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(ABSTRACT)

A state feedback control system for flexible structures implemented using a
holographic sensor and optical processor is presented. Real-time holography provides
a mechanism for sensing the distributed shape of a broad class of one and
two-dimensional flexible structures in a form that can be processed using fixed optics.
The optical processing solves the spillover problem in the theory of the control of
flexible structures. The optical processing also simplifies the computation allowing the
state feedback control of a large number of vibrational without a digital computer. The
combination of holographic sensing and optical processing provides a potential solution

to both the spillover and computation problems in the control of flexible structures.
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1.0 Introduction

In this dissertation, we present a control system for flexible structures implemented
by a new sensing and processing method. The control system is shown in Figure 1,
where the dashed line encloses the area of new results. The control system utilizes a
form of real-time holography to sense the shape of the flexible structure as a function
of time and space. The optical output of the sensor is processed optically to generate
an electrical control signal. Hence, we are sensing and processing distributed functions
to calculate a scalar function. The control signal is followed by a point actuator on the
structure. The actuator damps the structural vibrations. We discuss the design and
implementation of the processor, and demonstrate how the control system addresses to
major problems in the control of flexible structures: The problems of spillover and
computation.

The problem of controlling vibrations in flexible structures has received a great deal
of attention in recent years. In theory, flexible structures are described by an infinite
number of elastic modes. Generally, it is not necessary to actively control all of the
modes to reduce the vibrations to a tolerable level [1]. This is because the higher modes

tend to be outside the bandwidth of excitation, and the higher modes require a large
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Figure 1. Flexible Structure with State Feedback Control System: The parts enclosed in the dashed
line constitute the novel concepts. In a conventional state feedback control system, the
output would be a vector rather than the distributed output function shown. The
compensator converts the filtered optical signal into an electrical control signal.
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amount of energy to excite. However, tens to hundreds of low frequency modes are
expected to exist on typical appendages attached to satellites planned for the near future
[2].

Two major problems have been identified when state feedback methods are applied
to the control of flexible structures [1]. First, if only a finite number of modes are
controlled, then the controller must not destabilize any of the remaining modes. The
destabilization of the remaining modes is known as the spillover problem. Secondly, the
control system design must account for the hardware used in the implementation. For
example, it may be impractical to expect a powerful computer on-board a space-borne
satellite to be dedicated to vibration suppression in the flexible appendages. We solve
both problems by considering the theory and the implementation simultaneously.

In the context of state feedback, Balas [3] defines the spillover problem by dividing
the compensator into a controller and an observer. If the finite dimensional state
estimates from the observer are contaminated by sensor outputs containing all of the
modes, then observation spillover exists. If the controller excites the remaining modes,
then control spillover exists. If both control and observation spillover exist, the
closed-loop control system is potentially unstable. Balas demonstrated that if either the
control spillover or observation spillover is eliminated, then there is no instability
problem.

Early methods for solving the spillover problem used the fact that each elastic mode
oscillates at a particular temporal frequency. By prefiltering the sensor measurements
in the temporal frequency domain, all but the frequencies under control may be rejected
[3]. The prefilter is implemented using a bank of bandpass filters tuned to pass the
controlled mode frequencies while rejecting all of the remaining modes. Hence, the time
domain prefilter attempts to solve the spillover problem by eliminating the observation

spillover. The method requires the controlled modes to be observable and controllable
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from a finite number of point sensors and actuators. The placement of the sensors and
actuators is otherwise arbitrary. This method does not address the problem of
implementing the control system using limited computation.

Other approaches use the orthogonality of the modes [4] in the space domain. For
instance, the independent modal-space control method in [1] uses space domain filters
to prefilter the measurements from a distributed sensor in the space domain. If a
distributed sensor or actuator is not available, the theory can be applied with some
success if a large number of point sensors and actuators are available. If point sensors
and actuators are used, the spillover can be eliminated in as many modes as sensor and
actuator pairs. Each mode is controlled independently, greatly reducing the
computational requirements. However, the spillover problem is completely solved only
in the case where the sensor or actuator is distributed, and the computational burden
increases linearly as the number of modes increases [1].

Efforts have been made to develop distributed sensing and actuating methods. For
example, distributed piezoelectric sensors and actuators were recently demonstrated in
a limited capacity [5]. The piezoelectric effect in PVDF film can be weighted as a
function of space. If the PVDF film is attached to a structure exhibiting
one-dimensional vibrations, then the sensor response weighting can be chosen to filter
all but the first and second modes in the sensing operation, and control only the first and
second modes in the actuation operation.

Another approach to distributed sensing is to use optical methods. This approach
has been demonstrated in the context of the shape control of a segmented reflector [6].
The segmented reflector is composed of several rigid segments. The segments tend to
move out of alignment over time, and must be realigned with submicron accuracy. An
optical interferometer is used to measure the topography of the reflector. The sensor is

processed by a video system which interprets the fringes to calculate the topology of the
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reflector dish at a large number of points. The points are fit to a set of mode shape
polynomials. The coefficients of the polynomial fit are compared to a set of coefficients
representing the desired shape, and the control signal is issued accordingly to actuators
attached to each segment. Since the structure is not continuously flexible, no spillover
problems exist, but computational requirements are significant.

Our approach is to use real-time holography [7] to sense the shape of a flexible
structure as a continuous optical function. The output of the sensor is in a form that
can be filtered using optical methods allowing us to extract the modal content of the
controlled modes exclusive of the remaining modes. Several implementations are given
which allow the control to either be computed entirely by optical means, or by mixing
temporal and spatial processing to various degrees. Thus, a powerful computer for
processing is not necessary. The optical sensing and processing offer a potential solution
to both the spillover and computation problems.

Chapter 2 describes several optical sensing methods leading up to the recommended
holographic method. Chapter 3 presents the control system design methods. Chapter
4 presents an example of the effects of model order truncation in the design of a control
system for a cantilevered beam. Chapter 5 presents some concepts for optically
processing the signal from the optical sensor to implement the design of the Chapter 3.

