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Abstract: This paper presents a technique to reconstruct a three-dimensional (3D) road surface from
two overlapped images for road defects detection using a downward-facing camera. Since some road
defects, such as potholes, are characterized by 3D geometry, the proposed technique reconstructs
road surfaces from the overlapped images prior to defect detection. The uniqueness of the proposed
technique lies in the use of near-planar characteristics of road surfaces‘ in the 3D reconstruction
process, which solves the degenerate road surface reconstruction problem. The reconstructed road
surfaces thus result from the richer information. Therefore, the proposed technique detects road
surface defects based on the accuracy-enhanced 3D reconstruction. Parametric studies were first
performed in a simulated environment to analyze the 3D reconstruction error affected by different
variables and show that the reconstruction errors caused by the camera’s image noise, orientation,
and vertical movement are so small that they do not affect the road defects detection. Detailed
accuracy analysis then shows that the mean and standard deviation of the errors are less than 0.6 mm
and 1 mm through real road surface images. Finally, on-road tests demonstrate the effectiveness of
the proposed technique in identifying road defects while having over 94% in precision, accuracy, and
recall rate.

Keywords: road surface 3D reconstruction; degenerate reconstruction; road defects detection; pothole
detection

1. Introduction

A road is one of the most fundamental infrastructures in the transportation system. A healthy
and intact road surface condition increases ride comfort and vehicle safety for through traffic [1,2].
The road surface condition inevitably downgrades and is affected by stresses from traffic as well as
climate impacts such as humidity or temperature change. Thus, frequent inspections of the road
surface are vital in identifying road surface defects along with carrying out timely maintenance.
Labor intensiveness, inefficiency, and subjectivity of manual inspection have resultantly necessitated
automatic measurement of the road surface defects such as potholes and ruts, which are mostly
characterized by geometry [3–8].

Past works on automatic road defects detection can be classified into three types: the acceleration-based
detection, the color-based detection, and the geometry-based detection. The acceleration-based
technique uses accelerometers as irregular geometrical changes create vibration that can be measured
by accelerometers. Yu et al. [9] analyzed acceleration and automatically detected road defects for the
first time to the best of the authors’ knowledge. Vittorio et al. [10] detected the road anomalies based
on the abnormal accelerometer data from the cellphone. Tai et al. [11] and Eriksson et al. [12] proposed
a technique using a machine learning approach to detect road anomaly where Support Vector Machine
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(SVM) and unsupervised learning were used respectively to enhance detection accuracy. Xue et al.
[13] adopted a self-learning one degree-of-freedom vibration signal to predict potholes. Mednis et al.
[14] implemented and compared several acceleration data processing algorithms for pothole detection,
which resulted in a detection rate between 68% to 90%. Although detection by acceleration techniques
directly and thus accurately sense geometrical road defects, they miss the detection if no tire steps
exactly on the road defects.

For color-based techniques, image sensors are often equipped to obtain the appearance of defects.
Tedeschi et al. [15] proposed a technique using Local Binary Pattern (LBP) feature-based cascade
classifiers to detect road defects from images. Koch et al. [16,17] used the histogram and four different
image filters to extract road distress texture features. Jo et al. [18] constrained the road defect region
between two lanes through the lane detection technique to increase the precision of pothole detection.
Banharnsakun et al. [19] deployed an Artificial Neural Network (ANN) which can categorize the
distress into longitudinal crack, transversal crack, and pothole. Ryu et al. [20] separated the pothole
region from the background by Histogram Shape-Based Thresholding (HST) and then used multiple
filters to find the pothole features. The color-based technique provides intuitive information about
road defects’ position and size. However, the RGB image analysis may not capture geometry and
contains unnecessary information such as shadows, oil stains and pavement markings which affect
the detection.

Among geometry-based techniques, Chang et al. [21] and Yu et al. [22,23] detected potholes by
analyzing topological features obtained from 3D laser scanning data. Hou et al. [24], Fan et al. [25],
and El et al. [26] applied stereo-vision systems to extract a 3D point cloud from road surface images
and detect potholes directly from the 3D model of the road obtained from point cloud data while no 3D
reconstruction precision was investigated. Ahmed et al. [27] proposed a pothole detection technique
by Structure from Motion (SfM) taking multiple images on one road surface region to reconstruct
3D points of road surface. While accuracy in depth was reported to be in the order of 0.1 mm, the
accuracy was attained by manually marking artificial features on the road surface. Antol et al. [28]
and Moazzam et al. [29] implemented the road distress detection by 3D point cloud data from an
RGB-D camera. The former used a movable RGB-D camera box to enable depth measurement at a low
speed, while the latter mounted on a tripod to statically measure the 3D road surface by the RGB-D
camera. However, the accuracy of the 3D reconstruction by using a laser sensor or stereo-vision system
can be degraded if the vibration of the measuring sensors is significant. Further, the issue of the 3D
reconstruction based technique is its accuracy in 3D reconstruction since the road surface is near-planar
and thus provides poor vertical information.

This paper presents a new geometry-based technique that reconstructs road surfaces from two
overlapped images captured by a downward-facing camera with little influence caused by the vibration
and then detects road defects based on the 3D reconstructed road. The 3D reconstruction performed
by using an improved SfM technique is extensively formulated such that the road surfaces, which
are near-planar and have small vertical variations, can be reconstructed accurately. By solving the
degenerate issue for near-planar road surface reconstruction, the proposed technique thus detects road
defects from the accuracy-enhanced 3D reconstructed road surfaces.

