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A Middleware for Large-scale Simulation Systems and Resource Management

Hemanth Makkapati

(ABSTRACT)

Socially coupled systems are comprised of inter-dependent social, organizational, economic, in-
frastructure and physical networks. Today’s urban regions serve as an excellent example of such
systems. People and institutions confront the implications of the increasing scale of information
becoming available due to a combination of advances in pervasive computing, data acquisition
systems as well as high performance computing. Integrated modeling and decision making en-
vironments are necessary to support planning, analysis and counter factual experiments to study
these complex systems.

Here, we describe SIMFRASTRUCTURE — a computational infrastructure that supports high perfor-
mance computing oriented decision and analytics environments to study socially coupled systems.
Simfrastructure provides a middleware with multiplexing mechanism by which modeling envi-
ronments with simple and intuitive user-interfaces can be plugged in as front-end systems, and
high-end computing resources — such as clusters, grids and clouds — can be plugged in as back-end
systems for execution. This makes several key aspects of simulation systems such as the compu-
tational complexity, data management and resource management and allocation completely trans-
parent to the users. The decoupling of user interfaces, data repository and computational resources
from simulation execution allows users to run simulations and access the results asynchronously
and enables them to add new datasets and simulation models dynamically. Simfrastructure en-
ables implementation of a simple yet powerful modeling environment with built-in analytics-as-a-
service platform, which provides seamless access to high end computational resources, through an
intuitive interface for studying socially coupled systems.

We illustrate the applicability of Simfrastructure in the context of an integrated modeling environ-
ment to study public health epidemiology and network science.
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Chapter 1

Introduction

Socially coupled systems consist of a large number of interacting physical, technological, and hu-
man/societal components. Examples of such systems include urban transportation systems, com-
munication networks, public health, integrated energy systems, etc. All of the above systems share
an important common feature: these systems are networked, i.e. individual agents/components in-
teract only with a specified set of components. Understanding the coupled evolution of these inter-
acting networks is critical for situational awareness and decision support for sustainable planning,
preparedness and response. For example, human behaviors and day to day activities of individ-
uals create dense social interactions characteristic of modern urban societies. These dense social
networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s
behavior in response to public policies and their perception of how the crisis is unfolding as a
result of disease outbreak can dramatically alter the normally stable social interactions. Effective
planning and response strategies must take these complicated interactions into account. Computer
simulation aided decision support tools provide a practical approach for addressing such issues.

Examples of the existing research on such high-resolution models include IBM Smart Cities project [1]],
weather forecasting models [2], modeling to contain epidemics [3]], modeling social mechanisms [4]
and so on. Some of the modeling environments we built include EpiFast [5] and EpiSimdemics [6]]
for epidemiological systems, TRANSIMS [7] for transportation analysis systems, and EpiNet [{8]
for modeling communication networks. A key characteristic of these modeling environments is
the way the underlying socially coupled systems are represented and simulated. The use of high
performance computing systems is critical when executing such models. Supporting realistic case
studies using these models results in jobs with coupled workflows, as well as several independent
tasks similar to a bag-of-tasks (BoT) model. Such diversity in the nature of simulation execu-
tion requires deployment of diverse computing resources in the modeling environment. Finally,
decision-support environments using high resolution models consume and produce large quanti-
ties of structured and unstructured data. Large scale data movement between the data stores and the
computing systems needs to be handled carefully in the modeling environment without affecting
performance. Furthermore, the modeling environment needs to be adaptable to changes in datasets,
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models and computing resources.

In this thesis, we introduce a flexible middleware called SIMFRASTRUCTURE. Simfrastructure
provides a computational infrastructure specifically designed to sustain decision support environ-
ments aimed at studying socially coupled systems. Simfrastructure provides key services such as
data and knowledge management, resource management and allocation, and job execution for set-
ting up modeling environments with ease. These services are stateless and enable many modeling
environments and applications to co-exist utilizing the same computational infrastructure.

Simfrastructure architecture is based on the associative shared memory paradigm embodied by tu-
ple spaces. This allows Simfrastructure to serve as a multiplexer: user interfaces, HPC-models,
data management systems and computing resources can all be integrated with relative ease. This
has two important benefits. First, the loosely coupled architecture implies individual components
need not be aware of other components, reducing the programming effort needed to develop and
integrate these components. Second, the computational complexity of coordination will then grow
linearly as opposed to quadratically. Finally, Simfrastructure enables implementation of a simple
yet powerful analytics-as-a-service platform that provides seamless access to high end computa-
tional resources through an intuitive analytics interface for studying socially coupled systems. To
illustrate the applicability of Simfrastructure in practical settings, we describe recent case studies
in public health epidemiology and network science.

The rest of the thesis is organized as follows. We present the architecture of Simfrastructure in
Section 2] before describing the core services offered on top of Simfrastructure architecture in Sec-
tion[3] We present recent case studies of an epidemic simulation system and a cyberinfrastructure
for network science developed using Simfrastructure in Section [5] We then present a detailed de-
scription of the resource management capabilities of Simfrastructure in Section ] Then, we offer
a discussion on the Simfrastructure architecture in Section [6] before discussing related work in
Section |/, Finally, we present our concluding remarks in Section



Chapter 2

Architecture

Simfrastructure is a distributed middleware platform providing a computational infrastructure to
enable decision-supporting environments for studying socially coupled systems. The computa-
tional infrastructure comprises of two integral parts: infrastructure components and a coordination
mechanism. The infrastructure components interact with each other via the coordination mecha-
nism to provide well-defined services such as data and knowledge management, resource manage-
ment and allocation, and job execution for supporting modeling environments with ease.

Simfrastructure architecture is based on the associative shared memory paradigm embodied by
tuple spaces. The services are provided by processes called brokers — the infrastructure components
— that coordinate over a shared associative memory space called blackboard — the coordination
mechanism. Figure depicts a typical set up of Simfrastructure outlining its key components
described in greater detail in the following sections.

2.1 Blackboard

The blackboard is the central communication and coordination mechanism of Simfrastructure.
It offers a fundamentally different coordination mechanism from the traditional practices in dis-
tributed systems such as message passing and remote invocation of methods. The blackboard em-
braces a space-based model inspired from the Linda coordination language [] proposed by David
Gelernter. The space-based model perceives an application as a collection of coordinating pro-
cesses exchanging objects via shared virtual — in this case the blackboard.

The blackboard is a shared, persistent and network-accessible repository of objects. The processes
exchange objects over the blackboard instead of directly communicating with each other. Processes
use simple operations such as read, take and write to copy an object from the blackboard, remove
an object from the blackboard and post an object to the blackboard. To take and read objects,
processes use value-based lookup to find objects of interest. A process can wait for a desired
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Figure 2.1: A typical set-up of the modeling and simulation environment using Simfrastructure
as the central communication and coordination mechanism. Simfrastructure coordinates data and
context flow between user interfaces, digital library, compute resources and simulation models and
measures.

object to appear on the blackboard, if one is not already present. The objects are not modifiable
while they are on the blackboard - they are just passive data. To modify an object, a process must
remove it from the blackboard, modify it and post it back onto the blackboard.

