. The
user was given an assignment for each menu choice designed
to test each component of the program. The developer
observed by recording places where errors were made,
questions were asked, and instructions were not clear.

Notes were made of all comments and suggestions as well as
alternative explanations made by the developer. The purpose
of this first stage of formative evaluation was to identify
and eliminate the most obvious errors and obtain initial
reactions to the program (Dick & Carey, 1985). The

86

developer interviewed the user following the initial program
analysis. The conversation was tape recorded, and the tape
was reviewed prior to making revisions to the program.

Program Revisions

Suggested revisions to the program were evaluated and
implemented following the one-to-one evaluation phase.
Revisions to improve the effectiveness of the program could
include changes to (a) application menus, (b) instructions
and directions, (c¢) arrangement of data and prompts on
forms, (d) arrangement of data on all reports, and (e)
addition of other features. Revisions were made during
August and September, 1992, and the user's manual was
expanded for evaluation during phase two.

Phase Two Evaluation

Phase two of the formative evaluation contained seven
subjects who were as nearly representative of the target
population as possible. The subjects were chosen from
members of a graduate class in instructional methods in
cooperative marketing and office education programs at East
Carolina University. Subjects were to load the program and
complete the structured assignments on their own. The
subjects were given an assignment for each menu choice
designed to test each component of the program. The purpose
of the small-group evaluation was to determine the
effectiveness of changes made following the one-to-one

87

evaluation and to identify any remaining problems. A
secondary purpose was to determine if subjects could use the
program without interaction with the developer.

Users were to record suggestions and problems on each
assignment sheet and return the completed task assignments
to the developer after using the software.

Phase Three Evaluation
Phase three, the field trial, involved distribution of

the revised LessonBank program to 15 volunteer users

representing the target population during January, 1993.

The developer contacted a vocational business education
specialist in the Virginia Department of Education in
November, 1992, who provided the names and addresses of
local business education supervisors and vocational
administrators. The specialist marked the names of 25
supervisors who were subsequently contacted by letter
(Appendix C) and asked to provide the developer with the
names of two teachers who may be interested in participating
in the study. Fifteen supervisors responded to the request.
The developer followed up with a letter to 30 teachers
(Appendix C). From that number 15 volunteered to
participate in the study. The developer prepared 15 copies
of the program, user's manual, structured assignment sheet,
check sheet, and evaluation form and mailed the entire
package on January 4, 1993.

88

The effectiveness of the database application may best
be measured in the actual classroom setting during the field
trial. Users were to complete an assignment for each menu
choice designed to test each component of the progranm,
return the assignments to the developer for checking, and
complete a check sheet during use and an evaluation form
after using the software. The field test should determine
the functionality of the product under normal conditions.

Subjects

The target population for this study were business
education teachers. Volunteers were solicited for the one-
on-one, small group, and field test stages of program
development.

Data Collection

The following instruments and procedures were used to

collect data for the study.

Developer's Observations

During phase one of the evaluation only, the developer
observed the user and recorded all problems and requests for
assistance. Problems were recorded to aid in the revision
process. No observations were made during phases two and
three as these subjects were to use the database application
on their own and return the results of the structured

assignment with suggestions and comments.

89

Structured Application Assignments

A structured application assignment was used to measure
the ability of the users to successfully access each of the
68 menu choices of the program. In phase one, the developer
observed and recorded problems as the subject completed the
structured assignments. Users in phases two and three were
asked to record any problems and suggestions for
improvement. The structured assignment is included in
Appendix D.

Data Analysis

Data were analyzed to identify problems for revision.

Problems were recorded and changes were incorporated in the

program.

90

CHAPTER 5
RESULTS
The purposes of this project were to (a) evaluate and
revise a computer-based instructional management system and
(b) develop and revise documentation for using an
instructional management system. The instructional
management system consists of a database and various
applications employing relational database architecture.
The resulting system will be used by Virginia business
teachers in implementing their curricula. Seven project
objectives were addressed in the undertaking. The results
of the project are detailed in this chapter. The objectives
are discussed in the order in which they were addressed in
the project.
Objective 1

The first objective was: Develop written documentation

for using LessonBank in the form of a user's manual. This

objective was addressed by the development of a 12-page
manual containing the following topics:

(a) a detailed description of the capability and contents of
LessonBank to familiarize the user with the structure of the
system,

(b) a description of each of the six main menu choices,

91

(c) the system requirements including the size and type of
computer required to run the program and the basic
configuration file necessary,
(d) the installation procedure to be employed by the first-
time user,
(e) instructions on starting the progranm,
(f) instructions on accessing the menu choices, and
(g) a brief overview of special keys.
The manual was developed in July, 1992, to be used with the
first teacher who would evaluate the program in a one-to-one
setting.

Objective 2

The second objective was: Conduct a one-to-one

evaluation with a single individual to obtain an initial

reaction to all components of lLessonBank and the user's

manual. The program was tested by a volunteer
representative of the target population in August, 1992.

The teacher was an experienced high school teacher and rated
herself on the scale of (a) novice, (b) casual user, (c)
heavy user, or (d) expert, as a "heavy user" of computers.
The developer felt that a heavy user would profile the
target population since user's of this system would be
teachers who taught business computer skills within a
variety of courses. The user loaded the program herself
following the instructions in the user's manual. A

92

structured assignment to test each of the menu choices was
provided in writing to the subject. The developer observed
the user interact with the program and made notes concerning
any problems. The conversations were recorded on tape and
reviewed before changes were made to the program.

The following section discusses the problems that were
identified during phase one of the evaluation process and
the corrective action taken. Errors were grouped according
to the following categories:

1. Suggested changes for data input (screen forms).

2. Suggested changes for user's manual.

3. Suggested changes for output (reports).

4. Processing errors.

5. Suggested new features.

Suggested Changes for Data Input (Screen Forms)

1. Problem: Several instructions on the three-page
form used to add a new performance test required further
clarification. Specific suggestions were:

a. Instruction needed to explain that [F7] and [F8],
and [Tab] keys are used to move from one item to another to
edit a mistake. User became confused and did not know how
to correct an error when discovered in an instruction

already typed.

93

b. Initial instruction needed on second screen.
Subject thought the form should provide a prompt to the user
to "Enter task number and press [Enter]."

c. Consistency is needed for data entry of numeric
items. The first screen, which contained numbered test
instructions, did not require that a period be placed
following the enumerated items, and the third screen, which
contained a numbered quiz, required that a period be placed
following the number.

d. An instruction describing that the [Enter] key is
used to move from question to question on the quiz form
needed to be added.

e. A menu choice of "Add row and exit" needed to be
added to the form.

Action taken: The instructions on the pages of the

form were modified to incorporate all suggestions.

2. Problem: When choosing the menu option to edit a
performance test, the user needed a screen prompt explaining
how to select the test to edit or delete. User was not
familiar with the cryptic information which appeared as a
performance test number.

Action taken: The program module was rewritten to show

the performance test number and the full title of the
performance test. Instructions were added to the screen to
guide the user as well.

94

3. Problem: When adding a matching question to the
test bank, the user entered a task number. Once the task
number is entered, the program displays the task
description, software type, function, and difficulty. The
order of the displayed data needed rearranging so it did not
appear to jump around.

Action taken: Developer changed the order of look up

data to provide a smoother display.

4. Problem: The form used to enter the test heading
information needed to be modified to display a single choice
of "Add row and exit" upon completion of entering data.

Action taken: Form menu modified.

5. Problem: The form used to enter the teacher's name
and date for printing a lesson plan needed directions on how
to exit and save.

Action taken: The form was modified.

6. Problem: Instructions needed to inform the user to
press [Alt] key when finished on the form used for adding
tasks assigned to a competency.

Action taken: The form was modified.

7. Problem: When choosing new difficulty level on
tasks, the final screen should list complete task

description and number.

Action taken: The code controlling this display was
modified.

95

8. Problem: The form used to edit a competency number
needed a statement indicating that the [Insert] key may be
used when entering data to avoid typeover.

Action taken: The form was modified to accommodate the

change.
9. Problem: The form used to add tasks needed
instructions on what to do when finished.

Action taken: Statement added to form explaining

procedure for adding more tasks or exiting without adding
more tasks.

10. Problem: An explanation is needed on the three-
table form showing software type, function, and difficulty
an instruction that the software type and function data
scrolls within the small box.

Action taken: The form fills up the entire screen and

does not contain room for additional instructions. This
instruction was moved to the user's manual.

Suggested Changes for User's Manual

1. Problem: User's manual needed to be expanded to
contain full instructions and illustrations for the various
forms.

Action taken: Developer rewrote the user's manual

including detailed explanations of each menu choice and all

sub choices. A screen capture utility was used to record

96

pictures of every screen to reduce for inclusion in the
manual.
Specific problems include:

2. Problem: The manual should explain specifically
which keys can be used for editing.

Action taken: Note made that [TAB] key, [Insert] key

and the [End] key may be used for editing.

3. Problem: If the user exited before completely
entering all instructions when adding a new performance
test, the only way to return was to go back to the
performance test menu and choose the Edit option.

Action taken: An explanation was added to the form and

the user's manual on how to move backwards through the data
using the [F7] function key.

4. Problem: The add/edit test performance form
contains three pages. Instructions for its use were not
clear.

Action taken: The instructions were clarified and

expanded in user's manual and on data input form.
5. Problem: The performance test instruction data
entered by the user would wrap as with a word processor.

Action taken: An explanation of this characteristic is

written into the user's manual.
6. Problem: The subject requested an explanation that
the up arrow may be used to reach the bottom of a menu or a list.

97

Action taken: Since this is only a partially true

statement throughout the program, the suggestion that this
instruction be included in the user's manual was not
followed.

7. Problem: The manual needed to describe fully the
procedure for deleting instructions in the performance test.

Action taken: A full explanation of the delete

procedure was included in the user's manual indicating that
the user was to press [Alt] and choose Delete row.

8. Problem: A thorough explanation of the two basic
types of tests: (1) by course and competency, and (2) by
software type should be described in the manual.

Action taken: A full explanation describing the types

of tests was added to the user's manual.

9. Problem: Some explanation to the user about the
lack of a way to "save" data in the traditional sense should
be included.

Action taken: Reference to the concept of saving data

automatically as one exits from the system was explained in
the user's manual.

10. Problem: The use of a screen which has three data
entry boxes was unclear. Each box contains choices of (1)
software type (2) function and (3) difficulty. User
encountered difficulty understanding how to move from box to
box.

98

Action taken: Because of the limitation of lines in

the form itself, the instructions for using this screen form
were described in detail in the user's manual.

11. Problem: As the screen with three data boxes for
software type, function, and difficulty appears, the user
must wait until the program has displayed the data and
placed it in the box before pressing a key.

Action taken: It was not possible to correct this

problem as it was the slowness of the database management
system retrieving the data to be displayed. The user should
not be bothered by this after using the program a few times.

12. Problem: Some of the popup menus provided an
explanation describing the action to be taken in the bottom
right of the screen and others do not.

Action taken: The popup menus were all modified to

provide a description of the action.

13. Problem: User did not understand that the
reports, lesson plans, and tests could be saved in a file
that could be retrieved in a word processor.

Action taken: Instructions concerning this concept

were explained in the user's manual.

14. Problem: User was concerned that it might not be
understood that one must follow separate types of entry
procedures when using the course and competency picking
form.

99

Action taken: This instruction was highlighted on the

form and was added as a full explanation in the expanded
user's manual.

Suggested Changes for Reports

1. Problem: The performance test needed to be printed
in sorted order. This sorting should be controlled by the
program and invisible to the user.

Action taken: This problem was corrected by modifying

the programming code.

2. Problem: When saving a report to a file, users
needed a message instructing them not to type a drive
letter.

Action taken: The on-screen instructions for the user

were modified to include a statement to type a valid file
name and not to include a drive letter followed by a colon.

3. Problem: The report which printed all multiple
choice questions by software type did not "page up" on the
last page. In a page printer (like a laser printer) this
means that the final page of the report remained in the
printer; on a line printer the printing stopped after the
last character.

Action taken: The report was modified within the

database so that it contained an automatic form feed.

100

4. Problem: Same type of error occurred on reports
(1) Business Computer Tasks by Course and Competency and (2)
List of Tasks by software type, function, and difficulty.

Action taken: Both reports were modified to correct

this problem.

5. Problem: User wanted to include the smart number
in the lesson plan which shows the software type, function,
and difficulty.

Action taken: Developer modified the lesson plan

report to include the smart number.
Programming Errors

1. Problem: User was instructed to delete a
performance test. It did not work.

Action taken: Developer checked the program again,

tried the instruction and it did work.

2. Problem: The user made the choice to create a
matching test by data communications, vocabulary, and
beginning and intermediate difficulty levels. The user was
then asked to answer "yes" if desiring a randomly generated
test or "no" if user wants to select the questions. The
user chose "yes" but meant "no." The subject chose Exit
from the menu, but kept getting an error message stating
that an invalid number of questions had been chosen. The

program would not let the user exit.

101

Action taken: The programming code which controlled

this action was modified and tested so that this condition
did not occur again.

3. Problem: Some of the multiple choice questions
appeared to be in the database twice.

Action taken: Developer checked the questions and

removed several duplicate questions.

4. Problem: The choice to print a listing of
competencies and tasks from the [Print Reports] menu in the
[Task, Competency, and Course] main menu did not print.

Action taken: Programming code which had been omitted

from the application was inserted in the proper place.

Suggestions for New Features

1. The user wanted to be able to verify that new
questions had been added.
2. This user wanted to be able to pick difficulty
level with course and competency.
3. The user suggested that a "smart number" be
included in lesson plans.
Objective 3

The third objective was: Revise the user's manual into

a more comprehensive document following interaction with the

initial user.

