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I, GENERAL INTRODUCTION

The cornerstone of science is direct observation
or experimentations Except in abstract fields such as
mathematics, eny hypothesis relating to the real world
must ultimately be accepted as true or rsesjected as false
on the basls of the agreement between what 1s obssrved
and what is expected to be observed, glven that the hy-
pothesis is trues, We are immediately led to experimenw
tation to obtaln the necessary data for a study of such
agreement, ‘

Unfortunately, earlier scientists were mors cone
cerned with the results of thelr experimsnts than with
the validity of their experimental methods and the
philosophy behind these methods. Foi example, in attempt-
ing to locate some physical optimum, earlier physical
scientists and--sadly enough--many such scientists today
consider the dictum "vary one factor at a time, holding
&Ilyother factors constant” to be the ultimate in good
experimental technique,

The study of a "theory" of the design and analysis
of experiments was begun in the early 1920's by R. A, ¥isher
and others at the Rothamsted Experimental Station in England,
The earliest work seems to have been concerned with the
analysis of data already collected; it was scon realized

that proper initial arrangement of the experiment would



‘result in more efficlent experimental techniques, and work
was started on this problem of the design of experiments.
This theory, embracing both the design and the analysis of
experiments, has grown in iaportgnaa and today holds a
prominent place in scisnce,

For mest of the simpler designs based on this theory,
four assumptions are made., The first assumption is:

(2) An observation consists of & sum of component
parta, one part being attributed to the
particular class of items tested, one part
being attributed to the time or place at
which the trial ocourrsed, one part being a
"pandom" error term, and so on.

This is generally referred to as the assumption of
additivity. In effect, 1t implles that there is some
"true™ value, and an observation only deviates from this
"true®" value by an amount which we term "experimental
error”, Purther, the "true™ value 1s & sum of component
parts which individually describe the behavior of differsnt
aspects of the experiment.

The experimental error at any one trial is incapable
of belng predlcted exactly; 1t 1ls a random sort of term.
Rather than consider the bshavior of a single error ternm,
the behavior of a large number of such terms is desceribed
by speeifying the functional form of the probabllity dise
tribution of these terms. The second assumwption made is that



(b) T™e probability distribution describing the
random errors is of the form known as
Gaussian or Normal,
The last'twc assumptions also concern tinls error term,
for it is assumed that |
(¢) The possession of information about an error
term gives no information about other error
terms; they are steahasticallg independent,
and

(d) The variances of the error terms are constant

from trial to trial and from treatment to
treatment,

These assumptions concern the analysis of the ex-
perimental results. When the treatments to be tested
ars different levels of independent variables, and it is
desired to test for relationships between the responses
and these independent veriables, another assumption is
made! | ‘

(e) The levels of the factors are known without

arror,
As an example of this last assumptlon, consider the
classical agricultural experiment where various amounts
of fertilizer {(here eﬁnsida:#ﬂ as variocus levels of the
independent varliables) are spread on plots and it is de-
sired to measure the rslationship between yleld and

amount of fertilizer. The assumption impllies here that



the amounts of fertilizer on each plot are known exactly.

Much work, both theorstical and practical in nature,
has been done on the consequences of the failure of the
data to follow the stated assumptions and on methods of
"correcting" either the data or the analysis to handle
such cases, We shall discuss some of thls work below,

When the data doea not follow assumption (a), very
littie énn be done to correct for this unless the true
nature of the non-additivity is known, Thus, in the
physical sciences one finds that the more usual model has
component parts which are m&ltipllcativavin nature. This
follows from the thsories of dimensionel analysis. Here
of course, we only need to transform the data by a
linearizing transform such as by use of the logarithm of
the observation to correct for this perturbation., Of course,
in so transforming the data, other sssumptions may be
violated and this must be examined in each case,

Tukey [7] * has given a method of testing for non
additivity when the type of non-additivity is unknown.
Also, he has given 2 mothod of deriving an empirical
transformation from the data to allow thé obgervations to
be transformed to a set whieh 1s additive, There sre two
features of the work which seem disturbing and would

warrant investigation, and these are

* Numbers in squsre brackets refer to bibliography.



(a) The test and transformation are designed to
be effective agalnst only one particular type of none
additivity and 1t is not clear what happens when the test
and transformation are applied to data which has another
typalof non-additivity. Also, 1é is not clear what hap ens
in the anslysis when the data ias gatually additive, but
the test is significant by chanea‘glana and a transformation
of the type suggested 1s made prior to analysis,

(b) The transformation is derived from the data
itself, and then applied to the data, As such it is a
self-contained operation, It would seem that such an
operation should place some restrictions on ths {inal
analysis and should demand some modification of the density
function of the test statistlc used in the analysis, No
such modification has been suggested in the literature.

This is the only practical suggestion for handling
non-additive data which has been found in a review of the
litarhturé. The problem of transformation has been dis-
aasaedvin general by Tukey and Anscombe (sl .

The consequences of the fallure of the data to
follow the second assumptioneethe error having a Gaussian
or Normal distribution--has been investigated by Bradley[1] ,
[2), Box and Andersen [3], and others. The results of these
investigations seem to show that this 1s a very weak asswupe

- tion; the actual distribution of the errors can be falirly



far from the normal form with very little effect on the
results,

Departurss in the dats from the third assumptione-
stochastic independsnas-nara prayably the most serious
which arise. Good examples of such perturbations are
difficult to find; the effect is present when, if an error
is low in one trial, it is consistently either high or
low in another, Thus, the perturbations will appsar if
the errors are interrelated, \

There 1s very little work reported in the literature
on the analysis of experiments when this assumption is not
true. fThare is one simple important case where usual
methods of analysis do handle correlated error and thig
is when the data are collected in pairs from only two
treatments, Here we assume the model

xij :Ttl* E:i $ i= 1;2; jg 1,".3 (1:1)

where X1 denotes the jth observation on the 1%D

treat-
ment, T: 1s the (unknown) true mean for the 1B tpeat.
ment, and €; 1s the random error term associated with
X4 g9 with

E(e) = ©
In terms of the assumption previously listed, we invoke
adaunptzon (a) in the additive form of (1l.1) and invoke
a gensralized form of assumption (b) in the description
of the random error term &; . The usual hypothesis that
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it 1s desired to test is that the means of the two tresate

ments are equal; in mathematical notation,
Ho: W,=T. (1.2)

If we assume that the errors are corraelated, such that
E(eiey) = dina (1.3)
where Bj% is Kronecker's delta;

a1 if Jak,
= 0 otherwlse,

then it is known that the proper analysis of the data 1s
made by the paired Studentet test. To perform the snalysis;
we form the differences betwsen the palrs: |

TyE Ry Xpy L (1)
and test whether the mean difference is zero, In the
deseription of th&#,tast in texts, 1t is usually stated
that the assumption made 1s that tke differences are
ﬁormally distributed. The analysis is valid under a more

genaral model of the form

xgge T Biv ey (1.5)

where 3; 1s an additive part associated with the j“h‘ﬁair
of observations. It 1s seen that in forming the differences
(1.4), the B; term will disappear and the test would be
carried out exactly as if the wodel had been (1.1). Now if
the data arose from the design kmown as “randomized blocks
désign" with only two treatments, the model would be as
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given in (1.5) where the ) term is an effect due to

blocks. In this case, it can be shown that the method of
analysis of a randomized block experiment is exactly equiva-
lent to the paired Student-t test and thus the design is
valid over a wider set of assumptions than usually given.

In fact, Brandtr[EZ] used the method of subtracting
observations in cross-over trials for the analysis of data,
However, he did not mention the validity of the method
under the wider set of conditiocns given herein,

' There has been almost no work reported on the analysis
of experimental designs when the errors are correlated. The
only results found are due to Hsu [9] and Graybill [15] ,
whose works form the basis of much of the work done herein,
Hsu did not apply hls results to experimental designs per se,
and Graybill, applying Hsu's results to a randomized block
design, seems to have overlooked the fact that the method
developed 1s valid when errors are correlated, and pre-
sented the method for use when the fourth assumption (d)
is invalid,

- The fourth assumption concerns the homogeneity of
varianceavor the errors associated with different treat-
ments, In the example just given of the paired Student-t
test, the variances of the errors may be different just as
thg errors msy be correlated., If the data do not arise

from & paired situation, we are led immediately to the
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Behrena«~Fisher problem, No really satlsfactory exact
solution to this prcbla# has been found,

These and other points concerning the assumptions
made 1n the analysis of experiments and the consequences
of violating the assumptions hav; been admirably summarized
in the papers by Bartlett (4] , coctran [5] , end Etaennart
(6],

There ssems to have been no work reported on the cone
sequences of errors arising in the factor le#eia in face
torial experiments, Thlas would seem to be eapsclally
important, as such errors are the rule rather than the
exception,

The work in this dissertation is concerned with
assumptions (a), (e¢), (d), and (e), and is divided into
three psrts as follows:

(1) The first part extends the work of Hsu and
Oraybill; methods are derived for the sanalysls of complete
block designs when the experimental errors are correlated
and have heterogeneous variances,

{2) A result due to Geary is extended to show that
the estimates of the coefficients of linear and quadratic
components in factorial experiments may be consistent when
the levels of quallitative factors ara~aﬁbjech to errors
of certain type.

| (3) The consequences of analyzing multiplicative
data arising from unreplicated factorial experiments are

exeamined,
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PART 1
TESTS OF HOMOGLNEITY FOR 4XPURIMENTAL DESIGNS
WITH CORRELATLD AND HETEROGENEOUS ERRORS

IX. INTRODUCTICON TO PART I.

We shall, in thils part, develop tests of significance
for complete block experimental designs when the errors
are corralated and have heterogencous varlancses., In all
cases, it will be assumed that the models describing the
observations are linear and that the errors have a joint
multivariate normal distribution,

This part of tﬁa dissertation is dividad into four
chapters:

(II) Introduction

(III) Theory of the test procedures, wherein

derivations of exact analyses for ex-
perimental designs are given based on
models without the assumptions of homo-
geneity of varliances and independence
of errors.

(IV) Applicaticns of the theory to complste

block experiments

(V) Numerical examples, wherein the theory

presented is applied to problems and
worked exampies of the varicu§ types

of designs are given.
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Five ceses hsve been studied; four have been satise
factorily solved. The unsolved case has been studied and
some of the difficulties discussed, These cases refer to
different assumptions concerning the structure of the error
variance~covariance matrix., We write this covariance matrix

as

qux T2 ... Y1p
= |9a Y22 ... 9

g 1 o-p3 PR O-Pp .
R o

The values on the major dlagonal, Ty , are the
measures of varlation of the individual error terms; the
values off of the major diagazisal, 0'13 (13 3§), are measures
of the relations between the error terms, The five cases
are:

Case 1: X, completely known.

Case 2: It is known that 2} 1is proportional to

a given matrix, the ccnstent of pro-
pertioaality being estimated from the
data,

Case 3: All diagonal terms constant and equal,

all off-diagonal terms constant and

equal, The matrix is then of the form



Z=°_, .el ‘e
_‘(, IR

where @ and e must be estimated from

the data,

Case Lt All off diagonal terms are known to be
gero, all diagonal terms may be different
and unknown, The covariance matrix thus

has the structure

6, © ... O]

Z: O Qun =+ ©

Y ’
.

o ° LI Y «w.

Case 5: All terms are unspecified and unknown;
every varlance and covariance must be
estimeted from the data, This is the
most general case; it implies complete

ignorance of any relation between the terms,

In the notation used abc&e. we write the covarisnce matrix

of ths errors under assumptions (e¢) and (d) as
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[l 0+ O
Z-q} o ' ..“o
Lo Q eve '_}

An extensive review of the literature falls to dis-
close previous work on any of the above five cases, cxcept
the last one. Graybill IIS]Apubliahe& work on Case 5, for
a randomized block design aﬁié} it was this work which
suggested the present problem, 'Hauevar, Case I is a
classical case and it 1s felt that some discussion of
this case must have appeared. wWith these etenptlanu, all
work presented herein 1s originsl.

In the third section of hhis part of the dissertation,

applications of the last case (Case 5 aﬁeva) only are worked
out in detall, The formulas for the othser cases are given.
|
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II1 _ THEORY OF THE T:ST PROCEDURES

3.1 _Notation, Let Xy donote the p~variate observation

row vactor[xil xg2 g.'xip] + A sample of N such obser-

vations is denoted by the matrix’

- _Uﬂ e
xl 111 Ilg ssn le
1.2 Ra 1523 “es x@
x a [ 3 = - ‘l . (3'1)
. L] . L .
- * - L
‘XK. _xm XW T x’fﬂ .