The processes follow an application-specific protocol to modify the objects in a manner that
achieves the outcome of an application. The protocol encodes the application workflow and any
alternative workflows that may be necessary to handle errors. The workflows written over black-
board are loosely-coupled because the processes do not interact with each other directly. Unlike
the traditional practices where the sending and receiving processes should know each other explic-
itly before the invocation, in space-based communication the processes need not know each other’s
existence. The processes need not even be active at the same time. An object can be written to the
blackboard with assumption that some processes somewhere at some point in time will act upon
it. This enables easy development of applications and workflows that are simple and flexible.
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2.1.1 Key Features

The key features of blackboard, many that are characteristic of the inherent space-based model,

are:

e Blackboard is shared: Blackboard is a network-accessible shared memory that many pro-

cesses can interact with remotely and concurrently. Like a space, the Blackboard hides the
details of concurrent access, enabling the processes the implement the application specific
protocols and workflows. The Blackboard enables multiple processes to create, share, access
and modify data structures using objects.

Blackboard is persistent: Blackboard provides reliable storage mechanism for objects.
Once objects are posted to the Blackboard, they will remain there until processes explicitly
remove them. Processes may also specify leasetime for objects, after which they will be
automatically removed from the Blackboard.

As objects are persistent, they may outlive the processes that posted them. Thus, they remain
on the Blackboard even after the processes have terminated. This property plays an important
role in enabling the processes to be uncoupled and interact with each other even when they
are not alive at the same time. The persistence of objects may also be useful in storing
configuration and state information of an application between its invocations.

Blackboard is associative: Objects on the Blackboard are located using associative lookup
instead of their memory location or identifiers. The associative lookup mechanism provides
a simple way of locating desired objects with respect to their content, without any other
knowledge of the object such as its identifier, creator or its memory location. In order to find
an object, a template is created with some or all fields of the object set to specific values that
are expected in the desired objects. Fields that do not matter may be set to 'null’, which acts
as a wildcard. Objects on the Blackboard match the template only if their fields match the
values in template exactly.

Blackboard is transactionally secure: The Blackboard provides a transaction mechanism
to ensure that operations on Blackboard are atomic. This ensures that either an operation
succeeds or fails thereby eliminating any possibility of a partial failure leading to an unstable
state.

Blackboard allows exchanging executable content: While on the Blackboard, objects are
passive data — they cannot be modified or invoked. However, a copy of the object can be
made by reading or taking it from the Blackboard. The local copy of the object can be
modified and invoked like any other object. This enables extending the behaviour of an
application via the Blackboard.
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2.1.2 Requests

The objects held on the blackboard, called Requests, represent the need for a service. Requests
are typed objects with attributes where the type signifies the service requested and attributes rep-
resent the parameters required for the service. The requests are posted to and retrieved from the
blackboard to request and fulfill services respectively. Requests are read and retrieved with the
use of a template request, with desired type and attributes, and then matched against the existing
requests on the blackboard.

Requests are the primary means by which processes coordinate by exchanging information. Typ-
ical information contained in the requests are:

e Parameters: The parameters required to deliver a particular service. A simulation service
may require parameters such as population, simulation model, disease model, infection seeds
and interventions etc.

e State: A request can be in any one of the following states during its life cycle: new, posted,
running, deleted, successful and failed. The state information is used extensively by service
providers and consumers to indicate success or failure of a service fulfillment.

e Workflow: A workflow contains the details about how a service is to be fulfilled. For
instance, a simulation request may contain the workflow to pre-process the input data, locate
and fetch the required datasets, run the simulation, and validate the produced output. The
workflow is typically specified in the form of an embedded object called the runner. The
runners are described in greater detail in Section [2.2]

The blackboard is currently implemented as a JavaSpace [9] holding the request objects as serial-
ized Java objects.

2.2 Brokers

Brokers are the infrastructure components of Simfrastructure responsible for delivering a particular
service. They monitor the blackboard for specific requests and deliver the appropriate services.
Additionally, brokers post requests to the blackboard to consume any intermediate services re-
quired to fulfill a service. A broker essentially comprises of a set of conditions and actions. The
conditions, when satisfied, trigger the actions to deliver a service. The conditions embody the
matching criterion specified over the type and attributes of requests. The actions, however, greatly
vary in complexity and nature based on the service they extend. Some services can be delivered
through a simple set of actions, while others may need an elaborate workflow to be employed. For
instance, a logging service would require actions to simply read the requests on the blackboard
and log appropriate attributes as and when they are posted or removed. However, a simulation ser-
vice would require an elaborate workflow of actions to pre-process the input data, locate and fetch
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the required datasets, run the simulation on computing resources, monitor the simulation execution
and validate the output produced.

In Simfrastructure, workflows are encoded in separate objects called runners. The runners are em-
bedded in requests and are executed by brokers to deliver a service as can be seen in the Figure[2.2]
The runners perform various actions, including consuming services from other brokers, in order
to deliver a service. Runners are typified by short compute portions followed by long idle times as
requested services are fulfilled. For instance, the runner for executing a simulation model may use
the request parameters to process the input and create a configuration file, determine the datasets
needed, spawn new requests to find the datasets and make them available on the local system, if
not already present. Further, it may spawn a new request to execute the simulation on available
computing resources and, finally, validate the output before converting it into a common format
as part of post-processing. In Simfrastructure, runners offer modularity that simplifies addition,
update and removal of workflows. Adding a new workflow requires developing a new runner and
embedding it in the corresponding request.

Based on their actions, Simfrastructure brokers can be classified into Standalone and Workflow
brokers. Standalone brokers deliver the service by executing the actions hardcoded in them. Stan-
dalone brokers are typically used to provide simple, well-defined and specific services. On the
other hand, Workflow brokers deliver the service by executing an embedded runner. A workflow
broker consists of three main parts: the broker context, the runner embedded in the request, and
the data contained in the request. The broker context is a generic component that contains APIs
that the runners use to interface with the middleware system, such as access to the blackboard and
logging system. As depicted in Figure[2.2] the broker context is always running and monitoring the
blackboard for suitable requests. It also controls the execution of the runners. The broker context
maintains a set of worker threads and runners. When a runner is ready to continue execution, it is
placed in a runnable queue. The idle worker threads remove runners from the queue and execute
them. The workflow brokers are useful when providing complex and generic services that can be
delivered through one or more workflows.

2.3 Types of Brokers

The Simfrastructure architecture comprises of three types of brokers: edge, service and coordina-
tion brokers.

2.3.1 Edge Brokers

Edge brokers serve as the link to resources outside of Simfrastructure. They are the only brokers
that can communicate directly with system resources or resources not controlled by Simfrastruc-
ture. As such, they provide a layer of security for the rest of the system. Some examples of edge
brokers are execution brokers and ingestion brokers. Execution brokers are responsible for the



Hemanth Makkapati Chapter 2. Architecture 8

execution of models on resources such as clouds and grids. Ingestion brokers add external data
to the system by providing services for transformation. Examples of external resources include
computation hardware, multiple data sources (surveillance data, field data, demographic data, etc.)
and people. Edge brokers may spawn or may be spawned by service brokers.

2.3.2 Service Brokers

Service brokers provide services within Simfrastructure. An example of a service broker is a
model broker that is capable of executing a particular simulation model. It takes as input a set
of simulation parameters, runs a specific model, and provides simulation results. Service brokers
may run over many iterative steps and replicates to improve the accuracy of the simulation. A
service broker may spawn or be spawned by any other type of brokers.