Following the one-to-one evaluation it was apparent
that the user's manual would need to be expanded to include

102

a full explanation of how the user would interact with each
menu choice and the screens which followed. The developer
was aware that words alone would make it difficult to
understand how to use the many forms and screens since the
program contains 40 individual forms, 68 menu choices, and
30 reports.

Fortunately, Microrim's R:Base 3.1C provided a
"snapshot" utility that would capture the output on the
screen which could be saved to a file. The file could then
be retrieved in a word processor and printed. The majority
of the screens used 75-80 characters so they could not be
retrieved directly into the text of the manual because of
the need to provide adequate space for margins.

Each screen snapshot was printed on a laser printer and
reduced on a copier to 67 percent so it would fit within a
six-inch line.

The developer accessed each menu choice documenting the
procedure for each screen which followed. The written
instructions were then typed using a word processor. The

written copy was placed in a book format using PageMaker 4.0

for the PC. The page composition software made it possible

to control the space where the screen snapshots were to be
placed and make adjustments easily. The user's manual was

then printed using a Times Roman font in 12 point type.

103

The revised user's manual expanded from 12 pages to 63
pages providing a comprehensive description of each menu
choice. The revisions were made during September, 1992.

Objective 4

The fourth objective was: Revise LessonBank following

an analysis of the one-to-one evaluation.

The developer worked with a volunteer representative of
the target population in August, 1992. Following a review
of the comments made during the structured assignments, the
developer made changes to the program as described in
Objective 2 on the previous pages. The revisions were made
during August and September, 1992.

Objective 5

The fifth objective was: Conduct a field test with a

small number of individual users to check effectiveness of

changes made following the revision process and identify

remaining problems.

Phase two involved a group of individual evaluations
from among a group of nine individuals who were graduate
students in an instructional methods in cooperative
marketing and office education programs at East Carolina
University, Greenville, North Carolina. The professor and
students were interested in examining a computer-based
instructional management system and agreed to each load the
program, complete the 17-page structured assignment, and

104

return the results to the developer along with comments.
The evaluations of the first seven members who returned
their work according to the deadline set by the developer
are reported in the following paragraphs. The suggestions
and comments were grouped according to the same categories
in objective two:

1. Suggested changes for data input (screen forms).

2. Suggested changes for user's manual.

3. Suggested changes for output (reports).

4. Processing errors.

Objective 6

The sixth objective was: Make further revisions to the

program and user's manual following responses from

individual evaluations in phase two field test.

Suggested Changes for Data Input (Screen Forms)

1. Problem: The form for entering the teacher's name
and date on lesson plan told the user to press [Enter] when
pressing [Alt] was correct.

Action taken: Either procedure worked correctly.

Instructions were modified on the screen form.

2. Problem: Subject expressed concern about using
[Shift/F8] to move from area to area while at other times
the user had to use the Alternate key.

Action_taken: These two limitations were controlled by

the program R:Base. The Alternate key was primarily used

105

when finishing an operation, and the [Shift/F8] was used to
move to a separate table. Changing or controlling the use
of the function keys by the developer is not possible. This
is a limitation of the R:Base program itself.

3. Problem: The word "inserted" was misspelled in the
instruction paragraph of "Editing performance test."

Action taken: Spelling was corrected.

4. Problem: User did not know how to proceed to
change competency number.

Action taken: Instructions on screen form indicated

that user should press [Shift/F8] to enter a new number.
This instruction could be easily overlooked so it was moved
to a new location on the form.

5. Problem: Too many instructions on the add
competency data screen confused the user.

Action taken: Instructions revised and reworded to

clear up screen clutter.
6. Problem: Form used to edit the name of a course
needed "Press Alt when finished."®

Action taken: Instruction was added to the form.

7. Problem: Instructions for exiting from heading
form were not clear.

Action taken: This problem was corrected. The form

had been modified earlier, but as the form was displayed on

106

the screen it was retrieved too low and the instructions did
not appear.

8. Problem: The user had difficulty exiting from
difficulty level before printing the test. User did not
want to choose a difficulty level.

Action taken: The program code was checked and it was

determined that it was possible to exit without selecting a
difficulty level. Further explanation was added to user's
manual.

9. Problem: The user needed a way to change the test
number in performance tests.

Action taken: The program code for this module was

rewritten to make numbering tests automatic.

Suggested Changes for User's Manual

1. Problem: User reported difficulty in moving around
in print report options in tasks, competency, and course
data.

Action taken: Full explanations in the use of the form

were expanded in the user's manual.

Suggested Changes for Output (Reports)

1. Problem: One user suggested that the top margins
for the answer key to the performance test and quiz be

increased.

Action taken: This margin was increased in the program
to approximately 1 inch.

107

Processing Errors

1. Problem: The menu choice to print multiple choice
questions by software type crashed. The user was returned
to a C prompt. This problem was encountered by all seven
evaluators.

Action taken: The error was corrected in the program

code. An earlier modification had erroneously created the
error.

2. Problem: Competency numbers should be displayed in
sorted order after adding new ones.

Action taken: Error corrected in the program code for

delete and view competency action. No correction on the
single form supporting two tables was able to be made.

3. Problem: Five users reported difficulty with an
instruction to delete the performance test DPB1l. They
indicated it did not exist even though subjects were to have
created it.

Action taken: Developer checked the procedure for

entering the test and deleting it. Modifications in the
code were made to correct the problem.

4., Problem: Subject thought the computer got hung up
when writing a lesson plan to a file. Lesson plan report

seemed to lock up.

108

Action taken: Code controlling this program was

revised and redesigned to speed up processing.

5. Problem: The program needed a warning message when
packing the database because users got impatient and did not
realize what was going on.

Action taken: A message was added to the screen.

Miscellaneous Errors

1. Problem: User was concerned that a key did not
print with request to print multiple copies (student copies)
of a test generated earlier.

Action taken: The key was printed when the test was

first generated. The user would not need multiple keys.
2. Problem: One of the questions had the answer
spelled incorrectly.

Action taken: The word was corrected.

3. Problem: When adding matching questions, the
subject reported using [Shift/Tab] key combination and
moving from question to task number, skipping the answer
block.

Action taken: The instruction to edit had been placed

between definition and answer. The instruction was moved to
a new location on the form to prevent the misunderstanding.
4. Problem: Subject did not understand that word
processing was a software type. The user kept thinking of
it as a course and tried to complete structured exercise in

109

the course/competency area. The user encountered the same
problem when asked to do an activity involving DOS and
fundamentals. The user tried to find it as a "course." The
user encountered the same problem with data communications
and could not decide whether it was a course or a software

type.

Action taken: This particular volunteer was a

marketing teacher from North Carolina rather than a business
education teacher from Virginia. She was not familiar with

the structure of business education courses in Virginia and

did not have the opportunity to study the Virginia Business

Education curriculum guide.

5. Problem: One user reported an inconsistency with
popup menu which uses the "Continue" choice to move to the
print menu and at other times "Stop here" moves to the print
menu.

Action taken: Comments for popup menus were added to a

prompt line at the bottom of the screen.

6. Problem: A user reported pauses during the
printing of lesson plan data. A second subject thought the
computer had "hung up" while printing the report.

Action taken: The report being generated involved a

slow process of "look ups." Code was rewritten and data

reorganized to speed up this process.

110

Suggestions for New Features

1. One user would like to see test before printing.

2. When choosing "Print to Screen" by mistake, user
would like to be given a second chance to print without
having to redo everything.

3. The delete function should allow more than one
delete at a time.

4. A counter was needed to look at as user selects
questions.

5. There should be a way to exit if the user gets into
something by mistake.

6. There should be an easier way to put in task
numbers with performance tests if you forget.

Objective 7

The seventh objective was: Conduct final field test

with a group of Virginia business education teachers who

would individually appraise LessonBank to make certain all

menu chojices perform correctly.

Fifteen Virginia business education teachers returned
the form (Appendix E) in December, 1992, volunteering to
evaluate the program for the developer. A revised program
and user's manual, structured assignments, check sheet, and
evaluation form were sent by priority mail with a stamped
priority mail return envelope to the 15 teachers on January
4, 1993. The deadline for returning the materials was

111

February 8, 1993. Five teachers returned the materials on
time; two experienced problems with disks and called the
developer. Replacement disks were sent to each. Two of the
teachers from the same school did the exercise together and
returned the materials a week late because of the difficulty
with the disks. Two teachers returned the materials
indicating they were too busy at the time to participate.
Five teacher's did not respond at all. One of the teachers
with disk problems was asked to evaluate a revised version
in two weeks. The revised materials (program and manual)
were sent to this volunteer on February 16, 1993. They were
eventually returned with an explanation that not enough disk
space existed on the school's computer to accommodate the
program.

Each subject was asked to complete a series of
structured exercises measuring every aspect of the program,
record any comments about the program, forms, and reports,
and timing themselves on each part. Table 4 on page 115
shows the capability of the six volunteers to complete the
structured exercises assigned in Appendix D and the length
of time it took to complete each part.

The subjects in phase three averaged six hours and 25

minutes evaluating all the components of LessonBank. The

large investment of time was required because the purpose of
the structured assignment was to make a comprehensive

112

evaluation and test each component of the entire systenm.

For example, in Part 7, Creating Multiple Choice Tests, the
users generated 11 tests in 75 minutes. Under normal
conditions a user would not be using each menu choice during
a single session. A typical user would use the program to
complete one or two activities at a time. For example, to
create a lesson plan, generate one test, or print a report

should easily take less than 30 minutes.

113

Table 4

Program completion time and successful completion rate of

structured assignment -- Phase 3
Structured Percent Min. to Complete
Part Assignment Description Completed Mean Median
1 Add/Update Task Data 100 22 19
2 Add/Update 100 16 11
Competency Data
3 Add/Update Course Data 100 7 6
4 Assign Tasks to Competencies 100 25 23
5 Print Reports 100 25 20
6 Creating Lesson Plans 50 25 20
7 Creating Multiple Choice 83% 75 43
Tests (11 tests)
8 Add/Update Multiple 83 22 21
Choice Test Questions
9 Creating Matching 83 65 45
Tests (10 tests)
10 Add/Update Matching Test 83 17 13
Questions
11 Create performance tests 83 38 25
12 Utilities 83 47 40

*One volunteer experienced a full hard disk and was unable
to complete the exercises from Part 7 forward.

Appendix G contains a list of problems, comments and
suggestions reported by the volunteers. Subjects 1-5 were

114

individual instructors and subject 6 consisted of two
teachers from the same school who worked together to
complete the exercises.

The following pages describe the structured assignment
(Appendix D), the desired outcomes, the comments made by the
users of phase three, and any action taken.

Task Banking

The exercises in Parts 1 through 6 were designed to
test the [Task, Competency, and Course Data] menu shown

below:

Add/update task data

Add/update competency data

Add/update course data

Assign tasks to competencies within courses
Print reports

Exit to main menu

The exercises in Part 1 came from the menu choice
[Add/update task data] and were designed to test the

following menu:

Add task data

Edit task data

Delete task data

Look at task data
Exit to previous menu

Change the description of a task
Change the function of a task
Change the difficulty of a task

115

Users were asked to add three tasks and were supplied
with the software type, function, difficulty, and task
description. In addition, they had to change the difficulty
of a task in the system, delete a task, and view tasks that
had been added or that did exist. All six users were able
to complete the exercises. The time required to complete
the exercise ranged from 10-45 minutes with 22 minutes as
the mean and 19 as the median.

The system was developed so that a form was displayed
allowing the user to move the cursor beside the choice of
software type, press the [S] key to select one choice, and
press the [ALT] key when finished. This activity was
repeated to make a selection from both function and
difficulty categories.

The comments "repetitive tasks" and "too many steps"
from two users is easily explained and understandable.

After choosing any one of the seven menu choices (four from
the first level and three from the edit level) the user sees
the three forms (software type, function, difficulty) in a
repeating fashion.

The developers utilized a method where pressing the [S]
key displayed a check mark beside the selection. The "check
mark method" of selecting the required categories was
established for two reasons: (1) data integrity would be
preserved by not allowing users to keyboard actual names for

116

software type, function, difficulty and (2) for ease of use,
i.e., users were not required to refer to a secondary source
(a manual) to look up either a code for software type,
function, and difficulty.

One user remarked that browsing (or editing and
deleting) could be sped up by entering the task number
itself, if known, and advancing immediately to the desired
task. The developers acknowledged that this concept is
true. However, this also would require reference to a
secondary source for the information and the concept
developed was that the program would allow the user to query
the database without relying on secondary sources. It would
actually be much easier to ask the user to enter the actual
task number to edit or delete and this procedure could be
changed.

One user commented about getting acquainted with the
various function keys and their uses. The program uses the
[F8] key or [Enter] to move down a line and the [F7] key to
move up one line. The database management system itself
establishes these keystrokes. This version of R:Base does
not allow one to use the up arrow and down arrow keys to
move through the tables of data.

One teacher commented about the order of the tasks.
Each task has a unique number that serves as a key to the
table and is associated with a software type, function, and

117

difficulty, and does not lend itself to any type of
meaningful ascending or descending order arrangement.
Therefore, the developers allowed the users to browse the
entire list of tasks in an unsorted fashion.

Another reason for the three selections of software
type, function, and difficulty throughout the program is to
narrow the listing of 1,100 tasks to a smaller group which
match the criteria selected. From this grouping it is
possible to select a task to edit, delete, or view.

One user indicated the instructions were easy to follow
and another user desired a clearer explanation of the
project itself and the desired outcomes.

