Table of Appendices

APPENDIX A.1 DATA COLLECTION FORMS AND QUESTIONNAIRES	231
A.1.1 DEMOGRAPHIC FORM	
A.1.2 Planning Form	
A.1.3 CONCEPTUAL DESIGN FORM	234
A.1.4 PRELIMINARY DESIGN FORM	
A.1.5 DETAILED DESIGN FORM	
A.1.6 Post-experiment Form	237
APPENDIX A.2 ENGINEERING DESIGN PROJECT	238
APPENDIX A.3 SCRIPT	243
A.3.1 PRE-EXPERIMENT PREPARATION	
A.3.2 TRAINING	243
A.3.2.1 Greeting	243
A.3.2.2 Tutorials	243
A.3.3 TRIAL	
A.3.3.1 Greeting	244
A.3.3.2 Explanation of the Design Task	245
A.3.3.3 Conditions without Project Planning	245
A.3.3.4 Conditions with Project Planning	248
APPENDIX A.4 TRAINING MODULES	252
A.4.1 Overview of Training Exercises	
A.4.2 LEARNING OBJECTIVES	
A.4.2.1 Detailed Drawing	252
A.4.2.2 Assembly Exercise	252
A.4.2.3 Life-cycle Cost Analysis Exercise	252
A.4.2.4 Planning and tracking a project	252
A.4.3 LEGOS TUTORIAL (ADAPTED FROM MEREDITH, 1997)	
A.4.4 DETAILED DRAWING TUTORIAL (ADAPTED FROM MEREDITH, 1997)	
A.4.5 ASSEMBLY AND THREE-VIEW DRAWING TUTORIAL	
A.4.6 LIFECYCLE COST TUTORIAL - MANUAL	257
APPENDIX A.5 INFORMED CONSENT FORMS	260
APPENDIX A.6 LABORATORY SETUP CHECKLIST	265
APPENDIX A.7 DATA COLLECTION LOGS AND FORMS	
APPENDIX A.8 ENGINEERING DESIGN GOALS	
ADDENDIVA O ALCO DESULTS	102
APPENDIX A.9 AICC RESUL IS	283
APPENDIX A.10 VARIANCE TABLES FOR VARIABLES WITHOUT SIGNIFICANT DIFFERENCES	295
A.10.1 DESIGN PERFORMANCE VARIABLES	
A. 10.2 PLANNING PERFORMANCE VARIABLES	
A.10.5 NASA ILX	
A.10.4 JOB SATISFACTION	

VITA	
APPENDIX A.19 JOB SATISFACTION RELIABILITY	
APPENDIX A.18 CORRELATIONS BETWEEN PERFORMANCE AND DEMOGRAPH	ICS378
A.17.1 APPENDIX INTER-RATER RELIABILITY BETWEEN GROUP MEMBERS A.17.2 AGREEMENT BETWEEN OBSERVERS	
APPENDIX A.17 AGREEMENT BETWEEN RATERS	374
APPENDIX A.16 SUPPORTING VARIANCE TABLES	
APPENDIX A.15 MULTIPLE COMPARISONS FOR SIGNIFICANT THREE WAY INTERACTIONS FOR GROUP DATA	355
A.14.7 SUPPLEMENTAL GROUP OBSERVATIONS	
A.14.6 CRITICAL TEAM BEHAVIORS	
A.14.5 GROUP WORKLOAD ASSESSED BY OUTSIDE OBSERVERS	
A.14.5 SUPPLEMENTAL PLANNING SUPPORT QUESTIONS	
A. 14.2 JOB SATISFACTION	
A.14.1 NASA TLX	
APPENDIX A.14 MANOVAS FOR GROUP ANALYSIS	
A.13.7 CRITICAL TEAM BEHAVIORS	
A.13.6 GROUP WORKLOAD EVALUATED BY OUTSIDE OBSERVERS	
A.13.5 GROUP WORKLOAD	
A.13.4 SUPPLEMENTAL PLANNING QUESTIONS	
A.13.3 SUPPLEMENTAL DESIGN QUESTIONS	
A 13 2 JOB SATISFACTION	
Α 12 Ι ΝΑΓΑ ΤΙ Υ	225
APPENDIX A.13 ANOVA TABLES FOR VARIABLES THAT DID NOT HAVE SIGNIFIEFFECTS	CANT
APPENDIX A.12 MULTIPLE COMPARISONS FOR THREE WAY INTERACTIONS	
A.11.5 SUPPLEMENTAL PLANNING QUESTIONS	
A.11.4 SUPPLEMENTAL DESIGN QUESTIONS	
A.11.3 JOB SATISFACTION COMPONENTS	
A.11.2 NASA TLX COMPONENTS.	
	210
APPENDIX A.11 MANOVA TABLES	
A.10.5 DESIGN RELATED QUESTIONS	
A 10.5 DESIGN RELATED QUESTIONS	306

List of Tables

Table A. 9.1 Comparison of the goodness of fit for mixed subject designs and when ANOVA	
assumptions are violated for data from Chapter 4 to determine the variance grouping	. 283
Table A. 9.2 Comparison of the AICC for each factor from Chapter 5 to determine the grouping when	
normality or homogeneity of variance assumption is violated	. 284
Table A. 9.3 Comparison of the AICC for each factor in the analysis of group members (Chapter 6)	. 288
Table A. 10.1 ANOVA for cost effectiveness with robustness	.295
Table A.10.2 ANOVA for cost effectiveness without robustness	.295
Table A.10.3 ANOVA for system effectiveness	.295
Table A. 10.4 ANOVA for system effectiveness without robustness	. 295
Table A.10.5 ANOVA for robustness	.295
Table A.10.6 ANOVA for system size	.296
Table A.10.7 ANOVA for manufacturing time (producibility)	. 296
Table A. 10.8 ANOVA for material costs	.296
Table A.10.9 ANOVA for number of errors	.296
Table A. 10.10 ANOVA for total parts	.296
Table A. 10.11 ANOVA for unique parts	.296
Table A. 10.12 ANOVA for number of concepts generated	. 296
Table A. 10.13 ANOVA for number of design criteria	. 297
Table A. 10.14 ANOVA for scoping document score	.297
Table A. 10.15 ANOVA for NASA TLX during planning	. 297
Table A. 10.16 ANOVA for mental demand during planning	. 297
Table A. 10.17 ANOVA for physical demand during planning	.297
Table A. 10.18 ANOVA for temporal demand during planning	.297
Table A. 10.19 ANOVA for performance during planning	. 298
Table A. 10.20 ANOVA for effort during planning	.298
Table A. 10.21 ANOVA for frustration during planning	. 298
Table A. 10.22 ANOVA for performance during design	. 298
Table A. 10.23 ANOVA for the reflective NASA TLX	.298
Table A. 10.24 ANOVA for the reflective mental demand	. 299
Table A. 10.25 ANOVA for the reflective physical demand	. 299
Table A. 10.26 ANOVA for the reflective temporal demand	. 299
Table A. 10.27 ANOVA for the reflective performance	. 299
Table A. 10.28 ANOVA for the reflective effort	.299
Table A. 10.29 ANOVA for job satisfaction during planning	. 299
Table A. 10.30 ANOVA for comfort during planning	.300
Table A. 10.31 ANOVA for excessive work during planning	. 300
Table A. 10.32 ANOVA for physical surroundings during planning	. 300
Table A. 10.33 ANOVA for personal problems during planning	.300
Table A. 10.34 ANOVA for challenge during planning	. 300
Table A. 10.35 ANOVA for develop ability during planning	. 300
Table A. 10.36 ANOVA for problem interest during planning	.300
Table A. 10.37 ANOVA for freedom during planning	. 301
Table A. 10.38 ANOVA for problem difficulty during planning	. 301
Table A. 10.39 ANOVA for ability to see work results during planning	. 301
Table A. 10.40 ANOVA for resources during planning	. 301
Table A. 10.41 ANOVA for access to proper equipment during planning	. 301
Table A. 10.42 ANOVA for information during planning	. 301
Table A. 10.43 ANOVA for responsibility during planning	. 301

Table A. 10.44 ANOVA for ability to forget personal problems during design	302
Table A. 10.45 ANOVA for challenge during design	302
Table A. 10.46 ANOVA for resources during design	302
Table A. 10.47 ANOVA for access to information during design	303
Table A. 10.48 ANOVA for responsibility during design	303
Table A. 10.49 ANOVA for reflective job satisfaction	303
Table A. 10.50 ANOVA for reflective comfort	303
Table A. 10.51 ANOVA for the reflective perception of excessive work	304
Table A. 10.52 ANOVA for reflective physical surroundings	304
Table A. 10.53 ANOVA for reflective perception of time	304
Table A. 10.54 ANOVA for reflective personal problems	304
Table A. 10.55 ANOVA for reflective challenge	304
Table A. 10.56 ANOVA for reflective problem interest	304
Table A. 10.57 ANOVA for reflective freedom	305
Table A. 10.58 ANOVA for reflective problem difficulty	305
Table A. 10.59 ANOVA for reflective ability to see work results	305
Table A. 10.60 ANOVA for reflective resources	305
Table A. 10.61 ANOVA for the reflective access to the appropriate equipment	305
Table A. 10.62 ANOVA for the reflective access to the information	305
Table A. 10.63 ANOVA for the reflective responsibility	305
Table A. 10.64 ANOVA for job satisfaction including group questions during planning	306
Table A. 10.65 ANOVA for job satisfaction including group questions groups during design	306
Table A. 10.66 ANOVA for retrospective job satisfaction including group questions	306
Table A. 10.67 ANOVA for designing the best system possible	306
Table A. 10.68 ANOVA for how well participants liked their system	306
Table A. 10.69 ANOVA for how well the participants met their design objectives	306
Table A. 10.70 ANOVA for the ease of use of project support during planning	307
Table A. 10.71 ANOVA for the efficiency of project support during planning	307
Table A. 10.72 ANOVA for the effectiveness of project support during planning	307
Table A. 10.73 ANOVA for the productivity during planning	307
Table A. 10.74 ANOVA for satisfaction with project support during planning	307
Table A. 10.75 ANOVA for developing the best plan possible	307
Table A. 10.76 ANOVA for the efficiency of the project support tools during design	308
Table A. 10.77 ANOVA for the effectiveness of the project support tools during design	308
Table A. 10.78 ANOVA for the productivity of the project support tools during design	308
Table A. 10.79 ANOVA for the satisfaction with using the of the project support tools during desig	n309
Table A. 10.80 ANOVA for the reflective satisfaction with project support tools	309
Table A. 10.81 ANOVA for the reflective productivity with project support tools	309
Table A. 10.82 ANOVA for the ability to stay on schedule	309
Table A. 10.83 ANOVA for the ability to stay on budget	309
Table A. 11.1 MANOVA on reliability, robustness, system size, and producibility	310
Table A. 11.2 MANOVA on material cost, design cost, and lifecycle cost	310
Table A. 11.3 MANOVA on total parts, number of moving parts, and number of unique parts	310
Table A. 11.4 MANOVA on number of concepts and design criteria	311
Table A. 11.5 MANOVA on number of scoping and Gantt chart scores	311
Table A. 11.6 MANOVA on mental, physical, and temporal demand, performance, effort, and frust	ration
during planning	311
Table A. 11.7 MANOVA on mental, physical, and temporal demand, performance, effort, and frust	ration
during design	312
Table A. 11.8 MANOVA on reflective mental, physical, and temporal demand, performance, effort	i, and
frustration	312

Table A. 11.9 MANOVA on comfort, challenge, and resources during planning	313
Table A. 11.10 MANOVA on all questions used to calculate job satisfaction during planning	313
Table A. 11.11 MANOVA on comfort, challenge, and resources	314
Table A. 11.12 MANOVA on all questions	315
Table A. 11.13 MANOVA on reflective comfort, challenge, and resources	315
Table A. 11.14 MANOVA on reflective questions.	316
Table A. 11.15 MANOVA on reflective design questions	316
Table A. 11.16 MANOVA on best plan, doubt in ability to complete the plan, ease of use, efficiency,	
effectiveness, productivity, and satisfaction during planning	316
Table A. 11.17 MANOVA on equipment, excessive work, and perception of time during planning	317
Table A. 11.18 MANOVA on ease of use, efficiency, effectiveness, productivity, and satisfaction	317
Table A. 11.19 MANOVA on reflective supplemental planning questions	318
Table A. 12.1 Multiple comparisons of the three way interaction for equipment ¹	319
Table A. 12.2 Multiple comparisons of the three way interaction for excessive work	322
Table A. 13.1 ANOVA for NASA TLX during planning	325
Table A. 13.2 ANOVA for mental demand during planning	325
Table A. 13.3 ANOVA for physical demand during planning	325
Table A. 13.4 ANOVA for performance during planning	325
Table A. 13.5 ANOVA for frustration during planning	325
Table A. 13.6 ANOVA for the reflective NASA TLX	326
Table A. 13.7 ANOVA for the reflective mental demand	326
Table A. 13.8 ANOVA for the reflective temporal demand	326
Table A. 13.9 ANOVA for the reflective performance	326
Table A. 13.10 ANOVA for the reflective effort	
Table A. 13.11 ANOVA for the reflective frustration	
Table A. 13.12 ANOVA for job satisfaction during planning (with group data)	
Table A. 13.13 ANOVA for comfort during planning	
Table A. 13.14 ANOVA for the perception that excessive work was required during planning	327
Table A. 13.15 ANOVA for the physical surroundings was required during planning.	
Table A. 13.16 ANOVA for personal problems during planning	
Table A. 13.17 ANOVA for the develop ability during planning	327
Table A. 13.18 ANOVA for the perception the work was interesting during planning	. 328
Table A. 13.19 ANOVA for freedom during planning	
Table A. 13.20 ANOVA for problem difficulty during planning	
Table A. 13.21 ANOVA for ability to see work results during planning	
Table A 13 22 ANOVA for resources during planning	328
Table A. 13.23 ANOVA for appropriate equipment was available during planning.	328
Table A. 13.24 ANOVA for information during planning	
Table A. 13.25 ANOVA for responsibility during planning	. 329
Table A. 13.26 ANOVA for member competence during planning	
Table A. 13.27 ANOVA for member helpfulness during planning	
Table A. 13.28 Variance analysis for personal problems during design	. 329
Table A 13.29 Variance analysis for challenge during design	
Table A 13.30 Variance analysis for freedom during design	
Table A 13 31 Variance analysis for problem difficulty during design	330
Table A. 13.32 Variance analysis on equipment during design	
Table A 13 33 Variance analysis for information during design	331
Table A. 13.34 Variance analysis on responsibility during design	331
Table A. 13.35 ANOVA for reflective iob satisfaction	
Table A. 13.36 ANOVA for reflective comfort	.332
Table A. 13.37 ANOVA for excessive work	

Table A. 13.38 ANOVA for reflective physical surroundings	332
Table A. 13.39 ANOVA for reflective time perception.	332
Table A. 13.40 ANOVA for reflective personal problems	332
Table A. 13.41 ANOVA for reflective challenge	332
Table A. 13.42 ANOVA for reflective freedom	332
Table A. 13.43 ANOVA for reflective ability to see results	333
Table A. 13.44 ANOVA for reflective resources	333
Table A. 13.45 ANOVA for the reflective appropriate equipment availability	333
Table A. 13.46 ANOVA for the reflective information	333
Table A. 13.47 ANOVA for the reflective responsibility	333
Table A. 13.48 ANOVA for reflective member competency	333
Table A. 13.49 ANOVA for the reflective member helpfulness	334
Table A. 13.50 ANOVA for the participants' belief that they build the best system possible	334
Table A. 13.51 ANOVA for the degree to which the participants liked their system	334
Table A. 13.52 ANOVA for the participants' belief that they met or exceeded their design objectives	3334
Table A. 13.53 ANOVA for the effectiveness of the project support tools during planning	334
Table A. 13.54 ANOVA for efficiency of project support tools during design	335
Table A. 13.55 ANOVA for productivity of project support tools during design	335
Table A. 13.56 ANOVA for how well project support tools enabled participants to stay on schedule.	335
Table A. 13.57 ANOVA for how well project support tools enabled the participants to stay on budge	et.335
Table A. 13.58 ANOVA for the value of group interaction during planning	
Table A. 13.59 ANOVA for the difficulty of group interaction during planning	
Table A. 13.60 ANOVA for the degree of cooperation during planning	
Table A 13 61 ANOVA for the overall team workload during planning	336
Table A 13 62 ANOVA for the reflective value of group interaction	336
Table A 13 63 ANOVA for the reflective difficulty of group interaction	336
Table A 13 64 ANOVA for the reflective degree of cooperation	337
Table A. 13.65 ANOVA for value of group interaction during planning evaluated by outside observe	ers337
Table A. 13.66 ANOVA for the degree of group interaction during planning evaluated by outside	
observers	337
Table A. 13.67 ANOVA for the degree of cooperation during planning evaluated by outside observe	rs 337
Table A. 13.68 ANOVA for the overall team workload during planning evaluated by outside observe	ers
Table A. 13.69 ANOVA for the value of group evaluated by outside observers	337
Table A 13 70 ANOVA for the degree of cooperation evaluated by outside observers	338
Table A 13 71 ANOVA for the reflective value of group interaction evaluated by outside observers.	338
Table A. 13.72 ANOVA for the reflective difficulty of group interaction evaluated by outside observ	/ers
	338
Table A. 13.73 ANOVA for the reflective degree of cooperation evaluated by outside observers	
Table A 13 74 ANOVA for the reflective overall team workload evaluated by outside observers	338
Table A 13.75 Logistic analysis for negative communication during planning	338
Table A 13 76 ANOVA for negative cooperation during planning	338
Table A 13 77 ANOVA for positive cooperation during planning	339
Table A 13.78 Logistic analysis for positive acceptance of feedback during planning	339
Table A 13 79 ANOVA for the positive adaptability during planning	339
Table A 13.80 ANOVA for the positive team spirit and morale during planning	339
Table A 13.81 Logistic analysis for the positive communication during design	339
Table A. 13.82 Logistic analysis for the negative cooperation during design	
Table A 13.83 Logistic analysis for the negative coordination during design	340
Table A 13.84 Logistic analysis for the positive accepting feedback during design	340
Table A. 13.85 Variance analysis for the positive team spirit and morale during design.	
r	

Table A. 14.1 MANOVA on components of NASA TLX during planning	. 342
Table A. 14.2 MANOVA on components of the NASA TLX	. 343
Table A. 14.3 MANOVA on components of reflective NASA TLX	. 343
Table A. 14.4 MANOVA on components of job satisfaction during planning	. 344
Table A. 14.5 MANOVA on the questions used to calculate job satisfaction during planning	. 344
Table A. 14.6 MANOVA on components of job satisfaction	. 345
Table A. 14.7 MANOVA on questions used to calculate job satisfaction	. 346
Table A. 14.8 MANOVA on components of reflective job satisfaction	. 346
Table A. 14.9 MANOVA on reflective questions used to determine job satisfaction and supplemental	
design questions	. 347
Table A. 14.10 MANOVA on supplemental planning questions	. 347
Table A. 14.11 MANOVA on responses to reflective supplemental planning questions	. 348
Table A. 14.12 MANOVA on group workload during planning	. 348
Table A. 14.13 MANOVA on group workload	. 349
Table A. 14.14 MANOVA on reflective group workload	. 349
Table A. 14.15 MANOVA on group workload assessed by outside observers during planning	.350
Table A. 14.16 MANOVA on group workload assessed by outside observers	.350
Table A. 14.17 MANOVA on reflective group workload assessed by outside observers	.350
Table A. 14.18 MANOVA on the all ineffective and effective behaviors during planning	.351
Table A. 14.19 MANOVA on the critical team behaviors during planning	. 351
Table A. 14.20 MANOVA on all positive and negative behavior observations	. 352
Table A. 14.21 MANOVA on critical team behaviors	. 353
Table A. 14.22 MANOVA on the supplemental group observations during planning	.353
Table A. 14.23 MANOVA on supplemental group observations	. 354
Table A. 15.1 Multiple comparisons for the three way interaction for comfort	.355
Table A. 15.2 Multiple comparisons for the three way interaction for resources	. 360
Table A. 15.3 Excessive work multiple comparisons for roles	.366
Table A. 16.1 Variance analysis for time related comments in groups	. 372
Table A. 16.2 Multiple comparisons of the mean time-related comments based on phase	. 372
Table A. 16.3 Multiple comparisons of the mean time-related comments based on role	. 372
Table A. 16.4 Comparisons of time-related comments for project support and role	. 373
Table A. 17.1 Correlation coefficients between observers for variables during planning	. 374
Table A. 17.2 Correlation coefficients between observers for variables during conceptual design	.375
Table A. 17.3 Correlation coefficients between observers for variables upon reflection	. 376
Table A. 17.4 Correlation coefficients between observers for group workload scales	. 377
Table A. 17.5 Pearson correlation between observers	. 377
Table A. 18.1 Correlations between design performance and demographics	. 378
Table A. 18.2 Correlations between planning performance and demographics	. 378
Table A. 19.1 Reliability for comfort, challenge and resources	. 379

Appendix A.1 Data Collection Forms and Questionnaires

This section includes the following data collection forms:

- Task Forms •
 - A.1.1 Demographic Form
 - A.1.2 Planning Form
 - A.1.3 Conceptual Design Form
 A.1.4 Preliminary Design Form

 - A.1.5 Detailed Design Form
 - A.1.6 Post-experiment Form

A.1.1 Demographic Form

Name:

Age: Gender: Major: GPA:

 Home Phone:
 Office Phone:
 Email Address:

YES NO I am familiar with the concept of life-cycle costs

YES NO I am familiar with the concept of engineering design life-cycle

YES NO I am familiar with the concept of project management

Number of engineering design projects you have worked on

In the space below mark out times that you are definitely **not** available to participate in a 3-4 hour experiment.

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
8-9 am							
9-10 am							
10-11am							
11 am-12 pm							
12-1 pm							
1-2 pm							
2-3 pm							
3-4 pm							
4-5 pm							
5-6 pm							
6-7 pm							
7-8 pm							
8-9 pm							

Please write down my name and how to contact me so you can call me if there is a problem:

Paige Smith (301) 405-3931 (Work) (301) 681-5809 (Home) pesmith@deans.umd.edu

A.1.2 Planning Form

L			1	1 1
1		2	3	4 5
Strongly a	agree Ag	gree Neith nor	ner agree Di disagree	sagree Strongly disagree

7. The plan that was developed was the best plan we could have created.

1	2	3	4	5
Strongly agree	Agree	Neither agree nor disagree	Disagree	Strongly disagree

This questionnaire was only be administered to participants with project support.

A.1.3 Conceptual Design Form

1. The project management tools were easy to use.

2. The project management tools improved the efficiency of implementing the plan for conceptual design.

3. The project management tools improved the effectiveness of implementing the plan for conceptual design.

4. We were more productive during conceptual design because of the project management tools we used.

			1	
		1	1	
1	2	3	4	5
Strongly agree	Agree	Neither agree	Disagree	Strongly
		nor disagree		disagree

5. Overall I was extremely satisfied with the project management tools.

L		1	I	
1	2	3	4	5
Strongly agree	Agree	Neither agree nor disagree	Disagree	Strongly disagree

6. There is no doubt that we will be able to develop a good system using one of the ideas from the list of concepts.

Questions 1-5 were only given to participants with project support.

A.1.4 Preliminary Design Form

1. The project management tools were easy to use.

2. The project management tools improved the efficiency of implementing the plan for preliminary design.

3. The project management tools improved the effectiveness of implementing the plan for preliminary design.

4. We were more productive during preliminary design because of the project management tools we used.

5. Overall I was extremely satisfied with the project management tools.

6. There is no doubt the concept we selected will result in a system that meets the performance requirements.

Questions 1-5 were only given to participants with project management support.

A.1.5 Detailed Design Form

1. The project management tools were easy to use.

2. The project management tools improved the efficiency of implementing the plan for detailed design.

3. The project management tools improved the effectiveness of implementing the plan for detailed design.

L	1	I		
1	2	3	4	5
Strongly agree	Agree	Neither agree nor disagree	Disagree	Strongly disagree

4. We were more productive during detailed design because of the project management tools we used.

	1	I		
1	2	3	4	5
Strongly agree	Agree	Neither agree	Disagree	Strongly
		nor disagree		disagree

5. Overall I was extremely satisfied with the project management tools.

6. There is no doubt the concept we selected will result in a system that meets the performance requirements.

Questions 1-5 was only given to participants with project support.

A.1.6 Post-experiment Form

1. I/we designed the best system within my/our ability.

7. We were able to stay on schedule as well as we did because of the project management tools.

8. We were able to stay on budget as well as we did because of the project management tools.

Ĺ					
1		2	3	4	5
Strongly a	agree Ag	gree N	either agree or disagree	Disagree	Strongly disagree

Questions 3, 5, 6, 7, and 8 were only given to participants with project support.

Appendix A.2 Engineering Design Project

THE "MISSION POSSIBLE" CASE (for treatments with project support, adapted from Meredith, 1997)

Your company is in competition for a secret government contract to design, build, and test a transportation system. This system will be used to move a spherical container of valuable material from behind enemy lines to friendly territory. The enemy has erected a large barricade across the only road out.

In order for your company to work on this project without attracting local attention, your team will create a prototype using toys. This prototype, if successful, will be used to secure funding to complete the actual system.

The requirements have been scaled from the real situation to requirements for the prototype system. The prototype system must move a ping-pong ball (i.e., spherical container) from a starting point (i.e., current location) to a finish line (i.e., friendly territory) as shown in Figure 1. You may not touch the ball or the hurdle (i.e., barricade) at any time. The ball may be moved over or around the hurdle. You may not use human energy to move the ball. The ball rests on a LEGO piece $(5/8" \times 5/8" \times 3/8")$ at the starting line.

Figure 1 Test site layout

You must build your prototypes with LEGOS and the following materials: a roll of masking tape, rubber bands, a 4" x 7" piece of cardboard, paper and scissors.

Your team's design will be evaluated on several criteria such as how long the design process takes and how easy it is to build (producability). Your team's design documentation and the costs associated with creating the system will be evaluated. However, the most important criterion is if the system meets the performance specification (in other words, does the system move the ball to the finish line).

Each one of your team members has been assigned to a function – either design, manufacturing, or purchasing. Each function has goals that will be given to you later during the experiment that you should attempt to achieve. Individual performance will be a function of how well you achieve your functional goals.

It is possible that the requirements for the toy system do not exactly simulate the requirements of the actual system. Therefore, your design should be as robust as possible. This means the design should still be capable of meeting the performance specifications given minor changes in the requirements. For example, our intelligence forces may be slightly incorrect in the exact location or height of the barrier, or the weight or size of the container.

Your team does not have an unlimited amount of time or money to complete this project. You have 55 minutes to plan your project and 2 hours to execute your plan. The government has offered an incentive bonus for early completion of the project. Your team has been allocated \$685 for this project.

The overall approach to the experiment is based on a design project's lifecycle. First you will prepare a scoping document. Then you will prepare a plan and budget. There are 3 design activities (conceptual design, preliminary detail design, and detailed design) and a testing activity that you must plan and execute. In your schedule, you must include a review meeting at the end of each design phase to review the required deliverables. You must hold a status meeting every 30 minutes during implementation. The main purpose of conceptual design is to generate ideas for potential systems. In preliminary design you will explore two feasible solutions and then select the idea you think has the highest chance for success. During detailed design, you will create manufacturing instructions in the form of detailing drawings and textual directions and descriptions. During testing, you will build a prototype and test it to see if it meets the performance specifications.

The following are the specific deliverables from each phase:

<u>Planning</u>

- Scoping document
 - Problem/Opportunity
 - o Goal
 - Objectives
 - Measures of success
 - Risks and threats
- Work Breakdown Structure
 - Level 1 activities: conceptual design, preliminary design, detailed design, testing
 - Need a *minimum* of 3 sub-activities under each level 1 activity.
 - Assign primary responsibility
 - Estimate duration
 - Identify task dependencies
- Gantt Chart
- Resource allocation/budget

Conceptual Design

- Overall goal of the design project.
- List of design criteria includes performance parameters, system requirements, and/or operational requirements.
- List of ideas for system (as many as you can think of). Do NOT eliminate any ideas during conceptual design.

Preliminary Design

- Reduce list of ideas to 2 potential concepts.
 - High-level sketch of each concept. Include overall dimensions and the general shape.
 - Brief written description of each concept.
- Tradeoff analysis
 - Strengths and weaknesses of each system
 - Lifecycle cost estimate for each system
 - Create rough prototype of each alternative
- Select single concept

<u>Detailed Design</u>

- Documentation justifying the system that was selected
- Detailed drawings (dimensioned)
 - two views of the system
 - o at least one-view of subsystem that interacts initially with the ball
- Textual instructions on how to assemble the system
- A bill of material

Building & Testing

- The manufacturer should build the new prototype from scratch according to the instructions. Design errors need to be recorded and explained, and the lifecycle cost for the system needs to be calculated.
- The system will be tested three times for reliability and accuracy.

Status Reports

- Record of % complete and track on Gantt chart.
- Update Actual column in budget with amount spent (include only labor).
- Calculate CPI and SPI.

Between the design tasks you will complete several of questionnaires. These questionnaires do not count as part of your 2-hour design time. These questionnaires are very important because they are gathering information about your perceptions through out the planning and design process.

Good luck, the Mission Possible force is counting on you. Remember, you may not discuss this top-secret project with anyone outside of this room.

Note for individuals any reference to team was removed and the budget was changed to \$445.

THE "MISSION POSSIBLE" CASE (for treatments without project support, adapted from Meredith, 1997)

Your company is in competition for a secret government contract to design, build, and test a transportation system. This system will be used to move a spherical container of valuable material from behind enemy lines to friendly territory. The enemy has erected a large barricade across the only road out.

In order for your company to work on this project without attracting local attention, your team will create a prototype using toys. This prototype, if successful, will be used to secure funding to complete the actual system.

The requirements have been scaled from the real situation to requirements for the prototype system. The prototype system must move a ping-pong ball (i.e., spherical container) from a starting point (i.e., current location) to a finish line (i.e., friendly territory) as shown in Figure 1. You may not touch the ball or the hurdle (i.e., barricade) at any time. The ball may be moved over or around the hurdle. You may not use human energy to move the ball. The ball rests on a LEGO piece (5/8" x 5/8" x 3/8") at the starting line.

Figure 1 Test site layout

Your team must build your prototypes with LEGOS and the following materials: a roll of masking tape, rubber bands, a 4" x 7" piece of cardboard, paper and, scissors.

Your team's design will be evaluated on several criteria such as how long the design process takes and how easy it is to build (producability). Your team's design documentation and the costs associated with creating the system will be also evaluated. However, the most important criterion is if the system meets the performance specification (in other words, does the system move the ball to the finish line).

It is possible that the requirements for the toy system do not exactly simulate the requirements of the actual system. Therefore, your design should be as robust as possible. This means the design should still be capable of meeting the performance specifications given minor changes in the requirements. For example, our intelligence forces may be slightly incorrect in the exact location or height of the barrier, or the weight or size of the container.

Your team does not have an unlimited amount of time or money to complete this task. You have 2 hours to complete this project. The government has offered an incentive bonus for early completion of the project. Your team has been allocated \$685 for this project.

Each one of your team members has been assigned to a function – either design, manufacturing, or purchasing. Each function has goals that will be given to you later during the experiment that you should attempt to achieve. Individual performance will be a function of how well you achieve your functional goals.

The overall approach to the experiment is based on a design project's lifecycle. There are 3 design activities (conceptual design, preliminary detail design, and detailed design) and a testing activity that you must complete. The main purpose of conceptual design is to generate ideas for potential systems. In preliminary design you will explore two feasible solutions and then select the idea you think has the highest chance for success. During detailed design, you will create manufacturing instructions in the form of detailing drawings and textual directions and descriptions. During testing, you will build a prototype and test it to see if it meets the performance specifications.

The following are the specific deliverables from each phase:

Conceptual Design

- Overall goal of the design project.
- List of design criteria includes performance parameters, system requirements, and/or operational requirements.
- List of ideas for system (as many as you can think of). Do NOT eliminate any ideas during conceptual design.

Preliminary Design

- Reduce list of ideas to 2 potential concepts.
 - High-level sketch of each concept. Include overall dimensions and the general shape.
 - Brief written description of each concept.
- Tradeoff analysis
 - Strengths and weaknesses of each system
 - Lifecycle cost estimate for each system
 - Create rough prototype of each alternative
- Select single concept

<u>Detailed Design</u>

- Documentation justifying the system that was selected
- Detailed drawings (dimensioned)
 - two views of the system
 - \circ at least one-view of subsystem that interacts initially with the ball
- Textual instructions on how to assemble the system
- A bill of material

Building & Testing

- The manufacturer should build the new prototype from scratch according to the instructions. Design errors need to be recorded and explained, and the lifecycle cost for the system needs to be calculated.
- The system will be tested three times for reliability and accuracy.

Between the design tasks you will complete several of questionnaires. These questionnaires do not count as part of your design time. These questionnaires are very important because they are gathering information about your perceptions through out the design process.

Good luck, the Mission Possible force is counting on you! Remember, you may not discuss this top-secret project with anyone outside of this room.

Note for individuals any reference to team was removed and the budget was changed to \$445.

Appendix A.3 Script

This appendix contains general instructions for the task: Mission Possible (adapted from Meredith, 1997).

A.3.1 Pre-Experiment Preparation

Select the first 72 engineering students who are 18 years of age or older that volunteer to be in this study. Randomly assign these students cells.

Notify the students that have been assigned to project management support conditions to schedule the training session. Based on the schedules of the participants, schedule the training session: I hour for unsupported, 3 hours for manual and an additional 45 minutes for automated. During the training session, participants will complete the demographic form and informed consent form. One day prior to each training and trial, email and phone the student to confirm that they will be able to participate.

A.3.2 Training

A.3.2.1 Greeting

Before we being our training, you need to complete an informed consent and demographic information form. When you return for the experiment I will give you a copy of the last page of the informed consent form. Please feel free to contact me at any time regarding this experiment. Please read and sign the Consent Form.

Wait while participant(s) is completing the Consent Form.

Thank you. Before we get started, let me remind you that it is very important that you do not discuss today's training or the experiment with anyone outside of this room. If you do, you might accidentally give away information, which will give a competing team/individual an unfair advantage. Do you have any questions before we begin?

A.3.2.2 Tutorials

Today we will have several brief training exercises. We will start with project management training (*if in the supported condition*). Then we will move on to LEGOS, detailed drawings, LEGOS assembly, and lifecycle cost calculations.

Handout the Project Management tutorial to all participants (includes figures and bill of material.) Walk the participants through the project management slides and exercises. Have the participants complete the exercises and ensure they have the concepts right before moving onto the next concept. If the exercises are not being completed as they should discuss the problem and help them work though the problem. At the end, administer the term quiz.

In groups the following tutorials will be cycled through all of the groups. For the individuals the tutorials will be administered in the following order: LEGOS, detailed drawings, manufacturing with a three view drawing, and lifecycle costs.

Handout the LEGOS tutorial to all participants (includes figures and bill of material).

At this time, read the information on LEGOS. Please ask me questions at any time during this tutorial. Feel free to use the LEGO pieces as you read through the tutorial to demonstrate connections.

Wait while participants read through the LEGOS manual

Any questions? Now, we will complete the exercises to make sure that you can create a detailed drawing, interpret a three-view drawing to assemble LEGOS, and calculate lifecycle costs.

These are training exercises so if you have any problems, please let me know and we can fix them.

Distribute the detailed drawing tutorial first.

Please read through the detail drawing tutorial and complete the associated exercise. You will be timed. Please let me know when you think you have correctly produced the drawing. Don't hesitate to ask me questions while you work on this tutorial. You may begin.

Time the tutorial. Review the drawing to make sure that it is correct. Repeat the exercise until the drawing is correct. Once a correct design is drawn, record the stop time. In groups, after the first person is started on this tutorial, give the next person the LEGO Assembly Tutorial.

You will work on assembling a LEGO system by interpreting a three-view drawing. I'm going to time you to determine the how long it takes you to assemble the system. Here is a bag of LEGO pieces that you can use to assemble the car shown in your drawing. Please let me know when you have an assembled car. Don't hesitate to ask me questions while you work on this tutorial. You may begin.

Record the start time for assembly training. Verify that the car is assembled correctly. The training session is not over until the car is assembled correctly. Once the car is correctly assembled, record the stop time in the log. Once the manufacturing tutorial is started, give the lifecycle cost tutorial to the next person.

