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Sneha Upadhyaya 

 

ABSTRACT (Academic) 
 

 

Soil liquefaction continues to be one of the leading causes of ground failure during earthquakes, 

resulting in significant damage to infrastructure around the world. The study presented herein aims 

to develop improved methodologies for predicting liquefaction triggering and the consequent 

damage potential such that the impacts of liquefaction on natural and built environment can be 

minimized. Towards this end, several research tasks are undertaken, with the primary focus being 

the development of a framework that consistently and sufficiently accounts for the mechanics of 

liquefaction triggering and surface manifestation. The four main contributions of this study 

include: (1) development of a framework for selecting an optimal factor of safety (FS) threshold 

for decision making based on project-specific costs of mispredicting liquefaction triggering, 

wherein the existing stress-based “simplified” model is used to predict liquefaction triggering; (2) 

rigorous investigation of manifestation severity index (MSI) thresholds for distinguishing cases 

with and without manifestation as a function of the average inferred soil-type within a soil profile, 

which may be employed to more accurately estimate liquefaction damage potential at sites having 

high fines-content, high plasticity soils; (3) development of a new manifestation model, termed 

Ishihara-inspired Liquefaction Severity Number (LSNish), that more fully accounts for the effects 

of non-liquefiable crust thickness and the effects of contractive/dilative tendencies of soil on the 

occurrence and severity of manifestation; and (4) development of a framework for deriving a “true” 

liquefaction triggering curve that is consistent with a defined manifestation model such that factors 

influential to triggering and manifestation are handled more rationally and consistently. While this 

study represents significant conceptual advance in how risk due to liquefaction is evaluated, 

additional work will be needed to further improve and validate the methodologies presented herein.



Development of an Improved and Internally-Consistent Framework for Evaluating 

Liquefaction Damage Potential 

 

Sneha Upadhyaya 

 

ABSTRACT (General Audience) 

 

 

Soil liquefaction continues to be one of the leading causes of ground failure during earthquakes, 

resulting in significant damage to infrastructure around the world (e.g., the 2010-2011 Canterbury 

earthquake sequence in New Zealand, 2010 Maule earthquake in Chile, and the 2011 Tohoku 

earthquake in Japan). Soil liquefaction refers to a condition wherein saturated sandy soil loses 

strength as a result of earthquake shaking. Surface manifestations of liquefaction include features 

that are visible at the ground surface such as sand boils, ejecta, cracks, and settlement. The severity 

of manifestation is often used as a proxy for damage potential of liquefaction. The overarching 

objective of this dissertation is to develop improved models for predicting triggering (i.e., 

occurrence) and surface manifestation of liquefaction such that the impacts of liquefaction on the 

natural and built environment can be minimized. Towards this end, this dissertation makes the 

following main contributions: (1) development of an approach for selecting an appropriate factor 

of safety (FS) against liquefaction for decision making based on project-specific consequences, or 

costs of mispredicting liquefaction; (2) development of an approach that allows better 

interpretations of predictions of manifestation severity made by the existing models in profiles 

having high fines-content, high plasticity soil strata (e.g., clayey and silty soils), given that the 

models perform poorly in such conditions; (3) development of a new model for predicting the 

severity of manifestation that more fully accounts for factors controlling manifestation; and (4) 

development of a framework for predicting liquefaction triggering and surface manifestation such 

that the distinct factors influential to each phenomenon are handled more rationally and 

consistently. 
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Chapter 1: Introduction 

1.1 Problem Statement 

Soil liquefaction continues to be one of the leading causes of ground failure during earthquakes, 

resulting in significant damage to infrastructure around the world (e.g., the 2010-2011 Canterbury 

earthquake sequence in New Zealand, 2010 Maule earthquake in Chile, and the 2011 Tohoku 

earthquake in Japan, among others). As such, accurate prediction of the occurrence and 

consequences of liquefaction is essential for reducing the risks due to liquefaction in a cost-

effective manner (National Academies of Sciences, Engineering, and Medicine 2016). The present 

study aims at reducing the impacts of earthquake induced soil liquefaction by developing improved 

methodologies to evaluate liquefaction triggering and damage potential. In particular, the research 

presented herein is largely motivated by the need to address shortcomings in the existing 

methodologies to properly account for the mechanics of liquefaction triggering and the severity of 

surficial liquefaction manifestations within a consistent framework. Towards this end, this 

dissertation addresses the following pertinent issues: 

1. The stress-based simplified model, originally proposed by Whitman (1971) and Seed and 

Idriss (1971), is the most commonly used approach for predicting liquefaction triggering 

at a site. Although probabilistic variants of this model have been developed, deterministic 

models still represent the standard of practice. In a deterministic liquefaction triggering 

model, the normalized cyclic stress ratio (CSR*) or seismic demand, and the normalized 

cyclic resistance ratio (CRRM7.5) are used to compute a factor of safety (FS) against 

liquefaction triggering (i.e., FS = CRRM7.5/CSR*). Towards this end, “rules of thumb” are 

often used to select an appropriate FS for decision making, which are largely based on 

heuristic approaches. Due to the lack of a standardized approach for selecting an 

appropriate FS, guidelines have been proposed in the literature, often without any 

consideration for the costs of mispredicting liquefaction, which could vary among different 

engineering projects. Accordingly, this dissertation investigates the relationship between 

the costs of misprediction and appropriate FS for decision making using a quantitative, 

standardized approach. While this study focuses on FS, similar relationships are also 

investigated between the costs of misprediction and probability of liquefaction triggering 

(PL).  
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2. While the “simplified” model predicts the occurrence of liquefaction at a specific depth in 

a profile, it does not predict the severity of surficial liquefaction manifestation, which 

relates to the damage potential at the ground surface. Manifestation severity index (MSI) 

models have been proposed to tie liquefaction triggering to the occurrence and severity of 

surficial manifestations (e.g., Liquefaction Potential Index, LPI; Ishihara-inspired LPI, 

LPIish; and Liquefaction Severity Number, LSN). Retrospective evaluations of such 

models during the 2010-2016 Canterbury, New Zealand earthquakes have shown that they 

systematically over-predicted a large number of case histories that were generally 

comprised of profiles having high fines-content, high plasticity soil strata. Accordingly, 

this dissertation further investigates the effects of high fines-content, high plasticity soil 

strata on the predictive performance of LPI, LPIish, and LSN. Specifically, for each of these 

models, manifestation severity thresholds as well as their predictive efficiencies are 

investigated as a function of the soil behavior type index (Ic) averaged over the upper 10 m 

of the soil profile (Ic10). The Ic10 parameter is used to infer the extent to which a soil profile 

contains high fines-content, high plasticity strata. 

3. Furthermore, existing manifestation models have inherent limitations such that they may 

not fully account for the factors influencing surface manifestations. In this dissertation, a 

new manifestation model is derived using insights from the existing models and the 

understanding of the mechanics of manifestation from the literature. This model is derived 

as a conceptual and mathematical merger of the LSN formulation (van Ballegooy et al. 

2012; 2014) and Ishihara’s relationship for predicting surface manifestation as a function 

of the relative thicknesses of the non-liquefied crust and underlying liquefied layer 

(Ishihara 1985), hence termed LSNish. As such, LSNish accounts for the influences of 

contractive/dilative tendencies of soils as well as the non-liquefied crust thickness in 

predicting the occurrence and severity of manifestation. 

4. Lastly, it will be shown that the existing methodology for developing liquefaction 

triggering models is inconsistent with how it is used in predicting the occurrence and 

severity of surficial liquefaction manifestations. The manifestation models often assume 

that the triggering curves are “true triggering” curves (i.e., free of factors influencing 

surface manifestation). However, because of the way the triggering curves are being 
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developed, some of the factors influencing surface manifestations (e.g., dilative tendencies 

of dense soils) may already be embedded in the curve, making them combined “triggering” 

and “manifestation” curves. As a result, their use in conjunction with the manifestation 

model may double-count such factors. This dissertation presents an approach to derive a 

“true” liquefaction triggering curve that is consistent with a defined manifestation model.  

1.2 Dissertation Structure and Contents 

The four issues stated above are addressed in a series of four manuscripts, presented in Chapters 2 

through 5, which forms the main body of this dissertation. These manuscripts will be submitted to 

recognized peer-reviewed journals in geotechnical and/or earthquake engineering. Chapter 6 

presents the summary and key findings of this dissertation. Appendices A and B are two peer-

reviewed conference papers that are included in the proceedings of the 7th International Conference 

on Earthquake Geotechnical Engineering (7ICEGE) and the 13th Australia New Zealand 

Conference on Geomechanics 2019, respectively. The two conference papers are presented as 

appendices since their main findings are discussed in the main body of this dissertation. 

Chapter 2 presents a framework that relates optimal FS thresholds for decision making to the costs 

of mispredicting liquefaction triggering. As such, the framework presented in this chapter can be 

used to select a project-specific optimal FS decision threshold based on the costs of liquefaction 

risk-mitigation schemes relative to the costs associated with the consequences of liquefaction. 

Additionally, it is shown that the framework proposed herein can be similarly used to select 

optimal PL thresholds based on the relative costs of misprediction. 

Chapter 3 investigates the influence of high fines-content, high plasticity soils on the predictive 

performance of three different MSI models. Specifically, receiver operating characteristic (ROC) 

analyses are performed on liquefaction case-histories compiled from the 2010-2016 Canterbury, 

New Zealand, earthquakes to investigate manifestation severity classification thresholds for the 

LPI, LPIish, and LSN models as well as their predictive efficiencies as a function of Ic10. 

Additionally, probabilistic models are proposed for assessing the severity of manifestations as a 

function of MSI and Ic10. 

Chapter 4 presents the development of LSNish. LSNish is evaluated using the Canterbury 

earthquake liquefaction case histories and its predictive efficiency is compared to those of LPI and 
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LSN. Despite LSNish accounting for the mechanics of manifestation in a more appropriate manner, 

its predictive efficiency is shown to be less than that of the existing models. One likely reason for 

this is the double counting of the dilative tendencies of dense soils by LSNish. The post-

liquefaction volumetric strain potential (εv) included in the LSNish formulation uses FS as an input 

which inherently accounts for the dilative tendencies of dense soils via the shape of the triggering 

curve that tends to vertical at higher penetration resistance. These findings indicate that the existing 

methodology for developing liquefaction triggering curves is inconsistent with how it is used in 

predicting the occurrence and severity of surficial liquefaction manifestation. 

Accordingly, Chapter 5 presents an internally-consistent approach to developing models that 

predict triggering and surface manifestation of liquefaction. Specifically, this chapter presents a 

methodology to derive a “true” liquefaction triggering curve that is consistent with a defined 

manifestation model (e.g., LSNish). Utilizing the liquefaction case histories from the 2010-2016 

Canterbury earthquakes, deterministic and probabilistic variants of the “true” triggering curve are 

derived within the LSNish formulation, for predominantly clean to silty sand profiles. The “true” 

triggering curve is shown to perform better than the existing triggering curves when operating 

within the LSNish formulation. 

1.3 Attribution 

The following provides the list of coauthors and their contributions to each manuscript included 

in this dissertation: 

Chapter 2: Selecting optimal factor of safety and probability of liquefaction triggering 

thresholds for decision making based on misprediction costs 

Sneha Upadhyaya, PhD candidate at the Department of Civil and Environmental Engineering, 

Virginia Tech, Blacksburg, Virginia, USA. 

 Lead author; performed literature review; compiled liquefaction case history databases 

from the literature; performed all analyses; wrote the draft manuscript; prepared all figures 

and tables; incorporated comments from the coauthors to prepare a final draft of the 
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Chapter 2: Selecting optimal factor of safety and probability of liquefaction 

triggering thresholds for decision making based on misprediction costs 

Sneha Upadhyaya1; Brett W. Maurer2; Russell A. Green3; and Adrian Rodriguez-Marek3 

1Graduate Student, Department of Civil and Environmental Engineering, Virginia Tech, 

Blacksburg, VA 24061. 

2Assistant Professor, Department of Civil and Environmental Engineering, University of 

Washington, Seattle, WA 98195. 

3Professor, Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 

24061. 

2.1 Abstract  

In deterministic liquefaction evaluations, the liquefaction triggering potential at a site is evaluated 

using factor of safety (FS) against liquefaction. In any engineering project, a minimum acceptable 

FS is required for design. While some guidelines are available in the literature for selecting an 

appropriate FS, there is no quantitative, standard approach. Moreover, such guidelines do not 

acknowledge that the choice of FS should be affected by the costs of mispredicting liquefaction 

which could differ from project to project. Herein, Receiver Operating Characteristic (ROC) 

analyses are used to select project-specific FS based on the relative costs of mispredictions. 

Towards this end, utilizing different liquefaction triggering models and their associated case-

history databases, relationships are established between optimal FS threshold for decision making 

and the ratio of the cost of a false-positive prediction to the cost of a false-negative prediction (i.e., 

cost ratio, CR). It is shown that the optimal FS-CR relationships are specific to the triggering model 

and the database used. Additionally, it is shown that the deterministic triggering curves 

recommended by each model inherently corresponds to a certain CR, indicative of the degree of 

conservatism inherent to the position of the triggering curve. As an alternative to using FS to 

quantify liquefaction triggering potential, probabilistic variants of the triggering models were used 

to develop similar relationships between CR and probability of liquefaction triggering (PL) 

decision thresholds.    
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2.2 Introduction 

The main objective of this study is to develop a framework that relates optimal factor of safety 

against liquefaction triggering (FS) thresholds to the cost of mispredicting liquefaction triggering; 

“optimal” herein should be understood as “optimal for decision making.” As such, the framework 

proposed herein can be used to select project-specific FS thresholds based on the costs of 

liquefaction risk-mitigation schemes relative to the costs associated with the consequences of 

liquefaction. While the present study focuses on FS, it is shown that the framework proposed 

herein can also be used to relate optimal probability of liquefaction triggering (PL) threshold to 

the relative costs of mispredicting liquefaction triggering. 

The stress-based “simplified” model is the most-widely used approach for predicting liquefaction 

triggering at a site. This model was originally developed by Whitman (1971) and Seed and Idriss 

(1971) for Standard Penetration Test (SPT) and has been subsequently updated for use with other 

in-situ testing methods such as the Cone Penetration Test (CPT) and shear-wave velocity (Vs) (e.g., 

Robertson and Wride 1998; Cetin et al. 2004; 2018; Moss et al. 2006; Idriss and Boulanger 2008; 

2010; Kayen et al. 2013; Boulanger and Idriss 2012; 2014; Green et al. 2019; among others). 

Moreover, both deterministic and probabilistic variants of the simplified model have been 

proposed, where the latter accounts for the uncertainties in the model and its input parameters. In 

a deterministic liquefaction triggering model, the normalized cyclic stress ratio (CSR*), or the 

seismic demand, and the normalized cyclic resistant ratio (CRRM7.5), or soil capacity, are used to 

compute an FS against liquefaction: 

𝐹𝑆 =
𝐶𝑅𝑅𝑀7.5

𝐶𝑆𝑅∗
 (2.1) 

where: CSR* is the cyclic stress ratio normalized to a M7.5 event and corrected to an effective 

overburden stress of 1 atm and level-ground conditions and CRRM7.5 is the cyclic resistant ratio 

normalized to the same conditions as CSR* and is computed using the semi-empirical relationships 

that are a function of in-situ test metrics, which have been normalized to the effective overburden 

stress and corrected for fines-content. These metrics include SPT blow count (N1,60cs); CPT tip 

resistance (qc1Ncs); and small strain Vs (Vs1). Liquefaction is predicted to trigger when FS ≤ 1 (i.e., 

when the demand equals or exceeds the capacity).  
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In a probabilistic liquefaction triggering model, a probability of liquefaction triggering (PL) is 

estimated generally as a function of the predictor variables that correlate to the capacity of the soil 

(e.g., N1,60cs; qc1Ncs; or Vs1), the demand imposed by the earthquake shaking (e.g., CSR*), as well as 

the uncertainties in the triggering model. Often deterministic CRRM7.5 curves correspond to PL ≈ 

15% (e.g., Cetin et al. 2004; Moss et al. 2006; Boulanger and Idriss 2014). Although probabilistic 

liquefaction triggering models are preferred for a performance-based engineering framework, the 

deterministic model (i.e., FS) still represents the standard of practice for predicting liquefaction 

triggering at a site. Although in theory, liquefaction should not trigger for FS > 1, FS ranging from 

1 to 1.5 are generally used for design, typically based on “rules of thumb.”  While such rules-of-

thumb are somewhat guided by factors such as the uncertainty in the triggering model, importance 

of the structure, and consequences of liquefaction, they have been based largely on heuristic 

approaches. Due to the lack of a standardized approach for selecting FS, various guidelines have 

been proposed in the literature. For example, according to the 2009 NEHRP recommended seismic 

provisions by the Building Seismic Safety Council (2009), FS of 1.1 to 1.3 is generally appropriate 

for building sites to account for the chance that liquefaction occurred at depth, but did not manifest 

at the ground surface, for some of the case histories from previous events having FS in this range. 

Moreover, they refer to Martin and Lew (1999) (e.g., Table 2.1) for additional guidance on 

selecting FS, which considers different ground failure mechanisms (i.e., “settlement,” “surface 

manifestation,” and “lateral spreading”) as well as the post-liquefaction strain potential of soil 

having an associated penetration resistance (e.g., N1,60cs).      

In any engineering project, the choice of FS (i.e., the desired degree of conservatism) should 

account for the consequence, or cost, of mispredicting liquefaction. However, the existing 

guidelines for selecting an appropriate FS do not account for such misprediction costs. These 

include the costs of false-negative predictions (i.e., liquefaction occurs, but was not predicted in 

the design event), which are the costs of liquefaction-induced damage (e.g., property damage, 

reconstruction and rehabilitation costs, etc.); and the costs of false-positive predictions (i.e., 

liquefaction is predicted, but did not occur in the design event), which could be those of 

unnecessary or over-designed liquefaction risk-mitigation schemes (e.g., ground improvement, 

stronger foundation design and construction, etc.). Clearly, these costs can vary among different 

engineering projects. For example, the costs associated with mispredicting liquefaction beneath a 

one-story residential building will be likely very different than those from a similar misprediction 
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beneath a large earthen dam. As such, optimal, project-specific FS can be selected based on 

associated costs of mispredicting liquefaction triggering. 

Accordingly, the present study uses a quantitative, standardized approach to select optimal FS 

thresholds for decision making, based on the costs of mispredicting liquefaction triggering. 

Towards this end, Receiver Operating Characteristic (ROC) analyses are performed on five 

liquefaction triggering models, using the field case-history databases from which the respective 

models were developed. Specifically, for each model, the ROC analyses are used to relate the 

optimal FS decision threshold to the ratio of false-positive costs to false-negative costs. This ratio 

is referred to herein as the cost ratio (CR). As a secondary focus, this study also derives 

relationships between misprediction costs and optimal PL thresholds.   

In the following, overviews of the liquefaction triggering models and the associated databases are 

presented first, which is followed by an overview of the ROC analysis and a demonstration of how 

it can be used in deriving relationships between CR and optimal FS threshold. Next, optimal FS-

CR relationships specific to different liquefaction triggering models, as well as a generic optimal 

FS-CR relationship, are presented and discussed. Finally, similar relationships are derived using 

PL as an alternative to FS.  

2.3 Data and Methodology 

2.3.1 Liquefaction triggering models and associated databases used 

In the present study, five different liquefaction triggering models based on three different in-situ 

testing methods are analyzed using the field case-history databases from which the respective 

models were developed. These include the SPT-based models of Boulanger and Idriss (2014) 

[BI14-SPT] and Cetin et al. (2018) [Cea18], CPT-based models of Boulanger and Idriss (2014) 

[BI14-CPT] and Green et al. (2019) [Gea19], and Vs-based model of Kayen et al. (2013) [Kea13]. 

Each of these studies present both deterministic and probabilistic variants of the CRRM7.5 curve, 

except for Gea19, which only presents the former. 

Underlying each liquefaction triggering model is the case-history database from which the model 

was derived. Figure 2.1(a-e) contain the probabilistic CRRM7.5 curves (except Figure 2.1d for 

Gea19, which only contains their deterministic CRRM7.5 curve) and the associated liquefaction 

case-history data for BI14-SPT, Cea18, BI14-CPT, Gea19, and Kea13. Moreover, Table 2.1 
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summarizes the number of “liquefaction,” “no liquefaction,” and “marginal” cases in the database 

associated with each model. Note that, in this study, the “marginal” case histories are also treated 

as “liquefaction” cases. The deterministic CRRM7.5 curves recommended by BI14-SPT, BI14-CPT, 

and Kea13 correspond to a PL of approximately 15%. However, Cea18 recommend their median 

(i.e., PL = 50%) CRRM7.5 curve as their deterministic curve. The deterministic CRRM7.5 for each of 

the above models are indicated in red in Figure 2.1(a-e). 

ROC analyses were performed on each model using their associated case-history database, to relate 

optimal FS and PL to the relative costs of mispredicting liquefaction triggering, which is expressed 

as CR. The following section presents an overview of ROC analysis and how it can be used to 

derive such relationships.  

2.3.2 Overview of ROC analysis 

Receiver Operating Characteristics (ROC) analysis is a widely adopted tool to evaluate the 

performance of diagnostic tests. While ROC analysis has been extensively use in medical 

diagnostics (e.g., Zou 2007), its use in geotechnical engineering is relatively limited (e.g., 

Oommen et al. 2010; Maurer et al. 2015a,b,c; 2017a,b; 2019; Green et al. 2015; 2017; Zhu et al. 

2017; Upadhyaya et al. 2018; 2019). In particular, in cases where the distribution of “positives” 

(e.g., liquefaction cases) and “negatives” (e.g., no liquefaction cases) overlap when plotted as a 

function of diagnostic test results (e.g., FS values, see Figure 2.2a), ROC analyses can be used (1) 

to identify the optimum diagnostic threshold (e.g., FS threshold); and (2) to assess the relative 

efficacy of competing diagnostic models, independent of the thresholds used. A ROC curve is a 

plot of the True Positive Rate (RTP) versus the False Positive Rate (RFP) for varying threshold 

values (e.g., FS). Here, RTP is defined as the ratio of number of cases where liquefaction is 

predicted and was observed to the total number of cases with observed liquefaction, and RFP is 

defined as the ratio of number of cases where liquefaction is predicted, but was not observed to 

the total number of cases with no observed liquefaction. A conceptual illustration of ROC analysis, 

including the relationship among the distributions for positives and negatives, the threshold value, 

and the ROC curve, is shown in Figure 2.2.  

In ROC curve space, a diagnostic test that has no predictive ability (i.e., a random guess) results 

in a ROC curve that plots as 1:1 line through the origin. In contrast, a diagnostic test that has a 

perfect predictive ability (i.e., a perfect model) plots along the left vertical and upper horizontal 
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axes, connecting at the point (0,1) and indicates the existence of a threshold value that perfectly 

segregates the dataset (e.g., all cases with liquefaction have FS below this threshold and all cases 

without liquefaction have FS above this threshold). The area under the ROC curve (AUC) is 

equivalent to the probability that “liquefaction” cases have a lower computed FS than “no 

liquefaction” cases. As such, higher AUC indicates better predictive capabilities (e.g., Fawcett 

2005). To put this into perspective, a random guess returns an AUC of 0.5 whereas a perfect model 

returns an AUC of 1. 

The optimum operating point (OOP) in a ROC analyses is defined as the threshold value (e.g., 

threshold FS) that minimizes the misprediction cost, where cost is computed as (Maurer et al. 

2015c): 

𝑐𝑜𝑠𝑡 =  𝐶𝐹𝑃 × 𝑅𝐹𝑃 + 𝐶𝐹𝑁 × 𝑅𝐹𝑁 (2.2) 

where CFP and RFP are the cost and rate of false-positive predictions, respectively, and CFN and 

RFN are the cost and rate of false-negative predictions, respectively. Normalizing Eq. 2.2 with 

respect to CFN, and equating RFN to 1-RTP, cost may alternatively be expressed as: 

𝑐𝑜𝑠𝑡𝑛 =
𝑐𝑜𝑠𝑡

𝐶𝐹𝑁
=  𝐶𝑅 × 𝑅𝐹𝑃 + (1 − 𝑅𝑇𝑃) (2.3) 

where CR is the cost ratio defined by CR = CFP/CFN (i.e., the ratio of the cost of a false-positive 

prediction to the cost of a false-negative prediction). 

As may be surmised, Eq. 2.3 plots as a straight line in ROC space with slope of CR and can be 

thought of as a contour of equal performance (i.e., an iso-performance line). Thus, each CR 

corresponds to a different iso-performance line. One such line, with CR = 1 (i.e., false positives 

costs are equal to false-negative costs) is shown in Figure 2.2b. The point where the iso-

performance line is tangent to the ROC curve corresponds to the OOP (e.g., the “optimal” FS 

threshold corresponding to a given CR). Thus, by varying the CR values, a relationship between 

optimal FS and CR can be developed. 
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2.4 Results and Discussion 

2.4.1 Optimal FS versus CR relationships 

ROC analyses were performed on the distributions of FS for “liquefaction” and “no liquefaction” 

case histories for each of the five liquefaction triggering models used in this study (i.e., BI14-SPT, 

Cea18, BI14-CPT, Gea19, and Kea13), as shown in Figure 2.3. The resulting ROC curves are 

shown in Figure 2.4a. Using each of these ROC curves, optimal threshold FS values were 

determined in conjunction with Eq. 2.3 for a range of CR values (i.e., CR ranging from 0.001 to 

2). The relationship between CR and optimal threshold FS for BI14-SPT, Cea18, BI14-CPT, 

Gea19, and Kea13 are shown in Figure 2.4b.  

As may be observed from Figure 2.4b, the optimal threshold FS is inversely proportional to the 

CR such that, the lower the CR, the higher the optimal threshold FS (i.e., the degree of conservatism 

required), as was expected. Moreover, it can be seen that the optimal FS-CR relationships are 

specific to the liquefaction triggering model being used and the associated case-history database. 

In other words, at a given CR, the optimal FS could vary as a function of the liquefaction triggering 

model being used. For example, at CR = 1, the optimal threshold FS for BI14-SPT, Cea18, BI14-

CPT, Gea19, and Kea13 are 0.94, 1.16, 0.94, 0.91, and 0.71, respectively (e.g., Figure 2.4b).  