Competency Banking

One component of the system is a collection of a
structured set of 140 computer software competencies related
to business education courses. These competencies were

extracted from the Business Education Suggested Course

Competencies and Performance Objectives published by the

Virginia Department of Education in 1989.
The exercises in Part 2 came from the menu choice
[Add/update competency data] and were designed to test the

menus on the next page:

118

Add competency data

Edit competency data

Delete competency data

Print competency data by course
View competency data

Exit to previous menu

Change the description of a competency
Change the number associated with a competency
Exit to previous menu

Users were asked to add a competency to a course, edit
the description, change the number, print the competency
information for a specific course, view the competency data
and delete an existing competency. All six users were able
to successfully complete the required exercises. The time
required to complete the exercise ranged from 8-40 minutes
with 16 minutes as the mean and 11 minutes as the median.

The system was developed so that a form was displayed
allowing the user to move the cursor beside the choice of
specific course, press the [S] key to select one, and press
the [ALT] key when finished. Selecting the appropriate
course either assigned a competency to that course or
displayed the existing competencies for the course.

In this section two users indicated no problems, one
user overlooked an instruction on the screen and had to
repeat the exercise. One user commented "too much going
back and forth," which probably refers to the exercise

assignment where users added a competency, changed the

119

wording of that same competency, changed the number of that

competency, viewed the competencies to determine if changes

had been recorded correctly, deleted the same competency and
then viewed the competency data again to verify that it had

been deleted.

One user commented that "in editing, option to enter
competency number would be helpful." From the [Edit
competency data] menu choice users are allowed to change
either the description or the number of an existing

competency as shown below:

Change the description of a competency
Change the number associated with a competency
Exit to previous menu

The reason for separating these two editing options is that
the description is contained only in the competency table
and the competency number must be updated in two tables.
These changes must be carefully controlled to protect the
integrity of the data.

The view competency screen failed to indicate that the
[F8] and [F7] keys could be used to scroll through the data.
An explanation was added to the screen form. One user
commented on "poor directions" in step 1 of the exercise
which did not directly relate to the improvement of the

program.

120

Course Banking

The exercises in Part 3 came from the menu choice
[Add/update course data] and were designed to test the

following menus:

Add new courses

Edit course information
Delete a course

Print a course listing
Exit to previous menu

Users were asked to add a course, edit the name of the
course, print a list of courses and delete the course added
in the first exercise. The time required to complete the
exercise ranged from 2-15 minutes with 7 minutes as the mean
and 6 minutes as the median.

Three users had no comments or problems with this
assignment. One commented on a slight change in the editing
procedure which allowed the user to simply move to the
course name on the screen and make required changes. At one
end of the spectrum a user commented "total confusion" but
did not explain what was meant and on the other end one user
commented "instructions were easy to follow."

Assigning Tasks to Competencies

The exercises in Part 4 came from the menu choice
[Assign tasks to competencies within courses] and were

designed to test the menu on the following page:

121

Assign tasks to competencies within courses
Unassign tasks
Exit to previous menu

Users were asked to assign tasks to a competency for a
specific course, print the list of competencies and tasks
for the named course, delete the task assignment made and
print the listing again to verify that it had been removed
or unassigned. All users were able to complete the exercise
successfully. The time required to complete the exercise
ranged from 10-45 minutes with 25 minutes as the mean and 23
minutes as the median.

The "assign" and "unassign" tasks portion of this
exercise displayed the list of courses allowing the user to
move the cursor beside the name of a specific course, press
the [S] key to select one, and press the [ALT] key when
finished. Next a form displaying the competencies appeared
on the screen. The user was to press the [S] key to select
a competency to assign tasks and press [ALT] when finished.
Since the competency is associated with one software type,
users select a software type to narrow the list of tasks to
be displayed. A list of all possible tasks by software type
is displayed. The user was prompted to use the "check mark"
(press [S] key) to select as many tasks as desired to be
assigned to the competency chosen. Unassign follows the
same procedure.

122

The assign and unassign activities in this part
elicited only one comment. The user commented that
"deleting is not unassigning (using space bar)" which
referred to the display on the screen which stated "You are
deleting tasks for: . . ." and the standard directions "Use
[S] to select as many tasks as you desire; [space bar] to
unmark". The screen display was changed to read "You are
unassigning tasks for:. . ." No change was made to other
instructions as the user's manual instructs users to place a
mark beside each task to unassign and press [Alt] when
finished.

The second part of this exercise required users to
access the [Print reports] menu. Problems expressed by
users in this phase were encountered by users in both phase
one and two of this project. However, the developers
thought that if the users would pay closer attention to the
instructions in the user's manual the problem would correct
itself. Since misunderstanding continued, a revision to the
process of (a) selecting software type, function, difficulty
and (b) selecting course and competency was obviously
required. These changes have been made and tested fully by
the developers and a student volunteer.

The problems occurred because the developers had
designed a form combining three forms into one for selecting
software type, function, difficulty instead of using the

123

standard procedure of displaying separate forms for each
choice and another form combining the two course and
competency forms into one. The combination form displayed
only three lines of data from all three tables and was
crowded (because of the 24 line limit). All explanations
for its use had to be confined to the user's manual. Users
prefer following on screen directions rather than consulting
a secondary source if at all possible.

The problem was compounded because of a popup menu
which asked for a response to "continue, stop here, redo, or
exit" following each choice. Users were unfamiliar with
this routine and found it very confusing.

The second form that had caused difficulties was a dual
table form (course/competency) which required that users
keep the cursor directly on the course name before pressing
[Shift/F8] (a key combination established by the database
management system) to access the competency table. This
instruction was on the form but could be easily missed or
violated. Users were instructed to mark as many
competencies as desired and press [Enter]. If they failed
to press the [Enter] key the last competency would not be
selected.

Comments from users in phase three such as "could not
get to function; kept highlighting stop instead of continue;
did not realize the list in function was longer; very

124

confusing" made reference to the problems described above
(See Appendix G for a complete listing of comments).

Printing Reports

The exercises in Part 5 came from the menu choice
[Print reports] and were designed to test the following

menu:

List of tasks by software type, function, or difficulty
List of competencies by course

List of competencies and tasks by course

Exit to previous menu

Users were asked to print various reports based on
variables of software type/function/difficulty and
course/competency. All users were successful in completing
the exercise. The time required to complete the exercise
ranged from 10-50 minutes with 25 minutes as the mean and 20
minutes as the median.

Users in Part 5 were beginning to understand the multi-
table forms described in the paragraphs above since they had
experienced problems in Part 4 when printing reports.
However, it was the opinion of this developer that the
procedure should be simplified to follow the earlier pattern
of separate forms and eliminate the opportunity to redo the
selections which did require several additional steps and
keystrokes. One user commented "too many steps to print, I

could key in commands faster." The developer acknowledged

125

that entering data manually is an option which was
considered but decided against because it would require
reference to a secondary source for the information and the
program was established so users could query the database
without relying on secondary sources.

A listing of comments for Part 5, Print Reports, can be
found in Appendix G.

Creating Lesson Plans

The exercises in Part 6 came from the main menu choice

[Lesson Plans] and were designed to test the following menu:

Create a new lesson plan
Reprint previous lesson plan
Exit to main menu

Users were asked to select a course, select the
competencies on which to base the lesson plan, print a copy
to the printer, reprint a copy to a file, exit from

LessonBank, retrieve the lesson plan in a word processor,

and print a copy from the word processor. Four users were
able to print the lesson plan. However, only one user could
retrieve a copy in a word processor. The time required to
complete the exercise ranged from 10-50 minutes with 26
minutes as the mean and 20 minutes as the median.

One user reported no problem with the exercise and

indicated the instructions were easy to follow. However,

126

other users experienced difficulties with the group of
instructions.

The steps for this exercise asked the user to select a
course (any course) and a competency (any competency)} to
develop a lesson plan. The developer realized that this
open ended instruction was a mistake. Apparently course and
competencies were chosen for which there were no tasks
assigned. One user sent a print screen of her failure to
create the desired lesson plan. After further
investigation, it was discovered that the competency she had
chosen did not have any tasks assigned to it. Tasks have
now been assigned to all competencies.

Three users could not retrieve the document in a word
processor. The developer attempted this exercise again and
found that when using Word Perfect 5.1 and retrieving the
document with [Shift/F10] a message came on the screen
indicating "document conversion in progress" and then
appeared to "hang up." After waiting a short period of time
and pressing Enter, the document did appear on the screen.

The exercise was rewritten and modified versions of the
program were sent to all six users on February 23, 1993.
Each was asked to load the revised program and complete the
activity with specific instructions and return the results
to the developer. The first user to return the new
assignment had been one of the subjects who had not been

127

able to retrieve the report in the word processor. After
becoming more explicit with instructions, she was able to
print the report on a word processor without any problem.

Multiple Choice Question Banking

The exercises in Part 7 came from the main menu choice
[Multiple Choice Tests] and the submenu shown below. The
exercises in this part were to test the [Create a multiple

choice test] selection.

Create a multiple choice test

Add new multiple choice questions

Print questions from testbank by software type
Edit or delete existing multiple choice questions
Exit to main menu

Users were asked to print 10 multiple choice tests in

the five configurations which follow.

By course and competency

By software type

By software type, function

By software type, difficulty

By software type, function, difficulty

One set of tests was to be generated at random by the
program and the other set of test questions was to be chosen
by the user. All but one user successfully completed this
exercise. The time required to complete the exercise ranged
from 25-180 minutes with 75 minutes as the mean and 43

minutes as the median.

128

The comments in this exercise ranged from no problems
to extremely frustrating. The multiple choice tests use the
troublesome multiple table forms described in Part 4 above.
Two teachers had difficulty with the database during this
assignment and had to start the software again. The
developers think that this problem occurred because of
difficulties with the multiple table forms. Criticism
concerning use of those forms continued. The program was
modified and single table forms have been incorporated in
the application.

A suggestion was received from three teachers that the
program should dynamically indicate the number of questions
selected. The developers were not able to accommodate this
request through additional programming, but did modify the
form with the prompt "Press [Alt] to verify the number of
questions selected." When the user presses the [Alt] key a

popup menu is displayed at the top of the screen:

Continue--Prepare test now

Redo--Add or subtract questions
Stop--Cancel and return to previous menu
Question count = 8

The user may then accept the number shown by pressing C to
Continue and prepare the test, reject the number by pressing
R to add more questions or to remove some chosen, or select

S to exit from the [Create multiple choice] menu option.

129

The exercises in Part 8 came from the main menu choice
[Multiple Choice Tests] and the submenu shown below. The
exercises in this part were to test the [Add new multiple
choice questions], [Print questions from testbank by
software type], [Edit or delete existing multiple choice

questions] selections.

Create a multiple choice test

Add new multiple choice questions

Print questions from testbank by software type
Edit or delete existing multiple choice questions
Exit to main menu

Users were asked to add five multiple choice questions,
delete one of them, edit the answer to one of the questions
added, and print all the multiple choice questions by a
specific software type. Five of the six users were able to
complete this activity. The time required to complete the
exercise ranged from 10-35 minutes with 22 minutes as the
mean and 21 minutes as the median.

Users had a variety of comments with this activity.
Only user No. 2 seemed to have extreme difficulty with this
set of exercises. Fortunately, this user did print a
directory listing and returned it with her exercises. The
printout indicated there were no bytes free on her computer.
The developer believes this explains the problems this
particular teacher had with completing any of the activities
from this point forward. A warning notice was added to the

130

user's manual cautioning users about attempting to work with
a full disk.

The exercises were returned with each packet and in all
cases except the one noted above, users were able to add,
edit and delete the questions and print all the questions
for a software type satisfactorily. Two comments focusing
on editing and deleting prompted the developer to create
edit/delete forms for multiple choice and matching questions
which clarified and expanded instructions to both edit and
delete. The original routine, which used the add question
form, was not adequate for editing and deleting.

One user commented "very unforgiving of mistakes" and
followed the comment with "cursor movement to task number is
unexpected and at this point causes many problems." The
problem can be explained by understanding how this form
works: To add questions, users must know the task number
that the question measures. Users key the stem, press
[Enter]; key answer a, press [Enter]; key answer b, press
[Enter]; key answer c, press [Enter]; key answer d, press
[Enter]; key the correct answer, and the program immediately
moves to the area for task number. The correct answer
column is only one character in length and when it is filled
the user does not press [Enter]. Pressing [Enter] at this
point brings a popup menu (Add row, Discard Row, Add Row and
exit) which causes confusion to the user. To assist the

131

user a comment was added to the form beside the task number
space "Press [Alt] if you missed this!" This may assist
users who encounter this problem.

Matching Question Banking

The exercises in Part 9 came from the main menu choice
[Matching Tests] and the submenu shown below. The exercises
in this part were to test the [Create a matching test]

selection.

Create a matching test

Add new matching questions

Print questions from testbank by software type
Edit or delete existing matching questions
Exit to main menu

Users were asked to print 10 matching tests in the

five configurations which follow.

By course and competency

By software type

By software type, function

By software type, difficulty

By software type, function, difficulty

One set of tests was to be generated at random by the
program and the other set of test questions were to be
chosen by the user. Five of the six subjects completed the
exercises successfully. One subject experienced difficulty
with the program due to a full hard disk on the computer.

The time required to complete the exercises ranged from 7-

132

180 minutes with 65 minutes as the mean and 45 minutes as
the median.

Generating matching tests requires several
manipulations of the data and the creation of temporary
tables to number the questions consecutively, sort the
answers alphabetically, and, in the case of random
selection, create a table of random numbers which can be
matched with questions meeting the criteria chosen. The
programming code is fairly complicated and because temporary
tables must first be deleted and then rebuilt it appears
that the user has to wait a long time for this entire
process to take place. Those using slower model computers
will notice that this activity takes considerable time.

