NMFS: Network Multimedia
File System Protocol

Sameer Patel, Ghaleb Abdulla,
Muarc Abrams, and Edward Fox

TR 92-54

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

November 3, 1992

NMES: Network Multimedia File System
Protocol

Sameer Patel, Ghaleb Abdulla, Marc Abrams, Edward A. Fox

Computer Science Department, Virginia Polytechnic Institnte and State University
Blacksburg, VA 24061-0106 U.5.A.

Abstract. We describe an on-going project to develop a Network Mul-
timedia File System (NMFS) protocol. The protocol allows “transparent
access of shared files across networks” as Sun’s NI'S protocol does, bat
attempts to meet a real-time delivery schedule. NMFS is designed to pro-
vide ubiguitous service over networks both designed and not designed to
carry multimedia traffic.

1 Introduction

This paper describes a protocol that allows a multimedia application running on
a client machine to use multimedia files stored on a server reached through any
type of network. For simplicity, we view the world as containing two categories
of networks: dafa melworks, which include existing local area networks (e.g.,
IEEE 802.3, 802.5, and FDDI) and the TCP/IP-based Internet, and multimedia
networks, which are networks specifically designed to carry constant and variable
bit rate traffic {e.g., ATM networks, and Synernetics and Starlight modified
10baseT Ethernet hubs). Therefore, our goal is remote access to multimedia
files through both data and multimedia networks, whereas most research on
distributed multimedia applications considers only multimedia networks.

Why consider delivery of multimedia documents over data networks? For
a number of vears into the future, the Internet will probably Interconnect a
combination of older data networks and newer multimedia networks. This must
be the case, unless all networking infrastructure in the Internet is simultaneously
upgraded to multimedia networks. A desirable goal is that of universal access
by any host or client on the [uternet to any multimedia server, even if the
connection between client and host contains data network links that do not
provide constant or variable bit rate traffic. The quality of presentation on the
client workstation may suffer due to data network links, but this is a tradeoff
caused by the economic decision not to replace all data networks by multimedia
networks.

The paradigm that we use to allow multimedia applications to access media
files on network-attached servers is that of Sun’s Network File System (NFS)
protocol, NFS “provides transparent access to shared files across networks”[1}.
NTS provides asynchronous access to remote file systems with no guarantees on
the latency or throughput of file access. This is adequate for many types of text
and binary data and program files, but inadequate for multimedia.

This paper proposes the Network Multimedia File System (NMFS) protocol,
which similarly “provides transparent access to shared files across networks,”
but also meets real-time requirements of delivery schedules with a high proba-
bility. To achieve synchronization, the protocol should deliver all data segments
belonging to an interval within a certain real time delay as specified by the ap-
plication. NMFS is suitable for multimedia files, containing audio, video, and
other formats, in addition to text and binary files. The NMFS protocol, though
similar in function to NFS, is not a modification of NFS but a new protocol.
Like NFS, NMFS is an application layer protocol. NMFS can be ported to any
client or server providing UDP and RPC. NMFS is intended to operate over
any type or size of underlying network or internet, in conjunction with other
traffic. In particular, NMFS can function with the minimum assumption that
the underlying network offers datagram delivery with no bounds on latency and
throughput.

2 File System Model

In our sexver file system model, a particular multimedia material is stored n
a set of one or more files referred to as a file group, each of which can contain
one or more tracks. Fach track is divided into dlocks, where a block is defined
to be a contiguous portion of a track with constant quality of service (QOS)
parameters. Blocks are divided into Application Data Units (ADU), as defined
by Clark and Tennenhouse [4]. An ADU is the unit of error recovery. A set of
ADU’ in one or more tracks are logically grouped into a frame. Frames cannot
cross block boundaries. The client specifies read calls in terms of frames. In
addition, frames are used in specifying QOS parameters and in synchronizing
presentation of tracks at the client. The relation of tracks, blocks, ADU’s, and
frames is illustrated in Fig. 1. QOS parameters specify the divergence vector
(DV), inter-glitch spacing (IGS) and inter-frame pause (IFP), as proposed by
Ravindran and Bansal [5].