We shall assume throughout that Xji, xj are independent,
for all 4, § (1 ¥ J). We also assume that the componsents
of Xy follow the multivariate normal law., That 1s, if

is the p=square variance-covariance matrix assoclated with

the observation vector Xy,

2 = Lol | (3.2)

and M 13 the row vector of means [‘4 1 32,....,‘-&»,] with

E‘[xik] grk » ’, g 1' seng ﬁ; k = 1' s uwy pg (303)
then the density of X; may be written

» -4
£ (X4) = (2% )'g x| em{-%(xg‘eﬁ} 21 (M‘K}‘}{Bwi‘)

We denote this by the notation: Xy~ MVN(M,X ). We also

let Z“s N = [)\,.‘] . (3.5)
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The maximum likelihood estimator of '.0.3 from a random
sample of N observation vectors can be shown to be the
particular sample mean

N
A - Xy '
PJ‘ x1=1=1 s 3 J=1, saes P (3.6)
N

and the maximum-likelihood estimators of the elements of
the variance~covariance matrix, when this matrix has an

unknown structure as in case 5, are given by
A
. Ui B (x.,- -X 21, asi, Pe (3s
Tig=Fh= ﬁ (x4-%4) (ka Xy Led21y deey pe (3.7)

The matrix of sample sums of squares and products is de~
noted by V=[vyj] with vy implicitly defined by (3.7),
and its inverse by él= [-d‘u!. The unbiased matricial
estimator of 2. 1is given by 2= ..'%.i. v. |

3.2 Tests of Homogeneity and Hsu's Transformation.

It is desired to construct practical tests of the
hypothesis of homogeneity of means,

HotM 3= f4 2= see= Mo, (3.8)
in the multivariate case for sppliecations in the analysis
of experimental designs., An important case of this is
given when the variance-covariance matrix 2. has the

structure

Z‘: Iﬂ"' (3.9)
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where I is the pesquare identity matrix., This case forms
the basis for the analysis of variance, wherein the hypo-
thesis of homogeneity (3.8) is the one of main interest.

Hsu [9] showed that in one case to be discussed
below, a test of the hypothesis (3.8) could be reduced to
a test of a simpler hypothesils by the following trans-

formation, Let

yiks xik-xs_p; k'l, seey P13 131, “oey N. (34»1@)

AS Y4y 1s & linear function of aémany distributed
variaten, it 18 itself normally distridbuted witi; means

E(B‘g_g)’-‘ g(xgk"xip)‘ rk"r‘pz F‘kj k:},, sesy P~ (3.11)
end a (p-1)-square covariance matrix & with elements |
cov (Yyx Trm)e 854 Tin” Ciep~Omp+ crpp] s O, (3.12)

where D ip 18 a Kronecker Jelta. The hypothesis of homo
geneity (3.8) reduces to the hypothesis,

Hos ]:6;= 0, 1=z1, ooy p=l, (3.13)

for the only solution to the set of equations
{’*k"l“p) = 0, kzl, 400, p=l,
is given by
r&l'a '&2= sea= Hp*

Thus the hypothesis (3.8) can be tested by applying the
transformetion (3.10) and testing the equivalent hypothesis
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(3.13). Denoting the vector of transformed means (3.11)
by ﬁ, we have reduced the problem to one of the develop~

mont of tests of the hypothesis
Ho: M=H® (3.14)
where M°® 1s a specified vector, for the hypothesis (3.8),
M = ( 0,0,00050 o

Different test procedures follow from different
& priori assumptions concerning the structure of the co=
variance matrix L, We shall consider tests under the
following assumptions corresponding to the cases listed
in Chapter II:

Case 1 Z lmown,

Case 2 Z = Ko, K= [k ] end ts xnown,

Case 3 Ty q-“ for all i, §; 0'13 = constant,
Case i Oyy= 0, 1% J; O3y unspecified.
Case § Z genersl; ne structurs postulated,

Tests of homogencity exist for some of thess cases without
use of the trsnsformation; in these casses, tests using the
transformation are dorived to demonstrate equivalence. The
likelihood ratio principle is used in all teats developed in
this paper.

Case 1. Ve déaire a test of the hypothesis (3.8) when the
sample is drawn from a multivariate normal population with

known covariance matrix, Applying Hsu's transformation as
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in (3.1), the joint density of a sample of N transformed

observations may be written as

iz

R
r(‘zl,..., Y) = (2m) ./ exp{ﬁti\\h%‘ﬁ.ﬁ)l‘\(?-&)'} ’
(3.16)
where Y 1s the vector of sample Neaﬁ![:§1;§zs»~»:§p.1~Xs
M is the ?aeth of tr&nargrneé pepulation means
[f~1.§k3,...,€xp~i1 ’ V is the matrix of aaaple'produat:
and eraaspradncta defined analagously to {(3.7), and /\ is
the inverse of 2: , the transformed covariance metrix., As
2. 1s assumed to be known, thus i and/\ are known.
', Té construct a test of the transformed hypothesis
(3.14), we shall derive the likelihood ratio statistie
and then {ind the distribution of this statistie,
To obtain an sstimate of M by maximum likelihood,
it is sasily scen that the likelihood under the general
alternative (3.16) is maximized for variations in M when
Y = M, making the quadratic form involving M in the
gxponent vanish, Thus, for testing the hypetheais Eozﬁ=ﬁ:

we have the likelihood ratio

-gﬂgj)_d"i .o — eo\® ;— oV
€19 \Zl exp Z“"“’\“' FE-EON - | (3.17)

() © %) exp §-3t AV}
= exp {~1(Y- N A = exp SL-%:Q'& 5 (3.18)
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where M° 1s the vector (0,0,004,0)p We use Ql as a test
statistic. When the null hypothesis is true, {-—'4-1&1}
18 the exponent in the distribution of ¥, and it is well
known thag Ql thus follows the central chi-square law with
(p~1) dagéﬁea of frecdom,

If the null hypothesis 1s not true, let ths true
transformed vector of means be dencted by hkﬂ = H, and

write
’ [ R X /

§=NZ 2 Ry = NMARL (3.19)

Ast g
Then Q1 may be shown to follow the nonecentral chi-square
law;
¥ ey ce B
(3) e (@ | . (3.20)
sl T r(es)

For a table of the paregntaga points of the non-central
chi-square distribution, see . Fix, [10] .

The usual likelihood ratio toest of the hypothesis
(3.8) without applying a transformation may be found in
an analogous manner, Let r be the common value of the
means spacified in (3.8), Maximization of the 1egaritﬁa
of the likellhood function with respect to ts leads to the
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equation
' P P A L 4
~ZE TN A =22 X = o
Az 3=t 3 r FEUNEL 3

yielding the estimate

14 4
P> >\;\"i:.

= Az . (3.21)
Al

as=1 J=1

On forming the likelihood ratio, we have

exp {“‘;_tr AV - ﬁi.%) A (i-—ﬁ)*}

exp & -1tr A Vl
=  exp {- %{i«-&} N (i"ﬁ)’l = exp g’g@} ) (3.22)

where ;;:[Tﬁ’ fu 2 veky rﬂ, fa being defined in (3.21).

We take Qa a8 our test statistic. It 1s easily found that
Q, follows the )\ law with (p-1) degrees of frecdom. We
now show that Q and Q, are 1dentical,

Let the transformation be as before:

Vi3 = %34 = Xqp J=1, «cay p=l (3.10)»
and let

* pepeated
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It should be noted that the covariance matrix of the
[3'13] as defined in {3.10)* and (3.23) 1s not the co-
variance m&trixz « Howaver, Z is the rirst (pnl)th
principal minor in the covariance matrix of the [y, 5]

which we denots b}r Z It should be further noted that
the first (p«—l) principal minor of /N ~ = 1s not
Biven by A « If >\“ is an ¢lement of /\ s it can be

shown (21| that /\ is related to N\ by
Arg= Nag- Ap Apl 1,310,001, (3.24)
A pp
We may write the transformation in matrix form as
Y’» =2 11'1’ H 1= l,gu-yﬂ, (3'25)

where Yq 1s the pneelumnéa row vector [yn.”yiﬂ.
Xg‘ is the p~columned row vector (xil"‘xlp] and T is

given by
"1 0 4.0 O O
01 0 0
. . .

T = . . « . (3.26)

. » . .
0 0 1 0
“l =1 Jue =1 1- v

Let i - |

(1, 1, eeen 1], | (3.27)
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Q-

a row vector of p unit slements. -i-%-‘ s from (3.22) may

then be written as

R . (XM A (FB)
v
= IAZ - WAZ - XNbos B R, (3.26)

But f» » 88 defined in (3.21) may be written as
A ..i/\ ghxe (3.29)

B pog (3.30)
Substitution of (3.30) in (3.28) leads to

_;g. S O gf.jl\iu ;‘1;/\3! ’

- xhxs - %.%:J.. . | (3.31)

The matrix T Has a determinant squal to 1 as ean be
seen from i1ts form and thus possesses an inverse., DPenoting

the inverse relation for the vectors of sample means by

X - ¥l (3.32)
we have

Qg = ‘i.rl/\ 1 ¥ . A T okl..g-]:
L @.Y A ‘ (3.33)
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But the inverse of the covariance matrix of the Yta is

given by ..
AN = Nzt (3.34)

‘and (3.33) 1s written as

QL. FAT . -.,}ii; . .
= | -(iT.LjQ T (3.35)

But 4
ir= Jo, 0, ...,0, 1], (3.36)
sud .o
LAY Y LR (3.37)

whoere Xi j is the :3““ element in N\, Purther,

L AN 4 Z“>~, CP (3.38)
and -
'¥/\Y' - Z“Z)\:MJ (3.39)
Thus

ZZ N5 9, - (}‘_5:.,:;?;;)‘

6—' ’3' ”
‘ZZ(>~ >‘j‘_>_‘_h T.5; (3.40)

FProm the relation (3.2}) 1t is seen that we msy write
this as

o poy .

53520 L HUE R

Y B N

_Q .
=5 (3.41)
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Thus, in this instance, the eapplication of Hsu's transe
formation leads to the same result as that obtained by

direct aspplication of the likelihood ratio procedure.

Case 2, Let us assume that the variance-covariance matrix
has structureX = ¢ K, K known, This is one generallization
of the ususl assumption of the analysis of variance that
the covariance matrix has the form 2 =0 I, where I is the
p-square identity matrix. The Hsu trmafsmabim maps K
into X, and i: into ¢ il, where the 1JR eloment of K is
defined by

k13= kls - kip - %;"" kﬂy’ 1,3 = lyeney p‘lv
The likelihood function in its general form may be written

[ove] 1K) exp {riet KV -R @RTT | a2
As in (3,16), Given the null hypothesis (3.14) true,
maximization of the logarithm of the likellhood leads, with

some reduction, to the maximizing equation

a-l

..1 i1
-1‘.4- (’ - )(Y ’ =0
’-"%M 7 = J=1 Z R ULl of

from which we obtain, on setting ¥ =0,

1 2 ¥ - (3.43)
T = ‘ %_‘j E .k % Te1 Tey
N(p-1l) 11 j=1 t=1 ‘ ]
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Under the general alternative hypothesis, we estimate ¥
by ¥ and on maximising the logarithm of the right hand
membor of (3.42) with respect to O, we obtain

Hp-1) & - 1 _trikli-o, (3.44)

from wiich we obtain thne estimator

-1 trklv._a P oy, (3.45)
N(p+1) N(p-1) 11 J-

Note that we use O as the estimator of the variance when
the null hypothesis 1s true and s as the estimator under
the general alternative hypothesis., On forming the 1ikéli-
hood ratio we find, after some simplification, the ratio
N(p-1)

[__u_:] * (3.16)
When the null hypothesis is trus, N(p-1l) d* 1s the exponent
in the density of ¥, and \ia thus 61“;;}:%@& as a X with
N(p~l) degreea of fraedom, This quadratic form may be
partitioned into two parts

l 9 -1 1 '
E:—_ itd y
‘l- tgl 13 =1 gi

8 =S T R ~
- N ~ o
= t%r 3 W mE N7y (3.47)
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Application of Cochran's theorem [1?] to (3.47) shows
that the two terms on the right-hand side are independent,
end further that the first term on the right-hand side is
distributed as & Y with (p-1) (N-1) degrees of freedom;
the second term on the right-hand side baiﬁg distributed
independently of the first term as a ')Cwith (p=1) degrees
of freedom. This ean be demonstrated by examining the
ranks of these two quadratic forms.
/ The first form is given by
A %E? EE} it f& (ye1-31) (3p4-F4), (3.48)
or J=1 1i=1 t=1
and, on multiplying it out and colleeting the matrices of
the component quadratic forms, we obtain & (p~l)N square

matrix (with matriciel elements) proportional to:

- . ﬁ
(v-1)xr x!  xto,.., k!
K1 (we1)E*r kY ...  -x-1
(3.49)
| k-1 X1 gl ... (Hel )x"”; .

If we add to the left column all of the other columns, the
first column vanishes. Then, working on the (p-1)(N-1)
principal minor we obtain, after some simplifiéntion,
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0 0 0 0 vee 0 o |
0 Nk-l o 0 ves 0 0

-1 ‘
0 0 NK™t o - 0 o

(3.50)

L J L
. .
» L ] ) i
0 0 0 0 ves §k-1 o
0 _yg~! .mx-l owg-l ., -ng-l x| .