Additionally, it can be seen that the deterministic CRRM7.5 curves (i.e., FS = 1) for BI14-SPT, 

Cea18, BI14-CPT, Gea19, and Kea13 have associated CRs of ~0.38, 1.1, 0.26, 0.29, and 0.28, 

respectively. This is indicative of the degree of conservatism inherent to the positioning of the 

deterministic CRRM7.5 curve for each model, as well as differences in the range of scenarios 

represented in the liquefaction case-history databases from which the respective triggering models 

were derived. As shown, the associated CRs at FS = 1 are significantly lower than one for BI14-

SPT, BI14-CPT, Gea19, and Kea13, suggesting that these models implicitly treated the cost of 

false negatives to be significantly higher than the cost of false positives. On the other hand, the 

associated CR at FS = 1 for Cea18 is very close to one (i.e., for CR = 1.1 at FS = 1), suggesting 

that Cea18 implicitly assumed that the costs of false negatives and false positives were similar, 

which is expected, since Cea18 recommend their median (i.e., PL = 50%) curve as the 

deterministic CRRM7.5 curve. 
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As discussed in the Introduction, the choice of optimal FS decision threshold for any engineering 

project should be guided by the associated costs (or consequences) of mispredicting liquefaction. 

As such, the optimal FS-CR relationships derived herein can be used to determine project-specific 

optimal FS for decision making. However, there are limitations in using the optimal FS-CR curves 

shown in Figure 2.4b. It can be observed that these optimal FS-CR curves have a jagged (non-

smooth) nature. Therefore, the relationship between optimal FS and CR may not be unique. In 

other words, for a given CR, there could be a range of FS that can be considered optimal and 

similarly, a given FS threshold may be optimal for a range of CR values. For example, consider 

the optimal FS-CR curve for BI14-SPT as shown in Figure 2.4b. It can be observed that FS ≈ 0.95 

is optimal for CR ranging from 0.28 to 1.4. Similarly, at CR ≈ 0.05, any FS threshold ranging from 

1.05 to 1.7 could be considered optimal. This is an artifact of the non-smooth nature of the ROC 

curve from which the optimal FS-CR curves were derived, which is likely a result of the limited 

number of case histories and the distribution of FS data in each case-history database. Additionally, 

the optimal FS-CR curves in Figure 2.4b only represent a limited range of FS, particularly, the 

maximum FS that can be determined using these curves could be lower than the FS that may be 

desired in practice. For example, using the optimal FS versus CR curve for BI14-SPT, the 

maximum value of FS = 1.25, however the minimum required FS for some critical projects could 

be as high as 2. The upper bound FS from each model is dictated by the largest FS for the 

“liquefaction” case histories in the associated database. However, the deterministic CRRM7.5 curves 

in these models are generally conservatively positioned such that most of the “liquefaction” case 

histories fall above or to the left of the curve; as a result, none of the “liquefaction” case histories 

have large FS. Inherently, selecting a minimum required FS that is greater than the upper bound 

FS from an optimal FS-CR relationship implies that the damage to the infrastructure due to 

liquefaction are intolerable, regardless of cost.   

Accordingly, it was hypothesized that combining the FS data from all the triggering models 

analyzed herein would result in a smoother ROC curve and the derivative optimal FS-CR curve. 

In combining the FS data, Cea18 was excluded since their deterministic CRRM7.5 corresponds to 

PL = 50% (i.e., median CRRM7.5 curve), as opposed to the often recommended PL = 15%. Figure 

2.5a contains the ROC curve for the FS data combined from BI14-SPT, BI14-CPT, Gea19, and 

Kea13 and Figure 2.5b contains the derivative optimal FS-CR curve. It can be observed that 

combining the FS data from different models results in relatively smoother ROC curve, as well as 
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a smoother optimal FS-CR curve. Additionally, this generic FS-CR curve (i.e., developed from the 

combined FS data) represents a wider range of FS than some of the individual FS-CR curves. As 

a result, the generic FS-CR curve might be preferred over the individual FS-CR curves. However, 

even the generic FS-CR curve is not without limitations. As can be observed from Figure 2.5b, 

even after combining the FS data, the jagged nature of the FS-CR curve still remains, suggesting 

that additional case histories are needed to derive a more-refined curve in the future. Moreover, it 

should be noted that, by combining the FS data from different models, the degree of conservatism 

inherent to the associated deterministic CRRM7.5 curves is also being averaged out. As a result, it 

could be argued that the use of triggering model-specific optimal FS-CR curves is preferred over 

the use of the generic curve in forward analyses. 

To illustrate how an optimal FS-CR curve can be used to select a project-specific optimal FS 

threshold based on cost-considerations, an example is presented using the generic optimal FS-CR 

curve shown in Figure 2.5b. Consider a site that has a computed FS of 1 for a design earthquake 

scenario. If a one-story residential building is to be built at this site, for which the CR is estimated 

as 0.7, using Figure 2.5b, the optimal FS for decision making would be 0.94. Since, the computed 

FS is greater than the optimal FS for this scenario, it is more economical to leave the site 

unimproved and pay for the cost of repairs due to damages from liquefaction, if it occurs (note that 

liquefaction triggering and lateral spreading generally does not pose a risk to life-safety, e.g., Green 

and Bommer 2019). On the other hand, if a critical facility (e.g., a hospital building) is to be built 

at the site and has an estimated CR of 0.05, using Figure 2.5b the optimal FS decision threshold 

would be 1.25. In this case, the computed FS is lower than the optimal FS and thus performing 

ground improvement upfront is favorable. 

2.4.2 Optimal PL versus CR relationships 

Using an approach similar to deriving the optimal FS-CR relationships, optimal PL-CR 

relationships were also derived for BI14-SPT, Cea18, BI14-CPT, and Kea13. The ROC curves 

derived using the PL data from each of these models are presented in Figure 2.6a and the derivative 

optimal PL-CR curves are presented in Figure 2.6b. As may be observed from Figure 2.6b, the 

optimal PL threshold is directly proportional to CR such that as CR decreases, the corresponding 

optimal PL threshold for decision making decreases. As with the optimal FS-CR curves, the 

optimal PL-CR curves are also specific to the probabilistic liquefaction triggering models and the 
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respective databases used in deriving them. Additionally, these optimal PL-CR curves also tend to 

be jagged, which is expected, since the underlying case-history database for the FS and PL data is 

the same. A generic optimal PL-CR curve was also derived by performing ROC analysis on the 

combined PL data from BI14-SPT, Cea18, BI14-CPT, and Kea13. Figure 2.7a shows the ROC 

curve for the combined PL data and Figure 2.7b shows the derivative optimal PL-CR curve. The 

optimal PL-CR curves are recommended to be used in a similar manner as the optimal FS-CR 

curves (i.e., the initial PL at a site can be compared with the optimal PL decision threshold at the 

CR of interest to determine whether or not liquefaction mitigation is worth the expense). It should 

be noted that, however, for each of the liquefaction triggering model used in this study, there is a 

one-to-one relationship between FS and PL (i.e., each FS corresponds to a certain PL). Therefore, 

the optimal FS-CR curves and optimal PL-CR curves contain similar information; as such, there is 

no additional benefits of using one over the other. 

Finally, the approaches presented in this study are simplistic in the sense that they do not consider 

the complexity and probabilistic nature of life-cycle cost analyses (e.g., the response of an 

infrastructure asset to earthquake motions having a range of return periods). Additionally, the 

analyses presented herein are based on the assumption that the risk mitigation schemes completely 

eliminate the liquefaction hazard, which may not always be the case. Regardless, the study 

demonstrates that some consideration should be given to the relative consequences of 

misprediction when selecting an FS or PL threshold upon which decisions will be made. 

2.5 Conclusions 

This study demonstrated how project-specific costs of mispredicting liquefaction triggering can be 

utilized in selecting an appropriate factor of safety (FS) against liquefaction for decision making. 

Specifically, relationships between the optimal FS decision threshold and the ratio of false-positive 

prediction costs to false-negative prediction costs (i.e., cost ratio, CR) were derived by performing 

ROC analyses on five recently proposed liquefaction triggering models (i.e., BI14-SPT, Cea18, 

BI14-SPT, Gea19, and Kea13), used in conjunction with their respective case-history databases. 

The optimal FS-CR relationships were found to be specific to the liquefaction triggering models 

and the associated case-history database being used. Additionally, it was shown that the individual 

relationships were not very smooth due to limited number of case histories in the corresponding 

database as well as the distribution of FS in the database. Consequently, generic optimal FS-CR 
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were derived by combining FS data from the individual models. However, it was shown that, even 

after using the combined FS data, the optimal FS-CR curves were not completely smooth, 

suggesting that additional liquefaction case histories will be needed to derive more refined 

relationships in the future. Using probability of liquefaction (PL) as an alternative to FS, 

relationships between CR and optimal PL thresholds were also derived using the same approach 

that was used to derive the optimal FS-CR curves. The optimal PL-CR curves, however, did not 

provide any additional information over the optimal FS-CR curves. This is because, there is a direct 

correlation between FS and PL, given the way the triggering models are currently developed.   
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Tables 

 

Table 2.1 Factors of Safety (FS) for liquefaction hazard assessment (from Martin and Lew 

1999). 

Consequences of Liquefaction N1,60cs FS 

Settlement 
≤15 1.1 

≥30 1.0 

Surface Manifestation 
≤15 1.2 

≥30 1.0 

Lateral Spreading 
≤15 1.3 

≥30 1.0 

 

 

Table 2.2 Summary of number of “liquefaction,” “no liquefaction,” and “marginal” case 

histories in the databases used in developing different liquefaction triggering models. 

Triggering 

model 

Number of cases 

liquefaction no liquefaction marginal total 

BI14 SPT 133 116 3 252 

Cea18 SPT 113 95 2 210 

BI14 CPT 180 71 2 253 

Gea19 CPT 180 71 2 253 

Kea13 Vs 287 124 4 415 
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Figures 

 

  

  

 

 

Figure 2.1 Case history data plotted together with the CRRM7.5 curves for different probabilities of 

liquefaction: (a) BI14-SPT; (b) Cea18; (c) BI14-CPT; (d) Gea19 (deterministic); (e) Kea13. The 

deterministic CRRM7.5 curves are shown in red. 
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Figure 2.2 Conceptual illustration of ROC analyses: (a) frequency distributions of liquefaction 

and no liquefaction observations as a function of FS; (b) corresponding ROC curve. 
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Figure 2.3 Histograms of FS for the case history databases used to develop: (a) BI14-SPT; (b) 

Cea18; (c) BI14-CPT; (d) Gea19; (e) Kea13. The light grey bars indicate the overlapping of the 

histograms of liquefaction and no liquefaction case histories. 
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Figure 2.4 ROC analyses of FS data for BI14-SPT, Cea18, BI14-CPT, Gea19, and Kea13: (a) 

ROC curves; and (b) optimal FS decision threshold versus CR curves. 

 

  

Figure 2.5 ROC analyses of FS data combined from BI14-SPT, BI14-CPT, Gea19, and Kea13: 

(a) ROC curve; and (b) optimal FS decision threshold versus CR curves. 
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Figure 2.6 ROC analyses of PL data for BI14-SPT, Cea18, BI14-CPT, and Kea13: (a) ROC 

curves; and (b) optimal PL decision threshold versus CR curves. 

 

  

Figure 2.7 ROC analyses of PL data combined from BI14-SPT, Cea18, BI14-CPT, and Kea13: 

(a) ROC curve; and (b) optimal PL decision threshold versus CR curves. 
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3.1 Abstract  

The occurrence and severity of surficial liquefaction manifestation was significantly over-

predicted for a large subset of case histories from the 2010-2011 Canterbury Earthquake sequence 

in New Zealand. Such over-predicted case histories generally were comprised of profiles having 

predominantly high fines-content, high plasticity soil strata. Herein, receiver operating 

characteristic (ROC) analyses of the liquefaction case histories from the Canterbury earthquakes 

are used to investigate the performance of three different manifestation severity index (MSI) 

models as a function of the amount of high fines-content, high plasticity strata in a profile, which 

is quantified through the soil behavior type index (Ic) averaged over the upper 10 m of a profile 

(Ic10). It is shown that, for each MSI model: (1) the threshold MSI value for deterministically 

distinguishing cases with and without manifestation increases as Ic10 increases; and (2) the ability 

of the MSI to segregate cases with and without manifestation decreases with increasing Ic10. 

Additionally, probabilistic models are proposed for evaluating the severity of surficial liquefaction 

manifestation as a function of MSI and Ic10. The approaches presented in this study allow for better 

interpretations of the predictions made by existing MSI models, given that their efficacy decreases 

at sites with high Ic10. An improved MSI model is ultimately needed such that the effects of high 

fines-content high plasticity soils are directly incorporated within the model itself. 
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3.2 Introduction 

The objective of this study is to investigate the effect of high fines-content, high plasticity soils on 

the prediction of the occurrence and severity of surficial liquefaction manifestations. Towards this 

end, the predictive performance of three existing manifestation severity index (MSI) models [i.e., 

Liquefaction Potential Index (LPI); Ishihara-inspired LPI (LPIish); and Liquefaction Severity 

Number (LSN)] are investigated as a function of the Cone Penetration Test (CPT) soil behavior 

type index (Ic) averaged over upper 10 m of the soil profile (Ic10), wherein Ic10 is used to infer the 

amount of high fines-content, high plasticity strata in the profile. Specifically, manifestation 

severity thresholds for distinguishing cases with different manifestation severities (e.g., cases with 

and without manifestation) for each MSI model considered herein are evaluated as a function of 

Ic10. Additionally, probabilistic models are proposed to evaluate the severity of surficial 

liquefaction manifestation as a function of computed MSI and Ic10. 

The 2010-2011 Canterbury earthquake sequence (CES) in New Zealand resulted in widespread 

liquefaction causing extensive damage to infrastructure throughout the city of Christchurch and its 

surroundings (e.g., Cubrinovski and Green 2010; Cubrinovski et al. 2011; Green et al. 2014; 

Maurer et al. 2014; van Ballegooy et al. 2014b). While the CES included up to ten earthquake 

events that triggered liquefaction (Quigley et al. 2013), the Mw 7.1, 4 September 2010 Darfield 

and the Mw 6.2, 22 February 2011 Christchurch earthquakes were the most significant in terms of 

the spatial extent and the severity of liquefaction damage. The ground motions from these 

earthquakes were recorded by a large network of strong motion stations in the area (Bradley and 

Cubrinovski 2011; Bradley 2012). Following the CES, an extensive geotechnical site 

characterization program was initiated in Christchurch and its environs, the majority of which was 

funded by the New Zealand Earthquake Commission (EQC), resulting in more than 35,000 CPT 

soundings performed to date. Additionally, the ground surface observations were well-documented 

via post-earthquake ground reconnaissance and high-resolution aerial photos and satellite imagery. 

All of this data is stored in the New Zealand Geotechnical Database (NZGD 2016), an online 

repository available for use by researchers and practitioners. This unprecedented quantity of data 

has been utilized by various studies to investigate the accuracies of various models that predict 

liquefaction triggering and the resulting severity of surficial liquefaction manifestations (e.g., 

Green et al. 2014; 2015; Maurer et al. 2014; 2015b,c; van Ballegooy et al. 2012; 2014b; 2015). 
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These studies have shown that while existing models were generally effective in predicting the 

liquefaction response, the severity of manifestation was systematically over-predicted for a non-

trivial number of sites. 

Such over-predictions may be attributed to several factors associated with the uncertainties in site 

characterization and in the models that predict liquefaction triggering and the severity of 

manifestations (e.g., Boulanger et al. 2016). Predominant factors include the presence of a thick 

non-liquefiable crust and/or interbedded non-liquefiable soils high in fines-content and plasticity 

(e.g., Maurer et al. 2014; 2015a,b; Green et al. 2018). In particular, the presence of plastic soils 

with low permeability can affect the generation and redistribution of excess pore pressure within 

a soil profile, potentially suppressing surface manifestation of the liquefied soils (e.g., Ozutsumi 

et al. 2002; Juang et al. 2005; Jia and Wang 2012; Maurer et al. 2015b; Beyzaei et al. 2018; 

Cubrinovski et al. 2019). In this regard, proposed manifestation severity thresholds specific to 

different MSI models have been found to be less applicable at sites with predominantly silty or 

clayey soils. For example, Lee et al. (2003) used LPI to analyze case histories from the 1999 Chi-

Chi (Taiwan) earthquake, mainly comprised of sites with silty sands and sandy silt strata, and 

proposed that a threshold LPI of 13 should be used to distinguish between sites with and without 

manifestations of liquefaction (in contrast with the LPI = 5 threshold originally proposed by 

Iwasaki et al. 1978). Similarly, Maurer et al. (2015b) analyzed the CES case histories and found 

the threshold LPI value to be significantly higher at sites with predominantly silty and clayey soil 

mixtures than at sites with predominantly clean sands or silty sands. Maurer et al. (2015b) made 

this distinction using the average CPT soil-behavior-type index (Ic) for the uppermost 10 m of each 

soil profile (Ic10) to parse sites into those comprised of predominantly clean sands or silty sands 

(Ic10 < 2.05), and those comprised of predominantly silty or clayey soil mixtures (Ic10 ≥ 2.05). They 

found that sites with Ic10 < 2.05 had an optimum threshold LPI for distinguishing sites with and 

without manifestation of 4.9 whereas sites with Ic10 ≥ 2.05 had an optimum threshold LPI of 13. 

The findings from these studies indicate that the relationship between the computed MSI and the 

severity of surficial liquefaction manifestation is dependent on the extent to which a soil profile 

contains high fines-content high plasticity soil strata. 

This study rigorously investigates the effects of high fines-content, high plasticity soils on the 

predictive performance of three existing MSI models using empirical liquefaction case histories 
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resulting from Canterbury, New Zealand earthquakes. In particular, this study utilizes case 

histories from the two earthquake events included in the CES (i.e., the Mw 7.1 September 2010 

Darfield and the Mw 6.2 February 2011 Christchurch earthquakes), as well as from the more recent 

Mw 5.7 February 2016 Valentine’s Day earthquake. Using an approach similar to Maurer et al. 

(2015b), this study uses Ic10 to parse soil profiles by their average inferred soil-type, but considers 

multiple finer bins of Ic10 to study the influence of Ic10 on the predictive performance of MSI models 

with greater resolution. Specifically, receiver operating characteristic (ROC) analyses are 

performed to investigate the optimum MSI thresholds specific to LPI, LPIish, and LSN models as 

well as their predictive efficiencies, as a function of Ic10. Additionally, using logistic regression, 

probabilistic models are proposed for predicting the severity of manifestation as a function of MSI 

and Ic10. In the following, an overview of the LPI, LPIish, and LSN models is presented, which is 

followed by a summary of the liquefaction case-history dataset and the methodologies used to 

analyze them, to include an overview of ROC analysis. Finally, the results are presented and 

discussed in detail. 

3.3 Overview of existing manifestation severity index (MSI) models 

3.3.1 Liquefaction Potential Index (LPI) 

The liquefaction potential index (LPI) proposed by Iwasaki et al. (1978) is commonly used to 

characterize the expected severity of the surficial liquefaction manifestation: 

𝐿𝑃𝐼 =  ∫ 𝐹(𝐹𝑆) ∙ 𝑤(𝑧) 𝑑𝑧
𝑧𝑚𝑎𝑥

0

 (3.1) 

where FS is the factor of safety against liquefaction triggering, computed by a liquefaction 

triggering model; z is depth below the ground surface in meters; zmax is the maximum depth 

considered, generally taken as 20 m; and F(FS) and w(z) are functions that account for the weighted 

contributions of FS and z towards the severity of surficial liquefaction manifestation. Specifically, 

F(FS) = 1 – FS for FS ≤ 1 and F(FS) = 0 otherwise; and w(z) = 10 – 0.5z. Thus, LPI assumes that 

the severity of surface manifestation depends on the cumulative thickness of liquefied soil layers, 

the proximity of those layers to the ground surface, and the amount by which FS in each layer is 

less than 1.0. Given this definition, LPI can range from zero to 100. Analyzing the Standard 

Penetration Test (SPT) data from 55 sites in Japan, Iwasaki et al. (1978) proposed that severe 



34 

 

liquefaction is expected for sites where LPI > 15 but not where LPI < 5. This criterion, defined by 

two threshold values of LPI, is commonly referred to as “Iwasaki Criterion.” In today’s practice, 

LPI = 5 is commonly used as a deterministic threshold for predicting surficial liquefaction 

manifestation, such that some degree of manifestation is expected where LPI > 5, but no 

manifestation is expected where LPI < 5. 

3.3.2 Ishihara-inspired Liquefaction Potential Index (LPIish) 

Maurer et al. (2015a) proposed modifications to LPI to account for the influence of non-liquefied 

crust thickness on the severity of surficial liquefaction manifestations using the relationship 

proposed by Ishihara (1985), that relates the thicknesses of the non-liquefied crust (H1) and the 

liquefied stratum (H2) to the occurrence of surficial liquefaction manifestation. The modified LPI 

was termed LPIish and is defined as (Maurer et al. 2015a): 

𝐿𝑃𝐼𝑖𝑠ℎ = ∫ 𝐹(𝐹𝑆) ∙
25.56

𝑧

𝑧𝑚𝑎𝑥

𝐻1

∙ 𝑑𝑧 (3.2a) 

where 

𝐹(𝐹𝑆) = {
  1 − 𝐹𝑆 𝑖𝑓 𝐹𝑆 ≤ 1 ∩ 𝐻1 ∙ 𝑚(𝐹𝑆) ≤ 3

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3.2b) 

and 

𝑚(𝐹𝑆) = 𝑒𝑥𝑝 (
5

25.56(1 − 𝐹𝑆)
) − 1;    𝑚(𝐹𝑆 > 0.95) = 100 

(3.2c) 

where z, FS and zmax are as defined previously for LPI (Eq. 3.1). As can be surmised from Eq. 3.2, 

the LPIish framework accounts for the relative thicknesses of H1 and H2 by imposing an additional 

constraint on F(FS). Additionally, LPIish uses a power-law depth weighting function, consistent 

with Ishihara’s boundary curves, which allows LPIish to give a higher weight to shallower layers 

than LPI in predicting the severity of surficial manifestation. 

3.3.3 Liquefaction Severity Number (LSN) 

Liquefaction Severity Number (LSN) was proposed by van Ballegooy et al. (2012; 2014b) and uses 

post-liquefaction volumetric strain (εv) as an index to account for the influence of contractive and 

dilative tendencies of soils on the severity of surficial manifestation. LSN is given by: 
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𝐿𝑆𝑁 = ∫ 1000 ∙
휀𝑣

𝑧
𝑑𝑧

𝑧𝑚𝑎𝑥

0

 (3.3) 

where z and zmax are as defined previously for LPI (Eq. 3.1). zmax is generally taken as 10 m for 

LSN, however this study considers 20 m. εv can be estimated as a function of soil density (Dr) and 

FS using the relationships originally proposed by Ishihara and Yoshimine (1992) and later 

modified by Zhang et al. (2002) to express εv as a function of normalized and fines-corrected cone 

tip resistance (qc1Ncs) and FS. Similar to LPIish, LSN also uses a power-law depth weighting 

function. 

3.4 Data and Methodology 

3.4.1 Canterbury earthquakes liquefaction case histories 

This study utilizes about 3500 CPT soundings from sites where the severity of surficial 

manifestation was well-documented after at least one of the following earthquakes: the Mw 7.1 

September 2010 Darfield earthquake, the Mw 6.2 February 2011 Christchurch earthquake, and the 

Mw 5.7 February 2016 Valentine’s Day earthquake, collectively referred to herein as the 

Canterbury earthquakes (CE). A detailed description of the quality control criteria used in 

compiling these CPT soundings is provided in Maurer et al. (2014; 2015b). Cases where the 

predominant form of manifestation was documented as lateral spreading were excluded from the 

analyses, since none of the MSI models considered in this study account for the factors governing 

the occurrence and severity of lateral spreading. For all other cases, the severity of manifestation 

was classified as either “marginal,” “moderate,” or “severe” following the Green et al. (2014) 

criteria. With all these considerations, 9631 high quality case histories were used in further 

analyses. 

Peak ground accelerations (PGAs) are required to estimate the seismic demand at the case history 

sites. In prior CE studies (e.g., Green et al. 2014; Maurer et al. 2014; 2015b,c,d; 2017a,b; 2019; 

van Ballegooy et al. 2015; Upadhyaya et al. 2018; among others), PGAs were obtained using the 

Bradley (2013b) procedure, which combines the unconditional PGA distributions as estimated by 

the Bradley (2013a) ground motion prediction equation, the actual recorded PGAs at the strong 

motion stations (SMSs), and the spatial correlation model of Goda and Hong (2008), to compute 

the conditional PGAs at the sites of interest. However, the PGAs at four SMSs during the Mw 6.2 
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February 2011 Christchurch earthquake were inferred to be associated with high-frequency 

dilation spikes as a result of liquefaction triggering in the soil profiles at the stations and were 

higher than the pre-liquefaction PGAs (e.g., Wotherspoon et al. 2014; 2015). Such artificially high 

PGAs at the liquefied SMSs can result in over-estimated PGAs at the nearby case-history sites 

(hence, overly conservative seismic demand), which in turn can lead to over-predictions of the 

severity of surficial liquefaction manifestations (Upadhyaya et al. 2019a). Accordingly, in the 

present study, pre-liquefaction PGAs at the four liquefied SMSs were used to estimate PGAs at the 

case history locations for the 2011 Christchurch earthquake. Note that for the 2010 Darfield and 

2016 Valentine’s day earthquakes, previously estimated PGAs remain unchanged.  

Accurate estimation of ground-water table (GWT) depth is critical to evaluating liquefaction 

triggering and the resulting severity of surficial manifestations (e.g., Chung and Rogers 2011; 

Maurer et al. 2014). The GWT depth at each case-history site immediately prior to the earthquake 

was estimated using the robust, event-specific regional ground water models of van Ballegooy et 

al. (2014a), as in prior CE studies (e.g., Maurer et al. 2014; 2015b,c,d; 2017a,b; 2019; van 

Ballegooy et al. 2015; Upadhyaya et al. 2018; among others). 

3.4.2 Evaluation of liquefaction triggering and severity of surficial liquefaction manifestation 

Factor of safety (FS) against liquefaction is used as a primary input in computing LPI, LPIish, and 

LSN. In this study, FS was computed using the deterministic liquefaction triggering model of 

Boulanger and Idriss (2014). Inherent to this process, an Ic cutoff value of 2.5 was used to 

distinguish between liquefiable and non-liquefiable soils, such that soils with Ic > 2.5 were 

considered to be non-liquefiable (Maurer et al. 2017b; 2019). Moreover, the fines-content (FC) 

was estimated using the Christchurch-specific Ic-FC correlation proposed by Maurer et al. (2019). 