Chapter 6 presents a summary of the results and a detailed discussion of future work.
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2.0 Distributed Sensing

2.1 Introduction

In this section, we introduce the concept of distributed sensing using a heuristic
description of the sight process. Consider the flexible cantilevered beam shown in
Figure 2 with an actuator attached to the free end. When we look at the cantilevered
beam, we are performing a distributed sensing operation. The operation consists of
properly illuminating the structure so that our eyes can detect the reflected radiation,
and the focussing of the image of the structure onto our retinas. After the light is
focussed onto the retina, the light is sampled by our rods and cones. The sampled image
is processed in our minds, and we see the shape of the structure. The division of an
optical sensor and processor is not precise. For example, the retina represents the
boundary between the optical sensor and processor in our example. Everything before
the retina is clearly part of the sensor, and everything after the retina is processing. The
retina itself could either be considered part of the sensor or processor. In this

dissertation, we will consider the devices which convert optical images into electrical
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Figure 2. Cantilevered Beam with Tip-Actuator: The cantilevered beam is an example of a flexible
structure. The beam is fixed at x;, = 0. An actuator is attached to the free end where it can
act to damp vibrations.
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signals part of the processor by convention. Hence, in the example, we consider the
retina part of the processor.

Before we extricate ourselves from the processing, let us consider more closely how
we see the shape of a cantilevered beam by looking at it. If we were to look at the beam
with one eye, then we could see the deflection along the x,-axis most clearfy if we viewed
the structure from above along the x,-axis. This is because an eye samples the image
focussed on the retina to determine the coordinates of the image in a plane, but the eye
is not sensitive to the depth of the image. Therefore, if we viewed the cantilevered beam
from the y-axis, we could not determine the size of small deflections along the x,-axis ,
because the coordinates of the structure do not change from this perspective. However,
if an eye could sense depth as well as position, the view from the y-axis would have
several advantages. Imagine, for example, that the brightness of the image on the retina
changed linearly as a function of the distance from the structure to the retina. Then view
from along the y-axis would allow us to see deflections in both the x, and x, directions
simultaneously. But even more significantly, we could determine the shape without
following the image through space. The image would remain stationary in space, and
the brightness at a point would vary as a function of time only. This property could be
called spatial stationarity.

In optical signal processoring, spatial stationarity allows us to process the sensed
image using spatially fixed optics. In particular, we will show that spatial sampling
(performed by eyes and digital cameras) will not be required in our processor to compute
the control signal for the actuator.

We shall consider several optical sensing methods which build up to a real-time
holographic sensing method. In the Section 2.2 we present notation and establish some
preliminaries on optics. In Section 2.3 we consider a imaging sensor similar to the

photography or vision. In Section 2.4 we augment the imaging sensor with a reference
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light to create an interferometer highly sensitive depth and linear in the response. In
Section 2.5 we present a multifrequency interferometer tuned to beat at a frequency to
control the degree of sensitivity. In Section 2.6 we introduce holography as an alternate
spatial approach at desensitizing the interferometer. In Section 2.7 we combine the
multifrequency interferometric methods with holography. In Section 2.8 we show how
the holographic methods can be implemented in real-time. In Section 2.9 we present a
discrete-time version of the holographic sensor which may be useful in distributed

processing. Finally, in Section 2.10 we summarize the methods.

2.2 Preliminaries

In this section, we state the optical terminology used in the development of the
distributed sensor. We define an optical signal as a collimated beam of light propagating

through space, as shown in Figure 3. In general, an optical signal is given by
U(x,f) = E(x,f) e/“*, (2.2.1)

where E(x,?) is the amplitude of the signal, and w(x,!) is the spectrum of the signal. If
E(x,t) = E, then the amplitude is uniform. The instantaneous intensity function for an

optical signal is defined as

I(x,0) = Ux,1) U*(x,0), (2.2.2)
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Figure 3. Optical Signal:
in the y direction.
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where the asterix indicates the complex conjugate. All intensity function detectors
measure the average intensity funtion. The average intensity function (or intensity

function) at ¢, is given by

e fo+s L
I(x, t,) = {U@x,)) U (x,0) } = j U(x,1) U™ (x,0) dt, (2.2.3)
Io
where 7 is the time constant of the detector.

If the signal is monochromatic, then the spectrum consists of a single frequency.

That is,
w(x,t) = wyt + ¢(x,2), (2.2.49)

where w, is constant, and ¢(x,!) is the phase of the monochromatic signal. The phase
term characterizes the coherence of the signal [9] [10]. The signal is temporally coherent
if ¢(x,t,) implies ¢(x, t,). For example, if ¢(x,f) = ¢(x) , then the signal is temporally
coherent. Similarly, the signal is spatially coherent if ¢(x,, ) implies the phase at
o(x,, t). For example, ¢(x,t) = ¢(1) is spatially coherent. If the phase is constant, then
the signal is both spatially and temporally coherent.

Several of the sensing methods involve imaging (or focussing) an optical signal
onto an image plane. This is usually accomplished using a lens or a system of lenses.
We will consider a signal well focussed if each point over the cross section of the signal
is mapped in a one-to-one fashion onto an image plane. If the optical signal represents
the deflection of a flexible structure, the structure is well focussed if each point on the
structure is mapped one-to-one onto the image plane. A structure is diffusely refecting
if incident light is reflected in all directions with equal intensity. Hence, if a beam of light

is incident on a diffusely reflecting structure, then the intensity of the light reflected onto
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a detector will be independent of the angle of incidence. A structure is retroreflecting if
it reflects all incident light back in the direction of origin. Our goal in the following
sections is to sense the deflection as an intensity function over a spatial domain, as

shown in Figure 4.