Prom an examination of (3.50), it can be shown that 1t has
rank (R~1Xp-l)., The other quadratic form in (3.47) is given

by

p=1 *1.11___
e 5l oy, s
T i1 1 17

and it can be seen that the matrix of the quadratic form 1is

proportional to ,
‘ L I <o

kr xr ... k%
(3.51)

- - * -

"} gl ... &

N -

This matrix is easily shown to have rank (p-l). The
quédratic form on the left-hand side of (3.47) has rank
N(p~l). Thus, adding ranks of the forms on the right-
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hand side, we obtain
(N-1){p-1) + (p-1) = N(p-1)

which, by Cochran's theorem, demonstrates that the two
component forms in (3.47) are 1néepanﬁant and that they
are distributed as 7Ctvariaﬁea with (p-1l) (N-1) and (p-1)
degrees of freecdom,

The _2 " root of our 1ikelihood ratio (3.42)
N(p~1)
‘may be written as

2

N{p-1)s 1 .
- - . o (3.52)
N(p-l)o 1+Kzzkij 4 ?J
01 P
2 I gl 'ij
We take P=l Pl ,_ _
(i = Wy 5.
Q,= (1) _e¥iz1 fa) 7 (3.53)
P=l pel <44 -
1 k Y,
(= & 3‘-:-1 13 )

as our test statistie; it is easily seen that this has

the !;diitrlbution with ‘pwl)”and (F=1) (p=l) degrses of
freedom when the null hypothesis is true,

| when the’null hypothesis is not trus, it can be shown
that (3.53) follows the non-gentral F-distribution which

here depends on the parameter
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R e :
Zl jzl kil |“$ My . (3.54)

The non-central F-distribution has been tabled by
P, C. Tang [11]

We may interpret g in (3.54) as the deviation of
the population mean of the 1®2 variats from the population

mean of the pth

variate, ,

Consider j:he special case K=I., Then K has elements:
i'u: kyy +ky, =25 f:“-km, =1. The elements of klJ may be
shown to be kil- 2‘:3. p :%__, for 1 # §3 1,5=1, see,p~l.

In this case, we cbtaln the statistie

q = N (N-1) [Z o= ‘P‘ Zv,é ER "’] (3.55)

[ = Bl

Z‘rn "%‘ZZ-_’}:J

izl i=t j=!

which may be written in terms of the original observations
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or
F _2 [ 2
X, - L X }
Q= NG {Zr P (a; ) , (3.56)
[ 4 (4
Z"rin -"p— ‘ZZ— 1)
When p 2, the statistie reduces to
N(N-1) (%-%3)?
= T - (3.57)

Vi1 +V22 =3V,

which 1s distributed according to the Pedistribution with 1
and N-l degrees of freedom. It is well known that the square
of the Student«t statistic, with # degrees of freedom,
follows the F-distribution with 1 and # degrees of frecdom.
We may identify (3.57) as the square of the Student-t
statistic for testing equality of means In the palired sample

case by noting that '11'* Y22 - 2v12 estimates Var(x;-xp),

and is the usual aatinato of %hat variance.
The test presented was based on Hsu's transformation,
which has two desireble properties. First, the composite

null hypothesis (3.8) is transformed (at least in the means

space) into a simple hypothesis.

become clear in section 3;1)2

The second advantage will

However, from a strict

multivariate standpoint, we may examine the effects of
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making this transformation by constructing the best test
of the hypothesis of homogeneity directly, and comparing
powers of the two methods. It is not patently obvious, at
this point, that such a test would be either the same or
dirfsrent from thok test devolapbd above, By the likelihood

ratio test procedure, we find a statistic

> > &9z
(n-1) [ii S X, X = R
- X, X- < i
Q= Ne ™" izt it : J% 1-;”"’ , (3.58)
| 4 e .
(p-0) Y 2 &y
is| sll

which has the Fedistribution with (p~l) and p(Nel) degrees of

freedom, When K=1, this reduces to

P e _ a2
Np CN-D {Zit (R }
= L r , (3.59)
2
L=
and for p= 2, we have
N(N-1) (Eluiz)z
' (306@9

Vi1t Va2
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which has the Pedistribution with 1 and 2N-2 degrees of
freedom. This may be identifled as the square of the
Student-t statistic based on two non-paired samples with

the same number of observations in each sample. Thus,

" application of the transformation leads, in these apoclal
caaed, to generalizations of the paired t-statistic, while
stralghtforward application of the likellhood ratio procedure
leads to a generalization of the nonepaired te-statistic.

In terms of the analysls of variance, the atatistiec (3.59)

is the statistic used in a one-way classification, while

(3.56) 1s the statistic used in a two-way eclassification,

Case 3. Consider now the case wherein the variance-covariance
matrix hes a structure of the form: 0yy= CT': 1=1, sveyp;
C14=PT, 1 #3, 1,5 =1, «.., p. The spplication of

Hsu's transformation ylelds a covariance matrix with elementas:
o"‘ii;—. 2 G“(l-r}. 1=1, see, p=13 0.‘13= 0";(1-?). 1# 3,

1, =1, eeey p=1l, Thus this case reduces to Case 2, with
iil‘-' 2, liu =1 (1 # j)s As these constants are the same

as the ones developed in the last section under the
assumption that K = I, we may use the expression (3.56) as
the test statistie. It 1s a rather interesting fact that

this should be so, for the statistic (3.56) was based on

the model Z= IU',',' and we now find the ssme statiastic

arising whon we use the model postulated above.
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The distribution under the alternstive hypothesis 1is

glven by the nonw-central P.distribution, which depends upon

the parameter (3.54). As the constants k'J are known in

this case, we write (3.54) as

*

§ - BE g

(- iz 5= Mo

P
N O Y}
'e‘(t-ﬁlzr’“ _*l;t'
(3.61)

Wilks \'_12‘] developed 8 test under the same hypothesis,

without transformation, and tormed the statistic so found
Ly« In our notation,

:% = | 'a‘_-gi' (3'{)3)
i o » N r e v e
Np {Z‘ Ve T Ppa 22““ z * r—‘_-‘— Z_(x;-t)
ve)

where

= 1 P -

X =&

IR

The range of L‘ is from 0 to 1, and I.n, given the null

hypothesis true, has the @*aistmbutim with parawmcters

1T (N-1) (p-1) and L(p-1). As noted by Wilks, the L,
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criteria may be rewritten as an F-statistic by considering

z(N-1) (p-1) (1~Ly)
,' T (3063)
= (p-1) Ly

and then F has the Fedistribution with (p-l) and (N-1l) (p-1)
degrees of freedom, Wilks concludes that..."The use of Lg

as a criterion for testing Hg (the hyrothesis of homogeneity
of means) 18 equivalent to an analysis of variance test for
testing 'row' effects in a p x N rectangular layout when

rows are aaaéciated with the p variables in the multivariate
population, and columns are associated with the N individuals
in the semple.” Writing the statistic obtained by Wilks

in the form of F (3.63), 1t is easily seen that this statis-
tic 1s identical with the statistie (3.56).

Case L., We now consider the baso where the variance-
covariance matrix has the structure: g4 possibly different
for different i, Gﬁj‘= 0 (1+# j). The application of
Hsu's transformation leads to a transformed variance-
covariance matrix of size (p-1) x (p-1) with elements:
Tig= Tag+ Tpp (1= 1, suey p=1) and 034 = @, (1 # 1),
1, =1, see, p=ls Thus, the tranaformed varianeqfeovarianco
matrix has paasibiy dirferent dlagonal slements, and constant
covariance olen@tm

The straightforward application of the likelihood
ratio test procedure leads lmmediately to a basic difficulty
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in the estimation of the variance-covariance elements by
the method of maximum likelihood. Under the null hypothnesis,
we write the partial derivative of the logarithm of the |

likelihood function with respect to &kk as

Y70 S VIR S S N V.. o
Sew = Lo TEZE 5o Bl =0 (3.80)
S8ince

Xy - 2 Ll _(3.65)

6-;.. - 6"" - (&.. - 6")( a.ﬁ _&‘) { '+ 6" g‘(a‘nu' &‘).']

where 5“ is Kroneocker's delta and G = T 43 for all
1# 1 (1, =1, ¢eay p=1),

L= 4., P (3.66)

P ‘pa N
~NX + Z x: ‘x' x'k xr - 0) L-‘).-. “)
e Z, LA Z X & (3.67)

The e¢stimation equation obteinsd when the logarithm of the
likelihood function is partially “ifferentiated with respect
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o T

to U 1s Quite involved, The author has not been able to
clear the exprsssion _9 ?‘*‘.i of terms inUjyq and T\ Tals
set of equations uas\stag;;d by Russell [IBT}uho has also
falled to find a nalutién for p é‘h. The solutions found
in the case p = 4 are in closed form, but are rather in-

volved from a computational standpoint.

gase 5. Finally, we sssume that the varlance-covariance
matrix must be estimated completely from the sample; no

a priori information or assumptions about possible relation-
- ships within the matrix are postulated, Application of
Hsu's transformation to the problem rad&caé the hypothesls
of homogeneity of means to an hypothesis that the transe
formed means are zero., In this situation, as pointed out
by Hsu [9] s We may use the well known likelihood ratio
statistic known as ﬁ@talling*a~fa atasictie~[1h] s Where

= N7 17, (3.68)
Y being the row veetor of transformed means,
Y=[7]-05 -%] ; 1t =1, .co, b2

and i denoting the matrix of sample products and cross
products, with .

;T;s = Z_("Sui ‘Ri)(ju:,"gi)

o=}

=y -~V vy 5 ALt
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It 1s woll known that Nepsl T2 follows the Fedistribution
p-1

with pnl and N-p+l degrees of freedom, given the null hypo-
thesls true. Wwhen the null hypothesis is not true, Nep+l 2
p-

has the non-central Pedistributien depending upon & parameter

* l‘. - .« o
“3« T Z, Xy R s (3.69)

with p~l and Nep+l degrees of freedom,

In the other cases, we have derived the best test of
the hypothesis of homogeneity without performing the trans-
formation, where possible, It doss not seem possible to do
sc in this cagse; in fact, Hsu's transformation was introduced
in this particuler case to give a method of testing the
hypothesis of homogeneity (3.8) when tha govariance matrix
is perfectly general,

We should note that &2, as defined by (3.68) 1is not
the T° as dsveloped by Hotelling., If 72 1s the statistie
developed by Hotelling, and T2 1s the statistic defined in
(3.68), then S | |
# . (ma)e?, (3.70)

When p = 2, we have

2, | ‘s s
?2e M8 Ry) [ vy 4 v - 2p | N Ry -R)



——2
N (Xx,-Xx,)
*17%2 (3.71)

[}
-

11t Va2 -
A_nd (N1 )'1‘2 can be ssen to be the square of thse pairsd two-
pample t-statistlc, following the F-distribution with 1 and

Ne~l degrees 61‘ freoedon,

3s3 Discussion
It should be noted that the tests developed herein

ware developed for an additive model of the form

xikz r‘( 1+ € i1k » i= l,oo.. P k=l,...,K (3072)

In the trmuromation, we subtract values of xwith k held
constant; thus, the sawe final form would be obtained if
another component, only dopend).ng on k (perhaps a block
ettect) were added to the model, Denoting this component
by ek’ the expanded model would be

Ty = P+ B+ €axe | (3.73)

T™is holds true if ?k is either a fixed or random component,
In case 2 with )= Ko™, we obtained the test statiaﬂo
Q.3 (3.53) derived by use of the transformation and found
that when K=I and p =2, Q3 reduced to Qh (3.56), the paired
t-statistic, We then obtained the statistic Qg (3.58)

derived without the transformation and found that, when t= 2,
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and K = I, Qg reduced to the two sample t statistics In
case L, with @ ¢4 30"; '0’“ s QG", we derived the test
statistic by use of the transformation and found that 1t
was identical with Qn{ Wilks's test statistic (3.62),
derived under these same covariance assumptions, but without
use of the transformation was found to be identical with
Qh‘ Thus, since the use of the tranaformation produces
statistics which are valid when a block sffect 1s present,
we see that the usual test of homogenelty of treatments

in an analysis of varlance of a two-way layout 1s valld
also when all treatments are equally corrslated,

For the case p * 2, when 2 = Ia® and when block
affects are absent, the assumption of pésaible corrselations
leads to the palred t-test when the appropriate one 1s the
two sample t~test, «“hen block effecta are present and
2= Ioc* , the use of the Hsu transformation is still
correct and leads to a test equivalent to the palred
sample t-test. Again, when 2, is general, the paired
sample t-test is appropriate whether bicck effscts are

present or absent,
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IV __APPLICATION OF THE THEORY TO DESIGN OF COMPLETE
BLOCK EXPERIMENTS

4«1 Graybill [15] seems to have been the first to note
that Hsu's tranaformation could be applied to the Randomized
Bloek Design when conﬁitioha arise which @uke thé usual |
assumptions untenable. The model for fixed effects is
usuaily givéb as »

Feg =p+Tes Bye €4g 171, e P35 71, een, v, (La1)
where Ti3 1s the observed value on the %P treatment in the
jth block,

P‘in the overall mean,

Tiis the (fixed) added effect of the gth treatment,

with %_'1—; = o,
B; 1s the (fixed) added effeect of the JB block, with
r
St o,

and 513 is the random normal error, with

B {5,770, B [2g; €m]= S4xSgmT s (4e2)
where Sm, ® m are Kronecker deltas.
To test the hypothesls
Hot V= To= wes Tp (4e3)
we proceed as in rorming‘the variate
Xgq =¥y =Fpjer 171, ceey pele (4elg)
It is ssen that, under this transformation, the model for

the new variables is
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xij=|“' + "I'1+‘33f€13-’t-\“'\"p‘ ﬁ.‘l-gpj

(Ty=T) + (E1g-844) (4. 5)

]

and this is of the same form as given in (3.9)e It is seen
in (4.5) that the transformation both reduces the hypothe=~
sls to a simpler one, and removes block effects from the
model,

Graybill applied the transformation only to Case 5
for a randomized block design, In making this transformation,
he seemed to be mainly concerned with variance heterogeneity
and not with correlated errors. Thus, he was mainly con-
cernod with Case L, but operated as though it were a Case 5
problem, Thus, Hotelling's Ta as defined in (3.68) 1s
used as the test statistic. It has been seen here that
72 follows the P-distribution, with p-1 and N-psl degress
of freedom. It should be noted that the restriection that
N 3 p requirss as many or more blocks as treetments.