This paper is organized as follows. The following section refers to the traditional SfM for the
road surface and the degeneracy issue for the planar object reconstruction. Section 3 first presents the
proposed 3D reconstruction technique for near-planar road surfaces and then describes the detection
of road defects detection based on reconstructed 3D road. Section 4 investigates the ability of the
proposed technique parametrically in simulated environments and then applies to real road surface
images. Conclusions are summarized in the last section.
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2. 3D Road Surface Reconstruction from Two Overlapped Images

2.1. Problem Formulation

Figure 1 shows general settings and problem formulation of road surface reconstruction using a
downward-facing camera for road defects detection. The road surface, shown as a near-planar object,
contains a pothole representing a defect road. A camera, facing downward to the road surface at a
height h, is mounted on a vehicle. While the vehicle is moving, the camera captures images I0:K at
positions Xc

0:K from time step 0 to time step K. Since images are captured by a camera of various frame
rates at various vehicle speeds, minimally and most fundamentally required is the reconstruction of
a 3D road surface overlapped by two consecutive images {Ik−1, Ik}. This problem is converted into
localizing the road surface point cloud Xr

k ≡ {X
r
k,i|∀i} using the homogeneous two-dimensional (2D)

image features xr
k−1 ≡ {x

r
k−1,i|∀i} and the corresponding xr

k ≡ {x
r
k,i|∀i}, which are extracted from

image Ik−1 and Ik respectively. It is to be noted that Xc
k should be derived simultaneously with Xr

k
since the camera position is not precisely known due to the vehicle vibration. Once the reconstruction
has been completed, road surface points are classified as normal flat road surface Xrn

k and defect road
surface Xrd

k . In Figure 1, {G} represents the global coordinate system while {L} is the local coordinate
for two neighboring camera positions.

Figure 1. Road surface reconstruction settings for defects detection from one downward-facing camera.
3D point cloud are reconstructed from consecutive images to represent the road surface, followed by
classifying the road into defective and non-defective surfaces.

Figure 2 illustrates the significance of the two-image problem formulation where the vehicle speed
is shown with respect to different numbers of overlapped images when the camera frame rate is 60, 30
and 15 FPS. Note that these are the common frame rates in industrial cameras, and each image covers
a 1 m × 1 m road surface area. For every number of images overlapped, No, the overlapping area
between every two neighboring images is at least (100− 100

No
)%. As the curves exhibit, every camera

sees common vehicle speeds when the number of overlapped images is only two. Therefore, 3D road
surface reconstruction will fail if it is not possible from two images.
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Figure 2. The number of images overlapped on each road surface at various vehicle speed.

2.2. Two-image 3D Road Surface Reconstruction

Figure 3 shows the notations and the operation of the general road surface 3D reconstruction from
image features xr

k−1 and xr
k. To present the mathematical derivation of the two-image 3D reconstruction

for road surfaces, a line is plotted passing the camera centers, Xc
k−1 and Xc

k. This line intersects with
image Ik−1 at point ek−1 as well as image Ik at point ek. lk−1,i is a line passing through ek−1 and xr

k−1,i,
a projection from road surface point Xr

k−1,i to Ik−1. Similarly, lk,i is a line passing through ek and xr
k,i,

and this is given by:
lk,i = ek × xr

k,i = [ek]×xr
k,i (1)

Combining Equation (1) with xr
k,i

Tlk,i = 0 yields:

xr
k,i

T [ek]×xr
k,i = 0 (2)

Figure 3. 3D road surface reconstruction from two views

If Xr
k,i is located on a road surface plane, then xr

k−1,i and xr
k,i are related by a homography

matrix Hab:
xr

k,i ∝ Habxr
k−1,i (3)
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Substituting Equation (2) to Equation (3)results in:

xr
k,i

T [ek]×Habxr
k−1,i = xr

k,i
TFkxr

k−1,i = 0 (4)

where Fk = [ek]×Hab is the fundamental matrix of the two images. Equation (4) holds for all the n
correspondences {{xr

k,i, xr
k−1,i}|i = 1, 2, . . . , n} [30], which means:

xr
k

TFkxr
k−1 =xr

k,1 . . . xr
k,n

yr
k,1 . . . yr

k,n
1 . . . 1


T  f11 f12 f13

f21 f22 f23

f31 f32 f33


xr

k−1,1 . . . xr
k−1,n

yr
k−1,1 . . . yr

k−1,n
1 . . . 1


= 0

(5)

The solving of fundamental matrix Fk, as well as the rotation matrix Rk and the translation tk are given
by the Appendix A. The final 3D reconstructed road surface Xr

k is given by the triangulation ft(·):

Xr
k = ft(K, Rk, tk, xr

k, xr
k−1) (6)

where K is the camera’s intrinsic matrix.

2.3. Planar Surface Degeneracy Problem

Since the road surfaces are near-planar, it suffers from the degenerate issue which will be shown
by the the rest of this section. As Xr

k are located on the near-planar road surface, xr
k−1 and xr

k can be
related by a 3× 3 homography matrix Hk:

xr
k ∝ Hkxr

k−1 (7)

in which xr
k is proportional to Hkxr

k−1. This means that the cross product of xr
k and Hkxr

k−1 is xr
k ×

Hkxr
k−1 = 0. Thus solving Hk equals to solving the equation A′hk = 0 where Hk, A′ and hk are

expressed as:

Hk =

h11 h12 h13

h21 h22 h23

h31 h32 h33



A′i =



−xr
k−1,i 0

−yr
k−1,i 0
−1 0
0 −xr

k−1,i
0 −yr

k−1,i
0 −1

xr
k,ix

r
k−1,i yr

k,ix
r
k−1,i

xr
k,iy

r
k−1,i yr

k,iy
r
k−1,i

xr
k,i yr

k,i


, A′ =



AT
1

AT
2
.
.
.

