CHEMICALLY MODIFIED Ta₂O₅ DIELECTRICS FOR HIGH DENSITY DYNAMIC RANDOM ACCESS MEMORY (DRAM) APPLICATIONS

by

Chandra S. Desu Seshu B. Desu, Chairman Materials Science and Engineering (ABSTRACT)

Increasing demand for high-density memories has necessitated the search for new materials with higher dielectric constants to satisfy the minimum charge storage density requirements. Several materials such as Ta_2O_5 , BST^1 , BBT^2 are being investigated to replace the currently used Si based oxide/nitride dielectrics. Among the materials under investigation, Ta_2O_5 is one of the most promising, especially from the fab compatibility point of view. Ta_2O_5 thin films offer a six-fold increase in dielectric constant compared to conventional dielectrics. However, the significant improvement in dielectrics. Improvement in both, dielectric and insulating properties is required for the successful integration of Ta_2O_5 thin films into devices. In the current research work, it was demonstrated that by chemically modifying the tantalum pentoxide matrix, significant improvements in its electrical properties can be achieved which would enable the fabrication of a reliable high-density memory device.

In the present work, the effects of Al addition on Ta_2O_5 thin films were systematically studied. The structural and electrical properties of these chemically modified thin films were investigated in detail to establish their potential for device applications. The effects on dielectric and insulating characteristics due to incorporation of Al in Ta_2O_5 matrix were studied in capacitor configuration. A metallorganic solution decomposition (MOSD) technique was used to deposit thin films onto Pt coated Si(100) substrates. The capacitors were fabricated by sputter depositing Pt electrodes on the top surface of the films. The dielectric and insulating properties of pure and modified Ta_2O_5 thin films and their dependence on film composition, processing temperature, and the thickness were discussed and an attempt was made to provide theoretical understanding for the experimental observations.

The dielectric and insulating properties of Ta_2O_5 were found to be significantly modified by addition of Al. It was observed that Al addition has decreased the leakage currents approximately by an order of magnitude and improved thermal and bias stability characteristics of Ta_2O_5 capacitors. For example, the leakage currents in crystalline pure Ta_2O_5 thin films were found to be 4.5 x 10^{-7} A/cm² in a 1MV/cm *dc* field which decreased to 3.4 x 10^{-8} A/cm² for 10% Al modified Ta_2O_5 thin films. A typical dielectric constant of 42.5 was obtained for 10% Al modified Ta_2O_5 thin films. This is significantly higher compared to the commonly reported dielectric constant of 25 to 35 for Ta_2O_5 thin films. This enhancement was attributed to strong (100) orientation exhibited by both pure and modified Ta_2O_5 thin films. The high dielectric constant, low dielectric loss, low leakage currents and low temperature coefficient of capacitance suggest the suitability of Al modified Ta_2O_5 as a capacitor dielectric for future generation DRAM applications.

DEDICATION

To my parents

Kameswara Rao and. Lakshmi Suseela

And to my uncle and aunt

Dr. Seshu B. Desu and Mallika Desu

ACKNOWLEDGEMENTS

I wish to take this opportunity to thank my thesis advisor Prof. S. B. Desu who not only supervised my thesis work but also taught me almost everything I knew about thin films and dielectric materials. I also appreciate the extent of latitude he allowed me and does to everyone in his group to explore various aspects of thin film technology and learn on my own, besides always being patient and available for academic or nonacademic counsel.

I would also like to express my gratefulness to Drs. Pooran C. Joshi and Carlos T. A. Suchicital for reviewing this thesis and extending valuable suggestions and comments.

Thanks are due to Mr. Steve McCartney who trained me in the use of atomic force microscopy (AFM) and was always eager to help.

Finally I wish to express my deepest appreciation to all members of the thin films laboratory- Vedula, Sukku, Song, Ryu, Dr. Joshi, Allen, Lee, Sasangan, Zhu and Xubai for being an excellent group of friendly people to work with.