2.3.3 Coordination Brokers

A Coordination broker serves as the coordinator and mediator of services. This broker is necessary
when a workflow spans multiple blackboards, to ensure that service and edge brokers remain
unaware of services running on other blackboards. It may also enforce data and other restrictions.
Coordination brokers can spawn or be spawned by service brokers or other coordination brokers.
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Figure 2.2: A generic depiction of actions in a workflow broker: The broker context fetches the de-
sired requests from the blackboard and adds the embedded runners to the runnable queue. Worker
threads retrieve runners from the runnable queue and execute them.



Chapter 3

Services

Simfrastructure provides in-built brokers that provide a set of core services such as job execution,
data transfer, resource assignment, digital library, etc. These services can be utilized in many
ways to realize the capabilities of modeling and analytical systems. We describe the core services
provided by Simfrastructure and their details in the rest of this section.

3.1 Job Execution Service

The job execution service provides a mechanism to execute computational jobs on high-end com-
puting resources such as clusters, grids and clouds. The job execution service is fulfilled by the
execution broker when an execution request appears on the blackboard. The execution request
contains the job, usually an executable, input and output for execution. Any data required is
included either directly in the request for small data (e.g., simulation parameters), or indirectly
through an identifier called the Simfrastructure ID (SID) for large data (e.g., input datasets). Any
data specified by SID is retrieved prior to execution from the digital library. The execution broker
retrieves and submits the embedded job to the underlying job scheduling system. While con-
tinuously monitoring the job execution, the broker updates the status of the execution request
accordingly.

The execution broker plays a crucial role in integrating various computing resources into Simfras-
tructure. The runner of the execution broker contains the workflow necessary to execute a job on a
computing resource. The runner deals with submitting and monitoring the job with the help of an
underlying job submission system. Thus, by developing appropriate runners, Simfrastructure can
execute jobs on high-performance computing clusters, compute grids, clouds, volunteer comput-
ing platforms or dedicated servers. Assuming the availability of appropriate runners, computing
resources can be easily added to Simfrastructure.

10
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3.2 Data Transfer Service

The Data Transfer service provides a mechanism to transfer data from one location to another. The
data transfer broker monitors the blackboard for data transfer requests that contain the information
about the data that needs to be transferred, and the source and destination locations. When a data
transfer request appears on the blackboard, the data transfer broker resolves the location of the
data, source and destination and initiates a data transfer.

Data Transfer service leverages the broker architecture to support data transfer over a diverse set
of protocols. Specific runners are developed to support data transfer over a variety of protocols
like SCP, FTP, HTTP and HTTPS etc. Also, a runner can transfer the data, if small, over the
blackboard. The data transfer broker can be extended easily to support of a new data transfer
protocol by developing a corresponding runner.

3.3 Resource Management Service

The Resource Management service assigns specific resources to an execution request. The re-
source management broker frequently collects information about the health, load, and available
models and datasets on the Simfrastructure computing resources. It uses this information to iden-
tify the best resource that can fulfill a given execution request. The resource management broker
evaluates the requirements of the request, and matches it to available resources meeting those re-
quirements. The parameters used for matching by this service include current and expected load
on the computational resource, availability of models and datasets, deadline for the request to be
completed, constraints placed by the initiator of the request and so on.

3.4 Digital Library Service

To manage the large scale of data related to the simulations and the corresponding metadata, it
is essential to have a digital library acting as a central repository of information. Many different
services can be written on top of the centralized digital library. Simfrastructure provides a digitial
library service called the SimDL [10], which enables holistic management of scientific content
produced and used during simulation execution.

SimDL provides services to store, manage, retrieve, and compare scientific content produced
through simulations. It also provides services such as searching, memoizing, incentivizing, reusing,
reproducing, discovering, curation and preservation. The digital library services are offered by the
digital library broker that listens for digital library requests. The digital library requests contain
the service that is requested and the associated parameters. The primary digital library services
provided by Simfrastructure include Storage, Searching, Memoization and Incentivization.
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Execution broker, data transfer broker, resource assignment broker and digital library broker de-
scribed in this section are edge brokers as they interact with resources external to Simfrastructure.



Chapter 4

Resource Management

As discussed earlier, Simfrastructure provides a generic computational infrastructure that can be
used by a variety of socially-coupled systems. This leads to different systems resulting in jobs
that may vary in their computational characteristics. While some jobs may entail highly-coupled
workflows, others may result in numerous independent tasks as in a bag-of-tasks model. In addi-
tion, some jobs may be monotonously serial in nature with a high resource footprint. Such diverse
computational characteristics call for employing diverse and appropriate computational resources
like clusters, grids and clouds etc. Traditionally, clusters are regarded best suitable for highly
parallel jobs with intricate workflows whereas, grids are suitable for high-throughput jobs. On
the other hand, clouds are best known for their elasticity in catering to higher resource require-
ments. Simfrastructure deals with this diversity of computational resources elegantly with the help
of Execution Broker.

However, the inclusion of multiple resources brings forth three key aspects of resource manage-
ment: fault-tolerance, flexibility and resource allocation. Fault-tolerance plays an important role
in keeping the applications robust towards any failures in computational resources. Typically, com-
putational infrastructures such as clusters and grids are prone to frequent downtimes, albeit short,
due to internal failures and maintenance activities. Hence, fault-tolerance will enable simulation
systems to be oblivious of any failures in the underlying computing infrastructure. Flexibility
allows computational resources to be added/removed easily without having to intervene with the
functioning of other components. This allows for easy and non-intrusive scalability. Resource
allocation determines the best possible resource for executing a given job. For efficient execution
of a job, its computational characteristics may need to be matched with those of the available re-
sources. For instance, grids may not be an efficient match for a job with an aggressive walltime.
Furthermore, resource allocation may also take several other factors such as health, load and ge-
ographic distance etc into consideration in order to determine the best possible resource. Hence,
resource allocation is a critical aspect that provides an efficient way to execute jobs by matching
the computational characteristics of both jobs and available resources.

Thus, fault-tolerance, flexibility and resource allocation are three key factors of resource manage-

13
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ment that contribute to the smooth functioning of simulation systems. Also, supporting multiple
resources may not be as efficient and useful without fault-tolerance, flexibility and resource allo-
cation.

4.1 Resource Manager

Resource Manager is a Simfrastructure component that manages, allocates and provisions com-
putational resources required to execute jobs. It provides two key services - resource monitoring
and resource allocation - that work in conjunction to provide a smooth and efficient execution of
jobs on computational resources. Resource monitoring service enables Simfrastructure to be fault-
tolerant and flexible with the operation of computational resources. On the other hand, resource
allocation service provides a way to allocate the best from the available resources based on the
computational characteristics of a job.

4.1.1 Resource Monitoring

The resource monitoring service monitors all the computational resources integrated into Simfras-
tructure by regularly collecting various parameters such as health, load, wait time, resource utiliza-
tion, resource type, available data sets and software packages, organizational domain, geographic
location etc. With the help of the information thus gathered, the resource monitoring service identi-
fies available resources and their current state at any given point in time. The resource monitoring
service thereby maintains a global state of computational resources. This knowledge is further
utilized by the resource allocation service to determine the most appropriate resource.