The hypothesis of equality of fixed block effects 1s
usually checked in the analysis of variance of a randomized
block design. It can not be done by these methods, for if
a variate from any other observation vector is subtracted
from a variate in the first observation vector, then the
two vectors are correlsted, and indsependence no longer holds
between observations.

The usual analysis of the randomized block design

assumss a variance-covariance matrix of the form glven by



L5

Case 2, when the known matrix K is the identity matrix I.
The statistic in that case is given by (3.56), and it has
been easlly verifiesd that (3.56) is the same statistic
usually used in testing homogeneity of mesns in a random-
1zed block design. Thus, the application of Hsu's trans-
formation under the usual assumpticns leads to the same
results as the straightforward method of derivation. Also
it should be noted that, when all variates are equally
correlated as in Case 3, the statistie (3.56) 1is also
applicable for the analysis of a randomized block design.
Graybill, in his original paper, stressed the point
that this analysis was valld for heterogeneous variances.
The work by Box [16] and others would seem to indlecate
that the fact that this method of analysis is also valid
under the presence of correlations in the errors is of

much more importance.

4e2 Power of the Analysis. It has beon seen that the

assunptions assoclated with the usual methods of analysis
are not made in general in the tests presented herein,
As reductions in the assumptions in tests of significance
usually lsad to loss of power and effieclency, it is natural
to inquire as to the sige ofdﬁﬁiuﬁ?aa incurred.

The first comparison,we shall make concerns the loss
in power incurred by assuming that the covariance matrix is

perfectly genoral {(Case 5) when actually the covariance
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matrix hes the form Z= Io- (as in the usual analysis),
The parsmeter of non-centrality for Case 5, as
glven by (3.69), 1is

g Rl opelo - . o B oA (1e6)
£5 & ;%1>\13 bL by T F

where M is the row vestor of true mgans[rl;] of the transe
formed variates. It shall now be shown that the parameter
of nonwcentrality (4«5) 1s the same as the one usually
associated with the ranicmized block design, when Z = Io“ ,
Hsu's transformation may be written in the matrix notation

Y=XT (4e7)
where ¥ 1s the (p-l) colummed row vector of transformed
variates, X is the (p) columned row vector of original
variates, and |

KR =

0 0 0
1 0 L2 G

(4.8)

Crven Oy

0 0 ...
[ <1 -1 =1 .ee =1 |,

o

a p by (p~1) matrix, This form of the transformation is
diffarent from (3.26).
If J denotes a {p~1l) columned row vector Jt[l, l,...;
1], then T may be written
JICH B AR O (4e9)
where I is the (p-l) squaré f1dentity matrix, If the untrans-
formsd covariance matrix is 2_, then (4.6) may be written

as



L7

E uAN' = Ny o (s 2)-lpome (4.10)
P P

where M 1s now the row vector of original means [}Ti] .

Under the assumption that 2, = Ic", we have

(12 1)t ’%""Tm‘l. (3=t
(v

IR & SR WP T X 5 (4e11)
a* P
Thus
B MAMY. N O MT(I - L JvJ) ToMe
P Por P
= . M(rrt - X prrgT)M (he12)
po : P
But r 1
| 1-Lan.dn |
T - 2eyrgre P )P
p —-——-’—-—-——{—-———' (h’13)
‘LJ : 20!
i P 1 P |

If we partition M between the (p—l)?h and pth element,
denoting this by '

M= [VN 3 "I’p ] "
then

TFuAn = . (umt - m3fm? = L 7 Jm? = lngt T s
P Po"~( v P . P 'Tpﬂ i‘m Tp+Tp f’_'rp).

P (ha1l)
Slnoe§:T3’= 0, then Jm' = Tp, and (4.1l) reduces to
1 .



- L >Ny (4.15)

But N i 1y s the parameter of non-centrality as-
P 1=1

soclated with the usual analysis of variance test. Thus,

the test using TZ and the ususl test have the same parameters

of non-centrality when PHENE €5 » and comparisons may be
made in terms of this parameter, Both statistices are
distributed as F, the T° having (p-1) and (Nep +1) degrees
of fresdom and the usual statistic having (p-1) and

(N=1)(p=1) degrees of freedom. The ratio of the power of

the Ta test to the power of the analysis of variance tsst

for a randomized block experiment with five treatments 1is
shown in Pigure 1 for an ®= ,05 significance level test,
and in Pigure 2 for an * = ,01 nignirianneﬁ level test,

Several points should be noted:

(1) The power ratio is less then unity, implying that
under conditions whem 2 = Ic¢*, the 72 test (Case 5)
will not detsct differsnces as often as the analysis
of variance test,

(2) As the number of blocks inereasss, the power ratio

approaches unity, and is asymptotically equal to

unity.
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(3)  The minimum ratio of the power in both casss occurs
generally between f =1 and f=2, For 6 blocks,
5 treatmsnts, & =,01, the minimum ratio is .08 at
f=2., This is not surprising considering that the
degroes of freedom associated with the T2 statistie

are & and for the analysis of variance, 20.

(4) Purther examinations show that less power would be
lost for a decrsased number of treatments, and more

power would be lost for an increased number of

treatments, gilven equal numbsrs of blocka and equal
size paramster P. When p =2, the two methods have
equal power, This 1is shown by the equality of the
statistics (3.57) and (3.71).

Le3 Single Degree of Freedom Comparisens

Singles degree of freedom contrasts may be tested
in the randomized blocks c¢sase as follows, Suppose that the
experimenter 1s intsvasﬁed in some contrast
P

61 = Zi'. ki Ti = KM! (416)

where K is the row vaetor'[ki] obeying the restriction
2k, = KJ'= 0, with J defined in (4.9)s M is the row
vaetor*(?ij « For each block, we may form the statistie

o, = ¥ (4a17)

where Y 1s the row vector of sample means of the p treate
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ments, It is sasily sesn that
elé,] - xe[¥]) - k[psr v s o 93):!]
T

- “mi-px‘

= M (4.18)
N
since @ = 0. The variance of % is
Thi-o )

var [3,]= x Z & (419)

which we estimate by

A

var [G,] - Kk = &1, (4 20)

The hypothesis H,: KM' = O may be tested by forming the
statistic |

[x & x']
which follows the Student-t distribution with (N-1) degrees
of freedom,

Of course, if we have another contrast

"’z + HM! (4e22)

with H J' = 0, then

Gov (0)C,) = KX H! (4.23)
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which will not, in general, be zero sven if K i'= 0, In
gensral, orthogonal contrasts do not produce independent
teats, and without a knowledge of the true covariance matrix
"1t would seem impossible to construct independent single
degree of freedom contrasts. Thus, for cases 1 and 2,

where 2. 1s either eamy}ately known or a matrix K pro=
portional to 2, is known, we may find orthogonal contrasts
which are uncorrelated and, due to normality, independent,

An iwyortant exception to this 1s where all variance elements
are identical, and all covariance elements are identical.

Then, we may write the covariance matrix as
PARL SENE: NP LI (o 2L)

where e is the intraclass correlation coefficient, and o 1is

the common variance term. Then, 1f K H'= 0, we have
KX H'= O K [(Lbe)I* (J‘J}K‘

o[- p)xm + ptx g un]
o. - (4e25)

S8ince this case 1s analogous to the usual analysis of
varlance, we may compere the square of the linear contrast
with the usual error term obtained in the anslysis of

variance,

4.4 Latin Square. A Latin Square design is one in which

avery treatmoent appears once and only once at ezch level
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of two factors, usually called rows and columns. As an
example of such & design, consider the following 3 x 3

deslgn, where A, B, C repreasnt the three different treate

ments: - ,
Cols, 1 Col.2 Col, 3
Row 1 A B c
Row 2 B C A
Row 3 c A B

The methods used for analyzing such a design must depend
upon the assumptions made. Two oxampleé will be given
herein,

If X4 §iom is the observed value of the treatment (1)
which sppesrs in the j*B row and k*P column of the mbP

square, then the model 1s

Xigim =Pt Lt By Xt Y+ Eypd LoDk = Lies,r
m=1yees, N (L4 26)
where
|* is the grand mean over the whole experiment,

T. is the added effect of the 1'2 treatment with
. |
2.7 1= O
i=1
(4 is the adied effect of the J™ row, with f?; = 0,
1

ka is the added effect of the kth column, with
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L r
bl
1
\’ 1s the added effect of the m'® square, with

% "n’ ﬁ'v

m=1

Associated with the vector of errors [EiJkI] we
shall asaume & general covarlance matrix Z + In the usual
models, Z = oI, ,

To test the hxpo‘h@gais‘ H;: Ty = Vo= vee= Ty we
first form the set ["1.,3] s Where

x4,m= 2 2 X4 fiom

§ ok
(gk)with 1

R A A PR 2V a2 €4 um, (4e27)
(ngwith 1
The notation, [( Je)with 1], means summing over all j and k
where i appears. On forming the set [ Xy .m = Xp, ;,,]':.-
[Viun] , We see that

’1..:*“""1""':»’*%% €4 50m - Z;Zk € »ikm
(Jx)with 1 , (Jk)with ¥
(4.28)

thus, the test of the hypothesis of treatment means 1is made
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by testing the hypothesla that the [’1..:] have a set of
means all zero.

‘Z:’ is formed in the usual way from the matrix of
[74,.,m] under Case 5. For the other cases, Zy is formed
from the known forms of 2 ..

It is obvious that row and column e fects mey be
teated in an analogous mannsr, lﬁmming over allvaf the
factors except the ons being tested, and performing a
subtraction to reparametrige theku@dol.

If the original vector In has assoclated with it a
variance~covariance matrix with constant covariance and
constant variance elements, then it can be shown that the
tests of equality of row means, column means and treatment
means are uncorrelated pairwise, as in the case of single
degrese of fracdom oentrant'*

It 18, of course, often possible to design an experie
ment so that the restrictlon that the number of squares
exceeds the size of a square may be dropped. Thus, if it
is possible to arrenge the square so that the correlations
between the major classificatlions are zero, teats of the
homogeneity of the major classification means may be made
by means of the usual analysis of varlance, retaining the
advantages of the Latin square. A§ an example, suppose
that 1t i1s desired to test the effectiveness of an attache

ment to some machine tool, and it has been determined that
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the errors assoclated with each attachment are correlated
in time. Then, a Latin square design could be used, as
shown bslow:

Let My denote the ith machine tool, r mschine tools being

available in all, Let T, represent the different time

J
periods, J =z 1, «uss, r, and let 4, denocte the r different

attachments, We could then use (for r « 3, say) the follow-

ing design,
™, T, T
b e L T
Ag My H3 “1
Ay My ¥y M

The totals for Al'*& and 53 will be uncorrelated under
these conditions, and only two mquares would be required,
as a minimum, anslyzing the totals by a two way classifica-

tion (considering squares as blocks).

l4s5 Analysis of Factorial Arrangements, We will consider

the analysis of factorial arrangements in two scetions.

First, the analysis of a p x q arrangement in randomized
blocks will be discussed, and extensions to p x ¢ X r X 8 X ...
arrunguments}will be given, We wlll next consider confounded
arrangements, fractional replicates, and balanced confounded
arrangements, The analyses of these last threes types of

arrangements are given in terms of singls deg@ree of freedom
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contrasts, for in the majority of the cases where factorial
arrﬁngaments are used, the analysis of single degree oi‘
frcedom contrasts seems most valuable,

The p x q Pactorial Arrangement, We are concerned

hersin with the relations between varlations in response
and changes 1n thes levels of two factors, say A and B, in
an sxperiment; the experiment belng run to p levels of A
and q levels of B in each block, giving pq treatment combil-

nations per block. We assume the usual modal

XgJk spo+¥g+ ?j’vk*(“@)ij + €43k 3 1z lyeee, P (4e29)
J = 13::}3 Q
k : 1'jua' n

where ‘A = grand mesn of experiment,

; ' P
&; = added effect of the if’h level of A, with Z«i s 0,
| =1
@ §= added effect of the jth level of B, with
q Lo
= ¢ 3= 9
j=1 ~ N :
Y = added effect of the k" block, with > Y, * 0,
kel

(u@)“ £ interaction at the 1P lsvel of A and jth 1svel
of B, uun% (x$)gy = % («f)gg = 0
eidk 2 random error associated with the combination (1))
in the kB block,
As bafore, we make special assumptions concerning the random

error term, The usual assumption 1§ that
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Cov [-gijk Qrst] = Skt Sip Sgs 00 s (Le30)

where S“ is the Kronecker delta; Sij = 03fr L £ 53
S), =1 if 1= J. In the most general case (Case 5), we

assume

Cov [Eijk € rst] = Skt Tijrs » (4.31)

we assume ' \ )}ﬂ\j It v?{mr(, Ev Ao

Oov [eijk El‘l‘b] - Sk‘b[ Oin Sjs“""(f" Sir —Sjg)?o‘].
(4.32)

We consider tests of significance of the A«factor, the Be

and in the case of equally correlatesd variates (Case 3)

factor and possible interaction between them, The hypothe«
ses to be tested are:
(a) Hojt X7 €Xp & «oe = (Xﬁ
(o) Hgps ?’1 =« P2s .., a(q \
(e) Hgo3t (xP)yy = (222 eee @ (@) = eos =
(*Plpq

To test the flrst hypothesis, we first sum over the different
levels of the Befactor for each A-Tactor. Letting xi“k denocte

the sum of x4, over j, we have:

q
Xy % 2 ®ge ® apraxysT6, "Zj(“@ dygraY e+ Teg gy
j=l J J

- Q‘J. +q°‘1 + qvk+z Eijk » (1‘433)
J
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due to the restrictions in the model. We then perform

Hsu's transformation, which ylelds:
Yoo ® X = Xpoe ¥ AlXy- “p’*%eijk - Z pcd 15 1
ooc,p-lt (h-}h)

As we assume the vector [f- 1Jk] to be distributed as a
’multivariato normal vector, then the row vector of (p-1)
elements [ 5 15k ° Z€ J also has the multivariate
normal density, and the vector [Yi kJ may be sub jected to
all of the tests given in Chapter 3 for the different
assumptions ooncerhing the covariance matrix of the originsl
observations,

It should perhaps be noted at this point that all of
the restrictions imposed on the model aré'nat required for
the valldity of the test procedure. Thus, in equation
{4.33), we only need impose the restriction that

Z (= @)S.j 2 0. They are left in the model for two reasons:
(1; If the interactlon ef‘ects are not all zero, we could
not reparameterize the model to obtain the test desired;

(2) the restriction aids in interpretation of the model,
giving operational clarity to the different components.