AT
n



hk = (h11, h12, h13, h21, h22, h23, h31, h32, h33)
T

(8)

To solve hk, the problem is equivalent to minimizing ‖A′hk‖ subject to ‖hk‖ = 1 because of image
noises. Therefore, solving hk is similar to solving fk in the previous section.

Degeneracy is defined as the situation when fundamental matrix Fk obtained from the previous
procedure is not unique. The planar object, which the road can be approximated as, is one of the
degenerate geometries. If Xr

k are located on a plane surface, the correspondences in the two views xr
k−1
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and xr
k satisfy Equation (7). Also, xk−1 and xk satisfy Equation (5). The substitution of Equation (7) into

Equation (5) yields
xr

k
TSkxr

k = 0 (9)

where Sk = FkH−1
k . To satisfy Equation (9), Sk must be a skew-symmetric matrix given by

Sk =

 0 −s3 s2

s3 0 −s1

−s2 s1 0

 (10)

As a result, the fundamental matrix Fk is:

Fk = SkHk =

 0 −s3 s2

s3 0 −s1

−s2 s1 0

Hk (11)

Thus Fk has a solution with three degree-of-freedom (determined by s1, s2, and s3). Since Fk is
up-to-scale, the solution of Fk becomes to have two degree-of-freedom. Therefore the existing 3D
reconstruction technique from Ik−1 and Ik cannot lead to correct 3D reconstructed points for planar
road surface because of the ambiguity of Fk introduced to reconstruction process from Equations (A4)
to (A7) and 6. While 3D reconstruction techniques exist, the issue of their direct application to road
surface profiling is the ill-posedness of the problem due to the lack of depth information and the
incorrect feature matching due to the noisy image. The next section will present the proposed technique,
which solves the ambiguity issue of Fk for the road surface reconstruction, and leads to correct defects
detection based on the 3D information.

3. Proposed Degenerate Near-Planar 3D Reconstruction for Road Defects Detection

3.1. Overview

Figure 4 shows the proposed degenerate near-planar 3D reconstruction technique for road
defects detection. The proposed technique consists of three parts: preprocessing, 3D reconstruction
for near-planar road, and post-processing. The preprocessing rejects the mismatched feature
correspondences to dramatically improve the feature matching between Ik−1 and Ik, which contributes
to resolving the degenerate issue for near-planar road surface reconstruction. Then, a newly derived
fundamental matrix Fk with no ambiguity improves SfM and significantly resolves the degenerate
issue. In the post-processing, since the reconstructed points Xr

k are unitless, the proposed technique
converts Xr

k to metric points mXr
k. As a result, road defects can be detected reliably due to the enhanced

accuracy in 3D surface reconstruction.

3.2. Preprocessing

The preprocess rejecting mismatched correspondences is formulated as follows. Let the difference
of the ith corresponding feature at time step k− 1 and k be:

d f
k,i ≡ xr

k,i − xr
k−1,i (12)

This makes the set d f
k ≡ {d

f
k,i|i = 1, 2, . . . , n}, which includes all the n correspondences of the images

Ik−1 and Ik. As the vehicle is moving along the road following a smooth path, it is valid to assume that
the rotation of the camera is small and the camera’s motion is linear in a short period between two
neighboring time steps k− 1 and k:

d f
k ∝ Xc

k − Xc
k−1 (13)
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which means d f
k are also linear and proportional to the camera’s motion.

Since Ik−1 and Ik has Gaussian noises for xr
k−1 and xr

k and n is large with the difference distributed
smoothly, the measured image corresponding features x̂r

k−1 and x̂r
k are:

x̂r
k−1 = xr

k−1 + ωk−1, ωk−1 ∼ N(0, Σk−1) (14)

x̂r
k = xr

k + ωk, ωk ∼ N(0, Σk) (15)

Combining Equations (14) and (15) with Equation (12), the proposed technique models d f
k as a Gaussian

distribution d f
k ∼ N(d

f
k , Σ f ):

d
f
k = xr

k − xr
k−1, Σ f = Σk−1 + Σk (16)

where d
f
k is the mean value and Σ f is the covariance matrix of d f

k . As d f
k,i of correct matches are closer

to d
f
k than those of the mismatched features, mismatched correspondences can be rejected by defining

correct matching as:

d f ,c
k = {d f

k |d
f
k − λΣ f 1 < d f

k < d
f
k + λΣ f 1} (17)

where λ is a threshold and 1 is an all-ones vector. As the exact distance that the camera moves between
time step k− 1 and k is unknown, The RANSAC technique is difficult to determine the threshold and
number of iterations to filter correct feature matchings. However, the proposed technique uses the
camera’s linear motion as a prior knowledge, which means correct matchings have similar values in
d f

k,i. Unlike RANSAC, Equation (17) only needs to find a reasonable λ and operate once to keep the

correct matching within a range (d
f
k − λΣ f 1, d

f
k + λΣ f 1). Therefore, the proposed technique obtains

correct feature matchings for the following near-planar 3D reconstruction.