Finally, for each of the 9631 case histories considered in this study, LPI, LPIish, and LSN values 

were computed using Eqs. 3.1, 3.2, and 3.3, respectively. 

3.4.3 Receiver Operating Characteristic (ROC) analyses 

To investigate the influence of high fines-content, high plasticity soils on the predictive 

performance of each MSI model considered in this study, the CE case histories were divided into 

multiple subsets on the basis of Ic10. As stated earlier, Ic10 is used herein to infer the extent to which 

a profile contains high fines-content, high plasticity soils. The use of Ic for inferring soil type was 
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first proposed by Jeffries and Davis (1993) and then modified and popularized by Robertson and 

Wride (1998). Using CPT data and lab tests on samples from parallel borings, Maurer et al. (2017b; 

2019) confirmed the suitability of using Ic to infer fines-content and soil type within the CE study 

area. Receiver Operating Characteristics (ROC) analyses (e.g., Fawcett 2005) were then performed 

on each Ic10 subset to evaluate: (1) the optimum threshold MSI values for distinguishing cases with 

and without manifestation; and (2) the predictive efficiency of the MSI model, as a function of Ic10. 

An overview of the ROC analysis is presented in the following section. 

3.4.3.1 Overview of ROC analysis 

Receiver Operating Characteristics (ROC) analysis has been widely used to evaluate the 

performance of diagnostic models, including extensive use in medical diagnostics (e.g., Zou 2007) 

and to a much lesser degree in geotechnical engineering (e.g., Oommen et al. 2010; Maurer et al. 

2015b,c,d; 2017a,b; 2019; Green et al. 2017; Zhu et al. 2017; Upadhyaya et al. 2018; 2019b). In 

particular, in cases where the distribution of “positives” (e.g., cases of observed surficial 

liquefaction manifestation) and “negatives” (e.g., cases of no observed surficial liquefaction 

manifestations) overlap, ROC analyses can be used (1) to identify the optimum diagnostic 

threshold (e.g., MSI thresholds) for distinguishing between the positives and negatives; and (2) to 

evaluate the predictive efficiency of a diagnostic model (i.e., the ability to distinguish between 

positives and negatives using thresholds). The primary focus of this paper is on (1). 

A ROC curve is a plot of the True Positive Rate (RTP) (i.e., surficial liquefaction manifestation was 

observed, as predicted) versus the False Positive Rate (RFP) (i.e., surficial liquefaction 

manifestation is predicted, but was not observed) for varying threshold values (e.g., MSI 

thresholds). Figure 3.1 shows a conceptual illustration of ROC analysis using LPI as an example. 

The distributions of LPI for positives and negatives is shown in Figure 3.1a, and the relationship 

among the distributions, the threshold values, and the ROC curve, is shown in Figure 3.1b.  

In ROC curve space, a diagnostic test that has no predictive ability (i.e., a random guess) results 

in a ROC curve that plots as 1:1 line through the origin. In contrast, a diagnostic test that has a 

perfect predictive ability (i.e., a perfect model) plots along the left vertical and upper horizontal 

axes, connecting at the point (0,1) and indicates the existence of a threshold value that perfectly 

segregates the dataset (e.g., all cases with observed surficial manifestation will have MSI above 

the threshold and all cases with no observed surficial manifestation will have MSI below the 
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threshold). The area under the ROC curve (AUC) is statistically equivalent to the probability that 

cases with observed surficial liquefaction manifestation have higher computed MSI values than 

cases without observed surficial liquefaction manifestations (e.g., Fawcett 2005). Therefore, a 

larger AUC indicates better predictive capabilities. To put this into perspective, a random guess 

returns an AUC of 0.5 whereas a perfect model returns an AUC of 1. The optimum operating point 

(OOP) in a ROC analysis is defined as the threshold value (e.g., threshold LPI) that minimizes the 

rate of misprediction [i.e., RFP + (1-RTP)]. Contour of the quantity [RFP + (1-RTP)] plots as a straight 

line in ROC space with slope of 1, also called an iso-performance line, as illustrated in Figure 3.1b. 

As such, an iso-performance line is tangent to the ROC curve at the OOP.  

3.5 Results and Discussion 

3.5.1 Relationship between MSI and severity of surficial liquefaction manifestation as a 

function of Ic10 

For each MSI model, ROC analyses were performed on the entire dataset as well as on the subsets 

of the dataset formed by grouping the data into different bins of Ic10. Similar to Maurer et al. 

(2015b), the dataset was initially divided into two bins of Ic10: Ic10 < 2.05 and Ic10 ≥ 2.05, where Ic 

= 2.05 is the Ic boundary between clean to silty sands and silty sands to sandy silts (Robertson and 

Wride 1998). Table 3.1 summarizes the ROC statistics (i.e., AUC and OOP values) for LPI, LPIish, 

and LSN models, considering the entire dataset as well as the two different subsets of Ic10. It can 

be observed that, for each MSI model, the OOP for the subset of cases with Ic10 ≥ 2.05 is 

significantly higher than that for the subset with Ic10 < 2.05, indicating that the relationship between 

computed MSI and the severity of surficial liquefaction manifestation varies with Ic10. For example, 

for Ic10 < 2.05, the threshold LPI for distinguishing cases with and without manifestation was found 

to be 3.7. In contrast, the threshold LPI for Ic10 ≥ 2.05 was found to be 7.5. Note that these threshold 

LPI values are found to differ from those computed by Maurer et al. (2015b), who found the 

threshold LPI values for Ic10 < 2.05 and Ic10 ≥ 2.05 to be 4.9 and 13, respectively. Potential factors 

for this discrepancy may include the use of a significantly larger number of case histories in the 

present study due to addition of case histories from the 2016 Valentine’s Day earthquake, updated 

estimates of PGAs for the 2011 Christchurch earthquake, and the Ic cutoff of 2.5 used herein versus 

the Ic cutoff of 2.6 used by Maurer et al 2015b. Moreover, it was observed that, while the OOPs 

for Ic10 < 2.05 were very similar to those obtained using the entire dataset, the OOPs for Ic10 ≥ 2.05 
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were significantly higher. This is likely because the Ic10 < 2.05 subset contains a significantly larger 

number of case histories than the Ic10 ≥ 2.05 subset (note that 75% of the CE case histories have 

Ic10 < 2.05). Consequently, MSI thresholds that are derived using the entire dataset may accurately 

predict the manifestations severity for profiles having predominantly clean to silty sands, but may 

over-predict the manifestation severity for profiles having predominantly silty to clayey soil 

mixtures. Furthermore, it may be observed that, for each MSI model, the AUC values for Ic10 < 

2.05 are higher than those for Ic10 ≥ 2.05, indicating that each MSI model performs better at 

predicting the severity of surficial liquefaction manifestation for sites with Ic10 < 2.05.   

Similar analyses were performed using multiple finer bins of Ic10 to evaluate the influence of Ic10 

on the predictive performance of the MSI models in greater resolution. Example Ic versus depth 

profiles that have Ic10 falling in five different ranges: Ic10 < 1.7; 1.7 ≤ Ic10 < 1.9; 1.9 ≤ Ic10 < 2.1; 

2.1 ≤ Ic10 < 2.3; and Ic10 ≥ 2.3 are shown in Figure 3.2. Table 3.2 summarizes AUC and OOP values 

for these five different bins of Ic10 for LPI, LPIish, and LSN models. In general, regardless of the 

MSI model used, the threshold MSI values were found to increase with increasing Ic10, which 

clearly indicates that, for each MSI model, the relationship between computed MSI and the severity 

of surficial liquefaction manifestation is Ic10-dependent. As such, for a given MSI value, the 

severity of manifestation decreases as Ic10 increases. Therefore, Ic10-specific MSI thresholds may 

be employed to more-accurately estimate the severity of surficial liquefaction manifestation at a 

given site. Furthermore, it can be observed that AUC values generally decrease with increasing 

Ic10, indicating that the predictive efficiency of the MSI models decreases with increasing Ic10.  

It should be noted that the Ic10-specific MSI thresholds determined herein, particularly for higher 

Ic10 bins, may only apply to soil profiles that have stratigraphies similar to those in Christchurch, 

New Zealand (e.g., Figure 3.2). The high Ic10 soil profiles in Christchurch are generally found to 

be non-uniform with multiple interbedded layers of high fines-content high plasticity soils. 

Different depositional environments from those in Christchurch could result in a profile having a 

given Ic10, but a very different liquefaction manifestation response. 

 3.5.2 Probabilistic assessment of the severity of surficial liquefaction manifestation as a 

function of MSI and Ic10 

As may be inferred from the results shown in the previous section, for any computed MSI, the 

probability of surficial liquefaction manifestation decreases as Ic10 increases. As such, the 
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probability of manifestation may be empirically estimated as a function of MSI and Ic10 using a 

logistic regression approach. Logistic regression is a tool that can be used to estimate the 

probability that an event occurs given one or more predictor variables. Multiple liquefaction 

studies in the literature (e.g., Li et al. 2006a,b; Papathanassiou 2008; Chung and Rogers 2017; 

among others) have used logistic regression to estimate the probability of surface manifestation as 

a function of independent predictor variables (e.g., LPI). 

The following empirical model was adopted in this study to express the probability of surficial 

liquefaction manifestation as a function of MSI and Ic10: 

𝑃(𝑆|𝑀𝑆𝐼, 𝐼𝑐10) =
1

1 + 𝑒−[𝐵𝑜+(𝐵1+𝐵2∙𝐼𝑐10)∙𝑀𝑆𝐼]
 (3.4) 

where, B0, B1, and B2 are the model coefficients that can be determined through regression 

analyses. 

For each MSI model, B0, B1, and B2 were obtained by performing generalized linear model 

regression (glmfit) with a logit link function in matlab (The Mathworks 2018), which is based on 

the maximum likelihood estimation approach (Baker 2011; 2015). Table 3.3 summarizes these 

model coefficients obtained using LPI, LPIish, and LSN. Moreover, Figures 3.3, 3.4, and 3.5 show 

plots of Eq. 3.4 for different values of Ic10, using LPI, LPIish, and LSN models, respectively. As 

such, the curves shown in Figures 3.3 to 3.5 can be used to estimate the probability of surficial 

liquefaction manifestation for any computed MSI value as a function of Ic10. For example, using 

Figure 3.3, for computed LPI = 10, the probability of surficial liquefaction manifestation would be 

~84% for a site with Ic10 = 1.7 but only ~31% for a site with Ic10 = 2.7.  

Furthermore, using the CE dataset, the predictive performance of the P(S|MSI,Ic10) model was 

compared with that of a probabilistic model expressed solely as a function of MSI [i.e., P(S|MSI)], 

to investigate whether including Ic10 as a supplementary predictor variable to MSI provides any 

added benefit. The P(S|MSI) model is defined as: 

𝑃(𝑆|𝑀𝑆𝐼) =
1

1 + 𝑒−[𝐶𝑜+𝐶1∙𝑀𝑆𝐼]
 (3.5) 
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where, C0 and C1 are the model coefficients and were determined through the regression approach 

described earlier. The P(S|MSI) coefficients obtained using LPI, LPIish, and LSN are summarized 

in Table 3.4.  

Two different performance metrics were used to compare the predictive efficiencies of the 

P(S|MSI,Ic10) and P(S|MSI) models: (a) AUC from ROC analysis; and (b) Akaike Information 

Criterion (AIC) (Akaike 1974). While the AUC from ROC analysis is already discussed in a 

previous section, a brief description of the Akaike Information Criterion (AIC) is provided herein. 

AIC is a likelihood-based metric that can be used to select a best performing model from a set of 

competing models fitted to the same data; the best fitted model is the one that has minimum AIC. 

AIC can be computed as: 

𝐴𝐼𝐶 =  −2 ∙ 𝑙𝑛(𝐿) + 2𝐾 (3.6) 

where, L is the likelihood of producing the observed data for a given model and K is the number 

of model parameters. 

Table 3.5 compares the AUC and AIC values for the P(S|MSI,Ic10) and P(S|MSI) models derived 

using LPI, LPIish, and LSN. It may be observed that, regardless of the MSI model being used, the 

P(S|MSI,Ic10) model has a slightly higher AUC and a lower AIC than the P(S|MSI) model, which is 

indicative of the improved performance of the former over the latter. Also shown in Table 3.5 are 

the increase in AUC and decrease in AIC values, designated as ΔAUC and ΔAIC, respectively. It 

can be observed that, among the three MSI models considered in this study, ΔAUC and ΔAIC 

values follow the order: LPI > LPIish > LSN. This indicates that inclusion of Ic10 as the 

supplementary predictive variable was most effective for LPI and least effective for LSN. It should 

be noted however that the increase in AUC for each MSI is very small, indicating that the 

improvement in the model due to the inclusion of Ic10 may not be statistically significant. This is 

likely because the CE dataset is largely dominated by cases with lower Ic10. As mentioned earlier, 

75% of the CE case histories have Ic10 < 2.05. As a result, the improvements in prediction due to 

inclusion of Ic10 is likely being averaged out among the different Ic10 ranges. 

Manifestation severity indices have been shown to correlate with the observed severity of surficial 

liquefaction manifestation, such that as MSI increases, the degree of manifestation severity 

increases. It is thus implied that the probability of surficial liquefaction manifestation would 
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similarly correlate with the observed degree of manifestation severity. As such, criteria based on 

probability of surficial liquefaction manifestation may be established to assess the severity of 

manifestation as a function of MSI and Ic10. For each MSI model, using CE case histories, ROC 

analyses were performed on the P(S|MSI,Ic10) values computed using Eq. 3.4, to obtain optimum 

threshold probabilities distinguishing: (a) cases with no manifestation from cases with any 

manifestation severity; (b) cases with no manifestation from cases with marginal manifestation; 

(c) cases with marginal manifestation from cases with moderate manifestation; and (d) cases with 

moderate manifestation from cases with severe manifestation. The MSI model-specific threshold 

probabilities of manifestation for distinguishing cases with different severities of manifestation are 

summarized in Table 3.6. Thus, instead of using Ic10-specific threshold MSI values as determined 

previously (e.g., Table 3.2), one set of probability-based criteria as shown in Table 3.6 may be 

used to assess the severity of the surficial liquefaction manifestation at any site.  

3.6 Conclusions 

Utilizing 9631 high quality liquefaction case histories from the 2010-2016 Canterbury 

earthquakes, this study investigated the predictive performances of LPI, LPIish, and LSN models, 

as a function of the CPT soil behavior type index (Ic) averaged over the upper 10 m of a soil profile 

(Ic10), wherein Ic10 is used to infer the extent to which a profile contains high fines-content, high 

plasticity soils. It was shown that, for each manifestation severity index (MSI) model: (1) the 

relationship between computed MSI and the severity of surficial liquefaction manifestation is Ic10-

dependent, such that at any given MSI value, the severity of manifestation decreases as Ic10 

increases; and (2) the predictive efficiency of the MSI model (i.e., the ability to segregate cases 

based on observed manifestation severity using MSI thresholds) decreases as Ic10 increases. These 

findings suggest that Ic10-specific severity thresholds may be needed to accurately estimate the 

severity of surficial liquefaction manifestations using an MSI model. However, even when Ic10-

specific thresholds are employed, the MSI models are unlikely to efficiently predict the severity of 

manifestations. 

Additionally, using logistic regression, probabilistic models were proposed for evaluating the 

severity of surficial liquefaction manifestation as a function of MSI and Ic10. It was shown that the 

predictive efficiencies of these models were higher than the models defined solely as a function of 

MSI, suggesting that including Ic10 as an additional predictor variable may improve the predictions 
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of the liquefaction manifestation severity. Furthermore, optimum threshold probabilities for 

different severities of surficial liquefaction manifestation were determined by performing ROC 

analyses on the CE dataset. 

It should however be noted that the findings of this study are artifacts of the inherent limitations 

in the existing MSI models to account for the influence of high fines-content high plasticity soils 

on the occurrence and severity of surficial liquefaction manifestations. Given that the MSI models 

perform poorly in profiles having high fines-content high plasticity soils, the approaches presented 

herein are indirect ways to correct the predictions made by the existing MSI models. The ultimate 

goal of this research is to understand and incorporate the influence of high fines-content, high 

plasticity soils within the manifestation model itself. Finally, the findings from this study are 

entirely based on the case histories from Canterbury, New Zealand, earthquakes; their applicability 

outside the study area is unknown. 
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Tables 

 

Table 3.1 Summary of ROC statistics on two subsets of Ic10 for different MSI models. 

MSI 

model 

All Ic10 Ic10 < 2.05 Ic10 ≥ 2.05 

AUC OOP AUC OOP AUC OOP 

LPI 0.825 3.7 0.850 3.7 0.764 7.5 

LPIish 0.828 1.7 0.847 1.7 0.776 4.4 

LSN 0.775 10 0.798 11 0.695 15 

 

Table 3.2 Summary of ROC statistics on multiple finer subsets of Ic10 for different MSI models. 

MSI 

model 

Ic10 < 1.7 1.7 ≤ Ic10 < 1.9 1.9 ≤ Ic10 < 2.1 2.1 ≤ Ic10 < 2.3 Ic10 ≥ 2.3 

AUC OOP AUC OOP AUC OOP AUC OOP AUC OOP 

LPI 0.860 2.3 0.855 3.9 0.808 7.5 0.798 7.1 0.791 8.8 

LPIish 0.850 0.5 0.857 1.7 0.814 3.1 0.804 3.9 0.737 4.4 

LSN 0.812 8 0.801 13 0.745 13 0.718 15 0.659 15 

 

Table 3.3 P(S|MSI,Ic10) model coefficients. 

MSI 

model 

B0 B1 B2 

LPI -1.677 0.645 -0.206 

LPIish -1.408 0.747 -0.233 

LSN -1.580 0.147 -0.033 

 

Table 3.4 P(S|MSI) model coefficients. 

MSI 

model 

C0 C1 

LPI -1.567 0.208 

LPIish -1.358 0.259 

LSN -1.549 0.079 
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Table 3.5 Comparison of AUC and AIC values between P(S|MSI,Ic10) and P(S|MSI) models. 

MSI 

model 

AUC 
ΔAUC 

AIC 
ΔAIC 

P(S|MSI, Ic10) P(S|MSI) P(S|MSI, Ic10) P(S|MSI) 

LPI 0.833 0.825 0.008 9741 10054 313 

LPIish 0.834 0.828 0.006 10080 10275 195 

LSN 0.777 0.775 0.002 11175 11222 47 

 

Table 3.6 Optimum threshold probabilities for different severities of surficial liquefaction 

manifestation. 

Manifestation severity 
Probability thresholds 

P(S|LPI, Ic10) P(S|LPIish, Ic10) P(S|LSN, Ic10) 

Any manifestation 0.37 0.31 0.35 

Marginal manifestation 0.25 0.28 0.31 

Moderate manifestation 0.59 0.49 0.48 

Severe manifestation 0.82 0.78 0.60 
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Figures 

 

 

Figure 3.1 Conceptual illustration of ROC analyses: (a) frequency distributions of surficial 

liquefaction manifestation and no surficial liquefaction manifestation observations as a function 

of LPI; (b) corresponding ROC curve (after Maurer et al. 2015b,c,d). 
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Figure 3.2 Example Ic versus depth profiles from the CE dataset that have Ic10 falling in different 

ranges considered in this study: Ic10 < 1.7; 1.7 ≤ Ic10 < 1.9; 1.9 ≤ Ic10 < 2.1; 2.1 ≤ Ic10 < 2.3; and Ic10 

≥ 2.3. 
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Figure 3.3 Probability of surficial liquefaction manifestation as a function of LPI and Ic10. 

 

 

Figure 3.4 Probability of surficial liquefaction manifestation as a function of LPIish and Ic10. 
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Figure 3.5 Probability of surficial liquefaction manifestation as a function of LSN and Ic10. 
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Chapter 4: Ishihara-inspired Liquefaction Severity Number (LSNish) 
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4.1 Abstract  

The severity of surface manifestation of liquefaction is commonly used as a proxy for liquefaction 

damage potential. However, the existing models used in predicting the severity of manifestation 

may not fully account for factors controlling manifestation. Herein, a new model is derived using 

insights from the existing models and the understanding of the mechanics of manifestation from 

the literature. The new manifestation model is termed LSNish since it is a merger of the 

Liquefaction Severity Number (LSN) formulation and Ishihara’s relationship for predicting surface 

manifestation based on the relative thicknesses of the non-liquefied crust and the underlying 

liquefied layer. As such, LSNish accounts for the post-liquefaction volumetric strain potential as 

well as the crust thickness in predicting the severity of surficial liquefaction manifestations. LSNish 

was evaluated using compiled Canterbury, New Zealand, liquefaction case histories and its 

predictive efficiency was compared to those of existing models. It was found that despite more 

fully accounting for factors that influence surficial liquefaction manifestations, LSNish did not 

demonstrate improved performance over the existing models. Several possible causes for such 

findings are discussed; a likely reason is the double counting of the dilative tendencies of dense 

soils by LSNish, since the liquefaction triggering model inherently accounts for such effects. This 

same issue is a shortcoming of LSN. A proper accounting and clear separation of distinct factors 

influencing triggering and manifestation in future would improve the performance of LSNish. 
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4.2 Introduction 

The main objective of this study is to develop a new model for predicting the occurrence and the 

severity of surficial liquefaction manifestation that accounts for the influences of non-liquefied 

crust/capping layer thickness as well as contractive/dilative tendencies of soil. The manifestation 

model developed herein is named as Ishihara inspired Liquefaction Severity Number (LSNish) 

since it is a conceptual and mathematical merger of Ishihara’s H1-H2 boundary curves (Ishihara 

1985) for predicting the occurrence of surficial liquefaction manifestations and the Liquefaction 

Severity Number (LSN) formulation by van Ballegooy et al. (2012; 2014b).  

The severity of surficial liquefaction manifestation is often used as a proxy for liquefaction-

induced damage potential for near-surface infrastructure. As such, accurate prediction of the 

severity of surficial liquefaction manifestation is critical for reliably assessing the risk due to 

liquefaction. This requires a proper understanding of the mechanics of surficial manifestation and 

the factors controlling it. Past studies have shown that surficial liquefaction manifestation is 

governed by several factors, including: (1) properties of the liquefied strata such as the depth, 

thickness, density, fines-content, and post-triggering strain potential; (2) properties of the non-

liquefied soil strata (either in the form of a thick crust/capping layer or interbedded within a soil 

profile) such as fines-content, plasticity, permeability, and thickness; and (3) the 

stratification/sequencing of the liquefied and non-liquefied strata and the cross-interaction between 

these layers within a soil profile (e.g., Iwasaki et al. 1978; Ishihara and Ogawa 1978; Ishihara 

1985; van Ballegooy et al. 2012; 2014b; Maurer et al. 2015a,b; Upadhyaya et al. 2018; Beyzaei et 

al. 2018; Cubrinovski et al. 2019; among others). 

Different models have been proposed in the literature to predict the occurrence/severity of surficial 

liquefaction manifestation, usually in the form of a numerical index, referred to herein as a 

manifestation severity index (MSI). These models use the results from a liquefaction triggering 

model and tie the cumulative response of the soil profile to the occurrence/severity of surficial 

liquefaction manifestation. However, not all the factors influential to surficial liquefaction 

manifestation, as discussed above, are adequately accounted for by the existing MSI models. One 

of the earliest models is the Liquefaction Potential Index (LPI), proposed by Iwasaki et al. (1978), 

which considers the influence of depth, thickness, and soil density (Dr) through factor of safety 

(FS) of the liquefied layers (e.g., for a given level of seismic demand, FS increases as Dr increases) 
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to predict the severity of manifestation. While LPI has been widely used to characterize the damage 

potential of liquefaction throughout the world (e.g., Sonmez 2003; Papathanassiou et al. 2005; 

2008; Baise et al. 2006; Cramer et al. 2008; Hayati and Andrus 2008; Holzer et al. 2006; 2008; 

2009; Yalcin et al. 2008; Chung and Rogers 2011; Dixit et al. 2012; Sana and Nath, 2016; among 

others), it was found to perform inconsistently during some recent earthquakes (e.g., the 2010-

2011 Canterbury earthquakes in New Zealand) (e.g., Maurer et al 2014; 2015b,c). This 

inconsistency can be attributed to limitations in the LPI formulation to appropriately account for 

all the factors influencing surficial manifestation of liquefaction. Specifically, the LPI formulation 

may not adequately account for the contractive/dilative tendencies of the soil on the potential 

consequences of liquefaction. For example, a dense and a loose sand stratum both having FS = 0.8 

could result in the same LPI value but their consequences will likely be very different. Moreover, 

the LPI formulation assumes that surface manifestations will not occur unless FS < 1. However, 

surficial manifestations related to liquefaction may occur due to elevated excess pore pressures 

during shaking even when FS ≥ 1. Additionally, the LPI formulation does not account for the 

influence of thick non-liquefied crust and/or the effects of non-liquefiable high fines-content (FC), 

high plasticity soils on the severity of surficial liquefaction manifestations. Although the influence 

of these effects could be accounted for by using different LPI manifestation severity thresholds 

(i.e., LPI values distinguishing between different manifestation severity classes, e.g., cases with 

and without manifestation) for these conditions (e.g., Maurer et al. 2015b; Upadhyaya et al. 

2019c), it is preferred to have a model that can directly account for these conditions in a less ad 

hoc manner. 

In efforts to address some of the shortcomings of the LPI formulation, alternative MSI models 

were proposed, such as the Ishihara-inspired LPI (LPIish) by Maurer et al. (2015a) and 

Liquefaction Severity Number (LSN) by van Ballegooy et al. (2012; 2014b). A major improvement 

of LPIish over LPI is that it accounts for the effect of the non-liquefiable crust/capping layer 

thickness using Ishihara’s (1985) relationship that relates the thicknesses of the non-liquefied crust 

(H1) and of the liquefied stratum (H2) to the occurrence of surficial liquefaction manifestations. 

However, as with LPI, LPIish may not fully account for the contractive/dilative tendencies of the 

soil on the severity of manifestations. The LSN formulation conceptually improves upon LPI, as 

well as LPIish, in that it accounts for the additional influence of contractive/dilative tendencies of 

the soil via the inclusion of a relationship between Dr and the post-liquefaction volumetric strain 
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potential (εv). However, LSN does not account for the effects of non-liquefied crust thickness on 

the occurrence/severity of surficial liquefaction manifestations.  