4.1.2 Resource Allocation

The resource allocation service attempts to determine the best possible resource for a given job. It
interacts with the resource monitoring service to fetch the current state of computational resources
and then matches the job characteristics with that of the available resources to determine the best
match. The matching criterion may be specified over a wide variety of rules that mary vary from
one simulation system to the other. The allocation rules may be specified over standard parameters
—such as available memory, queue wait time, latency, load, geographic location, organizational do-
main etc. — as well as application-specific attributes and logic. Application-specific rules, typically,
are the best judge of the computational characteristics of resultant computational jobs and there-
fore the ideal candidates for identifying the characteristics of the desired computational resource
as well.
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4.2 Design

Resource manager is a distributed module designed to utilize Simfrastructure framework for its op-
eration. It uses the blackboard as the communication mechanism to interact with components. The
Resource Manager Broker delivers the resource monitoring and allocation services by monitoring
the blackboard for appropriate requests. While the Resource Allocation Service may be invoked
by any component that intends to execute a job, the Resource Monitoring Service is, typically, used
only by the Resource Allocation Service to fetch the available resources and their current states.

4.2.1 Resource Monitoring Service

The basic function of resource monitoring service is to track the availability and health of resources
that are hooked to Simfrastructure. Optionally, it collects other attributes of a resource either
actively or as exposed by the resources themselves. The Resource Monitoring Service provides the
collected attributes to the Resource Allocation Service thereby enabling it to gain further insight
into the computational characteristics of the resources and therefore allocate better resource for a
given job.

Heartbeat

The resource monitoring service collects information about computational resources through mes-
sages called heartbeats. A heartbeat is a short-lived blackboard object — typically with 30 sec.
lifetime — that represents the availability of a computational resource for executing Simfrastructure
jobs. The computational resources post a heartbeat to the blackboard and renew it repeatedly to
suggest their availability. Therefore, at any given instance, only those resources are considered
available whose heartbeats are found on the blackboard.

A heartbeat carries information about computational resources in the form of key-value pairs called
resource attributes as shown in Figure The resource attributes are classified into three cate-
gories named: Standard, Custom and Crawled Attributes.

e Standard Attributes: These attributes contain essential information of a computational re-
source such as its name, namespace, ip address, job manager, organization domain, resource
type etc. These attributes must be present in every heartbeat.

e Custom Attributes: In addition to the standard attributes, a heartbeat may contain attributes
a resource may wish to expose. Custom attributes typically include the geographic location,
num. of nodes and disk space available etc.

e Crawled Attributes: These attributes are special pieces of information collected whenever
necessary. The information carried in Crawled Attributes could be different from case to
case. Paths and versions of specific software could be collected through this mechanism.
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Standard Attributes:
<name = shadowfax>
<lifetime = 30000 ms>
<job_manager = pbs>

Custom Attributes:
<num_nodes = 128>
<disk_space =5 TB>

<location = Blacksburg, VA>

Crawled Attributes:
<cinet_path = /home/NDSSL/projects/CINET>
<JAVA_HOME = /usr/lib64/jvm/java>
<python_version = 2.7>

Figure 4.1: The Heartbeat of a computational resource depicting different classes of resource at-
tributes.

Health Monitor

As depicted in Figure[4.2] A Health Monitor is a process that runs on every computational resource
and is responsible for posting the heartbeat and repeatedly renewing it. The Health Monitor oper-
ates in cycles of short duration called renewal cycles. In each renewal cycle, the Health Monitor
posts a heartbeat to the blackboard, if one is not present already, or renews an existing heartbeat.
Typically, the renewal cycles are a few seconds shorter than the lifetime of a heartbeat to account
for any latencies in the network. The default renewal cycle lasts for 25 sec. — 5 sec. shorter than
the default lifetime of a heartbeat i.e. 30 sec.

The Health Monitor, in addition to posting and renewing the heartbeat, populates the standard,
custom and crawled attributes of the computational resource into heartbeat. While the standard
attributes are predetermined, the custom attributes are read from configuration files. The crawled
attributes are obtained through an extension mechanism called Attribute Crawlers. An attribute
crawler is a plugin to Health Monitor and collects desired attributes on the computational resource.
The attribute crawlers are typically provided by the Resource Manager broker via serialized objects
in blackboard entries. The attribute crawlers are unmarshalled and executed by the Health Monitor.
The resultant attributes from executing the crawlers are populated into the heartbeats.

The attributes thus collected are used by the Resource Allocation Service during resource alloca-
tion.
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Figure 4.2: A multi-resource set up of Simfrastructure depicting the computational resources —
Pecos, Shadowfax and Open Science Grid. An instance of HealthMonitor runs on every computa-
tional resource and repeatedly, once every 25 secs, posts/updates the Heartbeat on the Blackboard.
The Health Monitor interacts with the Job Manager to collect necessary attributes.

Heartbeat Monitor

The Heartbeat Monitor is an integral part of the Resource Manager broker that helps in tracking the
health and load of the computational resources by reading the heartbeats present on the blackboard.
As depicted in Figure the Heartbeat Monitor reads and converts the information present in the
heartbeats into a form the Resource Manager can understand and make decisions.

The mechanism of heartbeats and their repeated exchange between computational resources and
Resource Manager helps achieve fault-tolerance and flexibility.

Fault-tolerance

If and when a computational resources goes down, for maintenance or due to internal issues, its
Health Monitor would be killed. Once the Health Monitor is nonfunctional, the heartbeat of the
corresponding resource would eventually expire its lifetime and disappear from the blackboard.
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Resource Manager Broker

Heartbeat
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reads heartbeats

Blackboard
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Figure 4.3: The depiction of Resource Manager Broker with Heartbeat Monitor. The Heartbeat
Monitor reads the Heartbeats on the blackboard to obtain the available resources for allocation at
any point in time.

Thus, the unavailable resource wouldnt not be considered. This way, Simfrastructure jobs are
always allocated to run on resources that are currently active. Also, the simulation systems them-
selves need not actively keep a track of the computational resources and their availability. Further-
more, Health Monitors can be made intelligent to detect partial failure of hardware on computa-
tional resources and accurately reflect it in the health information provided with the heartbeats.

Flexibility

The utilization of computational resources in simulation systems is often unpredictable. For in-
stance, during the outbreak of an epidemic, simulation systems may experience an usually high
load and consequently higher need for resources when evaluating various countermeasures to curb
the contagion. Otherwise, the resource requirements may not be as high and fairly stable. Due to
such unstable resource requirements, simulation systems would be benefitted with flexible addition
and removal of computational resources.

With Resource Manager, addition and removal of computational resources is easy and non-intrusive.
A computational resource would be considered for executing Simfrastructure jobs just by adding
an appropriate heartbeat to the blackboard. Similarly, a computational resource may be removed
just by taking the heartbeat off the blackboard.
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Thus, Simfrastructure systems avail the benefits of fault-tolerance and flexibility with regards to
computational resources at no extra cost.

4.2.2 Resource Allocation Service

The resource allocation service aims to determine the most appropriate computational resource to
execute a given job. It allocates a resource by determining the appropriate resource type and also
a specific resource of the identified type. Also, it takes the attributes and computational character-
istics of the job into consideration to determine the attributes of desired computational resources.
However, to determine the computational characteristics of a job, the resource allocation service
often requires the assistance of application-specific knowledge. The Resource Allocation service
embraces a plug-in based design to accommodate application-specific knowledge into resource al-
location decisions. The desired attributes thus obtained form application-specific knowledge act
as a filter to reduce the available set of computational resources to smaller set before actually
allocating a resource.