One user noticed an error in the messages appearing on
the screen. While data is being processed messages
frequently appear such as "Please wait, R:Base is removing
old data" or "R:Base is busy working for you. . ." Another
message states "Please wait, R:Base is randomly picking the
number of questions you requested." This latter message
erroneously appeared after the user had selected the
questions. The error was corrected in the programming code.

The exercises in Part 10 came from the main menu choice
[Matching Tests] and the submenu shown below. The exercises

in this part were to test the [Add new matching questions],

133

[Print questions from testbank by software type], [Edit or

delete existing matching questions] selections.

Create a matching test

Add new matching questions

Print questions from testbank by software type
Edit or delete existing matching questions
Exit to main menu

Users were asked to add six matching questions, delete
one of them, edit the answer to one of the questions added,
and print all the matching questions by a specific software
type. Five of the six subjects completed the exercises
successfully. One subject experienced difficulty with the
program due to a full hard disk on the computer. The time
required to complete the exercise ranged from 5-35 minutes
with 18 minutes as the mean and 13 minutes as the median.

Performance Test Banking

The exercises in Part 11 came from the main menu choice
[Performance Tests] and the submenu shown below. The
exercises in this part were designed to test the following

menu choices:

Add performance test instructions, assign tasks,
create quiz

Edit instructions, task assignments, quiz questions

Delete performance test

Print list of performance tests

Print performance test

Print quiz based on performance test

Print tasks measured by performance test

Exit to main menu

134

Users were asked to enter a new performance test, enter
tasks measured by the performance test, enter a quiz, edit
the new performance test, delete a test, print a performance
test, quiz, answer key, and a report of tasks measured by a
specific test. Five of the six subjects completed the
exercises successfully. One subject experienced difficulty
with the program due to a full hard disk on the computer.
The time required to complete the exercise ranged from 15-90
minutes with 38 minutes as the mean and 25 minutes as the
median.

The developer asked the teachers to delete a
performance test and then erroneously requested they print
the test and quizzes. The majority substituted another test
for this. One user commented, "How to retrieve and print a
deleted file?" One substantive comment came from a user who
stated that the red block on the quiz form was hard on the
eyes. This color was changed.

Utilities

The exercises in Part 12 came from the main menu choice
[Utilities] and the submenu shown below. The exercises in
this part were designed to test the menu choices shown on

the next page.

135

Backup database (*.RBF) only to floppy disks

Restore database (*.RBF) files from floppy disks

Show directory for any drive

Check the disk situation on any drive

Pack this database. Caution: Make a backup before packing
DOS backup ALL LessonBank files to floppy disks

Format a floppy disk

Exit to main menu

Users were asked to complete activities to measure all
seven menu choices. Five of the six users were successful
with all exercises but two. The following problems were
noted and corrected: (1) Users were unable to make a backup
to drive B. (2) The restore routine needed an explanation
that two megabytes of free disk space was required because
the original database was renamed before restoring the
backup copy was completed. This statement was added to the
user's manual. Minor changes were made in the order of
items on the [Utilities] menu. The time required to
complete the exercise ranged from 10-120 minutes with 47
minutes as the mean and 40 minutes as the median.

Overall Evaluation of lLessonBank

The users of LessonBank in phase three completed the

program evaluation by rating 19 categories as shown in Table
5. They completed a questionnaire as shown in Appendix F
and marked the various categories as excellent, good, fair,
poor, or very poor. The forms were tallied using the
following weights: excellent, 10 points; good, 7; fair, 4;

136

poor, 2; and very poor,

A weighted average was

calculated and is reported in Table 5 on page 136.

The weighted average on all categories was 6.57 for a

rating of good. The developer used the following weighted

table for evaluation purposes:

Range

8.00-10.00
5.00-7.00
3.00-4.00
1.00-2.00
0.00-0.99

Rating

Excellent
Good
Fair
Poor
Very poor

137

Table 5

Overall evaluation of LessonBank

Category

Program Format
Consistent use of terminology
Clear and concise instructions
Well organized and sequential

Output format
Screen and printer or other
peripherals used
Report generation is logical
and readable
Screen displays are consistent
and easy to use

Input and operation
Procedure for entering data is
consistent

Prompts are plentiful and clear

System commands are logical
Error trapping is sufficient

Error messages are understandable

Restart and recovery is easy
and allowed

Sufficient data field length

Number of records is adequate

Speed to access records is
adequate

Maintenance of file is
acceptable

Installation and Backup
Ease of installation
Overall ease of operation
Ease of backup

Overall average:

138

Weighted
Average

8.50
5.00
7.67

7.67
5.50
5.83

Rating

Excellent
Good
Good

Excellent
Excellent

Good

Good
Good
Fair
Good
Good

Fair
Excellent
Excellent
Good
Good
Good
Good
Good

Good

Of the three categories under program format the
program received one excellent and two good rankings. The
three categories ranked under output format received two
excellents and one good ranking. Ten categories were
included under input and operation. These categories
included two excellent ratings, six good ratings and two
fair. All three categories listed under installation and
backup received good rankings.

The developer believes the fair ratings were based on
the confusing multi-table forms referred to earlier. These
forms have subsequently been changed and the procedure
simplified for input and operation.

At the time the developers created the multi-table
forms in question, there was a doubt as to whether this
procedure would work smoothly without being able to train a

user. Since LessonBank had several components it was simple

enough to use two approaches to selecting (a) software type,
function and difficulty and (b) course and competency. Even
though the developers personally preferred the multi-table
approach, the users preferred a simpler procedure.
Summary

The formative evaluation process uncovered a number of
problems and errors. These problems were all corrected.
The suggestions from users were incorporated in the program
and user's manual where feasible and strengthened the

139

program. Users should understand that all computer programs
have room for improvement. This is verified by software
companies as frequent upgrades and revisions are developed.
The formative evaluation process does not insure a perfect
program, but is a successful vehicle for removing many

problems. The author believes that LessonBank has been

stabilized through the formative evaluation process.

140

CHAPTER 6
SUMMARY AND RECOMMENDATIONS
Chapter 6 contains background information, a summary
and discussion of the development process, recommendations
for developers, recommendations for teachers, supervisors,
and administrators, potential uses of the system, and
suggestions for getting teachers to use the systen.
Background
The purposes of this project were to (a) evaluate and
revise a computer-based instructional management system
developed to organize business computer competencies, and
(b) develop and revise documentation for using the system.
The instructional management system consists of a
database and a database application employing relational
database architecture. The resulting system can be used by
Virginia business teachers in implementing their curricula.
The prototype system was developed initially to
organize a taxonomy of tasks identified to measure computer
competencies. The computer competencies were extracted from

the Business Education Suggested Course Competencies and

Performance Objectives, published by the Virginia Department

of Education in 1989. The taxonomy resulted in the

publication of the Business Computer Software Curriculum

Series in 1990. This latter publication forms the core of
the instructional management system. The instructional

141

management system was ultimately expanded to include
multiple choice and matching test questions organized to
measure the competencies. A module of performance tests was
incorporated into the system as well.

The resulting program was titled LessonBank: The

Instructional Management System (Virginia Department of

Education, 1993). LessonBank is a menu-driven program
designed to be used as a tool to assist teachers with the
management function of teaching. The system incorporates a
number of components. The components are (a) course
banking, (b) competency banking, (c) task banking, (d) test
question banking, (e) performance test banking, (f) test
generation, (g) lesson plan generation, (h), reporting, and
(i) database maintenance.

A bank is defined as a system that allows for data
collection that is both structured and formatted.
Structured data are data organized into spreadsheet or
database tables (Kroenke & Dolan, 1990). Each bank in the
program has the capability of having data added, revised,
deleted, selected, sorted, and printed.

LessonBank is organized around relational database

architecture which stores not only data, but also
relationships among data. With the relational model, the

user need only specify which records to process (for example

142

which course and competency). The DBMS navigates through
the database manipulating the data for the user.

Relational database systems require more computer
resources, and as a result they were much slower than
systems based on earlier database models (Kroenke, 1992).
Early versions of relational products had a slow response
time that was unacceptable to users. As faster computers
were developed and prices dropped, relational database
products became more attractive. The relational model has
only recently gained true popularity with microcomputer
users.

Project Summary and Discussion

During phase one of the evaluation process, the
developer used a one-to-one evaluation with one individual
user to obtain an initial reaction to all components of the
system. The developer met with the user for an orientation
session in which the purpose of the instructional management
program and the one-to-one testing was explained. A user's
manual was developed for evaluation during phase one. The
developer and user met, loaded the program in the
microcomputer, and the developer explained how the program
was to operate. The developer then observed as the subject
used the program. The developer interacted with the user
following each major choice from the main menu and made
notes concerning every suggestion for improvement. No

143

coaching was allowed. The user was given an assignment for
each menu choice designed to test each component of the
program. The developer observed by recording places where
errors were made, questions were asked, and instructions
were not clear. Notes were made of all comments and
suggestions as well as alternative explanations made by the
developer. The purpose of this first stage of formative
evaluation was to identify and eliminate the most obvious
errors and obtain initial reactions to the program (Dick &
Carey, 1985). Revisions were made to the program based on
the suggestions of the initial evaluator and the user's
manual was expanded from 12 to 63 pages.

Phase two of the formative evaluation process contained
seven subjects who were as nearly representative of the
target population as possible. The subjects were members of
a graduate class in instructional methods in cooperative
marketing and office education programs at East Carolina
University. Subjects loaded the program and completed the
structured assignments on their own. The subjects were
given an assignment for each menu choice designed to test
each component of the program. The purpose of phase two
evaluation was to determine the effectiveness of changes
made following the one-to-one evaluation and to identify any
remaining problems. A secondary purpose was to determine if
subjects could use the program without interaction with the

144

developer. The subjects comments and structured assignments
were analyzed to discover problems. Revisions were made to
the program following this cycle.

Phase three, the field trial, involved distribution of

the revised LessonBank program to 15 Virginia business

teachers. The developer contacted a vocational business
education specialist in the Virginia Department of Education
who provided the names and addresses of 25 local business
education supervisors and vocational administrators. The
supervisors were asked to provide the names of two teachers
who might be interested in participating in the study.
Fifteen supervisors responded to the request. Thirty
teachers were contacted and from that number 15 volunteered
to participate in the project. The developer prepared 15
copies of the program, user's manual, structured assignment
sheet, check sheet, and evaluation form. Seven teachers
field tested the entire program and returned the materials.
Following the responses from the field test, the
developer acknowledged a difficulty existed with two rather
cumbersome screen forms which had been receiving negative
responses since phase one. The use of the forms was not
intuitive and even with expanded explanation in the user's
manual the complaints persisted. These forms were
subsequently simplified to follow an exact procedure used in
another part of the program. A student of the developer

145

once again tested each menu choice to make certain that the
program worked completely as intended. No additional
problems were encountered.

The project summary and discussion for developers is
organized around the seven objectives of the project.

1. Developed written documentation for using

LessonBank in the form of a user's manual. Users of

microcomputer systems are generally not information systems

professionals, and they prefer user-friendly products. The

developers of LessonBank therefore created a menu-driven
program which did not require extensive training time. The
system has instructions on each screen and a set of menus to
guide the user through the processes of adding, editing,
deleting, and printing the data.

A l12-page manual describing the capability of

LessonBank, its six main menu choices, system requirements,

size and type of computer required, how to install and start
the program, and an overview of the keys to be used was
developed. The manual was used as part of the evaluation
discussed in objective 2.

System users require documentation for system
installation, entering and editing data, correcting errors,
running the system, and interpreting the output.
Documentation is one of the five major components of a
computer information system. The other four components of

146

the system model are hardware, programs, data, and people
(Kroenke & Dolan, 1990). Procedures (documentation) are
written instructions for users of a system and must be
developed and tested during the program development stage.

2. Conducted a one-to-one evaluation with an

individual to cbtain an initial reaction to all components

of LessonBank and the user's manual. Phase one of the

program evaluation used an experienced high school teacher
from the target population. This user loaded the program
and completed structured assignments. The entire process
took 10-12 hours as each menu choice had to be tested. The
developer observed and made note of any difficulties
encountered. Errors and problems were recorded and later
grouped into suggested changes for data input (screen
forms), user's manual, data output (reports), processing
errors, and suggested new features. The user encountered
some difficulties with interpretation of the instructions
contained in the structured assignment.

The one-to-one or clinical evaluation used in this
project identified problems in the program. Direct
interaction between the developer and a user helped to
identify and remove the most obvious errors in the program
and to obtain an initial reaction to the components of the

computer information (instructional management) system.

147

3. Revised the user's manual into a more comprehensive

document following interaction with the initial user. The

menu and screen interface worked for the first subject;
however, she expressed a desire for a more extensive user's
manual to help with program and application interaction.
With the aid of a snapshot utility provided by the database
management system, the developer was able to record the
screen output of all menus, forms, and reports for inclusion
in a detailed user's manual. The output was printed on a
laser printer and reduced on the copying machine. The
manual grew from 12 pages to 63 pages, providing a
comprehensive description of each menu choice.

A detailed user's manual with full instructions and

illustrations for each component of LessonBank is required

to use the program successfully without assistance from the
developer. Documentation should be evaluated by concerned
personnel and should be comprehensive enough to provide
complete instructions on using and maintaining the system.

4. Revised LessonBank following an analysis of the

one-to-one evaluation. The developer made several

modifications to the screen forms clarifying instructions
and improving the interface between the user and the
database. Programming problems were corrected and changes
to reports and menus were made as suggested by the first
subject to test the system.

148

The formative evaluation model used in this project was
effective in identifying problems with the program. The
developer analyzed the recommendations of the user and
incorporated these suggestions where possible. A user in
this interactive process is able to describe difficulties
with the sequence of the program and the interface of the
data input screens as well as typographical errors and
inconsistent or incorrect instructions.