2.3 The Imaging Method

The imaging method is the technique used in photography. An image of a diffusely
reflecting flexible structure is focussed on an image plane, as shown in Figure 5. The
light is reflected in all directions. Therefore, intensity averaged over any area will
decrease as an inverse square proportion [11]. The intensity function in the image plane

will be

I(x)oc

, (2.3.1)
Yolx)
where y,(x) is the distance from the undeflected or equilibrium position of the structure

to the image plane. If the beam is deflected away from equilibrium by y(x,r) , then the

intensity would change to yeild,

1
Wol®) + M0

I(x,1) o< (2.3.2)

Several problems become apparent if we wish to calculate the amount of deflection away
from equilibrium by measuring the intensity function /(x,f) . First, if the beam is in focus

in its equilibrium position o(x), then it will not be in focus (the mapping will not be
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Figure 4. Intensity Function: The figure on the left is a beam that is undergoing deflection from
equilibrium. The figure on the right is the corresponding intensity function. The constant
bias should be small for a high signal to noise ratio.
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Figure 5. Imaging System: The imaging system uses a lens to focus an image of the beam onto a
plane. If the beamn is uniformly lit, then the intensity in the image plane is inversely
proportional to the square of the distance from the beam to the image plane.
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one-to-one) if y(x,t) is large. Therefore, we must enforce the constraint y,(x)>y(x,f) over
the surface of the structure. Secondly, it is apparent from Equation (2.3.2) that if y,(x)
is much greater than y(x,f) , then the variations in the intensity due to y(x,r) will be
insignificant. Direct intensity methods such as the imaging method tend to be highly
sensitive to disturbances or variations in the source intensity or beam surface diffusity,
further exasurpating the situation.

If an acceptable compromise could be found in the above contradiction, the
method would still require square root detection and inversion to recover y(x,f). In the
next section, we modify the imaging system to greatly increase its sensitivity, and create

an intensity function which is in a form suitable for optical processing.

2.4 The Interference Method

The interference method uses a Michelson interferometer [11]. The Michelson
interferometer system is similar to the imaging system with two exceptions. First, the
illuminating source must be a laser. In the imaging system, the only requirement on the
source was uniform intensity. Secondly, the source must be divided to create two beams
for interference. The System for dividing and combining beams is shown in Figure 6.
These two changes resolve many of the problems in the simple imaging system. This
method is most effective on retroreflecting structures because light energy is not lost in
the illumination.

In the interferometric system, a laser is required because the source must be
monochromatic and spatially coherent. These changes allow us to refer to the light

source as a wavefront, because adjacent light rays are travelling in phase forming a
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parallel lines of maximum amplitude orthogonal to the direction of propagation. A good
laser can generate nearly monochromatic and spatially coherent wavefronts.

The source is both divided and joined by a beam splitter; a half silvered mirror
which splits a single beam into two equally intense beams. The beam propagating
toward the flexible structure is called the object beam. The beam propagating toward
the mirror is called the reference beam. Upon reflection, the reference and object beams
return to the beam splitter where they sum to form an image beam. In terms of complex

exponentials, the reference beam is

U(x,t) = E,e@™* ¢ (2.4.1)

and the object beam is

U,(x,f) = E,e/@* #x), (2.4.2)

The source phase is an arbitrary constant, and is set to zero. The object and reference
beams are assumed to have constant amplitudes over x. This assumption is valid if the
deflections of the structure are small compared to the distance from the structure to the
beam splitter, and the structure is retroreflecting. In the image plane, the object and
reference beams add to create the image beam. Using (2.4.1) and (2.4.2), we can express

the image as,

U(x,t) = Ulx,t) + Uy(x,1)
= Ee](w”' ¢.(x)) +E e./(wH- $o(x.0) (2 4 3)
’ 0 . 4.

— ejwl(Erej¢'(x)+ Eoej¢q(x't))

Using the definition of intensity (2.1.3), we may calculate the intensity in the image plane

[10],
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I(x,1) = {U(x,) U™ (x,0)}
= {efw'( Eel% 4 Eoef"’v“")) e -/wr( Ee*™ L E, —/¢,(x,r))}
(2.4.4)
= Er2 + E§ +E, Eo e J(@,(x)— ¢,(x)) + Er Eo ej(¢,(X)- ?,(x)

= Erz + Eg + ZE,EO COS(d)o(X,t) - d’r('x))’

where, again, the braces indicate time averaging. The first two terms in (2.4.4) are
constant bias intensities. The third term depends on the difference in path length of the
reference and object beams. Assume the mirror is orthogonal to the object beam, so the
reference phase ¢,(x) is a constant over x. Let y,(x,7) and y,(x) be the distance from the

object and reference, respectively, to the image plane. Then,

Any,(x,1)
Bolx) = —22
(2.4.5)
4ny,(x)
Olx)=—71—
or, if y(x,t) = y,(x,1) — y(x), then
4ry(x,2)
bolx) — B/(x) = —— |
(2.4.6)
= ¢(x,0)
where A is the wavelength of the source beam. If we pick ¢(x,f) to be —% when no
vibrations are present, then
In i1
cos(d(x,1)) = y,(x,1), for — < P(x,t) < — ik (2.4.7)

Hence, the intensity in (2.4.4) is proportional to the the deflection of the structure (plus
bias terms). This appears to solve the problems in the imaging system. There are no

conflicting requirements, the signal to bias levels are small, and the sensitivity is high.
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Unfortunately, for many applications, the sensitivity is in fact too high. The range for

a linear response in (2.4.7) implies that
A
Hxt) <=5 (2.4.8)

Typically, the wavelenth 4 is a fraction of a micron; much smaller than the maximum
amplitude of vibrations one might expect in flexible structures.

The interferometric method solves many of the problems encountered in the
imaging system at the expense of some complication. In particular, a laser source is
required, and a reference beam must be supplied for interference. The result is a system
that is sensitive to the shape of the structure regardless of the distance of the structure
from the sensor. Unfortunately, the system is often too sensitive for practical purposes.
One notable exception is in the shape control of segmented mirrors [6] where
interfermometric methods have been used with success. In the next section, a method

of desensitizing the interferometric method is discussed.