Figure 4. Proposed degenerate near-planar surface reconstruction technique for road defects detection.
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3.3. 3D Reconstruction for Near-Planar Road Surface

The proposed technique solves the ambiguity issue of Fk by mathematically deriving a unique
fundamental matrix for the near-planar road surface. In the local coordinate {L},

{L}Xc
k−1 = (0, 0, 0)T

and its projection to image Ik, ek , is expressed as:

ek = K[Rk, tk] ·
[
{L}Xc

k−1
1

]
= K[Rk, tk] ·


0
0
0
1

 = Ktk (18)

It is noted that from Equation (1), all the lines lk have the following for road surface images:

lk = ek × xr
k (19)

Meanwhile, Equation (5)and xr
k

Tlk = 0 relates Fk and lk as:

Fkxr
k−1 = lk (20)

Substitute Equations (19) and (7) into Equation (20) resulting in:

Fkxr
k−1 = ek × xr

k = [ek]×Hkxr
k−1 (21)

Combining Equation (21) with Equation (18), it derives Fk for the near-planar road surface as:

Fk = [ek]×Hk = [Ktk]×Hk (22)

where Hk is calculated recursively by RANSAC using xr
k−1 and xr

k after mismatched points rejection.
Comparing Equation (11) with Equation (22), instead of representing Fk with any 3-vector s, Fk is

determined in Equation (22) by tk which is the up-to-scale translation between the camera positions in
two views:

tk = Xc
k − Xc

k−1 (23)

Since the vehicle moving along the road has small rotation Rk for the camera in such a short period
from time step k− 1 to k, Rk is expressed as Rk ≈ I. Equation (25) can be obtained from Equation (24):

xr
k−1 = Pk−1Xr

k = K[I, 0]Xr
k

xr
k = PkXr

k = K[Rk, tk]X
r
k

xr
k − xr

k−1 = (Pk − Pk−1)X
r
k = K[(Rk − I) | (tk − 0)]Xr

k

(24)

xr
k − xr

k−1 = K[03×3 | tk]


Xr

k
Yr

k
Zr

k
1

 = Ktk (25)

The substitution of Equation (25) into Equation (22) determines Fk as:

Fk = [xr
k − xr

k−1]×Hk (26)

As a result, a unique fundamental matrix Fk is obtained from Equation (26) when the road surface is
near-planar. Then by using the traditional SfM technique, this Fk leads to the correct reconstructed
road surface points Xr

k following by identifying defects.
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Because of various uncertainties in the 3D reconstruction process, errors will propagate and affect
the 3D points Xr

k. Let x̂r
k be the measured value of xr

k where x̂r
k = xr

k + ω and ω ∼ N(0, Σxr
k
) follows a

normal distribution. Equation (24)can be rewritten as:

Xr
k = P+

k x̂r
k (27)

where P+
k = (PT

k Pk)
−1PT

k is the pseudo-inverse matrix of Pk. Let Equation (23) be written as Xr
k = f (xr

k).
By using the first-order Taylor series expansion Equation (23) becomes:

f ≈ f0 + Jkx̂r
k (28)

where Jk represents the Jacobian matrix of f (·). The covariance matrix of Xr
k thus is approximated by

ΣXr
k
≈ JkΣxr

k
JT

k (29)

Since Jk in this scenario equals to P+ Equation (25) is deduced to be

ΣXr
k
≈ P+Σxr

k
P+T (30)

Therefore, although with a unique F for the near-planar road surface, the noises in the image inevitably
cause errors for the 3D reconstructed surface points Xr

k due to the ill-posedness of the problem.

3.4. Post-Processing

After getting the near-planar road surface Fk with no ambiguity from Equation (26), Xr
k are

reconstructed from Equations (A4) to (A7) and 6. Although, the obtained 3D road surface points Xr
k are

unitless up to a scale factor. In order to get mXr
k, the proposed technique fits a plane on Xr

k to represent
the road surface: [

Xr
k Yr

k 1
] p0

p1

p2

 = Zr
k (31)

Then the surface normal vector nk and the up-to-scale distance from the camera to the road surface hu

are obtained from Xr
k based on plane parameters p0, p1, and p2:

nk =
(p0, p1,−1)√

p2
0 + p2

1 + 1
(32)

hu =
|p2|√

p2
0 + p2

1 + 1
(33)

The reconstructed surface and the distance hu obtained by Equations (32) and (33), however, may
not be the final reconstruction. Because the road surface may have anomalies such as potholes, the
first-time road surface reconstruction will be distorted if such anomaly exists. Thus, a recursive surface
fitting process is proposed to reconstruct the road surface through Equation (34) to Equation (36):

dk,i =
p0Xr

k,i + p1Yr
k,i − Zr

k,i + p2√
p2

0 + p2
1 + 1

(34)

Xr
k,i ∈

{
Xrd

k , i f dk,i < 0 and dk,i ≤ Td

Xrn
k , else

(35)
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Tn =
size(Xrn

k )

size(Xrn
k + Xrd

k )
(36)

In Equation (34), dk,i is a signed value calculated as the distance of Xr
k,i to the current reconstructed

road surface. The positive dk,i represents the point Xr
k,i located in between the camera and the current

fitted road surface. The negative dk,i means the point Xr
k,i is at the other side of the current road surface.

Equation (35) illustrates the classification of Xr
k,i into possible defect points Xrd

k and non-defect points
Xrn

k by a depth threshold Td. Tn in Equation (36) is a threshold refers to the percentage of non-defect
points among all the points Xr

k. If it is assumed that at least m percent of the points Xr
k are actually

representing non-defect road surface, then a Tn > m will continue the recursive process to fit a new
road surface based on all the Xrn

k from the last iteration. The recursive process will continue until
Tn < m is reached.

After the recursive process, an updated camera to road up-to-scale distance hu was obtained from
Equation (33). Then a metric scale factor αk is calculated based on the real camera to road surface
distance h:

mXr
k = αkXr

k =
h
hu

Xr
k (37)

where mXr
k are the metric points with units. From here, the proposed technique converts the up-to-scale

points Xr
k into metric scale road surface points mXr

k. Thus the road defects are detected by the depth
(
{G}Z direction) values of mXr

k based on the correct geometry. It is noted here that in order to simplify
the notation, mXr

k are still written as Xr
k in this paper.