The motivation of this paper is to develop an MSI that more fully accounts for the effects of non-

liquefiable crust thickness and the effects of contractive/dilative tendencies of the soil on the 

severity of surficial liquefaction manifestations. This is achieved by combining the positive aspects 

of LPIish and LSN in a single formulation, resulting in a novel MSI model, termed LSNish, that 

more fully accounts for the effects of non-liquefiable crust thickness using Ishihara’s H1-H2 

boundary curves and the contractive/dilative tendencies of the soil on the severity of surficial 

liquefaction manifestation via inclusion of εv. Similar to the derivation of LPIish by Maurer et al. 

(2015a), the new index is derived as a conceptual and mathematical merger of the Ishihara (1985) 

H1-H2 relationships and the LSN formulation. In the following, overviews of LPI, LPIish, and LSN 

models are presented first, which are then followed by the derivation of the new index, LSNish. 

Next, LSNish is evaluated using a large dataset of liquefaction case histories from the 2010-2016 

Canterbury, New Zealand, earthquakes (CE) and its predictive efficiency is compared with that of 

existing MSI models (i.e., LPI, LPIish, and LSN).    

4.3 Overview of existing manifestation severity index (MSI) models 

4.3.1 Liquefaction Potential Index (LPI) 

The liquefaction potential index (LPI) is defined as (Iwasaki et al. 1978): 

𝐿𝑃𝐼 =  ∫ 𝐹(𝐹𝑆) ∙ 𝑤(𝑧) dz
𝑧𝑚𝑎𝑥

0

 (4.1) 

where: FS is the factor of safety against liquefaction triggering, computed by a liquefaction 

triggering model; z is depth below the ground surface in meters; zmax is the maximum depth 

considered, generally 20 m; and F(FS) and w(z) are functions that account for the weighted 

contributions of FS and z on surface manifestation. Specifically, F(FS) = 1 – FS for FS ≤ 1 and 

F(FS) = 0 otherwise; and w(z) = 10 – 0.5z. Thus, LPI assumes that the severity of surface 

manifestation depends on the cumulative thickness of liquefied soil layers, the proximity of those 

layers to the ground surface, and the amount by which FS in each layer is less than 1.0. Given this 

definition, LPI can range from zero to 100.  
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4.3.2 Ishihara-inspired Liquefaction Potential Index (LPIish) 

Using the data from the 1983, Mw7.7 Nihonkai-chubu and the 1976, Mw7.8 Tangshan earthquakes, 

Ishihara (1985) proposed generalized relationship relating the thicknesses of the non-liquefiable 

crust (H1) and of the underlying liquefied strata (H2) to the occurrence of liquefaction induced 

damage at the ground surface. This relationship was developed in the form of boundary curves, 

that separate cases with and without surficial liquefaction manifestation as a function of peak 

ground acceleration (PGA), as shown in Figure 4.1. Moreover, the H1-H2 boundary curves indicate 

that, for a given PGA, there exists a limiting H1, thicker than which no surficial liquefaction 

manifestations occur regardless of the value of H2. While Ishihara’s H1-H2 curves have been shown 

to perform well in some studies (e.g., Youd and Garris 1995), other studies have shown that the 

curves are not easily implementable for non-uniform soil profiles that have multiple interbedded 

non-liquefying soil strata, such as those in Christchurch, New Zealand. This is mainly due to 

difficulty in defining H2 for these profiles (e.g., van Ballegooy et al. 2014b; 2015). 

To account for the influence of non-liquefied crust thickness on the severity of surficial 

liquefaction manifestations using a more quantitative approach, Maurer et al. (2015a) utilized 

Ishihara’s boundary curves to derive an alternative liquefaction damage index, LPIish, which is 

given by: 

𝐿𝑃𝐼𝑖𝑠ℎ = ∫ 𝐹(𝐹𝑆) ∙
25.56

𝑧

𝑧𝑚𝑎𝑥

𝐻1

𝑑𝑧 (4.2a) 

where 

𝐹(𝐹𝑆) = {
  1 − 𝐹𝑆 𝑖𝑓 𝐹𝑆 ≤ 1 ∩ 𝐻1 ∙ 𝑚(𝐹𝑆) ≤ 3

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.2b) 

and 

𝑚(𝐹𝑆) = 𝑒𝑥𝑝 (
5

25.56 ∙ (1 − 𝐹𝑆)
) − 1;    𝑚(𝐹𝑆 > 0.95) = 100 

(4.2c) 

where FS and zmax are defined the same as they are for LPI. As can be surmised from Eq. 4.2, the 

LPIish framework accounts for the limiting thickness of non-liquefied crust by imposing an 

additional constraint on F(FS) and uses a power-law depth weighting function, consistent with 

Ishihara’s H1-H2 boundary curves. The power law depth weighting function results in LPIish 
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giving a higher weight to shallower layers than LPI in predicting the severity of surficial 

liquefaction manifestations. 

4.3.3 Liquefaction Severity Number (LSN) 

As stated in the Introduction, LSN was proposed by van Ballegooy et al. (2012; 2014b) and uses a 

relationship between Dr and εv to account for the contractive/dilative tendencies of the soil on the 

severity of surficial liquefaction manifestations. LSN is given by: 

𝐿𝑆𝑁 = ∫ 1000 ∙
휀𝑣

𝑧
𝑑𝑧

𝑧𝑚𝑎𝑥

0

 (4.3) 

where zmax is the maximum depth considered, generally 10 m, and εv is estimated by using the 

relationship proposed by Zhang et al. (2002) (entered as a decimal in Eq. 4.3), which is based on 

the εv-Dr-FS relationship proposed by Ishihara and Yoshimine (1992). Thus, unlike LPI and LPIish 

which only consider the influence of soil strata with FS < 1 on the severity of surficial liquefaction 

manifestations, LSN considers the contribution of layers with FS ≤ 2 via the εv-Dr-FS relationship 

proposed by Ishihara and Yoshimine (1992). 

4.4 Derivation of Ishihara-inspired LSN (LSNish) 

As mentioned earlier, LSNish merges the positive aspects of the LPIish and LSN models. The 

derivation of LSNish follows a procedure similar to the derivation of LPIish (Maurer et al. 2015a) 

(i.e., derived using Ishihara’s boundary curves) and is detailed in the following sub-sections: 

4.4.1 Assumptions 

1. It is assumed that the penetration resistance corresponding to each of Ishihara’s boundary 

curves is the same. In any stress-based “simplified” liquefaction triggering model, FS is 

computed as the ratio of normalized cyclic resistance ratio (CRRM7.5) to normalized cyclic 

stress ratio (CSR*) (i.e., FS = CRRM7.5/CSR*). Since CRRM7.5 is correlated to normalized 

penetration resistance, it is also assumed that CRRM7.5 corresponding to each of Ishihara’s 

boundary curves is the same. Moreover, because CSR* is directly proportional to PGA, it 

follows that FS for the liquefiable strata will be inversely proportional to PGA. 
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2. It is assumed that each of Ishihara’s H1-H2 boundary curves represent the same value of 

LSNish (i.e., the threshold LSNish value for the occurrence of surficial liquefaction 

manifestation). 

3. It is assumed that each of Ishihara’s H1-H2 boundary curves can be approximated by two 

straight lines, wherein the initial portion of the curve is assumed to have a slope m and the 

latter portion is approximated as a vertical line having slope ∞, as shown in Figure 4.2. As 

such, the thickness of the liquefiable strata (H2), and the thickness of the non-liquefiable 

curst (H1) may be related through the slope (m) that is unique to each boundary curve (i.e., 

H2 = H1 × m). 

4. It is assumed that the FS is constant with depth within the liquefiable strata (H2). 

4.4.2 Functional Form of LSNish 

The functional form for LSNish is defined as: 

𝐿𝑆𝑁𝑖𝑠ℎ = ∫ 𝐹(휀𝑣) ∙ 𝑤(𝑧) ∙ 𝑑𝑧
𝐻1+𝐻2

𝐻1

 (4.4) 

In Eq. 4.4, the F(εv) function accounts for the contribution of FS and Dr on the severity of surficial 

liquefaction manifestations via εv, and w(z) is the depth weighting function.  

Per Assumption (4), FS for the liquefiable strata is constant with depth. Also, per Assumption (1), 

the normalized penetration resistance of the liquefiable strata is constant with depth. From these 

two assumptions, it is implied that εv for the liquefiable strata is also constant with depth. As a 

result, F(εv) can be taken out of the integral, as shown in Eq. 4.5. 

𝐿𝑆𝑁𝑖𝑠ℎ = 𝐹(휀𝑣) ∫ 𝑤(𝑧) ∙ 𝑑𝑧
𝐻1+𝐻2

𝐻1

 (4.5) 

Per Assumption (2), LSNish is constant for each boundary curve and thus the integral in Eq. 4.5 

must be constant and independent of the values of H1 and H2.  This condition is satisfied by 

assuming a power-law functional form of w(z), given by: 

𝑤(𝑧) =
𝑘

𝑧
 (4.6) 
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where k is a constant and will be determined subsequently. Per Assumption (3), H2 = H1 × m. Thus, 

Eq. 4.5 can be modified as: 

𝐿𝑆𝑁𝑖𝑠ℎ = 𝐹(휀𝑣) ∫
𝑘

𝑧
∙ 𝑑𝑧 = 𝐹(휀𝑣) ∙ 𝑘 ∙ ln (

𝐻1(1 + 𝑚)

𝐻1
) = 𝐹(휀𝑣) ∙ 𝑘 ∙ ln(𝑚 + 1)

𝐻1(𝑚+1)

𝐻1

= 𝑐 

(4.7) 

where: c is a constant equal to threshold value of LSNish for surficial liquefaction manifestation. 

Rearranging the terms in Eq. 4.7, the slope (m) can be expressed as: 

𝑚 = 𝑒𝑥𝑝 (
𝑐

𝑘 ∙ 𝐹(휀𝑣)
) − 1 (4.8) 

4.4.3 Determining constants 

As shown in Eq. 4.8, a relationship can be established between m and εv. Also, from Assumption 

(1), the FS for the boundary curves associated with PGAs of 0.2g and 0.4-0.5g (~0.45g) may be 

related as: 

𝐹𝑆0.4−0.5𝑔

𝐹𝑆0.2𝑔
≈

0.2𝑔

0.45𝑔
     ⇒    𝐹𝑆0.45𝑔 = 0.45 𝐹𝑆0.2𝑔 (4.9) 

Moreover, from Figure 4.2, the slopes of the initial portion of the boundary curves associated with 

PGA of 0.2g and 0.4-0.5g can be approximated as 1 and 0.33, respectively. Accordingly, from Eq. 

4.8, the slopes of these two boundary curves can be expressed as: 

𝑚0.2𝑔 =  𝑒𝑥𝑝 (
𝑐

𝑘 ∙ 𝐹(휀𝑣)0.2𝑔
) − 1 ≈ 1 (4.10) 

and 

𝑚0.45𝑔 = 𝑒𝑥𝑝 (
𝑐

𝑘 ∙ 𝐹(휀𝑣)0.45𝑔
) − 1 ≈ 0.33 (4.11) 

As stated earlier, c represents the threshold LSNish value (i.e., the LSNish value that is expected to 

segregate cases with and without manifestations). Herein, it is assumed that c = 5, similar to the 

threshold LPI proposed by Iwasaki et al. (1978). However, it should be noted that this choice of c 
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is arbitrary and could be any number that is expected to serve as a threshold for distinguishing 

cases with and without manifestations in forward analyses.  

F(εv) is defined herein as a linear function of εv, wherein εv can be estimated using the Zhang et al. 

(2002) procedure. The Zhang et al. (2002) procedure estimates εv as a function of FS and the 

normalized and fines-corrected Cone Penetration Test (CPT) tip resistance (qc1Ncs) and is based on 

the εv-Dr-FS relationship proposed by Ishihara and Yoshimine (1992). The maximum value of εv 

per Ishihara and Yoshimine (1992) is 5.5%. Since it is desired that F(εv) ranges from 0 to 1 (to be 

consistent with the ranges of F parameter in the LPI and LPIish formulations), F(εv) is expressed 

as:  

𝐹(휀𝑣) =
휀𝑣

5.5
  (4.12) 

where εv is expressed in percent. To determine the value of k that satisfies Eqs. 4.10 and 4.11, 

representative values of FS and qc1Ncs need to be estimated. From reviewing the liquefaction case 

histories from the 1983 Mw7.7 Nihonkai-Chube earthquake in Japan, Ishihara (1985) determined 

that the representative normalized SPT penetration resistance (i.e., N1,60) for liquefaction triggering 

was approximately 12 blows/30 cm, which is approximately equal to qc1Ncs ≈ 90 atm. For this value 

of qc1Ncs, FS0.2g has to be equal to 0.99 and k = 36.929 for Eqs. 4.10 and 4.11 to be satisfied. 

4.4.4 Final Form 

As mentioned previously, Ishihara’s H1-H2 boundary curves indicate that, for a given PGA, there 

exists a limiting crust thickness, thicker than which no surficial liquefaction manifestations occur 

regardless of the thickness of underlying liquefiable strata. This limiting crust thickness is also 

integrated in the LSNish formulation. As indicated by Ishihara’s boundary curves (e.g., Figure 4.2), 

when the quantity H1 x m exceeds ~3, surficial manifestations are not expected regardless of the 

value of H2. Since m is a function of εv, it is implied that as εv increases, the thickness of the non-

liquefiable crust required to suppress manifestation increases. 

The final form of LSNish is given below: 

𝐿𝑆𝑁𝑖𝑠ℎ = ∫ 𝐹(휀𝑣) ∙
36.929

𝑧
∙ 𝑑𝑧

𝑧𝑚𝑎𝑥

𝐻1

 (4.13a) 

where zmax is defined the same as it is for LPI (i.e., 20 m), and: 
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𝐹(휀𝑣) =  {

휀𝑣

5.5
       𝑖𝑓 𝐹𝑆 ≤ 2 𝑎𝑛𝑑 𝐻1 ∙ 𝑚(휀𝑣) ≤ 3

  
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 (4.13b) 

𝑚(휀𝑣) = exp (
0.7447

휀𝑣
) − 1;    𝑚(휀𝑣 < 0.16) = 100 (4.13c) 

where εv is expressed in percent. As can be surmised from Eq. 4.13, LSNish accounts for: (1) the 

influence of εv on the severity of surficial liquefaction manifestation; (2) the concept of limiting 

thickness of the non-liquefied crust; and (3) the contribution of layers with FS ≤ 2 in contributing 

to the severity of surficial liquefaction manifestations. 

4.5 Evaluation of LSNish  

4.5.1 Canterbury earthquakes liquefaction case-history dataset 

LSNish was evaluated using 7167 Cone Penetration Test (CPT) liquefaction case histories from 

the 2010-2016 CE. These 7167 CPT liquefaction case histories were derived as a subset of 

approximately 10,000 high quality case histories resulting from the Mw 7.1 September 2010 

Darfield, the Mw 6.2 February 2011 Christchurch, and the Mw 5.7 February 2016 Valentine’s Day 

earthquakes in Canterbury, New Zealand, largely assembled by Maurer et al. (2014; 2015b,c,d; 

2017a,b; 2019). It should be noted that the LSNish formulation still does not account for the 

influence of non-liquefiable, high FC, high plasticity soil strata on the occurrence/severity of 

surficial liquefaction manifestation. Therefore, LSNish can be best evaluated using case histories 

comprised of predominantly clean to silty sand profiles. Maurer et al. (2015b) found that sites in 

the region that have an average CPT soil-behavior-type index (Ic) (Robertson and Wride 1998) for 

the upper 10 m of the soil profile (Ic10) less than 2.05 generally correspond to sites having 

predominantly clean to silty sands. Accordingly, the 7167 liquefaction case histories used in this 

study are only comprised of CPT soundings that have Ic10 < 2.05. Of the 7167 case histories, 2574 

cases are from the 2010 Darfield earthquake, 2582 cases are from the 2011 Christchurch 

earthquake, and 2011 cases are from the 2016 Valentine’s day earthquake. Furthermore, 38% of 

the case histories were categorized as “no manifestation” and the remaining 62% were categorized 

as either “marginal,” “moderate,” or “severe” manifestation following the Green et al. (2014) 

classification. 
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PGAs are needed to estimate the seismic demand at the case history sites. In prior CE studies (e.g., 

Green et al. 2011; 2014; Maurer et al. 2014; 2015a,b,c,d; 2017a,b; 2019; van Ballegooy et al. 2015; 

among others), PGAs were obtained using the Bradley (2013b) procedure, which combines the 

unconditional PGA distributions as estimated by the Bradley (2013a) ground motion prediction 

equation, the actual recorded PGAs at the strong motion stations (SMSs), and the spatial 

correlation model of Goda and Hong (2008), to compute the conditional PGAs at the sites of 

interest. However, the PGAs at four SMSs during the Mw 6.2 February 2011 Christchurch 

earthquake were inferred to be associated with high-frequency dilation spikes as a result of 

liquefaction triggering and were higher than the pre-liquefaction PGAs (e.g., Wotherspoon et al. 

2014, 2015). Such artificially high PGAs at the liquefied SMSs can potentially result in over-

estimated PGAs at the nearby case-history sites (hence, overly conservative seismic demand), 

which in turn can lead to over-predictions of the severity of surficial liquefaction manifestations 

(Upadhyaya et al. 2019a). Accordingly, in the present study, pre-liquefaction PGAs at the four 

liquefied SMSs were used to estimate PGAs at the case history locations for the 2011 Christchurch 

earthquake. Note that for the 2010 Darfield and 2016 Valentine’s day earthquakes, previously 

estimated PGAs remain unchanged.  

Accurate estimation of ground-water table (GWT) depth is critical to liquefaction triggering 

evaluations. The GWT depth at each case-history site immediately prior to the earthquake was 

estimated using the robust, event-specific regional ground water models of van Ballegooy et al. 

(2014a), as in prior CE studies (e.g., Maurer et al. 2014; 2015b,c,d; 2017a,b; 2019; van Ballegooy 

et al. 2015; Upadhyaya et al. 2018; among others). 

4.5.2 Evaluation of liquefaction triggering and severity of surficial liquefaction manifestation 

In evaluating LSNish, FS is used as an input to estimate εv. FS for field case histories has been 

traditionally defined using deterministic normalized cyclic resistance ratio (CRRM7.5) curves. 

However, the deterministic CRRM7.5 are almost always conservatively positioned to minimize the 

number of false negatives (i.e., “liquefaction” cases that fall below or to the right of the CRRM7.5 

curve). As a result, FS computed using the deterministic CRRM7.5 curve may lead to conservative 

predictions of the occurrence/severity of surficial liquefaction manifestations (i.e., conservative 

estimates of LSNish) for some cases. For unbiased estimates of FS and subsequent unbiased 

predictions of the severity of surficial liquefaction manifestations, use of median CRRM7.5 may 
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seem more appropriate. In the present study, FS was computed using the liquefaction triggering 

model of Boulanger and Idriss (2014) [BI14] using both their deterministic and median CRRM7.5 

curves, to investigate which among the two curves would result in better predictions of surficial 

manifestations, when operating within the LSNish formulation. Inherent to this process, soils with 

Ic > 2.5 were considered to be non-liquefiable (Maurer et al. 2017b, 2019). Additionally, the FC 

required to compute qc1Ncs was estimated using the Christchurch-specific Ic - FC correlation 

proposed by Maurer et al. (2019). 

For each CE case history, LSNish was computed using Eq. 4.13. The predictive efficiency of the 

LSNish model was compared to that of the existing MSI models (i.e., LPI, LPIish, and LSN) by 

performing receiver operating characteristic (ROC) analyses on the CE dataset. An overview of 

ROC analysis is presented in the following section. 

4.5.3 Overview of ROC analysis 

ROC analysis is widely used to evaluate the performance of diagnostic models, including extensive 

use in medical diagnostics (e.g., Zou 2007) and to a much lesser degree in geotechnical engineering 

(e.g., Oommen et al. 2010; Maurer et al. 2015b,c,d; 2017a,b; 2019; Green et al. 2017; Zhu et al. 

2017; Upadhyaya et al. 2018; 2019b). In particular, in cases where the distribution of “positives” 

(e.g., cases of observed surficial liquefaction manifestations) and “negatives” (e.g., cases of no 

observed surficial liquefaction manifestations) overlap (e.g., Figure 4.3a), ROC analyses can be 

used (1) to identify the optimum diagnostic threshold (e.g., LSNish threshold); and (2) to assess 

the relative efficacy of competing diagnostic models, independent of the thresholds used. A ROC 

curve is a plot of the True Positive Rate (RTP) (i.e., surficial liquefaction manifestations were 

observed, as predicted) versus the False Positive Rate (RFP) (i.e., surficial liquefaction 

manifestations are predicted, but were not observed) for varying threshold values (e.g., LSNish). 

A conceptual illustration of ROC analysis, including the relationship among the distributions for 

positives and negatives, the threshold value, and the ROC curve, is shown in Figure 4.3.  

In ROC curve space, a diagnostic test that has no predictive ability (i.e., a random guess) results 

in a ROC curve that plots as 1:1 line through the origin. In contrast, a diagnostic test that has a 

perfect predictive ability (i.e., a perfect model) plots along the left vertical and upper horizontal 

axes, connecting at the point (0,1) and indicates the existence of a threshold value that perfectly 

segregates the dataset (e.g., all cases with observed surficial manifestation will have LSNish above 
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the threshold and all cases with no observed surficial manifestation will have LSNish below the 

threshold). The area under the ROC curve (AUC) can be used as a metric to evaluate the predictive 

performance of a diagnostic model (e.g., LSNish), whereby a higher AUC value indicates better 

predictive capabilities (e.g., Fawcett 2005). As such, a random guess returns an AUC of 0.5, 

whereas a perfect model returns an AUC of 1. The optimum operating point (OOP) in a ROC 

analysis is defined as the threshold value (i.e., threshold LSNish) that minimizes the rate of 

misprediction [i.e., RFP + (1-RTP)]. Contours of the quantity [RFP + (1-RTP)] are iso-performance 

lines joining points of equivalent performance in ROC space, as illustrated in Figure 4.3b. 

4.5.4 Results and Discussion 

ROC analyses were performed on the CE dataset using the LSNish model, as well as the three other 

existing MSI models (i.e., LPI, LPIish, and LSN). Additionally, each MSI model was evaluated 

using both the deterministic and median BI14 CRRM7.5 curves. ROC statistics (i.e., AUC and OOP) 

were obtained to evaluate the performance of each MSI model in distinguishing (a) cases with no 

manifestations from cases with any manifestation severity; (b) cases with no manifestations from 

cases with marginal manifestations; (c) cases with marginal manifestations from cases with 

moderate manifestations; and (d) cases with moderate manifestations from cases with severe 

manifestations. Tables 4.1 and 4.2 summarize the ROC statistics (i.e., AUC and OOP) for each 

MSI model, evaluated using the BI14 deterministic and median CRRM7.5 curves, respectively, for 

different severities of surficial liquefaction manifestations as described above. Figures 4.4a and 

4.4b show the ROC curves for the four different MSI models, considering only the binomial 

predictive ability [i.e., case (a): cases with no manifestation from cases with any manifestation 

severity], evaluated in conjunction with the BI14 deterministic and median CRRM7.5 curves, 

respectively. Also shown on Figures 4.4a and 4.4b are the optimum threshold values associated 

with each MSI model. Moreover, Figures 4.5a and 4.5b compare the AUCs associated with these 

four different MSI models, evaluated in conjunction with the BI14 deterministic and median 

CRRM7.5 curves, respectively.  

It can be seen that the AUCs for LPI and LPIish models are generally slightly higher when 

evaluated in conjunction with the deterministic CRRM7.5 curve than with the median CRRM7.5 curve. 

In contrast, the AUCs for LSN and LSNish models are generally slightly lower when evaluated 

using the deterministic CRRM7.5 curve than using the median CRRM7.5 curve. Since the changes in 
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AUC are not very significant between the deterministic and median CRRM7.5 curves, it can be 

inferred that the MSI models perform equally efficiently using either variant of the CRRM7.5 curves. 

However, it should be noted that the optimal threshold MSI values are quite different between the 

deterministic and median CRRM7.5 curves, with the median CRRM7.5 curve resulting in lower 

threshold values than the deterministic CRRM7.5 curve. For example, the optimal threshold LSNish 

values distinguishing cases of no manifestations from cases with any manifestation severity when 

evaluated using the deterministic and median CRRM7.5 curves are 5.4 and 3.6, respectively.  

Most importantly, the results from ROC analyses show that, the AUC values returned by the four 

different MSI models follow the order: LPI ≈ LPIish > LSN ≈ LSNish, regardless of the CRRM7.5 

curve used in evaluating the models. As such, two main observations can be made. First, despite 

accounting for non-liquefied crust thickness, LPIish and LSNish did not show improvements over 

LPI and LSN, respectively. This is likely due to the fact that the case histories used in this study 

are only comprised of CPT soundings that have Ic10 < 2.05, the majority of which are located in 

eastern Christchurch where the ground water table is shallow (usually ranging between 1~2m). As 

a result, the non-liquefied crust thickness may not have much of an influence on the severity of 

surficial liquefaction manifestations. Another possible reason could be that Ishihara’s H1-H2 

curves may not sufficiently account for the influence of non-liquefied crust thickness on the 

occurrence and severity of manifestations, although the authors believe that the general trends 

exhibited by Ishihara’s H1-H2 curves are correct. Second, the higher AUCs for LPI and LPIish than 

the LSN and LSNish models indicate that the latter group performs more poorly despite accounting 

for the influence of soil density on the occurrence/severity of surficial liquefaction manifestation 

via the εv-Dr-FS relationship, which is contrary to what would be expected. Several factors may 

explain the cause of the less accurate predictions. For example, the εv model of Zhang et al. (2002) 

is based on the εv-Dr-FS relationship proposed by Ishihara and Yoshimine (1992) developed using 

laboratory test data on reconstituted clean sand samples. In contrast to the FS determined from 

laboratory tests for a specific soil that has a specific fabric, the field-based triggering curves are 

developed from a range of soils having a range of fabrics. As a result, there may be inconsistencies 

in how the Ishihara and Yoshimine (1992) εv-Dr-FS relationship is being applied in conjunction 

with FS determined from CRRM7.5 curves determined from field case histories. 
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However, in the authors’ opinion, the most likely reason for the poorer performance of LSN and 

LSNish is that the influence of post-triggering volumetric strain potential of dense soils on the 

severity of surficial liquefaction manifestation is being double-counted by these models. This is 

because FS, which is used as an input to compute εv, inherently accounts for such effects via the 

shape of the CRRM7.5 curve. Specifically, the CRRM7.5 curves likely tend towards vertical at medium 

to high penetration resistance due to dilative tendencies of dense soils that inhibits the surficial 

liquefaction manifestation, even if liquefaction is triggered at depth (e.g., Dobry 1989). While the 

existing triggering curves are treated as “actual” or “true” triggering curves in current practice, in 

reality, they are very likely combined “triggering” and “manifestation” curves. This is mainly 

because the CRRM7.5 curves are based on the liquefaction response of profiles inferred from post-

earthquake surface observations at sites. Sites without surficial evidence of liquefaction are 

classified, by default, as “no liquefaction,” despite the possibility of liquefaction having triggered 

at depth, but not manifesting at the ground surface. Consequently, embedded in the resulting 

triggering curve are factors which relate not only to triggering, but also to post-triggering surface 

manifestation. These findings suggest that the current models for predicting liquefaction response 

may not account for the mechanics of liquefaction triggering and surface manifestation in a 

consistent and sufficient manner. The liquefaction triggering and manifestation models need to be 

developed simultaneously within a consistent framework that provides a clear separation and 

proper accounting of mechanics controlling each phenomenon. Given that LSNish accounts for the 

factors controlling manifestation in a more appropriate manner, it is hypothesized that LSNish 

would result in better predictions of the severity of surficial liquefaction manifestation than the 

existing MSI models, if used in conjunction with a “true” liquefaction triggering curve (i.e., free 

of factors influencing surficial liquefaction manifestation) (Upadhyaya et al. 2019d).  