A test of significance of the effects due to varistions
in the Befactor may be mdde in an analogous manner, first

summing OVer‘the A=levels, psrforming Hsu's transformation
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on the resulting sums, and applying the tests appropriate
to the assumptions maede concerning the error.

To test for the signiflcance of the interaction terms,

we define

X1,k ‘% %"13& =Mooy Ver 8y 00 (4e35)

x.Jk‘%Zi X4 gk =+ ﬁj+ VI*E.J):' (L4 36)

=1
x..w;ﬁ% G tp VerE Lk

If we define

Bigk ® Xeik < Xogk " Xkt X, k0 (4e37)

then it 18 ssen that

and, on applying Hsu's transformation to the 24 K0 WO

obtain (pq-l) values Y4 g0 where

Teg ® *13x =~ ®pax = (xP)gy - (‘“‘S)pq* Eage = 1.k

=€k " Cpak* €pox * €, qk * (4e39)

The tests given in Chapter 3 may then be applied to these
transformed values.
It 18 seecn that, in the most general case concerning

the assumptions made about the error variences and
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covariances, there must bs more observation vectors than
treatment combinations, This puts severe limitations on
ths utilization of these results, as (1) for a test of the
A-effects, there must be at least p blocka; (2) for a test
of the B-eflects, there must be at lesst q blocks; and

(3) for & test of the interactions, there must be at least
pq blocka, These restrictions would seem to seriously
limit the appllcabllity of thess results to practicel
problems, However, if the assumptions concerning the
covariance matrix are encountered ir praetices, it would
seem thet the methods glven herein are the only valié ones
avallable, )

,«' i

A second objeetion to the tests in this section is
that tho tests are correlated,; the degree of the correlation ' ““W j
depending upon the particular covariance matrix met in ,jﬁ’* ”
practlce.

The applications of the methods presented herein lead
to a third difficulty, for a new covariance matrix would
have to be computed for cach of the tests of maln effects
and interactiona, Thils can be done by either recomputing
the covariance matrix from the transformed data or trans-
forming the original covariance matrix.

Extensions of these methods t0 p X Q@ X I X 8 X ave
factorials is obvious, at least for the maln effects, As

given herein, the transformation veqaireé for a test of a

main effect 1s obtained by
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(1) sSumming over all factors except the one being
teated, and
(2) Applying Hsu's transformation to the resulting
means from such sums,
Thus, in a p x @ x r x s factorlal arrangement, with the
factors 4, B, C and P, 1if X4 {ian rapreaenta ths observation
on the 1%8 1gvel of A, the jth level of B, the k®t 1evel of
C, the m®® 1avel of D in the n®" bloek, we deline

xic&on = E%': ?%E xljkmn . (h.ho)

The dots indlecate the factors over which the observations
are avoraged, A test of the lovels of the factor A is made
by epplying Hsu's tranaformation to the sst [xi...n ; a
test of the levels of ths factor B is made by epplying
Hsu's transformation to the aset [1‘3;'5] ’ end so on,

| To test for two factor interactions, we form linear
functions of the average values, Just as in the p x q case,

To teat the interaction between the A and B factors, form

y,-joqn = xijoon - xiooon - x.j..n"'x"..n “4—01‘-1)

and spply Hsu's transformation to the pq resulting valuss,
In general, to test the two-factor interasction between the
factor indicated by the subscript u, say U, and the factor
indicated by the subscript v, say V, we subtract the msan

over all factors except U and the mean over all factors

except V from the mean over all factors except U and V,
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giving a set, say

-3 -
3..\1..?.. x..“g.?;. - xooucouuo x.-o.nvow+x¢-acuo-.

(L.42)

Then, Hsu's transformatiocn is applied to the set
[ Y..u.;v.;] s a&nd the resulting values are tested by the
appropriate statistic as given in Chapter 3.

Higher order interactions are tested in an analogous
manner, the rules of combination being similar, If there
are k factors in all, and a test of a particulsr hefactor
interaction is deslired, [irst select the mean obtained by
aversging over all of the (keh) other fectors., From this
mean, subtract the sum of the (hgl) means obtained by
aversging over all possible combinations of (h-l) of the
h chosen factors. Add to this the sum of the (hEZ) means
obtained by averaging over all possible combinations of
(h-2) of the h chosen fsctors. The process 1s repeated
until the grand average is elther added to or subtracted
from the sum, IHsu's transformstion ls applied to the
resulting set and the test of significance made., This
process 1s valid if all interaction terms are includéd sand

1f the uasual restrictions are ilmposed on ths model.

Confounded and Fractional Fagtorial Arrangements.

A factorial asrrangement is sald to ne confounded if one or

mors contrasts among the treatment efocts are confounded,
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Let Ty, Toreees ’Tp be the treatment effects in an
experimont. A contrast 1s then defined by 12; 1 “171 ,
with Egltxi = 0. Let }f indicate summation over the treat-
ments which appear together in the k%R block of each repe-
tition, Then, & contrast is sald to be confounded 1f and
only if E*ti # 0, for any k. It is this property of
confounded arrangements which allows singls degree of
freedom contrasts to be used. In the unconfounded contrasts,
each block efiect disappears since JZ?Ii 2 0, the block
effect being constant for all a; in this sum. In confounded
contrasts, the corresponding statistic measures both
differences in block effects and the confounded comparison.
One estimate of each appropriate single degree of freedom
contrast may be calculated for each repetition of the

basic design, and a Student-t statistic calculated from

the rasulting gstimates,

A balanced confounded arrangement 1s handled in
exactly the same way; efiects not canroundad‘are calculated
from all blocks in a repetition, effects which are confounded
are calculated from all blocks except those which were
generated by the confounded contrast. As before, we only
require that the covariance matrix associated with a block
be constant over all repetitions.

Fractional factorlal arrangements ean be derived from

the principal block of a confounded arrangement; thus, the
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contrast corresponding to either alias may be constructed
by considering the appropriate linear function for that
contrast in the principal block,

4.6 Split Plot Designs and Incomplete Block Designs. The split

plot design, in its most elementary form, may be described as
follows, One set of treatments is arranged in a randomized
block or Latin square design. Each plot of this basie

design is then subdivided into s number of sub-plots and

a second treatment 1s applied at random to the sub-plots,

A careful examination of the literature reveals a multiplicity
of models adopted by the various authors to describe this

design, A composite of the models presented might be
xype Fprsy Ty d Ve (TY) v+ By (4oli3)

B R

J 2 lyeeay t

k3 lyeeey, 8

where
xzijk is the observed yleld of thes k*® sub-treatment and
the j°® main plot treatment in the 1%h block;

[~ 1s the grand average;
o, is the added effect of the 1th prock, with 1 = 03
(33 1s the added effect of the J°P whole plot treatment,

with 2 (5 3 2 03

*113 is the interaction between the whole plot treatments
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and the blocks, usually assumed to be a random
variable with variance C 2,,. ,
Vk is the added effect of the kth sub=-plot tréatment,
wnni Ve 0;
("’" )jlt is the whole-plot - -ub-plot interaction term,

&g » .
and 19k is the error term

For homogeneous indepondent srrors, if the whole-plots were
not divided into sub-plots the Vl” terms would be the true
experimental error terms. Likewlse, i1f the whole-plot
treatments did not exist, the whole~plots would become blocks
and the proper expsrimoental error term would be € 1§k*

We shall be concernsd with two cases:

(2) Variance (113) s 0';; 3 Cov( 113 '\11!) 2 Ty ?
' Cov(t\“rlpu) =s0forifdyp
(b) Varlance ( Eijk) s Q'“" ’ 00“( Eijk Eijm) z G-Kn H

Cov( £gjx € pgx) = O for 1 £dr, 3£ 8.

In oithér of these two cases, the analysis is a?raight-
forward and may be carried through as if the split-plot
design were a p x g factorial design (Section L4.5). Thils
is not true under the usual assumptions of rsgular analysis
of variance, due to the covariance terms arising from the

V\ 13° However, in our case we may handle these covariances
as shown below.

To analyze the whole-plot treatments, sum over the
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sub-plots and proceed as if the design were a randomized

block,
Thus, 8
11J‘=§1113k=lr+ SNL-FSTj*Q\'lij-F %eijk

(Lelily)

On performing Hsu's transformation on these totals, we

obtain
Yie = Xgq, - Xt
28 (Ty=Ty)talngy=qag)+ E“-'ljk “égitk .
(L4.45)

The last three terms are error terms associsted with the
troatment differences, This is the same form as (4.5)
under either assumption (a) or (b) and we may analyze the
set 13, as before. |

To test for homogeneity of subeplot treatment means,
form %he sums &

: 1

(holo)

If we now form
Yi.e® X1,k " X4,8

= t{\/ k-wl ') + Z sijk - Z eij. (h-ih-?)
J J
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we may also analyze the data as in (4.5).

Note that is assumption (a) holds, but the 8'11k
are homogseneous independent errors, then the analysis of
(4.47) would reduce to the usual analysis of varlance case.
This, however, would be a rather unusual case., More likely,
'we might find assumption (b‘) holding, and the gy o8

homogensous independent errors. Then, the test of whole
plot treatments would proceed as in the regular analysis
of variance and the test of sub=plot treatments would
require the methods presented herein.

| An example of a split-plot design 1is given in section
6.4,

Incomplete Block Designs. The subjsct of incomplete

block designs comprises the largest class of designs; indeed,
the complete block designs already discussed form a subset
of the incomplete block designs. However, satisfactory
methods for anslyzling incomplete block designs have not been
found, Thls is due to the incompleteness of these designs
which prevents the forming of functions of the observations
having thé necessary expected values when the hypothesis of
equal treatment elfscts is true and which are free of block
effects,

It does not scem possible to extend the theory to

this class,
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V. APPLICATIORS AND COMPUTATIONAL FORMULAE

5.1 The application of formula (3.68) requires that the
transformed product matrix be inverted and thon the quadratiec

form N
NY (V7°) @',

where Y is the veector of transformed means, be evaluated,
This may be done simply by the following computational
method. |

Hsu [ 9] has shown that (3.68) may be written as the
determinantal ratio of the untransformed variates as

, v Jv X
2 = §§ v-igr e ¥ J o o (5.1)
X o o

where V is the untransformed product matrix, J is the
(1 x p) unit vector, and X 1s the 1 x p vector of untranse
formed means, It 1s noted that the elements of the v
determinant in the denominator are the same elements as in
the upper left corner of the determinant in the numerator.
We use thié fact to allow us to compute the two determinants
simultaneously.

The forward solution of the abbreviated Doolittle
method for inverting matrices |18) consists essentially of
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a‘factoring of the matrix to be inverted into the product
of two auxilisry matrices., Thus, if A 1s the matrix to be
inverted, the forward solution ylelds

A = B« ' (5.2)

where B is a triangular matrix with zerces above the main
dlagonal and € is a triangular matrix with zerces below the
wain diagonal and unit elements along the main diagonal,
Having factored A in this fashion, we may find the determinant

of A as

lal = IB8] - |[¢] (5.3)

and IGI = 1, due to the triangularity and unit elements
along the diagonal, Thus

[al = |B| . (5als)
But B is also triangular, so the determinant may be written

where by is the element in the 1®® row, 1*" column,
Thus, if we perform the forward solution on the numesrator
of ($.1), given that V 1s a p x p matrix, we obtain the
determinant

p*2
TT  byy s (5.6)
i=1



71

likewise the determinant of the denominator may be written

as

+1
T bu (5.7)
i1

and, from the nature of the Doollttle method, it 1is seen
that
Bi‘ = b’.i » 1 2l,s0ep P+l (5‘8}

Thus, we may write (5.1) as

p+2 b

TT bus -

tel 2 ~Wbp.2, pr2 (5.9)
p+l

TT Pag

1=1

Qal -N

As an 1llustration of this, consider the case for p = 2t

2 3

Xe[8,6] ; v:{a z] 3 N=z10 ,

For use in the regular formula (3.68), 1t is seen that the
transformed values (3.11), (3.12) would be

§=[2], v= [4e2-2+372[3] , and thus by
(3.68)
¥ =10 [2][$](2]1= uo
3
Bw‘eho method given above in (6.9), we would carry out the
calculationa as shown below using the forward Doolittle
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method on
i 4y 2 1 7
2 3 1 6
1 1 o o0
| 8 6 o0 o] .