Also, The Resource Allocation service comprises of several standard resource allocation strategies
like Least Loaded, Minimum Completion Time, Least Recently Used etc to determine a suitable
computational resource from the filtered set of available resources. Hence, the Resource Alloca-
tion service takes two distinct steps: Resource Filtration and Resource Allocation to arrive at an
allocation. Domain Handlers and Resource Allocator are the two distinct components of Resource
Manager that offer Resource filtration and allocation services, respectively.

Domain Handlers

Domain Handlers are pluggable application-specific modules that understand the parameters of a
job in a particular Domain. A domain is typically an application or a class of applications that
share similar job characteristics. For instance, many public health epidemiology systems may
have similar job parameters and hence share the same Domain Handler. As depicted in Figure 4.4
Domain Handlers, when invoked by the Resource Manager broker, read the parameters of a given
job and determine the attributes of a desired computational resource. The attributes thus obtained
act as resource templates to discover suitable resources among the available ones. The resource
templates are returned to the Resource Manager broker for further processing.

The Domain Handlers may determine attributes of several kind varying from the type of desired
computational resource to the required software installed on it. For instance, simulation systems
that intend to run user-provided intervention scripts may wish to run the simulation in a sandbox
environment such as that provided in clouds due to security reasons. In such a case, the Domain
Handler could add the type of desired computational resource to be a cloud. Furthermore, sim-
ulation systems may specify specialized software and libraries required for execution as desired
attributes in the resource template.
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Figure 4.4: The depiction of Resource Manager Broker with Domain Handlers. The Domain
Handlers, when invoked by the Resource Manager Broker, read the parameters of a given job and
determine the attributes of desired computational resources that are best suitable for job execution.
The desired attributes are returned as resource templates.

Resource Allocator

The Resource Allocator allocates a desired resource from the available resources based on the given
resource template. The allocation is performed in two steps: Filtration and Allocation. During
the filtration step, the Resource Allocator determines a smaller set of resources by matching the
resource template attributes with those of the available resources. Any resource from this set of
resources is a desired match with respect to the template. However, to determine the best match,
the Resource Allocator invokes one of the many allocation strategies, as depicted in Figure {.5] as
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a part of the allocation step. The Resource Allocator ships with allocation strategies such as Least
Load, Random and Least Recently Used etc.

Resource Manager
Broker

I
invokes with a strategy
& resource template

v

Resource Allocator

invc‘)kes invc‘)kes invc‘)kes

strategy strategy strategy
returns returns returns
resource resource resource

Least Loaded Least Recently

Used

Figure 4.5: The depiction of Resource Manager Broker with Resource Allocator and various re-
source allocation strategies. The Resource Allocator, when invoked by the Resource Manager
Broker, invokes a given resource allocation strategy to determine the most appropriate resource
from the set of desired resources.

The Least Loaded allocation strategy takes into consideration the load statistics collected from
all the available resources, through heartbeats, and allocates a resource that is least loaded with
jobs. For instance, one of the load statistics considered is the number of jobs currently queued
and running. The Random allocation strategy picks a resource from the available resource in a
random fashion without considering any load statistics. The Least Recently Used strategy aims to
allocate a resource that is currently available and least recently used. To determine the last usage
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of a resource, the time of submission of the most recently submitted job is considered. In addition
to the default allocation strategies, custom resource allocation strategies may be added easily.

In some cases, when there is no specific Domain Handler available to determine a resource tem-
plate, an empty template is created by the Resource Manager broker. In such a case, the filtration
step has no effect as all the resources would be considered a match for the empty resource template.
Going further, all the resources would be considered for resource allocation and the best match is
determined by the resource allocation strategy employed.

Allocation

With the integration of multiple resources and diverse computational infrastructures, allocation
takes paramount importance in order to achieve efficient performance. The Domain Handlers and
Resource Allocator work in tandem to provide a comprehensive allocation mechanism that takes
into consideration the computational characteristics of the job along with the availability, load
statistics and other attributes of the computational resources. This allocation mechanism enables
Resource Manager to determine and allocate the ideal resource for job execution.

4.2.3 Naming Scheme

To assist with resource allocation and identification, a three part naming scheme is introduced to
uniquely identify the computational resources. Each part of the naming scheme expresses an at-
tribute of the computational resource. As depicted in the Figure[d.6|, three attributes of the namings
scheme are: the organizational domain of the resource, the type of computational resource and the
universal identifier of the resource. The organizational domain of the resource represents the do-
main in which the computational resource is hosted. An organizational domain can be represented
by a URL. For instance, the organizational domain for Shadowfax would contain vbi.vt.edu as it is
hosted in VBI domain. Secondly, the type of the resource would indicate the kind of computational
resource such as cluster, cloud, grid and server etc. Finally, the universal identifier would contain
the ip address or hostname of the resource itself.

Organizational Domain.«Resource Type. Universal Identifier

Figure 4.6: The naming scheme followed for resource allocation. The naming scheme contains
three attributes: the organizational domain, resource type and the universal identifier.
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vbi.vt.edu . cluster . sfxloginl.vbi.vt.edu

Figure 4.7: A naming scheme indicating a specific cluster identified by ’sfxloginl.vbi.vt.edu” from
’vbi.vt.edu” to be ideal for job execution.

vbi.vt.edu . * ¢ *

Figure 4.8: A naming scheme indicating a resource of any type from “vbi.vt.edu” organizational
domain to be ideal for job execution.

vbi.vt.edu . cluster . *

Figure 4.9: A naming scheme indicating any cluster from “vbi.vt.edu” organizational domain to
be ideal for job execution.

* o cloud « *

Figure 4.10: A naming scheme indicating a cloud from any organizational domain to be ideal for
job execution.

The three attributes of the naming scheme determine the genericness of the allocation. When a
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* ® % ® %
e o

Figure 4.11: A naming scheme indicating a resource from any organizational domain and type to
be ideal for job execution.

job goes through the allocation process, it is marked with a template that indicates the resource
allocated for its execution. The template may contain zero or more non-empty fields of the nam-
ing scheme. The various possibilities of the template are shown in Figures An empty
template indicates that a job could be served by any resource. On the contrary, a fully populated
template identifies a particular resource that is the most suitable for executing the job. Moreover,
partially populated templates may identify one or more resource that could serve the request. Thus,
with the help of this naming scheme, allocations in Simfrastructure can be flexible and dynamic.
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Figure 4.12: A depiction of Resource Manager with all its components. The Resource Manager
Broker reads the Job Requests from the Blackboard and hands them over to appropriate Domain
Handlers for further processing. The Domain Handlers process the Job Requests and return desired
resource templates to the Resource Manager Broker, which then invokes the Resource Allocator
with an allocation strategy and the resource template. The Resource Allocator invokes the Health
Monitor to fetch all the available resources by reading the Heartbeats from the Blackboard. The
Resource Allocator then filters the available resources based on the resource template and invokes
the given allocation strategy to pick the best resource from the filtered set.
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Case Studies

Simfrastucture has been used as the middleware platform for developing simulation and analytical
systems in different domains. In this section, we present the implementation of a modeling envi-
ronment extensively used for analytical training and pandemic planning purposes in public health
epidemiology.