4.6 Conclusion 

This paper presented a new manifestation severity index model, termed LSNish, that was derived 

as conceptual merger of the LSN formulation and Ishihara’s H1-H2 boundary curves. As such, 

LSNish conceptually accounts for: (1) the influence of post-liquefaction volumetric strain potential 

on the severity of surficial liquefaction manifestation; (2) the limiting thickness of the non-

liquefied crust, thicker than which no surficial manifestation can occur regardless of the thickness 

of the underlying liquefiable strata; and (3) the contribution of layers where liquefaction did not 
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trigger (i.e., FS >1) but the excess pore pressures due to shaking reached high enough to cause 

surficial manifestations.  

LSNish was evaluated using 7167 CPT liquefaction case histories from the 2010-2016 Canterbury 

earthquakes, comprised of predominantly clean to silty sand profiles and its predictive efficiency 

was compared with that of LPI, LPIish, and LSN models. These models were evaluated in 

conjunction with the BI14 triggering model, wherein both the deterministic and median CRRM7.5 

curves were used to compute FS. It was found that both the deterministic and median CRRM7.5 

curves were equally efficient when used within the LSNish formulation, but, the optimal threshold 

LSNish values associated with each curve were different. Most importantly, it was observed that 

the predictive efficiency of LSNish and LSN models were lower than those of LPI and LPIish, 

despite accounting for the additional influence of soil density on the severity of surficial 

liquefaction manifestation via the εv-Dr-FS relationship. One likely reason for this is that the 

influence of post-triggering volumetric strain potential on the severity of surficial liquefaction 

manifestation is being “double counted” by LSN and LSNish models, since the shape of the CRRM7.5 

curve inherently accounts for the dilative tendencies of dense soils, which inhibits surficial 

liquefaction manifestations even when liquefaction is triggered at depth. These findings suggest 

that the current framework for predicting the occurrence/severity of surficial liquefaction 

manifestation do not account for the mechanics of triggering and manifestation in a proper and 

sufficient manner. While the triggering curves are assumed to be “true” (i.e., free of factors 

influencing manifestation), in reality it is likely that they inherently account for some of the factors 

controlling surficial manifestation of liquefaction. Thus, there is a need to develop a framework 

that consistently and appropriately accounts for the mechanics behind liquefaction triggering and 

surficial liquefaction manifestation. 
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Tables 

 

Table 4.1 Summary of ROC statistics for different MSI models evaluated using the BI14 

deterministic CRRM7.5 curve, considering different severities of surficial liquefaction 

manifestation. 

MSI 

model 

Any 

manifestation 

Marginal Moderate Severe 

AUC OOP AUC OOP AUC OOP AUC OOP 

LPI 0.8500 3.7 0.7893 2.0 0.6852 5.6 0.6839 14.1 

LPIish 0.8473 1.7 0.7868 1.1 0.6821 3.6 0.6926 9.7 

LSN 0.7975 10.5 0.7417 9.1 0.6484 15.5 0.6726 24.7 

LSNish 0.8007 5.4 0.7437 5.4 0.6508 7.9 0.6776 16.4 

 

Table 4.2 Summary of ROC statistics for different MSI models evaluated using the BI14 median 

CRRM7.5 curve, considering different severities of surficial liquefaction manifestation. 

MSI 

model 

Any 

manifestation 

Marginal Moderate Severe 

AUC OOP AUC OOP AUC OOP AUC OOP 

LPI 0.8496 1.5 0.7873 1.0 0.6872 3.4 0.6840 7.4 

LPIish 0.8354 0.6 0.7688 0.3 0.6811 1.2 0.6880 4.6 

LSN 0.8100 7.1 0.7525 7.5 0.6596 10.3 0.6809 23.2 

LSNish 0.8031 3.6 0.7421 2.6 0.6607 5.3 0.6853 13.3 
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Figures 

 

Figure 4.1 Chart showing the relationship between the thicknesses of the non-liquefiable capping 

layer (H1) and the underlying liquefiable layer (H2) for identifying liquefaction induced damage 

as a function of PGA (modified after Ishihara 1985). 
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Figure 4.2 Ishihara H1-H2 boundary curves and approximation of the boundary curves by two 

straight lines (modified after Ishihara 1985). 
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Figure 4.3 Conceptual illustration of ROC analyses: (a) frequency distributions of surficial 

liquefaction manifestation and no surficial liquefaction manifestation observations as a function 

of LSNish; (b) corresponding ROC curve (after Maurer et al. 2015b,c,d). 

 

 

  

Figure 4.4 ROC curves for LPI, LPIish, LSN, and LSNish models, evaluated using: (a) BI14 

deterministic CRRM7.5; (b) BI14 median CRRM7.5. Also shown are the optimal thresholds for each 

model. 
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Figure 4.5 Comparison of AUC values for the LPI, LPIish, LSN, and LSNish models evaluated 

using: (a) BI14 deterministic CRRM7.5; (b) BI14 median CRRM7.5. 
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Chapter 5: Development of a “true” liquefaction triggering curve 
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5.1 Abstract  

This paper presents an internally-consistent approach for predicting triggering and surface 

manifestation of liquefaction. It is shown that current models for predicting liquefaction triggering 

and surface manifestation may not account for the mechanics controlling each phenomenon in a 

consistent and sufficient manner. The manifestation models often assume that the triggering curves 

are “true” curves (i.e., free of factors influencing manifestation). However, as an artifact of the 

way triggering models are developed, they may inherently account for some of the factors 

influencing surface manifestations (e.g., dilative tendencies of dense soils). As a result, using the 

triggering curves in conjunction with the manifestation models likely results in the double-

counting, omission, or general mismanagement of distinct factors that influence triggering and 

manifestation. Accordingly, an approach is presented to derive a “true” liquefaction triggering 

curve consistent with a manifestation model (e.g., Ishihara-inspired Liquefaction Severity 

Number, LSNish). Using a large database of case histories from the 2010-2016 Canterbury 

earthquakes (CE), deterministic and probabilistic variants of a “true” triggering curve are derived 

for predominantly clean to silty sand profiles. Operating in conjunction with the LSNish 

framework, the performance of the “true” triggering curve is compared to those of existing, popular 

triggering curves using a set of 50 global case histories. 

5.2 Introduction 

Soil liquefaction continues to be one of the leading causes of ground failure during earthquakes, 

resulting in significant damage to infrastructure around the world (e.g., the 2010-2016 Canterbury 
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earthquakes (CE) in New Zealand, 2010 Maule earthquake in Chile, and 2011 Tohoku earthquake 

in Japan, etc). The strong ground shaking produced during the Canterbury earthquakes, in 

particular during the Mw 7.1 2010 Darfield earthquake and the Mw 6.2 2011 Christchurch 

earthquakes, induced widespread liquefaction causing extensive damage to infrastructure and 

residential buildings throughout the city of Christchurch and its surroundings (e.g., Cubrinovski 

and Green 2010; Cubrinovski et al. 2011; Green et al. 2014; Maurer et al. 2014; van Ballegooy et 

al. 2014b). Thus, there is a need to predict the occurrence and consequence of liquefaction. 

However, the existing models for predicting liquefaction triggering and consequent damage 

potential have limitations in that they may not account for the mechanics of liquefaction triggering 

and surface manifestation in a consistent and sufficient manner. The objective of this paper is to 

develop an internally-consistent framework for predicting liquefaction response such that factors 

influential to triggering and manifestation are handled more rationally and consistently. 

The stress based “simplified” model is the most widely used approach for predicting liquefaction 

triggering. This model was first proposed by Whitman (1971) and Seed and Idriss (1971) and has 

continually evolved as additional field case histories have been compiled and laboratory results 

improved our understanding of the liquefaction phenomenon. However, the fundamental approach 

to developing the simplified models has remained the same. In this model, the normalized cyclic 

stress ratio (CSR*) or seismic demand, and the normalized cyclic resistant ratio (CRRM7.5) or soil 

capacity, are used to compute a factor of safety against liquefaction (FS) at a given depth: 

𝐹𝑆 =
𝐶𝑅𝑅𝑀7.5

𝐶𝑆𝑅∗
 (5.1) 

where CSR* is the cyclic stress ratio normalized to a magnitude 7.5 event and corrected to an 

effective overburden stress of 1 atm and level-ground conditions and CRRM7.5 is the cyclic resistant 

ratio normalized to the same conditions as CSR* and is computed using the semi-empirical 

relationships that are a function of in-situ test metrics, which have been normalized to overburden 

pressure and corrected for fines-content (e.g., Whitman 1971; Seed and Idriss 1971; Robertson 

and Wride 1998; Cetin et al. 2004; 2018; Moss et al. 2006; Idriss and Boulanger 2008; Kayen et 

al. 2013; Boulanger and Idriss 2014; Green et al. 2019a; among others). These normalized in-situ 

metrics include Standard Penetration Test (SPT) blow count (N160cs); Cone Penetration Test (CPT) 

tip resistance (qc1Ncs); and small strain shear-wave velocity (Vs1). 
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Although the “simplified” model predicts the occurrence of liquefaction at a specific depth, it does 

not predict the potential for damage to infrastructure, which has been shown to correlate with the 

severity of surficial liquefaction manifestations. Manifestation models have been proposed to 

relate liquefaction triggering to the damage potential via the prediction of occurrence/severity of 

surficial liquefaction manifestation, often in the form of a numerical index, referred to herein as a 

manifestation severity index (MSI). One of earliest such models is the Liquefaction Potential Index 

(LPI) proposed by Iwasaki et al. (1978), which has been widely used in liquefaction hazard 

assessments around the world (e.g., Sonmez 2003; Papathanassiou et al. 2005; 2008; 2015; Baise 

et al. 2006; Cramer et al. 2008; Hayati and Andrus 2008; Holzer et al. 2006; 2008; 2009; Yalcin 

et al. 2008; Chung and Rogers 2011; Dixit et al. 2012; Sana and Nath, 2016; among others). 

However, retrospective evaluations of LPI in some recent earthquakes (e.g., the 2010-2011 

Canterbury earthquakes in New Zealand) have shown that it performs inconsistently (Maurer et 

al. 2014; 2015a,b,c). While there may be several factors leading to such inconsistency, such 

findings nonetheless suggest that LPI has inherent limitations. Some limitations of LPI include, 

but are not limited to, the following: (1) it may not account for the contractive/dilative tendency 

of the soil on the potential consequences of liquefaction, illustrated by the fact that the resulting 

consequences for loose and dense sand deposits having FS = 0.8, for example, would be likely 

very different, but would have the same LPI value; (2) it assumes that a soil stratum does not 

contribute to surface manifestations unless FS ≤ 1, ignoring that surficial liquefaction 

manifestations can occur due to elevated excess pore pressures during shaking even when FS > 1 

in a stratum; and (3) it does not account for the effects of thick non-liquefiable crusts and/or 

interbedded high fines-content, high plasticity soil strata on the severity of manifestations. In 

efforts to address some of the short-comings of LPI, alternative MSI models have been proposed, 

such as the “Ishihara inspired LPI” (LPIish) by Maurer et al. (2015a), the Liquefaction Severity 

Number (LSN) by van Ballegooy et al. (2012; 2014b) and more recently, the “Ishihara-inspired 

LSN” (LSNish) by Upadhyaya et al. (2019c).  

LPIish improves on LPI in that: (1) it accounts for the influence of a thick non-liquefiable crust on 

the severity of surficial liquefaction manifestation using the Ishihara (1985) H1-H2 relationships, 

that relate the thickness of a liquefied layer (H2) to the thickness of the overlying non-liquefied 

capping layer (H1) required for surface manifestation; and (2) weighs more the contribution of 

shallower layers in predicting the severity of surficial liquefaction manifestations using a power 
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law depth weighting function (i.e., 1/z), as opposed to the linear depth weighting function that LPI 

uses. As with LPIish, LSN also uses a power law depth weighting function, but conceptually 

improves on LPI in that: (1) it additionally accounts for the influence of contractive/dilative 

tendency of the soil on the severity of liquefaction surface manifestation via the εv-Dr-FS 

relationship, such that for a given FS, as relative density (Dr) increases, volumetric strain (εv) 

decreases (e.g., Ishihara and Yoshimine 1992); and (2) it considers the contribution of strata with 

FS up to 2 in computing the severity of surficial liquefaction manifestation. The more recently 

proposed LSNish is a merger of the Ishihara (1985) H1-H2 relationship and LSN model, in that it 

accounts for the effects of thick non-liquefiable crust as well as the influence of the 

contractive/dilative tendency of the soil on the severity of surficial liquefaction. Upadhyaya et al. 

(2019c) compared the predictive efficiencies of the four MSI models discussed above (e.g., LPI, 

LPIish, LSN, and LSNish) using the 2010-2016 CE liquefaction case-history dataset and found that 

the models that account for εv-Dr-FS relationship (i.e., LSNish and LSN) performed more poorly 

than the models that do not account for the εv-Dr-FS relationship (i.e., LPI and LPIish). As 

discussed in Upadhyaya et al. (2019c), this is likely due to the influence of εv on the severity of 

surficial liquefaction manifestation being “double counted” by LSN and LSNish. Relationships for 

estimating εv are expressed a function of FS, which inherently accounts for the dilative tendencies 

of dense soil minimizing surficial liquefaction manifestations, even when liquefaction is triggered.  

The above findings by Upadhyaya et al. (2019c) highlight the fact that the existing methodology 

for developing liquefaction triggering curves is inconsistent with how these curves are used by the 

MSI models to predict the severity of surficial liquefaction manifestation. The inconsistency arises 

mainly because the triggering curves have been developed from field case histories where the 

determination of whether liquefaction triggered at a depth in the soil profile is primarily based on 

the presence or absence of surficial liquefaction manifestations. Inherent to this process, the 

observed manifestations (or lack thereof) are tied to a single critical layer within the soil profile 

having determined representative properties. However, in reality, the occurrence/severity of 

surficial liquefaction manifestation is a consequence of the overall response of the entire soil 

profile (e.g., Cubrinovski et al. 2019). Moreover, the critical layer must be selected such that its 

thickness, depth, density, fines content, plasticity, and strain-potential, considering also all 

properties of all overlying strata, is consistent with the surface observation. If this is not achieved, 

then embedded in the derivative triggering curve will be factors which relate not only to triggering, 
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but also to the post-triggering manifestation of liquefaction (e.g., the dilative tendencies of dense 

soils). This may be reflected in the shape of the CRRM7.5 curve which deviates from a straight line 

towards vertical at higher penetration values likely due to dilative tendencies of dense soils 

minimizing surface manifestations and not because liquefaction cannot be triggered in dense soils 

(e.g., Dobry 1989). Thus, using the triggering curves in conjunction with MSI models likely 

double-count some of the factors that influence surface manifestations. 

Another issue with the methodology for developing liquefaction triggering curves lies in the 

interpretation of case histories used to develop the CRRM7.5 curves, which involves considerable 

subjectivity. Since the CRRM7.5 curves are almost exclusively based on post-liquefaction surface 

observations, biases in the curves due to alternative interpretations (or even misinterpretations) of 

case histories are inevitable. For example, a site that actually liquefied at a certain depth but did 

not have any evidence of liquefaction at the ground surface would generally be classified as “no 

liquefaction” due to the lack of surficial manifestations. Additionally, since the triggering models 

tie the observed response to a single “critical” layer having determined representative properties, 

varying judgements and assumptions involved in the selection of critical layers and their 

representative properties can influence the position of the triggering curve and associated 

uncertainties (Green et al. 2014; Green and Olson 2015). Furthermore, since the selection of a 

critical layer is done using judgement, it is unclear what factors are embedded in the triggering 

curve and it is unlikely that consistent judgement is used by the developers of different liquefaction 

triggering curves. As a result, the triggering curves cannot be used to predict the 

occurrence/severity of surface manifestation in a manner consistent with how they were developed. 

The main objective of this study is to develop an internally-consistent framework for predicting 

liquefaction triggering and the resulting severity of surficial liquefaction manifestation. Utilizing 

a large liquefaction case-history database from the 2010-2016 Canterbury, New Zealand 

earthquakes (CE), this paper demonstrates a procedure to derive a “true” liquefaction triggering 

curve for predominantly clean sand to silty sand profiles consistent with a defined manifestation 

model (e.g., LSNish). In deriving the true triggering curve in this manner, there is no need to select 

a single “critical” layer as the response of the entire soil profile will be considered, which removes 

the subjectivity associated with selection of critical layers and their representative properties. 

Furthermore, both deterministic and probabilistic variants of the “true” triggering curves are 
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developed, where the latter reflects the uncertainties in the field observations and in the parameters 

that control liquefaction triggering and surface manifestation.  

In the following, a summary of the CE liquefaction case-history database in presented, followed 

by a detailed description of the approaches used in deriving the deterministic and probabilistic 

variants of the “true” triggering curve. Threshold LSNish values (in conjunction with the “true” 

triggering curve derived herein) are then proposed for different severities of surficial liquefaction 

manifestation using the CE dataset. Finally, a set of 50 world-wide case histories comprising of 

predominantly clean sand to silty sand profiles are used to evaluate and validate the efficacy of the 

proposed framework (i.e., LSNish in conjunction with the “true” triggering curve).  

5.3 Canterbury earthquakes liquefaction case-history database 

This study utilizes the CPT-based liquefaction case-history database from the 2010-2016 

Canterbury earthquakes (CE) in New Zealand that was largely assembled by Maurer et al. (2014; 

2015b,c,d; 2017a,b; 2019). This database contains about 10,000 high quality case histories 

resulting from 3834 CPT soundings from sites where the severity of liquefaction was well-

documented after at least one of the following earthquakes: the Mw 7.1 September 2010 Darfield 

earthquake, the Mw 6.2 February 2011 Christchurch earthquake, and the Mw 5.7 February 2016 

Valentine’s Day earthquake. A detailed description of the quality control criteria used in compiling 

the case histories is provided in Maurer et al. (2014; 2015b).  The severity of surficial liquefaction 

manifestation at each of these CPT soundings was obtained via post-earthquake ground 

reconnaissance and using high-resolution satellite imagery and categorized into 5 different classes 

following Green et al. (2014): no manifestation, marginal manifestation, moderate manifestation, 

severe manifestation, lateral spreading, and severe lateral spreading. All CPT soundings and 

imagery were extracted from the New Zealand Geotechnical Database (NZGD 2016).  

The “marginal,” “moderate,” and “severe” categories of manifestation refer to the extent to which 

the ground surface is covered by liquefaction ejecta (e.g., Green et al. 2014; Maurer et al. 2014; 

2015b). Since the severity of lateral spreading is a function of topography, among other factors, 

which is not accounted for by any of the MSI models discussed herein, case histories having lateral 

spreading and severe lateral spreading as the predominant form of manifestation were excluded 

from this study. Similarly, since the effect of non-liquefiable soil strata that have high fines content 

and/or plasticity on the severity of surficial liquefaction manifestation is a complex phenomenon 
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that is not accounted for by any of the MSI models discussed herein, to include LSNish, only case 

histories having predominantly clean sand to silty sand profiles were considered. Maurer et al. 

(2015) found that sites in Christchurch with an average CPT soil-behavior-type index (Ic) for the 

upper 10 m of the soil profile (Ic10) less than 2.05 generally correspond to sites having 

predominantly clean sands to silty sands. Accordingly, only CPT soundings that have Ic10 < 2.05 

were considered in this study. With these considerations, 7167 CE case histories were used in the 

analyses presented herein. 

5.3.1 Estimation of peak ground acceleration (PGA) 

Peak ground accelerations (PGAs) are needed to estimate the seismic demand at the case history 

sites. In prior CE studies (e.g., Green et al. 2011; 2014; Maurer et al. 2014; 2015a,b,c,d; 2017a,b; 

2019; van Ballegooy et al. 2015; among others) PGAs were obtained using the Bradley (2013b) 

procedure, which combines the unconditional PGA distributions as estimated by the Bradley 

(2013a) ground motion prediction equation, the recorded PGAs at the strong motion stations 

(SMSs), and the spatial correlation of intra-event residuals to compute the conditional PGAs at the 

sites of interest. However, some of the soil profiles on which these SMSs were installed 

experienced severe liquefaction, especially during the Mw 6.2 February 2011 Christchurch 

earthquake and the recorded PGAs are inferred to be associated with high-frequency dilation spikes 

after liquefaction was triggered. Such PGAs are often higher than the PGAs of the pre-liquefaction 

portion of the ground motions and likely higher than the PGAs that would have been experienced 

at the sites if liquefaction had not been triggered. Since the estimation of PGA is central to 

liquefaction triggering evaluations, such artificially high PGAs at the liquefied SMSs can result in 

over-estimated PGAs at the nearby case-history sites (hence, overly conservative seismic demand), 

which in turn can lead to over-predictions of the severity of surficial liquefaction manifestations. 

Wotherspoon et al. (2014, 2015) identified four such SMSs where the recorded PGAs were higher 

than the pre-liquefaction PGAs for the 2011 Christchurch earthquake and suggested revised PGAs 

for those stations. Upadhyaya et al. (2019a) investigated the influence of using these revised PGAs 

at the liquefied SMSs on the predicted severity of surficial liquefaction at select case histories and 

found that using the new PGAs estimated by revising the PGAs at the SMSs correctly predicted a 

significant number of case histories that were previously being over-predicted due to over-
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estimated PGAs. Accordingly, this study uses the revised pre-liquefaction PGAs at the liquefied 

SMSs to estimate PGAs at the CPT locations.  

5.3.2 Estimation of ground-water table (GWT) depth 

Accurate estimation of ground-water table (GWT) depth is critical to liquefaction triggering 

evaluations. The GWT depth at each case-history site immediately prior to the earthquake was 

estimated using the robust, event-specific regional ground water models of van Ballegooy et al. 

(2014a), similar to prior CE studies. 

5.4 Derivation of “true” liquefaction triggering curve within the LSNish formulation 

5.4.1 Deterministic approach 

Utilizing 7167 CE liquefaction case histories, a “true” triggering curve was back-calculated in 

conjunction with the LSNish model such that its predictive efficiency was maximized. The 

approach used in deriving the “true” triggering curve is summarized in Figure 5.1 and discussed 

in detail in the subsequent sections. 

5.4.1.1 Functional form of the “true” triggering curve  

As discussed in the Introduction, the shape of the existing triggering curves deviates from a straight 

line at low to moderate penetration values towards vertical at higher penetration values likely due 

to the dilative tendencies of dense soils minimizing surficial liquefaction manifestations even when 

liquefaction is triggered. Several functional forms of triggering curves were considered in this 

study. However, the selected form was, in large part, based on laboratory test data from a detailed 

study by Ulmer (2019). Ulmer (2019) performed stress-controlled constant-volume cyclic direct 

simple shear tests on air-pluviated Monterey No. 0/30 sand having Dr ranging from 25% to 80% 

and an initial vertical effective confining stress (σ’vo) equal to 100 kPa. Liquefaction triggering 

was defined as residual excess pore water pressure ratio (ru) equal to 0.98. The CSR corresponding 

to number of cycles to liquefaction (NL) = 14 (assuming that a Mw 7.5 earthquake contains 14 

uniform loading cycles for bidirectional shaking; Green et al. 2019a) was obtained for each Dr 

group, which was then plotted against the equivalent qc1Ncs values estimated from the qc1ncs-Dr 

correlation of Idriss and Boulanger (2003), as shown in Figure 5.2. Based on trend shown in Figure 

5.2 and given that LSNish already accounts for the influence of the contractive/dilative tendencies 
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of the soil on the severity of surficial liquefaction manifestations via the εv-Dr-FS relationship, it 

was deemed reasonable to assume that the “true” triggering curve plots as a straight line. For 

comparison purposes, the Boulanger and Idriss (2014) [BI14] median CRRM7.5 curve is also plotted 

in Figure 5.2.  

Thus, assuming that the “true” triggering curve plots as a straight line, the functional form of the 

“true” CRRM7.5 curve was defined as: 

𝐶𝑅𝑅𝑀7.5 =
𝑞𝑐1𝑁𝑐𝑠

𝑎1
+ 𝑎2 (5.2) 

where: a1 and a2 are the parameters that define the slope (where: slope = 1/a1) and the y-intercept 

of the “true” triggering curve, respectively, and are derived within an optimization algorithm such 

that the predictive efficiency of LSNish is maximized for the CE dataset considered in this study. 

The predictive efficiency of LSNish was assessed using Receiver Operating Characteristic (ROC) 

analyses, an overview of which is presented in the following section. LSNish can be computed as: 

𝐿𝑆𝑁𝑖𝑠ℎ = ∫ 𝐹(휀𝑣) ∙
36.929

𝑧
∙ 𝑑𝑧

20𝑚

𝐻1

 (5.3) 

where: 

𝐹(휀𝑣) =  {

휀𝑣

5.5
       𝑖𝑓 𝐹𝑆 ≤ 2 𝑎𝑛𝑑 𝐻1 ∙ 𝑚(휀𝑣) ≤ 3

  
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 (5.4a) 

𝑚(휀𝑣) = exp (
0.7447

휀𝑣
) − 1;    𝑚(휀𝑣 < 0.16) = 100 (5.4b) 

In Eq. 5.3, z is the depth below the ground surface in meters; εv is expressed in percent and is 

estimated as a function of FS and qc1Ncs using the Zhang et al. (2002) procedure, which is based on 

the εv-Dr-FS relationship proposed by Ishihara and Yoshimine (1992); FS is computed using Eq. 