We thus obtaln the calculation

ky 2 1 8
2 3 1 6
1 1 0 0
8 6 0 0
in 2 1 8
1 T 7 2
2 = 2
1 3 1
-3 "=
1 7%

-,g-_ .

Using the last value, which ias buu and substituting in
(5.9), we obtain

L2 ]

4o

2z - (o)-%)
- 3

which agrees with the value obtained above.

(5.10)
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Experience with this method tends to indicate that
a saving in time occcurs if there are four or more original

treatments,

5.2 A Randomized Block Example. Suppose a randomized

blodk type experiment has been run on the effect of three

treatments on the rate of some chemigal reaction, and it

is desired to test for oéuality of treatment effects. The

date for 10 blocks, suitably scaled, 1s given in Table 5.1 .
TABLE 5.1 Results of a Reaction Rate Ixperiment

Block No. Treat, No, 1 Treat, No, 2 Treat, No. 3
1 10.4 16,1 22.2
2 8.7 18.5 2.8
3 9.9 18.2 20,6
4 9.0 1647 21.3
5 10.4 20,2 2l. 4
6 10,2 ‘ 17.8 2.5
7 11,0 17.6 2l.5
8 10.5 18,2 2l.1
9 9.2 18,0 22.2

10 11,0 17.7 22.4

We will analyze the data by two methods. The first
method will be to transform the basic data as in (L.4)

and calculate the test statistic for equality of means as



Th

given in {3~68); the second method will utilize the routine
‘gilven in Seetion 5.1. ,

We first form & new set of data by subtracting the
data for one treatment from the rest of the éata, rés by
row. The firat treatment results will be subtracted from
the other two to obtain n9n~nagative results, as glven in
Table 5.2.

TABLE 5.2 Transformed Data

Block No. {(Tresat.No.2 (Treat.No.3
-« Treat.No,1) - 'i're&t.nml)i
1 5.7 | 11,8
2 9,8 13.1
3 8,3 10.7
L 7.7 12.3
5 9.8 11.0
6 7.6 11.3
7 6.6 10.5
8 Te7 10,6
9 848 13.0
10 6uT 1lely

If all three columns had been substantially equal, the

above numbers would all be around zero, If the last two
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columns were equal, with smaller numbers in the first column,
the abovs two columns would be approximately equal.
To porform the test, we must calculate the sums, sum
of squares, and sum of cross products of the above two
columns, These we find to be:
Totals: 5.7 + 9.8+ .0 +6.7 = 78,7
11,8 +13.1 + ..s +11.4 = 115.7

Sums of 3quares: (5.7)% (9.8)2+ .., +(6.7)a 2 035.69
(1148)2+ (13.1)%+ .00 +(11.4)2 = 1346.89

Sum of Cross Products: _
(5.7) (12.8)+ {948) (13.1) t aau +(647)(1104) = 914.5)

We next calculats the so-called corrected sums of squares

and cross products as follows:

Corrected Sum of Squares: 635,69 « (78,7)% = 16.321

10
1346.89 - (115.7)2 = 8.2
10 -
Corrected Sum of Products: 914.54 - (78,7)(115.7) = 3.960
10

The number ten in the denominator arcse because there were
ten sets of observations, The numboers subtracted wers the
squares or product of the totals, From thse totals, we

¢alculate the averages:

Eagi & 7087 ’ l,,;sg"i = 11.57.
10 10
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The matrix of products and cross-preoducts 1s then inverted

to obtaln

16, 321 3.980) . (aem —3.980\ o1
3.980  8.241 ) © T36.5610 \-3.980 16.321)°

The quadratic form 1s then svaluated as

2

22 = V1T = 10 (7.87 11.57) ( 8. 241 -3.980)(7.87)
- 7

118,661 3,980 16,321/\11.5

2 10 x 16,605 = 166,05

We may convert this vaelue to an F-statistic by multiplication
by the constant |

As the tebulated value of the Fedistribution for (3 - 1)
and (10 - 3+1) degrses of freedom at the ,05 levael 1is
L4.46, we rejeet the hypothesis of equallity of treatment

effocts, since

b x 166,05 D> Loi6 .

We now calculate ths result using the computational routine,
The correctsed sum of squares and produet matrix and vector
of means of the untransformed data 1s found in an analegous

manner to the preceding calculations to be
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X = (10,03 17.90 21.60)
and
5,901 04140 0,250 |
Ve 10,660 ~1.570
2.800 J

The heterogeneity of error terms can be seen in this and
in the transformed matrix % « In accordance with the
method given in Section 5.1, we have the calculations

shown in Table 5.3.

TABLE 5.3 Computational Routine

5.91 Oell0 04250 1.000 10,030
10, 660 =1.,570 1,000 17900

2.800 1,000 21,600

0. 000 04000

0. 000

5.941 0.140 0.250 1.000 10,030

1.00000 0. 02356 0. 04208 0.16832 1.68827
10.6567 ~1,57589 0.97643 17.6636

1, 0000 -0,1l4768 0.09163 1.65751

2, 55644 1.10232 23.78999

1.00000 0.43119 9430590

-0.73310 -13.5648

1.00000 18.50326

=16, 60525
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Taking the negative of the last number and multiplying by
10 [ sce (5.9§] s We obtain, as before

72 = 166,0525

5.3 A Latin Square ixample. Suppose that in the last

example three reactors wors used and it was felt thst
differences existed betweon the reactors which would have

to be eliminateds This could be done by parforming a Latin
square type experiment, as shaun below. Let 1, 2, 3, denote
the different reactors; 4, 3, C, denote the thres trials,
and I, II, III, denote the three treatments. The design
would then be

TABLE 5.4 Latin 8quare Design

Reactors
1 2 3

A I II III
Trial B II IIT I
IIT I II

This design 2llows the effeeta of differsnt reactors
land the effects due %o different trials to be removed from

the data, Suppose the test were run ten times, again
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measuring the reaction rate. The dats, sultably coded,
might appear as in Table 5.5.

TABLE 5.5 Data for Latin Square Example

ﬂbatA.l.IA.Z.IIA.B'IIIB.l.IIB*Z.IIIB.}.IGQI.IIIO.Z.IC'B‘Irn
No.
1 10s7 9.0 11.7 10.0 12.6 15.3 17.8 20.9 17.6
2 10,3 9.1 12,5 10,0 15.6 17.5 18,3 22,5 20.0
3 11.3 7.1 13.0 7.9 14.2 18.2 15.9 19.4 19.3
4L 10.3 9.1 13.2 9.5 15.0 16,2 17.0 20,2 19,1
5 11.0 10,5 11.2 10,6 13,0 18.0 17.2 20.2 20,0
6 1l.4 9.2 11.5 10,7 13.6 16.4 16,2 20.0 19.1
7 1.2 9.9 13.7 11,1 13.9 18.2 18.8 20.5 18.9
8 14.2 8.9 12,7 9.0 15.3 18.1 16.8 20.5 17.9
9 1046 10,8 14e0 10,9 1he5 17.6 1646 19.6 19.4
10 12,0 8,7 143 11,1 15.2 17.9 16.8 20.9 19,8

We wish to test whether, over all reactors and trials,
there is a difference in reaction rates, We first sum
together the results for esach of the three treatmsnts aa
in (4.27). Thus, for the first test, the total for treat-

ment I is found to be

10,7 + 15,3 + 20,9 = L6.9,
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while the total for treatment II is
9.0 10,0 +17.6 = 36.6 .

Proceeding in this fashion, we find the totals as in
Table So 6.

TABLE 5.6 Summed Data of Latin Square Example

Tesat No. Treat, 1 Treat, 2 Treat. 3
1 16.9 36,6 42.0
2 49.9 39.1 46.4
3 4B.9 34.2 Ll 0
L 46.7 37.7 }45.0
5 49.2 41.1 46.2
6 L7.8 39.0 .3
7 49.9 39.9 6.l
8 52.8 35.9 Lh.9
9 47.8 .o 45.0

10 50.8 39.5 46.3

- To begin the analysis, first subtract any one column
from the other two, as in (4.28); we subtract the data for
treatment II from the other two to produce positive numbers.
Proceeding in this fashion, we obtain the results in

Table 507.
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TABLE 5.7 ‘Transformed Data

Test No. | (Treat. 1 - Treat. 2) (Treat. 3 - Treat. 2)
1 10,3 : 544
2 10,8 7.3
3 147 9.8
L 9.0 Tt
5 8.1 5.1
6 8.8 2¢3
7 9.9 8.7
8 16.9 8.9
9 6.7 4.0

10 11.3 6.8

We now subject these numbers to the same analysis as
in the last soction. We find the row sum, sums of squares

and products to be:

"

1063 + ceet 11,3 3 106,7
Sah + "ea + 6¢8 s 65!9

Sums:

Bums of Squares: (10.3)%+ ...+ (11.3)% = 1242,5
(5.4)2+ ... + (6.8)% = 458.9

Sums of Products: (10.3)(S.i)* eout (11.3)(6.8) = 750.4
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The corrected sums ars found to be

1242,5 - £106,7)2 = 104,01
10
458.9 - (65,9)% = 2y.62
10 A
750.4 - (106,7)(65.9) = L7.25
10

On evaluating the quadratic form ( 3.68 ), we obtain

™ 2 iyv-lyr = 10 (10,67 6.59)< 2k, 62 -Ln.a;) 10.67)
328,164 -47.25 104.01/\ 6,59

= 20,5726

and
rz‘-!-;-f{-l = %!3 = 82,2904

winich 1s highly significant.
Te test whether there is a difference between the
reactors, we would have summed over trials and treatments

and performed the analysis on the resulting totals,

5.4 A Split Plot Example, Herein, we shall cocnsider as

a split plot example a hypotheticasl test of three special
crankcase olls used in a standard motor generator set.
Suppose the test is made in a c¢old chamber at six different
temperatures, The oll was of a special nature, and only

enough oll eould be made &t one time to test at the six
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temporetures, The varisble used as a test criterion was
the power loss:

(indicated horsepower - brake horsepower),
Suiltably codsd, the data might appear as in Table 5.8 ,

Zach teost was repeated fifteen times.

TABLE 5.8 Data for Split Plot Example®

Formule I

Rep. Temperature (°F) Totels
30° 25¢ 20° 15° 10° §°

a3 3 28 L4 3 20
§5 % i k4
2

15 a 2 i is | 116
17 19 20 2 36 | 148
3 4 u 18 24 i 92
15 12 1 16 2 : 103
13 22 12 2 =20 23| m
13 16 17 22 23 12 | 103
13 22 16 20 19 22 | 112
22 28 22 17 22 19 | 130
1 20 16 A 2 32| 13
17 20 18 2 »

29 18 29 29 20 | 138
18 17 2 L 26 _22 |_ais
272 308 297 338 15 361 | 1991 |

oot ot fod b ok b
L\:uwwo@mamnw
e
N

¥Raw data coded from Coehran, W, G., and Cox, G. M, 23
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TABLE 5.8 (Continued)

Formuls IX

Rep. Temperature (°OF) | Totals
30° 259 209 159 10© 5o
1 28 35 Lo 38 byl 3 216
2| 2y 35 28 50 | a2y
: 23 19 31 1 22 152
1 15 17 3¢ 26 26 133
' 20 19 18 29 25 135
6 13 18 18 1 1 gg 13%
7 11 14 15 15 1 26
8 15 12 é% 20 16 26 102
9 16 15 ; 17 21 22 112
10 10 13 13 16 26 19 97
11 9 16 22 20 17 22 106
BE N OB R OB LB
13 19 9
1 12 i 11 8 10 2L 79
1 10° 10 17 15 16 9 77
238 2716 311 317 352 364 1858
Formula III
1 35 33 34 35 37 52 226
2 32 32 32 35 36 47 allh
22 13 29 26 30 27 1h7
27 0 27 19 25 2l 152
, 10 il 20 2l 22 12 10
3 13 22 19 19 2l 123
7 9 10 20 13 19 22 93
8 ig 12 10 13 10 2& 82
9 7 10 15 17 17 79
10 15 17 16 16 2l 112
11 17 1 15 1y 27 17 104
12 13 1 17 2y 22 17 112
1 17 1 32 17 22 26 1ga
1 8 11 16 14 1L 2l 7
e 10 17 1l ik 20 14 89
25, 269 31 298 351 371 1854
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Suppose it ia first desired to test whether there
is a difference in the horsepower losses betwseen the
three formulas, We first form the totals for each repli-
cate and formula, summing over the various temperatures.
These totals are given in the last column of Table 5,8,
In this way, we effectively avera; e over the results for
different temperaturecs.

We now perform Hsu's transformaticn on these sums,
subtracting the sums of formula III from the sums of

formulas I and II. The results ars given in Table 5.9.

TABLE 5.9 Tranaformed Data

Replicate I - III II - III
1 =23 «10
2 «-20 4}
a 21 5

-nag «19

2 o 't
7 10 5
8 29 20
9 2l 33
10 0 =15
11 26 2
12 25 - 2
1 -11 -9
1l 51 -8
15 26 12

Por example, the rirst value obtained (~23) is found

from
203 - 226 = .23 .
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As before, we form the sums, sums of squarses and sums of
products as:
Sums: (=23)+(-20)+ ... +(26) = 137
(=10) +(0) + ,.. +(=12) = |4
Sums of squares: (-23)2 +...+(26)2 = 11,959
(-10)2+... +(-12)2 = 3882
Sums of products: («23)(-10)+...+(26)(-12) = 3929
We now form the corrected sum of squares and cross products:

11,959 - ii%%li = 10,708

3882 - (4)2 = 3881
15

3929 - (137)(4) = 3893
15

The averages, taken from the above totals, glve a vector

of mosna: [9.133, o.267] :

The matrix of corrected sums of squares and products is

formed as 8 8
s 110,70 3693

[ 3893 3681]

and its inverse is found to be

vl o[ .o001238 -.0001255
-.0001255  .0003729 [ .