Formative evaluation is an appropriate method to use in
the revision process of a computer based instructional
management system. This conclusion is supported in studies
by Keatley (1987), Sherron (1984), and George (1992) who
identified formative evaluation as an appropriate method for
discovering and amending problems in instructional programs.

5. Conducted a field test with a small number of

individual users to check effectiveness of changes made

following the revision process and jidentified remaining

problems. This field test was conducted with graduate
students in an instructional methods class at East Carolina
University. These users made additional suggestions for
improving the screen forms and reports. They were the first
to use the expanded user's manual. They installed the
program and used it without assistance from the developer to
complete structured exercises. The users wrote comments and
suggestions directly on the structured assignment form and

149

in the manual. This field test resulted in improved
explanations on the use of a multi-table form which caused
problems for users in both phase one and two. Minor changes
were suggested for instructions on preparing reports.
Additional processing errors were corrected and notes were
made of suggestions for new features. The developer
determined from feedback that some of the instructions on
the structured assignments were not clear.

Evaluation with a second group of users continued to
identify suggestions for program improvement and programming
problems. This phase of development was successful in
indicating that users were able to use the system without
interaction with the developer. The individual evaluation
process is an important step in improvement of the
instructional management program. Input from several
individual users will help focus on the main problems with
the system.

6. Made further revisions to the program and user's

manual following responses from individual evaluations in

the field test. The revision process was continued as

suggested changes were incorporated in the program and
manual. The developer made programming changes during this
phase to speed up the processing of data within the program.
Some users thought the program had locked up during the
generation of some of the reports. Processing speed was

150

affected favorably when appropriate keys for indexing were
defined in various tables. A warning message was added to
the program as well asking users to be patient as the data
was being processed.

The instructional management system was further
improved following feedback from individual users in phase
two. Subjects reactions were analyzed and changes
incorporated into the program where feasible. The developer
received several suggestions for improvement to screen
instructions.

Comments received from subjects indicated that the
users were encountering some difficulties with the
instructions themselves in the twelve different parts of the
structured assignments. An evaluator should make certain
that all instructions are clear to each subject before
making an assignment.

7. Conducted final field test with a group of Virginia

business education teachers to individually appraise

LessonBank and make certain all menu choices perform

correctly. Fifteen Virginia business education teachers
volunteered to evaluate the program. The computer program,
user's manual, structured assignments, and evaluation form
were sent to the teachers. Seven subjects (two teachers
worked together) completed all exercises and recorded
comments, problems, and suggestions on the evaluation form.

151

Returned assignments and forms were analyzed by the
developer to determine if the exercises had been completed
correctly. 1In all but one of the 12 parts contained in the
exercises, subjects were able to complete the activities.
The only major difficulty experienced by the subjects was
creating a lesson plan. Because the developer had not
structured the lesson plan assignment the same as the
others, the exercise was rewritten and mailed to the seven
subjects for further input. Four of the seven users
returned the new assignment successfully completed. One
user sent a correct screen print of the document from her
word processor and printed copy of the document containing
garbage which indicated that an incorrect printer had been
selected. Users continued to encounter minor difficulties
with the structured assignments.

The final stage of the formative evaluation model
indicated that the subjects could use the program in the

environment for which it was intended. LessonBank was

designed to assist business educators plan instruction on
the sizable number of computer operations required for
occupations in business.

Subjects in the final phase continued to express some
of the same complaints users in phase two had revealed. The
developer had attempted to correct these problems by
explaining in greater detail in the user's manual how to use

152

two complex screen forms rather than changing the forms
themselves. The developer should continue to work to
acquire an alternative method of program data input design
when users experience problems with an existing interface.
Recommendations for Developers

The following recommendations are made for developers
who might use the formative evaluation procedure to evaluate
and revise a comprehensive computer program such as

LessonBank.

1. Develop a user's manual as the program is being
written to document the procedures for using the system.
The development of documentation should be considered as
important as program development. Problems and difficulties
could be identified early in the process.

2. Because users in each phase appeared to struggle
with some of the directions provided with the assignments,
completion of a preliminary evaluation of the assignments
themselves by one or two persons to clarify instructions
would be desirable.

3. Describe fully the purpose of any procedures
assigned in the comprehensive structured assignments.

4. Include a check off method with each activity to

indicate success or failure for each part.

153

5. Consider showing actual screen displays in the
structured assignments or reference to a specific page in
the user's manual.

6. Use a computer that offers multitasking capability
so the development and revision process can be expedited.

7. Use a modular approach to software design so that
program changes can be incorporated easily.

Instructional and Research Recommendations

The following recommendations are made for teachers,
supervisors, and policymakers who have responsibility for
improvement and management of instruction.

1. Teachers should strengthen the program by adding
questions to the matching and multiple choice modules as
well as the performance test bank. Geisert & Futrell (1990)
note that five to ten tests items should exist for each
competency.

2. Teachers should use the instructional system in the
setting for which it was intended for a period of time and a
summative evaluation should be conducted by an external
evaluator to certify the program utility (Worthen &
Saunders, 1987).

3. Policymakers should consider the life cycle of any
system. Once the project is concluded and teachers begin to
use the system, consideration should be given to who will
maintain and update it as needs change.

154

Potential Uses

1. LessonBank can be used by teachers to create lesson

plans based on a chosen competency. The pre-assignment of
tasks to existing competencies presents the teacher with a
report which indicates the tasks needed to be completed in
order to achieve the competency. This report can be used as
a checklist for planning purposes, presented to a parent
interested in the activities that are taking place in the
classroom, or delivered to the supervisor or principal who
may have a need to know what is taking place in the
classroom.

2. The system allows teachers to evaluate the pre-
assignment of tasks to competencies and make any changes

desired. LessonBank is an interactive system which can be

easily changed to meet the needs of a particular school or
department.

3. The system can be used by teachers to add, modify,
or delete competencies as the demands in course content
change.

4. Users are able to use the system to add, modify, or
delete course information.

5. LessonBank can be used to add, modify, or delete

task information as needs change.

6. LessonBank can be used by teachers to generate a

listing of tasks to be accomplished based on a particular

155

software type. The teacher may chose one or more of the
nine functions on which to develop a listing of tasks. The
task listing may be used in consultation with students,
parents, or supervisors.

7. The system can be used by teachers to generate a
listing of tasks for a particular software type and a
difficulty level as well. For example, a listing of all
beginning word processing tasks may be easily generated.
Perhaps the teacher needs a listing of advanced database
tasks. These reports can be created from existing data by
making appropriate choices on the menus and forms provided.
The resulting information may be used as the basis for
conducting an in-service workshop for teachers or other
persons.

8. The test banking components of the system allow the
teachers the opportunity to create parallel versions of
tests. The test generating capability of a CMI system
allows instructors to create nearly unlimited testing and
retesting opportunities for students.

Suggestions for Getting Teachers to Use the System

1. Teachers could be provided with inservice training
programs to introduce them to the system.

2. Teachers could be provided with training
opportunities by satellite, microwave, or other distance
learning technologies.

156

3. Workshops and short courses could be offered for
teachers during the summer.
4. Exercises or lessons could be distributed with a

copy of the program to demonstrate its capabilities.

157

REFERENCES

Baker, E. L. (1974). Formative evaluation of instruction.
In W. J. Popham (Ed.), Evaluation in education (pp.
533-573). Berkeley, CA: McCutchan Publishing
Corporation.

Baker, F. B. (1978). Computer managed instruction: Theory
and practice. Englewood Cliffs, New Jersey:
Educational Technology Publications.

Bank, A., & Craig, E. (1987). Some lessons for educators
from management information systems literature. 1In A.
Bank & R. C. Williams (Eds.), Information systems and
school improvement: TInventing the future (pp. 22-38).
New York, NY: Teacher's College Press.

Bank, A., & Williams, R. C. (1987). The coming of
instructional information systems. In A. Bank & R. C.
Williams (Eds.), Information systems and school
improvement: Inventing the future (pp. 3-10). New
York, NY: Teacher's College Press.

Coburn, P., Kelman, P., Roberts, N., Snyder, T. F., Watt, D.
H. & Weiner, C. (1985). Practical gquide to computers
in education (second edition). Reading, Massachusetts:
Addison-Wesley Publishing Co.

Crist-wWhitzel, J. L., Terry, P. D., Edelstein, R., Rowan, B.
(1986). Patterns of implementing a district
computerized instructional management system. San
Francisco, CA: Far West Laboratory for Educational
Research and Development. (ERIC Document Reproduction
Service No. ED 277 367)

Dick, W. (1977). Formative evaluation. In L. J. Briggs
(Ed.), Instructional design: Principles and
applications. Englewood Cliffs, NJ: Educational
Technology publications.

Dick, W. & Carey, L. (1985). The systematic design of
instruction. Glenview, Illinois: Scott, Foresman and
Company.

Duby, A. (1987). Self-formative evaluation of instructional
materials. Educational Technology, 27(2), 48-50.

158

Gagne, R. M. & Briggs, L. J. (1974). Principles of
instructional design. New York, New York: Holt,
Rinehart, and Winston, Inc.

Geisert, P. G. & Futrell, M. K. (1990). Teachers,
computers, and curriculum: Microcomputers in the
classroom. Boston: Allyn and Bacon.

George, C. A. (1992). The application of formative
evaluation in the development of a database program for
school district administrators. (Doctoral
dissertation, University of Pittsburgh, 1992).
Dissertation Abstracts International, 53(05), 1340-A.

Golas, K. C. (1983). The formative evaluation of computer-
assisted instruction. Educational Technology, 23(1),
26-28.

Gutherie, H. (1987). Computer managed learning--A
monograph. TAFE National Centre for Research and
Development. Australia, Melbourne: Nelson Wadsworth.

Jorczak, R. L. & Roberts, F. C. (1987). Test design for
computer managed instruction systems. Proceedings for
the Association for the Development of Computer-based
Instructional Systems. (pp. 135-139)

Keatley, M. (1987). Development of a computer-assisted
instructional program to teach word processing
terminology. (Doctoral Dissertation, Virginia
Polytechnic Institute & State University, 1987).
Dissertation Abstracts International, 48(5), 1096-A.

Kohnken, J. D. (1987). Data base management systems for
microcomputers: potential administrative applications
in schools. (Doctoral Dissertation, Hofstra
University, 1987). Dissertation Abstracts
International, 49(4), 681-A.

Kroenke, D. M. (1992). Database Processing (4th ed.). New
York, NY: Macmillan Publishing Co.

Kroenke, D. M. & Dolan, K. A. (1990). History of
information systems. Business Computer Systems. New
York, NY: Mitchell McGraw-Hill.

Kroenke, D. M. & Nilson, D. E. (1986). Database Processing
for Microcomputers. Chicago: Science Research
Associates, Inc.

159

Lancaster, David. (1985). Management and planning issues
in the use of microcomputers in schools. Bangkok,
Unesco.

Lundgren, T. D. "Computerized testing: An innovative
teaching tool", Instructional Strategies: An applied
research series Delta Pi Epsilon, 7, (Winter, 1991).

Marcom, J., Jr., & Bellew, P. A. (1985, April 17). Slow
response. The Wall Street Journal, pp. 1, 23.

Martin, C. D. (1991). New findings from qualitative data
using hypermedia: Microcomputers, control and equity.
Computers in Education, 16(3), 219-227.

McKinnon, K. W. (1986). Planning and using a computerized
instructional management system. AASA Convention.

Nevo, D. (1986). Conceptualization of educational
evaluation. In E. R. House (Ed.) New directions in
educational evaluation. London: Falmer Press.

Office of Technology Assessment (1988). Power on! New
tools for teaching and learning. OTA-SET-379.
Washington, DC: U.S. Government Printing Office.

Patterson, A. C. & Bloch, B. (1987). Formative evaluation:
A process required in computer-assisted instruction.
Educational Technology, 27(11), 26-30.

Paulson, C. E. (1985). Present and future use of computers
in high school programs of vocational agriculture in
the United States as perceived by teachers of
vocational agriculture. (Doctoral Dissertation, Texas
A&M University, 1985). Dissertation Abstracts
International, 46(10), 2895-A.

Popham, W. J. (1988). Educational evaluation. Englewood
Cliffs, NJ: Prentice Hall.

Rae, J. (1990). Getting to grips with database design: A
step by step approach. Computers in Education, 14(6),
481-488.

Robleyer, M.D. (1983). Toward more effective microcomputer
courseware through application of systematic
instructional design methods. AEDS Journal, 17, 23-32.

160

Roth, G. & Tesolowski, D. (1986). Performing classroom
management functions with competency-based instruction.

Microcomputer applications for vocational teachers: A
competency-based approach. Idaho State Univ.,
Pocatello.; Illinois State Board of Education,
Springfield, Dept. of Adult, Vocational and Technical

Education. (ERIC Document Reproduction Service No. ED
281 025)
Scriven, M. (1973). Frameworks for planning evaluation

studies. In B. R. Worthen & J. R. Sanders (Eds.),
Educational evaluation: theory and practice (pp. 62-
105). Worthington, OH: C.A. Jones Publishing Company

Scrogan, L. (1988). The OTA report: New technologies are
making a difference. Classroom Computer Learning
(October) .

Sherron, J. A. E. (1984). An empirically validated model
program for teaching alphabetic keyboarding skills via
microcomputer. (Doctoral dissertation, Virginia
Polytechnic Institute & State University, 1984).
Dissertation Abstracts International, 45(7), 1967-A.

Status of the American Public School Teacher, 1990-1991.
Washington, DC: National Education Association
Research Division.

Stufflebeam, D. L. (1983). CIPP Model for program
evaluation. In G. F. Madaus, M. S. Scriven & D. L.
Stufflebeam (Eds.), Evaluation models: viewpoints on
educational and human services evaluation (pp. 117-
125). Boston: Kluwer Academic Publishers.