TABLE OF CONTENTS

Chapter 1. Introduction	1
1.1 The 1T-1C Dynamic Random Access Memory	2
1.2 Dielectric materials for DRAM capacitors	2
$1.3 \text{ Ta}_2\text{O}_5$ dielectrics	4
1.4 Objectives	5
1.5 Dissertation Organization	5
Chapter 2. Thin Film Processing	6
2.1 Thin film Deposition Techniques	7
2.2 MOSD Deposition Technique	8
2.3 Deposition of modified Ta_2O_5 thin films	9
2.4 Fabrication of test structure	13
2.5 Structure and surface morphology	13
2.6 Measurement of film thickness	16
2.7 Dielectric measurements	16
2.8 Measurement of insulating properties	17
Chapter 3. Properties of Modified Ta ₂ O ₅ Thin Films	19
3.1 Film structure and surface morphology	20
3.2 Dielectric Properties	23
3.3 Insulating Properties	32
Chapter 4. Analysis of observed dielectric properties	42

4.1 Theoretical estimation of dielectric constant	43
4.2 Evidence of preferred orientation	44
4.3 Dielectric properties of pure Ta_2O_5 thin films	44
Chapter 5. Conclusions	49
References	50
Appendix #1	53
Vita	55

LIST OF FIGURES

Figure 1.	3	
A one transistor one capacitor, or 1-T 1-C cell		
(a) Schematic diagram of the cell		
(b) Cross section of the cell showing the	ne structure	
Figure 2.	12	
The flow chart for metallorganic solution decor	mposition (MOSD) processing	
of modified Ta ₂ O ₅ thin films		
Figure 3.	14	
A Metal/Insulator/Metal (MIM) test structure fabricated for the measurement of		
dielectric and insulating properties of modified	Ta ₂ O ₅ thin films	
Figure 4.	22	
A comparison of X-ray diffraction pattern of pure and modified Ta ₂ O ₅ films		
(both annealed at 750°C)		
(a) 10% Al modified film		
(a) pure Ta_2O_5 thin films		
Figure 5.	24	
A typical AFM micrograph of 10% Al-modified Ta ₂ O ₅ thin film showing the grain		
structure		
Figure 6.	25	
An orthographic view from AFM of 10% Al-modified Ta ₂ O ₅ thin film showing the		
surface topography		
Figure 7.	29	
The temperature coefficient of capacitance of	crystalline (1-x)Ta ₂ O ₅ -x Al ₂ O ₃ thin	
films measured in the temperature range of 25 $^{\circ}$	°C -125°C	
Figure 8.	30	
A typical plot of capacitance vs. electric field (C-V curve) for 10% Al modified		
Ta_2O_5 thin films		

Figure 9.	33	
Dielectric constant and dissipation factor as a function	of frequency for 10%	
modified Ta_2O_5 thin films annealed at $750^\circ C$		
Figure 10.	34	
Dielectric constant and dissipation factor as a function of film thickness for 10% Al		
modified Ta_2O_5 thin films annealed at $750^\circ C$		
Figure 11.	36	
A typical plot of field vs. leakage currents for the 10%	Al modified Ta ₂ O ₅ thin	
films		
Figure 12.	38	
Identification of current conduction mechanism in modified	d Ta ₂ O ₅ thin films	
Figure 13.	45	
A comparison of XRD patterns: (a) Ta_2O_5 thin film (b) Ta_2O_5 powder sample		
Figure 14.	47	
XRD patterns of pure Ta ₂ O ₅ thin films as a function of annealing temperature		

х

Table 1. The crystallization temperature of modified Ta₂O₅ thin films as a function of film composition Table 2. Dielectric constant and dielectric loss of the Al modified Ta₂O₅ thin films with composition and processing temperature Table 3. Bias stability of the capacitance of crystalline (1-x) Ta₂O₅ - x Al₂O₃ thin films

Table 4.

Leakage currents of modified Ta₂O₅ thin films as a function of composition and annealing temperature

Table 5.

Dielectric constant and dissipation factor of Ta₂O₅ thin films as a function of annealing temperature

LIST OF TABLES

21

31

27

40

48