4. Experimental Results

This section provided two types of experiment to analyze the proposed technique. The first
type of experiment was in a Matlab simulated environment which contained the simulated road
surface, simulated camera model, and simulated camera motion. The simulation experiments analyzed
the influence of different variables to the proposed road surface reconstruction. The second type
of experiment was performed on the real road surfaces captured by a road surface imaging system.
The real-world experiments demonstrated the accuracy of the proposed technique and its effectiveness
on road defects detection.

4.1. Experiments in Simulation Environment

Figure 5 illustrates the simulated camera and the road surface in the simulation environment.
On the right, the simulated camera is facing towards the simulated road surface, and has simulated
properties such as intrinsic matrix and field of view. On the left, the environment creates 3D points
Xr

k ≡ {(Xr
k,i, Yr

k,i, Zr
k,i)

T |∀i} to represent the road surface. Zr
k = Zm + ωr, where ωr ∼ N(0, δ) is used

to change the evenness of the road in
{L}Z direction. Zm is the mean distance between camera and the

road surface. The default unit in the simulation environment is millimeter.
The simulated images are obtained by reprojecting Xr

k to the simulated camera. x̂r
k are the

measured value of xr
k defined as x̂r

k = xr
k + ω, where ω ∼ N(0, Σxr

k
) has the covariance matrix Σxr

k
and

is used to model the uncertainty for matched features in image. The covariance matrix of Σxr
k

is:

Σx =

[
σ2 0
0 σ2

]
(38)



Sensors 2020, 20, 1640 11 of 27

As for the orientation, θx, θy, and θz, are the change of angles for the camera about
{L}X axis,

{L}Y axis,

and
{L}Z axis between two time steps. Disturbances such as the vibration of the camera cause the

orientation change of the camera. Define the error for 3D reconstruction as

ε =
1
N

N

∑
i=1
|d̂k,i/dc

k − dk,i/Zm| · Zm (39)

where d̂k,i is the measured distance and Equation (34) shows the ground truth distance dk,i. Table 1
lists the experimental parameters analyzed in the experiment.

Figure 5. Camera and road surface in the simulation environment.

Table 1. Parameters for simulated road surface and simulated camera.

Parameter Value

Road unevenness: δ [mm] 0.1, 5, 10
Image noise: σ [pixel] 0.001, 0.002, . . . , 0.1

Zm [mm] 500, 800, 1100, 1400, 1700
θx [degree] 0.05, 0.10, . . . , 5
θy [degree] 0.05, 0.10, . . . , 5
θz [degree] 0.05, 0.10, . . . , 5

Two-view translation
t [mm, mm, mm] (200, 30, 0)T

Change of h: δh [mm] 0.2, 0.4, . . . ,20

Figure 6 shows the comparison of 3D reconstruction error between the proposed technique
and traditional SfM. The left figure shows the 3D reconstruction error when the road surface is
changing from planar (δ = 0) to non-planar (δ >> 0). When δ is small, the reconstruction error is
large for traditional SfM as the degenerate issue still exists, while the proposed technique has small
reconstruction errors. The error for the proposed technique in this case is mainly from image noise σ.
When the road surface is non-planar, both SfM and the proposed technique have reconstruction error
ε ≈ 2 mm. The right figure shows the reconstruction error influenced by image noise σ at δ = 0.1 and
δ = 10. For non-planar road surface which has δ = 10 mm, the proposed technique and traditional SfM
both have small and similar reconstruction error. When δ = 0.1 mm, i.e., road surface is near-planar,
SfM has error usually between 10 and 1000 mm while the proposed technique has error usually less
than 1 mm, and even for a much worse case when σ = 0.2, the error is less than 2 mm.
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Figure 6. Left: 3D reconstruction error comparison between the proposed technique and traditional
SfM when road unevenness δ is changing from 0 to 10 mm. Right: 3D reconstruction error comparison
between the proposed technique and traditional SfM at different image noise σ while δ = 0.1 or 10 mm.

Figure 7 demonstrates the comparison between the traditional SfM and proposed reconstruction
technique for planar road and non-planar road 3D reconstruction with different σ. The columns from
left to right illustrate the 3D reconstruction under δ = 0.1 and δ = 5 respectively. For each column, the
top figure is the 3D reconstruction error obtained by traditional SfM and the bottom figure is the error
of 3D reconstruction by the proposed technique. The image uncertainty σ is changed from 0.001 to 0.1,
while the experiment also alters the distance from camera to road surface Zm to discover the influence
to the results. It can be discovered that when δ becomes larger which means the road is not a planar
surface, SfM gives close results to the proposed technique. When δ becomes smaller the error for SfM
increases but for the proposed technique the error remains small.

Figures 8–10 shows the 3D reconstruction error ε by the influence of errors in rotation matrix R.
In this simulation experiment, the rotation matrix R is decomposed as R = RzRyRx where

Rx =

1 0 0
0 cos θx − sin θx

0 sin θx cos θx


Ry =

 cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy


Rz =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1



(40)

Rx, Ry, Rz are the rotation matrices about the LX axis, LY axis, and LZ axis correspondingly. The initial
camera pose has θx = 0◦, θy = 0◦, and θz = 0◦. t = (200, 30, 0)T in this simulation experiment. In
Figure 8, it demonstrates the 3D reconstruction error by changing θx. From left to right, each column
represents the result under δ = 0.1, 5. σ is set to be 0.2 to represent a worse (relatively large) image
noise. The top figure in each column illustrates the results of using traditional SfM, while bottom figure
represents the results using the proposed technique. Figures 9 and 10 represents the same experiment
by changing θy and θz.
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Figure 7. 3D reconstruction error for different image noise σ = 0.001, 0.002, . . . , 0.1. From left to right
each column represents the results for road unevenness δ = 0.1 and δ = 5 respectively. For each
column, the top figure shows the 3D reconstruction by traditional SfM technique, while the bottom
figure illustrates 3D reconstruction by the proposed technique.