Stufflebeam, D.L. (1974). Alternative approaches to
education evaluation: A self-study guide for
educators. In W. J. Popham (Ed.) Evaluation in
education: current applications (pp. 97-103).
Berkeley, CA: McCutchan Publishing Corporation.

Tuckman, B. W. (1985). Evaluating instructional programs.
Boston: Allyn and Bacon.

Tyler, R. W., Gagne, R. M., & Scriven, M. (1967).
Perspectives of Curriculum Evaluation. Chicago: Rand
McNally & Company.

Tyre, T. (1989). CMI seen as possible solution to quality of
education issue. T.H.E. Journal, (January).

161

Worthen, B. R. & Sanders, J. R. (1987). Educational
evaluation: alternative approaches and practical
quidelines. New York: Longman.

162

APPENDICES

163

APPENDIX A
ELEMENTS OF
LESSONBANK: THE INSTRUCTIONAL MANAGEMENT SYSTEM

164

LessonBank: The Instructional Management System elements

I.

IT.

IIT.

Iv.

VI.

Course and Competency Banking
Task Banking

Question Banking
u Multiple-choice
» Matching

Performance Test Banking
n Quizzes

Test Generation

] By variables course and competency

[By variables software type, function, and
difficulty or any combination

] Random selection
n User selection
n Print multiple copies

Report Generation

[Task listing
L] By course and competency
(] By software type, function, and difficulty or

any combination

= Competency listing by course
[Competency and task listing by course
] Lesson plans by course and competency
(] Test bank questions
Output to:

Screen

Printer

File (DOS text)

Other features

Task assignment to competencies
Backup features

On-line editing of all items

165

APPENDIX B
MENU CHOICES FROM LESSONBANK

166

I.

IT.

LessonBank: The Instructional Management System

Task, Competency, and Course Data

A.

F.

Maintain task data
1. Add task data

2. Edit task data
a. Change the description of a task
b. Change the function of a task
c. Change the difficulty of a task
d. Exit to previous menu
3. Delete task data
4. Look at task information
5. Exit to previous menu
Maintain competency data
1. Add competency data
2. Edit competency data
a. Change the description of a competency
b. Change the number associated with a
competency
c. Exit to previous menu

3 Delete competency data

4. Print competency data by course
5. View competency data

6. Exit to previous menu

Maintain course data

1. Add new courses

2. Edit course information

3. Delete a course

4. Print course listing

5. Exit to previous menu

Assign tasks to competencies within courses

1. Assign tasks to competencies within courses

2. Unassign tasks

3. Exit to previous menu

Print reports

1. List of tasks by software type, function, or
difficulty

2. List of competencies by course

3. List of competencies and tasks by course

4, Exit to previous menu

Exit to main menu

Lesson Plan

A.
B.
C.

Create a new lesson plan
Reprint previous lesson plan
Exit to main menu

167

IIT. Multiple Choice Tests

Iv.

A.

Create a multiple choice test

1. By course and competency

2. By software type, function, and difficulty or
combination

3. Print student copies of previous test

4. Exit to previous menu

Add new multiple choice questions

Print multiple choice questions from test bank by
software type

Edit or delete existing multiple choice questions
Exit

Matching Tests

A.

B.
C.

D.
E.

Create a matching test

1. By course and competency

2. By software type, function, and difficulty or
combination

3. Reprint multiple student copies of previous
test

4, Exit to previous menu

Add new matching questions

Print matching questions from test bank by
software type

Edit or delete existing matching questions
Exit

Performance Tests

A.

o Q

Add performance test instructions, assign tasks,
create quiz

Edit instructions, task assignments, quiz
questions

Delete instructions, task assignments, quiz
questions

Print a list of performance tests

Print performance test

1. Select performance test to print

2. Print student copies of performance test
3. Exit to main menu

Print quiz based on performance test

1. Select performance quiz to print

2. Print answer key

3. Print student copies of performance quiz
4. Exit to main menu

Print task data measuring performance test
Exit to main menu

168

VI. Utilities

A, Backup database (spans floppies) to any drive
B. Restore database from any drive
C. Show directory for any drive
D. Check the disk situation on any drive
E. Pack this database. Caution: Make a backup before
packing
F. Backup all files to floppies
G. Format a floppy disk
H. Exit to main menu
VII. Exit

169

APPENDIX C
LETTERS TO SUPERVISORS AND TEACHERS

170

November 25, 1992

1~
2~
3~
4~
5~

Dear 6 ~:

As a part of a research project at Virginia Polytechnic Institute under the direction of
Dr. Jeffrey R. Stewart, a database program entitled LessonBank: The Instructional
Management System, is in the final stages of development.

The program is designed to provide an automated method of organizing courses,
competencies, and tasks. As you are undoubtedly aware, a listing of tasks needed to
achieve a competency was developed by a research team and resulted in the Business
Computer Software Curriculum Series published by the Virginia Department of
Education in 1990. This publication was organized around computer competencies
extracted from the Business Education Suggested Course Competencies and
Performance Objectives published by the Virginia Department of Education in 1989.

Anne Rowe has provided me with your name. I am asking you to provide me with
the names of two teachers who would be willing to spend a few hours using the
program, completing some "assignments" and providing evaluation feedback.

LessonBank is a menu-driven database program for managing instruction. Instructors
are able to use the system for planning course content organized around competencies
that require instruction in the use of computer software. The automated system will
contain information about individual courses and competencies related to software use.
The system centers around 1,100 tasks organized by software type, function, and level
of difficulty. In addition, the database contains matching and multiple choice test
questions which can be used to generate tests based on specific competencies and
software types.

171

1~
Page 2
November 25, 1992

I would appreciate your providing me with the names and addresses of at least two
business education teachers who you feel would be willing to participate in this study.
Please complete the attached form and FAX it to me at 919-398-8225 or drop it in the
mail by December 3 1992. I will contact each teacher personally seeking their
acceptance as an evaluator.

Sincerely yours,

Andrea E. Eason

Enclosure

172

December 10, 1992

1~
Dear 2~

As a part of a research project at Virginia Polytechnic Institute under the direction of
Dr. Jeffrey R. Stewart, a database program entitled LessonBank: The Instructional
Management System, is in the final stages of development.

The program is designed to provide an automated method of organizing courses,
competencies, and tasks. As you are undoubtedly aware, a listing of tasks needed to
achieve a competency was developed by a research team and resulted in the Business
Computer Software Curriculum Series published by the Virginia Department of
Education in 1990. This publication was organized around computer competencies
extracted from the Business Education Suggested Course Competencies and
Performance Objectives published by the Virginia Department of Education in 1989.

LessonBank is a menu-driven database program for managing instruction. Instructors
are able to use the system for planning course content organized around competencies
that require instruction in the use of computer software. The automated system will
contain information about individual courses and competencies related to software use.
The system centers around 1,100 tasks organized by software type, function, and level
of difficulty. In addition, the database contains matching and multiple choice test
questions which can be used to generate tests based on specific competencies and
software types.

173

2~
Page 2
December 10, 1992

Your name has been provided to me as a teacher who may be interested in testing and
evaluating the program in its final stages of development. If you agree to participate,
please return the enclosed form to me before leaving for the Christmas holidays.
During the first week in January, 1993, you will receive a copy of the program, an
instruction manual, and several "assignments” to complete. In addition, you will be
asked to complete a questionnaire concerning your impressions and difficulties with
the program. This information will need to be returned to me by the first of
February.

I hope that I can count on your input as LessonBank is developed for final distribution
to business education teachers in the State of Virginia.

Sincerely yours,

Andrea E. Eason

Enclosure

174

APPENDIX D
STRUCTURED APPLICATION ASSIGNMENT

175

LessonBank: The Instructional Management System

The exercises in each part below test each menu choice in the system.

Directions:

1. Read through pages 1-16 in the instruction manual before you begin. Refer to
the instruction manual as necessary when completing the assignments for each
part.

2. Load LessonBank as instructed.

3. Complete each assignment. The data in italics is to be keyed in by you as

instructed.

Attach any printed reports to the instructions for that Part.

Your job is to evaluate the program and the instruction manual, not the
contents of the database (tasks, competencies, questions, etc.) At the end of
each Part, please record any comments you have about the program, on-screen
forms, reports, etc. You may write on the back of the page if necessary.

e

The following is Main Menu of LessonBank
Task, Competency and Course Data
Lesson Plan
Multiple Choice tests
Matching tests
Performance Tests
Utilities

Exercises Part I through Part V may be completed by accessing the first choice on the
Main Menu: Task, Competency, and Course Data.

Exercise Part VI is completed by choosing Lesson Plan from the Main Menu.

Exercises in Parts VII and VIII are completed by choosing Multiple Choice tests from
the Main Menu.

Exercises in Parts IX and X are completed by choosing Matching tests from the Main
Menu.

Exercise Part XI is completed by choosing Performance tests from the Main Menu.

Exercise Part XII is completed by selecting Utilities from the Main Menu.

176

To introduce a new user to the listing of the tasks and competencies defined for use
with the existing system, we will begin our exercise by printing and reviewing various
Teports.

Lesson Bank is a menu driven system that will guide the user through these
assignments. Each of the instructions listed below are separate activities and require
the user to begin with the "Print Reports" menu choice in the Tasks, Competency, and
Course Data menu.

177

Part I. ADD/UPDATE TASK DATA

You have looked over the list of tasks and have decided to determine whether
LessonBank will allow you to add and/or update several tasks.

All tasks require they be identified by software type, function, and difficulty. This
requires advance planning by the teacher. For this exercise, these decisions have been
made for you.

Study the menu choices for Add/Update Task data and select the appropriate ones to
complete the following activities. Please read each instruction below carefully before
beginning the exercises.

1. Add the following two tasks for
software type: DOS and Fundamentals
function: vocabulary
difficulty: beginning

Identify motherboard
Identify operating system

2. Change the difficulty of "Identify motherboard" to intermediate.
3. Add the following task for
software type: database;
function: vocabulary;
difficulty: advanced.
Identify variable

4. Delete the task "Identify operating system” from DOS and Fundamentals,
vocabulary, beginning.

S. Look at task data for DOS and Fundamentals, vocabulary, beginning. (This

option would allow the user to make sure the data had been entered correctly
and did appear when viewed.)

178

Part II. ADD/UPDATE COMPETENCY DATA

Study the menu choices for Add/Update Competency data and select the appropriate
ones to complete the following activities:

1.

Add the following competency for the course Accounting Computer
Applications:

16
Select a business application and describe how it would be automated.

Edit that same competency by inserting the word common as follows: Select a
common business application and describe how it would be automated.

Change the competency number from 16 to 34.
Print the competency data for Information/Word Processing.

View the competency data for Accounting Computer Applications. Was the
new competency added? (Y or N)

Delete competency 34 for Accounting Computer Applications.

View the competency data for Accounting Computer Applications. Was the
new competency deleted? (Y or N)

179

Part III. ADD/UPDATE COURSE DATA

1. Add the Shorthand course, 6211.

2. Edit the name of the Shorthand course to Shorthand I.
3. Print list of courses.
4. Delete Shorthand I course.

Part IV. ASSIGN TASKS TO COMPETENCIES WITHIN COURSES

1. Assign the following task to Information/Word Processing, competency No. 9.
software type: database;
function, vocabulary;
difficulty, advanced;
Identify variable

2. Print a listing of competency No. 9 and tasks for Information/Word
Processing.

3. Delete the task assignment (unassign) made in item #1 above.

4. Repeat instruction No. 2 to verify the tasks were "unassigned.”

180

Part V. PRINT REPORTS

The following reports should be sent to a printer.

1.

2.

Print a list of all tasks for the software type word processing.

Print a list of tasks for word processing and the functions access software/data
and data/text entry.

Print a list of tasks for word processing formatting functions.
Print a list of tasks ONLY for beginning word processing formatting functions.
Print a list of competencies for Information/Word Processing.

Print a listing of competencies and tasks for Accounting Computer
Applications, competencies 22 and 23.

Exit to previous menu when finished printing reports

181

Part VI. CREATING LESSON PLANS

1.

2.

Choose create a lesson plan.
Select a course (any course).

Select the competency or competencies on which you wish to base your lesson
plan.

Type the appropriate name and date information and press the [ALT] key to
continue.

Print a copy to the printer.

Reprint a copy to a file.

Exit from LessonBank when finished and load your favorite word processor.
Retrieve the lesson plan file you just saved. Change the left and right margins
in the word processor to 1/2 inch. You may now alter this file in any way you

wish. (Add other objectives, delete some data, etc.). When you finish
"polishing it up," print a copy.

182

Part VII. CREATING MULTIPLE CHOICE TESTS

Print the following exercises to the printer:

1.

Create a multiple choice test by course and competency for Information/Word
Processing, competency 17. Let the computer generate a 10 question test
randomly. Use the following heading for the test:

Information/Word Processing
Spreadsheet Test 1
Mrs. Smith’s First Period

Create a multiple choice test by course and competency for Information/Word
Processing, competency 17. You select 10 questions for the test. Use the
following heading for test:

Information/Word Processing
Spreadsheet Quiz 1

Create a multiple choice test for software type word processing. Let the
computer generate a 20 question test randomly. Use the following heading for
the test:

Business Supervision and Management
Word Processing Test 1
Current Date

Create a multiple choice test for software type word processing. Pick 20
questions. Use the following heading for the test:

Information/Word Processing
Word Processing Test 11
Current Date

Create a multiple choice test for DOS and Fundamentals, Spreadsheets,
Functions 1-5. Let the computer generate a 20 question test randomly. Use
the following heading for the test:

DOS and Fundamentals, Spreadsheets

Random 20
Current Date

183

10.