5.1 wherein CSR* is computed following the Green et al. (2019a) procedure in conjunction with 

the modified overburden correction factor (Kγ) formulation recently proposed by Green et al. 

(2019b) [Gea19b]. Inherent to this process, soils having Ic > 2.5 were considered non-liquefiable 

(e.g., Maurer et al. 2017; 2019). Note that this is a Christchurch-specific criteria proposed by 

Maurer et al. (2019), which is slightly different than the commonly used Ic > 2.6. Moreover, fines 
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content (FC) was estimated using the Christchurch-specific Ic - FC correlation proposed by Maurer 

et al. (2019). 

5.4.1.2 Overview of ROC analyses 

Receiver Operating Characteristics (ROC) analysis has been widely used to evaluate the 

performance of diagnostic models, including extensive use in medical diagnostics (e.g., Zou 2007) 

and to a much lesser degree in geotechnical engineering (e.g., Oommen et al. 2010; Maurer et al. 

2015b,c,d; 2017a,b; 2019; Green et al. 2017; Zhu et al. 2017; Upadhyaya et al. 2018;2019b). In 

particular, in cases where the distribution of “positives” (e.g., cases of observed surficial 

liquefaction manifestation) and “negatives” (e.g., cases of no observed surficial liquefaction 

manifestations) overlap (e.g., Figure 5.3a), ROC analyses can be used (1) to identify the optimum 

diagnostic threshold (e.g., LSNish threshold) for distinguishing between positives and negatives; 

and (2) to assess the relative efficacy of competing diagnostic models, independent of the 

thresholds used. A ROC curve is a plot of the True Positive Rate (RTP) (i.e., surficial liquefaction 

manifestation was observed, as predicted) versus the False Positive Rate (RFP) (i.e., surficial 

liquefaction manifestation is predicted, but was not observed) for varying threshold values (e.g., 

LSNish). A conceptual illustration of ROC analysis, including the relationship among the 

distributions for positives and negatives, the threshold value, and the ROC curve, is shown in 

Figure 5.3.  

In ROC curve space, a diagnostic test that has no predictive ability (i.e., a random guess) results 

in a ROC curve that plots as 1:1 line through the origin. In contrast, a diagnostic test that has a 

perfect predictive ability (i.e., a perfect model) plots along the left vertical and upper horizontal 

axes, connecting at the point (0,1) and indicates the existence of a threshold value that perfectly 

segregates the dataset (e.g., all cases with observed surficial manifestation will have LSNish above 

the threshold and all cases with no observed surficial manifestation will have LSNish below the 

threshold). The area under the ROC curve (AUC) can be used as a metric to evaluate the predictive 

performance of a diagnostic model (e.g., LSNish), whereby higher AUC indicates better predictive 

capabilities (e.g., Fawcett 2005). As such, a random guess returns an AUC of 0.5, whereas a perfect 

model returns an AUC of 1. The optimum operating point (OOP) in a ROC analyses is defined as 

the threshold value (e.g., threshold LSNish) that minimizes the rate of misprediction [i.e., RFP + 
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(1-RTP)]. Contours of the quantity [RFP + (1-RTP)] are iso-performance lines joining points of 

equivalent performance in ROC space, as illustrated in Figure 5.3b. 

Initially, ROC analyses were performed iteratively within an optimization function to obtain 

regression parameters a1 and a2 that maximized the AUC for the CE dataset. However, it was 

observed that the case history data itself could not constrain both parameters at the same time. 

Thus, the slope of the “true” triggering parameter was constrained such that it is equal to the slope 

of the laboratory-based CRRM7.5 curve (i.e., a1 = 1919.2) and the only parameter that was regressed 

using the case-history data was the y-intercept, which was found to be equal to 0.09 (i.e., a2 = 

0.09).  Figure 5.4 contains the “true” triggering curve derived within LSNish formulation. Note 

that the “true” triggering curve derived herein optimizes the separation of cases with and without 

surficial liquefaction manifestations, therefore it is analogous to the median CRRM7.5 curve. Thus, 

it is logical to compare the “true” triggering curve derived herein with the BI14 median CRRM7.5 

curve, also shown in Figure 5.4. To compare the predictive efficiencies of the “true” triggering 

curve derived herein with that of the BI14 median CRRM7.5 curve, used in conjunction with the 

LSNish formulation for the CE dataset, the associated ROC curves are plotted in Figure 5.5. Note 

that the CSR* required to compute FS was estimated using Gea19b procedure when the “true” 

triggering curve was used and BI14 procedure when the BI14 median CRRM7.5 curve was used. It 

can be seen that the AUC associated with the “true” triggering curve derived herein is 6.8% higher 

than the BI14 median CRRM7.5 curve. These findings suggest that for the dataset assessed, the 

“true” triggering curve is more efficacious than the BI14 median CRRM7.5 curve in distinguishing 

sites with and without surficial liquefaction manifestation, when used within the LSNish 

formulation.  

Threshold MSI values are commonly used to perform deterministic assessments of liquefaction 

damage potential at a site using any MSI model. However, these threshold values are specific to 

the MSI model and the liquefaction triggering model used (e.g., Maurer et al., 2015c). 

Accordingly, ROC analyses were performed on the CE dataset to compute optimum threshold 

LSNish values (in conjunction with the “true” triggering curve derived herein) considering: (1) 

only the occurrence of surficial manifestation (i.e., “yes” or “no”); and (2) different severities of 

surficial liquefaction manifestation (i.e., “minor,” “moderate,” or “severe”). These optimum 

threshold LSNish values are summarized in Table 5.1. It should be noted that these threshold values 
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were determined using case histories having predominantly clean sand to silty sand profiles and 

are not recommended for use at sites having predominantly silty and clayey soil mixtures (i.e., 

soils with high FC and/or high plasticity).  

5.4.2 Probabilistic approach  

The deterministic approach presented in the previous section was expanded into a probabilistic 

framework, such that the “true” triggering curve reflects the uncertainties in field observations and 

in the parameters that control liquefaction triggering and surface manifestation. Probabilistic 

triggering relationships for SPT-, CPT-, and Vs-based in-situ testing methods have been proposed 

by a number of researchers (e.g., Juang et al. 2002; Cetin et al. 2002; 2004; 2018; Moss et al. 2006; 

Idriss and Boulanger 2010; Boulanger and Idriss 2012; 2014; among others). The limit state 

function, which represents the boundary between “liquefaction” and “no liquefaction” regions in 

the space of predictor variables, is generally expressed as (Cetin et al. 2002; 2004): 

g(𝑋; 𝛩, 휀) =  ĝ(𝑋; 𝛩) + 휀 (5.5) 

where ĝ(∙) represents an approximation to the true limit function g; X denotes a vector of predictor 

variables that quantify the soil capacity (e.g., qc1Ncs) and the seismic demand (e.g., CSR*); 

denotes the parameters of the limit state function; ε is an error term which is traditionally 

assumed to be normally distributed with a mean of zero and a standard deviation σε.  

By definition, g(X;ε) takes zero or negative values when liquefaction is predicted to trigger and 

positive values when liquefaction is not predicted to trigger. Assuming that the predictive variables 

and the parameters of the limit state function are known, the probability of liquefaction triggering 

(PL) can be expressed as (Cetin et al. 2002): 

𝑃𝐿 = (−
ĝ(𝑋; 𝛩)

𝜎𝜀
) (5.6) 

where:  (∙) is the standard normal cumulative distribution function.  

In past studies, the parameter set has been determined using “liquefaction” and “no liquefaction” 

case histories. However, as discussed previously, this designation of “liquefaction” and “no 

liquefaction” is mostly based on the observations of surficial liquefaction manifestations, not on 

whether or not liquefaction was triggered at a depth in the soil profile. In this study, the parameters 
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of the liquefaction triggering relationship are determined using a probabilistic framework that 

includes a surface manifestation model, therefore allowing for the development of a “true” 

liquefaction triggering curve. The proposed approach is detailed in the following section. 

5.4.2.1 Limit state function for liquefaction triggering  

As in past probabilistic studies, the following form of the limit-state function for liquefaction 

triggering was used: 

 g(𝑞𝑐1𝑁𝑐𝑠, 𝐶𝑆𝑅∗; 𝛩, 휀) = ln(𝐶𝑅𝑅𝑀7.5) − ln (𝐶𝑆𝑅∗) + 휀 (5.7) 

As mentioned earlier, the CRRM7.5 curve derived using the deterministic approach is analogous to 

a median CRRM7.5 curve. To maintain consistency between the shape and position of the CRRM7.5 

curve from the deterministic and probabilistic approaches, the probabilistic relationship for 

CRRM7.5 was expressed as: 

𝐶𝑅𝑅𝑀7.5 = 𝑒𝑥𝑝 [𝑙𝑛 (
𝑞𝑐1𝑁𝑐𝑠

𝑎1
+ 𝑎2) + 𝜎𝜀 ∙ Φ−1(𝑃𝐿) ] (5.8) 

where, a1 = 1919.2 and a2 = 0.09; σε is treated as an unknown model parameter which is estimated 

using regression analyses; Φ-1(∙) is the inverse of the standard cumulative normal distribution; and 

PL is the probability of liquefaction triggering. Note that the implicit assumption is that the median 

“true” liquefaction curve is given by the deterministic curve obtained previously, and only the 

uncertainty around the median curve () is obtained from the probabilistic analysis. This choice 

is justified later in the paper when discussing the regression approach. 

5.4.2.2 Probabilistic definition of surficial liquefaction manifestation 

For a given soil profile, the probability of surficial liquefaction manifestation, P(S), is defined as: 

𝑃(𝑆) = ∫ 𝑃(𝑆|𝐿𝑆𝑁𝑖𝑠ℎ) ∙ 𝑓𝐿𝑆𝑁𝑖𝑠ℎ(𝑙|; 𝑋) ∙ 𝑑𝑙 (5.9) 

where: S is a binary random variable that denotes surficial liquefaction manifestation; P(S|LSNish) 

is the conditional probability of surficial liquefaction manifestation given an LSNish value and is 

akin to defining LSNish thresholds in the deterministic approach; fLSNish(l|;X) is the probability 

density function (PDF) of LSNish which is obtained from the probabilistic model in Eq. 5.8. 
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The conditional probability of surficial liquefaction manifestation, P(S|LSNish), was defined using 

a logistic regression type model (e.g., Papathanassiou 2008; Juang et al. 2011; Chung and Rogers 

2017) given by: 

𝑃(𝑆|𝐿𝑆𝑁𝑖𝑠ℎ) =
1

1 + 𝑒−(𝐵0+𝐵1∙𝐿𝑆𝑁𝑖𝑠ℎ)
 (5.10) 

where: B0 and B1 are the model parameters which will be determined using regression. Thus, in 

addition to σε, Bo and B1 are two more parameters that will be obtained through regression. 

The PDF of LSNish (i.e., fLSNish) was obtained by mapping the uncertainties in the liquefaction 

triggering relationship (i.e., σε) to the uncertainties in the LSNish model. In this process, random 

samples of ε were generated from a normal distribution with mean zero and standard deviation σε. 

However, instead of using blind sampling which is computationally expensive, a reduced sampling 

approach was adopted. In this approach, probabilities between 0 and 1 are divided into N number 

of equally spaced bins and samples of ε are obtained as the inverse of the normal cumulative 

distribution function (CDF) at the middle of each bin. For each sample (εi), LSNishi is computed 

which results in a distribution of LSNish for each case history. It is assumed that LSNish generally 

follows a log normal distribution. However, since LSNish can take zero values, fLSNish was defined 

using a combination of a Dirac Delta function at LSNish = 0 [i.e.,  (LSNish)] and a lognormal 

distribution for LSNish > 0 with parameters μln(LSNish) and σln(LSNish) that define the mean and 

standard deviation of natural logarithm of LSNish, respectively:  

𝑓𝐿𝑆𝑁𝑖𝑠ℎ = 𝑃(𝐿𝑆𝑁𝑖𝑠ℎ = 0) ∙  (𝐿𝑆𝑁𝑖𝑠ℎ) + 𝑤 ∙ 𝑓𝐿𝑆𝑁𝑖𝑠ℎ|𝐿𝑆𝑁𝑖𝑠ℎ>0 (5.11) 

where: 

𝑤 = 1 − 𝑃(𝐿𝑆𝑁𝑖𝑠ℎ = 0) (5.12a) 

  

 (𝐿𝑆𝑁𝑖𝑠ℎ) = {
0        𝑓𝑜𝑟 𝐿𝑆𝑁𝑖𝑠ℎ ≠ 0
∞     𝑓𝑜𝑟 𝐿𝑆𝑁𝑖𝑠ℎ = 0

 (5.12b) 

and 
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∫ 𝛿(𝐿𝑆𝑁𝑖𝑠ℎ)𝑑𝑙
∞

−∞

= 1 (5.12c) 

In Eq. 5.11, P(LSNish=0) is the probability of LSNish being zero and can be obtained as the ratio 

of number of samples of ε that result in LSNish = 0 to the total number of samples (N). 

To determine the number of probability bins (N) needed to obtain estimates of P(LSNish=0), 

μln(LSNish), and σln(LSNish) that are comparable to those obtained from blind sampling, a sensitivity 

analyses was performed on a few randomly selected case histories from the CE dataset, wherein N 

was varied between 25 and 1000. It was found that N = 100 resulted in reasonable estimates of the 

above mentioned parameters. 

5.4.2.3 Regression approach 

The unknown parameters of the liquefaction triggering relationship (i.e., σε) and the P(S|LSNish) 

model parameters (i.e., Bo and B1) were estimated simultaneously using maximum likelihood 

estimation, where the likelihood function is defined as: 

𝐿(𝛩) = ∏ 𝑃(𝑆)
𝑚𝑎𝑛𝑖𝑓𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛

× ∏ [1 − 𝑃(𝑆)]
𝑛𝑜 𝑚𝑎𝑛𝑖𝑓𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛

 (5.13) 

In performing the regression analyses, it was assumed that the input parameters are exact (i.e., the 

uncertainties in the input parameters were not incorporated in the regression analyses). The 

solution obtained by maximizing the likelihood function (e.g., Eq. 5.13) indicated that that the case 

history data itself was not sufficient to simultaneously constrain all the parameters of the triggering 

relationship (a1, a2, ) and the surface manifestation model parameters (B0 and B1). When an 

attempt was made to constrain all parameters simultaneously, the regression resulted in all the 

uncertainty assigned to the manifestation model, with the resulting uncertainty in the triggering 

model being negligible. One way to partition the uncertainty among the triggering and 

manifestation models is to constrain the P(S|LSNish) curve such that it is made steeper, which 

results in some reasonable uncertainty in the triggering relationship. The P(S|LSNish) curve was 

constrained such that P(S|LSNish) ≥ 0.99 for LSNish ≥ 23. Note that LSNish = 23 is the 

deterministic threshold for severe liquefaction manifestation and thus it is reasonable to assume 

that the probability of surficial liquefaction manifestation is close to 1 if this threshold is exceeded. 

From the maximum likelihood regression analyses, it was found that σε = 0.243, B0 = -2.77, and 
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B1 = 0.37.  The resulting “true” probabilistic liquefaction triggering relationships are presented in 

Eqs. 5.14 and 5.15. 

𝐶𝑅𝑅𝑀7.5 = 𝑒𝑥𝑝 [𝑙𝑛 (
𝑞𝑐1𝑁𝑐𝑠

1919.2
+ 0.09) + 0.243 ∙ Φ−1(𝑃𝐿) ] (5.14) 

  

𝑃𝐿 = Φ [−
𝑙𝑛 (

𝑞𝑐1𝑁𝑐𝑠

1919.2 + 0.09) − 𝑙𝑛(𝐶𝑆𝑅∗)

0.243
] (5.15) 

The “true” triggering curves corresponding to PL = 15%, 50%, and 85% are shown in Figure 5.6 

and the regressed P(S|LSNish) curve is shown in Figure 5.7. Also shown in Figure 5.7 are the 

observed probabilities of surficial manifestations computed by grouping the LSNish values into 

multiple equally spaced bins. For each bin, the observed probability of manifestation was 

computed as the ratio of cases with observed manifestation to the total number of cases in each 

bin. It can be seen that there is a good agreement between the regressed P(S|LSNish) curve and the 

observed binned data for P(S|LSNish) < 0.8. An implication of this observation is that when 

P(S|LSNish) > 0.8, it is assumed that it is almost certain that surface manifestation occurs which is 

a reasonable conservative outcome. As mentioned earlier, in deriving the probabilistic triggering 

relationship it was assumed that the input parameters to the model are exact. As a result, the 

uncertainty in the triggering curve indirectly reflects the uncertainties in both the input parameters 

and the model uncertainty (i.e., total uncertainty). Since the existing triggering relationships have 

been generally presented in terms of model uncertainty alone, a direct comparison of the “true” 

triggering curves regressed herein and the existing probabilistic triggering curves cannot be made. 

However, Green et al. (2016) used the case history data of BI14 and regressed probabilistic 

triggering relationships for clean sands (i.e., FC ≤ 5%) in terms of total uncertainty, which are also 

shown in Figure 5.6. It can be seen that the uncertainty in the “true” triggering curves regressed 

herein is smaller than the total uncertainty computed by Green et al. (2016) for the BI14 triggering 

relationship. This is likely because the P(S|LSNish) model (Figure 5.7) accounts for the 

uncertainties associated with factors influencing the surficial liquefaction manifestation, hence 

reducing the uncertainty in the triggering relationship. 
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Similar to the defining optimum LSNish thresholds in the deterministic approach, optimum 

threshold P(S) values were also assessed by performing ROC analyses on the CE dataset, 

considering: (1) only the occurrence of surficial manifestation (i.e., “yes” or “no”); and (2) 

different severities of surficial liquefaction manifestation (i.e., “minor,” “moderate,” or “severe”). 

These threshold P(S) values are summarized in Table 5.2.  

5.5 Evaluation of 50 world-wide liquefaction case histories 

The “true” triggering curve presented in this study has been developed solely based on the CE 

dataset, which contains case histories resulting from only three earthquakes and from a limited 

geological and seismological environment. To evaluate the efficacy of LSNish in conjunction with 

the “true” triggering curve for non-CE settings, 50 world-wide case histories having profiles 

comprising of predominantly clean sand to silty sand (i.e., Ic10 < 2.05) were compiled from the 

existing literature. A summary of these 50 world-wide case histories is presented in Table S1 as a 

supplemental material. These 50 case histories comprise of 29 “liquefaction” and 21 “no 

liquefaction” cases from 6 different earthquake events from around the world.   

For each of these 50 case histories, LSNish values were computed using both the deterministic 

“true” triggering model derived herein as well as the BI14 median triggering model, where soils 

having Ic > 2.6 were considered non-liquefiable. Using the optimum threshold values of LSNish 

for distinguishing cases with and without manifestation, evaluated using: (a) the “true” triggering 

model (e.g., Table 5.1); and (b) BI14 median triggering model (e.g., LSNish threshold of 3.6 as 

computed by Upadhyaya et al. 2019c), the overall accuracies (i.e., the ratio of number of accurately 

predicted cases to the total number of cases) were computed for each case. Note that the 

liquefaction manifestation severity for the world-wide case histories is only categorized as either 

“yes” or “no” and thus the threshold LSNish distinguishing “any manifestation” from “no 

manifestation” were used in computing the overall accuracy. It was found that the overall 

accuracies of LSNish used in conjunction with the “true” triggering model and the BI14 median 

triggering model were both found to be 66% (i.e., both the “true” triggering and the BI14 median 

triggering models used in conjunction with LSNish accurately predicted 33 out of 50 case 

histories). These findings suggest that for the world-wide dataset, the “true” triggering relationship 

is equally efficient as the BI14 triggering relationship in predicting the occurrence of surficial 

liquefaction manifestation when operating in conjunction with LSNish. Note that the BI14 
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triggering model was trained on almost all of the 50 world-wide case histories that are being used 

to test the “true” triggering curve. While the BI14 model did not perform well on the CE dataset 

on which the “true” triggering model was trained, the “true” triggering model derived herein is 

completely unbiased when tested on these 50 world-wide case histories. 

Furthermore, following the probabilistic approach for evaluating the severity of surficial 

liquefaction manifestation (or, liquefaction damage potential) proposed herein, the probability of 

surficial liquefaction manifestation, P(S), was computed in conjunction with the “true” triggering 

relationship for each of the 50 case histories (e.g., Eq. 5.9). Using the optimum threshold P(S) that 

distinguishes “any manifestation” from “no manifestation” determined in the previous section 

(e.g., Table 5.2), overall accuracy of P(S) in predicting the occurrence of surficial liquefaction 

manifestation was assessed for the world-wide dataset. The overall accuracy of P(S) was found to 

be 66% which is the exact same as that obtained using the deterministic threshold LSNish. 

5.6 Discussion and conclusion 

This paper presented an internally-consistent framework for predicting liquefaction triggering and 

the resulting severity of surficial manifestation. Specifically, this paper presented a methodology 

to derive a “true” liquefaction triggering curve consistent with a defined manifestation model (i.e., 

LSNish) such that factors influential to triggering and manifestation are handled more rationally 

and consistently. Moreover, the methodology presented herein removes the subjectivity associated 

with the selection of critical layers and their representative properties as the cumulative response 

of the entire soil profile is tied to the observed surficial liquefaction manifestation. Utilizing 7167 

CPT liquefaction case histories from the 2010-2016 Canterbury Earthquakes, deterministic and 

probabilistic variants of the “true” triggering curve were developed within the recently proposed 

LSNish model for predominantly clean sand to silty sand profiles. It was shown that the prediction 

efficiency of the LSNish model in conjunction with the “true” triggering curve derived herein was 

~7% higher than in conjunction with the BI14 median triggering curve for the CE dataset. 

Additionally, by analyzing a second smaller subset comprised of 50 world-wide CPT liquefaction 

case histories, it was found that the overall accuracies of the “true” triggering curve and the BI14 

median triggering curve were exactly the same (i.e., 66%) when operating within the LSNish model 

suggesting that the “true” triggering curve is equally efficacious if not better than the BI14 median 

triggering curve.  
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The case history data was not sufficient to constrain all the parameters of the triggering and 

manifestation relationships. This is largely because the CE dataset used in this study is comprised 

of case histories resulting from only three earthquakes in the same region. As a result, the case 

histories represent limited seismological and geological variability. Thus, it was necessary to use 

several assumptions to constrain some of the parameters of the triggering and manifestation 

relationships, which was largely guided by laboratory data and the authors’ judgement. For 

example: the slope of the “true” triggering curve was constrained to be consistent with trends 

shown by the laboratory data since the field case history data itself was not robust enough to 

constrain both the shape/slope and the position of the curve. Additionally, since the “true” 

triggering curve was derived using the CE case histories, the results may be biased to Christchurch 

data. Although the resulting model derived herein was shown to be equally efficient as existing 

models when applied to 50 global case histories, more high quality case histories representing a 

more diverse range of seismological and geological settings will be needed for true validation of 

the framework presented in this paper.  

Furthermore, the methodology for deriving a “true” triggering curve shown in this paper was 

demonstrated using the LSNish manifestation model since it accounts for the factors affecting 

surficial liquefaction manifestation in a more appropriate manner compared to other existing MSI 

models. However, there are uncertainties as to what factors influence surface manifestation and 

how exactly these factors control the manifestation mechanism. Thus, even the soundest and the 

most efficient of the existing MSI models do not account for all the factors influencing liquefaction 

response. For example, past studies have shown that the occurrence/severity of surficial 

liquefaction manifestation is influenced by the presence of non-liquefiable, high fines-content, 

high plasticity soils (e.g., Maurer et al. 2015b; Upadhyaya et al. 2018); however, such effects are 

not accounted for by any of the existing MSI models, to include LSNish. Accordingly, the “true” 

triggering curve was derived by only using case histories having predominantly clean sand to silty 

sand profiles. In the future, further research into the mechanics of liquefaction triggering as well 

as surficial liquefaction manifestation will be required to further improve and constrain the 

framework presented herein. Regardless, this paper presents an internally consistent framework 

for predicting liquefaction triggering and the resulting damage potential, thereby conceptually 

advancing the state-of-the-art in liquefaction risk assessment. 
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Tables 

 

Table 5.1 Optimum LSNish thresholds for different severities of surficial liquefaction 

manifestation 

Manifestation severity category Threshold LSNish 

Any manifestation 4.2 

Marginal manifestation 3.1 

Moderate manifestation 10.1 

Severe manifestation 23.0 

 

Table 5.2 Optimum P(S) threshold for different severities of surficial liquefaction manifestation 

Manifestation severity category Threshold P(S) 

Any manifestation 0.4 

Marginal manifestation 0.3 

Moderate manifestation 0.6 

Severe manifestation 0.7 
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Figures 

 

 

Figure 5.1 Flowchart showing the approach for deriving a “true” liquefaction triggering curve 

within the LSNish model. 

 

Figure 5.2 CSR* versus qc1Ncs data from laboratory tests of Ulmer (2019) along with the best fit 

CRRM7.5 curve (solid black line) as well as the BI14 median CRRM7.5 curve. 
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Figure 5.3 Conceptual illustration of ROC analyses: (a) frequency distributions of surficial 

liquefaction manifestation and no surficial liquefaction manifestation observations as a function 

of LSNish; (b) corresponding ROC curve (after Maurer et al. 2015b,c,d). 

 

 

Figure 5.4 “True” triggering curve derived within the LSNish model plotted along with the BI14 

median CRRM7.5 curve. 
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Figure 5.5 ROC curves for the “true” triggering curve and the BI14 CRRM7.5 curve, operating in 

conjunction with LSNish. 

 

 

Figure 5.6 Probabilistic “true” liquefaction triggering curves derived within the LSNish model. 

Also shown are the BI14 total uncertainty CRRM7.5 curves for clean sand (FC ≤ 5%), regressed by 

Green et al. (2016). 
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Figure 5.7 Probability of surficial liquefaction manifestation as a function of LSNish along with 

the observed binned data. 
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Supplementary Material  

Table S1. Summary of 50 world-wide CPT liquefaction case histories.  

No. CPT ID 
Earthquake 

Event 
Country 

Magnitude 

(Mw) 

PGA 

(g) 
Liq? 