Figure 8 shows the influence to 3D reconstruction error by different θx. For the SfM results, when
δ = 0.1 the error is usually more than 5% of camera-to-road distance because in this case the error is
dominated by the influence of the degenerate issue. In the meantime, 3D reconstruction error is much
less by using the proposed technique for the planar road surface. For δ = 5 SfM has error under 2 mm.
While for the proposed technique, when θx = 5◦, the error is only around 1 mm larger than the 3D
reconstruction error using SfM.

Figure 9 identifies the influence to 3D reconstruction error by different θy. The error is large and
dominated by the influence of degenerate issue for SfM when δ = 0.1, while the proposed technique
constructs road with less than 2 mm error. When δ = 5, SfM has comparable error with the proposed
technique. For the proposed, the change of θy has little influence on the 3D reconstruction errors which
are under 2 mm even at the worst case.

Figure 10 demonstrates the influence to 3D reconstruction error by different θz. For δ = 0.1, the
error is also large for traditional SfM because of the degenerate issue while the error is small for the
proposed technique. When δ = 5, traditional SfM has comparable error with the proposed technique.
For the proposed, the change of θz almost has no influence to the 3D reconstruction error. The error in
this case is mainly influenced by the variable Zm. The larger the Zm, the larger the error ε.
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Figure 8. 3D reconstruction error for θx = 0.05◦, 0.1◦, . . . , 5◦. From left to right each column represents
the results for δ = 0.1, 5 respectively. For each column, the top figure shows the 3D reconstruction by
SfM, while the bottom figure illustrates 3D reconstruction by the proposed degenerate reconstruction
technique.

Figure 9. 3D reconstruction error for θy = 0.05◦, 0.1◦, . . . , 5◦. From left to right each column represents
the results for δ = 0.1, 5 respectively. For each column, the top figure shows the 3D reconstruction by
SfM, while the bottom figure illustrates 3D reconstruction by the proposed degenerate reconstruction
technique.
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Figure 10. 3D reconstruction error for θz = 0.05◦, 0.1◦, . . . , 5◦. From left to right each column represents
the results for δ = 0.1, 5 respectively. For each column, the top figure shows the 3D reconstruction by
SfM, while the bottom figure illustrates 3D reconstruction by the proposed degenerate reconstruction
technique.

Figure 11 shows the 3D reconstruction error when there exists a change of height δh caused by the
vibration in camera to road surface distance h. The measured distance ĥ is expressed as

ĥ = h− ∆h

∆h ∼ U(0, δh)
(41)

where ∆h is simulated to having a uniform distribution from 0 to δh. In Figure 11 from left to right
each column represents the result under δ = 0.1, 5 when σ is 0.2. Each top figure illustrates the results
of using traditional SfM, while bottom figure represents the counterpart using the proposed technique.
Withing each plot δh is changing from 0.2 to 20. The results show that when δ = 0.1 the error from
traditional SfM is large for the road surface. When δ = 5 SfM starts to give comparable error with the
proposed technique. For the proposed, it can be identified that when δh is changing from 0.2 to 20, the
error remains almost the same for different δh. It means that as the change of camera to ground height
h is small during vehicle driving, it has little influence to the 3D reconstruction results by using the
proposed technique.
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Figure 11. 3D reconstruction error of different error δh = 0.2, 0.4, . . . , 20 for camera to road surface
distance h. From left to right each column represents the results for δ = 0.1, 5 respectively. For each
column, the top figure shows the 3D reconstruction by SfM, while the bottom figure illustrates 3D
reconstruction by the proposed degenerate reconstruction technique.

Figure 12 illustrates the comparison between Fan’s [25] stereo vision road 3D reconstruction
technique, traditional SfM, and the proposed technique. Figure 12a shows the simulation environment
for stereo camera, where the baseline between the two cameras, B, is set to be B = 200 mm. Figure 12b
compares the 3D reconstruction error ε from a changing θy, caused by the vibration of the vehicle,
using stereo technique, traditional SfM, and the proposed technique on the same simulated road
which has δ = 0.1 mm and σ = 0.2 mm. The camera(s) has a height h = 1400 mm. To simplify the
comparison, let θy be the angle for camera 2 respect to camera 1 caused by the vibration. It can be seen
that the error from stereo technique exponentially increases when θy is larger. Even a relatively small
vibration, when θ = 0.1 degree, ε ≈ 10 mm which is still large for the road surface reconstruction task.
Although SfM has smaller error than the stereo technique most of the time after θ = 0.2 degree, it still
has a mean error which is over 10 mm. This is still mainly caused by the degenerate issue of the road
surface 3D reconstruction. The proposed technique, however, has less than 2 mm reconstruction error
which is mainly caused by the image noise σ.
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(a)

(b)
Figure 12. Comparison between stereo vision technique, traditional SfM, and the proposed technique
under the influence of a changing θy which is caused by the vibration. (a) Simulation environment
for stereo vision-based technique. B is the baseline between the stereo cameras. (b) Reconstruction
error for stereo technique, traditional SfM, and the proposed technique under vibration which causes
changes to θy.

4.2. Experiments on Real Road Surface

Figure 13 shows the experimental setup of the error analysis for the proposed technique using
real images. The camera is facing downward to the road surface with its principle axis vertical to the
ground surface as shown in Figure 13a. The ground surface is made by a flat plate to mimic a planar
road surface as illustrated in Figure 13b. An image of road surface is printed and stuck to the flat plate
to provide road surface patterns for the image feature searching and matching. A circular part of the
plate can be removed from the plate to mimic the road pothole.