5.1 Public health epidemiology

Public health decision makers need to use simulation systems as decision support instruments to
carry out what-if analysis experiments. In the event of an epidemic, decision makers wish to study
the interaction effects of various mitigation strategies and determine the optimal strategy to contain
the epidemic effectively. The main challenge for a decision-supporting epidemic simulation system
is to provide users with a coherent view of the actual epidemic situation while continuously updat-
ing the views as new information becomes available. Thus, the decision support systems should be
able to act as cognitive augmentation tools that can offload the cognitive task of forecasting on to
the simulation system.

Based on years of expertise in epidemiology, the Network Dynamics and Simulation Science Lab-
oratory developed a simulation system, called Interface for Synthetic Information Systems (ISIS),
to assist public health domain experts in planning and decision making. ISIS is equipped with a
web-based user interface that allows users to set-up and manage experimental case studies. ISIS
enables users to evaluate various intervention strategies by designing epidemiological experiments
with various configurations and disease models that execute on synthetic population data of differ-
ent regions.

To enable coordination between the web-based interface and different simulation models at the
back-end, Simfrastructure has been used as the primary coordinating mechanism in ISIS. The
simulation models used as the simulation execution engines include EpiSimdemics [6], EpiFast [5]]

26
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and Indemics [11]. By virtue of the flexibility offered by Simfrastructure, new epidemic models,
datasets and other dynamic information can be quickly incorporated into the ISIS system and thus
enable future pandemic preparedness, planning and analysis. Many real experimental case studies
have been executed using the ISIS system including [12] and [13]. A typical workflow of an
epidemic simulation in ISIS is as follows.

5.1.1 ISIS Design

Figure depicts the workflow of a multi-cell epidemic simulation executed using ISIS as the
simulation tool and Simfrastructure as the coordinating middleware platform. The epidemic model
used in this workflow is EpiFast. Typically, an epidemiological experiment has three major steps
- executing the multi-cell simulation, computing the summary of cells and analyzing the results.
Due to space constraints, we skip the description of the analysis step, which takes a similar course
of action as the other two steps.

An analyst accesses the ISIS web-based interface through a web browser to set-up and design
experiments for an epidemiological study. Experiment parameters such as the epidemic model,
disease model, number of cells, initial seeds, etc. are selected through the interface. Once the
experiment is submitted, the selected parameters are sent to the server. Based on the experiment
parameters, the ISIS server creates an appropriate request and places it on the blackboard. As the
epidemic model is EpiFast in this case, an EpiFast request is created holding all the parameters
required for the EpiFast model and a corresponding embedded workflow inside the EpiFast runner.

The EpiFast broker is a service broker configured to monitor and serve the EpiFast requests. In
order to complete the simulation, the EpiFast broker has to perform two major steps: running the
multi-cell EpiFast simulation and summarizing the results from each cell.

Firstly, the EpiFast broker aims to the run EpiFast simulation on a computing resource. The EpiFast
broker extracts the simulation parameters embedded in the request and writes them to a configura-
tion file on the file system. To initiate the simulation, the EpiFast broker posts an execution request
to the blackboard with an embedded job script to run the EpiFast binaries on the underlying com-
pute resource. The execution broker picks up the execution request and serves it by submitting the
embedded job script to the underlying job scheduling system for execution. The EpiFast binary
starts the simulation with regards to the configuration earlier written to the file system and writes
the simulation output back to the file system. Once the simulation terminates successfully, the
execution broker, while actively monitoring the job execution, updates the status of the execution
request as completed.

Secondly, the EpiFast broker monitors for the success of the earlier execution request and posts
another execution request to the blackboard for cell summarization. This time, the EpiFast broker
embeds a new execution request with a job script to invoke the cell summarization binaries. The
execution request takes a similar course of action as in the earlier step and reports the success of
cell summarization. Going further, the EpiFast broker updates the status of the initially placed Epi-
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Figure 5.1: Sequence of activities in a typical workflow of a multi-cell epidemic simulation exe-
cuted using ISIS as the simulation tool, EpiFast as the epidemic simulation engine and Simfras-
tructure as the coordinating middleware platform.
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Fast request as completed, which triggers the ISIS server to convey the success of the experiment
to the end-user.

The workflow described in this section has been followed by many experimental case studies in
the domain of public health epidemiology.

5.2 Network Science

Many socio-technical systems such as the urban transportation systems, electric power grids, com-
munication and computer networks, social sciences and economics etc employ graph abstractions,
theory and algorithms to understand their structural properties and dynamical behavior. To study
such complex socio-technical systems, graphical modeling tools with mechanisms for representing
and manipulating large scale graphs are essential. CINET, A CyberInfrastructure for Network Sci-
ence, is developed to help with large-scale graph processing and dynamic graph computations. It
includes several graph measures such as the vertex degree, edge degree, clustering coefficient and
betweenness centrality etc provided by various graph libraries such as GaLib [14], NetworkX [15]]
and SNAP [16]. CINET enables users to take advantage of the cyberinfrastructure by enabling the
addition of custom graphs and measures. This leads to an increase in the number of graphs and
measures over time. Moreover, the computational requirements of the graph processing algorithms
may vary significantly based on the complexity of the measure and the size of the input graph. For
instance, to find the clustering coefficient of a densely connected graph, with a million nodes and
up to 10 million edges, in a reasonable time period, a high-end computing resource like a high-
performance cluster may be required. Whereas, to find the vertex degree of a 100 node graph, the
computing capacity of a desktop computer may just be sufficient. Also, as discussed in the previous
sections, different graph measures and analyses may result in jobs of different nature. While, some
graph analyses may result in many serial jobs others may result in massively parallel jobs. Further-
more, CINET is expected to deal with security issues that may arise in executing user-submitting
graph analysis programs. To develop such complex large-scale graph analysis infrastructure over
a diverse set of graph measures and computational resources, we utilized Simfrastructure and its
resource management capabilities.

5.2.1 CINET Design

Figure [5.2] depicts the workflow of a graph-measure analysis performed using Granite as the ap-
plication front-end and Simfrastructure as the coordinating middleware platform. The user selects
graphs and measures from the user interface after which a series of jobs, one for each graph and
measure selected, are submitted to the computational resource — Shadowfax, an HPC cluster hosted
at VBI, in this case — for analysis. Once the analysis is completed, the results are transferred back
to the user and shown via the user interface.

Firstly, an analyst accesses the Granite web-based interface through a web browser to set-up a
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Figure 5.2: Sequence of activities in a typical workflow of a graph measure analysis using CINET.

graph analysis request. The user selects a set of graphs and measures from a list shown on the user
interface. Along with graphs and measures, users may also set parameters for measures through the
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user interface. Once the analysis is submitted, the selected graphs, measures and their parameters
are sent to the server. The Granite server then creates and posts a Digital Library (DL) Request to
the blackboard to fetch additional information about the selected graphs and measures.

The Digital Library Broker, configured to respond to DL Requests, picks up the DL Request and
fetches the information related to graphs and measures from the database. This retrieved informa-
tion is sent to the Granite server by updating the DL Request appropriately. Typically, the informa-
tion sent in the DL Request contains details about the paths, names, description of the graphs and
measures. The Granite server utilizes this information in creating appropriate Execution Request.
However, before creating the Execution Request, the Granite server registers any data that needs
to sent over for execution with the Data Manager. The Data Manager broker, configured to serve
the Data Manager Requests, reads the request off the blackboard and registers the data included in
the request. In return, the Data Manager broker returns a symbolic ID that could be used to resolve
the data back to its original form.