Repeat No. 4 only you select the questions this time for a total of 10. Use
same heading only change line 2 to read "Teacher Selection 10".

Create a multiple choice test for database, beginning difficulty level. Let
computer randomly generate a 10 question test. Use the following heading:

Database
Random 10
Current Date

Repeat No. 6 only you select the questions this time for a total of 10. Use
same heading only change line 2 to read "Teacher Selection 10".

Create a randomly generated 10 question multiple choice test for data
communications, vocabulary, intermediate and beginning difficulty levels. Use
heading as in No. 6 only replace line 1 with Data Communications.

Repeat No. 8 only you select 6 questions. Use heading as follows:

Data Communications

Teacher Selection 6

Current Date

Print 5 copies of the test generated in instruction 9.

184

Part VIII. ADD, UPDATE, PRINT MULTIPLE CHOICE TEST QUESTIONS

Note: Before adding questions to the question bank, the teacher must determine
which task the question measures. Questions cannot be added without a task
number. (This has been figured in advance for you for these exercises by
referring to a listing of tasks by software type.)

1. Add the following multiple choice questions:

Documents prepared on word processing systems can be

a. stored on disk
b. edited
C. printed multiple times

d. all of the above
Task No. 1287 Answer: d
Which of the following is a feature associated with a spreadsheet?

a. document editing

b. bold text

C. automatic recalculation

d. centering lines on a page
Task No. 1013 Answer: ¢

Which of the following personal computer software packages is used to perform
financial calculations?

a. graphics programs
b. spreadsheets
c. electronic mail
d. word processing
Task No. 1006 Answer: b
The intersection of a column and row on a spreadsheet is called a
a. window
b. cell
c. Jormula
d. label
Task No. 1000 Answer: b
Which of the following terms is associated with database management systems?
a. automatic recalculation
b. select and sort
C. cut and paste
d. cells
Task No. 1747 Answer: d (note: this will be changed later)
2. Print all the multiple choice questions for spreadsheets.
3. Delete the 4th question above.
4, Edit the last question above and change the answer to b.

185

Part IX. CREATING MATCHING TESTS
Print the following exercises to the printer:

1. Create a matching test by course and competency for Information/Word
Processing, competency 17. Let the computer generate a 10 question test
randomly. Use the following heading for test:

Information/Word Processing
Spreadsheet Test 1
Mrs. Smith's First Period

2. Create a matching test for competency 17 in Information/Word Processing.
Pick 10 questions. Use the following heading for test:

Information/Word Processing
Spreadsheet Quiz 1

3. Create a matching test for word processing. Let the computer generate a 10
question test randomly. Use the following heading for the test:

Business Supervision and Management
Word Processing Test 1
Current Date

4. Create a matching test for word processing. Pick 10 questions. Use the
following heading for the test:

Information/Word Processing
Word Processing Test 11
Current Date

4. Create a matching test for DOS and Fundamentals and Spreadsheets, Functions
1-5. Let the computer generate a 10 question test randomly. Use the
following heading for the test:

DOS and Fundamentals, Spreadsheets
Random 10
Current Date

5. Repeat No. 4 only you select the questions this time. Use same heading only
change line 2 to read "Teacher Selection 10".

186

10.

Create a matching test for database, beginning difficulty level. Let computer
randomly generate a 10 question test. Use the following heading:

Database
Random 10
Current Date

Repeat No. 6 only you select the questions this time for a total of 10. Use
same heading only change line 2 to read "Teacher Selection 10".

Create a randomly generated 10 question matching test for data
communications, vocabulary, intermediate and beginning difficulty levels. Use
heading as in No. 6 only replace line 1 with Data Communications.

Repeat No. 8 only you select 6 questions. Use heading as follows:

Data Communications

Teacher Selection 6

Current Date

Print 5 copies of the test generated in instruction 9.

187

Part X. ADD, UPDATE, PRINT MATCHING TEST QUESTIONS

Note: Before adding questions to the question bank, the teacher must determine
which task the question measures. Questions cannot be added without a task
number. This has been determined in advance for you by referring to a listing
of tasks by software type.

1. Add the following matching questions:

Something that uniquely identifies a record.
Answer: key field Task No. 1736

Rearrange records in a database into some order.
Answer: sort Task No. 1748

Print data in a certain format.
Answer: report Task No. 1746

Display the contents of a DOS ASCI file
Answer: type Task No. 1215

A group of characters that represent a single piece of data.
Answer: field Task No. 1728 (this is wrong purposely)

All the information about students in a school.
Answer: file Task No. 1731

2. Print all the matching questions for software type database.
3. Delete question No. 4 above.
4, Edit question No. 5 above and change the task number to 1729.

188

Part XI. PERFORMANCE TESTS

The performance tests consist of a series of numbered instructions. The teacher would
need to determine which tasks the test measures. A short "quiz" of questions to be
answered about the assignment can be developed and recorded as well. The
performance test is developed around several tasks that need to be measured. These
tasks should be determined before a user begins to enter a new test.

Print a list of existing performance tests:

1. You are interested in determining how many performance tests currently exist.
Make the appropriate choice from the Performance Test menu to print a list of
all performance tests.

Enter a new performance test:
2. Please enter the following performance test for Desktop Publishing,
Intermediate Level, No. 1

Title: Desktop Publishing--Intermediate Test #1
1. Create a one-page newsletter for FBLA.

2. Collect two text files on disk. One will be a story about FBLA. The second
text document should be a calendar of events planned for the semester or year.
The two files should be about 1,500 words long.

3. Load your desktop publishing software program.
4. Open a template for a 3 column newsletter or create a new document with 3
columns. If you open a template, save it under a new name that includes the

issue number, such as VOLI-04.

5. Create a banner using the letters FBLA with ruled lines and shading of some
type. You may be original with this.

6. Below the banner place the identification of the newsletter as Volume 1, No. 4
October/November 1992

7. Use only one or two different typefaces in the newsletter.

8. All columns should bottom out to the same point.

189

9. Use 10 pt. Times with auto leading for body copy. Use 8 pt. Times for
calendar text. Use 14 pt. Times Bold for Volume/Issue ID. Use 24 pt. Times
Bold for main article title.

10. If the final text is too long to fit within the one page, change the leading to
shrink the text.

11. Use full justification and hyphenation on the body text.

12. Save the document and print on a laser printer.

The following tasks are measured by the performance test:

1571, 1572, 1573, 1585, 1587, 1589, 1591, 1594, 1595, 1596, 1598, 1602, 1603,
1615, 1617, 1618, 1620, 1623, 1628, 1634, 1650, 1651, 1652, 1653, 1667, 1690,
1693, 1712, 1713

The following quiz should be entered:

1. How many columns are in the newsletter?
Answer: three

2. What is the leading for the body type?
Answer: automatic

3. What is the point size of type for the body text?
Answer: 10 pt.

4. What is the volume number of this publication?
Answer: volume 1, No. 4

S. What is the orientation for the newsletter--wide or tall?
Answer: tall

Editing a Performance test:

3. Edit performance test for Desktop Publishing, Intermediate Level, No. 1.
a. Insert the following instruction after No. 9:
Place the calendar in the center column with ruled lines to set it off.

190

c. Add task number 1709 to the list of those that measure this performance
test. There are no new questions to add to the quiz.

Delete a Performance Test:

4, Delete performance test SSI1.

Print a performance test:

5. Make the appropriate menu choice from the Performance Test menu to print
the intermediate performance test #1 for Spreadsheets.

6. Print 3 copies of SSI1 for student use.

Print a performance quiz, multiple quizzes, an answer key, and a report of tasks
measured by

7. Print the quiz for SSII1.
8. Print the answer key for SSII.
9. Print 3 copies of performance quiz for the students.

10. Print the tasks measured by performance test for SSI1.

191

Part XII. UTILITIES

This part of LessonBank offers the user several DOS commands by selecting from the
Utilities menu. You will need a disk for formatting and at least three high density
disks for backing up the entire directory where the database is store.

1.

2.

Format a disk in drive A or B

Backup the database to disks in drive A or B.
Show a directory for drive C.

Check the disk situation on Drive C.

Pack the database.

Copy the database files to drive A:

Restore the database from drive A or B using the backup created in No. 2
above.

192

APPENDIX E
VOLUNTEER SOLICITATION FORM

193

Yes, I am willing to evaluate LessonBank: The Instructional
Management System

Name

Home Address

City State Zip

Home Phone()

School

Address

City State Zip

Office Phone()

Concerning computer use, I would rate myself as a:
Novice Casual User Heavy User Expert

Courses I teach where computers are used:

Courses I teach where computers are not used:

My computer education includes (check all that apply):

__ self-taught _ _ _workshops _____0-3 sem. hrs.
____4-6 sem. hrs. ____7-9 sem. hrs. 10+ sem. hrs.
Other

Signed: Date:

194

APPENDIX F
SUMMARY EVALUATION FORM

195

Overall Evaluation of LessonBank

Very poor =1
Below average = 2
Average = 3
Above Average = 4
Very Good = 5

Pro“ram formaty- o e e 1 | 2

e
Consistent use of terminology

Clear and concise instructions

Well ogganlzed and seguentlal

QOutput format

Screen and printer or other
peripherals used

Report generation is logical and
readable

Screen displays are consistent and
easy to use

l}lnput and gperatlon_iﬁ

Procedure for entering data is
consistent

Prompts are plentiful and clear

System commands are logical

Error trapping is sufficient

Error messages are understandable

Restart and recovery is easy and
allowed

Sufficient data field length

Number of records is adequate
(capacity)

Speed to access records is adequate

Malntenance of flle 1s acceg;able

fInstallatlon and Back;p

Ease of installation

196

Overall Ease of operation

Ease of backup

Comments:

197

APPENDIX G
DATA FROM CHECK SHEET AND EVALUATION FORM OF SIX SUBJECTS

198

661

90 03 °J9M Sa2W0d3N0 9yl eym--3oaload

oYy 3nodqe uorjeuerTdxe TIBISAO0 SI0W PSPIIN ‘UTW Gy 9

iMOTTOF 03 Ases aIeM sSUOT3IONIISUI ‘UTW O¢ S

*Inydiay =29 pInomM JIoqunu sel Aq

ISPIO UT 99 TITM S)Se3 eyl 930N °*oa9m butuutbeq
se JopJo Teor3saqeydie UT aq 03 Ysel pajzoadxiy ‘uUtw 21 v
*)ySel pPaIATsSSOpP 03 ATs3eTpouut

soueApe pue umouy JT # YSej I93us 03 Jo/pue
bursmoiaq dn peads prnom ussIds A USSIDS SAOU

03 Aem Yy ‘snuaw ybnoayyz butob usym A3TnoOTIITP

TeuTbrTIo I93UsS 03 JIeS[O 30U UoTIejuswWNnOog ‘UTWw G2 €
sdoils Auew 003 !sde3zs dn ooT ejed Isel
pue sda3 uorjzouny y3zTm poajutenboe 3896 03 butiial *utu 01 b4 23epdn/ppv
s)se3 9AT3T3=aday ‘uTtw 0T T I 3aed
suoT3sebbng/sjusuuwo)/sueTqoid | @3eTduo) uoT3draosaq
03 SuUTL JuswubISSY

| _

s3oalgns XTS JO WIOJ UOT3IENTRA® pPUR 399YS YDO8UD WOoIJ ejep Jo uoTjzerTdwo)

00¢

swaTqoad oN ‘utw g 9
iMOTTOJ 03 Aseo 9I9M SUOTIONIAJSUTL ‘uTw GI1 G
juoTsnjuoo Te30[‘uUTWw 0T ¥
*bursnjuod ST33TT
e seM aAoQe woxl aanpsdoad buryTps ur sbueyp ‘utw g € | e3eg 9sinod
JUSWWOD ON utw £ 4 @3epdn/ppY
JUSUNIOD ON ‘UTw g I III 3xed
‘IIoM Juem 9STOaA™XY -sweaTqoad oN ‘uUTWw GT 9
*Jyoeval
Joeq 03 pey I puk uoljejou 84/LJAIHS POYOOTISA0 I ‘uTw O¥ G
*juswsAoadul ue g pInoM
(9T *ON ueyz J@2yjzeI) 97 I9FUS--SUOTIODITP JI00d
XO(q PpuUOOdS UT S$90H°°*309T8S °XOq 3JISATI UT so0D
OU--SUOT309ITpP Ul se poajdwoad usaym 9sSn 03 pIeMIME
ST Pa3I3sul aae Aousjzaduwod puer # aIaym xXod *utw 0T 4
‘umop pue dn aaAowm 03 24 3 84
93eOTPUT JOU SO0pP Us3I0Ss MSTA !Injdrsy 2 pinom eleq
Jaqunu Aouajadwod I93u® 03 uoTrido ‘HburjzTps ul ‘*utw ot € Aousjzaduo)
SUON | -uTu 8 Z | @3epdn/ppv
yjxoj pue yoeq butob yonw o0o] *utw 21 T II 3aed
suoT3sabbns/sjusuwo)/suaTqoad | @3a7dwo) uoTjdrIossaq
03 SUT] JuawMUbTSSY