Figure 14 illustrates an example of the 3D reconstruction for a same flat plate image using SfM
and the proposed technique. Traditional SfM fails in this example since the road surface in the image
is a near-planar. However, the proposed one gives the correct planar-like 3D surface reconstruction as
shown in Figure 14c.
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(a) (b)

Figure 13. Experimental setup for accuracy analysis of the proposed 3D reconstruction technique.
The camera to road distance h is set to be h = 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600 mm. A flat
plate with mimic road surface pattern is placed as a planar road. A hole on the plate can be used to
simulate the road defect. (a) A height-adjustable gantry for the camera. (b) A flat plate sticked with a
mimic road pattern image.

(a)

Figure 14. Cont.
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(b)

(c)
Figure 14. 3D reconstruction of a flat plate using non-degenerate technique (SfM) and proposed
degenerate technique. (a) An image of the flat plate sticked with mimic road pattern. (b) 3D
reconstruction of flat surface in (a) using traditional SfM. The left image shows the front view of
the reconstructed 3D points and the right image shows the left view. (c) 3D reconstruction of flat
surface in (a) using the proposed technique. The left image shows the front view of the reconstructed
3D points and the right image shows the left view.

Figure 15 shows the error analysis for 3D reconstruction using real images. Table 2 lists the
parameters analyzed in the experiments using real images. It is noted that the mismatched feature
rejection constant is found to be robust to keep correct matchings at λ = 1.5. Figure 15a demonstrates
the error of 3D reconstruction from traditional SfM. Figure 15b represents the 3D reconstruction error
by using the proposed technique. The errors are compared between two techniques by changing the
height of the camera h from 900 to 1600 mm. The mean errors are plotted and the error bar represents
the standard deviation of 10 runs of image capturing for each height. It can be identified from Figure
15 that traditional SfM gives large mean error and standard deviation for this planar plate, while the
proposed technique has mean error less than 0.6 mm and standard deviation close to 1 mm.

Table 2. Parameters for experiments using real images.

Parameter Value

Camera Field of View 56◦ × 44◦

Road unevenness: δ [mm] < 0.5
Camera to road distance: h [mm] 900, 1000, . . . ,1600

Image noise: σ [pixel] < 0.2
Mismatched feature rejection constant: λ 1.5

Two-view camera translation:
t [mm, mm, mm] (100, 0, 0)T
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(a) 3D reconstruction error for traditional SfM technique.

(b) 3D reconstruction error from the proposed technique.

Figure 15. 3D reconstruction error for traditional SfM technique and proposed technique at h =

900, 1000, 1100, 1200, 1300, 1400, 1500, 1600 mm.

Figure 16 shows a system which captures road surface images. The authors’ previous work [31]
built this system which captures 1024× 1280 resolution road surface images at a driving speed up
to 100 km/hour. There are two cameras on this system. Although the proposed 3D reconstruction
technique is based on a monocular camera, two cameras can work separately to increase the area
of road surface region covered by images. This system is controlled by field-programmable gate
array (FPGA) so that the frame rate of the camera is adaptive based on the vehicle speed. On-board
diagnostics (OBD) port on the vehicle passes the vehicle’s velocity to FPGA which will set higher
frame rate for the camera when the vehicle is moving fast and lower frame rate when the vehicle is
slow. The system set the frame rate so that there is at least an 50% overlapping area between two
consecutive images.
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Figure 16. FPGA controlled road surface capturing system with adaptive camera frame rate.

Figure 17 demonstrates the qualitative result of reconstructing the road surface using the proposed
technique. The top figure shows a road surface image stitching for 20 images to visualize a section of
road. The bottom one shows a colormap, which represents the depth (

{G}Z direction) values of Xr
0:20

reconstructed by the proposed technique. It can be seen that two major defects together with several
small defects are standing out from the 3D road surface.

Figure 17. The qualitative 3D reconstruction result for a section of road using the proposed technique.
Top: a road surface image stitched by 20 consecutive images captured. Bottom: A colormap image for
the depth (

{G}Z direction) values of reconstructed Xr
0:20 using the proposed techinque.

Figure 18 compares the proposed technique with traditional SfM in the quality of near-planar road
surface reconstruction. The top figure is a near-planar road surface image stitched by 20 consecutive
images. The middle one shows the colormap of the

{G}Z values of the reconstructed road Xr
0:20 for the

same road using the proposed technique, while the bottom one is the reconstructed colormap of the
same road obtained by using traditional SfM. It can be found that the proposed technique has much
less outliers and noises in reconstructing the near-planar road surface. The proposed technique even
differentiates small cracks by showing the different color at the crack areas. On the other hand, the
same road surface reconstructed by the traditional SfM technique shows large deviated depth values
at many places which are obviously not correct for a near-planar road surface.
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Figure 18. The comparison between the proposed and the traditional SfM technique for reconstructing a
section of road surface. Top: a road surface image stitched by 20 consecutive images captured. Middle:
A colormap image for the depth (

{G}Z direction) values of reconstructed Xr
0:20 from the proposed

techinque. Bottom: A colormap image for the depth (
{G}Z direction) values of reconstructed Xr

0:20
using traditional SfM.

Figure 19 demonstrates the repeatability experiment for the proposed technique. Figure 19a
represents a section of the road which contains a pothole. This section of road surface are obtained
by stitching 50 images which are captured using the system shown in Figure 16. In Figure 19b the
{G}Zr − h values of reconstructed 3D road surface points are plotted as a colormap. In Figure 19c, the
proposed technique measures the same road section which is reconstructed in Figure 19b. The two
measurements are then compared to validate the repeatability of the proposed technique. In Figure 19d,
Z1 are the

{G}Zr values of the reconstructed road surface points from the first measurement, while
Z2 are the ones from the second measurement. The histogram shows the count of Z2 − Z1 values.
The mean value of Z2 − Z1 is −0.1079 mm and the standard deviation of Z2 − Z1 is 1.3515 mm.
The statistics results of Z2 − Z1 reflects the high repeatability of the proposed technique.