While the other exercises are in progress, I would like you to complete a training exercise on the calculation of lifecycle costs. Please read through the tutorial and complete the associated exercise. You will be timed, so please let me know when you have completed this exercise. You may begin.

Record the start time. Make sure the lifecycle costs have been correctly calculated. Then record the stop time. When one person has completed their tutorial have them start the next available tutorial. If there is waiting time, have them review the LEGOS tutorial again. Wait until everyone is done with their tutorials.

Thank you for completing the training for my experiment. Don't forget you are scheduled to meet ______ for your trial. I will send you an email and phone reminder. If you have any questions or concerns between now and your meeting date, please contact me.

A.3.3 Trial

Have extra informed consent forms and demographic questionnaires available in case a participant has not completed them (non-project management conditions only).

A.3.3.1 Greeting

Before we being the experiment, I will give you a copy of the last page of the informed consent form that you signed. Please feel free to contact me at any time regarding this experiment.

Before we get started, let me remind you that it is very important that you do not discuss today's experiment with anyone outside of this room. If you do, you might accidentally give away information, which will give a competing team/individual an unfair advantage. Do you have any questions before we begin?

If it is a team condition, assign participants to functions: design, manufacturing, and support.

<u>To Groups</u>: Your team members have been randomly assigned to the designing, manufacturing, and purchasing functions. Please wear your functional nametag in a conspicuous place. The designer is responsible for all of the drawings for your system. The manufacturer is ultimately responsible for assembling the system. The purchaser is responsible for keeping track of the lifecycle costs.

<u>**To Individuals:**</u> You are responsible for all of the aspects of design. This includes creating drawings, assembling the system, keeping track of the life-cycle costs, and providing documentation when required.

During the training session, you received training for these roles. Do you have any questions about your role?

A.3.3.2 Explanation of the Design Task

Note that items in [] are only to be read to the group treatment.

Now, you are receiving a copy of the Mission Possible Case, which includes a summary of the deliverables for each design phase.

Distribute the Mission Possible Case (Appendix A.2).

Please read through the description and deliverables.

Wait while participant(s) read the case. Go over to the test area.

Let's review the problem. You are [*your team is*] going to design a system to move this pingpong ball from the starting point to finish line. The ping-pong ball may go over the hurdle or around the hurdle, but please do not try to go through or under the hurdle!

The ping-pong ball can roll across or fly over the finish line. But it must cross the line. *Point to demonstrate these areas*.

You may not use the wall as part of your system. If your solution requires a wall, build it out of LEGOS or one of the other materials provided to you.

You may not lift the ball from its starting point and put it on your system. The ball will be sitting on the LEGO piece, as it currently is, at the beginning of the testing.

You can hold your system in tension, or use some other form of potential energy. Or if you decide to use the motor, you can turn on the motor. However, you cannot interact with your system in any other way during testing.

Do you have any questions so far?

Answer any questions.

Before we begin please read through your functional goals for conceptual design, preliminary design, and detailed design. You will be evaluated on your ability to achieve these goals.

Distribute the goals of the design organization to the respective members.

Are there any questions about what your goals are?

Answer any questions. Follow specific instructions depending on the treatment.

A.3.3.3 Conditions without Project Planning

You need to log the time it takes you to complete this project. [*This task is part of the purchaser's task.*] You have 2 hours and \$445 [*groups*: \$650] to complete this design project. The time constraint does not include the questionnaires you complete at the end of each phase.

Conceptual Design

We are about to start the conceptual design phase. The main purpose of conceptual design is to determine as many feasible approaches as possible to satisfy the problem.

For this design phase, [*as a group*] determine the overall goal, the design criteria, and a list of potential concepts. Please keep a written record of the work and do not destroy any work done during Conceptual Design. Refer to the project description to help remind you of what is required in this phase.

Please use the Conceptual Design Form to record your ideas. Once you have a goal, create a written version of this goal on the form. The next step is to determine and document the design criteria. This includes performance parameters, system requirements, and/or operational requirements for your system. When you have finished determining what your design criteria are [*and have agreement amongst your group members*,] please create a written listing of these requirements on the form provided. The last part of conceptual design is to generate as many ideas for the system as you can. Since you are generating ideas, do NOT eliminate any ideas at this point. Keep a written list of the ideas. Keep trying to determine ideas until you can't come up with anything new.

Are there any questions? You may now begin. Please record the start time in the log. When you have your goal, design criteria, and list of potential solutions, please let me know.

Wait until they tell you they are finished:

Please record the stop time in the log. We have now concluded the conceptual design phase.

Record stop time on log sheet.

At this time I have a several forms for you to complete.

Distribute in the following order: NASA-TLX, Team workload scale, Job Satisfaction, and conceptual design form. Wait until they have finished each one, then collect form and distributed the next form. Ensure the form has participant's functional position on it.

Preliminary Design

Now we are about begin the Preliminary Design phase. Don't forget to keep an eye on the clock. You need to make sure you can finish this project in the next ______ minutes.

During preliminary design you [*your group*] will narrow down the list of potential concepts to two potential solutions. For each potential solution, create a high level sketch to show the general shapes and dimensions and provide a brief textual description of the system. Then, you will conduct a trade-off analysis of the two systems. This includes determining the strengths and weaknesses, developing a very rough prototype for each concept, and estimating lifecycle cost. The final step is to select a concept to be refined during detailed design.

Remember the time constraint and don't spend too long on the prototyping. You just want to get a rough idea for each concept...enough of to give you an idea of each concept and help you make a decision -- not to develop two fully completed model.

Are there any questions about what you are supposed to do? Please review your functional goals.

Answer questions.

At this time you may begin preliminary design. Please record the start time in the log. Don't forget to refer to your project description for the requirements of this phase. Let me know when you have finished.

Enter start time in log. Wait until they have finished.

Please record the stop time in the log. You have now concluded preliminary design.

Enter stop time in log sheet.

At this time I have several forms for you to complete.

Distribute in the following order: NASA-TLX, Team workload scale, Job Satisfaction, and preliminary design. Wait until they have finished each one, then collect form and distributed the next form. Ensure the form has the participant's functional position on it.

Detailed Design

Now we will begin detailed design. Again let me remind you to work quickly. You only have minutes to finish this project.

The purpose of detailed design is to convert the concept you selected during preliminary design into a design that can be built by others.

Your deliverables from this stage are: detailed drawings of two views of the system, a detailed drawing of the subsystem that interacts initially with the ball; explicit instructions on how to assemble the system; and a bill of material. You should dimension all drawings. During this phase you may not work on the prototype you built previously. You can view the prototype and you can interact with LEGO parts to see how the parts connect. Do you have any questions?

Answer any questions

Please review for functional goals for Detailed Design. (*pause*) You may begin. Please record the start time in the log. Let me know when you have completed this task.

Enter the start time in the log. Wait while they work. Wait until finished

Please record the stop time in the log. We have now concluded the detailed design phase.

At this time I have several forms for you to complete.

Distribute in the following order: NASA-TLX, Team workload scale, Job Satisfaction, and detailed design. Wait until they have finished each one, then collect form and distributed the next form. Ensure the form has participant's functional position on it.

Testing

The team will build and test the final design three times for reliability and accuracy (same as during preliminary design) and three times for robustness. All results are recorded in the Log. The final lifecycle cost is calculated again after the testing is complete.

You have completed the formal design process. However, we need to see if your final prototype will meet the requirements. Following the instructions, [*the manufacturer needs to*] build the system. You will be timed. Only follow what is explicitly given to you in the drawings and instructions. [*The designer needs to*] Record design errors as they occur. If there are manufacturing are errors, point them out so they can be corrected and then make a note of it in the error report. You may begin building the system. Please record the start time in the log. As soon as the system is built, record the stop time.

Record the start time on the log.

Wait until the prototype is ready then make sure they entered the stop time:

Now we will test your system. Please record the start time. Set up your system and let me know when you are ready. We will run the test three times.

Complete the series of tests. Record results as they occur. If at least one of the ping pong balls passes the barrier test for robustness.

Now we will test for robustness. We will run the exact same set of tests as before, but now we will use a golf ball in place of the ping-pong ball. Please set up your system and let me know when you are ready.

Give participant(s) the golf ball. Record the results as they occur. Enter the stop time in the log after the last test is complete.

Please record the stop time in the log. *To the purchaser:* Now you have all of the information needed to calculate the lifecycle cost for the system. Please do so now and we will be finished.

Wait until costs are calculated.

At this time I have several forms for you to complete. While you complete this set of questionnaires, please reflect back over your entire experience here today and respond based on your entire experience.

Distribute in the following order: NASA-TLX, Team workload, Satisfaction, and post-experiment form. Wait until they have finished each one, then collect form and distributed the next form. Ensure the form has appropriate label and the participant's functional position on it (if it is a group condition).

Thank you very much for participating in this experiment. I will let you know how your system ranked relative to the other systems once all of the trials are complete. Remember not to reveal any information about what you did today until after you have received the system rankings. If your system turns out to be the winner, I will be in contact with you to determine how to deliver your award. If your phone number or email changes before I contact you, please be sure to let me know.

A.3.3.4 <u>Conditions with Project Planning</u>

Information that appears in italics and in square brackets is to be read to groups. Information in {} is to be read to those with automated support.

You have 55 minutes to plan your design activities and 2 hours to implement your plan. You also have a cost constraint of \$445 [*groups*: \$650]. Note that this includes all labor, material, and maintenance costs [technology if that treatment], but does not include your labor time during planning.

<u>Planning</u>

We are about to begin planning the design project. For this phase, [*as a group*], you need to prepare a scoping document – you will use MS word to create your scoping document. Then you [*your group*] will need to determine what design activities you must complete in order to satisfy the mission possible project. A WBS has already been entered into MS Project. Feel free to alter it in any way you desire. However, you must include the first level activities and at least 3 level two activities.

During conceptual design you will need to determine the design criteria and develop a list of as many potential solutions as possible. During preliminary design, you will select two of the most feasible ideas and create high level sketches and textual descriptions for the two ideas. Then you will conduct a tradeoff analysis. Included in your tradeoff analysis should be the strengths/weaknesses of each system, a lifecycle cost estimate for each system. Then you should build rough prototypes to get a better grasp of each concept. Be careful with your time it is easy to spend too much time trying to perfect a prototype. The purpose of prototyping during preliminary design is to help you decide which system to choose – not to develop a full blown detailed model. By the end of preliminary design you should select a single concept to be further developed during detailed design.

The purpose of detailed design is to convert the concept you selected during preliminary design into a design that can be built by others. A measure of your team's performance is how accurate and complete your instructions are. If the manufacturer makes mistakes, it will count against your team's performance, so be as clear as you can be. Your outputs will include a 2-view detailed drawing of the

overall system, a one-view drawing of the subsystem that interacts with the payload, explicit written directions on how to assemble the system, and a bill of material. You may also use sketches to demonstrate connections if you want to.

[*Groups*: After detailed design is complete, the manufacturer will build the system from scratch according to the drawings and instructions and the designer will observe and keep a record of the errors that occur. Do not make assumptions while building...if you have questions ask the designer. The manufacturer will be timed on how long it takes to build the system. Then the system will be tested three times for reliability and accuracy. Once testing is complete the lifecycle cost needs to be determined and you will be finished. Are there any questions about what is required of you?]

[*Individuals*: After detailed design is complete, you will build the system from scratch according to the drawings and instructions. Errors that are made during manufacturing need to be recorded. Do not make assumptions while building. You will be timed on how long it takes to build the system. Then the system will be tested three times for reliability and accuracy. Once testing is complete the lifecycle cost will be determined and you will be finished. Are there any questions about what is required of you?]

Answer questions.

To help you plan and schedule activities, you will be modifying a work breakdown structure that includes the following high-level activities: conceptual design, preliminary design, detailed design, and testing. Don't forget to estimate durations.

After you have a WBS, you will schedule the activities using a Gantt chart. Then, you will need to allocate resources to each of the activities in order to create your baseline budget.

{Please use Microsoft Project to help you plan your project.} Please use the forms provided to you to help guide you through the planning process. Please document all of your work. {Please save any work you do on the computer.}

Are there any questions about what you should be planning?

Remind them of the time 30 minutes through out the planning process.

Please review the background information on your [*group*'s] mission. [*As a group*] Develop a scoping document for the design project. {Use MS Word to document your scoping document. Once you have a [*group*] goal, save and print it out. /You can use the paper and pens to help you record your ideas. Once you have a final version recorded, let me know.} Let me know when you have a scooping document. You may begin. Please record the start time.

Wait until they have a scoping document.

The next step is to plan the project. Modify the work breakdown structure to indicate all of the activities and subactivities that must be completed in order for you [your team] to complete this project. The level-one activities must include conceptual design, preliminary design, detailed design, and testing.

Don't forget that part of creating the WBS is estimating the time durations for each activity. Be sure to be as realistic in the time estimation as possible. Part of your evaluation is based on how well you are able to remain on schedule. The next step is to schedule the activities you identified in your WBS using a Gantt chart. Also schedule status report meetings every 30 minutes and review meetings at the end of each design phase. Let me know when you are finished.

Wait until they have a Gantt chart. If it is an automated condition, make sure they have saved it.

Now we need to figure out the best way to use the resources we have been allocated. Just allocate the labor expenses and not material or equipment costs. Each member's pay rate is \$1/minute (or \$60/hour). To help you plan, you have [the purchasing representative has] a bill of materials for the parts you can use to create the system. You want to try to estimate your costs as closely as possible. You are

being evaluated on how closely you adhere to your cost estimate. Please use the form provided to report your budget. Let me know when you are finished.

Wait while they assign resources and determine a baseline budget.

Do you [Does anyone] want to change or add to any work completed thus far? If you decide to make changes to anything you will need to up-date your documents. Let me know when you are finished and we will move on.

Wait while they discuss. Once they say they are in agreement, print out any changed documents and replace the old documents.

{Please save the baseline (*Tool, tracking, save baseline*)}. Please record the stop time in the log. We have now concluded the planning phase. At this time I have several forms for you to complete. I will distribute them one at a time.

Distribute in the following order: NASA-TLX, Team scale, Job Satisfaction, and Planning Form. Wait until they have finished each one, then collect form and distributed the next form.

Implementation

During implementation make sure the participants hold status report meetings every 30 minutes.

Now you will implement your plan. Don't forget to adhere to your status meetings that have been scheduled every 30 minutes. During your status reports you will need to update your progress on your Gantt chart and evaluate your progress. These updates are very important, although they might seem tedious. Tracking performance regularly will help us to identify problems in our budget and schedule early so that we can come up with solutions in a timely manner. Let me remind you that you will need to update your current date and status date (Project – Project information) before updating your percent complete. All of the information you should need can be viewed from the Gantt Chart View.

Don't forget about your functional goals for conceptual design. Record the start time in the log under conceptual design. You may begin. Let me know when you have finished conceptual design.

Wait until they tell you they are finished with conceptual design.

Please record the stop time. You have now completed conceptual design. At this time I have a several forms for you to complete.

Distribute in the following order: NASA-TLX, team workload, Job Satisfaction, and respective design form. Wait until they have finished each one, then collect form and distributed the next form.

We are about to begin Preliminary Design. Let me remind you that you have ______minutes to complete this project. Don't forget about your functional goals for preliminary design. You may begin preliminary design. Please record the start time in your log. Let me know when you have completed this phase.

Wait until they tell you they are finished with preliminary design.

Please record the stop time. You have now completed preliminary design. At this time I have a several forms for you to complete.

Distribute in the following order: NASA-TLX, team workload, Job Satisfaction, and respective design form. Wait until they have finished each one, then collect form and distributed the next form.

We are about to begin Detailed Design. Let me remind you that you have ______ minutes to complete this project. Don't forget about your functional goals for detailed design. You may begin detailed design. Please record the start time in your log. Let me know when you have completed this phase.

Wait until they tell you they are finished with detailed design.

Please record the stop time. You have now completed detailed design. At this time I have a several forms for you to complete.

Distribute in the following order: NASA-TLX, team workload, Job Satisfaction, and respective design form. Wait until they have finished each one, then collect form and distributed the next form.

The team will build and test the final design three times for reliability and accuracy (same as during preliminary design) and three times for robustness. All results are recorded in the Log. The final lifecycle cost is calculated again after the testing is complete.

You have completed the formal design process. However, we need to see if your final prototype will meet the requirements. Following the instructions, [*the manufacturer needs to*] build the system. You will be timed. If you have a status meeting scheduled to occur during the manufacturing, please wait until you have finished with building the prototype to hold the status meeting. When you are building the prototype, only follow what is explicitly given to you in the drawings and instructions. [*The designer needs to*] Record design errors as they occur. If there are manufacturing are errors, point them out so they can be corrected and then make a note of it in the error report. You may begin building the system. Please record the start time in the log. As soon as the system is built, record the stop time.

Record the start time on the log. Wait until the prototype is ready:

Now we will test your system. Please record the start time. Set up your system and let me know when you are ready. We will run the test three times.

Complete the series of tests. Record results as they occur.

Now we will test for robustness. We will run the exact same set of tests as before, but now we will use a golf ball in place of the ping-pong ball. Please set up your system and let me know when you are ready.

Give participant(s) the golf ball. Record the results as they occur. Enter the stop time in the log after the last test is complete.

Thank you very much for participating in this experiment. I will let you know how your system ranked relative to the other systems once all of the trials are complete. Remember not to reveal any information about what you did today until after you have received the system rankings. If your system turns out to be the winner, I will be in contact with you to determine how to deliver your award. If your phone number or email changes before I contact you, please be sure to let me know.

Appendix A.4 Training Modules

A.4.1 Overview of Training Exercises

Three training exercises (from Meredith, 1997) related to the design project were used prior to the trial. Participants were trained for (1) detailed drawing, (2) LEGOTM assembly, and (3) lifecycle cost analysis. Participants assigned to manual or automated planning support were training in (1) developing scoping documents, (2) work breakdown structures, (3) Gantt charts, and (4) tracking. Those with automated support were also trained in Microsoft Project. The purpose of the exercises was to establish a baseline level of expertise. The script for the exercises is contained in the experimental instruction section (Appendix A.3). The written instructions are contained in Section A.4.3. The following sections provide an overview of each exercise and the instructional purpose of each exercise.

A.4.2 Learning Objectives

A.4.2.1 Detailed Drawing

The detailed drawing exercise consisted of developing a two-view drawing of a wheel and axle assembly. The exercise demonstrated:

- The method to orient the assembly in two-dimensional space.
- The method to dimension an assembly.
- The level of detailed required in the drawings

A.4.2.2 Assembly Exercise

The assembly exercise consisted of building a system from a set of parts and a three-view drawing of the system. The exercise demonstrated:

- How to read a three-view drawing.
- How to assemble LEGOTM pieces.
- How to use the LEGOTM motor in a system.

A.4.2.3 Life-cycle Cost Analysis Exercise

The life-cycle cost exercise demonstrated:

- The method to complete the life-cycle cost spreadsheet.
- The method to determine labor, material, spare and moving parts costs.

A.4.2.4 Planning and tracking a project

The project management training and associated exercises consisted of planning a project of the participants choice. Participants had to demonstrate:

- The method to develop a scoping document.
- The method to develop a work breakdown structure
- The method to create a Gantt chart
- How to create a budget
- How to calculate the cost performance index and schedule performance index

A.4.3 LEGOS Tutorial (adapted from Meredith, 1997)

As you probably already know, LEGOS are building blocks that come in a variety of sizes and shapes that you can use to build almost anything you can imagine. LEGOS sets also have mechanical parts, for example motors, gears, pulleys, and axles that allow you to build moving systems or systems with moving components.

You will be asked to design a prototype out of toys. The toys you will be using are LEGOS. The standard parts have dimensions that are multiples of $5/16^{\text{th}}$ inch in length and width and $3/8^{\text{th}}$ inch in height. The protrusions on each part are called studs, which enable parts to be attached together.

Standard parts come in two varieties: widths of one stud or two studs. We will call parts with one row of studs "singles" and parts with two rows of studs "doubles." Parts come in lengths ranging from one stud to 20 studs.

One of the standard parts is called a plate. Plates are either $1/8^{\text{th}}$ or $3/8^{\text{th}}$ inch thick. Plates can be used as the foundation for a system or as a surface that spans between parts, similar to a roof.

LEGOS parts come in a variety of colors; however color is not a consideration for this experiment.

Because it has probably been a while since you have used LEGOS lets look at some of these parts to make sure you understand how they work and can be assembled into a mechanical system.

You should have a reference document that contains a number of drawings of the various LEGO parts and how they can be assembled. You can use this reference document during the experiment.

Drawing 1 shows an axle and a beam. Axles are rods that come in a variety of lengths ranging from $1-1/4^{\text{th}}$ inches to $3-3/4^{\text{th}}$ inches. Axles can be used to mount gears, pulleys, and/or wheels. Beams are parts with a single row of studs that holes in them for axles to pass through. They range in size from $5/8^{\text{th}}$ inch to 5 inches.

Drawing 2 shows an example of an axle and beam being used as a wheel assembly. Note that this assembly uses bushing to lock the axle in place.

Drawing 3 shows the bushing has two different types of ends. One end can be used to lock an axle and the other allows the axles to rotate.

Drawing 4 shows the use of gears. Gears come in a variety of sizes ranging from 8 teeth up to 40 teeth. We have normal gears, bevel gears that can be used with a differential to change the direction of a spinning axle, and two types of worm gears.

Drawing 5 shows the assembly of a differential. Differentials are used to change the plane of rotation like from the drive shaft of a car to an axle.

Drawing 6 shows a worm gear.

Drawing 7 shows how gears and pulleys can be connected to each other.

Drawing 8 shows how a motor can be connected to gears and pulley. Pulleys come in a 1-inch and 1 $1/4^{th}$ -inch size. Pulleys are also used as wheels. In other words, a pulley that fits tightly around the hub is a wheel. The motor that is available is a 4.5 volt motor that can produce 6000 revolutions per minute (RPMs) on its output axle. The motor is powered by three 1.5 volt batteries that are contained in a battery pack. The line connecting the motor to the battery pack is not very long so, if you use the motor, you may have to design the battery pack into your system.

There are also a number of miscellaneous pieces that you may need, for example connector pegs, bushings, pulleys, and rubber bands. Their use and function will be obvious in just a moment.

Now look at a series of pictures of systems that have been built using the parts. Drawing 9 shows the construction of a small car using a motor driving wheels using gears. Drawing 10 shows the construction of a small car using a motor driving wheels using a worm gear.

Drawing 11 shows a small car in which the battery pack has been designed into the car.

Drawing 12 shows that a bushing has two different ends. One end will allow the axle to rotate. The other end will lock the axle in place. (Participants have the original pictures and labels. If permission is granted by LEGOS the figures will be reproduced for this document).

In the table attached to this sheet, is a list of parts that are available to you and the quantity of parts available. What you see on the list is all we have, so make sure that your design does not call for any pieces that we don't have or more of a particular piece than we have.

A.4.4 Detailed Drawing Tutorial (adapted from Meredith, 1997)

The purpose of this exercise is to demonstrate you know (1) how to draw a two-view drawing and (2) dimension a two-view drawing.

You must draw a two-view drawing (top and front views) of the wheel and axle connection on the desk in front of you. Note that the side view is redundant with the top view. Attempt this on your own and if you get stuck, ask the researcher for assistance.

When you are done, compare your drawing with the researcher's.

Figure 1 A two-view layout for an axle-tire connection

A.4.5 Assembly and Three-View Drawing Tutorial

The goal of this exercise is for you to demonstrate you know how to read a three-view drawing and can connect a LEGO motor to an axle.

Step 1: Verify that you have the following parts in your kit:

- 1 Motor
- $4 \ 1 \ \frac{1}{4}$ " tires
- 2 5" beams
- 1 Standard brick (5/8 x 1 ¹/₄)
- $2 \ 1 \ \frac{1}{4}$ " beams
- 4 Technical plates (5/8 x 1 ¹/₄)
- $2 \ 2 \ \frac{1}{2}$ " axles
- 1 Bevel gear (24 teeth)
- 1 Gear (8 teeth)
- 3 Bushings

Step 2: Using the three-view drawing in Figure 1, please assemble the car.

Step 3: When you are done, please notify the researcher to verify that you assembled the car correctly.

Top View

Figure 1 Three view drawing of the car

A.4.6 Lifecycle Cost Tutorial - Manual

The goal for this exercise is to show you how calculate the life-cycle cost. You will need to know how to calculate the life-cycle cost of your system.

Step 1: Write your team name, date, and number of members at the top of a blank sheet of paper. Table 1 below contains the parts list and labor times that have been used to build a system. Please determine the life-cycle costs for this system. The material costs are located in Table 2.

Number of team members	3
Conceptual Design Labor	25 minutes
Detail Design Labor	45 minutes
Manufacturing Labor	15 minutes
Testing Labor	10 minutes
Moving Parts	9
Materials	
$5/8 \ge 1 \frac{1}{4}$ inch standard brick	1
$3/8 \ge 5/8$ inch standard brick	1
Motor	1
Gears	2
Wheels (Tires)	4
Plates with holes	4
Axles	2
5 inch Beams	2
1 ¹ / ₄ inch Beams	2
Bushings	3

Table 1 Sample data for learning to calculate life-cycle costs

Parts not listed on the life-cycle cost calculate template do not have an associated cost, but are counted as unique items, for example bushing.

Step 3: Determine the cost incurred during each phase. During design, the cost comes from labor. During Manufacturing the cost comes from labor and the materials used to build the system. The testing cost includes labor cost. Maintenance cost comes from the number of moveable parts (number of parts multiplied by \$5.00) and the number of spare parts (10% of the total material cost). Once the individual costs have been determined, sum them to come up with a total life-cycle cost.

Step 4: Record the number of unique parts.

Step 5: When you have an answer ask the researcher for the key. Compare your answer with the correct answer, which is located on the key. If you did not get this answer, please recheck your input.

Step 6: When you have a correct answer, notify the researcher.

Table 2a Pricing List

Item Number	Cost Category	Units	Unit Price
Design Cost			
1	Conceptual Design Labor	Minutes	\$1.00
2	Preliminary Design Labor	Minutes	\$1.00
3	Detailed Design Labor	Minutes	\$1.00
4	AutoCAD Cost	NA	\$50.00
Manufacturing Cost			
5	Manufacturing Labor	Minutes	\$1.00
6	Total Material Cost (From Bill of Material, Table 2b)	\$	NA
Testing Cost			
7	Testing Labor	Minutes	\$1.00
Maintenance			
8	Moving Parts	Each	\$5.00
9	Spare Parts Cost (From Bill of Material, Table 2b)	NA	10% Total Material Cost
Total Life Cycle Cost			

Table 2b Bill of Materials

Item ¹	Dimension	Studs	Available	Used	Unit Cost	Cost
Bricks	5/8 x 2 ½	16	3		\$16.00	
	5/8 x 2	12	4		\$12.00	
	5/8 x 1 ¼	8	127		\$8.00	
	5/8 x 1	6	34		\$6.00	
	5/8 x 5/8	4	78		\$4.00	
	3/8 x 2 ¹ / ₂	8	22		\$8.00	
	3/8 x 2	6	34		\$6.00	
	3/8 x 1 ¹ / ₄	4	64		\$4.00	
	3/8 x 1	3	32		\$3.00	
	3/8 x 5/8	2	82		\$2.00	
	3/8 x 3/8	1	86		\$1.00	
Slopes	15/16 x 1 ¼	4	19		\$4.00	
	15/16 x 5/8	2	4		\$2.00	
Motor	4.5 Volt	NA	1		\$100.00	
Gears	Various	NA	25		\$25.00	
Pulleys/Wheels	Various	NA	7		\$5.00	
Plates	3 1/8 x 6 ¹ / ₄	200	2		\$200.00	
	2 ½ x 5	128	1		\$128.00	
	2 x 5	96	1		\$96.00	
	2 x 3 1/8	60	2		\$60.00	
	1 ¼ x 2 ½	32	2		\$32.00	
Plate w/ Holes	Various	Various	15		\$5.00	
Axles	Various	NA	10		\$10.00	
Beams	5	16	2		\$16.00	
	3 3/4	12	2		\$12.00	
	2 1/2	8	2		\$8.00	
	2	6	2		\$6.00	
	1 1/4	4	8		\$4.00	
	5/8	2	12		\$2.00	
Rubber Bands	Various	NA	1		\$5.00	
Таре	1/2	NA	1		\$5.00	
Cardboard	4 x 7	NA	1		\$10.00	
Battery		NA	1		\$100.00	
Miscellaneous	Various	NA	NA		\$0.00	
			Total Parts		Total Material Cost	
			Moving Parts		Spare Parts Cost	
			Ũ		(10% of Total Cost)	
			Unique Parts			

any part not listed is free, but must be included in the unique part count.

Key: Team Name	Date:	Number Team Members: <u>3</u>			
Item Number	Cost Category	Units	Quantity	Unit Price	Amount
Design Cost					
1	Conceptual Design Labor	Minutes	25	\$1.00	\$75.00
2	Preliminary Design Labor	Minutes	60	\$1.00	\$180.00
3	Detailed Design Labor	Minutes	45	\$1.00	\$135.00
4	AutoCAD Cost	NA	NA	\$50.00	\$50.00
Manufacturing Cost					
5	Manufacturing Labor	Minutes	10	\$1.00	\$30.00
6	Total Material Cost (From Bill of Material)	\$\$	NA	NA	\$260.00
Testing Cost	g Cost				
7	Testing Labor	Minutes	10	\$1.00	\$30.00
Maintenance	ntenance				
8	Moving Parts	Each	9	\$5.00	\$45.00
9	Spare Parts Cost (From Bill of Material)	NA	NA	NA	\$26.00
Total Life Cycle Cost					\$846

Bill of Materials

Item ¹	Dimension	Studs	Available	Used	Unit Cost	Cost
Bricks	5/8 x 2 ½	16	3		\$16.00	
	5/8 x 2	12	4		\$12.00	
	5/8 x 1 ¼	8	127	1	\$8.00	\$8.00
	5/8 x 1	6	34		\$6.00	
	5/8 x 5/8	4	78		\$4.00	
	3/8 x 2 ¹ / ₂	8	22		\$8.00	
	3/8 x 2	6	34		\$6.00	
	3/8 x 1 ¼	4	64		\$4.00	
	3/8 x 1	3	32		\$3.00	
	3/8 x 5/8	2	82	1	\$2.00	\$2.00
	3/8 x 3/8	1	86		\$1.00	
Slopes	15/16 x 1 ¼	4	19		\$4.00	
	15/16 x 5/8	2	4		\$2.00	
Motor	4.5 Volt	NA	1	1	\$100.00	\$100.00
Gears	Various	NA	25	2	\$25.00	\$50.00
Pulleys/Wheels	Various	NA	7	4	\$5.00	\$20.00
Plates	3 1/8 x 6 ¹ / ₄	200	2		\$200.00	
	2 ½ x 5	128	1		\$128.00	
	2 x 5	96	1		\$96.00	
	2 x 3 1/8	60	2		\$60.00	
	1 ¼ x 2 ½	32	2		\$32.00	
Plate w/ Holes	Various	Various	15	4	\$5.00	\$20.00
Axles	Various	NA	10	2	\$10.00	\$20.00
Beams	5	16	2	2	\$16.00	\$32.00
	3 3/4	12	2		\$12.00	
	2 1/2	8	2		\$8.00	
	2	6	2		\$6.00	
	1 1/4	4	8	2	\$4.00	\$8.00
	5/8	2	12		\$2.00	
Rubber Bands	Various	NA	1		\$5.00	
Tape	1/2	NA	1		\$5.00	
Cardboard	4 x 7	NA	1		\$10.00	
Battery		NA	1		\$100.00	
Miscellaneous	Various	NA	NA	3	\$0.00	\$0.00
			Total Parts	19	Total Material Cost	\$260.00
			Moving Parts	9	Spare Parts Cost	\$26.00
					(10% of Total Cost)	
			Unique Parts	10		

1 any part not listed is free, but must be included in the unique part count.
Appendix A.5 Informed Consent Forms

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY Informed Consent for Participants in Research Projects Involving Human Subjects

Title of Project: <u>An Analysis of Team Design and Project Management Support during a Design Project's</u> <u>Lifecycle</u> Investigator(s): <u>Paige E. Smith</u>

I. Purpose of this Research/Project

You are invited to participate in a study investigating engineering design projects. This study will explore the effects of project management support and various engineering team designs to determine if one combination is best. Approximately 72 participants will be needed for this research.

II. Procedures

You will be assigned to one of two team designs: individual design or group design. You will apply the principles of engineering design to develop a system during which your performance will be determined. The experiment is designed to take between three and four hours. As part of the data collection procedure you will complete several forms including a mental workload scale and job satisfaction questionnaire. Participants in the group design will have an additional workload scale to complete.

Depending on the treatment you are assigned to, you will need to participate in either a one-hour training session or a four-hour training session.

III. Risks

There are no more than minimal risks associated with this research.

IV. Benefits

This research will add to the body of knowledge on the proper support for engineering design projects. In addition, the effects of collaborating will be studied. No promise or guarantee of benefits has been made to encourage you to participate.

V. Extent of Anonymity and Confidentiality

The results of this study will be kept strictly confidential. Individuals participating will not be identified except to the research team.

Some of the trials will be video/audio taped. The investigator will maintain these tapes and no one outside of the research team will have access to the tapes. The tapes will be locked in 1106 Glenn L. Martin Hall. These tapes will be destroyed upon completion of the dissertation.

VI. Compensation

No monetary compensation will be provided for participation in this experiment. However, a cash award bonus of \$100 will be given to each member of the group or the individual that achieves the highest level of performance in the experiment.

VII. Freedom to Withdraw

You are free to withdraw from this study at any time without penalty.

VIII. Approval of Research

This research project has been approved, as required, by the Institutional Review Board for Research Involving Human Subjects at Virginia Polytechnic Institute and State University and by the Department of Industrial and Systems Engineering.

IRB Approval Date

Approval Expiration Date

IX. Subject's Responsibilities

I voluntarily agree to participate in this study. I agree to abide by all of the rules of the experiment. I also agree not to discuss any aspect of this research with others, except my teammates, upon the conclusion of my participation in the study.

If I participate, I may withdraw at any time without penalty. I agree to abide by the rules of this project.

X. Subject's Permission

I have read and understand the Informed Consent and conditions of this project. I have had all my questions answered. I hereby acknowledge the above and give my voluntary consent:

	Date
Subject signature	
Should I have an rights, and whom to conta	y pertinent questions about this research or its conduct, and research subjects' ct in the event of a research-related injury to the subject, I may contact:
Paige E. Smith	(301) 405-3931/pesmith@deans.umd.edu
Student Investigator	Telephone/e-mail
Dr. Brian M. Kleiner	(540) 231-4926/bkleiner@vt.edu
Faculty Advisor	Telephone/e-mail
Dr. Linda C. Schmidt	(301) 405-0417/lschmidt@eng.umd.edu
Faculty Advisor	Telephone/e-mail
Dr. Robert J. Beaton	(540) 231-8748/bobb@vt.edu
Departmental Reviewer	Telephone/e-mail
David M. Moore	(540) 231-4991/moored@vt.edu
Chair, IRB	Telephone/e-mail
Office of Research Com	pliance
Research & Graduate St	udies

This Informed Consent is valid from _____ to _____.

Informed Consent for Participants in Research Projects Involving Human Subjects

Title of Project: <u>An Analysis of Team Design and Project Management Support during a Design Project's</u> <u>Lifecycle</u>

Statement of Age of Subject

I state that I am over 18 years of age, in good physical health, and wish to participate in a program of research begin conducted by Dr. Linda C. Schmidt in the Department of Mechanical Engineering at the University of Maryland, College Park, MD 20742.

Purpose of this Research/Project

You are invited to participate in a study investigating engineering design projects. This study will explore the effects of project management support and various engineering team designs to determine if one combination is best. Approximately 72 participants will be needed for this research.

Procedures

You will be assigned to one of two team designs: individual design or group design. You will apply the principles of engineering design to develop a system during which your performance will be determined. The experiment is designed to take between three and four hours. As part of the data collection procedure you will complete several forms including a mental workload scale and job satisfaction questionnaire. Participants in the group design will have an additional workload scale to complete. Depending on the treatment you are assigned to, you will need to participate in either a one-hour training session or a four-hour training session.