Synchronization between tracks is specified by providing in an auxiliary file a
virtual time stamp for each ADU in each track. Tracks are delivered to an appli-
cation using a wirluel to veal {ime stamp mapping or scquence of mappings. The
defanlt mapping is 1:1, however an application can specify to the NMFS protocol
that another mapping be used to play tracks at different or perhaps even variable
rates relative to one another. Virtual time stamps are used as the fundamental
synchronization mechanism because they can be used to synchronize different
types of media.

For NMFS to function over data networks, with their inherent variances in
latencies, NMFS tries to presend blocks that it anticipates are likely to be used
by the application in the near future. Therefore, for each set of multimedia
material, either the client or the server or both stores in an auxiliary file an
anticipated delivery schedule (ADS). The ADS is an N by N matrix, where N is
the total number of blocks in the multimedia material. Element ¢, 7 of the matrix
contains several pieces of information, including an estimate of the probability

Block

/@ D U\\

7040 U,

N\

TrackQ

" 07 g

Track?2 W ////A W/

> (‘
LEGEND: 7 Frame 0O 4 Frame 1 2] Frame i

Fig. 1. The relation between tracks, blocks, ADU’s and frames

that the application will next request block j, given that it last requested block
2. The ADS maybe stored on the client, in which case the probabilities are
based on a per-client basis. A default ADS is always stored on the server and is
used by clients that do not have their own ADS and the probabilities represent
the aggregate hehavior of all network clients. The probabilities in the ADS are
derived in one of two ways: from an authoring systein {2] or by measurement.
In the first case the authoring system predicts client behaviour. In the second
case a log file is written that records the sequence of blocks accessed by a client.
When the client terminates the ADS is updated based on the log file.

3 NMFS Protocol Overview

3.1 Restrictions in Initial Version of NMFS

The initial version of NMFS contains two restrictions, First, all files are read-
only; a client cannot write to the server. Second the protocol does nof provide
synchronization between traffic types coming from different servers. Therefore,
all the tracks that have to be synchronized must be on the same server.

3.2 Service

Like the NFS protocol, the service mterface for NMFS is a set of remote pro-
cedure calls. In fact, the NMFS calls are only slightly modified versions of the

NFS calls. While an NFS file is byte addressable, an NMFS file group is frame
addressible. In particular, in particular the NMFSPROC-READ call specifies an
offset in unit of frames, and randomly accesses any frames in the file group.

Buffering: The protocol introduces the idea of buffering at the client’s end a
certain amount of data, that is likely to be referenced in the near future, in a
frame cache. The cache size depends on the hardware resources of the client
machine. Generally it is desired that the client has enough buffer space to buffer
I or 2 seconds of presentation.

The frame cache is organized as a set of variable size frames. The frame cache
is addressed with a frame number and an offset within a frame. The frame cache
1s used for two purposes. First, it is used to convert a network with variable
latency into a network with constant latency. Second, it is used to hold frames
which are anticipated to be used in the near future to reduce the network traffic.
"The frame cache is subject to a policy for replacing frames when the client reads a
frame not in the cache; in this way the cache is conventional. However, the cache
1s unconventional in that the replacement policy will use the ADS to anticipate
future frames that will be read, and notifies the server to presend these frames
before the client reads them.

Flow Control and Error Recovery: Flow control is based on a model of the client
buffer as a bucket with a spout at the bottomn that delivers water to the client.
This differs from a leaky bucket scheme [6] in that the buffer occupancy is used
to set the server’s fransmission rate. The entry of water (e.g., ADU’s) is sporadic.
(For example, the delivery of ADU’s may be slowed by a sudden burst in other
network traffic, or interrupted entirely such as by a sequence of collisions in an
Ethernet.) However, if the bucket never empties then the exit of water from the
spout occurs at constant rate. In NMFS, the bucket corresponds to the set of
frames within the cache that are currently being presented at the client. There
are low and high water marks associated with the bucket. If the number of
buffered ADU’s reaches the low water mark, then the client side tells the server
side to send ADU’s at faster than real time. At the high water mark, the client
tells the server to return to sending ADU’s at real time (e.g., at the same rate
at which the client presents them). If the client buffer falls below the low water
mark, the NMFS client will modify the virtual-to-real time stamp mapping to
slow down the presentation to avoid emptying the buffer.