On forming the quadratic form, we find

(9.133 0.267)| .0001238 -.0001255] [9.133
2 «00976
-.0001255 ,0003729 \ 0.267
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Then,
™ = 15 x ,00976 = 0.1464
The value of T2 wust be multiplied by the constant

(No. of reps. = No. of formulas+1) z 15 - 3+1 = 65 .
(¥o. of formulas - 1) 3«1

Then 6§ x 0,146k = 0,9516 has the P-distribution with
3-1=2 and 15-3+1213 degrees of freedom, which is clearly

not significant, Thus, 1t is concluded that thers is no
difference between the less in horsepower due to ths three
formulas.

To teat whether there is any differsence in horsepower
lost over the different tamparatures,;wo form the sum over

the three formulas obtaining the results in Table 5.10.

TABLE 5.1C Totals Over Formulaa, Split Plot Example

Rep. 30° 25° 20° 150 10° 5o
1 94 103 110 101 123 11k
2 92 = &5 92 - 99 123 131

66 52 86 82 95 5

6 - 68 67 9 65

5 7 52 = 58 7 1 73

6 39 51 48 5 63 6

g 5 gé 449 59 71

1 6 5 L 26 73

9 h2 38 8 [ 1 51

10 8 52 5 52 69 65
oL X 8 B % &
7

i 2 2 2 8 B
1 35 Ly 2 43 62 45
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The first value is found from

31+28 t35 = 9i.
If we subtract the first column from all of the others,
row by row, énéythan form the matrix of corrected sums

of squarss and products, we obtaln the mstrix

1104.93 208.33 281;33 «111.40 Lhe13
617. 33 *}495 é’? 2Qﬁ¢ @G “‘hagc 6?

Vs 1609.33 378,00 1161.00
| 757,60 129,80
L 1567.73] .

The vector of means ls
¥ = [5.933, 10.333, 11,600, 23.600, 22.133]
from which we find that
Wil = 32,019408

and, since (No, of repllicates - No. of variables+1) o2
(No. of variables - 1)

follows the P-distribution with 15-13+1 = 13 and 3-1 = 2

degrees of freedom, then

F = 13 x 32,019 = 208.123
2

is highly significant and 1t is concluded that horsepower

loss is different st different temperatures.



89

PART II
VI. ON BERKSON!S CASE OF LINEAR REGRESSION WITH
ERRORS TN THE IVWDEPUNDENT VARIABLIS

6.1 Introduction. IHistorically, estimators of regression

coofficlients in linear and multiple regression have been
derived under two different sssumptions concerning the
nature of the independent variable. For a dependent
variable y observed at ths veetor valusd independent
variable X, the first Jderivations were made under the
agsumption that y and X were Jointly distributed according
to sone probubilify law; any reslized set (y,X) constituted
a sample drawn from this multivariate populatioﬁ. Later,
sround 1920, Fisher (L) substituted the assumption that
the valuss of the independent varisble wers fixed and
without error, and showed that the two assumptions led to
the same aatimating equations,

However, in the application of the theory, at least
to the physicel solences where some functlionel relationship
connecte the dependent and independent variables, the more
usual cese arises of errors in both variasbless, The inde~
pendent varieble cannot be considered to bs a rendom sample
from some populatlion as 1t is ususlly under the control
of the experimenter, aand thus has soms approximate values,

Investigations concerning application of the theory under
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these conditions showed that additional information, in
the form of the variance of the error in the independent
variable or ratic of the variasnce of the independent to
the variance of the Gapeﬁdent variabla, is necessary lor
the solution of the preblem (1] , [6] , (7] .

Berkson [2] haa shown that there i3 ons case, at
loast for simple linear regression, where a solution may
be effocted without this additional information. In so
doing, he differentliated between two types of Independent
verieblas which may arise, For example, in performing
chomical =zxporiments, the experimenter may be facsed with
two different indepsndent variables: (a) The weight of the
reactants and (b) the temperature of reaction, Let us
assums tha£ the reactants are to be welghed out prior to
the experimcnt on a laborstory balance by balancing some
amount agalnst welghts with velues xy. If we hed, in
addition, an srror fres baianca, the true welghts of the
reactants could alsc be determined as E%, say. Then the
error would be d.tii* X However, in magsuring out
reactants on our laboratory balsnce again, we would etili
observe the wolght xy; the true value of the welght 3,
would now be different from §|, and 8 different error
d '23"'-x would have been committeds ?hua, our error
1s independent of the observed value X, . This typs of

independent varlable is termed a Controlled Varlable.
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The second independent variabls-etemperature of
reaction-~~is termed an Uncontrolled Variable, as the
observed valus X, randomly varles about soms fixed value
33. Thus our orrcr ls dp = 32 - Xp, and as 32 is a con~
stant, the realized value of the error 1ls perfeectly
corrslated with the obserred valuc X

Berkson found that, Iin the simple model

oo+ Bx+€,
1f x is a controlled variable, the usual least squares
estimators of X and (Bare stlll unblased estimators as
long as the errors d and € are unbiased,

Geary [5] extended Berkson's case to non-linear
regrossion and considored some simple sampling variances
of the estimates, In the development of the nonelinear
case, a third degree model was assumed and 1t was found
that unhiased estimates of the intercspt and coefficlent
of the linear term were not chtalnable, This is generalized

below,

6.2 Consider the ssiimation of tho parametors io the

model
"jj-h_zz ﬁj_ % + .,th H j'l....,r: k'lgus..ﬂj ’ (601)
A=O
whare x, 1n the Jth realized value of ths controlled variable

J
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'53, Tk 1s the k"® observation on T at X4y rlk is the
error assoclated with 7k and ek 1s the error asscclated

with the kth triat at xj. We seleet the values of xj

so that
r 2a-]
b T (6.2
snd assume
E Cf“d]: € =0 Tor vach }; a = 1a230cu‘ (603)
+ Je 2a-~1
Lo
i ejk ]= 61&. for all J; a % C,1,2400e {(6.1)

Also, we use the notation
Y

2% T p

KL

a = 0,1,3:0&0 (6"5)

a

Note thut'/‘c 2 » and from (6.2) we have Ma ® 0 if a is
odd.

Theorem 1t In the estimation of the parameters in the
model (6.1) by Geary's method, subject to the conditions

(6.2), (6.3), (6.4),
(a) Two and only two coefficients are estimable,

and these are f3n‘1 and (3m,

(b) The two unbiesed estimates obtailned are
1dontical with the estimates which would be
obtained from & least squares approach

ignoring the errors in the indepsndent variables.
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(¢) If the values of 62‘ are known, all other
coefficlents are eatimable.
This theorem will be proved by examination of the
estimates by generalizations of Qewy'a method,

We may write (1) aas
i
Ljsv AR TR TR LT TR PR L
Expanding, we obtain

Yje = Z@Z() m-f—f- ) (6.7)

p=0 Ji

Averaging over the subscript k for each Xy and denoting
averages by a horizontal bar, we obtaln
“3 Z_Z . ()X ef + ) (6.8)
iz0 PTO ) ’)
As we seek only unblased estimates, we equate the average

error terms to thelr expected values and obtailn

qj gl z & () x 8:.-., indd

peo

where S =1 when 2a = p

28,p
= 0 otherwise

Due to the oddness-eveness conditions on 1, we find from

(6,9) after a few lines that

Lo [+]
Pé; (;) x;-r € § Z (,,J ¢ €, (6.10)

2a 2a f z=

where [i} denotes the largsst integer in the number i "
2 2
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{For 1 odd, the exmact upper limit is E:&. and for i even,
2
the 1imit 1is % oo

Examination of the indices of summatlion and condition
(6.3) indlcates that the system will best be examined
separately for odd or even values of m, We consider now
the case of even m (the case where m is odd follows almost
identically with obvious modifications). Any polynomial
of degree m may be divlged into two parts

Z@? ?;?s’;s . ?::,f’w’a;m (6.11)

+120

such that the first part contains even powers of the variate
and the second contains odd powers. Thus, we may write

(6.9) with m even as

olz

Z %u Z ( at "u’-ﬂﬁw * Z ﬁl!ﬂ 2(“‘" w*we,_, ,

se® (6.12)
eliminating all nonezero items. Now consider the product

momonks; using the notation in (6.5), we have

'Z:" g,

Y

@u (zt) € ]-‘-3(;4.)4-0. + ZZ ﬁ“fl (“ﬂ) Gl& r"z(s-ﬂb)t&*\ .

-o t3d S =2 &=

(6.13)
It 1s seen that 2(s-t) is always even and thus for odd

values of a, the first part in (6.13) disappesrs. Likewise,
when a is even, the sscond part vanishes, Replacing s as

an index of summation with u £ g - t, we rewrite (6.13)
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after some reducticn as

v '!

.Z & !"'w-. Z ?-w..;g (w*“) € for even a ,

. ey (6.14)
ST A W Py
Let us define
lm-tu -,
Kok ™ Z f’zunﬁok (m"'“\')ﬁu- i "Lsﬁ,). (6.15)

Let A denote the column vector [tx g] s B denote the column
vector (_@1] » X denote the matrix of controlled values
of the observed independent variables [x1j] , and let ¥
denote the column vector of the observed values of the
dependent variable "3'“3] « Examination of the structure of
| (64144) shows thet the set of equations genmerated by putting
a ® 0,1,2,.++,1 may be éX}?l‘QﬂS@d matriclally as

| X'y = X'XA . (6.16)
If the values of x had been {ixed and error fres, we would
have obtained the set of normal equations

Xy = X'XB (6.17)

Thus, we need only examine the elements in Aj; if eny of
these are identieal with the corresponding elements in
B, it follows that those estimaetors are identical with the
least squares estimators under error free conditions,
It 1s seen from (6.4) that € = 1, thus we must examine
(6.15) for the cases where the upper limit of summation
is zero, When k2 0, m - 20 2 O or u = % . Hence (6.15)
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(6.18)

When ¥ 2 1, m » 2u « 2 = 0, or u ® (me2)/2, Here (6.15)
gives |

Y = - ‘ |
ot =( o. ) (3“_‘ - @m-‘ (619)

e

For all other cases, s a bilinear form in (3ana €,
and thus the other coefficients (3; (1 ® 0,...,m-2) are
not estimable hy this method., Thils completes the proof of

Theorem 1.

6.3 Extensions of the theorem to multiverisble situations
are immediate, but tedlous. For example, in the model

L‘h'd: @"* ls"’jﬂ-'- (3‘)-0 5‘; + ()Jli 40 #&f +B A¢ @z]ip'f' "‘

(6 20)

if the realized values of ths independent variables are

X, vV , and are controlled so that

&)3.’=x.+dje s ,s:'l,...,‘m N J: |’,”,N$k’
y‘q_ +e*! , %:'.." ; ,oﬂf‘i")Njk’

b)g (su} 8’ (d ) = § (eu) ! (6422)

(6.21)

(“u Sr) — ©-
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and
¢) the values of x, ¥ are chosen so that

- ™m

DR AAPILEL (6.23)

Y L XY '
then all parameters except @,o may be esatimated, and the
estimates are identical with those derived by least square
methods, In general, with an orthogonal array of values
of the independent variables and under conditions analogous
to (6.21) and (6.22), the coefflcients which may be estimated
are determined as follows: Let the order of a coefficient
be Gafihed as the sum of the poweré of the independent
varisbles assoclated with that coefficlent, Then all of
the coefficients having the highest order and all of the
coefficients having one less than the highest order may
be estimated, and the estimates are identliecal with the
léast squares estimates,

These extensions are falrly important in those
problems concerned with investigations into the shape of
response surfaces, For second order models (which are
usually assumed) and {or the second order designs of
Box and Wilson[ 3], all necessary parameters for location
of the maxima, and studies of the shape of the surface
may be estimated by the theory of least squares, as long
as the independent variables are of the class defined as

controlled variables,
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PART III
VII  SOME CONSEQUSNCES OF ANALYZING NON=ADDITIVE DATA
ARISING FROM AN UNREPLICATED PACTORIAL
EXPERIMENT

7.1 The two vasic complete block experimental desigus
are the randomized block and the Latin square designs.
In both of these designa, the validity of the error terms
is based on proper randomization within blocks or random-
ization of the Latin squares, It 1s generally felt that
only through randomization may we estimate valid measures
of experimentel error, In soms cases, however, experimenters
are faced with the necessity of performing only one block,
especlally when the treatmants constitute a set of factorial
treatments, Thus, for examplse, teatiﬁg three factors
at three levels requires a block of twenty-seven treatments,
Limitations of time or money may restriet the experimenter
to only one complete set, in offect producing an experiment
with only one block, »

It has been suggested [1] , [2], [3] that, in
these casas, an estimate of error might be obtained from
the higher order interactions. If the interactions are
really noneexistent, this is a valid procedure, as the
centraata in this case measure the random error term.
However, if the higher order intsractions are not zero,

the estimate of error will! be inflated and the valuss of
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the Festatistic of real main effects wlll be deflated,
glving too few significant results. This assumes that
all of the usual assumptiona of additivity, nermality,
and indepandenco of error terms are mat;