Extent of Anonymity and Confidentiality

The results of this study will be kept strictly confidential. Individuals participating will not be identified except to the research team.

Some of the trials will be video/audio taped. The investigator will maintain these tapes and no one outside of the research team will have access to the tapes. The tapes will be locked in 1106 Glenn L. Martin Hall. These tapes will be destroyed upon completion of the dissertation.

Risks

There are no risks associated with this research.

Benefits, Freedom to Withdraw, and Ability to ask questions

This research will add to the body of knowledge on the proper support for engineering design projects. In addition, the effects of collaborating will be studied. No promise or guarantee of benefits has been made to encourage you to participate.

You are free to ask questions or withdraw from this study at any time without penalty.

Compensation

No monetary compensation will be provided for participation in this experiment. However, a cash award bonus of \$100 will be given to each member of the group or the individual that achieves the highest level of performance in the experiment.

Subject's Responsibilities

I voluntarily agree to participate in this study. I agree to abide by all of the rules of the experiment. I also agree not to discuss any aspect of this research with others, except my teammates, upon the conclusion of my participation in the study.

If I participate, I may withdraw at any time without penalty. I agree to abide by the rules of this project.

Subject's Permission

I have read and understand the Informed Consent and conditions of this project. I have had all my questions answered. I hereby acknowledge the above and give my voluntary consent:

	Date
Subject Signature	
	Date

Subject Printed Name

Should I have any pertinent questions about this research or its conduct, and research subjects' rights, and whom to contact in the event of a research-related injury to the subject, I may contact:

Dr. Linda C. Schmidt Faculty Advisor	(301) 405-0417/lschmidt@eng.umd.edu Telephone/e-mail 3163 Martin Hall, College Park, MD 20742-3035 Address
Dr. Brian M. Kleiner	(540) 231-4926/bkleiner@vt.edu
Faculty Advisor	Telephone/e-mail
Paige E. Smith	(301) 405-3931/pesmith@deans.umd.edu
Student Investigator	Telephone/e-mail

Appendix A.6 Laboratory Setup Checklist

Forms:

Consent Form **Demographic Form** NASA-TLX (4/participant in unsupported, 5/participant in supported) Job Satisfaction (4/participant in unsupported, 5/participant in supported; includes the supplemental questions) Group workload scales (groups only: 4/participant in unsupported, 5/participant in supported) Planning Form (Supported only: Scoping document, WBS, Gantt chart, and tracking form) **Conceptual Design Form** Preliminary Design Form Detailed Design Form Post-experiment Form Researcher's Log Time Log Outputs: **Planning Form** Scoping document (pencil/paper or Microsoft Word document) WBS (pencil/paper or Microsoft Project Document) Gantt chart (pencil/paper or Microsoft Project Document) Budget (pencil/paper or Microsoft Project Document) Tracking (pencil/paper or Microsoft Project & pencil/paper) Conceptual Design Form Team Goal System Requirements Idea List Preliminary Design Form Description and Sketch of two high level concepts Trade off analysis (Strengths and weaknesses, cost estimate) **Concept Decision** Detailed Design Form Justification for concept selection Detailed drawing of two views and the point of contact with the payload Manufacturing instructions Bill of Material Rough Lifecycle cost calculation Post testing Life-cycle cost calculation Miscellaneous: Videotape

Appendix A.7 Data Collection Logs and Forms

Training – Training		Condition:
Date:		
Project Management Training Start Ti	me:	
Finish T	ime:	
Person 1		
Detailed Drawing Start Time:	Finish Time:	
Assembly Start Time:	Finish Time:	
Lifecycle cost Start Time:	Finish Time:	
Total Time Elapsed:		
Person 2		
Detailed Drawing Start Time:	Finish Time:	
Assembly Start Time:	Finish Time:	
Lifecycle cost Start Time:	Finish Time:	
Total Time Elapsed:		
Person 3		
Detailed Drawing Start Time:	Finish Time:	
Assembly Start Time:	Finish Time:	
Lifecycle cost Start Time:	Finish Time:	
Total Time Elapsed:		
Person 4		
Detailed Drawing Start Time:	Finish Time:	
Assembly Start Time:	Finish Time:	
Lifecycle cost Start Time:	Finish Time:	
Total Time Elapsed:		

Trial Log

Conceptual Design	
Start Time:	
Finish Time:	
Total Time Elapsed:	
 How many of the system requ How many ideas were genera 	irements were appropriately identified?
Preliminary Design	
Start Time:	
Finish Time:	_
Total Time Elapsed:	
Functional effectiveness: Design: Process Time:	
Manufacturing: Cube Size:	(complete later)
Finance: Moving Parts:	(complete later)
Detailed Design	
Start Time:	
Finish Time:	_
Total Time Elapsed:	
Functional effectiveness: Design: Process Time:	_
Manufacturing Unique Parts:	(complete later)
Finance Life-Cycle Cost:	_(complete later)
Testing:	
Start Time:	_
Finish Time:	
Total Time Elapsed:	
 Range and Accuracy Ball crossed finish line Ball crossed extended line Ball crossed hurdle line Ball didn't cross hurdle 	
Reliability Test 1 Test 2 Test 3 Average	Robustness Test 1 Test 2 Test 3 Average

2. Size 500 Size ≤ 50 in³ 400 50 in³ < Size \le 100 in³ 300 100 in³ < Size \le 150 in³ 200 150 in³ < Size \leq 200 in³ 100 Size > 200 in³ Size:_____ 3. Manufacture 500 build time $\leq 5 \text{ min}$ 400 5 min < build time $\leq 10 \text{ min}^3$ 300 10 min < build time \leq 15 min 200 15 min < build time \leq 20 min 100 build time > 20 min Manufacture: 3. System Effectiveness= $\frac{avg.reliability + avg.robust}{2} + size + manufacture :_____$ 4. Life-Cycle Cost: 5. Cost Effectiveness = $\frac{systemeffectiveness}{lifecycle \cos t}$: 6. Design Cycle Time:_____ 7. Design Cost:_____ 8. Material Cost:_____ Total Experiment Time_____ Abnormalities Observed:

Other Observations:

Status Reports (every 30 minutes):
Period 1
Start time:
Stop time:
CPI:
SVI:
Period 2
Start time:
Stop time:
CPI:
SVI:
Period 3
Start time:
Stop time:
CPI:
SVI:

Time Log for conditions with planning

	Start Time	Finish Time	Time Elapsed
Planning			

	Start Time	Finish Time	Time Elapsed
Conceptual Design			
Preliminary			
Design			
Detailed Design			
Manufacturing			
(building)			
Testing			
		Total Time	
		Elapsed	

	Start Time	Finish Time	Time Elapsed
Status Meeting 1			
Status Meeting 2			
Status Meeting 3			
		Total Time	
		Elapsed	

Time Log for conditions without planning

			1
	Start Time	Finish Time	Time Elapsed
Conceptual Design			
Preliminary			
Design			
Detailed Design			
Manufacturing			
(building)			
Testing			
		Total Time	
		Elapsed	

Conceptual Design Form

Goal:

Design Criteria:

List of Concepts:

Preliminary Design Forms

Preliminary Design Concept Form – System A

Date:_____

Please describe the design approach for System A that has been selected as one of two potential concepts to achieve this task. You do not need to be specific at this time.

System Concept Diagram – System A

Preliminary Design Concept Form – System B

Date:_____

Please describe the design approach for System B that has been selected as one of two potential concepts to achieve this task. You do not need to be specific at this time.

System Concept Diagram – System B

Tradeoff Analysis:	
System A	System B
Strengths	Strengths
W 1	Westmann
weaknesses	Weaknesses
Lifecycle Cost Estimate:	Lifecycle Cost Estimate:

Lifecycle Cost Calculation form

Date:	Number Team N	Members:	_		
Item Number	Cost Category	Units	Quantity	Unit	Amount
				Price	
Design Cost					
1	Conceptual Design Labor	Minutes		\$1.00	
2	Preliminary Design Labor	Minutes		\$1.00	
3	Detailed Design Labor	Minutes		\$1.00	
Manufacturing	-				
Cost					
4	Manufacturing Labor	Minutes		\$1.00	
5	Total Material Cost	\$	NA	NA	
Testing Cost					
6	Testing Labor	Minutes		\$1.00	
Maintenance					
7	Moving Parts	Each		\$5.00	
8	Spare Parts Cost	NA	NA	(10%	
				total	
				material	
				cost)	
Total Life Cycle					
Cost					

Item ¹	Dimension	Studs	Available	Used	Unit Cost	Cost
Bricks	5/8 x 2 1/2	16	3		\$16.00	
	5/8 x 2	12	4		\$12.00	
	5/8 x 1 1/4	8	127		\$8.00	
	5/8 x 1	6	34		\$6.00	
	5/8 x 5/8	4	78		\$4.00	
	3/8 x 2 1/2	8	22		\$8.00	
	3/8 x 2	6	34		\$6.00	
	3/8 x 1 1/4	4	64		\$4.00	
	3/8 x 1	3	32		\$3.00	
	3/8 x 5/8	2	82		\$2.00	
	3/8 x 3/8	1	86		\$1.00	
Slopes	15/16 x 1 1/4	4	19		\$4.00	
•	15/16 x 5/8	2	4		\$2.00	
Motor	4.5 Volt	NA	1		\$100.00	
Gears	Various	NA	25		\$25.00	
Pulleys/Wheels/Tires	Various	NA	7		\$5.00	
Plates	3 1/8 x 6 1/4	200	2		\$200.00	
	2 1/2 x 5	128	1		\$128.00	
	2 x 5	96	1		\$96.00	
	2 x 3 1/8	60	2		\$60.00	
	1 1/4 x 2 1/2	32	2		\$32.00	
Plates with holes	Various	< 17	14		\$5.00	
Axles	Various	NA	10		\$10.00	
Beams	5	16	2		\$16.00	
	3 3/4	12	2		\$12.00	
	2 1/2	8	2		\$8.00	
	2	6	2		\$6.00	
	1 1/4	4	8		\$4.00	
	5/8	2	12		\$2.00	
Rubber Bands	Various	NA	19		\$5.00	
Таре	1"	NA	1		\$5.00	
Cardboard	4 x 7	NA	1		\$10.00	
Miscellaneous	Various	NA	NA		\$0.00	
			Total Parts		Total	
					Material	
					Cost	
			Moving		Spare Parts	
			Parts		Cost	
					(10% of	
					Total Cost)	
			Unique			
			Parts			

Bill of Materials

¹any part not listed is free, but must be included in the unique part count.

Bud	get:
Duu	gui.

		Cost by Period (30 minutes)					
		1			2	3	
	Total	Р	А	Р	А	Р	А
	Budgeted						
Conceptual							
Design							
Preliminary							
Design							
Detailed Design							
Manufacturing							
& Testing							
Period Total							
Cumulative							

BCWS ACWS BCWS ACWS BCWS ACWS

Cumulative Percent Completed

		Period	
	1	2	3
Conceptual Design			
Preliminary			
Design			
Detailed Design			
Manufacturing & Testing			

Cumulative budgeted cost for the work performed

			Period	
	Total Budgeted	1	2	3
	Cost			
Conceptual				
Design				
Preliminary				
Design				
Detailed Design				
Manufacturing				
and Testing				
Cumulative				
		BCWP	BCWP	BCWP

Period 1:

BCWS	ACWS	BCWP
CPI=BCWP/ACWS=		
SPI=BCWP/BCWS=		
Period 2:		
BCWS	_ACWS	BCWP
CPI=BCWP/ACWS=		
SPI=BCWP/BCWS=		
Period 3:		
BCWS	_ACWS	BCWP
CPI=BCWP/ACWS=		
SPI=BCWP/BCWS=		

Appendix A.8 Engineering Design Goals

Conceptual Design

Design Goals: As a designer, you need to be able to elicit all of the systems requirements from the customer, and the manufacturing and finance representatives. This will save you a great deal of hassle later in the design. You should try to come up with as many potential ideas as possible.

Manufacturing Goals: As a manufacturing representative, you recognize that the capabilities of your manufacturing facility are limited. Therefore, you want to keep the system as simple as possible.

Purchasing Goals: As the representative from finance, you want to keep the life-cycle cost as low as possible. You recognize that the more time you spend in conceptual design the more expensive your overall system will be, therefore you want to minimize the time spent in conceptual design.

Preliminary Design

Design Goals: As a designer, during preliminary design, you want to attempt to have a design that is robust as possible. Robust means the design will work with minor changes in specifications. To get to this point, you want consider at least two designs in greater detail before selecting a single design to be developed in greater detail.

Manufacturing Goals: As a manufacturing representative, you recognize that the size of your facility is rather small. Therefore, you want to try to keep the size of the system as small as possible. Size will be measured as the smallest volumetric box that will encase the system.

Purchasing Goals: As the representative from finance, you want to keep the life-cycle cost as low as possible. You recognize that the more moving parts there are in the system the more expensive it will be to manufacture. Therefore you want to keep the system as simple as possible by minimizing the number of moving parts. In addition, you realize that time is money...therefore you also want to keep the pace of the preliminary design moving.

Detailed Design

Design Goals: Designers are frequently measured on their ability to release drawings in a timely manner. Your goal is to try to complete the detailed design and issue manufacturing instructions as quickly as possible but with as few errors as possible.

Manufacturing Goals: The manufacturer prefers to fabricate as many standard parts as possible as opposed to unique parts. Your goal is to influence the design to use as few unique parts as possible.

Purchasing Goals: As the representative from finance, you are responsible for the life-cycle cost. Your goal is to influence the design such that the life-cycle cost is as low as possible. You will also be responsible for the calculation of life-cycle cost.

In the conditions where an individual work alone, he or she was given all of the goals.

Appendix A.9 AICC Results

All mixed designs were subject to a goodness of fit test to determine which variance grouping should be used. When the standard ANOVA procedures could not be used due to a violation in the underlying assumptions for the ANOVA calculations, the data were checked to determine if a variance grouping by factor would correct the violation or if a transformation was needed. The tables in this appendix provide a summary of the results for the variables from mixed designs and those that violated the ANOVA assumptions. The first column contains the factor name. Column two systematically lists each variance grouping for the model (U=ungrouped or standard ANOVA, TD=team design, PS=project support, DP=design phase). The third column contains the AICC which is a goodness of fit statistic in which lower numbers indicates a better fit. The last column contains the normality verification. Recall from the explanation in Chapter 4, that the AICC was calculated for the ungrouped data first. Each factor is subsequently checked and if the AICC for the factor grouping is smaller than the AICC of the ungrouped data by at least 2.0, the smaller AICC grouping is selected indicating a better fit of the data (denoted by the bold face type). The last step is to determine if the data are normal within the factor-level groupings. If the data were normal then the grouping is selected. If not, a data transformation was attempted (reported in Chapter 4).

Variable	Variance Grouping	AICC	Normality (V=violated, S=satisfied,
			Diank=not tested)
Reflective			
Cost Effectiveness	U	114.6	V
	TD	105.9	V
	PS	105.2	V
NASA TLX	U	127.8	
	TD	124.2	S
	PS	126.0	
Job Satisfaction	U	228.9	
	TD	225.3	S
	PS	229.6	~
Design Process			
Time in Phase	U	709.6	
	TD	711.3	
	PS	710.6	
	DP	678.7	S
NASA TLX	U	392.2	
	TD	383.4	S
	PS	396.3	
	DP	396.1	
Job Satisfaction	U	617.3	
	TD	606.7	S
	PS	613.1	
	DP	609.9	
Time in Status Report	U	238.4	S
-	TD	241.8	
	PS	243.6	
	Time	247.1	

Table A. 9.1 Comparison of the goodness of fit for mixed subject designs and when ANOVA assumptions are violated for data from Chapter 4 to determine the variance grouping (U=ungrouped, PS=project support, TD=team design, DP=design phase)

Variable	Variance Grouping	AICC	Normality
Design Process			
Cost Performance Index	U	4.0	
	TD	5.8	
	PS	5.8	
	Time	-2.0	S
Schedule Performance Index	U	-0.1	
	TD	0.2	
	PS	1.9	
	Time	-3.3	S

 Table A.9.1 Comparison of goodness of fit for Chapter 4 data to determine variance grouping (continued)

 Variable
 Variance Grouping
 AICC
 Normality

Table A. 9.2 Comparison of the AICC for each factor from Chapter 5 to determine the grouping when normality or homogeneity of variance assumption is violated

Variable	Variance Grouping	AICC	Normality (V=violated, S=satisfied, blank=not tested)
Planning			
NASA TLX			
Physical Demand	U	99.4	V
	TD	93.6	V
	PS	93.5	V
Job Satisfaction Comfort			
Personal Problems	U	77.8	
	TD	75.4	S
	PS	75.9	
Resources	U	91.7	S
	TD	88.1	S
	PS	88.4	
Responsibility	U	65.8	S
1 5	TD	67.7	
	PS	66.9	
Design Process			
NASA TLX			
Mental	U	486.1	
	TD	479.7	S
	PS	483.8	
	DP	486.8	
Physical	U	532.6	S
	TD	532.5	
	PS	536.9	
	DP	534.3	
Temporal	U	511.7	S
-	TD	512.8	
	PS	514.8	
	DP	513.2	
Performance	U	505.5	
	TD	490.9	S
	PS	496.0	
	DP	496.7	

Variable	Variance Grouping	AICC	<u>Normalit</u>
Design Process			
Effort	U	481.6	
	TD	479.0	S
	PS	482.4	
	DP	484.0	
Frustration	U	560.5	S
	TD	561.7	
	PS	564.0	
	DP	560.8	
Job Satisfaction			
Comfort	U	446.1	
	TD	441.0	S
	PS	450.1	
	DP	Infinite likelihood	
Perceived time	U	329.8	
	TD	327.2	S
	PS	332.9	
	DP	329.2	
Excessive work	U	262.0	
	TD	241.9	V
	PS	261.1	
	DP	243.3	S
Physical surrounding	U	193.0	ŝ
	TD	Infinite likelihood	2
	PS	197.2	
	DP	194.4	
Personal problems	U	234 7	
r ensenañ preerenis	TD	234 7	
	PS	224 3	S
	DP	230.6	5
Challenge	II	474 3	
Chancinge		272.7	
	PS	4757	
	DP	468 6	S
Ability		241 7	5
Ability		271.7 778 8	S
	PS	241.2	6
	DP	235.6	
		233.0	
Interesting	U	260.2	
	TD	253.2	S
	PS	261.8	
	DP	257.3	
Freedom	U	285.4	
	TD	278.1	
	PS	284.5	
	DP	264.6	S
Difficult Problem	U	244.5	
	TD	239.8	
	PS	239.0	
	DP	226.2	S

Table A.9.2 Comparison of the AICC for each factor from Chapter 5 (continued)

variable	variance Grouping	AICC	Normanty
Design Process			
Results	U	272.0	S
	TD	270.6	~
	PS	273.0	
	DP	270.2	
Resources	U	430.4	
	TD	412.3	S
	PS	422.5	~
	DP	425.0	
Equipment	U	262.1	
1.1.1	TD	260.3	
	PS	259.3	
	DP	258.8	S
Information	U	320.5	~
	TD	299.8	S
	PS	318.7	~
	DP	318.6	
Responsibility	U	245.4	
responsionity	TD	231.2	S
	PS	237.3	2
	DP	243.0	
Supplemental Questions	3	213.0	
Doubt	II.	302.0	
Doubt	TD	295.8	S
	PS	299.6	2
	DP	303.5	
Ease of Use	U	177.1	S
	TD	176.4	2
	PS	176.7	
	DP	178.1	
Efficiency	U U	192.3	S
Enterency	Т	192.5	5
	PS	191.5	
	DP	191.6	
Effectiveness	U U	193.4	S
Encetiveness	TD	193.8	5
	PS	195.5	
	DP	196.9	
Productivity	U	222.2	
Floductivity		225.2	S
	DC	220.0 222 7	3
		222.1	
Satisfaction		220.1 102 7	
Saustaction		195./ 105.0	
	DC	195.0	
		190.7	S

 Table A.9.2 Comparison of the AICC for each factor from Chapter 5 (continued)

 Variable
 Variance Grouping
 AICC Normality

Variable	Variance Grouping	AICC	Normality
Reflective			
Design Cost	U	305.6.6	
-	TD	294.7	S
	PS	310.5	
NASA TLX			
Mental	U	167.6	V
	TD	169.1	
	PS	167.2	S
Effort	U	163.6	
	TD	161.6	S
	PS	166.0	
Job Satisfaction			
Comfort			
Personal Problems	U	113.9	
	TD	105.3	S
	PS	115.0	
Challenge			
Interesting	U	84.2	
-	TD	79.7	
	PS	72.1	S
Freedom	U	107.1	
	TD	99.9	S
	PS	108.3	
Problem	U	71.4	
	TD	68.6	S
	PS	74.5	
Resource			
Information	U	98.0	
	TD	94.7	S
	PS	96.2	
Responsibility	U	95.3	
	TD	85.8	S
	PS	89.2	
Supplement Questions			
Equipment	U	105.3	
	TD	94.8	S
	PS	109.9	
Excess work	U	108.9	
	TD	103.7	S
	PS	105.4	

 Table A.9.2 Comparison of the AICC for each factor from Chapter 5 (continued)

 Variable
 Variable

Variable	Variance Grouping	AICC	Normality (V=violated, S=satisfied, blank=not tested)
Planning			
NASA TLX			
Physical	U	142.9	
	PS	142.4	
	R	140.1	V
Job Satisfaction			
Challenge	U	185.3	
	PS	187.2	
	R	178.6	S
Ability	U	112.7	
	PS	106.0	S
	R	114.3	
Resources			
Competent	U	97.9	
	PS	92.9	S
	R	100.0	
Supplemental Questions			
Efficient	U	118.8	
	PS	118.3	
	R	115.2	V
Perceived Time	U	121.1	
	PS	114.1	V
	R	125.6	
Critical Team behaviors			
Total ineffective	U	103.2	V
	PS	96.3	V
	R	102.9	
Ineffective accept feedback	U	-9.5	V
	PS	Did not	
		converge	
	R	Did not	
		converge	
Effective accept feedback	U	32.5	V
	PS	12.9	V
	R	35.4	
Effective adaptability	U	51.0	V
	PS	49.8	
	R	54.9	

Table A. 9.3 Comparison of the AICC for each factor in the analysis of group members (Chapter 6)

Variable	Variance Grouping	AICC	Normality
Planning			
Ineffective communication	U	61.1	V
	PS	27.7	V
	R	58.9	
Effective communication	U	40.3	V
	PS	35.3	•
	R	32.6	V
Ineffective cooperation	IT IT	50.8	V
memeenve eooperation	DS	59.8 60.8	v
	P	63.6	
Ineffective coordination	IT IT	30.1	V
memeetive coordination	DS	35.1	V
	D D	JJ.1 Infinita likalihaad	v
Effective accordination		145 5	V
Effective coordination	U DC	145.5	v
	PS D	141.5	17
Inoffortive size for 11 - 1		14/.4	V V
Ineffective give feedback		12.1 Did act common	v
	PS D	Did not converge	
T CC /: / ``/	K	Infinite likelihood	T 7
Ineffective team spirit	U	11.3	V
	PS D	13.6	
	R	Did not converge	
Design Process			
NASA TLX	U	617.6	S
	PS	619.6	
	R	620.8	
	DP	618.7	
Mental	U	791.9	
	PS	792.7	
	R	795.5	
	DP	786.8	S
Physical	U	853.2	
-	PS	857.1	
	R	857.4	
	DP	834.1	S
Temporal	U	840.8	
-	PS	835.0	S
	R	845.0	
	DP	844.6	
Performance	U	756.8	
	PS	750.5	S
	R	755.1	
	DP	760.7	
Effort	U	781.5	S
	PS	785.1	
	R	782.1	
	DP	781.9	
Frustration	U.	886.5	S
	PS	888 1	5
	R	890.1	
		0000	

 Table A.9.3 Comparison of the AICC for each factor for the analysis of group members (continued)

 Variable
 Variance Grouping
 AICC
 Normality

Variable	Variance Grouping	AICC	Normality
Design Process			
Job Satisfaction	U	974.5	S
	PS	974.7	
	R	975.2	
	DP	975.2	
Comfort	U	725.4	S
	PS	723.7	
	R	726.4	
	DP	724.6	
Excess work	U	450.3	
	PS	454.0	
	R	453.2	
	DP	438.4	S
Physical surroundings	U	374.4	
,	PS	360.9	
	R	360.5	S
	DP	376.9	
Perceived time	U	543.1	
	PS	545.8	
	R	544.3	
	DP	529.9	S
Personal problems	U	426.3	~
r ensenar prochemis	PS	412.7	
	R	397.1	S
	DP	425.9	2
Challenge	U	780 7	
enunenge	PS	780.0	
	R	783.9	
	DP	778.1	S
Ability	U	429 7	5
11011109	PS	431.5	
	R	426 3	S
	DP	433.8	5
Interest	U	426.8	
interest	PS	427.2	
	R	427.2	
	DP	406.2	S
Freedom		483.0	5
Treedom	PS	485.7	
	P	483.6	
	np DP	470 K	S
Problem		451 1	5
110010111	PS	<u>447</u> 1	S
	R	452.0	5
	DP N	452 1	
Reculto	II	477 0	S
ixesuits	U DS	411.7	3
		+012	
	P	170.3	

 Table A.9.3 Comparison of the AICC for each factor for the analysis of group members (continued)

 Variable

 <th co

Variable	Variance Grouping	AICC	Normality
Design Process			
Resources	U	714.3	S
	PS	718.0	
	R	716.1	
	DP	715.0	
Equipment	U	449.4	S
	PS	447.7	
	R	449.8	
	DP	450.3	
Information	U	440.5	
	PS	440.1	
	R	422.6	S
	DP	434.4	
Responsibility	U	382.5	S
	PS	386.2	
	R	381.4	
	DP	383.8	
Competence	U	404.4	
	PS	404.0	
	R	404.1	G
	DP	395.7	8
Helpful		459.2	
	PS	459.7	
	K DD	458.7	17
Sumplemental Design Operations	DP	435.4	v
Supplemental Design Questions		100.0	G
Doubt	U	498.3	S
	PS	499.0	
	K DD	501.0	
Supplemental Planning Question	DP	500.9	
Supplemental Planning Questions	5 •	204.0	C
Ease of Use	U	294.9	5
	PS D	293.0	
	K DD	297.0 206.0	
Efficiency	Dr U	290.9 310 1	S
Enterey	U DS	319.1	3
	R	320.0	
	DP	320.2	
Effectiveness	II	318 5	S
1110011 + 011035	PS	319.1	5
	R	322.4	
	DP	317.0	
Productivity	U	358.2	S
	PS	359.8	~
	R	361 7	
	DP	358.0	
Satisfaction	U	312.7	S
	PS	359.8	
	R	361.7	

 Table A.9.3 Comparison of the AICC for each factor for the analysis of group members (continued)

 Variable
 Variance Grouping
 AICC
 Normality

Variable	Variance Grouping	AICC	Normality
Design Process			
Group Workload			
Value of group interaction	U	840.3	
5 F	PS	843.4	
	R	843.5	
	DP	823.2	S
Difficulty of group interaction	U	884.9	š
Dimetally of group interaction	PS	886.9	2
	R	886.5	
	DP	884.0	
Degree of cooperation	U	817.7	
Degree of cooperation	PS	820.5	
	R	821.5	
	N NP	805.0	S
Overall team workload	U U	817 1	S
Overall teally workload	U PS	814 1	3
	P	815.8	
	DP N	814.5	
Critical Team Dehaviors	DI	014.5	
Total offortivo	T	752 1	
Total effective	DS	750.8	
	ro D	751.1	
	К DD	731.1	S
Total in offersting	DP U	/24.4	3
Total ineffective	U	450.7	
	PS D	454.9	
	K	445.4	C
	DP U	417.5	S
Ineffective accept feedback	U	-143.8	V
	PS D	-163.2	V
	K	Did not converge	
	DP	Infinite likelihood	T 7
Effective accept feedback	U	108.6	V
	PS	94.9	V
	K	106./	
	DP	Did not converge	T 7
Ineffective adapt	U	-74.9	V
	PS	Infinite Likelihood	
	R	-116.7	V
	DP	Infinite Likelihood	
Effective adapt	U	247.9	
	PS	242.5	
	R	239.5	S
	DP	Infinite likelihood	
Ineffective communication	U	245.5	
	PS	245.5	
	R	249.0	
	DP	239.9	S
Effective communication	U	93.8	V
	PS	85.3	V
	R	96.1	
	DP	97.9	

 Table A.9.3 Comparison of the AICC for each factor for the analysis of group members (continued)

 Variable
 Normality

variable	variance Grouping	AICC	Normality
Design Process			
Ineffective cooperation	U	167.8	V
meneeuve cooperation	PS	157.8	v
	R	145 7	v
	DP	Infinite likelihood	·
Effective cooperation	U	559.6	
	PS	546.7	
	R	553.8	
	DP	544 7	S
Ineffective coordination	U	279.6	V
	PS	278.5	·
	R	249.2	
	DP	239.6	V
Effective coordination	II	565.8	•
Encenve coordination	PS	569.8	
	R	567.8	
	DP	5536	S
Ineffective give feedback		_78 7	V
memeenve give recuback	PS	-26.2	v
	P	-25.2 Infinite likelihood	
		Did not converge	
Effective give feedback		A31.8	S
Effective give feedback	DS	431.0	5
	1 S D	435.5	
	IX IND	433.0	S
Inoffortive team critit		147.0	S V
menective team spirit	DS	147.0	v
	1 S D	150.5	
		131.1 Infinita likalihaad	
Effective team entrit			V
Encenve team spirit	U DS	223.1	v
	г. D	229.2	
		229.0	V
Supplemental Group Observati	Dr	221.0	v
Time		156 1	
	U DC	450.4	
	rs D	437.7 440 0	S
	K DD	447.7 440.0	3
Manay	UL T	449.9 620.4	3
woney		039.4 624.6	
	r5 D	034.0	
	K	018.2	S
Nove to de	UP U	002.8	5
INON-task	U	287.2	
	P5	290.5	
	K	285.1	C
	DP	267.6	S

 Table A.9.3 Comparison of the AICC for each factor for the analysis of group members (continued)

 Variable
 Variance Grouping
 AICC
 Normality

Variable	Variance Grouping	AICC	Normality
Reflective			
NASA TLX			
Mental	U	272.4	
	PS	272.6	
	R	270.5	S
Temporal	U	274.1	
	PS	278.1	
	R	271.1	V
Job Satisfaction			
Challenge			
Results	U	148.2	V
	PS	151.8	
	R	151.6	
Resources			
Information	U	142.1	
	PS	140.3	
	R	137.0	S
Competent	U	134.2	
-	PS	127.5	
	R	125.0	V
Helpful	U	136.3	
	PS	132.7	
	R	128.3	S
Supplemental Questions			
Liked system	U	196.6	V
-	PS	200.7	
	R	199.2	
Excessive work	U	164.1	V
	PS	168.3	
	R	167.4	
Team Workload			
Value of group interaction	U	259.3	
	PS	259.1	
	R	257.2	V
Degree of cooperation	U	268.6	S
- •	PS	267.3	
	R	269.1	V

 Table A.9.3 Comparison of the AICC for each factor for the analysis of group members (continued)

 Variable

 Variable

Appendix A.10 Variance tables for variables without significant differences

This appendix contains the analysis of variance tables for variables in which no significant effects were found.