The Execution Broker reads the Execution Request from the blackboard and initiates the analysis.
It starts off by resolving the data embedded in the Execution Request by placing a Data Manager
Request on the blackboard. The Data Manager updates the request with data corresponding to the
IDs. Then, the Execution Broker writes the resolved data on the file system for later use. Following
this, the Execution Broker submits the job script that encodes the commands to run the analysis to
the job manager. Once the job is submitted, the Execution Broker monitors the status of the job
continuously. Upon completion, the outputs are registered with the Data Manager and the resultant
IDs are updated in the Execution Request. The Granite server, then, reads the completion status of
the request and resolves the IDs of output. The output thus obtained is shown to the user via the
web browser.

5.2.2 Prototype with Resource Manager

Figure depicts the workflow of a similar graph-measure analysis described in Figure in
the context of the proposed design that utilizes the services of Resource Manager. In addition
to the Simfrastructure components described earlier, the proposed setup includes the Resource
Manager that enables efficient utilization of multiple resources — Pecos, Open Science Grid (OSG)
and FutureGrid (FG) in addition to Shadowfax. While Pecos is an HPC cluster hosted at Virginia
Tech, OSG is a computational grid and FG is a grid testbed that provides a platform for on-demand
resource provisioning and utilization. Both OSG and FG are hosted by their respective consortiums
to in an effort to further scientific research.

As in the previous case, the user starts off an analysis by selecting a set of graphs and measures
from the web interface. The Granite Server, instead of creating the Execution Request itself like in
the earlier case, creates and posts a Resource Manager request indicating the graphs and measures
it intends to process. The Resource Manager is tasked with creating the appropriate Execution
Request with a resource allocation. In order to do so, The Resource Manager reads the request
from the blackboard and delivers the request to the Granite handler, which is the Domain Handler
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Figure 5.3: Sequence of activities in a typical workflow of a graph measure analysis using CINET
in a multiple resource setup. The resource manager is utilized to determine the most appropriate
resource for the execution of analysis.

for Granite. The Granite Handler, as in the previous case, tries to fetch more information about
the selected graphs and measures by placing a DL Request on the blackboard. Upon fetching the
required information, the Granite Handler creates a resource template, indicating the ideal resource
for its execution, and hands it over to the Resource Allocator to find a suitable resource that fits the
template. Following this, the Resource Allocator invokes the Heartbeat Monitor to collect all the
available Heartbeats from the blackboard. By reading the Heartbeats and the properties included



Hemanth Makkapati Chapter 5. Case Studies 33

in them, the Resource Allocator determines the most appropriate resource that fits the template.
When the Resource Allocator returns the allocated resource, the Granite Handler registers any
input data with Data Manager before creating the Execution Request marked with the allocation
name of the allocated resource. The Execution Request thus created is updated on the Resource
Manager Request originally posted on the blackboard by the Granite Server. Upon reading the
response, the Granite Server posts the Execution Request on the blackboard for execution. From
this point onwards, the flow continues as in the earlier case.

The Health Monitor process installed on the computational resources repeatedly posts and updates
the Heartbeats on the blackboard. The Health Monitor interacts with the local job manager to
collect load statistics and reflect them in the Heartbeats.

Granite Handler Figure depicts the series of actions and decisions taken in the domain
handler for Granite called Granite Handler. The Granite Handler reads the graph analysis request
and determines a graph library that is best suited to serve the request. The Granite Handler creates
a resource template indicating the presence of chosen graph library in the desired resource.

The Granite Handler starts off by reading the graph and measure contained in the request. If a
measure is available in only one graph library, it is chosen and included as a desired characteristic
in the resource template. On the other hand, if a measure is available in multiple libraries, the
size of the graph is taken into account. The library GaLib is chosen if a graph is big, otherwise
NetworkX is chosen. The ’big’ness of the graph is determined by the number of nodes and edges
contained in it. Also, if the chosen measure is one of those uploaded by the user, it is indicated to
in a sandbox environment on cloud for security. Otherwise, any resource with the chosen library
should suffice.
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Figure 5.4: Flowchart depicting the series of actions and decisions performed in Granite Handler

to decide an appropriate graph library for the given request.



Chapter 6

Discussion

In this section, we discuss how the loosely coupled architecture of Simfrastructure provides essen-
tial qualities of scalability, fault tolerance, quality of service and load balancing, in development
of integrated modeling environments. We present our evaluation of the framework on each of the
performance characteristics below:

6.1 Computational complexity

Simfrastructure employs a space-based architecture, enabling easy coordination between the com-
ponents of a simulation system through anonymous communication. This greatly simplifies coor-
dination among components since they need not be aware of the existence of other components
in the system. Components are then self-contained as the computational complexity of each com-
ponent is hidden within itself such as the simulations. Also, this achieves loose-coupling among
components thereby improving the maintainability and usability of the system.

6.2 Scalability

In Simfrastructure, as the components are loosely-coupled, they can be added, removed and changed
transparently. For instance, additional computing resources may be added to the simulation system

to increase computational capacity without having to interrupt any running jobs and components.

Similarly, computing resources may be removed if they are underutilized. Moreover, any request

submitted to the blackboard can be served by any available broker relevant to the request. Hence,

scalability with respect to the service provided is inherently handled by our system.

However, as the blackboard holds all the requests for further processing, the scalability in terms
of the number of requests served simultaneously may be limited by the total memory available

35
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to the blackboard. To study this further, we carried out an experiment to evaluate the capacity
of blackboard by hosting a JavaSpace with a 1 GB Java heap size. Further, we created a typi-
cal Simfrastructure request and populated the blackboard to its capacity, i.e., until it ran out of
memory. Before going out of memory, the JavaSpace could hold 200,000 requests, which trans-
late to around 40,000 simultaneous experiments, assuming every experiment generates four other
requests, each corresponding to the services mentioned in Section @ This limitation of 200,000
requests would become a bottleneck when the underlying computing hardware is capable of serv-
ing more than 40,000 experiments simultaneously. Also, increasing the heap size of JavaSpace
will further increase the capacity of blackboard and consequently the number of experiments han-
dled by Simfrastructure. However from our experience, though the scalability of blackboard is an
important factor, it does not play a significant role as in the most cases, scalability is limited by the
throughput of underlying computing infrastructure.

6.3 Latency

One of the sources of latency in Simfrastructure is caused by the read and write operations on
the blackboard. To study such latencies, we measure the time taken to read and write the 209,700
requests created in the previous experiment to measure the capacity of blackboard. Time measure-
ments of all the requests are divided into 210 buckets, with each containing the time measurements
of 1000 requests. For each bucket, we plot the minimum, maximum and the 95" quantile of time
measurements on a log scale for read and write operations as shown in Figure As shown by
the Min and 95 Quanile lines, the time taken to read and write requests increases gradually as
the number of requests on the blackboard increases. So, a higher load on the blackboard may lead
to higher latency in the end-to-end processing of a simulation. We attribute the abnormally high
values of Max plots to time incurred by the Java garbage collector.