Tha effects of this procedure when the éata arisea
from a noneadditive model will be examined im this part,

One of the difficulties sncaunﬁered in studles of
the effects of non-additivity 1is the cholce of a non-
additive form to use in the alternative case, 0f the
possible cholces, two non-additive forms are of special

importence in applications of statliatics to the physical

sclences, amd these are r x;
y =B, 1}1 Py, (7.1)
r B; :
and y = PO El xi » (702)

where y 1s the observed dependent variabls, x; is the
1*B goserved independent variable, and (4 is the coefficient
assoclated with the variable Xie

In both of these cassas, we may transform to a linear
form by considering tha‘logarithmic trsnszruatlon.
Thus for {(7.1) we obtain

and for (7.2),
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r

log ¥y ® log @o + Z %1 log x4 (7.4)
i=1

It 13 seen that the assumption of additive normal independent
error terms made in the analysis of varifance implies that
the error terms associated with (7.3) and (7.4) are of the
logerithmic-normal form, PFPurther, after applying such a
transformation to (7.1) the analysis is straightforward,
and we see that the use of the interaction terms as an
astimator of error is a velid procedure, as interactions
are non-existent after transformation, However, the
analysis of data arising from a transformation of (72)
into (7.&)(13 not so straightforward, but requires that
consideration be given to the npnqinga qf the independent
varizble, For example, suppose three equally spaced levels
of one factor had been run in the experiment., If the
levels were ‘:(F“l)n ps (p 1)] » We would have to analyze
the sat[Log(p-—l), Log p, Log(p 1)] s intrcducing & none
ort@ogoﬁal cases Of courss, propesr deslign of such an
expértmant would have resulted in equal spacings of the
logarithms, These considerations apply 1f the experimenter
knows that the data arises from such a model,

We mow inquire into the effects of analyzing data
which really arose from a model of the multiplicative
type (7.1), but which has not been transformed., If several
randomized blocks, or if a Latin square had been run, the

use of Tukey's single degres of frecdom test would
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have given an indication that the true model was none
linear; if only one block had been run, we would have had
no such indication, We consider herein the effecta of the
use of higher order interactions as an estimator of orror
for one speclal case--a 32 factorial arrangement with error

free obhservations, We assume the model
w v '
yy=abe 3 bye £ 1 (7.5)
in the work which follows.

7.2 As levels of the two factors, we choose (-1, 0, 1).
That this may always be done may be seen by considering
the actual levels (p~l, p, p+l)s Then the values of the
independent varieble at these three levels would be

{abP”l ,abP ,apP*l } | (7.6)

end if we let abP be a constant term, then we may write

the three levels as
{(abp) b2, (abP) b° , (abP) 6'.'} . (7.7)

Denoting the constant term so obtained by a, we obtain the
values of the dependent variable for the 32 factorial as

shown in Table 7.1l.
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TABLE 7.1 Values of Untransformed Data
Level of Level of Factor C Total
Pactor B -l 0 1
- 1 o ~ o
-1 abe ' abe abe 1gb(e;l+c)
0 abe abe® abe ablesl+e)
1 abe”’ abe’ abe ab(3+l+e)
_ 0 - o1 ~ 0
Totals | a6(5+l+b) ae(b+l+b) as(b+l+b) | a(Bils+b)
— t (e+lt+e)

We may compute eight contrasts from the nine

observations above.

ixcept for the constant divisor

associated with these contrasts, the values of the

contrasts are givcn in Table T.2.

TABLE T.2

Linear Contrasts

B=_28

o

Bz &
"~ be

C = 2.
be

a

z "
¢z 55
‘&
be
l,

¢

BC =

a

(6= 1){e+ec +1)
(b - 2b+1)(cre )
(babe1) (e 1)
(b3b+l)(c = 2¢+1)
(b - 1)(e*- 1)

(b= 1) (e = 2041)

BC 3 (b- 2b+1)(c™-1)

1 B
B'cs & (5= 2a)(ct- 2en)
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These estimators were arrived at by the process usually
employed in analyzing a 32 ractorial arrangement into
single degree of freedom comparisons,.

Now consider the resulting analysis of varlance.
For the estimate of error, we shall pool the interaction

terms which involve squares; that is, we take
4(\1.2 2

=

- [(b-I)‘(Cﬂ)z{(b-l)‘(‘-i-l)‘:*(b+l)z(¢--l),:t-.é. Cb-r)tc--ﬁ] .
(7.8)

Examination of the form of the contrasts in Table T2
shows that an interchange of the letters b,c results in
an interchange of the letters B,G . Since (7.8) 1s not
affected by the interchange of the letters b,e, we nsed
only consider tasfu of signiflicance for B, 32, BC, eliminating
¢, ¢2 through symmetry,

The contribution of B to the total sum of squerss is
given by

[EB’] - &%:a‘ (b=1) (brl)&(o +e +1)ﬁ' (7.9)

and the corresponding test of significance of B would
estimate

Py = 338
85g

= b bal) e+e+1} -
" (e=1)% {(be1) (e +1) (bﬂ}”(eul)‘+'§(b~l)‘{a~1)‘},(?.10)
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Some values of Py for various combinations of values of
b and ¢ have baen calculsted and are given in Table 7.3.
In practice we would deem such an effect significant at
the X = ,05 level if the value of F were greater than
16,13,

An examination of Table 7.3 shows that when b is
small (end thus has little effeet on y in (7.5)), the
test of significance would indicate that B is significant
at the ¥ = ,05 level, given that ¢ ¢ 10, Also, when b:
is large and ¢ is large, the test would indicate that B
is non-significant, Taking thoe limit as b inecreases, it
is seen by interpolation that significance would be obtained
if ¢ were smaller than l,2.

In an analogous manner, we find ﬁhs expression for

the variance ratio of B° to the eatimate of error as

bz —2(crerd) | , (7.11)
T FEREN T 22 (e 1)+‘°;13]

Some numerical values ar FB for various values of

b and ¢ are shown in Table 7.4. It would appsar from an
examination of Taeble 7.4 that the analysis would indicate
that B 1s a significant torm whenever c is small, Like~
| wise, 1t would appear that the analysis would show the

52 term to be too small if b is small and ¢ is large.

In a similar menner, we find the variance ratio of



TABLE 7.3 Calculated Values of Fp

1.1 | 657,366 | 326,678 35,241 - ceee 2,217. | 1,486.

1.5 | 2166 2,048 mme- mmme eeee - 12006 | B2.25 .
2|29 —— ceem  =m--  88.20 57.10 40.56 | 28.45 &
3|69.62 | ---=  eee- 46,99 3342 23.79 17.84 | 13.05
5|22.52 | ---- 2041 17.50 13.68 10.48 8.25 6.25

10 [11.26 [11.26  10.50 9.36  7.73  6.21  5.06 3.98
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BC to the error term to be an asstimate of

Fag 59 (2::&)..(2:2-.).. 1 32-..!-.) . (2:.1. -1 (7.12)
" b+l e+tl/ 3 lpel e+l

Some calculated values of Fpg are given in Table 7.5.
It is seen that the BC term will tend to significance
if both b and ¢ are small,

As a whole, 1t is seen that very wrong conclusions
may be drawn from an analysis of the type studled herein,
If the treansformation had baan~und¢,‘then'tha varisnce
ratio for B would tend to be large if b wein large, the
variance ratios for B2 and BC would be epproximately equal
to 1, as these effects are ﬁonuaxiatent in the model,
However, when the transformation was not made, the variance
ratio for B tended to be large 1f b was small, Thus, for
the B effect, we could conclude signifieanae when the
effect was renlly small and none-significance when the
eTfeet was largss The conclusions on}tha Bz term would
depend on ¢, but in general, ths value of Fbg will be
small 1f b is esmall, The value of Fpg will tend to be
large 1f b or ¢ is small,

We have consldersd, hersin, a three level factorial
experiment, The same type results would apply in the two
level case; interactlona there would tend to be inflated
if the coefficlents were different,

All of the results obtained s¢o far have besen hased
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on an error free modsl, General statements concerning
the effects of introduction of errors cannot bs made.
However, in one case caleculated with random logarithmice-

normal errors, the veluss did not depart far from those

shown above.
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VIII. GENERAL SUMMARY

Tests of significance for the hypothesis of homogeneity
of means have b@on developed ih the first part of thils
thesis for all of the usual common complete block experi-
mental designs. It is seen that winen the covariance matrix
of errors assoclated with a complets block 1s completely
unspecified or completely specified, valld tests may be
easlly derived. Between these two extremes, there are
casss where the application of & few restrictions on the
covariance matrix leads to»intractible equations, Thus,
it seems lmpossible to use, in these cases, this added
knowledge in the derivation of tests for experimental
designa. Such a case 1s the assumption of independent
but heterogeneous errors as dlscussed on page 37. Of
sourse, in tnis case, we might be able to develop itesrative
computational methods for obtalning estimates and use the
large sample distribution of the likelihood ratio statistic
in a test of significance, This, however, would not seem
to be of value in the more interesting and important
studies on the validity of the usual methods when hetero-
genelty of error is present.

It has been shown that ths tests in the usual analysis
of variance are relatively insensitive to.some departurss
from the common assumptions, In the case of correlated

errors, this may be due to the faect that the usual tests
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are valid under the more genseral set of conditions of equal
variances snd equal covariances. Thus, the effect of the
- presence of covariance terms must be measured from some
"average" covariance term rather than from zero,

We may always use the tests developed for Case 5.
They are valid for any set of values of the variances
and covariances, However, such use will result in tests
of poorsr power than tests based on some added knowledge
concerning the variances and covarisnces, Consider, for
exampls, the case clted previously of independent but
heterogeneous errors., If we analyzed data having such
srrors by the stendard methods of the analysis of varlance,
we would arrive at significance levels which are not true
values, Using the tests developed herein, for Case V, we
would find valid significance levels, but the power would
be less than that obtained by use of the theoretically
correct test,

In Part II, it was shown that in some cases, estimates
of regression coefficients are unblassd when factor levels
contain srrors. No statements hive Leen made concerning
the effects on the analysis of variance of such errors.
This would seem to be a frultful area for research,

Another frulitful area for future research is on further
effects of non-additivity, The multipliecative models,
espsclally the one drawn from the Theory of Dimensional
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inalysis, seem ideally sulted for alternate cases of study,
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ABSTRACT

SOME RESULTS ON EXPERIMENTAL DESIGNS WHEN THE USUAL
n
ASSUMPTIOHNS ARE INVALID

Hale Caterson Sweeny

In the derivation of ths theory of the analysis of
variance, as related to complete bloék experimental
designs, several assumptions are made: (1) the various
effects contributing to the size of an observation act
in an additive manner, (2) the errors assoclated with a
complete block have jolntly a multivariate normal distri-
bution with zero means and veriance-covariance matrix X ,
and (3) 2 has the formZ = I <, where I 1s the identity
matrix., This last assumption 1s usually considered as
two separate asaumbtions—Qindependence of error terms
and homogencity of error varliances., when the treatments
to be tested constitute a set of factorlal treatments,
it is further assumed that, (L) the levels of the treate
ments are known without error. The work reported herein
is divided into three parts. In the first part, tests of
significance for the hypothesis of homogeneity of means
are developed for four alternate casss concerning & .
These four cases are: (1) 2 may be of any form, but = is
known., (2) A matrix proportional to 2— 1s known; the
constant of proportionality being unknown. (3) All



diagonal terms in 2. are equal and all off-dlagonal terms
in 2: are equal, the valueg of the terms being unknown, and
(L) 22 has en unknown general form.

To derive these tests, the multivarlate sample 1s
first subjected to a2 transformation affected by subtracting
one of the variates in the vector of observations from the
rest of tﬁa variates, This reduces the composite hypothesis
of homogenelty of means to a simple hypothesis., The tests
are then derived by the 1ikelihood ratio approsch. It is
shown that the resulting tests are more general than firat
supposed, being applicable when block eflfects are present.
In the first three cases, the tests are compared with the
tests which can be derived in the absence of block effects
to show power equalities.,

The tests ars then applied to the randomized block
design, the Latin square design, and the split plot design.
For the randomized block design, a study is made of the
loss in power incurred in assuming case (l), when the
assumptions of the usual analysis of variance should have
been made.

The second part of the dissertation 1is concerned with
assumption (4). Berkson has shown that 1f the indepsndent
variables ere of the type known as “"econtrolled" variables,
then coefficlents in a siwple linear regression model may

be estimated without bilas by the usual lsast squarses



formulae, This work was extended by Geary to polynomial
regression, A theorem is proved to the effect that only
two of the coefficients in a univarlate polynomial regression
may be estimated in an unbiased way by the use of least
squares, Lxtoensions to multivariate situations and to
factorial designs are noted, especlally in connection with
the estimation of minima or maxima points in a response
surface study.

In the third part of this work, the effects of a non-
additive model in an unreplicated factorial experiment
are studied. It has been suggested in the literature that
in analyzing unreplicated factorial experiments, estimates
of error may be obtained from higher order 1ﬁteractions.
It is shown that if the data arises from a multiplicative
model, this procedure may lead to entirely erroneous
conclusions being drawn from a straightforward analysis

of the data,



	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	LD5655.V856_1956.S944_ABSTRACT.pdf
	Sweeny_H_1956_001
	Sweeny_H_1956_002
	Sweeny_H_1956_003
	Sweeny_H_1956_004