A.10.1 Design Performance Variables

Table A. 10.1 A	ANOVA f	or cost e	ffectiveness	with rob	oustness ((transformed	l: Log10(x+1))
	Source	DF	SS	MS	F	Р	

Source	DF	SS	MS	F	Р
TD	1	0.00817	0.00817	0.301	0.587
PS	2	0.00520	0.00260	0.096	0.909
TD*PS	2	0.02732	0.1366	0.504	0.609
S/TD*PS	30	0.81345	0.2712		
Total	35	0.85413			

Table A.10.2 ANOVA for cost effectiveness without robustness (transformed: $Log_{10}(x+1)$)

Source	DF	SS	MS	F	Р
TD	1	0.00001	0.00001	0.000	0.982
PS	2	0.00534	0.00267	0.093	0.912
TD*PS	2	0.01539	0.00770	0.267	0.767
S/TD*PS	30	0.86454	0.02882		
Total	35	0.88529			

TT 1 1		CC /:
I able A	10.3 ANOVA for syste	em effectiveness

Source	DF	SS	MS	F	Р
TD	1	57068.03	57068.03	0.832	0.369
PS	2	23163.64	11581.82	0.169	0.846
TD*PS	2	220200.50	110100.20	1.604	0.218
S/TD*PS	30	2058797.00	68626.57		
Total	35	2359229.17			

Table A. 10.4 ANOVA for system effectiveness without robustness

Source	DF	SS	MS	F	Р
TD	1	284445	284445	3.70	0.064
PS	2	15061	7531	0.10	0.907
TD*PS	2	126667	63334	0.82	0.449
S/TD*PS	30	2309258	76975		
Total	35	2735432			

Table A.10.5 ANOVA for robustness							
Source	DF	SS	MS	F	Р		
TD	1	19290	19290	0.88	0.356		
PS	2	52407	26204	1.19	0.318		
TD*PS	2	13154	65772	2.99	0.065		
S/TD*PS	30	659814	21994				
Total	35	863055					
Table A.10.6 ANOVA for system size							
------------------------------------	----	--------	-------	------	-------	--	--
Source	DF	SS	MS	F	Р		
TD	1	1111	1111	0.08	0.781		
PS	2	10556	5278	0.37	0.691		
TD*PS	2	37222	18611	1.32	0.282		
S/TD*PS	30	423333	14111				
Total	35	472222					

			a .			
Tabla A 107		for monu	footuring	timal	mraduail	aility)
Table A TU /	ANUVA	тог шани	Tacturning	пше і	DIOCUCII) V
		101 11100110				, , , , , , , , , , , , , , , , , , ,

Source	DF	SS	MS	F	Р
TD	1	13611	13611	0.87	0.360
PS	2	11667	5833	0.37	0.693
TD*PS	2	10556	5278	0.34	0.717
S/TD*PS	30	471667	15722		
Total	35	507500			

Table A. 10.8 ANOVA for material costs						
Source	DF	SS	MS	F	Р	
TD	1	36492	36492	1.58	0.219	
PS	2	24156	12078	0.52	0.599	
TD*PS	2	9033	4516	0.20	0.824	
S/TD*PS	30	694165	23139			
Total	35	763846				

Table A.10.9 ANOVA for number of errors						
Source	DF	SS	MS	F	Р	
TD	1	2.250	2.250	0.36	0.555	
PS	2	5.056	2.528	0.40	0.674	
TD*PS	2	8.167	4.083	0.65	0.531	
S/TD*PS	30	189.500	6.317			
Total	35	204.972				

Table A. 10.10 ANOVA for total parts							
Source	DF	SS	MS	F	Р		
TD	1	96.7	96.7	0.41	0.528		
PS	2	64.4	32.2	0.14	0.874		
TD*PS	2	391.1	195.5	0.82	0.448		
S/TD*PS	30	7118.8	237.3				
Total	35	7671.0					

Table A. 10.11 ANOVA for unique parts							
Source	DF	SS	MS	F	Р		
TD	1	12.25	12.25	1.12	0.299		
PS	2	19.39	9.69	0.88	0.423		
TD*PS	2	3.17	1.58	0.14	0.866		
S/TD*PS	30	328.83	10.96				
Total	35	363.64					

uore rit. 10:12 rit (o vir for number of concepts generated							
Source	DF	SS	MS	F	Р		
TD	1	13.444	13.444	3.27	0.081		
PS	2	0.722	0.361	0.09	0.916		
TD*PS	2	2.722	1.361	0.33	0.721		
S/TD*PS	30	123.333	4.111				
Total	35	140.222					

Table A. 10.13 ANOVA for number of design criteria							
Source	DF	SS	MS	F	Р		
TD	1	3.361	3.361	1.56	0.221		
PS	2	1.167	0.583	0.27	0.764		
TD*PS	2	3.722	1.861	0.87	0.431		
S/TD*PS	30	64.500	2.150				
Total	35	72.750					

A.10.2 Planning Performance Variables

Table A. 10.14 ANOVA for scoping document score							
Source	DF	SS	MS	F	Р		
TD	1	0.000	0.000	0.000	1.000		
PS	1	0.667	0.667	0.755	0.395		
TD*PS	1	1.500	1.500	1.698	1.698		
S/TD*PS	20	17.667	0.883				
Total	23	19.833					

A.10.3 NASA TLX

<u>Planning</u>

Table A. 10.15 ANOVA for NASA TLX during planning

Source	DF	SS	MS	F	Р
TD	1	8.194	8.194	1.94	0.179
PS	1	0.226	0.226	0.05	0.819
TD*PS	1	9.947	9.947	2.36	0.140
S/TD*PS	20	84.288	4.214		
Total	23	102.653			

Table A. 10.16 ANOVA for mental demand during planning

Source	DF	SS	MS	F	Р
TD	1	9.82	9.82	0.91	0.352
PS	1	8.66	8.66	0.80	0.381
TD*PS	1	0.05	0.05	0.00	0.947
S/TD*PS	20	215.87	10.79		
Total	23	234.39			

Table A. 10.17 ANOVA for physical demand during planning (transformed with Log₁₀(x+1))

Source	DF	SS	MS	F	Р
TD	1	0.0000	0.0000	0.00	0.994
PS	1	0.0665	0.0665	1.16	0.294
TD*PS	1	0.0025	0.0025	0.04	0.837
S/TD*PS	20	1.1466	0.0573		
Total	23	1.2156			

T 11 A	10 10	ANTONY		. 1	1 1	1 .	1 .
Toble A	1019		A tor	• tomporol	domond	during n	lonning
	1010	AINCOV	а ю		utinanu	$\mathbf{u}\mathbf{u}$	שווווחשו
	10.10	1 11 10 1					

					0 -
Source	DF	SS	MS	F	Р
TD	1	23.66	23.66	1.16	0.295
PS	1	3.18	3.18	0.16	0.698
TD*PS	1	67.16	67.16	3.28	0.085
S/TD*PS	20	409.73	20.49		
Total	23	503.73			

Source	DF	SS	MS	F	Р
TD	1	11.860	11.860	1.22	0.283
PS	1	37.281	37.281	3.83	0.065
TD*PS	1	30.612	30.612	3.14	0.092
S/TD*PS	20	194.85	9.743		
Total	23	274.604			

Table A. 10.19 ANOVA for performance during planning

Table A. 1	0.20 Al	NOVA for	r effort d	uring p	lanning
Source	DF	SS	MS	F	Р
TD	1	28.15	28.15	2.46	0.133
PS	1	9.38	9.38	0.82	0.377
TD*PS	1	17.71	17.71	1.54	0.228
S/TD*PS	20	229.33	11.47		
Total	23	284.56			

Table A.	10.21	ANOVA	for	frustration	during	planning
----------	-------	-------	-----	-------------	--------	----------

Source	DF	SS	MS	F	Р
TD	1	87.81	87.81	3.98	0.060
PS	1	15.61	15.61	0.71	0.410
TD*PS	1	0.02	0.02	0.00	0.978
S/TD*PS	20	441.07	22.05		
Total	23	544.51			

Table A. 10.22 ANOVA for performance during design

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
TD	Fixed	1		0.17	0.6821
PS	Fixed	2		2.09	0.1345
TD*PS	Fixed	2		2.91	0.0638
s/PS*TD	Random	50	1.4446		
Within					
DP	Fixed	2		0.48	0.6254
DP*TD	Fixed	2		0.20	0.8202
DP*PS	Fixed	4		0.68	0.6136
DP*TD*PS	Fixed	4		0.51	0.7262
Residual G	Random	22	2.3452		
Residual I	Random	22	22.5600		

Reflective

Ta	ble A. 10.23	ANOVA	A for the reflec	tive NASA	TLX
Source	Effect	DF	Variance	F value	Probability
			Component		
TD	Fixed	1		0.58	0.4551
PS	Fixed	2		1.65	0.2150
TD*PS	Fixed	2		1.60	0.2248
Residual G	Random	23	1.1546		
Residual I	Random	23	4.2414		

T		24 ANU 55					1 1 1 1 1 1 1
Source	Effect	DF	Varia	ince	F value	e Pr	obability
			Comp	onent			
TD	Fixed]			1.22		0.2817
PS	Fixed	2	2		2.22		0.1377
FD*PS	Fixed	4	2		0.49		0.6212
Residual A	A Randon	1	3.98	11			
Residual N	A Randon	1	9.02	.65			
Residual N	Randon	1	17.4	653			
т	b = 10.2	5 ANO	VA for the	raflactiv	o nhusia	al doman	d
<u>1</u>	able A. 10.2	<u>DE</u>	VA IOI UIK	MC	e pilysic		<u>u</u>
_	Source		35 20	MS	F	P	_
	ID	1	35.38	35.38	1.24	0.274	
	PS	2	1.18	0.59	0.02	0.980	
	ID*PS	2	95.52	47.76	1.68	0.204	
	s/TD*PS	30	855.16	28.51			
_	Total	35	987.25				_
Т	able A. 10.2	6 ANO	A for the	reflectiv	e tempor	al deman	d
	Source	DF	SS	MS	F	Р	
	TD	1	32.99	32.99	2.53	0.122	
	PS	2	4.11	2.06	0.16	0.855	
	TD*PS	2	7.57	3.78	0.29	0.750	
	s/TD*PS	30	390.48	13.02			
	Total	35	435.14				
	Table A 10) 27 AN	OVA for t	he reflec	tive perfe	ormance	
	Source	DF	SS	MS	F	P	
	TD	1	2.87	2.87	0.26	0.615	
	PS	2	11.82	5.91	0.53	0.592	
	TD*PS	2	14.60	7.30	0.66	0.525	
	s/TD*PS	30	332.73	11.09	-	-	
	Total	35	362.02				
	Table A	10.28	ANOVA	for the re	flective e	ffort	
	I able A	. 10.20					
Source	Table A	. 10.28	F Va	riance	F valu	ie Pro	hahility

Source	Effect	DF	Variance Component	F value	Probability
Between					
TD	Fixed	1		0.41	0.5295
PS	Fixed	2		0.76	0.4779
TD*PS	Fixed	2		2.31	0.1209
Residual G	Random	24	4.4594		
Residual I	Random	24	13.3418		

A.10.4 Job Satisfaction

<u>Planning</u>

rubio ri, rubio ri rubi job bullinuolion during plumming
--

	-	· · · · · · · · · · · · · · · · · · ·			0
Source	DF	SS	MS	F	Р
TD	1	78.243	78.243	1.602	0.220
PS	1	104.158	104.158	2.132	0.160
TD*PS	1	0.166	0.166	0.003	0.954
S/TD*PS	20	976.905	48.845		
Total	23	1159.472			

Table A.	10.30	ANOVA fo	r comfort	during pl	anning
Source	DF	SS	MS	F	Р
TD	1	5.999	5.999	0.860	0.365
PS	1	10.665	10.665	1.530	0.230
TD*PS	1	0.167	0.167	0.024	0.879
S/TD*PS	20	139.442	6.972		
Total	23	156.272			

Tat	ole A.	10.31	ANOVA	A for	excessive	work	during	planning

Source	DF	SS	MS	F	Р
TD	1	2.042	2.042	1.57	0.225
PS	1	1.042	1.042	0.80	0.382
TD*PS	1	0.042	0.042	0.03	0.860
S/TD*PS	20	26.055	1.303		
Total	23	29.180			

Table A. 10.32 ANOVA for physical surroundings during planning

				<u> </u>	
Source	DF	SS	MS	F	Р
TD	1	2.2407	2.2407	3.68	0.070
PS	1	0.6667	0.6667	1.09	0.038
TD*PS	1	0.0000	0.0000	0.00	1.00
S/TD*PS	20	12.1852	0.6093		
Total	23	15.0926			

Table A. 10.33 ANOVA for	personal	problems	during	planning

Source	Effect	DF	Variance	F value	Probability
			Component		
TD	Fixed	1		0.00	0.9601
PS	Fixed	1		0.31	0.5842
TD*PS	Fixed	1		0.31	0.5842
Residual G	Random	14	0.6759		
Residual I	Random	14	2.9000		

Table A.	10.34	ANOVA for	[·] challenge	during p	lanning
Source	DF	SS	MS	F	Р
TD	1	12.042	12.042	0.949	0.342
PS	1	35.037	35.037	2.761	0.112
TD*PS	1	0.376	0.376	0.030	0.865
S/TD*PS	20	253.816	12.691		
Total	23	301 270			

Ta	able A.	10.35	ANOVA	for	devel	lop :	abili	ity c	luring	planni	ng

			A		• •
Source	DF	SS	MS	F	Р
TD	1	0.5602	0.5602	0.78	0.387
PS	1	2.8935	2.8935	4.04	0.058
TD*PS	1	0.1157	0.1157	0.16	0.692
S/TD*PS	20	14.3148	0.7157		
Total	23	17.8843			

Table A.	10.36	ANOVA	for	problem	interest	during	plannin	g

Source	DF	SS	MS	F	Р
TD	1	0.296	0.296	0.16	0.696
PS	1	1.852	1.852	0.99	0.333
TD*PS	1	0.019	0.019	0.01	0.922
S/TD*PS	20	37.593	1.880		
Total	23	39.759			

Table A.	10.37	ANOVA	for fre	edom o	luring p	lanning
----------	-------	-------	---------	--------	----------	---------

Source	DF	SS	MS	F	Р
TD	1	1.852	1.852	1.83	0.191
PS	1	2.241	2.241	2.21	0.153
TD*PS	1	0.019	0.019	0.02	0.894
S/TD*PS	20	20.259	1.013		
Total	23	24.370			

Source	DF	SS	MS	F	Р
TD	1	0.116	0.116	0.11	0.748
PS	1	0.116	0.116	0.11	0.748
TD*PS	1	0.116	0.116	0.11	0.748
S/TD*PS	20	21.759	1.088		
Total	23	22.106			

Table A. 10.39 ANOVA for ability to see work results during planning

Source	DF	SS	MS	F	Р
TD	1	2.449	2.449	1.67	0.211
PS	1	1.042	1.042	0.71	0.409
TD*PS	1	0.375	0.375	0.26	0.619
S/TD*PS	20	29.352	1.468		
Total	23	33.218			

Table A.	10.40 ANOVA	for resources	during planning

Source	Effect	DF	Variance	F value	Probability
			Component		
TD	Fixed	1		2.39	0.1452
PS	Fixed	1		0.29	0.5987
TD*PS	Fixed	1		0.11	0.7513
Residual G	Random	14	1.1627		
Residual I	Random	14	6.0167		

Table A. 10.41 ANOVA for access to proper equipment during planning

Source	DF	SS	MS	F	Р
TD	1	0.463	0.463	0.831	0.373
PS	1	1.851	1.851	3.321	0.083
TD*PS	1	0.019	0.019	0.033	0.857
S/TD*PS	20	11.149	0.557		
Total	23	13.482			

Table A. 10	0.42 A	NOVA for i	information	n during	planning
Source	DF	SS	MS	F	Р
TD	1	1.1852	1.1852	2.66	0.119
PS	1	0.0185	0.0185	0.04	0.841
TD*PS	1	0.0741	0.0741	0.17	0.688
S/TD*PS	20	8.9259	0.4463		

Table A. 10.43 ANOVA for responsibility during planning (transformed: Log₁₀(reflected x+1))

10.2037

23

Total

Source	DF	SS	MS	F	Р
TD	1	0.02714	0.02714	1.92	0.182
PS	1	0.00000	0.00000	0.00	0.994
TD*PS	1	0.00040	0.00040	0.03	0.869
S/TD*PS	20	0.28343	0.01417		
Total	23	0.31097			

Source Effect Dr Variance F Value Probability Between TD Fixed 1 0.92 0.3442 PS Fixed 2 0.28 0.7600 TD*PS Fixed 2 0.38 0.6883 s/PS*TD Random 29 1.3162 0.3442 Within DP Fixed 2 0.41 0.6668 DP*TD Fixed 4 1.77 0.1550 DP*TD*PS Fixed 4 0.54 0.7049 Residual A Random 20 0.1134 0.54 0.7049 Residual N Random 20 0.1134 Probability Component Between TD Fixed 2 0.29 0.7532 TD*PS Fixed 2 0.29 0.7532 TD*PS Source Effect DF Variance F value Probability SPS *TD Random	1 auto A. 10.44	Efferent		Variana a		Duck - 1-114
Component Component TD Fixed 1 0.92 0.3442 PS Fixed 2 0.38 0.6883 s/PS*TD Random 29 1.3162 0.38 0.6883 Within DP Fixed 2 1.57 0.2208 DP*TD Fixed 2 0.41 0.6668 DP*PS Fixed 4 0.54 0.7049 Residual A Random 20 0.0751 Residual A Random 20 0.0751 Residual N Random 20 0.0751 Residual A Random 20 0.066 0.8023 PS Fixed 1 0.06 0.8023 PS Fixed 2 0.29 0.7532 TD*PS Fixed 2 0.29 0.7532 TD* No Between TD Fixed 2 0.12 0.8853 DP*TD Fixed 2 0.12	Source	Effect	DF	Variance	F value	Probability
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Between			Component		
ID Incd 1 0.22 0.742 PS Fixed 2 0.38 0.742 TD*PS Fixed 2 0.38 0.6883 s/PS*TD Random 29 1.3162 within DP Fixed 2 0.41 0.6668 DP*TD Fixed 4 0.770 0.1550 DP*TD*PS Fixed 4 0.770 0.1530 DP*TD*PS Fixed 4 0.770 0.1530 Residual A Random 20 0.0751 Residual M Random 20 0.0134 Table A. 10.45 ANOVA for challenge during design Source Effect DF Variance F value Probability Mexem 2 0.29 0.7532 0.7631 TD Fixed 2 2.08 0.1406 s/PS*TD Random 33 3.8050 0.12 0.8853 DP*TD*PS	TD	Fixed	1		0.92	0 3442
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PS	Fixed	2		0.92	0.3442
ID IS Fixed 2 0.55 0.565 within DP Fixed 2 1.3162 Within DP Fixed 2 0.41 0.6668 DP*TD Fixed 4 0.54 0.7049 Residual A Random 18 0.3841 0.777 0.1550 DP*TD*PS Fixed 4 0.0751 0.7049 0.7049 Residual M Random 20 0.1134 0.00751 0.7049 Table A. 10.45 ANOVA for challenge during design Source Effect DF Variance F value Probability Component Between TD Fixed 2 0.29 0.7532 TD*PS Fixed 2 0.217 0.1295 0.1406 S/PS*TD Random 33 3.8050 0.46 0.6338 D*PTS Fixed 2 0.12 0.8853 0.46 DP*TD Fixed 2<		Fixed	2		0.28	0.7000
STS TD Random 2.9 1.5162 Within DP Fixed 2 0.41 0.6668 DP*PS Fixed 4 0.54 0.7049 Residual A Random 18 0.3841 0.54 0.7049 Residual A Random 20 0.0751 0.54 0.7049 Residual N Random 20 0.1134 Table A. 10.45 ANOVA for challenge during design Source Effect DF Variance F value Probability Between TD Fixed 1 0.06 0.8023 PS Fixed 2 0.29 0.7532 TD*PS Fixed 2 0.20 0.1406 s/P\$*TD Random 33 3.8050 0.1406 Within DP Fixed 2 0.12 0.8853 DP*TD Fixed 2 0.12 0.8853 DP*TD*PS Fixed 4 0.64 0.6318 DP*TD*PS Fixed		Dondom	20	1 2167	0.38	0.0885
BP Fixed 2 1.57 0.2208 DP*TD Fixed 2 0.41 0.6668 DP*PS Fixed 4 1.77 0.1550 DP*TD*PS Fixed 4 0.54 0.7049 Residual A Random 20 0.0751 0.54 0.7049 Residual N Random 20 0.1134 0.54 0.7049 Source Effect DF Variance F value Probability Component Between TD Fixed 1 0.06 0.8023 PS Fixed 2 2.08 0.1406 s/PS*TD Random 33 3.8050 0.1406 within DP Fixed 2 0.12 0.8853 DP*TD Riked 2 0.12 0.8853 DP*TD*PS Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.64 0.6318	S/PS'ID Within	Kandoni	29	1.5102		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Eine d	2		1 57	0.2209
DP*1D Fixed 2 0.41 0.0608 DP*PS Fixed 4 1.77 0.1550 DP*TD*PS Fixed 4 0.54 0.7049 Residual A Random 20 0.0751 Residual N Random 20 0.1134 Table A. 10.45 ANOVA for challenge during design Source Effect DF Variance F value Probability Source Effect DF Variance F value Probability Detrive Component Between TD Fixed 1 0.06 0.8023 PS Fixed 2 2.08 0.1406 \$ \$ SPS*TD Random 33 3.8050 \$ \$ \$ Within DP Fixed 2 0.12 0.8853 \$ DP*TD*PS Fixed 4 0.64 0.63	DP DD*TD	Fixed	2		1.37	0.2208
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP*ID	Fixed	2		0.41	0.0008
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP*P5	Fixed	4		1.//	0.1550
Residual A Random 18 0.3841 Residual M Random 20 0.0751 Residual N Random 20 0.1134 Table A. 10.45 ANOVA for challenge during design Source Effect DF Variance F value Probability Source Effect DF Variance F value Probability Between TD Fixed $2.08 0.1406 S/PS Fixed 2.08 0.1406 S/PS*TD Random 3.8050 Within DP Fixed 2 2.17 0.1295 DP*TD Fixed 2 0.46 0.7631 Residual CD Random 10.2.5120 Residual DD Random 2.5949 $	DP*1D*PS	Fixed	4	0.0041	0.54	0.7049
Residual M Random 20 0.0751 Residual N Random 20 0.1134 Table A. 10.45 ANOVA for challenge during design Source Fralue Probability Component Between Component TD Fixed 1 0.06 0.8023 PS Fixed 2 0.29 0.7532 TD*PS Fixed 2 2.08 0.1406 S/PS*TD Random 33 3.8050 Within DP Fixed 2 0.12 0.8853 DP*TD Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.46 0.7631 Residual CD Random 10 2.5120 Residual DD Random 24 9.7749 Table A. 10.46 ANOVA for resources during design Tomponent Tomponent Tomponent C	Residual A	Random	18	0.3841		
Residual N Random 20 0.1134 Table A. 10.45 ANOVA for challenge during design Probability Source Effect DF Variance F value Probability Between TD Fixed 1 0.06 0.8023 PS Fixed 2 2.08 0.1406 s/PS*TD Random 33 3.8050 Within DP Fixed 2 2.17 0.1295 DP*TD Fixed 2 0.64 0.6338 DP*TD Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.46 0.7631 Residual CD Random 14 3.0938 Residual PD Random 10 2.5120 Residual DD Random 24 9.7749 9.7749 7.6017 Source Effect DF Variance F value Probability $7.95^{*}TD$ Random 2 0.05 0.9511 </td <td>Residual M</td> <td>Random</td> <td>20</td> <td>0.0751</td> <td></td> <td></td>	Residual M	Random	20	0.0751		
Table A. 10.45 ANOVA for challenge during design Source Effect DF Variance Component F value Probability Between TD Fixed 1 0.06 0.8023 PS Fixed 2 0.29 0.7532 TD*PS Fixed 2 2.08 0.1406 s/PS*TD Random 33 3.8050 0.1406 Within DP Fixed 2 0.12 0.8853 DP*TD Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.46 0.7631 Residual CD Random 10 2.5120 2.86 Residual DD Random 24 9.7749 - Source Effect DF Variance F value Probability Between - 0.27 0.6107 - - TD Fixed 2 0.05 0.9511 - TD*PS Fixed <t< td=""><td>Residual N</td><td>Random</td><td>20</td><td>0.1134</td><td></td><td></td></t<>	Residual N	Random	20	0.1134		
Source Effect DF Variance Component F value Probability Probability Between TD Fixed 1 0.06 0.8023 PS Fixed 2 0.29 0.7532 TD*PS Fixed 2 2.08 0.1406 s/PS*TD Random 33 3.8050 0.12 0.8853 Within DP Fixed 2 0.12 0.8853 DP*TD Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.64 0.7631 Residual CD Random 14 3.0938 0.46 0.7631 Residual DD Random 10 2.5120 $estimentring design Table A. 10.46 ANOVA for resources during design Source Effect DF Variance F value Probability Detween TD Fixed 2 1.63 0.2155 s/PS*TD Random 2 $	Та	ble A. 10.45 A	ANOVA	for challenge	during desig	n
Component Between TD Fixed 1 0.06 0.8023 PS Fixed 2 0.29 0.7532 TD*PS Fixed 2 2.08 0.1406 s/PS*TD Random 33 3.8050 Within DP Fixed 2 0.12 0.8853 DP*TD Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.64 0.7631 Residual CD Random 14 3.0938 Residual PD Random Residual DD Random 2.5120 Residual PD Random 2.5120 Residual DD Random 2 0.05 0.9511 TD*FS Fixed 1 0.27 0.6107 PS Fixed 2 1.63 0.2155 s/PS*TD Random 26 2.5949 Within	Source	Effect	DF	Variance	F value	Probability
Between TD Fixed 1 0.06 0.8023 PS Fixed 2 0.29 0.7532 TD*PS Fixed 2 2.08 0.1406 s/PS*TD Random 33 3.8050	D. /			Component		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Between	D ' 1			0.07	0.0000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TD	Fixed	1		0.06	0.8023
$\begin{array}{c cccccc} TD*PS & Fixed & 2 & 2.08 & 0.1406 \\ s/PS*TD & Random & 33 & 3.8050 \\ \hline Within & & & & & \\ DP & Fixed & 2 & 0.12 & 0.8853 \\ DP*TD & Fixed & 2 & 0.12 & 0.8853 \\ DP*TD & Fixed & 4 & 0.64 & 0.6338 \\ DP*TD*PS & Fixed & 4 & 0.46 & 0.7631 \\ Residual CD & Random & 14 & 3.0938 \\ Residual DD & Random & 14 & 3.0938 \\ Residual DD & Random & 24 & 9.7749 \\ \hline \hline Table A. 10.46 & ANOVA for resources during design \\ \hline \hline Source & Effect & DF & Variance & F value & Probability \\ \hline \hline \hline \hline \\ Between & & \\ TD & Fixed & 2 & 0.05 & 0.9511 \\ TD & Fixed & 2 & 1.63 & 0.2155 \\ s/PS*TD & Random & 26 & 2.5949 \\ \hline Within & & & \\ DP & Fixed & 2 & 1.28 & 0.2931 \\ DP*TD & Fixed & 2 & 1.28 & 0.2931 \\ DP*TD & Fixed & 4 & 0.35 & 0.8444 \\ DP*TD*PS & Fixed & 4 & 0.35 & 0.8444 \\ DP*TD*PS & Fixed & 4 & 0.73 & 0.5794 \\ Residual G & Random & 31 & 0.9159 \\ Residual I & Random & 31 & 5.2890 \\ DP*TD*PS & Fixed & 4 & 0.85 & 0.4972 \\ \hline \end{array}$	PS	Fixed	2		0.29	0.7532
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	TD*PS	Fixed	2		2.08	0.1406
Within DP Fixed 2 2.17 0.1295 DP*TD Fixed 2 0.12 0.8853 DP*PS Fixed 4 0.64 0.6338 DP*TD*PS Fixed 4 0.46 0.7631 Residual CD Random 14 3.0938 8 Residual PD Random 10 2.5120 8 Residual DD Random 24 9.7749 9 Table A. 10.46 ANOVA for resources during design Source Fixed Probability Component Between TD Fixed 2 0.63 0.2155 s/PS*TD Random 26 2.5949 0.05 0.9511 TD*PS Fixed 2 1.63 0.2155 s/PS*TD s/PS*TD Random 26 2.5949 0.35 0.8444 DP Fixed 2 1.28 0.2931 DP*TD Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 <td>s/PS*TD</td> <td>Random</td> <td>33</td> <td>3.8050</td> <td></td> <td></td>	s/PS*TD	Random	33	3.8050		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Within					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DP	Fixed	2		2.17	0.1295
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DP*TD	Fixed	2		0.12	0.8853
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP*PS	Fixed	4		0.64	0.6338
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DP*TD*PS	Fixed	4		0.46	0.7631
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Residual CD	Random	14	3.0938		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Residual PD	Random	10	2.5120		
$\begin{tabular}{ c c c c c } \hline Table A. 10.46 ANOVA for resources during design \\ \hline Source Effect DF Variance F value Probability \\ \hline Component \\ \hline Component \\ \hline \hline D Fixed 1 & 0.27 & 0.6107 \\ PS Fixed 2 & 0.05 & 0.9511 \\ TD*PS Fixed 2 & 1.63 & 0.2155 \\ s/PS*TD Random 26 & 2.5949 \\ \hline Within \\ DP Fixed 2 & 1.12 & 0.3403 \\ DP*TD Fixed 2 & 1.28 & 0.2931 \\ DP*TD Fixed 4 & 0.35 & 0.8444 \\ DP*TD*PS Fixed 4 & 0.73 & 0.5794 \\ \hline Residual G Random 31 & 0.9159 \\ \hline Residual I Random 31 & 5.2890 \\ DP*TD*PS Fixed 4 & 0.85 & 0.4972 \\ \hline \end{tabular}$	Residual DD	Random	24	9.7749		
Source Effect DF Variance Component F value Probability Between TD Fixed 1 0.27 0.6107 PS Fixed 2 0.05 0.9511 TD*PS Fixed 2 1.63 0.2155 s/PS*TD Random 26 2.5949 0.05 0.9511 DP Fixed 2 1.63 0.2155	Та	ble A. 10.46	ANOVA	for resources	during desig	n
Component Between 0.27 0.6107 PS Fixed 2 0.05 0.9511 TD*PS Fixed 2 1.63 0.2155 s/PS*TD Random 26 2.5949 0.05 0.9511 DP Fixed 2 1.63 0.2155 0.2155 s/PS*TD Random 26 2.5949 0.3403 0.2155 Within DP Fixed 2 1.28 0.2931 DP*TD Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 0.85 0.4972 DP*TD*PS Fixed 4 0.85 0.4972	Source	Effect	DF	Variance	F value	Probability
Between 0.27 0.6107 PS Fixed 2 0.05 0.9511 TD*PS Fixed 2 1.63 0.2155 s/PS*TD Random 26 2.5949 26 Within 0 0 1.12 0.3403 DP Fixed 2 1.28 0.2931 DP*TD Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 5.2890 DP*TD*PS Fixed 4 0.85 0.4972				Component		·
TD Fixed 1 0.27 0.6107 PS Fixed 2 0.05 0.9511 TD*PS Fixed 2 1.63 0.2155 s/PS*TD Random 26 2.5949 2.5949 Within DP Fixed 2 1.12 0.3403 DP*TD Fixed 2 1.28 0.2931 DP*PS Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 5.2890 DP*TD*PS Fixed 4 0.85 0.4972	Between					
PS Fixed 2 0.05 0.9511 TD*PS Fixed 2 1.63 0.2155 s/PS*TD Random 26 2.5949 Within DP Fixed 2 1.12 0.3403 DP*TD Fixed 2 1.28 0.2931 DP*PS Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 Residual I Random 31 5.2890 DP*TD*PS Fixed 4 0.85 0.4972	TD	Fixed	1		0.27	0.6107
TD*PS Fixed 2 1.63 0.2155 s/PS*TD Random 26 2.5949 1	PS	Fixed	2		0.05	0.9511
s/PS*TD Random 26 2.5949 Within DP Fixed 2 1.12 0.3403 DP*TD Fixed 2 1.28 0.2931 DP*PS Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 5.2890 DP*TD*PS Fixed 4 0.85 0.4972	TD*PS	Fixed	2		1.63	0.2155
Within DP Fixed 2 1.12 0.3403 DP*TD Fixed 2 1.28 0.2931 DP*PS Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 5.2890 DP*TD*PS Fixed 4 0.85 0.4972	s/PS*TD	Random	26	2.5949		
DP Fixed 2 1.12 0.3403 DP*TD Fixed 2 1.28 0.2931 DP*PS Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 5.2890 DP*TD*PS Fixed 4 0.85 0.4972	Within					
DP*TD Fixed 2 1.28 0.2931 DP*PS Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 0.85 0.4972 DP*TD*PS Fixed 4 0.85 0.4972	DP	Fixed	2		1.12	0.3403
DP*PS Fixed 4 0.35 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual G Random 31 0.9159 0.8444 DP*TD*PS Fixed 4 0.73 0.5794 Residual I Random 31 5.2890 0.85 0.4972	DP*TD	Fixed	2		1.28	0.2931
DP*TD*PSFixed40.730.5794Residual GRandom310.9159Residual IRandom315.2890DP*TD*PSFixed40.850.4972	DP*PS	Fixed	4		0.35	0.8444
Residual GRandom310.9159Residual IRandom315.2890DP*TD*PSFixed40.85	DP*TD*PS	Fixed	4		0.73	0.5794
Residual IRandom315.2890DP*TD*PSFixed40.850.4972	Residual G	Random	31	0.9159		
DP*TD*PS Fixed 4 0.85 0.4972	Residual I	Random	31	5 2890		
51 15 1 hou 1 0.00 0.17/2	DP*TD*PS	Fixed	4	0.2000	0.85	0 4972
DP*s/PS*TD Random 58 1 2410	DP*s/PS*TD	Random	58	1 2410	0.00	J /

Source	Effect	DF	Variance	F value	Probability
			Component		v
Between					
TD	Fixed	1		1.79	0.1896
PS	Fixed	2		0.13	0.8745
TD*PS	Fixed	2		1.89	0.1655
s/PS*TD	Random	35	0.3622		
Within					
DP	Fixed	2		2.23	0.1230
DP*TD	Fixed	2		0.39	0.6829
DP*PS	Fixed	4		0.39	0.8114
DP*TD*PS	Fixed	4		0.43	0.7880
Residual G	Random	33	0.3055		
Residual I	Random	33	1.9397		

Table A. 10.47 ANOVA for access to information during design

Table A.	10.	.48	ANOVA	for res	por	nsibility	duri	ng	design
-							-		

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
TD	Fixed	1		0.02	0.8938
PS	Fixed	2		0.16	0.8548
TD*PS	Fixed	2		1.94	0.1662
s/PS*TD	Random	24	0.3394		
Within					
DP	Fixed	2		0.29	0.7494
DP*TD	Fixed	2		0.51	0.6057
DP*PS	Fixed	4		0.14	0.9647
DP*TD*PS	Fixed	4		0.76	0.5599
Residual G	Random	30	0.1358		
Residual I	Random	30	0.6553		

Reflective

Tabl	le A. 10.49	ANOV	A for reflective	e job satisfa	action
Source	Effect	DF	Variance	F value	Probability
			Component		
TD	Fixed	1		1.10	0.3055
PS	Fixed	2		0.02	0.9812
TD*PS	Fixed	2		0.95	0.4028
Residual G	Random	23	33.9472		
Residual I	Random	23	122.6800		

Table	2 A. IU	0.30 ANO V	A lot tell	ective col	mon
Source	DF	SS	MS	F	Р
TD	1	18.299	18.299	1.339	0.256
PS	2	0.173	0.0864	0.006	0.994
TD*PS	2	13.802	6.901	0.505	0.609
S/TD*PS	30	410.130	13.671		
Total	35	442.404			

Table A. 10.50 ANOVA for reflective comfort

	~		–		_	-
	Source	Eff	ect DI	<u>MS</u>	F	P
,	TD	Fix	ied 1	1	2.20	0.1526
]	PS	Fix	ed 2	2	0.23	0.7930
,	TD*PS	Fix	ed 2	2	0.94	0.4051
]	Residual C	B Rano	dom 22	2 0.5377		
]	Residual I	Rano	dom 22	2 2.3333		
Т	able A. 1	0.52 AN	OVA for	reflective pl	hysical su	rroundings
	Source	DF	SS	MS	F	Р
	TD	1	0.1111	0.1111	0.24	0.630
	PS	2	0.0556	0.0278	0.06	0.943
	TD*PS	2	2.3889	1.1944	2.54	0.096
	S/TD*PS	30	14.1111	0.4704		
	Total	35	16.6667			
-	Table A.	10.53 A	NOVA fo	or reflective	perception	n of time
-	Source	DF	SS	MS	F	Р
-	TD	1	0.8	890 0.890	0.26	0.617
	PS	2	2. 0.8	826 0.413	0.12	0.889
	TD*PS	2	2 1.8	893 0.946	0.27	0.764
	s/PS*TD	30	104.4	449 3.482		
	Total	35	108.0	057		
	Table A.	10.54 A	NOVA fo	or reflective	personal j	problems
Sou	rce	Effect	DF	Variance	F value	Probabili
				~ .		
			(Component		
TD		Fixed	1	Component	2.10	0.1630
TD PS		Fixed Fixed	1 2	<u>Component</u>	2.10 0.19	0.1630 0.8308
TD PS TD*	PS	Fixed Fixed Fixed	1 2 2	<u>Component</u>	2.10 0.19 0.17	0.1630 0.8308 0.8488
TD PS TD* Resi	PS dual G	Fixed Fixed Fixed Random	$ \begin{array}{c} 1\\ 2\\ 20\\ \end{array} $	0.4753	2.10 0.19 0.17	0.1630 0.8308 0.8488
TD PS TD* Resi Resi	PS dual G dual I	Fixed Fixed Fixed Random Random	1 2 20 20	0.4753 2.9222	2.10 0.19 0.17	0.1630 0.8308 0.8488
TD PS TD* Resi Resi	PS dual G dual I Tabl	Fixed Fixed Fixed Random Random e A. 10.5	1 2 20 20 55 ANOV	0.4753 2.9222 VA for reflect	2.10 0.19 0.17 etive challe	0.1630 0.8308 0.8488 enge
TD PS TD* Resi Resi	PS dual G dual I Tabl Source	Fixed Fixed Fixed Random Random e A. 10.5 DF	1 2 20 20 55 ANOV SS	0.4753 2.9222 VA for reflec MS	2.10 0.19 0.17 etive challe	0.1630 0.8308 0.8488 enge P
TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD	Fixed Fixed Random Random e A. 10.5 DF 1	1 2 20 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV	0.4753 2.9222 <u>A for reflec</u> <u>MS</u> 4.938	2.10 0.19 0.17 etive challe F 0.432	0.1630 0.8308 0.8488 enge <u>P</u> 0.516
TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD PS	Fixed Fixed Random Random e A. 10.5 DF 1 2	1 2 20 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 50 ANOV 50 50 ANOV 50 50 50 50 50 50 50 50 50 50 50 50 50	0.4753 2.9222 <u>A for reflec</u> <u>MS</u> 4.938 0.040	2.10 0.19 0.17 etive challe F 0.432 0.004	0.1630 0.8308 0.8488 enge P 0.516 0.996
TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD PS TD*PS	Fixed Fixed Random Random <u>e A. 10.5</u> <u>DF</u> 1 2 2	1 2 20 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 53 ANOV 55 ANO 55 ANO 55 55 ANO 55 55 ANO 55 55 ANO 55 55 55 55 55 55 55 55 55 55 55 5	0.4753 2.9222 <u>VA for reflec</u> <u>MS</u> 4.938 0.040 15.836	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266
TD PS TD* Resi	PS dual G dual I <u>Tabl</u> Source TD PS TD*PS S/TD*PS	Fixed Fixed Fixed Random e A. 10.5 DF 1 2 2 3 30	1 2 20 20 55 ANOV SS 4.938 0.0803 31.673 342.889	0.4753 2.9222 <u>VA for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266
TD PS TD* Resi Resi	PS dual G <u>dual I</u> Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total	Fixed Fixed Fixed Random e A. 10.5 DF 1 2 2 30 35	1 2 20 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 53 4.938 0.0803 31.673 342.889 379.580	0.4753 2.9222 <u>VA for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266
TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 30 35 10.56 A	1 2 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 53 4.938 0.0803 31.673 342.889 379.580	0.4753 2.9222 <u>VA for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430 For reflective	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266 interest
TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 30 35 10.56 A Effect	1 2 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 31.673 342.889 379.580 ANOVA f	0.4753 2.9222 <u>VA for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430 For reflective Variance	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266 interest Probabili
TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A cce	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 3 30 35 10.56 A Effect	1 2 20 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 31.673 342.889 379.580 ANOVA f	0.4753 2.9222 <u>VA for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430 <u>For reflective</u> Variance Component	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266 interest Probabili
TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A ce	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 3 30 35 10.56 A Effect Fixed	I 2 20 20 35 ANOV SS 4.938 0.0803 31.673 342.889 379.580 ANOVA f DF 1	0.4753 2.9222 VA for reflect MS 4.938 0.040 15.836 11.430 For reflective Variance Component	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value 0.00	0.1630 0.8308 0.8488 0.8488 0.516 0.996 0.266 interest Probabili 0.9451
TD PS TD* Resi Resi Sour TD	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A ce	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 3 0 35 10.56 A Effect Fixed Fixed	I I 2 20 20 20 55 ANOV SS 4.938 0.0803 31.673 342.889 379.580 ANOVA f DF I 1 2	0.4753 2.9222 <u>A for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430 <u>For reflective</u> Variance Component	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value 0.00 0.68	0.1630 0.8308 0.8488 0.8488 0.516 0.996 0.266 interest Probabili 0.9451 0.5190
TD PS TD* Resi Resi Sour FD PS TD*	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A rce	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 30 35 10.56 A Effect Fixed Fixed Fixed	1 2 20 20 55 ANOV 55 A	0.4753 2.9222 <u>VA for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430 <u>For reflective</u> Variance Component	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value 0.00 0.68 2.14	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266 interest Probabili 0.9451 0.5190 0.1479
TD PS TD* Resi Resi Sour TD PS TD* Resi	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A rce	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 30 35 10.56 A Effect Fixed Fixed Fixed Random	1 2 20 20 55 ANOV 55 ANO 55 ANOV 55 AN	0.4753 2.9222 <u>A for reflec</u> <u>MS</u> 4.938 0.040 15.836 11.430 <u>For reflective</u> Variance Component	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value 0.00 0.68 2.14	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266 interest Probabili 0.9451 0.5190 0.1479
TD PS TD* Resi Resi Sour TD PS TD* Resid Resid	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS S/TD*PS Total Table A Table A rce	Fixed Fixed Random Random e A. 10.5 DF 1 2 2 30 35 10.56 A Effect Fixed Fixed Fixed Random Random	I 2 20 20 25 ANOV 55 ANOV 55 ANOV 31.673 342.889 379.580 ANOVA f DF I 2 10 10 10	0.4753 2.9222 <u>A for reflect</u> <u>MS</u> 4.938 0.040 15.836 11.430 <u>For reflective</u> <u>Variance</u> <u>Component</u> 1.5370 0 2093	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value 0.00 0.68 2.14	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266 interest Probabili 0.9451 0.5190 0.1479
TD PS TD* Resi Resi Sour TD PS TD* Resi Resi	PS dual G dual I Tabl Source TD PS TD*PS S/TD*PS Total Table A Table A rce	Fixed Fixed Random Random e A. 10.5 DF 1 2 30 35 10.56 A Effect Fixed Fixed Fixed Random Random	I 2 20 20 55 ANOV 55 ANOV 55 ANOV 55 ANOV 55 ANOV 31.673 31.673 342.889 379.580 379.580 ANOVA f DF 1 2 10 10	0.4753 2.9222 <u>A for reflect</u> <u>MS</u> 4.938 0.040 15.836 11.430 <u>For reflective</u> <u>Variance</u> <u>Component</u> 1.5370 0.2093 0.1444	2.10 0.19 0.17 etive challe F 0.432 0.004 1.386 e problem F Value 0.00 0.68 2.14	0.1630 0.8308 0.8488 enge P 0.516 0.996 0.266 interest Probabili 0.9451 0.5190 0.1479