102

T
‘wey3 Op pPInoo oM
‘wayl op 031 Moy

do3s, 03 PIO3} @ 03 popoadu oM
6 8 8 seosToxexd burjeTdwod I933IV

UO aINsun 9JI9M 9M 9SNEODIq SWO3T OM3 PSJIFTUWO OM ‘utw 0§ 9
iMOTTOJ 03 Asee 91sm suorT3lonilxsul !sweatqoad oN *uTwWw Q¢ g
*9SU9S SauWOoSs 9)euw 03 burjaels s,3I jI933ed ‘utw QT ¥
w219y do3as, ST 3T zZ pue 1 uorjdo ut
Jaasmoy {qutad o3 SnurTjuod 9sooyo 3snu ‘¢ uorzdo
UT 3TV I93JV ¢XOq 3IXau 03 @2aA0w 03 g ® T uotzdo
Ut g4+ 3JTYS 9sSn jou AYym °UOTISNIJUOD I0J Soyew
pue z I9yjo woxjy ATjusasiITp swaojaad ¢ uorildo ‘utw 02 ¢ | (saaodsx 9)
*I93seJ sa3aodsy
spueuwod ut Asy prnod I {jurtad o3 sdojzs Aueu o0og ‘uTw 02 z jutadg
JUSUWOD ON ‘utTw 0%¢ 1 A 23axed
*3STT 93 O3 @Jow sem a2I9Yy3 84 burssaad
Aq eyl 9zTTealx 30U PIP SM ‘NUSW JUSIBIIIP ®©
Ut oq pInoys oM 3ToF SM °Sh POSNJUOD ,U0TIdUNg,, ‘utw Q¢ 9
*Aym aans jou wme I /90TM3 UOT3OSTSS
nuaw ay3z ybnoaylz ob o3 pey 1 ‘burtjurad yoes o4 ‘UTW G¢ G
ibutsngjuoo Axepa ‘utw 0T ¥ S9SIN0)
(xeq @oeds bursn) burtubTsseun jou ST burisrad ‘utw G € Utyatm s
*sdajys jeedaa oTouajzadwo)
03 pey juTrad o3 pesjuem sWIl yoes !A3TndOTIITP 03 sysel
pue uoT3ioungy o3 39b jou prnod !sidusjje ¢ oo ‘UTWw GV 2 ubissvy
sNuUT3uUo0D Jo peslsuTl doas buraybriybry 3dey I ‘utw GT T AI 3xed
suoT3sabbng/sjusumo) /sustqoad | @3oTdwod uotydraosag
03 SuTlL Juswub1ISSY

coc

*butqoeaastp
sT doj e sIsmMsSUe ‘U83I0S JO wojljoq 3B uoTisenb
OopoI pe3oo[es Jaqunu buTmoys usaids ‘suorisonb
butjostes usym !epow burtjutad Is3US 03 SNUTJUOD

{3us3sSTSUOD ©q 03 XOg 3XaU 03 sAow 03 84 + 3IITYS ‘UTW GV
swosIsquno AISA ‘uTebe sIem3Jos 3ae3s pue
<D 03 Mdoeq 3TXS 03 peY I suoTljlssanb Y3z TM Iaom 03
paaTsap I 2wWI3 yosed - 3utad 30U PINOM SUOTISONY (s3sea
‘poj3oa19s suoTasenb JO # 23eOTpPUT PTNOYS UsIDS | *utw Q€T TI1) s3asal
‘uUo sem I JISquUnU UOT3IOSTSS JFeym Jo 90TOoYD
joexl3 9sol pinom I ‘uoTjissnb yoes peaax o3 paddoias STdT3TnN
I SY ‘opew pey I SuOT3oo[as Auew MmOY Y3TM butjzesaad
dn butdessy sTgqnoal pey ,‘uorlosarsas IayodeaL, U0 ‘uUtTw 62 IIA }xed
(zo0sseoo0ad
paxom ut ueld uosse sAdTI3®I) 8 doO3s Op 30U PTNOD ‘utw Q¥
iMOTTOJ 03 suoT3onIjysul Asexy ‘utw 02
*3093I9dpaom ur uerd uossaT
9ASTI}®I 30U PTNoD *3utad jou pTp uerd uosse] *utw Ot
‘ueTd uosssT ur dn swWoO 30U PIP USSOYD
Aousjzadwo) “cuoT3ouUNI sTY3} wiaojaad o3 aTqeun ‘utw Q02
¥Md 10 309JISJPIOM OJUT SASTIISI 3JOU
pInoo !susaaos jutad o9s !ATInJjoaedo poMOTIOJ SI9M sueTd
sde3s T1e !{3nojutad 36 jou prnoy -sidwusijze g ‘utw 0g uossoT
‘papniout butjesad
Adop r3093asdpaoMm ybnoaysz jurtad o3 39H 3,upInod ‘utu g1 IA 3aed
suoT3sabbng/sjuswuo) /swatqoxd | e3aTdwo) uotadraossd
03 SWIL JusuubIsSsy

€02

A3TnoTIITP pue ‘uorjzouny ‘adik3 axemijos

9U3 UT SWS3T 9I0W PIIDA0ODSTIP 9M SI9YM S,3I9H ‘utTw 0T
*qutad
03 IIXd X0 3uTtad o3 HYAH JOILS--UoTsSnjuod AW | “utw G¢
‘swaTqoad Auew
sesned jutod STY3 3B pue pajzosdxaun ST # Ysel
03 JUSWSAOUW JOSIND °Saye3sTW JO burartbrojun KAaoa ‘UTW 0¢
Jyaom
03 pesoddns ST 3T Aem 9yl STYL SI °OU JIsMmsue pue
939Tep J923u°9 03 pey I 33Tpe ol !{ojerndruerw o3 Ased ‘UTWw G¢ suoT3sand
pITea jou 31s9] @0T0oYD
Joaqunu)sejl !suorisonb ¢ peTal - pepTaoad sasqunu STdTI3TNK
3se3 3deooe j0ou TITM !suorlissnb ppe jouuer) *UTw 2 23epdn/pPprvY
Jusuwod ON ‘utw o¢ ITIA 3xed
susaTqoxd ON ‘UTw O¢
wexboad
TeUuTbTIO pROTSI 03 pey ‘ejep TIe 3ISOT {300 wiem
B Op 03 pey I !poyool xajndwod ayjz (juswubrsse)
gy burjsTdwoo usayMm ‘pe3da[9s suorlssnb (saseo3
3o Ioqunu Jo oexl burdesy A3TnOTIITA (SWIATIOYd | “utw 08T 11) s3asal
‘jusutwoad sJow yYonw 3¢ pInoys 20TOYD
(seTousjsdwoo 03 sAow 03 g84/33ITYS Y3TM @OTOUYD oTdT3 TN
uo moaae desy ‘umop sueau J93us) sidwoad useaos butjesad
uo TeOT3TID °3ISIATI e burzealsnay Arsusalixy ‘utuw 0¥ IIA 3aed
suoT3}sobbng/sjusuuwod/suaTqoad | @3aTduod uoT3ydraosaq
03 9uT[JuUsSWUbTSSY

voc

‘suaTqoad oN ‘utu 0T
‘swaTqoxd oN ‘uTw 0¢
*3UBWWOD ON "utw QT
‘UOT309S suoT3Isand
sTy3 ut ATasdoad poxaom 3tpa--swatqoad oN ‘Ut g 3sal
‘suot3yseonb buryojzeu ppe pbutyojen
03 SaWTl ¢ PoOTal !suorjysonb sjepdn/ppe j0u pInod ‘utw g¢ a3epdn/pevY
JUSWUIOD ON ‘uUTw GT X 3aed
*31S93 9yl o3eIsausb
03 JI9pio ur suoTrilsenb ay3z TTe MIewW 03 MOuy O3 pey
oM (burssoooad paom I0J 3se3 e 93eaad) ¢ dols ul ‘uTw €T
juexboxd Teurbrao syjz peorsax o3 pey I ‘autad
03 buTjdwelje usym PoYOOT I@3ndwod jSWATIOHEd | *utw 08T
*butsnjuoo
-~do3 3e ISMSUR pur US9IOS JO woljoq 3e dwoad ‘utw 0¢
*suoT3ysonb PurjzosToas ATwopueld sem
wexboid eyl useios uo dn swed sbesssw ‘suorissnb
3593 JO UOT3O9[9S Spew I SISYM 3DURISUT yoeq ‘uTw GV (saseo3
*uUoT3O8s STYI 0T) s3ssaL
939Tdwod 30U PINOD ‘*Sseqeljep 92Ul UT suoriseonb oN UTw £ butyojen
*SUOT3OSTOS butjzesad
uoTysenb axew o3 sIem3Jos I0J 30T © pajTeMm *uUTw 09 XI 3aed
suoT3lsebbng/sjusuuwo)/susTqoad | axre1dwod uoTadraosag
03 BuWTIL JuaWUbTSSY

goc

*UOT309S SIY3} Op 03 alqeun

©I9M Pue SO3ISSTP OATIOSIOP JO XOd ® pPeY 9M ‘utw 0
*399Uys juauubTsse
3U3 uo pa3sIT aae pey I eyl swatqoxd aygL | *utw 02T
*399ys
JUBWUDTSSE U0 3S83 ou-~--dn3deq aew 30U PTNOD "utw 0T
‘U0 oeq pue JJo IJojndwod uinjy
03 PEH *2319S91 UsA® 30U pInoo ‘aduwoad ou ‘weaboad
ou ‘uS9Id0s JueTq O3 SWED HPUTIOISOI ‘pPOYSIUTI USUM ‘utw 02
*sYSTp A3Tsuap ybty uo dn oeq 3Jou pInNoM ‘utTw G¥
‘e pesaa o3 S9T3TTTIN
A1y pinom xeandwoo ‘:gq pojloares I usym ‘dnydeq ur ‘utTw O¥ IIX 3aed
*saTdod 9)eWl 30U PTNOD pue
¥ do3s ur TISS Po3IdTeP SM ‘OSTVY ‘sIsqunu 3y sel
oYyl TIe JI93U® O3 POPSdU oM MOY IZTTeSI PIP SM ‘uTw G2
*sosTOI9X® 9Yyjy o3aT7dwoo 03 TIdd
pesn I °0T~. sdeo3s ur ©1TJ 92Ul Y3TM YIom 03 nok
JI0J TTeD SUOT3IO3ITP 9/€Y3l ‘394 !y dejzs ur poloTep
sem TISS °Sus3 JI0J JesaTO 03 popssau uoTjeueTdxdy ‘uTw 06
¢OTTJ POISTAP
e jutad pue 9A9TI38I 03 MOH ¢2Tnb ajeaao 03 MoOH ‘utw GT
*3s93 JIsyjouer
pa3njIaysqns I 3T po3STSp pey I SOUTS °3T pesn
0T-G SUOTIONIAISUT UaYyl !TISS 939I9p 03 sAes p# s3sa)
uoTlonIjzsutr !sels uo paey Axsa zTnb uo IoO0Tq pad ‘urtuw 0¢ oourwaojasd
jdws3jje jou pId ‘utTw 0 @3ea1Dd
®39T139p 03 TISS °ON 3°92yspeaads ON| ‘urtw OF IX 3xed
suoT3sebbng/sjusumo) /susTqoad | @3s1dwo)d uot3draosag
03 SuWTlL JuUswuUpbTSSY

VITA

Andrea Emmot Eason graduated from Independence High
School, Independence, Kansas, in 1960. She earned an
Associate of Science degree from Independence Community
College, Independence, Kansas, 1962. She attended Pittsburg
State University, Pittsburg, Kansas, and received the B. S.
degree in business education in 1966. She was granted the
M. S. degree in business education from Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, in
1968.

Andrea's first teaching position was with the
Department of Business at Richard Bland College, Petersburg,
Virginia, 1967-1969. In 1969, she was employed by Chowan
College in the Department of Business and currently serves
as an Associate Professcr of Business.

In 1992, Andrea was appointed to the position of
Director of Academic Computing at Chowan. In addition, she
continues her primary teaching responsibilities in the
computer information systems area.

During her residency in the doctoral program at
Virginia Pclytechnic Institute and State University, Andrea
worked with the National Center for Research in Vocation
Education, and taught a class within the Division of
Vocational—Téchnical education. Andrea completed the
doctoral program in May, 1993.

206

THE FORMATIVE EVALUATION AND REVISION OF AN
INSTRUCTIONAL MANAGEMENT SYSTEM
FOR BUSINESS COMPUTER COMPETENCIES
by
Andrea Emmot Eason
(ABSTRACT)

The purpose of this project was to (1) evaluate and
revise a computer-based instructional management system
developed to organize business computer competencies, and
(2) develop and revise documentation for using the systemn.

The instructional management system consists of a
database and various applications employing relational
database architecture. The resulting system will be used by
Virginia business teachers in implementing their curricula.

The prototype system was developed initially to
organize a taxonomy of tasks identified to measure computer
competencies. The computer competencies were extracted from

the Business Education Suggested Course Conpetencies and

Performance Objectives, published by the Virginia Department

of Education in 1989. The taxonomy resulted in the

publication of the Business Computer Software Curriculum

Series in 1990. This latter publication forms the core of
the instructional management system. The 1990 curriculum
guide was ultimately expanded to include multiple choice and

matching test questions organized to measure the tasks. A

module of performance tests was incorporated into the system
as well.

The resulting program was titled LessonBank: The

Instructional Management System. LessonBank is a menu-

driven program designed to be used as a tool to assist
teachers with the management function of teaching. The
system incorporates a number of components. The components
are (a) course banking, (b) competency banking, (c) task
banking, (d) test question banking, (e) performance test
banking, (f) test generation, (g) lesson plan generation,
(h), reporting, and (i) database maintenance.

A three phase formative evaluation procedure was used
to imprcve the program and the user's manual. Data were
collected from the evaluators as the subjects in each phase
tested all components of the entire system. The developer
identified the needed revisions and made necessary
corrections. Following the third phase, it was determined
that the prototype program was ready for distribution to
business teachers in the state of Virginia.

Suggestions for use of the computer-based instructional
management system are given. Recommendations are made for
developers. In addition, recommendations are made for
teachers, supervisors, and administrators who have
responsibility for improvement and management of

instruction.