(a)
Figure 19. Cont.
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(b) (c)

(d)
Figure 19. Repeatability test for the proposed technique. (a) Stitched images of a road section which has
a geometrical defect. (b) The first measurement of one road section.

{G}Zr − h values of road surface
point cloud data are represented by a colormap. (c) The second measurement of one road section.
{G}Zr − h values of road surface point cloud data are represented by a colormap. (d) Repeatability
quantitative results. Z1 are the

{G}Zr values from the first measurement while Z2 are the ones from the
second measurement.

Table 3 compares SfM with the proposed technique on defects detection using road surface images.
The comparison is based on 6300 road surface images which are collected at rural, urban, and highway
roads for weather conditions such as sunny, cloudy, and partly cloudy around Blackburg, Virginia
area. The real road surface images are captured at both highway driving speed (100 km/h) and local
road driving speed (40 km/h). Some images capture potholes while other images capture flat road
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surface. From true positive (TP), false positive (FP), true negative (TN), and false negative (FN), the
accuracy is expressed as (TP + TN)/(TP + TN + FP + FN), precision as TP/(TP + FP), while the
recall illustrated by TP/(TP + FN). From Table 3 although traditional SfM gives higher recall rate
between the proposed technique and traditional SfM, it has only 34.34% precision rate. It means that
although traditional SfM rarely misses the detection of potholes (less FN), it generates more wrong
detection of potholes (more FP). The proposed technique on the other hand, results in 98.95% accuracy,
94.33% precision and 95.76% recall rate. All the three criteria are above 94%.

Table 3. Performance of road surface defects detection for different techniques.

Proposed SfM

TP 632 658
TN 5602 4382
FP 38 1258
FN 28 2

Accuracy 98.95% 80%
Precision 94.33% 34.34%

Recall 95.76% 99.70%

5. Conclusions

A geometry-based technique of reconstructing degenerate near-planar road surfaces from two
images for road defects detection is presented in this paper. The proposed technique mathematically
formulates the near-planar road surface reconstruction problem, and improves traditional SfM for
the 3D road reconstruction process. Since the degenerate issue of the near-planar road surface
reconstruction is solved by the proposed technique, road surface defects are thus detected from
the accuracy-enhanced 3D road surfaces.

Two types of experiment were conducted to evaluate the proposed road surface 3D reconstruction
for the defects detection technique. In the simulation environment, the first experiment compared SfM
and the proposed technique under different road unevenness δ and the noise σ in images. Results
showed that the changing of δ does not affect the reconstruction error ε using the proposed technique
but increases ε dramatically for traditional SfM when δ is close to 0. The second experiment compared
traditional SfM and the proposed technique under the different rotation angles θx, θy, θz for the camera.
Results showed that by changing θx, θy, and θz the error ε is less than 3 mm even at the worst case.
The third experiment showed the change of camera to road distance δh almost does not change the
ε when 0 < δh < 20 mm. The comparison of the stereo vision technique, traditional SfM, and
the proposed technique demonstrated the robustness of the proposed technique for road surface
reconstruction under the influence of vibration. For experiments using real images, the first experiment
showed the 3D reconstruction error ε using both traditional SfM and the proposed technique for the
reconstruction of a flat surface under laboratory environment. The results showed that the error for
traditional SfM is much higher than the proposed technique, and the proposed technique has a mean
error within 1 mm and standard deviation within 1 mm for h from 900 to 1600 mm. Lastly, 6300 real
road surface images were captured by the presented system on both local road and highway road
surfaces. The proposed technique increased the accuracy from 80% to 98.95% and precision from
34.34% to 94.33% for road defects detection.

This paper focused on reconstructing a 3D structure for road defects using a downward-facing
camera. Future works include: 1. Making the camera facing forward to capture the images in front of
the vehicle, and then detect defects and objects on the road surface to help vehicles avoid obstacles. 2.
Using deep neural networks on both the images and 3D reconstructed points to improve the accuracy
of road surface defects detection.
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Appendix A

To solve Fk, Equation (5) is rearranged to a form of Afk = 0, where:

Ai =
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.
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fk = ( f11, f12, f13, f21, f22, f23, f31, f32, f33)
T

(A1)

In SfM [30], Fk is obtained by solving the minimization problem:

min
fk

Afk (A2)

subject to

‖fk‖ = 1 (A3)

After the fundamental matrix Fk is calculated, by following the subsequent SfM process, the
essential matrix Ek is calculated as:

Ek = KTFkK (A4)

where K is the intrinsic matrix of the calibrated camera. The Singular Value Decomposition (SVD) of
Ek then contributes to the calculation of rotation matrix Rk and the up-to-scale translation vector tk
between time step k− 1 and k:

Ek = UDVT

W =

0 −1 0
1 0 0
0 0 1


Rk = UWVT or Rk = UWTVT

tk = U(0, 0, 1)T or tk = −U(0, 0, 1)T

(A5)

where there is one correct combination of Rk and tk which can make all Xr
k be in front of the camera.

The projection matrix Pk is identified by the rotation matrix Rk and the translation vector tk. The 3D
reconstructed points Xr

k are finally obtained by the triangulation ft(·):
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xr
k−1 = Pk−1Xr

k = K[I, 0]Xr
k

xr
k = PkXr

k = K[Rk, tk]X
r
k

(A6)

Xr
k = ft(K, Rk, tk, xr

k, xr
k−1) (A7)
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