Table A. 10.51 ANOVA for the reflective perception of excessive work

1 at	A. 10.	JIANO	A IOI ICII		uom	
Source	Effect	DF (Variance Component	F Value	e Probal	oility
TD	Fixed	1		0.39	0.54	15
PS	Fixed	2		0.45	0.64	13
TD*PS	Fixed	2		1.51	0.24	49
Residual G	Random	20	0.4272			
Residual I	Random	20	2.2778			
Table A.	10.58 A	NOVA fo	or reflective	e problem	difficulty	
Source	Effect	DF	Variance	F Value	e Probal	oilit
TD	Fixed	1	Joinponent	0.61	0.44	37
PS	Fixed	2		0.63	0.54	16
TD*PS	Fixed	2		1.71	0.20	30
Residual G	Random	23	0.1901			
Residual I	Random	23	0.6333			
Table A. 10.	.59 ANO	VA for re	flective ab	ility to see	work res	ults
Source	DF	SS	MS	F	Р	
TD	1	0.0494	0.0494	0.07	0.792	•
PS	2	0.0432	0.0216	0.03	0.970	
TD*PS	2	0.0432	0.0216	0.03	0.970	
S/TD*PS	5 30	20.9259	0.6975			
Total	35	21.0617				
Tab	le A. 10.6	50 ANOV	A for refle	ctive reso	urces	
Source	DF	SS	MS	F	Р	
TD	1	7.716	7.716	1.213	0.279	
PS	2	1.710	0.855	0.134	0.875	
TD*PS	2	8.784	4.392	0.691	0.509	
S/TD*P	S 30	190.778	6.359			
Total	35	208.988				
le A. <u>10.61 AN</u>	OVA for	the reflect	ctive access	s to the ap	propriate of	equ
Source	Effec	t Di	<u>MS</u>	F	<u>P</u>	
TD	Fixed			1.07	0.3146	
PS TD*DC	Fixed	1 2	2	0.07	0.9370	
		1 2	2 0.0207	0.46	0.6398	
Residual (J Kand	iom 19	$= 0.030^{\prime}$			
Kesidual I	Kand		2.2444			—
Table A. 10.6	2 ANOV	A for the	reflective a	access to t	he inform	<u>at</u> io
	Enec		INI S	1 00	<u>r</u> 0 2275	_
PS	Fixed	1 4 ^ F)	0.73	0.5275	
т 5 ТП*РС	Five	4 2	-)	1 20	0.791/	
Residual (T Rand	. 2 Iom 23	- 3 0.4420	1.49	0.2947	
Residual I	Rand	10m 22	1 5556			
	10 (2)			-4:		_
Table A	. 10.63 A Effe	NUVA f	$\frac{\text{or the refle}}{MS}$	ctive respo F	onsibility P	
TD	Fixed		1410	0.41	0 5302	_
PS	Fixed)	0.08	0.9194	
TD*PS	Fixed	- 4 1 7	-)	0.00	0 8487	
Residual (T Rand		0 2395	0.17	0.0407	
Residual I	Rand	10 m 10) 1 5889			

Job Satisfaction with Group Questions

Source	DF	SS	MS	F	Р	
PS	1	57.79	57.79	2.26	0.163	
S/PS	15	255.20	25.52			
Total	11	312.99				

Table A. 10.65 ANOVA for job satisfaction including group questions groups during designSourceEffectDFVarianceF valueProbability

Source	Effect	DF	Variance Component	F value	Probability
Between					
PS	Fixed	2		2.94	0.0836
S/PS	Random	15	23.0998		
Within					
DP	Fixed	2	32.354	2.70	0.0833
DP*PS	Fixed	4	3.218	0.27	0.8949
DP*S/PS	Random	30	11.9702		

Table A. 10.66 ANOVA for retrospective job satisfaction including group questions

Source	DF	SS	MS	F	Р
PS	2	85.481	42.741	0.956	0.406
S/PS	15	670.296	44.686		
Total	17	755.778			

A.10.5 Design Related Questions

Reflective

Source	DF	SS	MS	F	Р
TD	1	1.000	1.000	0.48	0.493
PS	2	13.019	6.510	3.14	0.058
TD*PS	2	0.908	0.454	0.22	0.805
s/PS*TD	30	62.190	2.073		
Total	35	77.117			

Table A. 10.68 ANOVA for how well participants liked their system

Source	DF	SS	MS	F	Р
TD	1	3.567	3.567	1.67	0.207
PS	2	0.692	0.346	0.16	0.852
TD*PS	2	0.469	0.235	0.11	0.897
s/PS*TD	30	64.263	2.142		
Total	35	68.991			

Table A. 10	0.69 ANOVA	for now	well the	participants	met their	design objectiv	es
T 1 1 A 10		C 1	11.71	,,	1 .	1 · 1 ·	

Source	DF	SS	MŚ	F	Р
TD	1	0.197	0.197	0.07	0.797
PS	2	12.526	6.263	2.15	0.134
TD*PS	2	9.673	4.836	1.66	0.207
s/PS*TD	30	87.484	2.916		
Total	35	109.880			

A.10.6 Planning Related Questions

Planning

Table A. 10.70 ANOVA for the ease of use of project support during planning

Source	DF	SS	MS	F	Р
TD	1	2.0411	2.0411	2.91	0.103
PS	1	2.8933	2.8933	4.13	0.056
TD*PS	1	1.6711	1.6711	2.38	0.138
S/TD*PS	20	14.0179	0.7009		
Total	23	20.6234			

Table A. 10.71 ANOVA for the efficiency of project support during planning

Source	DF	SS	MS	F	Р
TD	1	0.375	0.375	0.25	0.622
PS	1	1.042	1.042	0.70	0.413
TD*PS	1	2.042	2.042	1.37	0.256
S/TD*PS	20	29.834	1.492		
Total	23	33.293			

Table A. 10.72 ANOVA for the effectiveness of project support during planning

Source	DF	SS	MS	F	Р
TD	1	0.0416	0.0416	0.05	0.821
PS	1	0.1155	0.1155	0.15	0.707
TD*PS	1	1.3372	1.3372	1.68	0.21
S/TD*PS	20	15.9077	0.7954		
Total	23	17.4020			

Table A. 10.73 ANOVA for the productivity during planning

Source	DF	SS	MS	F	P
TD	1	0.042	0.042	0.02	0.057
ID	1	0.042	0.042	0.03	0.857
PS	1	1.339	1.339	1.08	0.311
TD*PS	1	1.339	1.339	1.08	0.311
S/TD*PS	20	24.795	1.240		
Total	23	27.514			

Table A. 10.74 ANOVA for satisfaction with project support during planning

Source	DF	SS	MS	F	Р
TD	1	1.186	1.186	1.13	0.301
PS	1	4.168	4.168	3.96	0.061
TD*PS	1	0.667	0.667	0.63	0.436
S/TD*PS	20	21.073	1.054		
Total	23	27.094			

Table A. 10.75 ANOVA for developing the best plan possible

Source	DF	SS	MS	F	Р
TD	1	0.907	0.907	0.82	0.377
PS	1	1.853	1.853	1.66	0.212
TD*PS	1	3.131	3.131	2.81	0.109
S/TD*PS	20	22.26	1.113		
Total	23	28.151			

Source	Effect	DF	Variance Component	F value	Probability
Between					
TD	Fixed	1		0.36	0.5550
PS	Fixed	2		0.48	0.4942
TD*PS	Fixed	2		0.00	0.9810
s/TD*PS	Random	20	0.7062		
Within					
DP	Fixed	2		0.14	0.8735
DP*TD	Fixed	2		1.10	0.3429
DP*PS	Fixed	4		0.60	0.5532
DP*TD*PS	Fixed	4		0.97	0.3889
DP*S/TD*PS	Random	40	0.5571		

Table A. 10.76 ANOVA for the efficiency of the project support tools during design

Table A. 10.77 ANOVA for the effectiveness of the project support tools during design

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
TD	Fixed	1		1.90	0.1829
PS	Fixed	2		0.77	0.3905
TD*PS	Fixed	2		0.03	0.8624
s/TD*PS	Random	20	0.6185		
Within					
DP	Fixed	2		0.59	0.5585
DP*TD	Fixed	2		2.00	0.1486
DP*PS	Fixed	4		0.56	0.5757
DP*TD*PS	Fixed	4		0.64	0.5338
DP*S/TD*PS	Random	40	0.5979		

Table A. 10.78 ANOVA for the productivity of the project support tools during design

Source	Effect	DF	Variance Component	F value	Probability
Between			•		
TD	Fixed	1		1.11	0.3027
PS	Fixed	2		1.23	0.2803
TD*PS	Fixed	2		0.11	0.7411
s/TD*PS	Random	22	0.3433		
Within					
DP	Fixed	2		0.03	0.9707
DP*TD	Fixed	2		1.14	0.3314
DP*PS	Fixed	4		0.52	0.5983
DP*TD*PS	Fixed	4		0.15	0.854
Residual G	Random	33	0.7271		
Residual I	Random	33	1.8691		

Source	Effect	DF	Variance Component	F value	Probability
Between					
TD	Fixed	1		2.12	0.1571
PS	Fixed	2		3.67	0.0661
TD*PS	Fixed	2		0.05	0.8200
s/TD*PS	Random	27	0.5800		
Within					
DP	Fixed	2		0.30	0.7424
DP*TD	Fixed	2		0.50	0.6147
DP*PS	Fixed	4		1.24	0.3081
DP*TD*PS	Fixed	4		0.32	0.7319
Residual CD	Random	24	0.03749		
Residual PD	Random	24	0.7362		
Residual DD	Random	24	1.1070		

Table A. 10.79 ANOVA for the satisfaction with using the of the project support tools during design

Reflective

Table A. 10.80 ANOVA for the reflective satisfaction with project support tools

Source	DF	SS	MS	F	Р
TD	1	0.116	0.116	0.08	0.781
PS	1	1.671	1.671	1.15	0.296
TD*PS	1	0.782	0.782	0.54	0.471
S/TD*PS	20	28.980	1.449		
Total	23	31.549			

Table A. 10.81 ANOVA for the reflective productivity with project support tools

Source	DF	SS	MS	F	Р
TD	1	0.116	0.116	0.06	0.802
PS	1	0.560	0.560	0.31	0.582
TD*PS	1	1.337	1.337	0.75	0.397
S/TD*PS	20	35.759	1.788		
Total	23	37.771			

Table A.	10.82	ANOVA	for the	ability	to	stay	on	sched	ule

Source	DF	SS	MS	F	Р
TD	1	0.116	0.116	0.04	0.838
PS	1	0.227	0.227	0.08	0.775
TD*PS	1	0.226	0.226	0.04	0.838
S/TD*PS	20	54.091	2.705		
Total	23	54 549			

Table A.	10.83	ANOVA	for the	ability	to stay	on budget

Source	DF	SS	MS	F	Р
TD	1	0.227	0.227	0.11	0.744
PS	1	0.375	0.375	0.18	0.675
TD*PS	1	0.042	0.042	0.02	0.889
S/TD*PS	20	41.353	2.068		
Total	23	41.997			

Appendix A.11 MANOVA Tables

A.11.1 Design Performance

Table A. 11.1 MANOVA on reliab	oility, robustnes	s, system s	size, a	nd pr	oducibility
Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.622	4.111	4	27	0.010*
Hotelling	0.609	4.111	4	27	0.010*
Pillai	0.378	4.111	4	27	0.010*
Project Support					
Wilks	0.819	0.707	8	54	0.684
Hotelling	0.215	0.697	8	52	0.692
Pillai	0.185	0.715	8	56	0.677
Team Design * Project Support					
Wilks	0.744	1.074	8	54	0.395
Hotelling	0.328	1.065	8	52	0.401
Pillai	0.268	1.081	8	56	0.390
*p<0.05					

Table A. 11.2 MANOVA on material cost, design cost, and lifecycle cost

Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.071	121.76	3	28	<0.0001***
Hotelling	13.046	121.76	3	28	<0.0001***
Pillai	0.929	121.76	3	28	<0.0001***
Project Support					
Wilks	0.531	3.477	6	56	0.005**
Hotelling	0.788	3.546	6	54	0.005**
Pillai	0.520	3.398	6	58	0.006**
Team Design * Project Support					
Wilks	0.858	0.741	6	56	0.619
Hotelling	0.163	0.733	6	54	0.625
Pillai	0.144	0.748	6	58	0.613
***p<0.01					

***p<0.001

Table A. 11.3 MANOVA on total parts, number of moving parts, and number of unique parts

Test Statistic	F	D	F	Р
0.784	2.574	3	28	0.074
0.276	2.574	3	28	0.074
0.216	2.574	3	28	0.074
0.799	1.106	6	56	0.371
0.238	1.073	6	54	0.390
0.211	1.137	6	58	0.352
0.767	1.322	6	56	0.263
0.286	1.287	6	54	0.279
0.246	1.356	6	58	0.248
	0.784 0.276 0.216 0.799 0.238 0.211 0.767 0.286 0.246	Test Statistic F 0.784 2.574 0.276 2.574 0.216 2.574 0.799 1.106 0.238 1.073 0.211 1.137 0.767 1.322 0.286 1.287 0.246 1.356	Test StatisticFD 0.784 2.574 3 0.276 2.574 3 0.216 2.574 3 0.799 1.106 6 0.238 1.073 6 0.211 1.137 6 0.767 1.322 6 0.286 1.287 6 0.246 1.356 6	Test StatisticFDF 0.784 2.574 3 28 0.276 2.574 3 28 0.216 2.574 3 28 0.216 2.574 3 28 0.799 1.106 6 56 0.238 1.073 6 54 0.211 1.137 6 58 0.767 1.322 6 56 0.286 1.287 6 54 0.246 1.356 6 58

Source	Test Statistic	F	DF		Р
Team Design					
Wilks	0.874	2.092	2	29	0.142
Hotelling	0.144	2.092	2	29	0.142
Pillai	0.126	2.092	2	29	0.142
Project Support					
Wilks	0.974	0.194	4	58	0.940
Hotelling	0.027	0.189	4	56	0.943
Pillai	0.026	0.200	4	60	0.938
Team Design * Project Support					
Wilks	0.932	0.520	4	58	0.721
Hotelling	0.073	0.510	4	56	0.729
Pillai	0.068	0.530	4	60	0.714
*p<0.05					

Table A. 11.4 MANOVA on number of concepts and design criteria

Table A. 11.5 MANOVA on number of scoping and Gantt chart scores

Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	1.000	0.000	2	19	1.000
Hotelling	0.000	0.000	2	19	1.000
Pillai	0.000	0.000	2	19	1.000
Project Support					
Wilks	0.403	14.078	2	19	<0.0001*
Hotelling	1.482	14.078	2	19	<0.0001*
Pillai	0.597	14.078	2	19	<0.0001*
Team Design * Project Support					
Wilks	0.906	0.984	2	19	0.392
Hotelling	0.104	0.984	2	19	0.392
Pillai	0.094	0.984	2	19	0.392
*p<0.05					

A.11.2 NASA TLX Components

<u>Planning</u>

Table A. 11.6 MANOVA on mental, physical, and temporal demand, performance, effort, and frustration during planning

Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.522	2.285	6	15	0.091
Hotelling	0.914	2.285	6	15	0.091
Pillai	0.478	2.285	6	15	0.091
Project Support					
Wilks	0.519	2.316	6	15	0.088
Hotelling	0.926	2.316	6	15	0.088
Pillai	0.481	2.316	6	15	0.088
Team Design * Project Support					
Wilks	0.584	1.778	6	15	0.171
Hotelling	0.711	1.778	6	15	0.171
Pillai	0.416	1.778	6	15	0.171

	during design				
Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.896	0.48	6	25	0.139
Hotelling	0.116	0.48	6	25	0.139
Pillai	0.104	0.48	6	25	0.139
Project Support					
Wilks	0.791	0.52	12	50	0.8924
Hotelling	0.249	0.51	12	36	0.8972
Pillai	0.221	0.54	12	52	0.8785
Design Phase					
Wilks	0.244	9.40	12	110	< 0.0001*
Hotelling	2.729	12.35	12	83	< 0.0001*
Pillai	0.848	6.87	12	112	< 0.0001*
Team Design * Project Support					
Wilks	0.776	0.56	12	50	0.8616
Hotelling	0.276	0.56	12	36	0.8593
Pillai	0.233	0.57	12	52	0.8545
Team Design * Design Phase					
Wilks	0.672	2.01	12	110	0.0295*
Hotelling	0.458	2.07	12	82	0.0276*
Pillai	0.347	1.96	12	112	0.0345*
Project Support * Design Phase					
Wilks	0.558	1.47	24	193	0.0824
Hotelling	0.665	1.49	24	122	0.0819
Pillai	0.517	1.44	24	232	0.0919
Team Design * Project Support					
* Design Phase					
Wilks	6.55	1.04	24	193	0.4225
Hotelling	0.466	1.05	24	122	0.4152
Pillai	0.386	1.03	24	232	0.4270
p<0.05					

Table A. 11.7 MANOVA on mental, physical, and temporal demand, performance, effort, and frustration during design

Reflective

Table A. 11.8 MANOVA on reflective mental, physical, and temporal demand, performance, effort, and frustration

	rustration				
Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.703	1.761	6	25	0.148
Hotelling	0.423	1.761	6	25	0.148
Pillai	0.297	1.761	6	25	0.148
Project Support					
Wilks	0.796	0.503	12	50	0.903
Hotelling	0.243	0.487	12	48	0.918
Pillai	0.214	0.519	12	52	0.893
Team Design * Project Support					
Wilks	0.730	0.710	12	50	0.734
Hotelling	0.346	0.693	12	48	0.750
Pillai	0.287	0.726	12	52	0.719

A.11.3 Job Satisfaction Components

<u>Planning</u>

Table A. 11.9 MANOVA on con	nfort, challenge,	and resou	rces d	luring	planning
Source	Test Statistic	F	DF		Р
Team Design					
Wilks	0.893	0.721	3	18	0.553
Hotelling	0.120	0.721	3	18	0.553
Pillai	0.107	0.721	3	18	0.553
Project Support					
Wilks	0.825	1.270	3	18	0.315
Hotelling	0.212	1.270	3	18	0.315
Pillai	0.175	1.270	3	18	0.315
Team Design * Project Support					
Wilks	0.980	0.119	3	18	0.948
Hotelling	0.980	0.119	3	18	0.948
Pillai	0.980	0.119	3	18	0.948

Table A. 11.10 MANOVA on all questions used to calculate job satisfaction during planning

Source	Test Statistic F		DI	7	Р
Team Design					
Wilks	0.460	0.882	12	9	0.590
Hotelling	1.176	0.882	12	9	0.590
Pillai	0.540	0.882	12	9	0.590
Project Support					
Wilks	0.468	0.854	12	9	0.610
Hotelling	1.138	0.854	12	9	0.610
Pillai	0.532	0.854	12	9	0.610
Team Design * Project Support					
Wilks	0.624	0.451	12	9	0.900
Hotelling	0.692	0.451	12	9	0.900
Pillai	0.376	0.451	12	9	0.900

Table A. 11.11 MANOVA on comfort, challenge, and resources						
Source	Test Statistic	F	D	F	Р	
Team Design						
Wilks	0.983	0.16	3	28	0.9238	
Hotelling	0.0169	0.16	3	28	0.9238	
Pillai	0.0166	0.16	3	28	0.9238	
Project Support						
Wilks	0.874	0.65	6	56	0.6884	
Hotelling	0.142	0.65	6	37	0.6894	
Pillai	0.129	0.67	6	58	0.6777	
Design Phase						
Wilks	0.551	6.70	6	116	< 0.0001*	
Hotelling	0.767	7.36	6	76	< 0.0001*	
Pillai	0.474	6.11	6	118	< 0.0001*	
Team Design * Project Support						
Wilks	0.866	0.70	6	56	0.6532	
Hotelling	0.153	0.70	6	36	0.6489	
Pillai	0.136	0.70	6	58	0.6482	
Team Design * Design Phase						
Wilks	0.928	0.73	6	116	0.6253	
Hotelling	0.0762	0.73	6	76	0.6266	
Pillai	0.0724	0.74	6	118	0.6195	
Project Support * Design Phase						
Wilks	0.844	0.85	12	154	0.6029	
Hotelling	0.178	0.85	12	97	0.6034	
Pillai	0.161	0.85	12	180	0.5956	
Team Design * Project Support						
* Design Phase						
Wilks	0.865	0.72	12	154	0.7297	
Hotelling	0.149	0.71	12	97	0.7396	
Pillai	0.141	0.74	12	180	0.7113	

Table A. 11.11 MANOVA on comfort, challenge, and resources

*p<0.05

Table A. 11.12 MANOVA on all questions								
Test Statistic	F	DF		Р				
0.340	2.69	13	18	0.026*				
1.945	2.69	13	18	0.026*				
0.660								
0.294	1.17	26	36	0.3280				
1.917	1.27	26	27	0.2675				
0.848	1.08	26	38	0.4114				
0.218	4.22	26	96	<0.0001***				
2.750	4.99	26	80	<0.0001***				
0.964	3.51	26	98	<0.0001***				
0.344	0.98	26	36	0.5194				
1.436	0.95	26	27	0.5473				
0.817	1.01	26	38	0.4086				
0.526	1.40	26	96	0.1237				
0.790	1.43	26	80	0.1336				
0.531	1.36	26	98	0.1400				
0.430	0.88	52	188	0.6982				
0.980	0.88	52	131	0.6941				
0.735	0.88	52	204	0.6952				
0.374	1.04	52	188	0.4055				
1.153	1.04	52	131	0.4273				
0.849	1.06	52	204	0.3842				
	1.12 MANOVA (Test Statistic 0.340 1.945 0.660 0.294 1.917 0.848 0.218 2.750 0.964 0.344 1.436 0.817 0.526 0.790 0.531 0.430 0.980 0.735 0.374 1.153 0.849	1.12MANOVA on all queTest StatisticF 0.340 2.69 1.945 2.69 0.660 0.294 0.17 1.27 0.848 1.08 0.218 4.22 2.750 4.99 0.964 3.51 0.344 0.98 1.436 0.95 0.817 1.01 0.526 1.40 0.790 1.43 0.531 1.36 0.430 0.88 0.735 0.88 0.374 1.04 1.153 1.04 0.849 1.06	I.12 MANOVA on all questions Test Statistic F D 0.340 2.69 13 1.945 2.69 13 0.660 0.294 1.17 26 0.294 1.17 26 0.1917 1.27 26 0.848 1.08 26 0.218 4.22 26 0.750 4.99 26 0.964 3.51 26 0.344 0.98 26 0.344 0.98 26 0.344 0.98 26 0.436 0.95 26 0.526 1.40 26 0.531 1.36 26 0.430 0.88 52 0.735 0.88 52 0.374 1.04 52 0.374 1.04 52 0.849 1.06 52	Test StatisticFDF 0.340 2.69 13 18 1.945 2.69 13 18 0.660 0.294 1.17 26 36 0.294 1.17 26 36 1.917 1.27 26 27 0.848 1.08 26 38 0.218 4.22 26 96 2.750 4.99 26 80 0.964 3.51 26 98 0.344 0.98 26 36 1.436 0.95 26 27 0.817 1.01 26 38 0.526 1.40 26 96 0.790 1.43 26 80 0.531 1.36 26 98 0.430 0.88 52 188 0.980 0.88 52 188 0.735 0.88 52 131 0.735 0.88 52 131 0.374 1.04 52 188 1.153 1.04 52 131 0.849 1.06 52 204				

T-11- A 11 12 MANOVA an all more the

*p<0.05 ***p<0.001

Reflective

Table A. 11.13 MANOVA on reflective comfort, challenge, and resources

Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.943	0.565	3	28	0.642
Hotelling	0.061	0.565	3	28	0.642
Pillai	0.057	0.565	3	28	0.642
Project Support					
Wilks	0.973	0.126	6	56	0.993
Hotelling	0.027	0.123	6	54	0.993
Pillai	0.027	0.130	6	58	0.992
Team Design * Project Support					
Wilks	0.895	0.532	6	56	0.782
Hotelling	0.116	0.520	6	54	0.791
Pillai	0.106	0.543	6	58	0.774

Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.620	0.970	12	19	0.507
Hotelling	0.613	0.970	12	19	0.507
Pillai	0.380	0.970	12	19	0.507
Project Support					
Wilks	0.509	0.637	24	38	0.877
Hotelling	0.834	0.626	24	36	0.885
Pillai	0.558	0.645	24	40	0.872
Team Design * Project Support					
Wilks	0.261	1.518	24	38	0.122
Hotelling	1.937	1.453	24	36	0.152
Pillai	0.974	1.581	24	40	0.098

Table A. 11.14 MANOVA on reflective questions

A.11.4 Supplemental Design Questions

Reflective

Table A. 11.15 MANOVA on reflective design questions (meet objects, best of ability, and liked design)

Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.930	0.700	3	28	0.560
Hotelling	0.075	0.700	3	28	0.560
Pillai	0.070	0.700	3	28	0.560
Project Support					
Wilks	0.646	2.282	6	56	0.048*
Hotelling	0.496	2.232	6	54	0.054
Pillai	0.388	2.329	6	58	0.044*
Team Design * Project Support					
Wilks	0.865	0.705	6	56	0.647
Hotelling	0.156	0.702	6	54	0.649
Pillai	0.136	0.705	6	58	0.647
*p<0.05					

A.11.5 Supplemental Planning Questions

Planning

Table A. 11.16 MANOVA on best plan, doubt in ability to complete the plan, ease of use, efficiency, effectiveness, productivity, and satisfaction during planning

Source	Test Statistic	stic F		DF	
Team Design					
Wilks	0.608	1.288	7	14	0.324
Hotelling	0.664	1.288	7	14	0.324
Pillai	0.392	1.288	7	14	0.324
Project Support					
Wilks	0.613	1.264	7	14	0.335
Hotelling	0.632	1.264	7	14	0.335
Pillai	0.387	1.264	7	14	0.335
Team Design * Project Support					
Wilks	0.385	3.200	7	14	0.030*
Hotelling	1.600	3.200	7	14	0.030*
Pillai	0.615	3.200	7	14	0.030*
*n<0.05					

*p<0.05

Source	Test Statistic	F	DF		Р
Team Design					
Wilks	0.689	2.704	3	18	0.076
Hotelling	0.451	2.704	3	18	0.076
Pillai	0.311	2.704	3	18	0.076
Project Support					
Wilks	0.724	2.283	3	18	0.114
Hotelling	0.380	2.283	3	18	0.114
Pillai	0.276	2.283	3	18	0.114
Team Design * Project Support					
Wilks	0.959	0.259	3	18	0.854
Hotelling	0.043	0.259	3	18	0.854
Pillai	0.041	0.259	3	18	0.854

Table A. 11.17 MANOVA on equipment, excessive work, and perception of time during planning

Table A. 11.18 MANOVA on ease of use, efficiency, effectiveness, productivity, and satisfaction

Source	Test Statistic	F	D	F	Р
Team Design					
Wilks	0.595	2.18	5	16	0.1076
Hotelling	0.682	2.18	5	16	0.1076
Pillai	0.405	2.18	5	16	0.1076
Project Support					
Wilks	0.782	0.89	5	16	0.5107
Hotelling	0.278	0.89	5	16	0.5107
Pillai	0.218	0.89	5	16	0.5107
Design Phase					
Wilks	0.692	1.46	10	72	0.1733
Hotelling	0.421	1.49	10	51	0.1706
Pillai	0.326	1.44	10	74	0.1799
Team Design * Project Support					
Wilks	0.564	2.47	5	16	0.0768
Hotelling	0.772	2.47	5	16	0.0768
Pillai	0.436	2.47	5	16	0.0768
Team Design * Design Phase					
Wilks	0.764	1.04	10	72	0.4217
Hotelling	0.291	1.03	10	51	0.4313
Pillai	0.2493	1.05	10	74	0.4084
Project Support * Design Phase					
Wilks	0.748	1.12	10	72	0.3578
Hotelling	0.326	1.15	10	51	0.3442
Pillai	0.259	1.10	10	74	0.3713
Team Design * Project Support					
* Design Phase					
Wilks	0.840	0.66	10	72	0.7601
Hotelling	0.185	0.65	10	51	0.7605
Pillai	0.165	0.67	10	74	0.7521

Reflective

Table A. 11.19 MANOVA on reflective supplemental planning questions										
Source	Test Statistic F D		D	F	Р					
Team Design										
Wilks	0.022	0.095	4	17	0.983					
Hotelling	0.978	0.095	4	17	0.983					
Pillai	0.022	0.095	4	17	0.983					
Project Support										
Wilks	0.876	0.603	4	17	0.666					
Hotelling	0.142	0.603	4	17	0.666					
Pillai	0.124	0.603	4	17	0.666					
Team Design * Project Support										
Wilks	0.904	0.452	4	17	0.769					
Hotelling	0.106	0.452	4	17	0.769					
Pillai	0.096	0.452	4	17	0.769					

Table A. 11.19 MANOVA on reflective supplemental planning questions

Appendix A.12 Multiple comparisons for three way interactions

	Table A. 12.1 Multiple comparisons of the three way interaction for equipment ¹												
		cgm	cgn	cia	cim	cin	pga	pgm	pgn	pia	pim	pin	dga
	mean	5.77	5.44	6.17	5.50	6.33	5.67	5.22	5.78	5.83	6.00	5.50	5.72
cga	5.72	0.05	0.28	0.44	0.22	0.61	0.06	0.50	0.05	0.11	0.28	0.22	0.00
cgm	5.77		0.34	0.39	0.28	0.56	0.11	0.56	0.00	0.05	0.22	0.28	0.06
cgn	5.44			0.72	0.06	0.89*	0.22	0.22	0.34	0.39	0.56	0.06	0.28
cia	6.17				0.67	0.17	0.50	0.95*	0.39	0.33	0.17	0.67	0.45
cim	5.50					0.83	0.17	0.28	0.28	0.33	0.50	0.00	0.22
cin	6.33						0.67	1.11*	0.56	0.50	0.33	0.83*	0.61
pga	5.67							0.45	0.11	0.17	0.33	0.17	0.05
pgm	5.22								0.56	0.61	0.78	0.28	0.50
pgn	5.78									0.05	0.22	0.28	0.06
pia	5.83										0.17	0.33	0.11
pim	6.00											0.50	0.28
pin	5.50												0.22

*p<0.05

¹Where cga=conceptual design group automated, cgm=conceptual design group manual, cgn=conceptual design group none, cia=conceptual design individual automated, cim= conceptual design individual manual, cin=conceptual design individual none, pga=preliminary design group automated, pgm= preliminary design group manual, pgn= preliminary design group none, pia= preliminary design individual automated, pim= preliminary design individual manual, pin= preliminary design individual none, dga=detailed design group automated, dgm= detailed design group manual, dgn= detailed design group none, dia= detailed design individual manual, din= detailed design individual none

Table A.12.1 Multiple comparisons of the three way interaction for equipment (continued)

						-
		dgm	dgn	dia	dim	din
	mean	5.61	6.11	5.50	5.83	5.17
cga	5.72	0.11	0.39	0.22	0.11	0.56
cgm	5.77	0.17	0.33	0.28	0.05	0.61
cgn	5.44	0.17	0.67	0.06	0.39	0.28
cia	6.17	0.56	0.05	0.67	0.33	1.00
cim	5.50	0.11	0.61	0.00	0.33	0.33
cin	6.33	0.72	0.22	0.83	0.50	1.17*
pga	5.67	0.05	0.45	0.17	0.17	0.50
pgm	5.22	0.39	0.89	0.28	0.61	0.05
pgn	5.78	0.17	0.33	0.28	0.05	0.61
pia	5.83	0.22	0.28	0.33	0.00	0.67
pim	6.00	0.39	0.11	0.50	0.17	0.83
pin	5.50	0.11	0.61	0.00	0.33	0.33
dga	5.72	0.11	0.39	0.22	0.11	0.55
dgm	5.61		0.50	0.11	0.22	0.45
dgn	6.11			0.61	0.28	0.95
dia	5.50				0.33	0.33
dim	5.83					0.67
*p<0.05						

In each figure, the levels of one factor were held constant while the levels of the other factors changed.