For error recovery, NMFS allows an application to specify at the time of
opening a file what user-defined algorithm should be used when reception of
one or more ADU’s occurs outside the QOS parameters. NMFS has default
error recover {or applications without error recovery algorithms. As proposed by
Ravindran and Bansal [5], connections are broken and reestablished with tighter
QOS parameters if continual errors and QOS violations occur.

3.3 Protocol Rules

Open Regquests: A client begins by opening multimedia material on a server. In
the open request, the NMFS client side requests a copy of the ADS from the

server if the client does not have an ADS for the currently running application,

‘The open request also contains an estimate of the maximum and average
QOS parameters that will be used in subsequent reads. The server will decide
whether or not to accept the open request based on its estimate of wither the
networks hetween the client and server can satisly the estimated QOS. To do this,
the server uses statistics collected in the past if available about the mean and
variance of network load. For example, for a server on a LAN which has frequent
interactions with LAN clients, the server can add the aggregate bandwidths of
existing NMFS open multimedia material, add the mean background traffic, and
use the variance observed in the recent past to estimate whether the LAN ean
sustain additional open multimedia, material.

After sending the ADS if requested, the server responds by associating each
track in the material with one or more NMFS connections. Each NMFS conpec-
tion is mapped to an appropriate entity of the underlymg network. For example,
this is a UDP port if the underlying network is UDP/IP, or a virtual cireuit in
an ATM network. The reason that a track is delivered over possibly more than
one connection is that portions of a track may have different quality of service
parameters. For example, in a video track, reference frames are sent over one
connection with the QOS parameter IGS set to a large number to prohibit losses,
while remaining frames are sent over another connection with a small IGS value
to allow a much higher loss rate.

Read Calls: The client then will perform NMFS read calls. The client side of
NMFS will first search the client cache for the frame to satisly the read. If the
frame is not cached, the client uses its copy of the ADS to select m client caches
to free, and then sends the NMFS server m read requests to fill the caches. If
m = 1, the client is requesting only the frame specified in the NMFS read call. If
m > 1, then the NMFS client is also requesting the server to presend anticipated
future frame requests.

Each read call specifies a start frame number and the number of subsequent
frames to read in either the forward or reverse direction. If the frame is in a
different block than the preceeding frame requested from the server, then the
client and server mmust negotiate the QOS parameters used for delivery in the
new blocks. Afterwards the server begins transmitting the ADU’ constituting
the frame. Note that ADU’s travel over 1 or more NMFS connections, each with
its own QOS parameters,

4 Project Status

We are currently (October 1992) designing the protocol and expect to implement
version 1 by early 1993. A model for providing real-time support of continuous
media is being developed. Our environment consists of servers at the Computing
Center at Virginia Tech, clients that could be DVI machines, workstations or
PC’s located throughout the campus, and the interconnecting network which
uses Ethernet and FDDI. In our final version of the protocol, we plan to relax
constraints imposed by the initial version.

Acknowledgements: The authors wish to thank Scott Midkiff for his useful dis-
cussions. This work was sponsored in part by National Science Foundation grant

NSF-CDA-9121999.

References

1. Norwicki,B.: NFS: Network File System Protocol Specification, RFC 1094.

2. Loeb, §.: Delivering Interactive Multimedia Documents Over Networks, IEEE

Commun. Magazine 30 (1992) 52-59

3. Little T.D.C. and Ghafoor Al Multimedia Synchronization Protocols for Broad-
band Tntegrated Services, IEEE J. on Sel. Areas in Commun. 9 (1991) 1368-1382
4. Clarck I.D. and Tennenhouse D.L.: Architectural Considerations for a New Gen-

eration of Protocols. Proc. SigComm *90 20 (1990) 200-208

5. Ravindran K. and Bansal V.. Delay Compensation Protocols for Synchronization of
Multimedia Data Streams, Technical Report, Dep. of Computing and Information

Science, Kansas State University, Manhattan, KS
6. Bertsekas, D. and Gallager, R.: Data Networks, Prentice Hall (1992) 510-513

This article was processed asing the ITEX macro package with LLNCS style