2.5 The Desensitized Interference Method

This method is similar to the interferometric method presented in the previous
section, except a multifrequency laser is used instead of the monochromatic source.
We will consider the special case of a two frequency laser as an example; generalization
to any number of frequencies, or even continuous frequency distributions, is
straightforward [12] [10]. The basic ideas is to take advantage of the beat frequency

phenomena. Two waves differing slightly in frequency will tend to interfere at a
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frequency proportional their difference. The beat wavelength corresponding to distance
between maxima of interference is much longer than the wavelengths of the light source
[11]. Since the range of the interferometer is on the order of the wavelength of the
source, an effective long wavelength source may be synthesized. The principle limitation
of the approach is the necessity for spatial envelope detection, as is discussed.

We may use the notation developed in the previous section to define the source

beam. Assume the source emits at frequencies w, and w,, creating two collinear beams,

U‘(x,l) = E]ejwl‘

(2.5.1)
Uy(x,t) = Eye’®?",
These beams create the reference beams,
U.(x,)=E, e](w|f+ @ (X))
‘ ' (2.5.2)
Urz(x vt) = Ef;ej(wzﬂ- ¢’2(x»9
and the object beams,
U,(x,)=E, ef(wlﬂ' @5, (x.0))
: : (2.5.3)
Uo:(xtl) = Eozej(w]‘+ ¢oz(x7r»'
The resulting image field is the sum of the object and reference beams,
U(x,t) = U, (x,0) + U, (x,0) + U, (x,0) + Uy, (x,1). (2.5.9)

The intensity of the image is given by,
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I(x,1) = {Ufae,) U} (x,1)}
=E}+ E:+ E) + E.
+ 2E, E, cos(¢,, (x,1) — ¢,,(x))
+ 2E,,E,, cos(,(x,1) = $1,(x)),

(2.5.5)

where the cross terms average to zero. (It is assumed that all cross terms oscillate at a
frequency much faster than the cut-off frequency in the time average of the intensity
detectors. The intensity detectors may have a cut-off frequencies as high as several kHz,
while the zero-mean oscillations of the cross terms are not likely to be less than a GHz.)
If the intensities of the object and reference beams are equal, then we may combine the

last two terms in (2.5.5) to yield

Ix0)=E +E,+E, + E,

(2.5.6)

(¢o,(xvt) - d’rl(x)) (¢02(va) - ¢),2(X))
2 * 2 )x

+4E, E, cos(

( (Bo(5t) = 61 () (Bo(x:0) — ,,(x)) )
cos 2 bt D) .

The first four terms of (2.5.6) are constant intensities, as in the first two terms of (2.4.4).
The last term in (2.4.4) is a function of the beam deflection. The last term of (2.5.6) is

also a function of the deflection, but (2.5.6) consists of a fast cosine,

@4x0+¢4&m__w4ﬂ+¢4ﬂ>> (2.5.7)

cfx,p) = cos( 3 3

and a slow cosine,
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() = cos( (05,(x) ; $,,(x)) N (¢,,(x) ; é,,(x)) ) 2.58)
If
()
and
Am=<l—l‘—%>", (2.5.10)

then by (2.4.8), the linear range of the deflection calculated using the slow cosine term

c,(x,0) is
'J'm
H(x,t) < = (2.5.11)
while the deflection calculated using the fast cosine must be limited to
A
yx,0) < -5 - (2.5.12)

Since 4,>4,, if the deflections of the structure are large, the fast cosine c{x) will
superimpose fringes on top of the intensity function of the slow cosine ¢(x).

The intensity function contains the product of a slow cosine and a fast cosine. The
slow cosine modulates the fast cosine “carrier” frequency in the fashion of an amplitude
modulation (AM) communication system. In a communications system, an envelope

detector is required to demodulate the signal from the carrier. While the desensitized
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interferometer may not be directly applicable, it is the key to utilizing the holographic

methods explained in the remainder of this chapter.

2.6 The Holographic Method

The holographic method is similar in many ways to the interferometric method in
Section 2.4, but there are two major differences. First, in holography the reference and
object beams intersect at an angle in the image plane, rather than being joined by the
beam splitter into a single beam. Second, the resulting interference pattern is not used
directly. Instead, the interference pattern must be recorded and read. Hence,
holography is a two step process. Holography on film is impractical for real-time
processing. Holographic recording media which can be written and read simultaneously
is the subject of Section 2.8. In this section, we assume the object is fixed for all time,
so any suitable recording medium may be assumed. Our purpose is to show how
holographic methods are used to address the sensing problem. The reader is refered to
the references [13] [14] for standard texts on the subject.

A system for holographic sensing is shown in Figure 7. The idea is to give the
interference pattern a constant spatial frequency about which deflections are modulated.
This is why the beams meet at an angle. Unfortunately, if the beams are angled, the
output is not a single beam, so spatial frequency methods cannot be used directly in
demodulation. We will show that holographic methods offer some unexpected benefits.
As in the interferometric system, the source is assumed to be monochromatic and
spatially coherent. Using the development from Section 2.4, the object beam is given

by
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Figure 7. Holographic Sensing System: This system is similar to the interferometric system, but the
object and reference beams intersect at the angle §. The hologram is read by a beam
counter propagating to the reference beam.
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U,(x,0) = Ee/@ #) (2.6.1)

and the reference beam is given by

U(x,f) = Ee/@™* ), (2.6.2)

We assume the object beam wavefront is parallel to the film, and the reference beam is

incident on the film at an angle 6 such that

(x)=ax, wherex= ;‘“Tf , (2.6.3)

and

Po(x) = ﬁy(x), (2.6.4)

where y(x) =0 in equilibrium. From (2.4.4), the intensity of the interference pattern

formed in the plane of intersection between the object and reference beams is given by
I(x) = E? + E2 + 2E,E, cos(¢,(x) — ¢,(x)). (2.6.5)

From our definition of ¢,(x) in (2.6.3), we can see that if the structure is undeflected,
(¢,(x) = 0), then the spatial frequency of the fringes in /(x) will be centered at « .