Figure A.12. 1 Comparing mean perceptions of excessive workload in each design phase

Figure A.12. 2 Comparing mean perceptions of excessive workload within each type of team design (where CD= conceptual design, PD = preliminary design, DD=detailed design)

Figure A.12. 3 Comparing mean perceptions of excessive workload within each type of project support

	14		1 - 1 - 1 - 1	and pro-	• ompe	1100110	01 0110 0		,				
		cgm	cgn	cia	cim	cin	pga	pgm	pgn	pia	pim	pin	dga
	mean	5.83	6.33	5.67	5.83	5.83	6.00	5.06	6.00	5.33	5.67	5.83	5.28
cga	5.72	0.11	0.61	0.06	0.11	0.11	0.28	0.67	0.28	0.39	0.06	0.11	0.44
cgm	5.83		0.50	0.17	0.00	0.00	0.17	0.78*	0.17	0.50	0.17	0.00	0.56
cgn	6.33			0.67	0.50	0.50	0.33	1.28*	0.33	1.00	0.67	0.50	1.06
cia	5.67				0.17	0.17	0.33	0.61	0.33	0.33	0.00	0.17	0.39
cim	5.83					0.00	0.17	0.78	0.17	0.50	0.17	0.00	0.56
cin	5.83						0.17	0.78	0.17	0.50	0.17	0.00	0.56
pga	6.00							0.94	0.00	0.67	0.33	0.17	0.72
pgm	5.06								0.94	0.28	6.11	0.78	0.22
pgn	6.00									0.67	0.33	0.17	0.72
pia	5.33										0.33	0.50	0.06
pim	5.67											0.17	0.39
pin	5.83												0.56
*p<0.0	5												

Table A. 12.2 Multiple comparisons of the three way interaction for excessive work

Table A.12.2 Multiple comparisons of the three way interaction for excessive work (continued)

		dgm	dgn	dia	dim	din
	mean	5.06	5.67	5.00	4.67	4.83
cga	5.72	0.67	0.06	0.72	1.06	0.89
cgm	5.83	0.78	0.17	0.83	1.17*	1.00
cgn	6.33	1.28	0.67	1.33*	1.67*	1.50*
cia	5.67	0.61	0.00	0.67	1.00	0.83
cim	5.83	0.78	0.17	0.83	1.17*	1.00
cin	5.83	0.78	0.17	0.83	1.17	1.00*
pga	6.00	0.94	0.33	1.00	1.33*	1.17
pgm	5.06	0.00	0.61	0.06	0.39	0.22
pgn	6.00	0.94	0.33	1.00	1.33*	1.17
pia	5.33	0.28	0.33	0.33	0.67	0.50
pim	5.67	0.61	0.00	0.67	1.00*	0.83
pin	5.83	0.78	0.17	0.83	1.17	1.00*
dga	5.28	0.22	0.39	0.28	0.61	0.44
dgm	5.06		0.61	0.06	0.39	0.22
dgn	5.67			0.67	1.00	0.83
dia	5.00				0.33	0.17
dim	4.67					0.17

*p<0.05

Figure A.12. 4 Comparing perceptions of access to proper equipment within each design phase

Design Phase & Team Design

Figure A.12. 5 Comparing perceptions of access to proper equipment within each type of team design

Figure A.12. 6 Comparing perceptions of access to proper equipment within each level of project support

Appendix A.13 ANOVA tables for variables that did not have significant effects

This appendix contains the analysis of variance tables for variables in which no significant effects were found in the analysis that included roles from Chapter 6.

A.13.1 NASA TLX

<u>Planning</u>

1010 11. 15.	11110	11110111		11 uuin	15 praimi
Source	DF	SS	MS	F	Р
PS	1	19.75	19.75	1.84	0.185
R	2	33.58	16.79	1.57	0.225
PS*R	2	4.06	2.03	0.19	0.828
s/PS*R	30	321.33	10.71		
Total	35	378.72			

Table A. 13.1 ANOVA for NASA TLX during planning

	Totul	55	510.12				-
Tab	le A. 13.2	ANOV	A for me	ntal dem	and dur	ing plan	ning
	Source	DF	SS	MS	F	Р	_
	PS	1	15.01	15.01	0.60	0.443	-
	R	2	100.78	50.39	2.03	0.149	
	PS*R	2	12.03	6.02	0.24	0.786	

744.98

872.80

30

35

s/PS*R

Total

Table A. 13.3 ANOVA for physical demand during planning (transformed: Log(x+1))

24.83

	1 2		01	0	
Source	DF	SS	MS	F	Р
PS	1	0.1123	0.1123	1.55	0.223
R	2	0.0527	0.0264	0.36	0.698
PS*R	2	0.2400	0.1200	1.66	0.208
s/PS*R	30	2.1742	0.0725		
Total	35	2.5792			

Table A. 13.4 ANOVA for performance during planning

Source	DF	SS	MS	F	Р
PS	1	0.49	0.49	0.03	0.870
R	2	8.88	4.44	0.25	0.784
PS*R	2	4.99	2.49	0.14	0.872
s/PS*R	30	543.04	18.10		
Total	35	557.40			

Source	DF	SS	MS	F	Р
PS	1	21.89	21.89	0.63	0.432
R	2	20.33	10.16	0.29	0.747
PS*R	2	7.85	3.92	0.11	0.893
s/PS*R	30	1034.31	34.48		
Total	35	1084.38			

Reflective

Table A. 13.6 ANOVA for the reflective NASA TLX

Source	DF	SS	MS	F	Р
PS	2	1.114	0.557	0.16	0.855
Role	2	3.496	1.748	0.49	0.614
pm*role	4	26.811	6.703	1.89	0.129
s/pm*role	45	159.741	3.550		
Total	53	191.162			

Table A. 13.7 ANOVA for the reflective mental demand

Source	Effect	DF	Variance	F value	Probability
			component		
PS	Fixed	2		0.73	0.4875
R	Fixed	2		1.58	0.2254
PS*R	Fixed	4		1.86	0.1442
Residual D	Random	15	22.6282		
Residual M	Random	15	6.3146		
Residual P	Random	15	20.9250		

Table A. 13.8 ANOVA for the reflective temporal demand (transformed: Log₁₀(reflected x+1))

Source	DF	SS	MS	F	Р			
PS	2	0.1296	0.0648	0.60	0.554			
R	2	0.2078	0.0139	0.13	0.880			
PS*R	4	0.7702	0.1926	1.78	0.149			
s/PS*R	45	4.8662	0.1081					
Total	53	5.7938						
Table A. 13.9 ANOVA for the reflective performance								
Source	DF	SS	MS	F	Р			
PS	2	3.02	1.51	0.09	0.910			
R	2	89.11	44.55	2.79	0.072			
PS*R	4	16.47	4.12	0.26	0.903			
s/PS*R	45	719.40	15.99					
Total	53	828.01						
Table A	. 13.10	ANOVA	for the re	eflective	e effort			
Source	DF	SS	MS	F	Р			
PS	2	14.35	7.18	0.55	0.582			
R	2	24.48	12.24	0.93	0.401			
PS*R	4	44.38	11.09	0.85	0.503			
s/PS*R	45	589.89	13.11					
Total	53	673.09						
Table A. 13.11 ANOVA for the reflective frustration								
	13.11 A				ustitution			
Source	DF	SS	MS	F	P			
Source PS	DF 2	$\frac{100 \text{ VA IO}}{\text{SS}}$ 50.70	MS 25.35	F 0.68	P 0.513			
Source PS R	DF 2 2	SS 50.70 13.80	MS 25.35 6.90	F 0.68 0.18	P 0.513 0.832			
Source PS R PS*R	DF 2 2 4	SS 50.70 13.80 38.18	MS 25.35 6.90 9.55	F 0.68 0.18 0.26	P 0.513 0.832 0.905			

Total

53

1784.91

A.13.2 Job Satisfaction

Planning

Table A. 13.12 ANOVA for job satisfaction during planning (with group data)

	3				
Source	DF	SS	MS	F	Р
PS	1	173.36	173.36	2.45	0.128
R	2	15.06	7.53	0.11	0.899
PS*R	2	173.39	86.69	1.23	0.307
S/PS*R	30	2119.17	70.64		
Total	35	2480.97			
Table A	13 13 A	NOVA for	comfort	during	alanning

<u></u>	DE	00	MC	E	<u>p</u>
Table A.	13.13 AN	JVA I	or comfort	during	planning

Source	DF	SS	MS	F	Р
PS	1	20.25	20.25	1.93	0.175
R	2	5.17	2.58	0.25	0.784
PS*R	2	32.17	16.08	1.53	0.233
S/PS*R	30	315.17	10.51		
Total	35	372.75			

Table A. 13.14 ANOVA for the perception that excessive work was required during planning

Source	DF	SS	MS	F	Р
PS	1	2.250	2.250	1.92	0.176
R	2	0.667	0.333	0.28	0.755
PS*R	2	0.667	0.333	0.28	0.755
s/PS*R	30	35.167	1.172		
Total	35	38.750			

Table A. 13.15 ANOVA for the physical surroundings was required during planning

Source	DF	SS	MS	F	P
PS	1	1.000	1.000	1.00	0.325
R	2	0.056	0.028	0.03	0.973
PS*R	2	1.500	0.750	0.75	0.481
s/PS*R	30	30.000	1.000		
Total	35	32.556			

Table A. 13.16 ANOVA for personal problems during planning

Source	DF	SS	MS	F	Р
PS	1	3.361	3.361	1.69	0.203
R	2	3.389	1.694	0.85	0.436
PS*R	2	8.722	4.361	2.20	0.128
s/PS*R	30	59.500	1.983		
Total	35	74.972			

Table A. 13.17 ANOVA for the develop ability during planning								
Source	Effect	DF	Variance	F value	Probability			
			Component					
PS	Fixed	1		1.70	0.2066			
R	Fixed	2		1.04	0.3721			
PS*R	Fixed	2		0.22	0.8035			
Residual A	Random	21	0.5333					
Residual M	Random	21	2.7333					

Source	DF	SS	MS	F	Р
PS	1	3.361	3.361	1.22	0.278
R	2	4.222	2.111	0.77	0.473
PS*R	2	3.556	1.778	0.65	0.531
s/PS*R	30	82.500	2.750		
Total	35	93.639			

Table A. 13.18 ANOVA for the perception the work was interesting during planning

Source	DF	SS	MS	F	Р
PS	1	2.778	2.778	1.47	0.235
R	2	0.889	0.444	0.24	0.792
PS*R	2	9.556	4.778	2.53	0.097
s/PS*R	30	56.667	1.889		
Total	35	69.889			

Table A. 13.20 ANOVA for problem difficulty during planning

Source	DF	SS	MS	F	Р
PS	1	0.694	0.694	0.59	0.448
R	2	2.889	1.444	1.23	0.306
PS*R	2	6.222	3.111	2.65	0.087
s/PS*R	30	35.167	1.172		
Total	35	44.972			

Table A. 13.21 ANOVA for ability to see work results during planning

Source	DF	SS	MS	F	Р
PS	1	0.250	0.250	0.11	0.739
R	2	2.056	1.028	0.46	0.633
PS*R	2	2.167	1.083	0.49	0.618
s/PS*R	30	66.500	2.217		
Total	35	70.972			

Table A. 13.22 ANOVA for resources during planning

Source	DF	SS	MS	F	Р
PS	1	4.694	4.694	0.50	0.483
R	2	2.722	1.361	0.15	0.865
PS*R	2	7.389	3.694	0.40	0.676
S/PS*R	30	279.500	9.317		
Total	35	294.306			

Table A. 13.23 ANOVA for appropriate equipment was available during planning

Source	DF	SS	MS	F	Р
PS	1	3.361	3.361	3.07	0.090
R	2	0.056	0.028	0.03	0.975
PS*R	2	0.056	0.028	0.03	0.975
s/PS*R	30	32.833	1.094		
Total	35	36.306			

Table A. 13.24	ANOVA	for informa	tion during	g planning

Source	DF	SS	MS	F	Р
PS	1	0.0278	0.0278	0.03	0.856
R	2	1.0556	0.5278	0.56	0.580
PS*R	2	0.7222	0.3611	0.38	0.687
s/PS*R	30	28.5000	0.9500		
Total	35	30.3056			

DF	SS	MS	F	Р
1	0.000	0.000	0.000	1.000
2	1.556	0.778	0.63	0.539
2	0.667	0.333	0.27	0.765
30	37.000	1.233		
35	39.222			
	DF 1 2 30 35	DF SS 1 0.000 2 1.556 2 0.667 30 37.000 35 39.222	DF SS MS 1 0.000 0.000 2 1.556 0.778 2 0.667 0.333 30 37.000 1.233 35 39.222	DF SS MS F 1 0.000 0.000 0.000 2 1.556 0.778 0.63 2 0.667 0.333 0.27 30 37.000 1.233 35 39.222

TT 1 1 A	12 26	ANTOTIA	C	1	4	1 .	1 .
I able A.	13.26	ANOVA	. tor	' member	competence	during	g planning

Source	Effect	DF	Variance	F value	Probability
			Component		
PS	Fixed	1		0.25	0.6211
R	Fixed	2		0.20	0.8238
PS*R	Fixed	2		0.59	0.5648
Residual G	Random	22	0.3778		
Residual I	Random	22	1.6111		

Table A	13 27	ANOVA	for member	helpfulness	during n	lanning
1 4010 11	10.27	into th	101 1110 01	neiprainees		

Source	DF	SS	MS	F	Р
PS	1	0.1111	0.1111	0.12	0.731
R	2	0.8889	0.4444	0.48	0.622
PS*R	2	1.5556	0.7778	0.84	0.440
s/PS*R	30	27.6667	0.922		
Total	35	30.2222			

Table A. 13.28 Variance analysis for personal problems during design

Table A. 13.2	8 Variance a	inalysis	for personal pro	oblems duri	ing design
Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		0.53	0.5922
R	Fixed	2		1.53	0.2270
PS*R	Fixed	4		0.37	0.8310
s/PS*R	Random	46	1.1897		
Within					
DP	Fixed	2		2.15	0.1265
DP*PS	Fixed	4		0.84	0.5085
DP*R	Fixed	4		1.09	0.3716
DP*PS*R	Fixed	8		0.57	0.7982
Residual D	Random	31	0.1612		
Residual M	Random	29	0.1863		
Residual P	Random	31	1.0036		

Source	Effect	DF	Variance Component	F value	Probability
Between			•		
PS	Fixed	2		2.35	0.1072
R	Fixed	2		0.44	0.6451
PS*R	Fixed	4		2.31	0.0727
s/PS*R	Random	43	6.5553		
Within					
DP	Fixed	2		2.05	0.1400
DP*PS	Fixed	2		0.22	0.9280
DP*R	Fixed	4		0.08	0.9883
DP*PS*R	Fixed	4		0.54	0.8217
Residual CD	Random		6.7792		
Residual PD	Random		5.4755		
Residual DD	Random		13.5883		
Table 4	A 13 30 Vari	ance an	alysis for freed	om during	lesion
Source	Effect	DF	Variance	F value	Prohability
Source	Enect	DI	Component	1 value	Tiobability
Between			I		
PS	Fixed	2		1.01	0.3719
R	Fixed	2		1.21	0.3086
PS*R	Fixed	4		0.74	0.5679
s/PS*R	Random	48	0.9018		
Within					
DP	Fixed	2		1.50	0.2331
DP*PS	Fixed	2		0.40	0.8067
DP*R	Fixed	4		0.46	0.7669
DP*PS*R	Fixed	4		0.84	0.5668
Residual CD	Random	12	0.3964		
Residual PD	Random	27	0.8717		
Residual DD	Random	33	1.4185		
Table A.13.	31 Variance	analysi	s for problem d	lifficulty du	ring design
Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		0.39	0.6827
R	Fixed	2		1.17	0.3179
PS*R	Fixed	4		1.97	0.1155
s/PS*R	Random	16	0.3896		
Within					
DP	Fixed	2		2.46	0.0918
DP*PS	Fixed	2		0.62	0.6467
DP*R	Fixed	4		0.22	0.9255
DP*PS*R	Fixed	4		0.75	0.6459
Residual CD	Random	33	0.4313		
Residual PD	Random	36	1.4376		

.

Source	Effect	DF	Variance	F value	Probability
			Component		-
Between					
PS	Fixed	2		0.47	0.6268
R	Fixed	2		1.80	0.1766
PS*R	Fixed	4		2.51	0.0549
s/PS*R	Random	45	0.2852		
Within					
DP	Fixed	2		1.05	0.3526
DP*PS	Fixed	4		1.44	0.2267
DP*R	Fixed	4		0.76	0.5533
DP*PS*R	Fixed	8		1.24	0.2837
DP*s/PS*R	Random	90	0.8840		
Table A	13 33 Varian	ce analy	sis for informa	tion during	design
Source	10.00		010 101 111011114		
Source	Effect	DF	Variance	F value	Probability
Source	Effect	DF	Variance Component	F value	Probability
Source Between	Effect	DF	Variance Component	F value	Probability
Source Between PS	Effect Fixed	DF 2	Variance Component	F value 2.80	Probability 0.0713
Source Between PS R	Effect Fixed Fixed	DF 2 2	Variance Component	F value 2.80 1.16	Probability 0.0713 0.3232
Source Between PS R PS*R	Effect Fixed Fixed Fixed	DF 2 2 4	Variance Component	F value 2.80 1.16 1.19	Probability 0.0713 0.3232 0.3308
Source Between PS R PS*R s/PS*R	Effect Fixed Fixed Fixed Random	DF 2 2 4 11	Variance Component 0.3017	F value 2.80 1.16 1.19	Probability 0.0713 0.3232 0.3308
Source Between PS R PS*R s/PS*R Within	Effect Fixed Fixed Fixed Random	D F	Variance Component 0.3017	F value 2.80 1.16 1.19	Probability 0.0713 0.3232 0.3308
Source Between PS R PS*R s/PS*R Within DP	Effect Fixed Fixed Fixed Random Fixed	D F	Variance Component 0.3017	F value 2.80 1.16 1.19 2.05	Probability 0.0713 0.3232 0.3308 0.1366

Table A. 13.32 Variance analysis on equipment during design

Source	Effect	DF	Variance	F value	Probability	
			Component		-	
Between						
PS	Fixed	2		2.80	0.0713	
R	Fixed	2		1.16	0.3232	
PS*R	Fixed	4		1.19	0.3308	
s/PS*R	Random	11	0.3017			
Within						
DP	Fixed	2		2.05	0.1366	
DP*PS	Fixed	4		1.16	0.3382	
DP*R	Fixed	4		0.87	0.4905	
DP*PS*R	Fixed	8		1.09	0.3867	
Residual D	Random	32	0.2198			
Residual M	Random	34	1.1289			
Residual P	Random	25	1.0694			

Table A. 15.54 variance analysis on responsionity during design					
Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		1.90	0.1609
R	Fixed	2		0.20	0.8180
PS*R	Fixed	4		0.77	0.5477
s/PS*R	Random	45	0.2037		
Within					
DP	Fixed	2		1.08	0.3446
DP*PS	Fixed	4		0.67	0.6149
DP*R	Fixed	4		0.81	0.5210
DP*PS*R	Fixed	8		1.02	0.4299
DP*s/PS*R	Random	90	0.5210		

Reflective

Table A. 1	3.35 A	NOVA for	reflective	job sat	isfaction
Source	DF	55	MS	F	P
PS	2	256.44	128.22	1.68	0.198
R	2	17.44	8.72	0.11	0.892
PS*R	4	343.11	85.78	1.12	0.358
S/PS*R	45	3438.33	76.41		
Total	53	4055.33			
--					

Source	DF	SS	MS	F	Р		
PS	2	20.59	10.30	0.95	0.395		
R	2	17.81	8.91	0.82	0.447		
PS*R	4	8.07	2.02	0.19	0.945		
S/PS*R	45	489.17	10.87				
Total	53	535.65					

Table A. 13.37 ANOVA for excessive work (transformed: Log₁₀(reflected x+1))

Source	DF	SS	MS	F	Р
PS	2	0.1152	0.05761	1.60	0.213
R	2	0.0669	0.03344	0.93	0.402
PS*R	4	0.0270	0.00675	0.19	0.944
s/PS*R	45	1.6192	0.03598		
Total	53	1.8283			

Table A. 13.38 ANOVA for reflective physical surroundings

Source	DF	SS	MS	F	Р
PS	2	4.3333	2.1667	2.47	0.096
R	2	0.3333	0.1667	0.19	0.828
PS*R	4	2.6667	0.6667	0.76	0.557
s/PS*R	45	39.5000	0.8778		
Total	53	46.8333			

Table A. 1	3.39 AN	NOVA for	reflectiv	e time p	erception
Source	DF	SS	MS	F	Р
PS	2	1.815	0.907	0.31	0.738
R	2	5.593	2.796	0.94	0.397
PS*R	4	9.185	2.296	0.77	0.548
s/PS*R	45	133.500	2.967		

	S/PS'K	43	155.500	2.907		
_	Total	53	150.093			
Tal	ble A. 13.4	40 ANG	OVA for re	flective	persona	l problems
	Source	DF	SS	MS	F	Р
	PS	2	2.259	1.130	0.95	0.394
	R	2	2.259	1.130	0.95	0.394
	PS*R	4	0.963	0.241	0.20	0.936
	s/PS*R	45	53.500	1.189		

Table A.	13.41	ANOVA 1	for reflec	tive cha	allenge
Source	DF	SS	MS	F	Р
PS	2	42.93	21.46	1.75	0.185
R	2	1.81	0.91	0.07	0.929
PS*R	4	96.19	24.05	1.97	0.116
S/PS*R	45	550.33	12.23		
Total	53	691.26			

58.981

Total

53

Source	DF	SS	MS	F	Р
PS	2	3.593	1.796	1.23	0.302
R	2	3.370	1.685	1.15	0.324
PS*R	4	6.185	1.546	1.06	0.388
S/PS*R	45	65.667	1.459		
Total	53	78.815			

Source	DF	SS	MS	F	Р		
PS	2	0.01063	0.00531	0.31	0.737		
R	2	0.00393	0.00197	0.11	0.893		
PS*R	4	0.08491	0.02123	1.23	0.312		
S/PS*R	45	0.77756	0.01728				
Total	53	0.87704					
Table A. 13.44 ANOVA for reflective resources							
Source	DF	SS	MS	F	Р		
PS	2	26.78	13.39	1.30	0.283		
R	2	1.44	0.72	0.07	0.932		
PS*R	4	67.11	16.78	1.63	0.183		
S/PS*R	45	463.50	10.30				
Total	53	558.83					

Table A. 13.43 ANOVA for reflective ability to see results (transformed: Log₁₀(reflected x+1))

Table A. 13.45 ANOVA for the reflective appropriate equipment availability

			<u> </u>		
Source	DF	SS	MS	F	Р
PS	2	3.0000	1.5000	1.78	0.180
R	2	0.7778	0.3889	0.46	0.633
PS*R	4	1.2222	0.3056	0.36	0.833
s/PS*R	45	37.8333	0.8407		
Total	53	42.8333			

Table A. 13.46 ANOVA for the reflective information

Source	Effect	DF	Variance	F	Probability
			Component	value	
PS	Fixed	2		1.51	0.2364
R	Fixed	2		1.16	0.3285
PS*R	Fixed	4		1.54	0.2164
Residual D	Random	15	0.4444		
Residual M	Random	15	0.5111		
Residual P	Random	15	1.8000		

Table A. 1.	3.47 AN	NOVA for t	the reflect	tive resp	onsibilit
Source	DF	SS	MS	F	Р
PS	2	0.0370	0.0185	0.03	0.969
R	2	0.1481	0.0741	0.13	0.883
PS*R	4	3.2963	0.8241	1.39	0.252
s/PS*R	45	26.6667	0.5926		
Total	53	30.1481			

Table A. 13.48 ANOVA for reflective member competency (transformed: Log₁₀(reflected x+1))

Source	DF	SS	MS	F	Р
PS	2	0.03203	0.01601	1.34	0.273
R	2	0.00087	0.00043	0.04	0.964
PS*R	4	0.09744	0.02436	2.03	0.106
S/PS*R	45	0.53948	0.01199		
Total	53	0.66982			

Source	Effect	DF	Variance	F value	Probability
			Component		
PS	Fixed	2		0.30	0.7444
R	Fixed	2		0.37	0.6930
PS*R	Fixed	4		1.60	0.2016
Residual D	Random	15	0.5000		
Residual M	Random	15	0.2778		
Residual P	Random	15	1.6444		

Table A. 13.49 ANOVA for the reflective member helpfulness

A.13.3 Supplemental Design Questions

Reflective

Table A. 13.50 ANOVA for the participants' belief that they build the best system possible

Source	DF	SS	MS	F	Р
PS	2	17.444	8.772	2.49	0.094
R	2	2.778	1.389	0.40	0.674
PS*R	4	1.111	0.278	0.08	0.988
s/PS*R	45	157.500	3.500		
Total	53	178.833			

Table A. 13.51 ANOVA for the degree to which the participants liked their system (transformed:

		_og ₁₀ (refle	(ted x+1))		
Source	DF	SS	MS	F	Р
PS	2	0.0063	0.0032	0.04	0.957
R	2	0.1580	0.0790	1.09	0.344
PS*R	4	0.1006	0.0252	0.35	0.844
s/PS*R	45	3.2565	0.0724		
Total	53	3.5215			
Total	53	3.5215			

Table A. 13.52 ANOVA for the participants' belief that they met or exceeded their design objectives

Source	DF	SS	MS	F	Р
PS	2	6.259	3.130	0.66	0.522
R	2	8.037	4.019	0.85	0.435
PS*R	4	0.741	0.185	0.04	0.997
s/PS*R	45	213.333	4.741		
Total	53	228.370			

A.13.4 Supplemental Planning Questions

Planning

Table A. 13.53 ANOVA for the effectiveness of the project support tools during planning

Source	DF	SS	MS	F	Р
PS	1	3.361	3.361	2.02	0.165
R	2	2.000	1.000	0.60	0.554
PS*R	2	1.556	0.778	0.47	0.631
s/PS*R	30	49.833	1.661		
Total	35	56.750			

Source	Effect	DF	Variance Component	F value	Probability
Between					
PS	Fixed	2		0.51	0.4800
R	Fixed	2		0.51	0.6047
PS*R	Fixed	4		1.39	0.2651
s/PS*R	Random	30	0.9037		
Within					
DP	Fixed	2		0.58	0.5657
DP*PS	Fixed	2		0.04	0.9567
DP*R	Fixed	4		1.09	0.3699
DP*PS*R	Fixed	4		0.53	0.7174
Residual	Random	60	0.8370		

Table A. 13.54 ANOVA for efficiency of project support tools during design

Table A.	13.55	ANOVA	for	productivity	v of i	proie	ct sup	port	tools	during	design
	10.00			p1000000000000000000000000000000000000		P • • • •	•• • • • • • • •	P			

Source	Effect	DF	Variance Component	F value	Probability
Between					
PS	Fixed	2		2.27	0.1423
R	Fixed	2		1.10	0.3302
PS*R	Fixed	4		1.41	0.2597
s/PS*R	Random	30	0.2937		
Within					
DP	Fixed	2		0.93	0.4019
DP*PS	Fixed	2		0.17	0.8443
DP*R	Fixed	4		1.76	0.1498
DP*PS*R	Fixed	4		0.44	0.7786
Residual	Random	60	0.3087		

Reflective

Table A. 13.56 ANOVA for how well project support tools enabled participants to stay on schedule

Source	DF	SS	MS	F	Р
PS	1	0.028	0.028	0.01	0.904
R	2	6.889	3.444	1.83	0.178
PS*R	2	0.889	0.444	0.24	0.791
s/PS*R	30	56.500	1.883		
Total	35	64 306			
10181	55	01.200			
VA for how v Source	well proje DF	ect suppor SS	t tools en MS	nabled t F	he partic P
VA for how v Source PS	well proje DF	ect suppor SS 0.250	<u>t tools en</u> MS 0.250	nabled t F 0.14	he partic P 0.716
VA for how v Source PS R	well proje DF 1 2	ect suppor SS 0.250 6.722	t tools en MS 0.250 3.361	nabled t F 0.14 1.82	he partic P 0.716 0.180
VA for how v Source PS R PS*R	well proje DF 1 2 2	ect suppor SS 0.250 6.722 1.167	t tools en MS 0.250 3.361 0.583	nabled t F 0.14 1.82 0.32	he partic P 0.716 0.180 0.732
VA for how v Source PS R PS*R s/PS*R	well proje DF 1 2 2 30	ect suppor SS 0.250 6.722 1.167 55.500	t tools en MS 0.250 3.361 0.583 1.850	nabled t F 0.14 1.82 0.32	he partic P 0.716 0.180 0.732

A.13.5 Group Workload

<u>Planning</u>

	13.38 ANO	VA lof u	ie value 0.	i group i	meracu	on during plann	ing
	Source	DF	SS	MS	F	Р	
	PS	1	13.15	13.15	1.10	0.303	
	R	2	6.97	3.49	0.29	0.750	
	PS*R	2	12.21	6.11	0.51	0.606	
	s/PS*R	30	359.76	11.99			
	Total	35	392.09				
Table A. 13	.59 ANOV	A for the	difficulty	of group	o interac	<u>ction duri</u> ng plar	ning
	Source	DF	SS	MS	F	Р	
	PS	1	12.83	12.83	0.40	0.532	
	R	2	15.78	7.89	0.25	0.783	
	PS*R	2	22.41	11.21	0.35	0.708	
	s/PS*R	30	961.97	32.07			
	Total	35	1013.00				
Table A	. 13.60 AN	OVA for	the degre	e of cooj	peratior	during planning	g
	Source	DF	SS	MS	F	Р	
	PS	1	8.21	8.21	0.60	0.443	
	PS R	1 2	8.21 38.84	8.21 19.42	0.60 1.43	0.443 0.255	
	PS R PS*R	1 2 2	8.21 38.84 6.87	8.21 19.42 3.43	0.60 1.43 0.25	0.443 0.255 0.778	
	PS R PS*R s/PS*R	1 2 30	8.21 38.84 6.87 407.65	8.21 19.42 3.43 13.59	0.60 1.43 0.25	0.443 0.255 0.778	
	PS R PS*R s/PS*R Total	1 2 30 35	8.21 38.84 6.87 407.65 461.57	8.21 19.42 3.43 13.59	0.60 1.43 0.25	0.443 0.255 0.778	
Table A	PS R PS*R s/PS*R Total . 13.61 AN	1 2 30 35 OVA for	8.21 38.84 6.87 407.65 461.57 the overal	8.21 19.42 3.43 13.59	0.60 1.43 0.25 /orkload	0.443 0.255 0.778 <u>d during</u> plannin	g
Table A	PS R PS*R s/PS*R Total . 13.61 AN Source	1 2 30 35 <u>OVA for</u> DF	8.21 38.84 6.87 407.65 461.57 the overal SS	8.21 19.42 3.43 13.59 Il team w MS	0.60 1.43 0.25 /orkload F	0.443 0.255 0.778 <u>d during</u> plannin <u>P</u>	g
Table A	PS R PS*R s/PS*R Total . 13.61 AN4 Source PS	1 2 30 35 <u>OVA for</u> DF 1	8.21 38.84 6.87 407.65 461.57 the overal SS 24.71	8.21 19.42 3.43 13.59 <u>Il team w</u> MS 24.71	0.60 1.43 0.25 //orkload F 1.18	0.443 0.255 0.778 <u>1 during</u> plannin <u>P</u> 0.285	g
Table A	PS R PS*R s/PS*R Total . 13.61 AN Source PS R	1 2 30 35 <u>OVA for</u> DF 1 2	8.21 38.84 6.87 407.65 461.57 the overal SS 24.71 25.50	8.21 19.42 3.43 13.59 Il team w MS 24.71 12.75	0.60 1.43 0.25 vorkload F 1.18 0.61	0.443 0.255 0.778 <u>d during plannin</u> <u>P</u> 0.285 0.550	g
Table A	PS R PS*R s/PS*R Total . 13.61 AN Source PS R PS*R	1 2 30 35 <u>OVA for</u> DF 1 2 2	8.21 38.84 6.87 407.65 461.57 the overal SS 24.71 25.50 2.40	8.21 19.42 3.43 13.59 Il team w MS 24.71 12.75 1.20	0.60 1.43 0.25 /orkload F 1.18 0.61 0.06	0.443 0.255 0.778 <u>d during plannin</u> <u>P</u> 0.285 0.550 0.944	g
Table A	PS R PS*R s/PS*R Total . 13.61 AN Source PS R PS*R s/PS*R	1 2 30 35 <u>OVA for</u> DF 1 2 2 30	8.21 38.84 6.87 407.65 461.57 the overal SS 24.71 25.50 2.40 626.25	8.21 19.42 3.43 13.59 Il team w MS 24.71 12.75 1.20 20.88	0.60 1.43 0.25 //orkload F 1.18 0.61 0.06	0.443 0.255 0.778 <u>d during</u> plannin <u>P</u> 0.285 0.550 0.944	g

Reflective

Table A. 13.62 ANOVA for the reflective value of group interaction (transformed: Log₁₀(reflected x+1))

	0	DE	00	MC	T	D	0
	Source	DF	SS	MS	F	P	
	PS	2	0.3362	0.1681	1.82	0.173	
	R	2	0.0115	0.0058	0.06	0.939	
	PS*R	4	0.3509	0.0877	0.95	0.443	
	s/PS*R	45	4.1490	0.0922			
	Total	53	4.8456				
Table A	. 13.63 AN	IOVA f	or the refle	ctive diffi	culty of	group int	teraction
Table A.	. <u>13.63 AN</u> Source	OVA for DF	or the refle SS	ctive diffi MS	culty of F	<u>group int</u> P	teraction
Table A	. <u>13.63 AN</u> Source PS	OVA for DF	or the refle SS 46.73	ctive diffi MS 23.37	culty of F 0.84	<u>group int</u> P 0.439	teraction
Table A	. <u>13.63 AN</u> Source PS R	IOVA for DF	or the refle SS 46.73 104.76	ctive diffi MS 23.37 52.38	F 0.84 1.88	<u>P</u> 0.439 0.164	teraction
Table A	. <u>13.63 AN</u> Source PS R PS*R	IOVA fo DF 2 2 4	or the refle SS 46.73 104.76 23.31	ctive diffi MS 23.37 52.38 5.83	Example 1.15 F F 0.84 1.88 0.21	<u>P</u> 0.439 0.164 0.932	teraction
Table A	. <u>13.63 AN</u> Source PS R PS*R s/PS*R	OVA for DF 2 2 4 45	or the refle SS 46.73 104.76 23.31 1253.26	ctive diffi MS 23.37 52.38 5.83 27.85	Example 1.88 F 0.84 1.88 0.21	P 0.439 0.164 0.932	teraction

Source	DF	SS	MS	F	Р
PS	2	0.02057	0.01028	0.11	0.893
R	2	0.16506	0.08253	0.91	0.410
PS*R	4	0.30266	0.07567	0.83	0.510
s/PS*R	45	4.08044	0.09068		
Total	53	4.56873			

Table A. 13.64 ANOVA for the reflective degree of cooperation (transformed: Log₁₀(reflected x+1))

A.13.6 Group Workload Evaluated by Outside Observers

<u>Planning</u>

Table A. 13.65 ANOVA for value of group interaction during planning evaluated by outside observers

Source	DF	SS	MS	F	Р
PS	1	1.172	1.172	0.28	0.610
S/PS	10	42.381	4.238		
Total	11	43.553			

Table A. 13.66 ANOVA for the degree of group interaction during planning evaluated by outside

observers									
Source	DF	SS	MS	F	Р				
PS	1	0.064	0.064	0.01	0.925				
S/PS	10	68.715	6.871						
Total	11	68.779							

Table A. 13.67 ANOVA for the degree of cooperation during planning evaluated by outside observers

Source	DF	SS	MS	F	Р
PS	1	1.603	1.603	0.34	0.574
S/PS	10	47.427	4.743		
Total	11	49.030			

Table A. 13.68 ANOVA for the overall team workload during planning evaluated by outside observers

Source	DF	SS	MS	F	Р
PS	1	12.26	12.26	0.88	0.371
S/PS	10	139.41	13.94		
Total	11	151.66			

Design Process

Table A. 13.69 ANOVA for the value of group evaluated by outside observers

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		0.84	0.4527
S/PS	Random	15	2.5227		
Within					
DP	Fixed	2		1.84	0.1757
PS*DP	Fixed	4		1.12	0.3647
S*DP/PS	Random	30	1.6131		

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		0.31	0.7414
S/PS	Random	15	1.4897		
Within					
DP	Fixed	2		0.77	0.4738
PS*DP	Fixed	4		1.62	0.1941
S*DP/PS	Random	30	2.5224		

Table A. 13.70 ANOVA for the degree of cooperation evaluated by outside observers

Reflective

Table A. 13.71 ANOVA for the reflective value of group interaction evaluated by outside observers

Source	DF	SS	MS	F	Р
PS	2	1.703	0.852	0.13	0.875
S/PS	15	95.021	6.335		
Total	17	96.724			

Table A. 13.72 ANOVA for the reflective difficulty of group interaction evaluated by outside observers

Source	DF	SS	MS	F	Р
PS	2	8.370	4.185	0.91	0.424
S/PS	15	69.115	4.608		
Total	17	77.485			

Table A. 13.73 ANOVA for the reflective degree of cooperation evaluated by outside observers

Source	DF	SS	MS	F	Р
PS	2	0.606	0.303	0.10	0.906
S/PS	15	45.915	3.061		
Total	17	46.522			