GWT 

(m) 

Sounding 

depth 

(m) 

Original references 

1 
Hinode Minami 

Elementary School 
2011 Tohoku Japan 9 0.17 No liq 1.1 20 

Cox et al. (2013), Boulanger and 

Idriss (2014) 

2 Tangshan (T13) 1976 Tangshan China 7.6 0.58 Liq 1.1 15.94 
Shibata and Teparaska (1988); 

Moss et al. (2009; 2011) 

3 
Alameda Bay 

Farm Island (Dike) 
1989 Loma Prieta United States 6.93 0.24 No liq 5.5 11.94 Mitchell et al. (1994) 

4 Marine Lab (C4) 1989 Loma Prieta United States 6.93 0.28 Liq 2.8 13.65 Boulanger et al. (1995; 1997) 

5 MBARI 4 (CPT-1) 1989 Loma Prieta United States 6.93 0.28 No liq 1.9 13.65 Boulanger et al. (1995; 1997) 

6 
General Fish 

(CPT-6) 
1989 Loma Prieta United States 6.93 0.28 No liq 1.7 13.69 Boulanger et al. (1995; 1997) 

7 
Woodward Marine 

(14-A) 
1989 Loma Prieta United States 6.93 0.28 Liq 1.2 6.1 Boulanger et al. (1995; 1997) 

8 
Port of Oakland 

(POO7-2) 
1989 Loma Prieta United States 6.93 0.28 Liq 3 10.95 

Mitchell et al. (1994); Kayen et al. 

(1998) 

9 
Port of Oakland 

(POO7-3) 
1989 Loma Prieta United States 6.93 0.28 No liq 3 15.93 

Mitchell et al. (1994); Kayen et al. 

(1998) 

10 
Pajaro Dunes 

(PD1-44) 
1989 Loma Prieta United States 6.93 0.22 Liq 3.4 9.9 

Bennett & Tinsely (1995); Toprak 

& Holzer (2003) 

11 
Radovich (RAD-

98) 
1989 Loma Prieta United States 6.93 0.38 No liq 3.5 14.1 

Bennett & Tinsely (1995); Toprak 

& Holzer (2003) 

12 MBARI 3 (RC-6) 1989 Loma Prieta United States 6.93 0.28 No liq 2.6 9.57 Boulanger et al. (1995; 1997) 

13 MBARI 3 (RC-7) 1989 Loma Prieta United States 6.93 0.28 No liq 3.7 11.16 Boulanger et al. (1995; 1997) 

14 
SFO Bay Bridge 

(SFOBB-1) 
1989 Loma Prieta United States 6.93 0.28 Liq 3 14.95 

Mitchell et al. (1994); Kayen et al. 

(1998) 

15 
SFO Bay Bridge 

(SFOBB-2) 
1989 Loma Prieta United States 6.93 0.28 Liq 3 10.8 

Mitchell et al. (1994); Kayen et al. 

(1998) 

16 Silliman (SIL-68) 1989 Loma Prieta United States 6.93 0.38 Liq 3.5 12.8 
Bennett & Tinsely (1995); Toprak 

& Holzer (2003) 

17 
Southern Pacific 

Bridge (SPR-48) 
1989 Loma Prieta United States 6.93 0.33 Liq 5.3 10.8 

Bennett & Tinsely (1995); Toprak 

& Holzer (2003) 
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18 
Marine Lab (UC-

1) 
1989 Loma Prieta United States 6.93 0.28 Liq 2.4 18 Boulanger et al. (1995; 1997) 

19 
Sandhold Road 

(UC-2) 
1989 Loma Prieta United States 6.93 0.28 No liq 1.7 15 Boulanger et al. (1995; 1997) 

20 
Sandhold Road 

(UC-3) 
1989 Loma Prieta United States 6.93 0.28 No liq 1.7 15 Boulanger et al. (1995; 1997) 

21 
Sandhold Road 

(UC-6) 
1989 Loma Prieta United States 6.93 0.28 No liq 1.7 14.95 Boulanger et al. (1995; 1997) 

22 
Woodward Marine 

(UC-9) 
1989 Loma Prieta United States 6.93 0.28 Liq 1.2 16.6 Boulanger et al. (1995; 1997) 

23 
State Beach Kiosk 

(UC-14) 
1989 Loma Prieta United States 6.93 0.28 Liq 1.8 22 Boulanger et al. (1995; 1997) 

24 
State Beach Path 

(UC-16) 
1989 Loma Prieta United States 6.93 0.28 Liq 2.5 22 Boulanger et al. (1995; 1997) 

25 
State Beach (UC-

18) 
1989 Loma Prieta United States 6.93 0.28 No liq 3.4 19.95 Boulanger et al. (1995; 1997) 

26 
Adapazari Site B 

(CPT-B1) 
1999 Kocaeli Turkey 7.51 0.4 Liq 3.3 20.54 PEER (2000a) 

27 
Adapazari Site D 

(CPT-D1) 
1999 Kocaeli Turkey 7.51 0.4 Liq 1.5 24.74 PEER (2000a) 

28 
Degirmendere DN-

1 
1999 Kocaeli Turkey 7.51 0.4 Liq 1.7 20.16 Youd et al. (2009) 

29 Hotel Spanca SH-4 1999 Kocaeli Turkey 7.51 0.37 Liq 0.5 20.26 PEER (2000a) 

30 
Honjyo Central 

Park (HCP-1) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.7 No liq 2.5 13.82 Suzuki et al. (2003) 

31 
Imazu Elementary 

School (IES-1) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.6 Liq 1.4 16.2 Suzuki et al. (2003) 

32 
Kobe Art Institute 

(KAI-1) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.5 No liq 3 5.1 Suzuki et al. (2003) 

33 

Kobe Customs 

Maya Office A 

(KMO-A) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.6 Liq 1.8 24.25 Suzuki et al. (2003) 

34 

Kobe Customs 

Maya Office A 

(KMO-B) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.6 Liq 1.8 19.79 Suzuki et al. (2003) 

35 

New Wharf 

Construction 

Offices (NWC-1) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.45 Liq 2.6 12.78 Suzuki et al. (2003) 
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36 

Sumiyoshi 

Elementary (SES-

1) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.6 No liq 1.9 8.33 Suzuki et al. (2003) 

37 

Siporex Kogyo 

Osaka Factory 

(SKF-1) 

1995 Hyogoken-

Nambu 
Japan 6.9 0.4 Liq 1.5 10.59 Suzuki et al. (2003) 

38 
Brady Farm 

(BDY004) 
1987 Edgecumbe New Zealand 6.6 0.4 No liq 1.53 11.47 

Christensen (1995), Moss et al. 

(2003) 

39 
Gordon Farm 

(GDN001) 
1987 Edgecumbe New Zealand 6.6 0.43 Liq 0.5 7.89 

Christensen (1995), Moss et al. 

(2003) 

40 
Gordon Farm 

(GDN002) 
1987 Edgecumbe New Zealand 6.6 0.43 No liq 0.9 6.22 

Christensen (1995), Moss et al. 

(2003) 

41 
Whakatane 

Hospital (HSP001) 
1987 Edgecumbe New Zealand 6.6 0.26 No liq 4.4 6.29 

Christensen (1995), Moss et al. 

(2003) 

42 
Keir Farm 

(KER001) 
1987 Edgecumbe New Zealand 6.6 0.31 Liq 2.5 16.62 

Christensen (1995) Moss et al. 

(2003) 

43 
Landing Road 

Bridge (LRB007) 
1987 Edgecumbe New Zealand 6.6 0.27 Liq 1.2 15.44 

Christensen (1995), Moss et al. 

(2003) 

44 
Morris Farm 

(MRS001) 
1987 Edgecumbe New Zealand 6.6 0.42 Liq 1.6 13.14 

Christensen (1995), Moss et al. 

(2003) 

45 
Morris Farm 

(MRS003) 
1987 Edgecumbe New Zealand 6.6 0.41 No liq 2.08 13.86 

Christensen (1995), Moss et al. 

(2003) 

46 
Robinson Farm 

(RBN001) 
1987 Edgecumbe New Zealand 6.6 0.44 Liq 0.8 12.69 

Christensen (1995), Moss et al. 

(2003) 

47 
Robinson Farm 

(RBN002) 
1987 Edgecumbe New Zealand 6.6 0.44 No liq 0.7 11.99 Christensen (1995) 

48 
Robinson Farm 

(RBN003) 
1987 Edgecumbe New Zealand 6.6 0.44 No liq 0.9 12 Christensen (1995) 

49 
Robinson Farm 

(RBN004) 
1987 Edgecumbe New Zealand 6.6 0.44 Liq 0.61 14.52 

Christensen (1995), Moss et al. 

(2003) 

50 
Sewage Pumping 

Station (SPS001) 
1987 Edgecumbe New Zealand 6.6 0.26 Liq 1.3 13.47 

Christensen (1995), Moss et al. 

(2003) 
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Chapter 6: Summary and Conclusions 

6.1 Summary of Contributions 

The overarching goal of this dissertation was to develop improved methodologies for predicting 

liquefaction triggering and the consequent damage potential such that the impacts of liquefaction 

on natural and built environment can be minimized. This was achieved by addressing some of the 

shortcomings of the existing methodologies. Specifically, this dissertation focused on developing 

a framework that accounts for the mechanisms of liquefaction triggering and surface manifestation 

in a consistent and adequate manner. Towards this end, this dissertation made the following major 

contributions: 

1. Development of a framework that relates optimal factor of safety (FS) against liquefaction 

triggering for decision making to the cost of mispredicting liquefaction triggering. The 

framework developed herein can be used to select project-specific optimal FS thresholds 

based on the costs of liquefaction risk-mitigation schemes relative to the costs associated 

with the consequences of liquefaction. Additionally, the framework could be similarly used 

to select optimal probability of liquefaction triggering (PL) thresholds for decision making 

based on the relative costs of misprediction. 

2. Rigorous investigation of the predictive performance of three different manifestation 

severity index (MSI) models (e.g., LPI, LPIish, and LSN) as a function of the CPT soil 

behavior type index averaged over the upper 10 m of the profile (Ic10) using case histories 

from the 2010-2016 Canterbury earthquakes, wherein Ic10 was used to infer the extent to 

which a profile contains high fines-content, high plasticity soil strata. It was shown that the 

relationship between computed MSI and the severity of surficial liquefaction manifestation 

is Ic10-dependent such that the severity of manifestation decreases with increasing Ic10. In 

this regard, Ic10-specific thresholds may be employed to more-accurately estimate the 

liquefaction damage potential at sites having high fines-content, high plasticity soils. 

Furthermore, probabilistic models were proposed for evaluating the severity of 

manifestations as a function of MSI and Ic10. 

3. Development of Ishihara-inspired LSN (LSNish) - a new MSI that more fully accounts for 

the effects of non-liquefiable crust thickness and the effects of contractive/dilative 
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tendencies of the soil on the occurrence and severity of surficial liquefaction manifestation. 

LSNish was derived as a conceptual and mathematical merger of the LSN formulation and 

Ishihara’s H1-H2 relationships.  

4. Development of an improved and internally-consistent approach for predicting triggering 

and surface manifestation of liquefaction. It was shown that current models for predicting 

liquefaction response may not account for the mechanisms of liquefaction triggering and 

surface manifestation in a consistent and sufficient manner. Specifically, the manifestation 

models often assume that the triggering curves are “true” curves (i.e., free of factors 

influencing manifestation). However, as an artifact of the way triggering curves are being 

developed, they may inherently account for some of the factors influencing surface 

manifestations (e.g., dilative tendencies of dense soils). As a result, using the triggering 

curves in conjunction with the manifestation models likely results in the double-counting, 

omission, or general mismanagement of distinct factors that influence triggering and 

manifestation. Accordingly, an approach was presented to derive a “true” liquefaction 

triggering curve that is consistent with a defined manifestation model (e.g., LSNish). Both 

deterministic and probabilistic variants of the “true” triggering curves were developed, 

with the latter accounting for uncertainties in the field observations and in the parameters 

that control liquefaction triggering and surface manifestations. 

6.2 Key Findings 

The contributions listed above are the outcomes of the study presented in Chapters 2 through 5 of 

this dissertation. The following provides a summary of each of the chapters and the main findings: 

Chapter 2 demonstrated how project-specific costs of mispredicting liquefaction triggering can be 

utilized in selecting an appropriate FS threshold for decision making. Specifically, relationships 

between optimal FS threshold and ratio of false-positive prediction costs to false-negative 

prediction costs (i.e., cost ratio, CR) were derived by performing receiver operating characteristic 

(ROC) analyses on different existing liquefaction triggering models and their associated case-

history databases. The optimal FS-CR relationships were found to be specific to the triggering 

model and the database being used. Additionally, it was shown that these relationships were not 

very smooth likely due to limited number of case histories as well as the distribution of FS in the 

corresponding databases. Consequently, a generic optimal FS-CR curve was developed by 
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combining the FS data from all the models. However, it was shown that, even the generic curve 

was not completely smooth, suggesting that additional case histories will be ultimately needed to 

derive a more refined relationship. Alternative to using FS to quantify liquefaction triggering 

potential, probabilistic variants of the triggering evaluation models were used to develop optimal 

PL-CR curves. 

In Chapter 3, 9631 liquefaction case histories from the 2010-2016 Canterbury, New Zealand, 

earthquakes were utilized to investigate the predictive performances of three different MSI models 

(i.e., LPI, LPIish, and LSN), as a function of the soil behavior type index (Ic) averaged over the 

upper 10 m of a soil profile (Ic10), wherein Ic10 is used to infer the extent to which a profile contains 

high fines-content, high plasticity soils. It was shown that, for each MSI model: (1) the relationship 

between computed MSI and the severity of surficial liquefaction manifestation is Ic10-dependent, 

such that at any given MSI value, the severity of manifestation decreases as Ic10 increases; and (2) 

the predictive efficiency of the MSI model (i.e., the ability to segregate cases based on observed 

manifestation severity using MSI thresholds) decreases as Ic10 increases. These findings suggest 

that Ic10-specific severity thresholds may be used to more-accurately estimate the severity of 

surficial liquefaction manifestations. However, even when Ic10-specific thresholds are employed, 

the MSI models are unlikely to efficiently predict the severity of manifestations. Additionally, 

probabilistic models were proposed for evaluating the severity of surficial liquefaction 

manifestation as a function of MSI and Ic10. Finally, the approaches presented herein are indirect 

ways to correct the predictions made by existing MSI models, given that they perform poorly at 

sites with high Ic10. An improved MSI model is ultimately needed such that the effects of high 

fines-content high plasticity soils are incorporated within the model itself. 

In Chapter 4, a new MSI model was developed such that it accounts for the influences of non-

liquefiable crust/capping layer thickness as well as post-triggering volumetric strain potential in 

predicting the occurrence and severity of surficial liquefaction manifestations. This model was 

derived as a conceptual and mathematical merger of Ishihara’s H1-H2 boundary curves and the 

LSN formulation, hence termed LSNish. It should however be noted that LSNish still does not 

account for the effects of interbedded high fines-content high plasticity on the severity of surficial 

liquefaction manifestation, which is a complex phenomenon and will need additional research in 

the future. Consequently, LSNish was evaluated using 7167 liquefaction case histories from the 
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Canterbury, New Zealand, earthquakes, comprised of predominantly clean to silty sand profiles 

and its predictive efficiency was compared to those of LPI, LPIish, and LSN. It was found that 

despite more fully accounting for factors that influence surficial liquefaction manifestations, 

LSNish did not demonstrate improved performance over existing models. This could be due to 

LSNish double counting the dilative tendency of dense soil which inhibits surficial manifestation, 

since the shape of the liquefaction triggering curve inherently accounts for such effects. This same 

issue is a shortcoming of LSN. A proper accounting and clear separation of distinct factors 

influencing triggering and manifestation could improve the performance of LSNish, as further 

investigated in the following chapter.  

Chapter 5 presented an internally-consistent approach to developing models that predict triggering 

and surface manifestation of liquefaction. Specifically, this chapter demonstrated a methodology 

to derive a “true” liquefaction triggering curve consistent with a defined manifestation model (i.e., 

LSNish) such that factors influential to triggering and manifestation are handled more rationally 

and consistently. This methodology avoids the need to select a single “critical” layer because the 

cumulative response of the entire soil profile is tied to the observed surficial manifestation (or lack 

thereof). Utilizing 7167 liquefaction case histories from the 2010-2016 Canterbury Earthquakes, 

comprised of predominantly clean to silty sand profiles, deterministic and probabilistic variants of 

the “true” triggering curve were developed within the LSNish formulation. It was shown that 

LSNish performed significantly better when used in conjunction with the “true” triggering curve 

derived herein than with an existing triggering curve for the compiled Canterbury case histories. 

Additionally, operating within the LSNish framework, the “true” triggering curve was shown to be 

equally efficient as the existing triggering curve when applied to 50 global case histories. 

6.3 Engineering Significance  

The study presented herein advances the state-of-the-art in liquefaction risk assessments through 

the development of improved methodologies for predicting the occurrence and damage potential 

of liquefaction. The findings from this study will lead to a better understanding of the mechanisms 

of liquefaction triggering and related phenomenon, thereby adding to the body of knowledge in 

liquefaction research and practice. Moreover, the methodologies adopted in this study are more 

objective and standardized, and easily implementable in engineering practice. 



124 

 

 A simple, yet rational approach was presented by which the project-specific consequences, 

or costs of mispredicting liquefaction triggering can be used to select an appropriate FS 

threshold for decision making. 

 An approach for correcting the predictions made by the existing MSI models in profiles 

having high fines-content, high plasticity soil strata was presented, given that the MSI 

models perform poorly in such conditions. 

 A new MSI model was developed that more fully accounts for factors influencing surface 

manifestation. 

 Most importantly, a framework was proposed for developing liquefaction triggering 

models consistent with a defined manifestation model such that factors influential to 

triggering and manifestation are handled more rationally and consistently. While 

significant advances have been made in terms of predicting liquefaction triggering and 

related phenomenon, the fundamental approach to developing triggering models has 

remained the same since it was first proposed in 1971. This approach has historically been, 

and presently is, less than completely rational. As such, the framework proposed herein 

represents the most significant conceptual advance in ~50 years. 

6.4 Recommendations for Future Research 

While this dissertation represents significant conceptual advance in liquefaction risk assessments, 

additional work will be needed to further improve and validate the methodologies/framework 

presented herein. One of the most significant contributions of this dissertation is the development 

of an internally-consistent framework for predicting liquefaction triggering and the severity of 

surficial liquefaction manifestations. However, there are several components of the framework 

that could be improved through further research into the mechanics of liquefaction triggering and 

surficial manifestation. In particular, the following issues need to be addressed by future research: 

 The approach to deriving a “true” liquefaction triggering curve presented herein was 

demonstrated using the LSNish formulation, since it accounts for the factors influencing 

manifestation in a more-appropriate manner compared to other existing manifestation 

models. However, this does not imply that LSNish is a perfect model. Uncertainties remain 

as to what factors influence surface manifestation and how exactly these factors control the 

mechanism of manifestation. Ultimately, the manifestation model could be improved to 
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better capture the many influential factors that are currently not considered (or are 

inadequately considered). These include the properties of both liquefied and non-liquefied 

strata (e.g., depth, thickness, density, fines-content, plasticity, permeability, post-triggering 

strain potential) as well as the stratification/sequencing and cross-interactions between 

these strata within a soil profile. 

 In deriving the “true” triggering curve, it was shown that the liquefaction case history data 

was not sufficient to constrain both the shape and the position of the curve. Thus, several 

assumptions were made to constrain the parameters of the triggering curve. For example, 

the shape/slope of the triggering curve was constrained to be consistent with trends shown 

by laboratory data. However, more research will be needed to validate such assumptions 

as well as better constrain the parameters of the triggering curve. 

 In addition, the probabilistic framework for evaluating the severity of surficial liquefaction 

manifestation presented in Chapter 5 could be expanded to evaluate the probability of other 

forms of damage/consequences of liquefaction (e.g., settlement, collapse of structures). 
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Appendix A: Selecting factor of safety against liquefaction for design based on 

cost considerations 

Sneha Upadhyaya1; Russell A. Green2; Brett W. Maurer3; and Adrian Rodriguez-Marek2 

1Graduate Student, Department of Civil and Environmental Engineering, Virginia Tech, USA. 

2Professor, Department of Civil and Environmental Engineering, Virginia Tech, USA.  

3Assistant Professor, Department of Civil and Environmental Engineering, University of 

Washington, USA. 

A.1 Abstract  

The stress-based simplified procedure is the most widely used approach for evaluating liquefaction 

triggering-potential of sandy soils. In deterministic liquefaction evaluations, “rules of thumb” are 

typically used to select the minimum acceptable factor of safety (FS) against liquefaction 

triggering, sometimes guided by the strain potential of the soil once liquefied. This approach does 

not fully consider the value of the infrastructure that will potentially be impacted by the 

liquefaction response of the soil. Accordingly, in lieu of selecting FS based solely on precedent, 

Receiver Operator Characteristic (ROC) analyses are used herein to analyze the Standard 

Penetration Test (SPT) liquefaction case-history database of Boulanger & Idriss (2014) to relate 

FS to the relative consequences of misprediction. These consequences can be expressed as a ratio 

of the cost of a false-positive prediction to the cost of a false-negative prediction, such that 

decreasing cost-ratios indicate greater consequences of liquefaction, all else being equal. It is 

shown that FS = 1 determined using the Boulanger & Idriss (2014) procedure inherently 

corresponds to a cost ratio of ~0.1 for loose soils and ~0.7 for denser soils. Moreover, the 

relationship between FS and cost ratio provides a simple and rational approach by which the 

project-specific consequences of misprediction can be used to select an appropriate FS for decision 

making. 

A.2 Introduction 

The most commonly used approach for liquefaction-triggering evaluations is the stress-based 

simplified procedure originally developed by Whitman (1971) and Seed & Idriss (1971). Although 

probabilistic variants of this procedure have been developed, deterministic evaluations still 
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represent the standard of practice. In a deterministic liquefaction evaluation procedure, the 

normalized cyclic stress ratio (CSR*), or seismic demand, and the normalized cyclic resistance 

ratio (CRRM7.5), or soil capacity, are used to compute a factor of safety (FS) against liquefaction: 

FS =
CRRM7.5

CSR∗
 (A.1) 

where CSR* is the cyclic stress ratio normalized to a M7.5 event and corrected to an effective 

overburden stress of 1 atm and level-ground conditions. CRRM7.5 is the cyclic resistance ratio 

normalized to the same conditions as CSR* and is computed using semi-empirical relationships 

that are a function of in-situ test metrics, which have been normalized to overburden pressure and 

corrected for fines-content (e.g., Whitman 1971, Seed & Idriss 1971, Robertson & Wride 1998, 

Cetin et al. 2004, Moss et al. 2006, Idriss & Boulanger 2008, Kayen et al. 2013, Boulanger & Idriss 

2014, among others). These normalized in-situ metrics include Standard Penetration Test (SPT) 

blow count (N160cs); Cone Penetration Test (CPT) tip resistance (qc1Ncs); and shear-wave velocity 

(Vs1). 

Liquefaction is predicted to trigger when FS ≤ 1 (i.e., when the demand equals or exceeds the 

capacity). In current practice, “rules of thumb” are often used to select an appropriate FS for 

design. While such rules-of-thumb should, in theory, account for the consequences, or costs, of 

misprediction, they have generally been based largely on heuristic techniques and intuition. Due 

to the lack of a standardized approach to selecting FS, various guidelines have been proposed, 

often without any consideration of misprediction consequences. These include the costs of false-

negative predictions (i.e., liquefaction is observed, but is not predicted), which are the costs of 

liquefaction-induced damage; and the costs of false-positive predictions (i.e., liquefaction is 

predicted, but not is not observed), which could be those associated with ground improvement. 

Clearly, these costs can vary among different engineering projects. For example, the costs 

associated with mispredicting liquefaction beneath a one-story residential building will be likely 

very different than those from a similar misprediction beneath a large earthen dam.  

Accordingly, the focus of the study presented herein is to investigate the relationship between the 

costs of misprediction and appropriate FS values using a standardized, quantitative approach. 

Towards this end, Receiver Operating Characteristic (ROC) analyses are used to analyze the SPT 

case-history database compiled by Boulanger & Idriss (2014) [BI14] to relate the FS computed 
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using their SPT-based liquefaction triggering procedure to the ratio of false-positive costs to false-

negative costs. This ratio is henceforth referred to as the cost ratio (CR). The resulting relationships 

between CR and FS provide insights into previously proposed FS guidelines and can be used to 

develop optimal, project-specific FS values for decision making. 

A.3 Data and Methodology 

This study utilizes the SPT-based case-history database compiled by BI14, which is comprised of 

136 “liquefaction” cases (including 3 “marginal” cases) and 116 “no liquefaction” cases. Figure 

A.1 shows the BI14 deterministic CRRM7.5 curve along with the associated case history data. 

Histograms of the FS of the case histories are shown in Figure A.2, where the case histories are 

divided into three groups: N1,60cs ≤ 15 blows/30 cm, 15 blows/30 cm < N1,60cs < 30 blows/30 cm, 

and N1,60cs ≥ 30 blows/30 cm. The reason for this grouping will become apparent subsequently. 

To investigate the relationship between FS and the costs of mispredicting liquefaction triggering, 

ROC analyses were performed on the FS distributions shown in Figure A.2. A brief overview of 

ROC analysis is presented in the following section. 

A.3.1 Overview of ROC analyses 

Receiver Operating Characteristics (ROC) analyses have been widely adopted to evaluate the 

performance of diagnostic models, including extensive use in medical diagnostics (e.g., Zou 2007) 

and to a much lesser degree in geotechnical engineering (e.g., Oommen et al. 2010, Maurer et al. 

2015a,b,c, 2017a,b,c, Green et al. 2015, 2017, Zhu et al. 2017, Upadhyaya et al. 2018). In particular 

in cases where the distribution of “positives” (e.g., liquefaction cases) and “negatives” (e.g., no 

liquefaction cases) overlap (e.g., Fig. A.2a,b), ROC analyses can be used (1) to identify the 

optimum diagnostic threshold; and (2) to assess the relative efficacy of competing diagnostic 

models, independent of the thresholds used. A ROC curve is a plot of the True Positive Rate (RTP) 

(i.e., liquefaction is predicted and was observed) versus the False Positive Rate (RFP) (i.e., 

liquefaction is predicted, but was not observed) for varying threshold values (e.g., FS). A 

conceptual illustration of ROC analysis, including the relationship among the distributions for 

positives and negatives, the threshold value, and the ROC curve, is shown in Figure A.3. 