The transmission function for a hologram is a function used to describe the output
when the hologram is read. After the film on which the hologram is recorded is

developed, the transmittance function of the resulting transparency is given by

1x) = ty + BULx)U; (x) + Ufx) Uy (x) + U (£)U,(x) + Ux) U, (x))

. . (2.6.6)
= 1y + B(E} + E? + E,E ¢/ #) | [ p o J@ 0= 8.0
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where f is related to the properties of the film and exposure, and ¢, is a constant
background attenuating factor. If the transparency is illuminated by a beam counter

propogating to the reference beam, the output beam is given by

E,e Jé,x) !j( x) =1, Ee J#.x) + B( E02 Ee J¢.(x) + Er3 e./¢,(X))
+ ﬁE,e ‘M’(X)E,e /¢r(x)Eoe J,(x) (2.6.7)

+ BE/HOE (OO o b0

The phase terms indicate the direction of propagation. The terms in the first row of

(2.6.7)

U,(x) = (1, + B(E2 + E}))Ee/*™ (2.6.8)

propagate in the direction of the reference beam, ¢,(x), and are called the zero order of

the hologram output. The terms in the second row
U,(x) = BE2E, e/ (2.6.9)

propagate in direction of the object beam with the phase of the object, and are called the

first order. The last term

U_,(x) = BE}E,@%X)= 2D (2.6.10)

propagates at twice the angle of the reference beam with the conjugate phase of the
object, and are called the -1st order. Hence, each row of (2.6.7) is spatially separated,
and may be detected seperately. In particular, we may recognize that the first order
U,(x) is proportional to the object beam in amplitude and phase. The carrier frequency
a has been removed from the interference pattern. The recovery of the amplitude and

phase differentiates holography from photography. We have assumed that the
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amplitude is constant over the surface of the structure, so all information about the
orientation of the structure is contained in the phase.

Unfortunately, this output signal contains the deflection information in the phase.
Therefore, the phase associated with deflections larger than the wavelength of the light
are ambiguous. However, the holographic method does successfully demodulate the
spatial frequency offset induced by angling the intersection of the beams. In the next
section we show that if the desensitizing method for the interferometer is used in

holography, then the output beam is automatically demodulated.

2.7 Multifrequency Holography

In this section, the results from Sections 2.5 and 2.6 are combined to solve their
respective modulation and sensitivity problems [13] [15] [16]. The monochromatric laser
source in Section 2.6 is replaced by the two frequency source from Section 2.5, and the
resulting hologram is read by a light source with only one of the frequencies.

If the reference is given by (2.5.2) and the object beam is given by (2.5.3), then the

intensity at the intersection of the beams is given by (2.5.5). That is,
I,={U, Up + U, U, + U, Uy + U, Up + U, Uy + Uy U, + U, Up, + Up U, 1.(2.7.1)

If the hologram is read by the reference beams U, , the output may be calculated as

U, 4x) = .U, + B(E, U, + E;U, + E:U, + EZU,)
L L
+ B, U U, + U, Un U,) (27.2)
L] *
+ B(U, U, Uy + U, U, Uy,
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The terms in the first row of (2.7.2) are the zero order, and propagate in the direction
of the reference beams. The terms in the second row are the first order, and travel in the
direction of the object beam. The last row is the -1st order, and is directed at an angle

of twice the reference minus the object angle. We analyze the first order,

E(x)= E’?x Eol el 4 Er, Erl Eoze &)X} 1(X)= o )(xD) (2.7.3)

If E =E, =E, =E, =E, then the intensity of the first order is given by,

Ii(x) = {ElEl*}
( ( (d’ol(x) - ¢oz(x)) (¢rl(x) - d’rz(x)) ))
=2E%| 1 + cos +

2 2

( ( (¢o,(x) - d’oz(x)) (¢rl(x) - d’rz(x)) ))
=1, 1+ cos + .

(2.7.4)

2 2

Hence, the output is similar to the output of the multifrequency interferometer (2.5.6),
except the fast “carrier” frequency is not present. The output intensity cosine will vary
at the beat frequency (2.5.10), and will be sensitive to deflections the size of the beat
wavelength.

Multifrequency holography allows us to effectively detect the envelope of the fringe
pattern generated by the multifrequency interferometer. The cost is in the holographic
processing. Holography on film is impractical because the sequential nature of the
process excludes real-time processing. In the next section we discuss a real-time method

of holography that removes the film from the sensing process.
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2.8 Real-Time Holography

Real-time holography is often called four wave mixing in literature, because all four
waves are present simultaneously: read, write (or reference), object and output. It is also
refered to more generally as nonlinear optical mixing; the nonlinearity being in the
coupling between the waves. All four waves may be present simultaneously because the
hologram is not formed in a photographic emulsion. Instead, the waves are mixed in
photorefractive crystals.

Many materials exhibit some change in their index of refraction when exposed to
high intensity levels. In fact, the nonlinear phenomena was first considered “optical
damage” due to high power lasers [17]. A smaller class of materials such as BSO and
BaTiO, are now known as photorefractive materials because they exhibit nonlinear
responses at relatively low intensity levels. Free electrons doped into the crystals tend
to drift away from areas in the crystal exposed to optical radiation. This exerts tensions
inside the crystal which locally change the index of refraction. Hence, if an interference
grating is exposed on the crystal, it will cause a corresponding refractive grating or phase
grating to form. The analogy between the conventional holography discussed in this
dissertation and real-time holography was first clearly defined in [18].