Table A. 13.74 ANOVA for the reflective overall team workload evaluated by outside observers

Source	DF	SS	MS	F	Р
PS	2	8.105	4.053	1.26	0.313
S/PS	15	48.376	3.225		
Total	17	56.481			

A.13.7 Critical Team Behaviors

s/PS*R

Random

<u>Planning</u>

Table A. 13.75 Logistic analysis for negative communication during planning Effect DF Variance F value Probability Source Component PS Fixed 1.00 0.3258 1 0.38 R Fixed 2 0.6879 PS*R Fixed 2 0.20 0.8228

Table A. 13.76 ANOVA	for negative coor	peration during	planning (t	ransformed:	$(x+1) + \sqrt{x}$	x)
	0			v	· · ·	

0.8033

30

Source	DF	SS	MS	F	Р
PS	1	0.6784	0.6784	1.39	0.247
R	2	0.097	0.0048	0.01	0.990
PS*R	2	0.5692	0.2846	0.58	0.564
s/PS*R	30	14.6142	0.4871		

35	15.8714

Total

A. 13.77 ANOVA for positive cooperation during plann								
Source	DF	SS	MS	F	Р			
PS	1	8.028	8.028	2.24	0.145			
R	2	0.389	0.194	0.05	0.947			
PS*R	2	0.722	0.361	0.10	0.904			
s/PS*R	30	107.417	3.581					
Total	35	116 556						

Table A. 13.78 Logistic analysis for positive acceptance of feedback during planningSource Effect DF Variance F value Probability

Source	Effect	DF	Variance Component	F value	Probability
PS	Fixed	1		0.76	0.3901
R	Fixed	2		0.48	0.6208
PS*R	Fixed	2		0.12	0.8878
s/PS*R	Random	30	0.8033		

Table A. 13.79 ANOVA for the positive adaptability during planning (transformed: $\sqrt{(x+1)} + \sqrt{x}$)

	-	—		_		
Source	DF	SS	MS	F	Р	
PS	1	1.1338	1.338	3.08	0.089	
R	2	0.3839	0.1919	0.52	0.599	
PS*R	2	2.4124	1.2062	3.28	0.052	
s/PS*R	30	11.0388	0.3680			
Total	35	14.9689				

Table A. 13.80 ANOVA for the positive team spirit and morale during planning

Source	DF	SS	MS	F	Р
PS	1	0.4444	0.4444	0.85	0.365
R	2	0.5972	0.2986	0.57	0.572
PS*R	2	0.0972	0.0486	0.09	0.912
s/PS*R	30	15.7500	0.5250		
Total	35	16.8889			

Over Time

Table A. 13.81 Logistic analysis for the positive communication during design

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		1.02	0.3631
R	Fixed	2		0.07	0.9359
PS*R	Fixed	4		0.34	0.8472
s/PS*R	Random	132	5.3513		
Within					
DP	Fixed	2		0.50	0.6096
DP*PS	Fixed	4		1.27	0.2884
DP*R	Fixed	4		0.13	0.9715
DP*PS*R	Fixed	8		0.95	0.4827
DP*S/(PS*R)	Random	97	0.3400		

Table A. 13.82 Logistic analysis for the negative cooperation during design							
Source	Effect	DF	Variance	F value	Probability		
			Component				
Between							
PS	Fixed	2		2.09	0.1301		
R	Fixed	2		0.91	0.4069		
PS*R	Fixed	4		1.07	0.3787		
s/PS*R	Random	79	4.9336				
Within							
DP	Fixed	2		0.30	0.5838		
DP*PS	Fixed	4		0.62	0.5422		
DP*R	Fixed	4		0.19	0.8300		
DP*PS*R	Fixed	8		1.25	0.3017		
DP*S/(PS*R)	Random	49	0.4626				

Table A. 13.82 Logistic analysis for the negative cooperation during design

 Table A. 13.83 Logistic analysis for the negative coordination during design

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		0.27	0.7612
R	Fixed	2		2.07	0.1308
PS*R	Fixed	4		0.22	0.9256
s/PS*R	Random		1.9281		
Within					
DP	Fixed	2		0.85	0.4325
DP*PS	Fixed	4		0.45	0.7697
DP*R	Fixed	4		0.45	0.7731
DP*PS*R	Fixed	8		0.83	0.5762
DP*S/(PS*R)	Random		0.6123		

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		1.88	0.1590
R	Fixed	2		1.91	0.1537
PS*R	Fixed	4		0.34	0.8506
s/PS*R	Random		0.0000		
Within					
DP	Fixed	2		0.09	0.7610
DP*PS	Fixed	4		0.20	0.8178
DP*R	Fixed	4		0.09	0.9130
DP*PS*R	Fixed	8		0.34	0.8532
DP*S/(PS*R)	Random		0.8420		

Table A 13.84 Logistic analysis for the positive accepting feedback during design

Source	Effect	DF	Variance	F value	Probability
			Component		
Between					
PS	Fixed	2		0.01	0.9931
R	Fixed	2		0.13	0.8778
PS*R	Fixed	4		0.48	0.7491
s/PS*R	Random	1	0.00507		
Within					
DP	Fixed	2		0.75	0.4779
DP*PS	Fixed	4		1.70	0.1607
DP*R	Fixed	4		0.84	0.5070
DP*PS*R	Fixed	8		0.64	0.7428
Residual CD	Random	26	0.1234		
Residual PD	Random	43	0.3274		
Residual PD	Random	36	0.1766		

Table A. 13.85 Variance analysis for the positive team spirit and morale during design

Appendix A.14 MANOVAS for Group Analysis

The tables included in this appendix are for the MANOVAS for variables that are related to understanding the group process. This includes looking at the data presented in Chapters 4 and 5 and isolated the groups and determining the differences based on the individual perceptions of people in the group. In addition, there were several observations used in an attempt to learn if there were differences in group functioning based on the role individuals played, the point in time in the process, and the level of project support.

A.14.1 NASA TLX

<u>Planning</u>

Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.571	3.129	6	25	0.020*
Hotelling	0.751	3.129	6	25	0.020*
Pillai	0.429	3.129	6	25	0.020*
Role					
Wilks	0.732	0.705	12	50	0.739
Hotelling	0.341	0.681	12	48	0.761
Pillai	0.288	0.728	12	52	0.717
Project Support * Role					
Wilks	0.818	0.441	12	50	0.938
Hotelling	0.218	0.436	12	48	0.941
Pillai	0.186	0.446	12	52	0.936

Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.881	0.43	12	80	0.9449
Hotelling	0.132	0.43	12	59	0.9442
Pillai	0.121	0.44	12	82	0.9423
Role					
Wilks	0.878	0.45	12	80	0.9388
Hotelling	0.135	0.44	12	59	0.9393
Pillai	0.125	0.46	12	82	0.9347
Design Phase					
Wilks	0.284	12.40	12	170	< 0.0001
Hotelling	2.222	15.61	12	129	< 0.0001
Pillai	0.799	9.54	12	172	< 0.0001
Project Support * Role					
Wilks	0.730	0.55	24	141	0.9540
Hotelling	0.333	0.54	24	86	0.9558
Pillai	0.297	0.58	24	172	0.9439
Project Support * Design Phase					
Wilks	0.735	1.15	24	298	0.2912
Hotelling	0.327	1.14	24	192	0.2994
Pillai	0.291	1.15	24	352	0.2850
Role * Design Phase					
Wilks	0.826	0.70	24	298	0.8518
Hotelling	0.200	0.70	24	192	0.8499
Pillai	0.183	0.70	24	352	0.8472
Project Support * Role * Design					
Phase					
Wilks	0.609	0.93	48	422	0.6061
Hotelling	0.530	0.92	48	266	0.6179
Pillai	0.463	0.94	48	540	0.5877

Table A. 14.2 MANOVA on components of the NASA TLX

Reflective

Table A. 14.3 MANOVA on components of reflective NASA TLX

Source	Test Statistic	Statistic F DF		F	Р	
Project Support						
Wilks	0.804	0.768	12	80	0.681	
Hotelling	0.235	0.763	12	78	0.686	
Pillai	0.203	0.772	12	82	0.678	
Role						
Wilks	0.816	0.713	12	80	0.734	
Hotelling	0.216	0.703	12	78	0.744	
Pillai	0.192	0.72	12	82	0.724	
Project Support * Role						
Wilks	0.652	0.764	24	141	0.776	
Hotelling	0.485	0.778	24	154	0.760	
Pillai	0.379	0.750	24	172	0.793	

A.14.2 Job Satisfaction

<u>Planning</u>

Table A. 14.4 MANOVA on components of job satisfaction during planning								
Source	Test Statistic	F	DF		Р			
Project Support								
Wilks	0.907	0.960	3	28	0.425			
Hotelling	0.103	0.960	3	28	0.425			
Pillai	0.093	0.960	3	28	0.425			
Role								
Wilks	0.978	0.104	6	56	0.996			
Hotelling	0.022	0.100	6	54	0.996			
Pillai	0.022	0.107	6	58	0.995			
Project Support * Role								
Wilks	0.241	1.323	6	58	0.262			
Hotelling	0.771	1.296	6	56	0.274			
Pillai	0.282	1.268	6	54	0.288			

Table A. 14.5 MANOVA on the questions used to calculate job satisfaction during planning

Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.507	2.044	10	21	0.081
Hotelling	0.973	2.044	10	21	0.081
Pillai	0.493	2.044	10	21	0.081
Role					
Wilks	0.346	1.471	20	42	0.144
Hotelling	1.440	1.440	20	40	0.160
Pillai	0.810	1.499	20	44	0.130
Project Support * Role					
Wilks	0.635	0.535	20	42	0.934
Hotelling	0.521	0.521	20	40	0.940
Pillai	0.399	0.548	20	44	0.927

Table A. 14.6 MANOVA on components of job satisfaction					
Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.827	1.43	6	86	0.2141
Hotelling	0.207	1.47	6	56	0.2052
Pillai	0.174	1.40	6	88	0.2248
Role					
Wilks	0.955	0.33	6	86	0.9190
Hotelling	0.046	0.33	6	56	0.9192
Pillai	0.050	0.34	6	88	0.9155
Design Phase					
Wilks	0.762	4.28	6	176	0.0005*
Hotelling	0.304	4.44	6	116	0.0004*
Pillai	0.245	4.14	6	178	0.0006*
Project Support * Role					
Wilks	0.680	1.49	12	114	0.1384
Hotelling	0.438	1.54	12	71	0.1302
Pillai	0.341	1.44	12	135	0.1541
Project Support * Design Phase					
Wilks	0.918	0.64	12	233	0.8102
Hotelling	0.087	0.63	12	149	0.8114
Pillai	0.083	0.64	12	270	0.8040
Role * Design Phase					
Wilks	0.858	1.15	12	233	0.3173
Hotelling	0.160	1.16	12	150	0.3183
Pillai	0.146	1.15	12	270	0.3163
Project Support * Role * Design					
Phase					
Wilks	0.654	1.68	24	256	0.0275*
Hotelling	0.467	1.66	24	184	0.0286*
Pillai	0.386	1.66	24	270	0.0292*
*0.05					

Table A. 14.6 MANOVA on components of job satisfaction

*p<0.05

Source	Test Statistic	F	DF		Р
Project Support					
Wilks	0.356	1.72	26	66	0.0407*
Hotelling	1.380	1.71	26	54	0.0488*
Pillai	0.796	1.73	26	68	0.0375*
Role					
Wilks	0.447	1.26	26	66	0.2245
Hotelling	1.027	1.27	26	54	0.2249
Pillai	0.647	1.25	26	68	0.2290
Design Phase					
Wilks	0.343	4.24	26	156	<0.0001***
Hotelling	1.600	4.75	26	132	<0.0001***
Pillai	0.765	3.77	26	158	<0.0001***
Project Support * Role					
Wilks	0.243	1.10	52	130	0.3273
Hotelling	1.850	1.13	52	86	0.3051
Pillai	1.124	1.08	52	144	0.3512
Project Support * Design Phase					
Wilks	0.585	0.87	52	304	0.7264
Hotelling	0.587	0.87	52	220	0.7276
Pillai	0.492	0.87	52	324	0.7177
Role * Design Phase					
Wilks	0.568	0.92	52	304	0.6356
Hotelling	0.622	0.92	52	220	0.6351
Pillai	0.515	0.92	52	324	0.6319
Project Support * Role * Design					
Phase					
Wilks	0.239	1.22	104	548	0.0851
Hotelling	1.658	1.22	104	344	0.0971
Pillai	1.252	1.21	104	680	0.0865

Table A. 14.7 MANOVA on questions used to calculate job satisfaction

*p<0.05 ***p<0.001

Reflection

Table A. 14.8 MANOVA on components of reflective job satisfaction

Source	Test Statistic	F	DF		Р
Project Support					
Wilks	0.906	0.728	6	86	0.628
Hotelling	0.102	0.717	6	84	0.637
Pillai	0.096	0.738	6	88	0.620
Role					
Wilks	0.889	0.868	6	86	0.522
Hotelling	0.124	0.871	6	84	0.520
Pillai	0.111	0.863	6	88	0.525
Project Support * Role					
Wilks	0.712	1.301	12	114	0.228
Hotelling	0.380	1.319	12	125	0.216
Pillai	0.305	1.274	12	135	0.241

*p<0.05

Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.368	1.106	34	58	0.361
Hotelling	1.299	1.070	34	56	0.403
Pillai	0.786	1.142	34	60	0.321
Role					
Wilks	0.509	0.685	34	58	0.882
Hotelling	0.823	0.677	34	56	0.887
Pillai	0.563	0.691	34	60	0.877
Project Support * Role					
Wilks	0.180	0.935	68	116	0.614
Hotelling	2.234	0.904	68	110	0.672
Pillai	1.355	0.964	68	128	0.560

Table A. 14.9 MANOVA on reflective questions used to determine job satisfaction and supplemental design questions

A.14.3 Supplemental Planning Support Questions

Design Process

Table A. 14.10 MANOVA on supplemental planning questions							
Source	Test Statistic	F	D	F	Р		
Project Support							
Wilks	0.789	1.39	5	26	0.2593		
Hotelling	0.268	1.39	5	26	0.2593		
Pillai	0.211	1.39	5	26	0.2593		
Role							
Wilks	0.665	1.18	10	52	0.3270		
Hotelling	0.491	1.25	10	36	0.2956		
Pillai	0.344	1.12	10	54	0.3637		
Design Phase							
Wilks	0.755	1.69	10	112	0.0918		
Hotelling	0.312	1.73	10	81	0.0879		
Pillai	0.254	1.66	10	114	0.0994		
Project Support * Role							
Wilks	0.794	0.64	10	52	0.7768		
Hotelling	0.251	0.64	10	36	0.7711		
Pillai	0.212	0.64	10	54	0.7725		
Project Support * Design Phase							
Wilks	0.790	1.40	10	112	0.1883		
Hotelling	0.261	1.45	10	81	0.1751		
Pillai	0.214	1.37	10	114	0.2053		
Role * Design Phase							
Wilks	0.668	1.21	20	187	0.2536		
Hotelling	0.446	1.23	20	116	0.2467		
Pillai	0.366	1.19	20	236	0.2644		
Project Support * Role * Design							
Phase							
Wilks	0.796	0.66	20	187	0.8570		
Hotelling	0.243	0.67	20	116	0.8510		
Pillai	0.215	0.67	20	236	0.8531		

Reflection

Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.781	1.889	4	27	0.141
Hotelling	0.280	1.889	4	27	0.141
Pillai	0.219	1.889	4	27	0.141
Role					
Wilks	0.718	1.216	8	54	0.308
Hotelling	0.360	1.171	8	52	0.334
Pillai	0.305	1.160	8	56	0.283
Project Support * Role					
Wilks	0.773	0.927	8	54	0.502
Hotelling	0.280	0.909	8	52	0.516
Pillai	0.238	0.944	8	56	0.489

Table A. 14.11 MANOVA on responses to reflective supplemental planning questions

A.14.4 Group Workload

<u>Planning</u>

Table A. 14.12 WANOVA on group workload during plaining									
Source	Test Statistic	E F DF		F	Р				
Project Support									
Wilks	0.933	0.485	4	27	0.747				
Hotelling	0.072	0.485	4	27	0.747				
Pillai	0.067	0.485	4	27	0.747				
Role									
Wilks	0.697	1.337	8	54	0.245				
Hotelling	0.418	1.358	8	52	0.237				
Pillai	0.316	1.312	8	56	0.257				
Project Support * Role									
Wilks	0.833	0.644	8	54	0.737				
Hotelling	0.198	0.642	8	52	0.729				
Pillai	0.169	0.645	8	56	0.739				

Table A. 14.12 MANOVA on group workload during planning

Source	Test Statistic		DF		Р	
Project Support						
Wilks	0.934	0.37	8	84	0.9351	
Hotelling	0.071	0.37	8	58	0.9334	
Pillai	0.067	0.37	8	86	0.9336	
Role						
Wilks	0.844	0.93	8	84	0.4947	
Hotelling	0.178	0.92	8	58	0.5069	
Pillai	0.163	0.95	8	86	0.4775	
Design Phase						
Wilks	0.464	10.17	8	174	< 0.0001	
Hotelling	1.032	11.15	8	122	< 0.0001	
Pillai	0.593	9.26	8	176	< 0.0001	
Project Support * Role						
Wilks	0.725	0.90	16	129	0.5752	
Hotelling	0.349	0.89	16	78	0.5776	
Pillai	0.299	0.91	16	180	0.5617	
Project Support * Design Phase						
Wilks	0.812	1.17	16	266	0.2888	
Hotelling	0.220	1.18	16	168	0.2860	
Pillai	0.197	1.17	16	360	0.2930	
Role * Design Phase						
Wilks	0.851	0.90	16	226	0.5641	
Hotelling	0.171	0.92	16	168	0.5457	
Pillai	0.153	0.89	16	360	0.5775	
Project Support * Role * Design						
Phase						
Wilks	0.752	0.81	32	322	0.7606	
Hotelling	0.300	0.80	32	217	0.7658	
Pillai	0.271	0.82	32	360	0.7488	

Table A. 14.13 MANOVA on group workload

Reflection

Source	Test Statistic	F	D	F	Р	
Project Support						
Wilks	0.758	1.561	8	84	0.149	
Hotelling	0.305	1.565	8	82	0.148	
Pillai	0.253	1.555	8	86	0.151	
Role						
Wilks	0.734	1.758	8	84	0.097	
Hotelling	0.341	1.747	8	82	0.100	
Pillai	0.282	1.768	8	86	0.095	
Project Support * Role						
Wilks	0.705	0.976	16	129	0.486	
Hotelling	0.385	0.975	16	162	0.486	
Pillai	0.318	0.972	16	180	0.489	

A.14.5 Group Workload Assessed by Outside Observers

Planning

Table A. 14.15	MANOVA on gr	oup workload a	ssessed by	v outside ob	servers d	luring planning
	Source	Test Statistic	F	DF	Р	• • • • •
	Project Support					•
	Wilks	0.795	0.452	4 7	0.769	
	Hotelling	0.258	0.452	4 7	0.769	
	Pillai	0.205	0.452	4 7	0.769	

Design Process

Table A. 14.16 MANOVA on group workload assessed by outside observers

Source	Test Statistic	F	DF		Р
Project Support					
Wilks	0.622	0.80	8	24	0.6061
Hotelling	0.549	0.79	8	15	0.6184
Pillai	0.414	0.85	8	26	0.5700
Design Phase					
Wilks	0.112	13.41	8	54	<0.0001***
Hotelling	6.049	21.42	8	36	<0.0001***
Pillai	1.049	7.73	8	56	<0.0001***
Project Support * Design Phase					
Wilks	0.475	1.43	16	83	0.1461
Hotelling	0.897	1.46	16	48	0.1541
Pillai	0.627	1.39	16	120	0.1560

Reflective

Table A. 14.17 MANOVA on reflective group workload assessed by outside observers

Source	Test Statistic	F	DI	F	Р
Project Support					
Wilks	0.765	0.430	8	24	0.892
Hotelling	0.292	0.401	8	22	0.908
Pillai	0.247	0.457	8	26	0.875

A.14.6 Critical Team Behaviors

Planning

Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.594	9.920	2	29	0.001**
Hotelling	0.684	9.920	2	29	0.001**
Pillai	0.406	9.920	2	29	0.001**
Role					
Wilks	0.847	1.259	4	58	0.296
Hotelling	0.181	1.264	4	56	0.295
Pillai	0.154	1.251	4	60	0.299
Project Support * Role					
Wilks	0.828	1.438	4	58	0.233
Hotelling	0.200	1.400	4	56	0.246
Pillai	0.179	1.475	4	60	0.221

Та

Table A. 14.19 MANOVA on the critical team behaviors during planning

Source	Test Statistic	F	D	F	Р
Project Support					
Wilks	0.227	4.725	13	18	0.001**
Hotelling	3.413	4.725	13	18	0.001**
Pillai	0.773	4.725	13	18	0.001**
Role					
Wilks	0.324	1.047	26	36	0.443
Hotelling	1.533	1.002	26	34	0.491
Pillai	0.854	1.089	26	38	0.398
Project Support * Role					
Wilks	0.360	0.924	26	36	0.577
Hotelling	1.338	0.875	26	34	0.634
Pillai	0.800	0.973	26	38	0.520

**p<0.01

^{**}p<0.01

Table A. 14.20 MANOVA O	14.20 MANOVA on an positive and negative behavior of					
Source	Test Statistic	F	D	ſ	Р	
Project Support						
Wilks	0.991	0.10	4	88	0.9835	
Hotelling	0.009	0.10	4	52	0.9835	
Pillai	0.009	0.10	4	90	0.9829	
Role						
Wilks	0.691	4.47	4	88	0.0025**	
Hotelling	0.447	4.88	4	52	0.0021**	
Pillai	0.310	4.13	4	90	0.0040**	
Design Phase						
Wilks	0.606	12.68	4	178	<0.0001***	
Hotelling	0.651	14.43	4	106	<0.0001***	
Pillai	0.394	11.06	4	180	<0.0001***	
Project Support * Role						
Wilks	0.797	1.32	8	88	0.2423	
Hotelling	0.247	1.34	8	61	0.2424	
Pillai	0.210	1.32	8	90	0.2431	
Project Support * Design Phase						
Wilks	0.958	0.48	8	178	0.8677	
Hotelling	0.043	0.48	8	125	0.8687	
Pillai	0.042	0.49	8	180	0.8643	
Role * Design Phase						
Wilks	0.892	1.31	8	178	0.2424	
Hotelling	0.118	1.31	8	125	0.2465	
Pillai	0.110	1.32	8	180	0.2385	
Project Support * Role * Design						
Phase						
Wilks	0.811	1.23	16	178	0.2504	
Hotelling	0.223	1.23	16	142	0.2508	
Pillai	0.197	1.23	16	180	0.2508	
**						

Table A 14.20 MANOVA on all positive and negative behavior observations

p<0.01 *p<0.001

Project SupportWilks 0.394 1.36 28 64 0.1577 Hotelling 1.289 1.44 28 52 0.1280 Pillai 0.704 1.28 28 66 0.2038 Role 809 2.12 28 52 $0.0096**$ Wilks 0.309 1.82 28 64 $0.0245*$ Hotelling 1.899 2.12 28 52 $0.0096**$ Pillai 0.7934 1.55 28 66 0.0737 Design Phase 4.55 28 66 0.0737 Wilks 0.226 6.07 28 154 $<0.0001***$ Hotelling 2.511 6.83 28 132 $<0.0001***$ Project Support * Role $*$ Wilks 0.330 0.75 56 127 0.8901 Hotelling 1.327 0.73 56 84 0.8970 Pillai 0.942 0.77 56 140 0.8664 Project Support * Design Phase </th
Wilks0.3941.3628640.1577Hotelling1.2891.4428520.1280Pillai0.7041.2828660.2038Role1.8228640.0245*Wilks0.3091.8228520.0096**Pillai0.79341.5528660.0737Design Phase </td
Hotelling1.2891.4428520.1280Pillai0.7041.2828660.2038Role
Pillai0.7041.2828660.2038RoleWilks0.3091.8228640.0245*Hotelling1.8992.1228520.0096**Pillai0.79341.5528660.0737Design Phase </td
RoleWilks0.3091.8228640.0245*Hotelling1.8992.1228520.0096**Pillai0.79341.5528660.0737Design Phase </td
Wilks0.3091.8228640.0245*Hotelling1.8992.1228520.0096**Pillai0.79341.5528660.0737Design Phase </td
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pillai 0.7934 1.55 28 66 0.0737 Design PhaseWilks 0.226 6.07 28 154 $<0.0001^{***}$ Hotelling 2.511 6.83 28 132 $<0.0001^{***}$ Pillai 0.980 5.35 28 156 $<0.0001^{***}$ Project Support * Role V V V V Wilks 0.330 0.75 56 127 0.8901 Hotelling 1.327 0.73 56 84 0.8970 Pillai 0.942 0.77 56 140 0.8664 Project Support * Design Phase V V V Wilks 0.369 1.57 56 302 0.0091^{**} Hotelling 1.194 1.61 56 221 0.0082^{**} Pillai 0.848 1.54 56 320 0.0123^{*}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Wilks0.2266.0728154<0.0001***Hotelling2.5116.8328132<0.0001***
Hotelling2.5116.8328132<0.0001***Pillai0.9805.3528156<0.0001***
Pillai0.9805.3528156<0.0001***Project Support * Role0.3300.75561270.8901Wilks0.3300.75561270.8901Hotelling1.3270.7356840.8970Pillai0.9420.77561400.8664Project Support * Design Phase0.3691.57563020.0091**Hotelling1.1941.61562210.0082**Pillai0.8481.54563200.0123*
Project Support * Role Wilks 0.330 0.75 56 127 0.8901 Hotelling 1.327 0.73 56 84 0.8970 Pillai 0.942 0.77 56 140 0.8664 Project Support * Design Phase 0.369 1.57 56 302 0.0091** Hotelling 1.194 1.61 56 221 0.0082** Pillai 0.848 1.54 56 320 0.0123*
Wilks0.3300.75561270.8901Hotelling1.3270.7356840.8970Pillai0.9420.77561400.8664Project Support * Design Phase0.3691.57563020.0091**Hotelling1.1941.61562210.0082**Pillai0.8481.54563200.0123*
Hotelling1.3270.7356840.8970Pillai0.9420.77561400.8664Project Support * Design Phase0.3691.57563020.0091**Hotelling1.1941.61562210.0082**Pillai0.8481.54563200.0123*
Pillai0.9420.77561400.8664Project Support * Design Phase0.3691.57563020.0091**Wilks0.3691.57562210.0082**Hotelling1.1941.61562210.0082**Pillai0.8481.54563200.0123*
Project Support * Design Phase 0.369 1.57 56 302 0.0091** Hotelling 1.194 1.61 56 221 0.0082** Pillai 0.848 1.54 56 320 0.0123*
Wilks0.3691.57563020.0091**Hotelling1.1941.61562210.0082**Pillai0.8481.54563200.0123*
Hotelling1.1941.61562210.0082**Pillai0.8481.54563200.0123*
Pillai 0.848 1.54 56 320 0.0123*
Role * Design Phase
Wilks 0.469 1.16 56 302 0.2225
Hotelling 0.855 1.16 56 221 0.2319
Pillai 0.674 1.16 56 320 0.2190
Project Support * Role * Design
Phase
Wilks 0.279 0.98 112 552 0.5328
Hotelling 1.448 0.97 112 348 0.5550
Pillai 1.136 0.99 112 672 0.5063
*p<0.05

Table A. 14.21 MANOVA on critical team behaviors

A.14.7 Supplemental Group Observations

<u>Planning</u>

Table A. 14.22 MANOVA on the supplemental group observations during planning

Sauraa	Tost Statistia	<u> </u>	n	7	D
Source	Test Statistic	Г	U.	r	Г
Project Support					
Wilks	0.623	4.076	4	27	0.010*
Hotelling	0.604	4.076	4	27	0.010*
Pillai	0.377	4.076	4	27	0.010*
Role					
Wilks	0.669	1.504	8	54	0.178
Hotelling	0.491	1.595	8	52	0.149
Pillai	0.334	1.404	8	56	0.215
Project Support * Role					
Wilks	0.850	0.570	8	54	0.798
Hotelling	0.173	0.564	8	52	0.803
Pillai	0.152	0.575	8	56	0.794
*n<0.05					

*p<0.05

^{**}p<0.01 ***p<0.001

Table A. 14.23 MANOVA on supplemental group observations									
Source	Test Statistic	F	D	F	Р				
Project Support									
Wilks	0.639	2.63	8	84	0.0127*				
Hotelling	0.530	2.74	8	58	0.0122*				
Pillai	0.382	2.54	8	86	0.0156*				
Role									
Wilks	0.647	2.57	8	84	0.0152*				
Hotelling	0.525	2.72	8	58	0.0129*				
Pillai	0.367	2.41	8	86	0.0211*				
Design Phase									
Wilks	0.466	10.10	8	174	<0.0001***				
Hotelling	0.938	10.13	8	122	<0.0001***				
Pillai	0.630	10.11	8	176	<0.0001***				
Project Support * Role									
Wilks	0.649	1.23	16	129	0.2566				
Hotelling	0.487	1.25	16	78	0.2511				
Pillai	0.387	1.21	16	180	0.2669				
Project Support * Design Phase									
Wilks	0.741	1.72	16	266	0.0437*				
Hotelling	0.334	1.79	16	168	0.0356*				
Pillai	0.271	1.63	16	360	0.0582				
Role * Design Phase									
Wilks	0.858	0.86	16	226	0.6218				
Hotelling	0.161	0.87	16	168	0.6095				
Pillai	0.146	0.85	16	360	0.6280				
Project Support * Role * Design									
Phase									
Wilks	0.626	1.36	32	322	0.0967				
Hotelling	0.515	1.38	32	217	0.0939				
Pillai	0.427	1.34	32	360	0.1051				

*p<0.05 ***p<0.001

Appendix A.15 Multiple comparisons for significant three way interactions for group data

Table A. 15.1 Multiple comparisons for the three way interaction for comfort

Role changes while design phase and project support remain constant

U		CD Automated	CD Automated			CD Manual	CD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean				mean		
	mean	23.33	19.67		mean	22.50	23.33
CD Automated			4.000*	CD Manual			
Design CD Automated	23.67	0.333	4.000*	Design CD Manual	22.67	0.167	0.667
Manufacture	23.33		3.667	Manufacture	22.50		0.833
		CD None	CD None				
		Manufacture	Purchase				
	mean						
(D) V	mean	24.50	25.67				
CD None Design	24.50	0.00	1.167				
Manufacture	24.50		1.167				
		PD Automated	PD Automated			PD Manual	PD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean				mean		
	mean	21.50	22.83		mean	22.00	19.50
PD Automated				PD Manual			
Design PD Automated	21.67	0.333	1.667	Design PD Manual	21.33	0.667	1.833
Manufacture	21.50		1.333	Manufacture	22.00		2.500
		PD None Manufacture	PD None Purchase				
	mean mean	23.50	24.67				
PD None							
Design PD None	23.67	0.167	1.00				
Manufacture	23.50		1.167				
		DD Automata ¹	DD Automated			DD Manual	DD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean	manufacture	i urenase		mean	manufacture	i urenase
	mean	21.17	21.67		mean	18.67	21.67
DD Automated				DD Manual			
Design	20.17	1.00	1.500	Design	20.67	2.000	1.000
DD Automated				DD Manual			
Manufacture	21.17		0.500	Manufacture	18.67		3.000
		DD II	DDU				
		DD None	DD None				
	maan	Manufacture	Purchase				
	mean	22.67	24.50				
DD None Design	21.50	1.167	3.000				
DD None							
Manufacture	22.67		1.833				

Design phase	onunge		ind project supp		instant		
		Design	Design			Design	Design
		Automated PD	Automated DD			Manual PD	Manual DD
	mean		20.15		mean		20.67
	mean	21.17	20.17		mean	21.33	20.67
Design	a a (a	a c oo	0 500++	Design	00 (T	1 222	• • • •
Automated CD	23.67	2.500	3.500**	Manual CD	22.67	1.333	2.00
Design	01.17		1 000	Design	01.00		0.447
Automated PD	21.17		1.000	Manual PD	21.33		0.667
		Design None	Design None				
		PD	DD				
	mean						
	mean	23.67	21.50				
Design None							
CD	24.50	0.833	3.000*				
Design None							
PD	23.67		2.167				
		Manufacture	Manufacture			Manufacture	Manufacture
		Automated PD	Automated DD			Manual PD	Manual DD
	mean		Tutomutou DD		mean		
	mean	21.50	21.17		mean	22.00	18.67
Manufacture				Manufacture			
Automated CD	23 33	1 833	2 167	Manual CD	22.50	0.500	3.833**
Manufacture	20.00	1.055	2.107	Manufacture	22.30	0.500	
Automated PD	21.50		0 333	Manual PD	22.00		3.333*
Thatomated T B	21.00		0.000		22.00		
		Manufacture	Manufacture				
		None PD	None DD				
	mean	22.50	22 (7				
Manufation	mean	23.30	22.07				
Manufacture	24.50	1.000	1 022				
None CD	24.50	1.000	1.833				
Nono PD	22 50		0.822				
None T D	25.50		0.855				
		Purchase	Purchase			Purchase	Purchase
		Automated PD	Automated DD			Manual PD	Manual DD
	mean				mean		
	mean	22.83	21.67		mean	19.50	21.67
Purchase		A A A		Purchase			
Automated CD	19.67	3.167*	2.000	Manual CD	23.33	3.833**	1.667
Purchase				Purchase			
Automated PD	22.83		1.167	Manual PD	19.50		2.167
		Purchase None	Purchase None				
		PD	DD				
	mean						
	mean	24.67	24.50				
Purchase None							
CD	25.67	1.000	1.167				
Purchase None							
PD	24.67		0.167				

Design phase changes while role and project support remain constant

	U	CD Design	CD Design			CD Manufacture	CD Manufacture
	mean	22.67	24.50		mean	22.50	24.50
CD Design Automate	23.67	1.00	0.833	CD Manufacture Automate	23.33	0.833	1.167
CD Design Manual	22.67		1.833	CD Manufacture Manual	22.50		2.000
		CD Purchase Manual	CD Purchase None				
	mean mean	23.33	25.67				
CD Purchase Automate	19.67	3.667	6.000**				
Manual	23.33		2.333				
		PD Design Manual	PD Design None			PD Manufacture Manual	PD Manufacture None
	mean mean	21.33	23.67		mean mean	22.00	23.50
PD Design Automate PD Design	21.67	0.167	2.500	PD Manufacture Automate PD Manufacture	21.50	0.500	2.000
Manual	21.33		2.333	Manual	22.00		1.500
		PD Purchase Manual	PD Purchase None				
	mean mean	19.50	24.67				
PD Purchase Automate PD Purchase	22.83	3.333	1.833				
Manual	19.50		5.1667*				
		DD Design Manual	DD Design None			DD Manufacture Manual	DD Manufacture None
	mean mean	20.67	21.50		mean mean	18.67	22.67
DD Design Automate	20.17	0.500	1.333	DD Manufacture Automate DD Manufacture	21.17	2.500	1.500
Manual	20.67		0.833	Manual	18.67		4.000*
		DD Purchase Manual	DD Purchase None				
	mean mean	21.67	24.50				
DD Purchase Automate DD Purchase	21.67	0.000	2.833				
Manual	21.67		2.833				

Design phase changes while role and project support remain constant

Figure A.15. 1 Comparing comfort for the three-way interaction within each design phase

Figure A.15. 2 Comparing comfort for the three-way interaction within each role

Figure A.15. 3 Comparing comfort for the three-way interaction within each project support level