In ROC curve space, a diagnostic test that has no predictive ability (i.e., a random guess) will result 

in a ROC curve that plots as a 1:1 line through the origin. In contrast, a diagnostic test that has 
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perfect predictive ability will result in a ROC curve that plots along the left vertical and upper 

horizontal axes, connecting at the point (0,1). This latter case indicates the existence of a threshold 

value that perfectly segregates the dataset (e.g., all cases with liquefaction have FS ≤ 1 and all 

cases without liquefaction have FS > 1). The area under the ROC curve (AUC) can be used as a 

metric to evaluate the predictive performance of a diagnostic model, whereby higher AUC 

indicates better predictive capabilities (Fawcett 2005). As such, a random guess returns an AUC 

of 0.5 whereas a perfect model returns an AUC of 1.  

The optimum operating point (OOP) in a ROC analysis is defined as the threshold value (e.g., FS) 

that minimizes the misprediction cost, where cost is computed as: 

cost =  CFP × RFP + CFN × RFN (A.2) 

where CFP and RFP are the cost and rate of false-positive predictions, respectively, and CFN and 

RFN are the cost and rate of false-negative predictions, respectively. Normalizing Eq. (A.2) with 

respect to CFN, and equating RFN to 1-RTP, cost may alternatively be expressed as: 

costn =
cost

CFN
=  CR × RFP + (1 − RTP) (A.3) 

where CR is the cost ratio defined by CR = CFP/CFN (i.e., the ratio of the cost of a false-positive 

prediction to the cost of a false-negative prediction). 

As may be surmised, Eq. (A.3) plots in ROC space as a straight line with slope of CR and can be 

thought of as a contour of equal performance (i.e., an iso-performance line). Thus, each CR 

corresponds to a different iso-performance line. One such line, with CR =1 (i.e., false positives 

costs are equal to false-negative costs) is shown in Figure A.3b. The point where the iso-

performance line is tangent to the ROC curve corresponds to the OOP (e.g., the “optimal” FS 

corresponding to a given CR). Thus, by varying the CR values, a relationship between optimal FS 

and CR can be developed. 

A.4 Results and Discussion 

ROC analyses were performed on the case history distributions shown in Figures A.2a and A.2b 

(note that a ROC analysis could not be performed on the distribution shown in Figure A.2c because 

there are not any liquefaction case histories where N1,60cs ≥ 30 blows/30 cm). The resulting ROC 
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curves are shown in Figure A.4a. Using Eq. (A.3) in conjunction with these curves, relationships 

between CR and optimal FS were developed and are shown in Figure A.4b. Moreover, the optimal 

FS for a range of CR are listed in Table A.1. 

As may be observed from Figure A.4b, the optimal FS is inversely proportional to the CR (i.e., the 

lower the CR, the higher the degree of conservatism required). Additionally, it can be observed 

that the BI14 deterministic CRRM7.5 curve (i.e., FS = 1) shown in Figure A.1 has an associated CR 

of ~0.1 for N1,60cs ≤ 15 blows/30 cm and ~0.71 for 15 blows/30 cm < N1,60cs < 30 blows/30 cm. 

This implies a more conservative positioning of the CRRM7.5 curve for looser soils than for denser 

soils. Whether this was intentional or not, this can be justified because of the higher strain potential 

of loose soils versus dense soils once liquefaction is triggered. In a similar vein, Martin & Lew 

(1999) propose FS guidelines for California considering different damage-potential modes of 

liquefaction (i.e., “settlement,” “surface manifestation,” and “lateral spreading”) where larger 

minimum required FS values are recommended for soils having N1,60cs ≤ 15 blows/30 cm versus 

soils having N1,60cs ≥ 30 blows/30 cm (Table A.2).   

As an example, if we evaluate the recommended minimum required FS for post-liquefaction 

consolidation settlement listed in Table A.2 using Figure A.4b, the FS = 1.1 for N1,60cs ≤ 15 

blows/30 cm has an associated CR of ~0.1 (i.e., the cost associated with a false-positive prediction 

is about one tenth the cost of a false-negative prediction). If we assume that the FS varies linearly 

from 1.1 to 1.0 for N1,60cs ranging from 15 to 30 blows/30 cm, the associated CR ranges from 0 to 

~0.71. Again, the higher upper limit of the CR for denser soils can be justified based on the lower 

strain potential of the soil once it liquefies.  

Although consideration of the strain potential of the liquefied soil should be taken into account in 

determining the minimum required FS for a project, the value of the infrastructure that will 

potentially be impacted by the liquefaction should also be considered (e.g., large earthen dam vs. 

a low-rise storage structure). This is where optimal FS-CR relationships shown in Figure A.4b can 

be used to select project-specific FS. Specifically, the costs of liquefaction risk mitigation schemes 

relative to the costs associated with allowing the infrastructure to sustain damage (e.g., Green et 

al. 2019) can be taken directly into account in selecting the FS. This is conceptually illustrated in 

Figure A.5 using a hypothetical optimal FS-CR curve. In this figure, the initial FS for a site is 

computed to be 1.0, which has an associated CR = 0.8. However, the minimum required FS for the 
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site is specified as 1.2, which has an associated CR = 0.1. To determine whether performing ground 

improvement to increase the FS from 1.0 to 1.2 is worth the expense, the difference between the 

CR for the unimproved and improved ground can be compared to the cost of ground improvement 

divided by CFN (i.e., CRimproved – CRunimproved vs. Cost of Ground Improvement/CFN). If (CRimproved 

– CRunimproved) ≥ Cost of Ground Improvement/CFN, then ground improvement is worth the expense 

(i.e., using a minimum required FS = 1.2 is justified). However, if (CRimproved – CRunimproved) < Cost 

of Ground Improvement/CFN, then it would be more economical to leave the site unimproved (i.e., 

use a minimum required FS = 1.0) and pay for the cost of repairs associated with liquefaction, if it 

occurs. 

The limitation of using the optimal FS-CR curves in Figure A.4b to select project-specific 

minimum required FS are the limited ranges of the FS represented by the curves (i.e., N1,60cs ≤ 15 

blows/30 cm: 0.7 ≤ FS ≤ 1.3; 15 blows/30 cm < N1,60cs < 30 blows/30 cm:  0.89 ≤ FS ≤ 1.075). 

More specifically, the issue is the maximum value of the FS that can be determined using the 

curves (i.e., FS = 1.3 for N1,60cs ≤ 15 blows/30 cm and FS ≈ 1.075 for 15 blows/30 cm < N1,60cs < 

30 blows/30 cm), because it is doubtful that an FS less than 1.0 will be used as a design criterion. 

These upper bound limits on FS are dictated by the largest FS for the “liquefaction” case histories 

in distributions shown in Figure A.2. And, although the distributions may become “smoother” as 

additional case histories are compiled, it is doubtful that the maximum FS represented by the 

optimal FS-CR curves will increase significantly. The reason is that the deterministic CRRM7.5 

curves are conservatively “placed” so that none of the “liquefaction” case histories have large FS; 

if they do, the deterministic CRRM7.5 curve would be re-drawn to reduce the FS of the 

“liquefaction” case histories.  

Inherently, selecting a minimum required FS for a project that is greater than 1.3 for N1,60cs ≤ 15 

blows/30 cm or greater than 1.075 for 15 blows/30 cm < N1,60cs < 30 blows/30 cm (e.g., FS = 1.5, 

Martin & Lew 1999) implies that the costs associated with allowing the infrastructure to sustain 

damage due to liquefaction are intolerable, regardless of the value of the impacted infrastructure. 

However, it needs to be realized that FS is based on both the capacity of the soil to resist 

liquefaction (i.e., CRRM7.5) and the demand imposed on the soil due to earthquake shaking (i.e., 

CSR*). For the case histories shown in Figure A.1, best estimates of the ground motions actually 

experienced at the sites were used to compute CSR*. However, for design specifications, ground 
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motions having a given return period (TR) are commonly used to compute CSR*, where longer 

return period motions are specified for “critical” versus “standard” structures (e.g., ASCE 2005, 

2017). Accordingly, the probability that liquefaction will be triggered at a site that is associated 

with common design specifications is a function of both FS and the TR of ground motions specified 

in design criteria, although this probability is not necessarily quantified. Based on this, the 

minimum required FS listed in Table A.2, for example, could be used to form the basis of design 

specifications for both standard and critical facilities because the TR of the design ground motions 

can be used to adjust the (unquantified) probability of liquefaction triggering to an acceptable level. 

Although this approach to specifying design criteria for liquefaction triggering may seem ad hoc, 

it does represent the current state-of-practice and will likely continue to do so until more formal 

probabilistic approaches for evaluating liquefaction triggering potential are developed (e.g., Green 

et al. 2018). 

A.5 Conclusions 

Utilizing the SPT liquefaction case-history database compiled by Boulanger & Idriss (2014), 

relationships between the optimal factor of safety against liquefaction (FS) and the ratio of false-

positive prediction costs to false-negative prediction costs (i.e., cost ratio, CR) were developed. It 

was shown that an inverse relationship exists between CR and FS, such that as CR decreases, the 

corresponding optimal FS for decision making increases. The relationships were used to provide 

insights into FS specifications for California. The CR associated with minimum required FS for 

looser soils is lower than that for denser soils, due to the strain potential of the respective soils 

once liquefaction is triggered. However, these specifications do not consider the value of the 

infrastructure that will potentially be impacted by the liquefaction response of the soil; optimal 

FS-CR relationships can be used for this purpose. Specifically, optimal FS-CR relationships can 

be used to select the minimum required FS based on the costs of liquefaction risk-mitigation 

schemes relative to the costs associated with allowing the infrastructure to sustain damage. 
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Tables 

Table A.1 Optimal FS for a range of CR. 

CR Optimal FS 

N1,60cs ≤ 15 15 < N1,60cs < 30 

0.00-0.10 1.29 1.07 

0.10-0.36 0.94 1.07 

0.36-0.60 0.94 1.03 

0.60-0.72 0.78 1.03 

0.72-0.80 0.78 0.94 

0.80-1.63 0.75 0.94 

1.63-2.00 0.75 0.89 

 

Table A.2 Minimum required FS for liquefaction hazard assessment for California (Martin & 

Lew 1999). 

Consequences of Liquefaction N1,60cs FS 

Settlement 
≤15 1.1 

≥30 1.0 

Surface Manifestation 
≤15 1.2 

≥30 1.0 

Lateral Spreading 
≤15 1.3 

≥30 1.0 
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Figures 

 

Figure A.1 BI14 deterministic CRRM7.5 curve and associated case history data. 

 

(a) (b) (c) 

Figure A.2 Histograms of FS for the BI14 SPT case history database: (a) N1,60cs ≤ 15 blows/30 

cm; (b) 15 blows/30 cm < N1,60cs < 30 blows/30 cm; and (c) N1,60cs ≥ 30 blows/30 cm. The light 

grey bars indicate the overlapping of the histograms of liquefaction and no liquefaction case 

histories. 
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(a) (b) 

Figure A.3 Conceptual illustration of ROC analyses: (a) frequency distributions of liquefaction 

and no liquefaction observations as a function of FS; (b) corresponding ROC curve. 

 

  

(a) (b) 

Figure A.4 ROC analyses of the BI14 SPT case history data shown in Figure A.2a (N1,60cs ≤ 15 

blows/30 cm) and Figure A.2b (15 blows/30 cm < N1,60cs < 30 blows/30 cm): (a) ROC curves; and 

(b) optimal FS vs CR. 
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Figure A.5 Conceptual illustration, using a hypothetical optimal FS-CR curve, on how to 

determine whether performing ground improvement to increase the FS from 1.0 to 1.2 is worth the 

expense. 
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Appendix B: Influence of corrections to recorded peak ground accelerations 

due to liquefaction on predicted liquefaction response during the Mw 6.2, 

February 2011 Christchurch earthquake 
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B.1 Abstract  

Evaluations of Liquefaction Potential Index (LPI) in the 2010-2011 Canterbury earthquake 

sequence (CES) in New Zealand have shown that the severity of surficial liquefaction 

manifestations is significantly over-predicted for a large subset of sites. While the potential cause 

for such over-predictions has been generally identified as the presence of thick, non-liquefiable 

crusts and/or interbedded non-liquefiable layers in a soil profile, the severity of surficial 

liquefaction manifestations at sites that do not have such characteristics are also often significantly 

over-predicted, particularly for the Mw 6.2, February 2011 Christchurch earthquake. The over-

predictions at this latter group of sites may be related to the peak ground accelerations (PGAs) 

used in the liquefaction triggering evaluations. In past studies, the PGAs at the case history sites 

were estimated using a procedure that is conditioned on the recorded PGAs at nearby strong motion 

stations (SMSs). Some of the soil profiles on which these SMSs were installed experienced severe 

liquefaction, often with an absence of surface manifestation, and the recorded PGAs are inferred 

to be associated with high-frequency dilation spikes after liquefaction was triggered. Herein the 

influence of using revised PGAs at these SMSs that are in accord with pre-liquefaction motions 

on the predicted severity of surficial liquefaction at nearby sites is investigated. It is shown that 
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revising the PGAs improved these predictions, particularly at case history sites where the severity 

of the surface manifestations was previously over-predicted and could not be explained by other 

mechanisms. 

B.2 Introduction 

The 2010-2011 Canterbury, New Zealand, earthquake sequence (CES) began with the 4 September 

2010, Mw 7.1 Darfield earthquake and included up to ten events that triggered liquefaction. 

However, most notably, widespread liquefaction was induced by the Mw 7.1, 4 September 2010 

Darfield and the Mw 6.2, 22 February 2011 Christchurch earthquakes. The ground motions from 

these events were recorded across Christchurch and its environs by a dense network of strong 

motion stations (SMSs). Also, due to the severity and spatial extent of liquefaction resulting from 

the 2010 Darfield earthquake, the New Zealand Earthquake Commission (EQC) funded an 

extensive subsurface characterization program for Christchurch, with over 25,000 Cone 

Penetration Tests (CPT) performed to date. The combination of well-documented liquefaction 

response during multiple events, densely-recorded ground motions for the events, and detailed 

subsurface characterization provided an unprecedented opportunity to investigate liquefaction 

triggering and related phenomena. Towards this end, multiple studies have investigated the 

accuracy of various liquefaction triggering evaluation procedures and liquefaction severity index 

models (e.g., Green et al. 2014, 2015; Maurer et al. 2014, 2015; van Ballegooy et al. 2014b). 

Among others, Maurer et al. (2014, 2015) evaluated the performance of the Liquefaction Potential 

Index (LPI) (Iwasaki et al. 1978) during the 2010-2011 CES and found that it systematically over-

predicted the severity of surficial liquefaction manifestations for a significantly large number of 

sites. Moreover, Maurer et al. (2014, 2015) found that such over-predicted case histories generally 

were comprised of soil profiles having thick, non-liquefiable crusts and/or interbedded non-

liquefiable soils high in fines content, which could have suppressed the surficial manifestation of 

liquefied layers. However, the severity of surficial liquefaction manifestations was also over-

predicted for a number of soil profiles that do not have these characteristics, especially for the Mw 

6.2, February 2011 Christchurch earthquake.  

One reason for these latter over-predictions may be related to the peak ground accelerations 

(PGAs) used in the liquefaction triggering evaluations. The PGAs at CPT sites in most prior CES 

studies have been estimated using the Bradley (2013b) procedure, which combines the 
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unconditional PGA distribution as estimated by the Bradley (2013a) ground motion prediction 

equation, the recorded PGAs at the SMSs, and the spatial correlations of intra-event residuals to 

compute the conditional PGAs at sites of interest. Thus, for sites that are located far enough away 

from an SMS, the conditional PGAs are similar to the unconditional PGAs, and for the sites that 

are located near an SMS, the PGAs approach the recorded PGA at the SMS. However, the soil 

profiles at some of the SMSs were found to have severely liquefied during the 2011 Christchurch 

earthquake, as evidenced by the cyclic mobility/dilation spikes and reduced high frequency content 

of the horizontal components of the recorded ground motions after liquefaction was triggered 

(Bradley & Cubrinovski 2011). Thus, the recorded PGAs at these SMSs typically corresponded to 

the amplitude of these high-frequency dilation spikes, which are often higher than the PGAs of the 

pre-liquefaction portion of the ground motions and likely higher than the PGAs that would have 

been experienced at the sites if liquefaction had not been triggered. Wotherspoon et al. (2014, 

2015) identified four such SMSs where the recorded PGAs were higher than the pre-liquefaction 

PGAs and suggested reduced PGAs for those SMSs, as summarized in Table B.1. An example 

acceleration time history at the North New Brighton School (NNBS) SMS is also shown in Figure 

B.1, which indicates the cyclic mobility/dilation spikes caused by the liquefaction of the 

underlying soils and the interpreted pre-liquefaction PGA. 

Accordingly, the objective of this study is to investigate the influence of using the pre-liquefaction 

PGA at the SMSs on the predicted severity of surficial liquefaction manifestations at nearby case 

history sites during the 2011 Christchurch earthquake. Towards this end, the PGAs for a select 

group of case history sites that are located close to the SMSs listed in Table B.1 are estimated 

following the Bradley (2013b) procedure, using both the actual recorded PGAs and the pre-

liquefaction PGAs at the SMSs. Both sets of PGAs are then used to predict the severity of surficial 

liquefaction manifestations via LPI and the prediction accuracies are assessed. 

B.3 Data and Methodology 

As discussed previously, revising the PGAs at the four SMSs listed in Table B.1 to the pre-

liquefaction PGAs mostly affects nearby sites. Thus, only CPT soundings that are located within 

1 km from at least one of the four SMSs listed in Table B.1 are analyzed in this study. Maurer et 

al. (2015) found that sites with an average soil-behavior-type index (Ic) for the upper 10 m of the 

soil profile (Ic10) less than 2.05 generally correspond to sites having predominantly clean sands to 
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silty sands. Thus, only soundings that have Ic10 < 2.05 were considered in this study, with the intent 

of removing cases where the over-predictions are potentially due to other causes (e.g., interbedded 

non-liquefiable layers high in fines content). Using all of the above criteria, 416 CPT soundings 

were selected for further analysis.  

The severity of surficial liquefaction manifestation at each of the 416 CPT sounding locations for 

the 2011 Christchurch earthquake was classified in accordance with Green et al. (2014) via post-

earthquake ground reconnaissance and high-resolution aerial and satellite imagery. The CPT 

soundings and imagery were extracted from the New Zealand Geotechnical Database (NZGD 

2016). The PGA at the site of each CPT sounding was estimated using two different approaches: 

a) the Bradley (2013b) procedure in conjunction with the actual recorded PGAs at the SMSs, 

similar to prior CES studies; and (b) the Bradley (2013b) procedure in conjunction with the revised 

pre-liquefaction PGAs at four SMSs (see Table B.1). The PGAs at the selected case history sites 

resulting from approaches (a) and (b) are referred to herein as “existing” PGAs and “new” PGAs 

respectively. The depth of ground water table immediately prior to the earthquake was estimated 

using the event-specific model of van Ballegooy et al. (2014a). Finally, LPI was computed for 

each site using both sets of PGAs, where the factor of safety against liquefaction (FSliq) was 

computed using the Boulanger & Idriss (2014) deterministic liquefaction evaluation procedure 

(LEP). Inherent to this process, soils with Ic > 2.5 were considered to be non-liquefiable (Maurer 

et al. 2017, 2018).  

The accuracy of LPI predictions for both sets of PGAs were assessed following the procedure used 

by Maurer et al. (2014), in which ranges of LPI values assigned to different categories of surficial 

liquefaction manifestation severity (e.g., Table B.2) are used to compute an error (E), where E = 

computed LPI – (min or max) of expected range (i.e. min if computed LPI is less than the lower 

limit of the expected range and max if computed LPI is higher than the upper limit of the expected 

range). For example: if the computed LPI is 20 for a site with no observed surficial liquefaction 

manifestations, E = 20 - 4 = 16. Similarly, if the computed LPI is 7 for a site with severe surficial 

manifestations, E = 7 - 15 = -8. The prediction errors are then classified into one of the nine 

categories as shown in Table B.3. Note that although Maurer et al. (2014) suggested the LPI ranges 

shown in Table B.2 based on the Robertson & Wride (1998) LEP, they were generally found to be 

applicable in this study as well, which uses the Boulanger & Idriss (2014) LEP. 
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B.4 Results and Discussion 

Table B.4 summarizes the number of case histories in each error category resulting from using the 

two sets of PGAs (i.e. existing and new PGAs). Moreover, histograms of these results are presented 

in Figure B.2.  

It can be seen that using the new PGAs decreased the total number of over-predictions (i.e. “Slight 

to moderate O-P” to “Excessive O-P) from 262 to 56. However, the new PGAs also increased the 

number of under-predictions (i.e. “Slight to moderate U-P” to “Excessive U-P”) from 13 to 90, but 

these were mostly slight-to-moderate under-predictions. Moreover, the rate at which the over-

predictions changed to accurate predictions is significantly higher than the rate at which the 

accurate prediction changed to under-predictions. Overall, the number of accurate predictions 

increased from 141 to 270.  

These findings suggest that corrections to the recorded PGAs for SMS sites that experience 

liquefaction is warranted in evaluating liquefaction procedures or documenting liquefaction case 

histories. Specifically, the high frequency cyclic mobility/dilation spikes after liquefaction 

triggering can result in over-estimated PGA values (hence, overly conservative seismic demand) 

for liquefaction triggering evaluations, which in turn can lead to over-predictions of the severity 

of surficial liquefaction manifestations. The revised PGAs used in this study were proposed by 

Wotherspoon et al. (2014, 2015) and corresponded to the PGAs of the recorded motions prior to 

the onset of liquefaction, where judgement was used to determine the timing of liquefaction 

triggering. More formal approaches for determining this timing are under development (e.g., 

Kramer et al. 2016, 2018). 

An example case history is presented next that illustrates the influence of using the pre-liquefaction 

PGA at a nearby SMS on the predicted severity of surficial liquefaction manifestation. 

Case History Site: NNB-POD03-CPT05 

This case history site is located ~0.4 km from the NNBS SMS and is predominantly comprised of 

clean sands, as inferred from the Ic profile (Figure B.3). The PGA estimated at this site during the 

Mw 6.2, February 2011 Christchurch earthquake prior to making any adjustments to the recorded 

PGAs was 0.531 g. The depth to the ground water table was estimated to be approximately 2 m. 

No evidence of surficial liquefaction manifestation was observed at this site following the 2011 
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Christchurch earthquake. However, the LPI value computed using the existing PGAs was 13, 

which corresponds to expected moderate surface manifestation. Thus, the severity of surficial 

liquefaction manifestation is over-predicted at this site and the prediction error is moderate-to-

severe over-prediction (e.g. Table B.3). The new PGA estimated at this site using the revised (pre-

liquefaction) PGAs at the SMSs was 0.334 g. The computed LPI value associated with this new 

PGA was 2 which corresponds to no surficial liquefaction manifestations. Thus, it is seen that 

using the pre-liquefaction PGA at the SMSs to compute the PGA at this site corrected the 

prediction of the severity of surficial liquefaction manifestation at this site. 

Figure B.3 contains the profiles of normalized and fines-content corrected CPT tip resistance 

(qc1Ncs) and Ic for the case history site, as well as the profiles of FSliq and LPI computed using both 

the existing and new PGAs. 

B.5 Conclusions 

This study investigated the influence of revising the recorded PGAs at the liquefied SMSs to the 

PGA of the pre-liquefaction portion of the ground motion on the predicted severity of surficial 

liquefaction at nearby sites.  By analyzing 416 case-history sites located within 1 km of such SMSs, 

it was shown that using the new PGAs estimated by revising the PGAs at the SMSs correctly 

predicted a significant number of case histories that were previously over-predicted, likely due to 

over-estimated PGAs. Finally, the findings of this study highlight the need to accurately estimate 

PGAs for liquefaction evaluation by accounting for the effects that liquefaction of the underlying 

soils may have on recorded ground motions. 
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Tables 

Table B.1 Revised PGA values at four SMSs for Mw 6.2, February 2011 Christchurch 

earthquake as recommended by Wotherspoon et al. (2015). 

SMS Name SMS ID 
PGA (g) 

Recorded Revised 

Christchurch Botanical Gardens CBGS 0.50 0.32 

Christchurch Cathedral College CCCC 0.43 0.35 

North New Brighton School NNBS 0.67 0.32 

Christchurch Resthaven REHS 0.52 0.36 

 

Table B.2 LPI ranges used to assess the prediction accuracy (Maurer et al. 2014). 

Manifestation severity category Expected LPI range 

No liquefaction 0 ≤ LPI < 4 

Marginal liquefaction 4 ≤ LPI < 8 

Moderate liquefaction 8 ≤ LPI <15 

Severe liquefaction LPI ≥ 15 

 

Table B.3 LPI prediction error classification (Maurer et al. 2014). 

Error category Prediction error (E) 

Excessive under-prediction E < -15 

Severe to excessive under-prediction -15 ≤ E < -10 

Moderate to severe under-prediction -10 ≤ E < -5 

Slight to moderate under-prediction -5 ≤ E < -1 

Accurate prediction -1 ≤ E < 1 

Slight to moderate over-prediction 1 ≤ E < 5 

Moderate to severe over-prediction 5 ≤ E < 10 

Severe to excessive over-prediction 10 ≤ E< 15 

Excessive over-prediction E > 15 
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Table B.4 Summary of number of case histories in each error category using the existing and 

new PGAs. 

Error category 
Number of Case Histories 

existing PGA new PGA 

Excessive U-P 0 0 

Severe to excessive U-P 0 1 

Moderate to severe U-P 4 14 

Slight to moderate U-P 9 75 

Accurate Prediction 141 270 

Slight to moderate O-P 81 39 

Moderate to severe O-P 104 11 

Severe to excessive O-P 54 2 

Excessive O-P 23 3 

Total U-P 13 90 

Total O-P 262 56 

U-P = Under-predictions; O-P = Over-predictions 
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Figures 

 

 

Figure B.1 Ground motion record at NNBS during the Mw 6.2 Christchurch earthquake showing 

cyclic mobility/dilation spikes and the pre-liquefaction PGA (Wotherspoon et al. 2015). 

 

 

Figure B.2 Histogram showing the number of case histories in each error category using the 

existing and new PGAs. 
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Figure B.3 Profiles of qc1Ncs, Ic, FSliq, and LPI versus depth for NNB-POD03-CPT05 for the Mw 

6.2 February 2011 Christchurch earthquake. The solid black and red dotted lines on the profiles of 

FSliq and LPI correspond to the existing and new PGAs at the site. 