In [18], the equivalence is established in detail by solving the nonlinear coupled
equations of four wave mixing. For our purposes it is sufficient to note that the
principles of holography on film and holography in crystals are exactly analogous.
However, we have ignored up to this point two practical considerations in our discussion
of holography which cannot be neglected in real-time holography. These are the

thickness of the recording medium and the mode of response.
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If the medium in which the hologram is formed is thicker than the spacing between
the fringes, then the resulting hologram is called a volume hologram. A detailed analysis
of the effects of thickness may be found in [13]. A qualitative review of the effects is
summarized here. If the recording medium is thick, then only one of the output orders
will appear in the reading process, and the order that appears will depend on the angle
of the read beam. Recall from Section 2.6 that the reading operation generated three
terms separated in space (3 orders). In a volume hologram, a Bragg diffraction condition
[14] exists which states that the order reconstructed depends on the direction of the read
beam. In particular, a read beam counter propagating to the original write beam
(reference beam) will only generate the phase conjugate beam. The original reference
beam and the original object beams are not reconstructed. We will see that this is in fact
the beam which we will want to reconsturct. The read beam must be precisely oriented,
but the extraneous beams are eliminated. In addition, we will show that a problem
caused by the mode of response is solved by the thickness of the medium.

Photographic film responds by altering the absorption characteristics of the
resulting transparency, but the mode of response of the crystal is an index of refraction
change. In the planar case, the consequence of the non-sinusoidal nature of the phase
changes is the creation of orders beyond the three discussed above. This could make the
reconstruction process difficult. However, if the phase hologram is formed in a thick
medium, only one order will be reconstructed for a particular read angle. Hence, phase
and absorption holograms are functionally identical in thick media.

A system for realizing a real-time holographic sensor is shown in Figure 8. The
hologram is formed as in Section 2.7. The object and reference beams each contain two
closely spaced optical frequencies. Simultaneously, a read beam consisting of only one
of the frequencies is counter propagating to the reference beam. This creates the output

beam which is removed using a beam splitter, as shown in Figure 8. From the analysis
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Out put Beam Read Beam

Object
Ream

Phoforef ractive
ReFercncc Cr75+a\
Beam

Figure 8. Real-Time Holographic Sensor: The multifrequency object and reference beams form an
interference grating in the material. Simultaneously, the single frequency read beam forms
the output beam counter propagating to the original object beam. The output is formed as
a separate beamn using a beam splitter.
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in Section 2.7, the intensity of the output beam is proportional to the deflection of the

beam. Therefore, we have found a suitable distributed sensor.

2.9 Discrete-Time Holography

Hardware for integrating a spatially distributed signal in time does not presently
exist. This limits the processing of the continuous time holographic sensor to the space
domain. However, a discrete-time holographic sensor is under development which could
function as a delay or temporary storage device in a discrete-time processor. In such a
system, temporary storage replaces distributed integration in time. The concept for
discrete-time holography proposed in [8] uses two photorefractive crystals, as shown in
Figure 9. The hologram is written into one of the crystals whose output becomes the
the object beam for the second crystal. The output of the second crystal is then fed back
to the first, completing the oscillator loop. Once the oscillation is established, the
original object beam may be removed, and the output held constant for reading. If the
oscillation is established quickly, the unit functions as a distributed delay.

The practical application of this technology is limited to slow moving structures
due to the relativély long response time of presently available crystals. Regardless of the
present technical obstacles, we may consider the concept in our designs and

implementations to analyze the advantages and limitations in discrete-time processing.
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Write beam 1 ————> photorefractive [<—— Read beam 1
Objectbeam1—_—>{ crystal
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beam2 — —
Object 2 > Photorefractive
Write beam 2 > crystal <—— Read beam 2

Figure 9. Discrete-Time Holographic Sensor: Two crystals form an oscillator to temporarily store
a distributed image.
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2.10 Summary

The purpose of this chapter has been to present and justify the real-time
multifrequency holographic sensing method for distributed sensing. We began by
discussing the imaging system used in photography. Then we augmented the imaging
system with a reference signal to form an interferometer to improve the sensitivity and
put the output into the desired form. Next we considered a desensitized interferometer
system using a multifrequency laser. The multifrequency interferometer allows us to
control (modulate) the amplitude of the fringes in the interferometer to superimpose
large deflections on top of the fringe pattern. Holography was introduced and shown
to be a successful means of demodulating the desensitized interferometer. Real-time
holography in photorefractive crystals was presented to remove the unrealistic film
development stage in sequential holography. Finally, we considered discrete-time
holographic sensing because it offers the possibility of combining temporal and spatial
processing into a single processor.

To summarize, in the imaging method, y,(x) is the equilibrium distance from the
point x on the structure to the corresponding image point in the image plane, y{(x,?) is
the distance of the point x on the structure at time ¢ from its equilibrium position, and

the sensor output is the intensity function

I
I(x,0) = 2 = (2.10.1)
Wo(x) + x,1))
where [, is a proportionality constant. In the interferometric sensing method,
Ixg) =1+ p(x0), pxd) <2, (2.10.2)
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where I, is another constant. In the desensitized interferometric method,

4ny(x,t)
A

m

I(x,0) = I, + y(x,t) cos( ), (2.10.3)

A
for y(x,t) < T’" In the holographic sensing method, the output from the first order is

not an intensity function but a complex amplitude given by

i)
E(x)=E,d 22, (2.10.4)

where E, is a constant. In the multifrequency holographic method, the output

corresponding to the first order is the intensity function

I(x) =L +y(x), yx) < 'IT’" (2.10.5)

where 4, is the beat wavelength. In the real-time holographic sensor, the output
intensity function is a time-varying version of the multifrequency holographic sensor

given in (2.7.5). That is,

I8 = I, + y(x,0), y(x1) < AT”' (2.10.6)

The discrete-time holographic sensor has the same output as the real time holographic

sensor, but the output is held fixed for a period T between samples. That is,
Am
I(x,k) = I, + y(x,k), y(x,k) < = (2.10.7)

where k=nTn=1,2,....
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3.0 Modelling and Design

3.1 Introduction

In the previous chapter, sensing technology was presented for measuring the
distributed deflection of a flexible structure. Our goal is to apply the distributed sensing
technology to control the structural vibrations. In this chapter we present models and
control design methods for a uniform cantilevered beam, and extend the results to simply

supported plates.