				2
Table A. 15.2 Mu	ltiple comparisons	s for the three w	vay interaction	for resources

tore enanges	winne ac	CD Automated	CD Automated		•	CD Manual	CD Manual
		CD Automated	CD Automated			CD Manual	CD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean	21.17	26.00		mean	20.17	20.02
	mean	31.17	26.00		mean	29.17	29.83
CD Automated				CD Manual			
Design	29.50	1.667	3.500	Design	29.33	0.167	0.500
CD Automated			5 1 (5 4 A	CD Manual			
Manufacture	31.17		5.167**	Manufacture	29.17		0.667
		CD None	CD None				
		Manufacture	Purchase				
	mean						
	mean	28.67	32.5				
CD None							
Design	30.00	1.333	2.500				
CD None							
Manufacture	28.67		3.833				
		PD Automated	PD Automated			PD Manual	PD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean	manataotaro	1 41011450		mean	manaraotaro	i arenuse
	mean	29.17	26.67		mean	28.67	29.00
PD Automated	meun	27.11	20.07	PD Manual	meun	20.07	27.00
Design	20.67	0.500	3 000	Design	26.50	2 167	2 500
PD Automated	29.07	0.500	5.000	PD Manual	20.50	2.107	2.500
Manufacture	29.17		2 500	Manufacture	28.67		0 333
Manufacture	27.17		2.300	Wanutacture	20.07		0.555
		PD None					
		Manufacture	PD None Purchase				
	mean	• • · · •					
	mean	29.67	31.67				
PD None							
Design	30.17	0.667	1.500				
PD None							
Manufacture	29.67		2.167				
		DD Automated	DD Automated			DD Manual	DD Manua
		Manufacture	Purchase			Manufacture	Purchase
	mean				mean		
	mean	27.33	25.67		mean	25.17	31.00
DD Automated				DD Manual			
Design	30.33	3.000	4.667*	Design	27.00	1.833	4.000*
DD Automated				DD Manual			
Manufacture	27.33		1.667	Manufacture	25.17		5.833**
				-			
		DD None	DD None				
		Manufacture	Purchase				
	mean	manufacture	1 urenase				
	mean	29.67	31.83				
DD None	mean	29.07	51.05				
Design	20.67	0.000	2 167				
Design	29.07	0.000	2.10/				
DD None Manufactura	20.67		2 167				
wianuiacture	29.0/		2.10/				

Role changes while design phase and project support remain constant

Design phase	change		<u>nu project sup</u>		iistaiit	. .	
		Design	Design			Design	Design
		Automated PD	Automated DD			Manual PD	Manual DD
	mean	20.67	20.22		mean	26.50	27.00
Docian	mean	29.07	30.33	Dosign	mean	20.50	27.00
Automated CD	20.5	0.167	0.833	Manual CD	20.33	2 833*	2 2 2 2
Design	29.5	0.107	0.855	Design	29.33	2.055	2.555
Automated PD	29.67		0.667	Manual PD	26.50		0.500
Automated I D	27.07		0.007	Withindar T D	20.50		0.000
		Desise News	Desise News				
		Design None	Design None				
	maan	FD	DD				
	mean	30.17	29.67				
Design None	mean	50.17	29.01				
CD	30.00	0.167	0 333				
Design None	50.00	0.107	0.555				
PD	30.17		0.500				
		Manufacture	Manufacture	. <u> </u>		Manufacture	Manufacture
		Automated PD	Automated DD			Manual PD	Manual DD
	mean	- rate material D	- Tutoniutou DD		mean		
	mean	29.17	27.33		mean	28.67	25.17
Manufacture				Manufacture			
Automated CD	31.17	2.00	3.833**	Manual CD	29.17	0.500	4.000**
Manufacture				Manufacture			
Automated PD	29.17		1.833	Manual PD	28.67		3.500**
		Manufacture	Manufacture				
		None PD	None DD				
	mean						
	mean	29.50	29.67				
Manufacture							
None CD	28.67	0.833	1.000				
Manufacture							
None PD	29.50		0.167				
		Purchase	Purchase			Purchase	Purchase
		Automated PD	Automated DD			Manual PD	Manual DD
	mean				mean		
	mean	26.67	25.67		mean	29.00	31.00
Purchase				Purchase			
Automated CD	26.00	0.667	0.333	Manual CD	29.83	0.833	1.667
Purchase				Purchase			
Automated PD	26.67		1.000	Manual PD	29.00		2.000
		Purchase None	Purchase None				
		PD	DD				
	mean						
	mean	31.67	31.83				
Purchase None							
CD	32.50	0.833	0.667				
Purchase None							
PD	31.67		0.167				

Design phase changes while role and project support remain constant

~ •	0	CD Design	CD Design			CD Manufacture	CD Manufacture
	mean	Manual	None		mean	Ivianuai	None
	mean	29.33	30.00		mean	29.17	28.67
CD Design Automate CD Design	29.50	0.167	0.500	CD Manufacture Automate CD Manufacture	31.17	2.000	2.500
Manual	29.33		0.667	Manual	29.17		0.500
		CD Purchase Manual	CD Purchase None				
	mean	29.83	32.50				
CD Purchase Automate	26.00	3.883	6.500**				
Manual	29.83		2.667				
		PD Design Manual	PD Design None			PD Manufacture Manual	PD Manufacture None
	mean	26.5	20.17		mean	29 (7	20.50
PD Design	mean	26.5	30.17	PD Manufacture	mean	28.67	29.50
Automate PD Design	29.67	3.167	0.500	Automate PD Manufacture	29.17	0.500	0.333
Manual	26.5		3.667	Manual	28.67		0.833
	mean	PD Purchase Manual	PD Purchase None				
	mean	29.00	31.67				
PD Purchase Automate PD Purchase	26.67	2.333	5.000*				
Manual	29.00		2.667				
		DD Design Manual	DD Design None			DD Manufacture Manual	DD Manufacture None
	mean	27.00	20 (7		mean	25.17	20 (7
DD Design	mean	27.00	29.67	DD Manufacture	mean	25.17	29.67
Automate DD Design	30.33	3.333	0.667	Automate DD Manufacture	27.33	1.833	2.333
Manual	27.00		2.667	Manual	25.17		4.500*
		DD Purchase	DD Purchase				
	mean	Manual	None				
DD Durchos-	mean	31.00	31.83				
DD Purchase Automate DD Purchase	25.67	5.333**	6.167**				
Manual	31.00		0.833				

Design phase changes while role and project support remain constant

Figure A.15. 4 Comparisons of resources for the three-way interaction within each design phase

Figure A.15. 5 Comparisons of resources for the three-way interaction within each role

Figure A.15. 6 Comparisons of resources for the three-way interaction within project support levels

Table A. 15.3 Excessive work multiple comparisons for roles

tore enunges	while ac	CD Automated	CD Automated	un constant		CD Manual	CD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean				mean		
	mean	6.33	4.83		mean	5.50	6.00
CD Automated				CD Manual			
Design	6.00	0.333	1.167*	Design	6.00	0.500	0.000
CD Automated	(22		1 500**	CD Manual	5 50		0.500
Manufacture	0.33		1.500**	Manufacture	5.50		0.500
		(D) M	(D) M				
		CD None Monufacture	CD None				
	mean	Manufacture	Purchase				
	mean	6.0	6.50				
CD None							
Design	6.50	0.500	0.000				
CD None							
Manufacture	6.0		0.500				
		PD Automated	PD Automated			PD Manual	PD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean	5.92	6.00		mean	5 50	4.00
PD Automated	mean	3.83	0.00	PD Manual	mean	5.50	4.00
Design	6 167	0 333	0.167	Design	5.67	0.167	1.667**
PD Automated	0.107	0.555	0.107	PD Manual	5.07	0.107	1.007
Manufacture	5.83		0.167	Manufacture	5.50		1.500**
		PD None					
		Manufacture	PD None Purchase				
	mean						
	mean	5.83	6.33				
PD None							
Design	5.83	0.000	0.500				
PD None Manufacture	5.83		0.500				
Wanulacture	5.05		0.500				
		DD Automated	DD Automated			DD Manual	DD Manual
		Manufacture	Purchase			Manufacture	Purchase
	mean				mean		
	mean	5.83	5.83		mean	4.17	5.17
DD Automated				DD Manual			
Design	5.33	0.67	0.500	Design	5.83	1.667*	0.667
DD Automated	5.02		1 1 (7	DD Manual	4.17		1 000
Manufacture	5.85		1.16/	Manufacture	4.17		1.000
		DD M	DD M				
		DD None Manufactura	DD None				
	mean	Manufacture	Purchase				
	mean	5.67	6.17				
DD None		,	/				
Design	5.17	0.500	1.000				
DD None							
			0 500				

Role changes while design phase and project support remain constant

Automated PD Automated DD Manual PD Manual DD mean 6.17 5.33 mean 5.67 5.83 Design Automated PD 6.17 0.667 Design Manual PD 5.67 0.167 Automated PD 6.17 0.833 Manual PD 5.67 0.167 Manual PD 5.67 0.167 Design Mone PD 0.167 Design None PD 0.167 Design None PD 6.50 0.667 I.333 ^a 0.167 Manufacture Manual PD 5.50 0.000 I.333 ^a Manufacture None PD None PD None DD 5.50 I.333 ^a I.333 ^a Manufacture None PD S.83 5.67 Manual PD 5.50 I.333 ^a Manufacture None PD S.83 0.167 S.33 0.167 Manual PD Manual PD Manual PD Manufacture None PD S.83<	<u>Design phase</u>	enunge	Design	Design		iistaiit	Design	Design
mean mean mean 6.17 5.33 mean mean mean 5.67 5.83 mean Design Automated PD 6.17 0.667 Design Manual CD Design Manual PD 6.00 0.333 0.167 Design Automated PD 6.17 0.833 Design None PD Design None S.83 5.17 0.167 Design None CD Design None PD 5.83 5.17 0.667 I.333 ² 0.667 Manufacture Automated PD Manufacture Automated PD Manufacture Automated PD Manufacture Ma			Automated PD	Automated DD			Manual PD	Manual DD
mean 6.17 5.33 mean 5.67 5.83 Design Automated PD 6.0 0.167 0.667 Design Manual CD 6.00 0.333 0.167 Design Automated PD 6.17 0.833 0.167 0.667 Design None Manufacture Manual PD Manual		mean				mean		
Design Automated PD Design 6.0 0.167 0.667 Design Manual CD besign Manual PD 6.00 0.333 0.167 Manual PD 6.17 0.833 0.167 0.67 Design Manual PD 5.67 0.167 mean mean 5.83 5.17 Design None PD 5.67 0.167 Design None PD 5.83 0.667 Image Manufacture Manufacture Automated PD Manufacture Automated PD Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Manual PD 5.50 0.000 I.333* Manufacture None PD S.83 5.67 Manual PD S.50 I.333* Manufacture None PD S.83 0.167 0.333 0.167 0.833 Purchase Automated PD 6.00 5.83 0.167 0.833 0.167 Manual PD 6.00		mean	6.17	5.33		mean	5.67	5.83
Manufacture PD Manufacture Automated PD Manufacture S.83 Manufacture Automated DD Manufacture Automated PD Manufacture S.50 Manufacture Automated DD Manufacture Automated DD Manufacture Automated PD Manufacture S.50 Manufacture Automated DD Manufacture Automated PD Manufacture S.50 Manufacture Automated DD Manufacture Automated PD Manufac	Design Automated CD	6.0	0.167	0.667	Design Manual CD Design	6.00	0.333	0.167
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Automated PD	6.17		0.833	Manual PD	5.67		0.167
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
mean mean 5.83 5.17 Design None CD Design None PD 6.50 0.667 1.333 ^a Design None PD 5.83 0.667 1.333 ^a mean mean 5.83 0.667 1.333 ^a mean mean 5.83 0.667 1.333 ^a mean mean 5.83 4.67 Manufacture Manufacture Manufacture Manufacture Manufacture Nationated PD 6.33 0.500 1.667 ^{***} Manufacture None PD 5.83 1.167 Manufacture Manufacture None PD 5.50 0.000 1.333 ^a Manufacture None PD 5.83 5.67 Manufacture Manufacture None PD Manufacture None PD </td <td></td> <td></td> <td>Design None PD</td> <td>Design None DD</td> <td></td> <td></td> <td></td> <td></td>			Design None PD	Design None DD				
Design None CD None CD None 5.83 O.667 I.333* Design None PD 5.83 0.667 I.333* Manufacture Automated DD Manufacture Automated CD Manufacture Automated CD Manufacture Automated CD Manufacture Manufacture Manufacture		mean	5.83	5 17				
Design None PD 5.83 0.667 Manufacture Automated PD Manufacture Automated PD Manufacture Automated PD Manufacture Manufacture Manufacture None PD Manufacture None DD Manufacture None DD Manufacture None DD Manufacture None PD None ND Manufacture None PD 6.00 0.167 0.333 Manufacture None PD None ND None ND Manufacture None PD 6.00 0.167 0.333 Manufacture None PD None ND None ND	Design None CD	6.50	0.667	1.333*				
Manufacture Automated PDManufacture Automated DDManufacture Manual DDManufacture Manual DDmean mean 5.83 4.67 mean mean 5.50 4.17 Manufacture Automated PD 5.33 0.500 1.667^{**} Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture None PD 5.50 0.000 1.333^{*} Manufacture None PD 5.83 1.167 Manufacture Manufacture Manufacture Manufacture Manufacture Manufacture None PD 5.50 1.333^{*} Manufacture None PD 5.83 5.67 5.50 1.333^{*} Manufacture None PD 5.83 0.167 0.333 Manufacture None PD 5.83 0.167 0.333 Manufacture None PD 5.83 0.167 0.833 Manufacture None PD 0.167 0.333 0.167 Manufacture None PD 0.00 5.83 0.167 Purchase Automated PD 0.167 0.333 0.167 Purchase None PD 0.167 0.333 0.167	PD	5.83		0.667				
Manufacture Automated PDManufacture Automated DDManufacture Manufacture ManufactureManufacture Manufacture Manufacture Manufacture Manufacture Manufacture Automated CDManufacture Automated DDManufacture Automated DDManufactur								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Manufacture Automated PD	Manufacture Automated DD			Manufacture Manual PD	Manufacture Manual DD
Manufacture Automated CD 6.33 0.500 1.667** Manufacture Manufacture Automated PD Manufacture 5.83 Manufacture None PD Purchase Automated PD Purchase Automated PD Purchase Automated PD Purchase Automated PD Purchase Automated PD Purchase None PD Purchase None PD 6.33 0.167 0.333 0.167 0.333		mean	5.92	4.(7		mean	5 50	4.17
Manufacture Automated CD 6.33 0.500 I.667** Manufacture Manufacture Manufacture None PD Manufacture Manufacture None PD Manufacture Manufacture None PD Manufacture Manufacture None DD Manufacture None PD Manufacture None DD Man	Manufacture	mean	5.85	4.0/	Manufactura	mean	5.50	4.1/
Automated PD 5.83 1.167 Manual PD 5.50 1.333* Automated PD 5.83 1.167 Manual PD 5.50 1.333* Manufacture None PD None PD None DD 1.333* 1.167 Manufacture Manufacture None CD 6.00 0.167 0.333 0.333 1.167 Manufacture Manual PD S.67 Manufacture None PD 5.83 0.167 0.333 Manual PD Manual PD Manual PD Manual DD mean 6.00 5.83 0.167 Manual PD Manual PD Manual DD Purchase Automated CD 4.83 1.167** 1.000 mean Manual CD 6.00 2.000** 0.833 Purchase Automated PD 6.00 0.167 0.167 1.167 1.167 Purchase None CD 6.50 0.167 0.333 0.167 1.167 Purchase None CD 6.50 0.167 0.333 0.167 1.167	Automated CD Manufacture	6.33	0.500	1.667**	Manual CD Manufacture	5.50	0.000	1.333*
Manufacture None PDManufacture None DDmean mean5.835.67Manufacture None CD6.000.1670.333Manufacture None PD5.830.167Vanufacture None PD5.830.167Purchase Automated PDPurchase Automated DDPurchase Manual PDmean mean6.005.83Purchase Automated CD9Purchase Automated PD1.000Purchase Automated PD0.167Purchase Automated PD0.167Purchase Automated PD1.000Purchase Automated PD0.167Purchase Automated PD0.167Purchase None CD CD6.500.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167	Automated PD	5.83		1.167	Manual PD	5.50		1.333*
Manufacture None PDManufacture None DDmean mean5.835.67Manufacture None CD6.000.1670.333Manufacture None PD5.830.167Vanufacture None PD5.830.167Purchase mean meanPurchase Automated PDPurchase Automated DDPurchase mean1.167**Purchase Automated PD0.167Purchase Automated CD1.167**Purchase Automated PD0.167Purchase Automated PD0.167Purchase Automated PD0.167Purchase Automated PD0.167Purchase None PDPurchase None PDPurchase None PD6.50Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167Purchase None PD0.167								
meanmean5.835.67Manufacture None CD6.000.1670.333Manufacture None PD5.830.167Purchase Automated PDPurchase Automated PDPurchase Automated PDmean mean6.005.83mean Manual PDPurchase Manual CD Purchase Automated PDPurchase Automated PDPurchase Manual PDPurchase Matomated PD1.000 0.167Purchase Manual CDPurchase Manual PDPurchase Manual PD0.1670.333 Purchase Manual PD0.833 4.00Purchase None PDPurchase None 6.50Purchase None 0.167Purchase None 0.333Purchase None PDPurchase 6.330.167			Manufacture None PD	Manufacture None DD				
Manufacture None CD 6.00 0.167 0.333 Manufacture None PD 5.83 0.167 Purchase Automated PDPurchase Automated DDmean mean 6.00 5.83 Purchase Automated CD 4.83 1.167^{**} 1.000 Purchase Automated PD 6.00 0.167 Purchase Automated PD 0.167 0.833 Purchase Automated PD 0.167 0.167 Purchase None PD pD pD Purchase None PD 6.50 0.167 Purchase None PD 6.33 0.167		mean mean	5.83	5.67				
Manufacture None PD5.830.167Purchase Automated PDPurchase Automated DDPurchase Manual DDmean mean6.005.83Purchase Manual DDPurchase Automated CD4.831.167**1.000Purchase Automated PD0.1679urchase Manual CD0.833Purchase Automated PD0.1670.1670.167Purchase None PDPurchase None DD9urchase None DD9urchase None DD1.167Purchase None PD6.500.1670.333Purchase None PD6.330.167	Manufacture None CD	6.00	0.167	0.333				
Purchase Automated PDPurchase Automated DDPurchase Manual PDPurchase Manual DDmean mean6.005.83mean4.005.17Purchase Automated CD4.831.167**1.000mean6.002.000**0.833Purchase Automated PD6.000.167Manual PD4.001.167Purchase Automated PD6.000.1670.833Purchase Manual PD0.833Purchase None PDPurchase None DDPurchase None PD0.3330.167Purchase None PD6.330.1670.3330.167	Manufacture None PD	5.83		0.167				
Purchase Automated PDPurchase Automated DDPurchase Automated DDPurchase Manual PDPurchase Manual DDmean mean6.005.83mean mean6.005.17Purchase Automated CD4.831.167**1.000Purchase Manual CD0.833Purchase Automated PD6.000.1670.8330.833Purchase Manual PD4.001.167Purchase None PDPDPurchase None PD0.1670.333Purchase None PD0.1670.3330.167								
mean 6.00 5.83 mean 4.00 5.17 Purchase Automated CD 4.83 1.167** 1.000 Purchase Manual CD 6.00 2.000** 0.833 Purchase			Purchase Automated PD	Purchase Automated DD			Purchase Manual PD	Purchase Manual DD
Inteal 0.00 3.83 Inteal 4.00 3.17 Purchase Automated CD 4.83 1.167** 1.000 Purchase Manual CD 6.00 2.000** 0.833 Purchase Automated PD 6.00 0.167 Manual PD 4.00 1.167 Purchase Purchase None Purchase None Purchase None 1.167 0.833 Purchase None PD DD DD 1.167 1.167 Purchase None PD 0.167 0.333 0.167 1.167		mean	6.00	5 02		mean	4.00	5 17
Purchase Automated PD 6.00 0.167 Purchase Manual PD 4.00 1.167 Purchase None PD Purchase None DD Purchase None CD 0.33 6.17 Purchase None CD 6.50 0.167 0.333 Purchase None PD 6.33 0.167	Purchase Automated CD	4.83	1.167**	1.000	Purchase Manual CD	6.00	2.000**	0.833
Purchase None PDPurchase None DDmean mean6.336.17Purchase None CD6.500.1670.333Purchase None PD0.167	Purchase Automated PD	6.00		0.167	Purchase Manual PD	4.00		1.167
Purchase None PDPurchase None DDmean6.33Murchase None CD6.500.1670.333Purchase None PD0.167	-							
mean 6.33 6.17 Purchase None 0.167 0.333 Purchase None 0.167 0.167			Purchase None PD	Purchase None DD				
Purchase None 0.167 0.333 Purchase None 0.167 0.167 PD 6.33 0.167		mean mean	6.33	6.17				
PD 6.33 0.167	Purchase None CD Purchase None	6.50	0.167	0.333				
	PD	6.33		0.167				

Design phase changes while role and project support remain constant
		CD Design	CD Design			CD Manufacture	CD Manufacture
		Manual	None			Manual	None
	mean				mean		
	mean	6.00	6.5		mean	5.50	6.00
CD Design	(00	0.000	0.50	CD Manufacture	(22	0.002	0.222
Automate	6.00	0.000	0.50	Automate	6.33	0.883	0.333
CD Design	6.00		0.500	CD Manufacture	5 50		0.500
Manual	0.00		0.300	Manual	5.50		0.300
		CD Purchase	CD Purchase				
		Manual	None				
	mean	6.00	6 50				
CD Purchase	mean	0.00	0.30				
Automate	4 83	1 167*	1 667**				
CD Purchase	4.05	1.107	1.007				
Manual	6.00		0.500				
		PD Docion	PD Design			PD Manufactura	PD Manufactura
		Manual	None			Manual	None
	mean	ivialiaal	Tone		mean	Ivianuar	rone
	mean	5.67	5.83		mean	5.50	5.83
PD Design				PD Manufacture			
Automate	6.17	0.50	0.333	Automate	5.83	0.333	0.000
PD Design				PD Manufacture			
Manual	5.67		0.167	Manual	5.50		0.333
		PD Purchase	PD Purchase				
		Manual	None				
	mean						
	mean	4.00	6.33				
PD Purchase		.					
Automate	6.00	2.000**	0.333				
PD Purchase			0.000**				
Manual	4.00		2.333**				
		DD Design	DD Design			DD Manufacture	DD Manufacture
		Manual	None			Manual	None
	mean	5 0 0			mean		
DD D	mean	5.83	5.17		mean	4.17	5.67
DD Design	5.22	0.500	0.1(7	DD Manufacture	1 (7	0.500	1 000
Automate DD Dasier	5.55	0.500	0.167	DD Manufactura	4.0/	0.500	1.000
DD Design Manual	5.83		0.667	Manual	4.17		1 500
wanuar	5.05		0.007	Ividitudi	7.17		1.500
		DD Purchase	DD Purchase				
	maar	Manual	None				
	mean	5 17	61.7				
DD Purchase	mean	5.17	01./				
Automate	5.83	0.667	0 333				
DD Purchase	5.05	0.007	0.000				
Manual	5.17		1.000				

Project Support changes while role and design phase remain constant

Figure A.15. 7 Comparison of excessive work for the three-way interaction within each design phase

Figure A.15. 8 Comparing excessive work for the three-way interaction within each role

Figure A.15. 9 Comparing excessive work for the three-way interaction within project support levels

Appendix A.16 Supporting Variance Tables

In the analysis of time related comments, two variance groupings resulted in two different models with identical goodness of fits. The significant effects and interpretations were similar. The grouping by role is reported in this appendix while the grouping by design phase was reported in Chapter 5.

Source	Effect	DF	Variance	F value	Probability
			component		
Between					
PS	Fixed	2		3.12	0.0545
R	Fixed	2		4.47	0.0191*
PS*R	Fixed	4		3.22	0.0241*
s/PS*R	Random	6	0.2713		
Within					
DP	Fixed	2		8.90	0.0005***
DP*PS	Fixed	4		0.08	0.9872
DP*R	Fixed	4		0.91	0.4631
DP*R*PS	Fixed	8		1.09	0.3850
Residual D	Random	35	0.4715		
Residual M	Random	23	1.6694		
Residual P	Random	32	0.7714		

***p<0.001

Table A. 16.2 Multiple comparisons of the mean time-related comments based on phase

		Preliminary design	Detailed design
	mean	1.40	0.84
Conceptual design	0.62	0.7778**	0.2222
Preliminary design	1.40		0.5556**
**p<0.01			

Table A. 16.3	3 Multiple	comparisons	of the mean	time-related	comments	based	on role
---------------	------------	-------------	-------------	--------------	----------	-------	---------

		Manufacturer	Purchaser
	mean	0.81	1.42
Designer	0.63	0.1852	0.7870**
Manufacturer	0.81		0.6019*
*n<0.05			

*p<0.05 **p<0.01

	1 4010	71. 10. 4 C	Joinparisons			ments for pr	oject suppo.		
		Auto	Auto	Manual	Manual	Manual	None	None	None
		Manf.	Purchaser	Designer	Manf.	Purchaser	Designer	Manf.	Purchaser
	mean	1.28	1.31	0.33	0.67	2.36	0.67	0.5	0.58
Auto	0.89	0.3889	0.4167	0.5556	0.2222	1.4722**	0.2222	0.3889	0.3056
Designer									
Auto	1.28		0.0278	0.9444*	0.6111	1.0833*	0.6111	0.7778	0.6944
Manf.									
Auto	1.31			0.9722*	0.6389	1.0556*	0.6389	0.8056	0.7222
Purchaser									
Manual	0.33				0.3333	2 0278**	0.3333	0.1667	0.2500
Designer						2:0270			
Manual	0.67					1 6944**	0.0000	0.1667	0.0833
Manf.						1.07 1.			
Manual	2.36						1 6944**	1 8611**	1 7778**
Purchaser							1.0744	1.0011	1.7770
None	0.67							0.1667	0.0833
Designer									
None	0.5								0.0833
Manf.									
*n < 0.05									
P . 0.05									

Table A. 16.4 Comparisons of time-related comments for project support and role

373

Appendix A.17 Agreement between Raters

A.17.1 Appendix Inter-rater Reliability between Group Members

<u>Planning</u>

The correlation coefficients for the scores between the group members during planning tended to be low with the exception of the performance rating and the supplemental questions regarding the planning tools.

Variable	Correlation Coefficient
NASA TLX	0.0518
Mental	-0.1754
Physical	-0.3090
Temporal	0.5473
Performance	-0.9922
Effort	0.5150
Frustration	-0.0489
Job Satisfaction	0.1838
Job Satisfaction (group	0.1869
questions)	
Comfort	0.3072
Challenge	0.1745
Resources	-0.0343
Group Workload	
Value of group interaction	0.2722
Difficulty of group interaction	0.2954
Degree of cooperation	-0.1305
Overall group workload	-0.2844
Supplemental Questions	
Best	0.3604
Doubt	-0.0274
Ease of Use	0.6847
Efficient	0.7656
Effective	0.6468
Productive	0.6912
Satisfaction	0.9154

<u>Design</u>

The correlation coefficients for the scores between the group members during design tended to be low with the exception of the physical, temporal, and frustration ratings, the difficulty of group interaction rating, and the satisfaction with the planning and tracking tools.

Variable	Correlation Coefficient
NASA TLX	0.2302
Mental	-0.1769
Physical	0.6518
Temporal	0.5089
Performance	-0.1953
Effort	0.2554
Frustration	0.5870
Job Satisfaction	0.3704
Job Satisfaction (group	0.4051
questions)	
Comfort	0.3675
Challenge	0.1647
Resources	0.3302
Group Workload	
Value of group interaction	0.4226
Difficulty of group interaction	0.6191
Degree of cooperation	0.2757
Overall group workload	0.2800
Supplemental Questions	
Doubt	0.4448
Ease of Use	0.4560
Efficient	0.3661
Effective	0.0846
Productive	0.3490
Satisfaction	0.6005

Table A. 17.2 Correlation coefficients between observers for variables during conceptual design

Reflective

The correlation coefficients for the scores between the group members during design tended to be low with the exception of the physical and frustration ratings, job satisfaction and comfort, and the supplemental questions (with the exception of ease of use).

Variable	Correlation Coefficient
NASA TLX	-0.2648
Mental	0.3149
Physical	0.6968
Temporal	-0.1843
Performance	0.4284
Effort	-0.0096
Frustration	0.5140
Job Satisfaction	0.6200
Job Satisfaction (group	0.6096
questions)	
Comfort	0.5652
Challenge	0.3972
Resources	0.5426
Group Workload	
Value of group interaction	0.1112
Difficulty of group interaction	0.2650
Degree of cooperation	0.4034
Overall group workload	-0.0472
Supplemental Questions	
Best	0.6961
Liked	0.8061
Meet/exceeded objectives	0.8431
Ease of Use	0.2813
Productive	0.5437
Satisfaction	0.6283
Schedule	0.6632
Budget	0.6191

Table A. 17.3 Correlation coefficients between observers for variables upon reflection

A.17.2 Agreement between Observers

Group Workload Assessed by External Observers

Because two observers were used in the external observations of group workload, the level of rater agreement needed to be determined. SPSS was used to calculate intra-rater correlation coefficients based on consistency between the observations.

Table A. 17.4 contains a summary of the correlation coefficients for the observations categorized by planning, during the design process, and reflection over the entire design project. The coefficient that was the most troubling was coefficient for the value of group interaction during the design process. While an average of the two observers was used in the analysis, the results need to be interpreted keeping in mind the lack of agreement and that what was tested tended to be a compromise between two diverse opinions.

Variable	Correlation Coefficient
Planning	
Value of group interaction	0.5089
Difficulty of group interaction	0.5245
Degree of cooperation	0.4286
Overall group workload	0.6388
Design Process	
Value of group interaction	0.2447
Difficulty of group interaction	0.4796
Degree of cooperation	0.3492
Overall group workload	0.6276
Reflective	
Value of group interaction	0.8598
Difficulty of group interaction	0.5222
Degree of cooperation	0.5188
Overall group workload	0.6684

Table A. 17.4 Correlation coefficients between observers for group workload scales

Critical Team Behaviors Assessed by External Observers

As with the evaluation of the group workload, because two observers were used, the level of agreement between the two observers was tested. Because the level of agreement determined between observation counts, not scale agreements, Pearson's correlation was reported. As noted in Table A. 17.5, there were some unusually strong agreements between the observers, and the reliability of the observations should be in question. This was probably due to a logistical issued in which both of the observers were in the same room making their observations at the same time. While they were not sharing the same work space, motions could be easily be observed. The average between the observers was used in the analysis.

Table A. 17.5 Pearson correlation between observers							
Variable	Designer	Manufacturer	Purchaser				
Planning							
Positive	0.881	0.760	0.903				
Negative	0.949	0.973	0.837				
Acceptance	1.000	1.000	0.816				
Adaptability	0.775	0.775	0.700				
Communication	0.898	0.775	0.824				
Cooperation	0.581	0.834	0.906				
Coordination	0.888	0.960	0.872				
Giving Feedback	0.670	0.352	0.507				
Team Spirit and Morale	1.000	0.973	0.479				
Design Process							
Positive	0.893	0.848	0.845				
Negative	0.836	0.834	0.892				
Acceptance	0.668	0.873	1.000				
Adaptability	0.913	0.902	0.890				
Communication	0.776	0.907	0.866				
Cooperation	0.829	0.741	0.909				
Coordination	0.868	0.871	0.808				
Giving Feedback	0.715	0.715	0.781				
Team Spirit and Morale	0.895	0.851	0.881				

377

Appendix A.18 Correlations between Performance and Demographics

	Table A.	Table A. 18.1 Correlations between design performance and demographics							
	CE	SE	Reliable	Lifecycle	Design Cost	Material Cost	Errors		
Age	-0.126	-0.074	0.100	0.062	-0.039	0.070	0.278		
GPA	0.045	-0.173	-0.435**	-0.050	-0.344*	0.202	0.010		
Year	0.034	0.102	-0.097	-0.173	-0.217	-0.056	0.231		
No	-0.084	-0.251	-0.145	-0.076	-0.080	-0.036	0.710**		
Projects									

Table A. 18.2 Correlations between planning performance and demographics

	Gantt	Scoping	Planning
	Chart	Document	Time
Age	-0.269	0.157	0.392
GPA	0.377	-0.142	491*
Major	0.004	-0.135	0.358
Year	0.118	0.033	0.338
No Projects	-0.033	-0.007	0.167

Appendix A.19 Job Satisfaction Reliability

The discussion of job satisfaction would not be complete without checking the reliability of the factors: comfort, challenge, and resources. Cronbach's alpha was calculated for each factor for each set of questions: planning, design, and upon reflection, and the results are reported in Table A. 19.1. The reliabilities ranged from a low of 0.3504 (for comfort assessed during planning) to a high of 0.7728 for resources assessed reflectively for the group data. While the comfort values were low in several situations, especially for planning, in general the reliabilities were comparable to those reported by Quinn and Sheppard (1974) for larger populations (the exception was comfort during planning). While the measure used to capture job satisfaction was not designed to capture short term job satisfaction, these results supported the use the faceted measure as part of a controlled, short term project.

Table A. 19.1 Reliability for comfort, challenge and resources					
Factor	Reliability for average	Reliability for			
	of groups and individuals	group data (roles)			
Planning					
Job Satisfaction	0.8112	0.7574			
Comfort	0.3504	0.4998			
Challenge	0.6802	0.6194			
Resources	0.6784	0.5378			
Design					
Job Satisfaction	0.8424	0.8305			
Comfort	0.5890	0.6020			
Challenge	0.6227	0.6822			
Resources	0.7192	0.6899			
Reflective					
Job Satisfaction	0.8908	0.8593			
Comfort	0.6401	0.5140			
Challenge	0.7878	0.7490			
Resources	0.7519	0.7728			

VITA

Paige E. Smith pesmith@umd.edu

Education

Doctor of Philosophy, Industrial and Systems Engineering (Management Systems Engineering), May 2004, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia
Dissertation: Tools to improve the process of engineering design: An analysis of team configuration and project support
Advisor: Dr. Brian M. Kleiner

Master of Science, Industrial and Systems Engineering (Management Systems Engineering), May 1998, Virginia Tech, Blacksburg, Virginia
Thesis: Human-centered communication technologies to enhance tutoring Research funded by the National Science Foundation through the Southeaster University and College Coalition for Engineering Education (SUCCEED) and Minority Engineering Programs at Virginia Tech
Advisor: Dr. Brian M. Kleiner

Bachelor of Science, Engineering Science and Mechanics, May 1992, Virginia Tech, Blacksburg, Virginia
Senior Design Project: Edge notching – a potential method to increase the fatigue life of fiber-reinforced composite laminates
Advisors: Dr. Robert M. Jones and Dr. Wayne W. Stinchcomb

Experience

Director, Women in Engineering Program A.J. Clark School of Engineering University of Maryland, College Park, MD	Fall 2001 to present
Instructor, Global Issues in Industrial Management Industrial and Systems Engineering Virginia Tech, Blacksburg, VA	Spring 2000, Spring 2001
Student and Program Support (Graduate Assistantship) Office of Minority Engineering Programs Virginia Tech, Blacksburg, VA	Fall 1992 – Summer 2001

Publications

Schmidt, L, Schmidt, J, Colbeck, C, Bigio, D, Smith, P, & Harper, L. (2003). Engineering students and training in teamwork: How effective? *Proceedings of the American Society of Engineering Education*.

Schmidt, J, Smith, P, & Schmidt, L. (2003). Research internships in science and engineering: Lessons from the first year. *Proceedings WEPAN Annual Conference*.

Smith, P.E., Schmidt, J.A., & Schmidt, L.C. (2002) Research Internships in Science and Engineering. *Proceedings of the Women in Engineering Program Advocates Network*. (presenter)

Smith, P.E., Schmidt, J.A., & Schmidt, L.C. (2002) Research Internships in Science and Engineering. *Proceedings of the American Society of Engineering Education*.

Smith, P.E., Kleiner, B.M., & Watford, B.A. (2000). An empirical evaluation of computermediated communication technologies to support tutoring. *Proceedings of the Virginia Academy of Sciences Annual Meeting*.

Smith, P.E., & Watford, B.A. (1999). ASPIRE, a successful bridge program for minority engineering students. *Proceedings of the 25th Annual Meeting of NAMEPA* (pp. 54-61), Atlanta, GA.

Watford, B.A., Van Aken, E.M., & Smith, P.E. (1996). Conducting Qualitative Research Using Focus Groups for Engineering Students. *Presentation to the National Association of Minority Engineering Program Administrators*, San Francisco, CA.

Smith, P.E., & Kleiner, B.M. (1996). A framework for optimizing a virtual learning system for minorities and industry in the field of engineering. *International Engineering Management Conference Proceedings* (pp. 635-640), Vancouver, Canada.