As explained in the Architecture section, the request for a given service might include an identifier
to the data stored in the digital library, if the scale of data is large. This look-up operation can
be a bottleneck and lead to latency. However, for socially coupled systems, the latency incurred
due to look-up operations is several orders of magnitude smaller than the total execution time of
simulations. Hence, the latency in look-up operations is not perceivable during the simulation
execution. For instance, the latency incurred for look-up operation in an epidemic simulation
using EpiFast, on the Miami region with a population of around 2 million, is 3 seconds. While, the
simulation running time is approximately 15 minutes. Thus, the latency is negligible compared to
the simulation execution time and is not a significant factor for middleware latency consideration.
The workflow of this use-case using EpiFast is explained in Section 2?.
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Figure 6.1: Performance of read and write operations with over 200,000 requests divided into
210 buckets, each of size 1000. For each bucket, minimum, maximum and the 95" quantile time
values, in milliseconds, are plotted on log scale.
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6.4 Fault-tolerance

In the current architecture of Simfrastructure, as many brokers can co-exist and be dynamically
added to offer a particular service, if one broker is down, another broker can serve the same re-
quest without the loss of continuity. However, a crash in the blackboard, which is the central
communication mechanism, may critically affect the system. Presently we are studying various
fault-tolerance strategies like adding redundancy in the shape of a secondary blackboard, and em-
ploying hierarchical and distributed spaces to give the illusion of a single blackboard. Currently
we use watchdog scripts to regularly probe the status and take corresponding actions with regards
to brokers and blackboard.



Chapter 7

Related Work

There have been many recent advancements in the field of high performance computing systems
and middleware platforms to support coordination between the components of such systems. How-
ever, to the best of our knowledge, our work on Simfrastructure is the first effort of its kind in de-
veloping a middleware platform that aims at providing seamless access to powerful computational
models and resources for use by subject matter experts. In this section, we list some of the recent
research relevant to our work.

In paper [[17]], the authors argue the need for delivering high performance computing resources as
a service to scientists and domain specialists. The authors provide a prototype implementation of
an elastic cloud that provides high performance computing infrastructure as a service using the
IBM BlueGene Supercomputer. This new innovation called HPCaaS (HPC as a Service) derives
from the positives of both cloud computing and high-end cluster computing. In our approach, we
deliver high performance computing services as well, but as an indirect consequence. Our focus is
primarily on delivering higher level services, in particular analytics and modeling for socially cou-
pled systems. We also differ in the types of computational resources we address including clusters,
clouds and grids. On top of providing an easy coordinating mechanism between user-interfaces,
data stores and computing resources, our space-based architecture is also used to provide resource
allocation and management, data transfer and digital library services.

Some of the other related work in this domain includes the work on Narada brokering architecture
and Granules. The Narada brokering architecture [18]] provides a distributed brokering system with
a brokering middleware that combines a hybrid environment of peer-to-peer systems and grids to
provide web services. “Granules” [19], a streaming based runtime environment, extends the basic
brokering architecture from “Narada” for executing complex scientific applications on the cloud
using a peer-to-peer system of communication between its broker components. It also supports the
existing MapReduce framework [20] and variants of it.

Our approach greatly differs from these approaches in that our work does not focus on any partic-
ular programming model such as MapReduce to provide services. Instead, we provide a platform
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for large scale socially coupled systems to provide and access services without having any con-
straints on the models used, type of data required or computing resources available. For instance,
our approach does not require the simulations to follow certain norms of execution parallelism
whereas MapReduce operations typically need the datasets to be highly parallel in nature. Hence
our approach can be used in cases where large scale sequential execution has to be supported,
along with cases where massively parallel operations are to be executed on the grid. Moreover, our
approach uses tuple space based architecture, instead of earlier approaches used in the literature
such as peer-to-peer systems.

Space-based architectures have gained popularity and applicability in various domains ever since
the work of Gelernter et al at Yale [21]]. The papers [22], [23], [24], [[17] and [25] explore space-
based architectures for building adaptive distributed systems. The novelty of our approach lies in
bringing together a comprehensive set of services involving simulations, data stores, computing
resources and user interfaces required for automating socially coupled systems. Resource man-
agement, job monitoring, data transfer management and digital library service are a few examples
of the services. Our approach also makes it possible to provide a powerful analytical platform for
domain-experts.

Space-based architectures provide a natural way for coordination in a spatially, temporally and
logically decoupled manner. However, space-based architectures are known to have certain lim-
itations, some of which are thoroughly studied and addressed in the literature [23}26,[27]. In
the following sections of the thesis, we argue some of these limitations are not applicable in our
context, given the requirements of our system.



Chapter 8

Future Work and Conclusion

8.1 Future Work

Before concluding the work presented in this thesis, we describe a few areas that can be further
improved upon.

8.1.1 Blackboard

Though the Blackboard provides a loosely-coupled way of communication and coordination, it
stands as a single point of failure. Traditional strategies like adding redundancy, in the shape of
a secondary Blackboard, may be employed to increase the robustness of Blackboard. Further,
Blackboard can be conceived as a virtual space that is realized by many spaces to increase the
capacity of the system. Blackboard may be distributed into several spaces based on the type of
objects they store. This allows for better scalability and robustness in the Blackboard and also the
system as a whole.

The inherent communication model of Blackboard, through object exchanges, may introduce in-
efficiencies due to the latency of read, take and write operations. As the latency of operations
vary with the size and number of objects held on the Blackboard, a distributed caching mechanism
maybe employed to store objects of interest at every broker’s location. Objects in the cache maybe
stored based on the type of objects frequently accessed. However, this may need distributed cache
updating mechanism to maintain the state of an object across the system.

8.1.2 Rule Engine

Currently, all the domain-specific rules of resource allocation are encoded in Domain Handlers.
Though Domain Handlers are designed to work in a pluggable mechanism, adding a new domain or
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rules, and changing or removing existing rules may require code changes and hence re-deployment.
Thus, externalizing resource allocation rules may be helpful. A rule engine driven approach may
offer greater flexibility in terms of adding, changing and removing existing domains and rules.
This approach also enables users without any knowledge of the code or administering the system
to easily change the rules through a user-interface.

8.1.3 Performance Measurement

The performance of the computational infrastructure as a whole is yet to studied thoroughly. The
performance of Simfrastructure needs to be evaluation at both component-level and system-level.
The performance of each individual component such as the Blackboard, Data Manager, Digital
Library, Execution Brokers etc needs to be studied and understood in the context of the whole
system. Also, measuring the performance under varying workloads may give an insight into the
effectiveness of Resource Manager in handling different resources and jobs.

8.2 Conclusion

In this thesis, we have described a flexible middleware platform named Simfrastructure, which
automates the set-up, management and execution of large-scale modeling environments, based on
different models and runs on a range of computational resources including clouds, clusters and
grids. The computational infrastructure of Simfrastructure provides key services such as data and
knowledge management, resource management and allocation, and job execution for setting up
modeling environments with ease. This enables easy integration of modeling environments into
the computational infrastructure as front-end applications.

The space-based architecture of Simfrastructure enables easy development and maintenance of
components. With the resource management capabilities of Simfrastructure, the front-end appli-
cations may leverage the computational capabilities of diverse computational resources at no extra
cost. We are working on many improvements to the basic architecture to enhance its scalability,
efficiency and flexibility. In our experience, modeling environments are typically constrained by
the complexity of analysis rather than scalability or latency limitations imposed by the middleware
platform.
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