3.2 Modelling

While many models exist for flexible structures, we will consider an analytical
method derived from the partial differential equation. The fixed-free cantilevered beam

is used as an example. We begin by stating the partial differential equation. Next, we
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solve the partial differential equation as an infinite series. The infinite series solution is
truncated and put into state space form. We close the section with an extension to the
modelling of plate structures.

Let the deflection of the cantilevered beam be given by y(x,t) , a function of both
time and space. Furthermore, assume the beam is undamped, has uniform unit mass

per unit length, and length L. Then the partial differential equation is given by [4],

Py | Fyxn)
PR = b(x) u(?), (3.2.1)

subject to the boundary conditions,

2 3
L
sy = 20D _ L) | FuL
ox dx ox

0, (3.2.2)

where b(x) is the control influence function, and u(r) is the control signal.
The partial differential equation (3.2.1) may be solved directly by the separation
of variables method. We begin by assuming the solution to the homogeneous equation,

5
ax*

j—; W t) + y(x,)=0 (3.2.3)

is in the form,

Hxd) = ) pR)EAD), (3.2.4)

=1

where p(x) are scaled such that
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L
|| Plotpferts =, (.25

where

1 if i=j
0 if i#j.

Thus, the space domain functions are orthonormal. We shall call any set of functions
satisfying (3.2.4) and (3.2.5) mode shapes. The corresponding time domain components
£(¢) will be called modal amplitudes.

For each i,
(p,(x)g,(z)) + (p(x)éz(t)) = (3.2.7)

or

2 (s‘z( )= (p;( )- (3:2.8)

é;(t) ot p.{x) a 4

Since x and ¢ are independent variables, (3.2.8) is equal to a constant 4. Therefore,

= p (04, (3.2.9)

and
dz
7 E(n) == ¢E(0)A,. (3.2.10)
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The ordinary differential equation (3.2.9) with the boundary equations (3.2.2) may be

solved to find 4, implicitly, and p,(x) explicitly as:

cos l,”‘L cosh l,”"L =-1, (3.2.11)
p,(x)"’= sin l,mx — sinh l,mx + af cos l,‘"x — cosh A,mx), (3.2.12)

where
a cos 4{"*L + cosh A}1°L (3.2.13)

 sinA*L—sinh ML

The mode shapes, p(x), are orthonormal. Using the orthonormality property (3.2.5),

we have

L L
J| ptoreiasax = [ piconptores = 3214

where the primes indicate partial differentiation with respect to x . Also, since

' (x) = 4}"p0), (3.2.15)

we have

L

L

I J Pix)4 pfx)dx = 4", (3.2.16)

0
0

The ith element of (3.2.4) is given by
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Yix,1) = px)E(2). (3.2.17)
Plugging (3.2.17) into the partial differential equation (3.2.1) yeilds
E(pdx) + &(p""' (%) = b(x) u(0), (3.2.18)

where dots indicate differentiation with respect to time. Multiplying (3.2.18) by p/(x),

integrating in space, and using (3.2.14) and (3.2.eqn) yeilds

L L L
J' PAX)E(p{x)dx + J-O pfx)p"" (x)E(1)dx = L pAx)b(x) u(t)dx (3.2.19)
0

or

E{r) + AE40) = by u(y) (3.2.20)
where
by = p{x)6(L)b(x) (3.2.21)

for a point force actuator on the tip. Equation (3.2.20) describes the undamped
dynamics of each mode.

The ordinary differential equations (3.2.20) may be solved (using appropriate initial
conditions) by standard methods. Combining the solutions of (3.2.20) with the mode

shapes (3.2.12) constitutes a solution of (3.2.1) as

Hx) =) ylet) = D pR)EL). (3.2.22)
i=1 i=1
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If (3.2.22) is examined on physical grounds, it becomes apparent that only a finite
number of terms in the series are required to approximate the solution y(x,f) beyond any

level of uncertainty. To facilitate the design, we truncate the series to N € N terms,

N
J(x,0) = E px)E[1), (3.2.23)
[=1

where N may be taken arbitrarily large. For the remainder of this dissertation, we
assume that the truth model contains exactly N modes, and N is taken large enough so
that for all practical purposes the unmodelled terms are zero. For example, N may be
taken such that all higher modes would exceed the speed of light if the modal amplitude
were anything but zero. Therefore, to simplify notation, the bar in (3.2.23) is dropped.

In reality, all structures contain some natural damping. If we assume all of the
modes in our truth model have the damping ratio {, then (3.2.20) can be modified to

include the damping dynamics as
Edo) + 200 P60 + A &) = bu(r), fori=1.2,...N. (3.2.29)

Our model may be completed by converting to state space form. The state space
form is simply a transformation from the second order form in (3.2.24) into a first order
form. We begin by defining the states in terms of vectors corresponding to the
distributed position and velocity. Let the position vector be the modal amplitudes

desribing the shape of the beam,
E()=[&,(0) &,(0) ... CN(t)]T. (3.2.29)
The velocity vector is given by the vector of time derivative of the modal amplitudes,
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) =[&,(0) &x1) ... Ex(0]". (3.2.26)

If we combine (3.2. 25) and (3.2.26) into a single vector,

£()
n={. | (3.2.27)
¢()
then (3.2.24) may be written as,
n(t) = A n(t) + B u(s), (3.2.28)
where
Oy Iy
A= " (3.2.29)
— Ay 2AY
Ay =diag(d;, 4y ..., 4y) (3.2.30)
AN? =diag(Al?, )3, .., AV (3.2.31)

In the state space form, the sensor measurement of the distributed position is given by

Hx,0) = C(x) n() (3.2.32)
where
C(x)=[p(x) 0], (3.2.33)
and
p(x) = [py(x) pa(x) ... ppx)]. (3.2.39)
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We will find it useful to divide the N modes of the truth model into N, design modes

and N, remaining modes, N, + N, = N. We begin by defining the (N, x 1) vector Z(¢)

and the (N, x 1) vector Z,(¢) such that

Similarly,

Then the state vector for the truth system is

El(lﬂ
EI(')
’l(‘) = ’
E,(0)

| 5200 |

where the state vector of the design subsystem is given by

(9
”1(’) = - H
i

and the state vector of the remaining subsystem is given by

Using (3.2.28) with N = N,, we may define 4, and B, such that

Chapter 3
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m() = Ay (0) + Byu(o). (3.2.40)

If the vector of mode shapes (3.2.34) is divided into the (1 x &,) vector P,(x) and the

(1 x N,) vector P,(x) such that

p(x)=L[P(x) Py(x)], (3.2.41)

then the output of the design system is given by

n(x0) = Cy(x) my (1) (3.2.42)

where

Gx)=[P(x) 0] (3.2.43)

The remaining system may be defined similarly as

12() = Ayn,y(2) + Byu(d)

Ya(x,8) = Cy(x)n,(0),

(3.2.44)

where A4, and B, are calculated using (3.2.28) with only the remaining modes, and

Cy(x) =[Py(x) 01]. (3.2.45)

The continuous time state equations may be approximated in discrete time by
assuming the input is constant over the sample interval. Using this assumption, the

discrete time design model is given by

q(k + 1) = 4 q(k) + B u(k), (3.2.46)

where
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B=[4-D04'B,

T is the sample period, and % is an integer [27]. We will not use the remaining modes in
the discrete-time case, so there is no need to establish additional notation. Note that the
system matrix 4 and the input vector B use the same notation as the truth model in the
continuous case; no confusion should result.

The previous discussion on the modelling of a cantilevered beam may be extended
to two dimensional flexible structures such as normalized uniform thin rectangular

plates. We begin by replacing the spatial variable x by the vector in R?. Let

X = [x' ] (3.2.47)
X2

Next, the spatial partial derivative in (3.2.1) must be replaced with the Laplacian

operator [4],

2 2
=L, 2 (3.2.48)
axl ax:

and

4 4 4
v 0 (3.2.49)
0x, Ox{0xy  0x,

Hence, the partial differential equation for two-dimensional structures is given by
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aL:’ X, + Vip(x,8) = B(x)u(s). (3.2.50)

We can solve (3.2.50) using the same method recommended for the one-dimensional
problem. We first solve the undamped homogeneous system to solve for the mode
shapes to form a spatial basis. Then we solve for the dynamics using the orthogonality
property of the basis functions.

The undamped homogeneous two-dimensional partial differential equation is
5
e y(x,0) + Vy(x,1) = 0. (3.2.51)
t

We make the separation of variables assumption

Hx,0) = Zp,(x)él(:), (3.2.52)
=1

where modes shapes p(x) and modal amplitudes £(¢) are different from the functions in

the one-dimensional case. For each i, substitute (3.2.52) into (3.2.51) to yeild

2
p,(x)gz—c,(m E()(Vpx)) =0, (3.2.53)
or,
0 -
T o 0T o V'pix) (3239

This implies
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1 3

— 2 0= 4 (3.2.55)
and,
p{(—‘x) Vo (x) = 4, (3.2.56)

Equations (3.2.55) and (3.2.56) are ordinary differential equations which may be solved

given appropriate boundary conditions. The general solution of (3.2.56) is [4]

p(xy, x3) = W, sin(ax,) sin(yx,) + W, sin(ax) cos(yx,)

+ W; cos(ax,) sin(yx,) + W, cos(ax,) cos(yx,)

(3.2.57)
+ W5 sinh(a,x,) sinh(y,x,) + W sinh(a,;x,) cosh(y,x;)
+ W, cosh(a,x;) sinh(y,x;) + Wy cosh(x,x;) cosh(y,x,),
where
ot +yi=al+y =4 (3.2.58)

We can solve (3.2.57) for p(x,, x,) and 4 once the boundary conditions are specified. For

example, if the plate is simply supported, then the boundary conditions are given by

62 32
p(os xzit) = p(xl ’Ovl) = __2P(Lh x2t t) = _21’(-"1, IQ’ t) = 0 (3’259)
ox 0x;

where L, is the length of the plate in the x, direction, and L, is the length of the plate in
the x, direction. The boundary conditions allow us to simplify (3.2.57) to two frequency

equations,

sin(aL,) =0 and sin(yL,) =0, (3.2.60)
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implying that the natural frequencies for the simply supported plate are given by

WOmp = nz[(_zt_l)z + (f)z] mn=12,...

The eigenvalues may be ordered (arbitrarily) as

2 2 2 2
l‘ = W11, lz = Wy, 13 = w7, 114 = W33y eeee

Then the mode shapes are given by

mnrx; ., NnX;

sin
L, 7L,

Wonn(X1, X2) = Ay SIN mn=12,...

Before defining 4,.,, order the mode shapes as

p1(x) = wy (X), pa(x) =w3(X), p3(X) =wy(X), pa(X) = wya(X), ...

Then A4,, are selected such that

Ly 1 ifi=j
_[ J Pl(xhxz)l’/(xl,xz)dxldx2= .
0 Yo 0 ifisj.

(3.2.61)

(3.2.62)

(3.2.63)

(3.2.64)

(3.2.65)

Hence, the mode shapes are orthonormal. We proceed to solve the partial differential

equation as in the one dimensional case. Using (3.2.56) and orthonormality property

(3.2.65), we have

Lh Ll
[71 ct c0¥pirs xndis = [ [ "oz, xpddey = 4y (3.2.66)
0 0 Y0

0
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Also, since
V2pdx) = ;" ’p(x), (3.2.67)
we have

L “ 2 L “ 1/2
"] 2l ¥t s = [ | pton, st s
0 0

(3.2.68)
=%
Plugging the element y(x,?) = p(x)&(¢) into (3.2.50) yeilds
EA0PX) + &V px) = b(x) (o). (3.2.69)

Multiplying by p/(x), integrating, and using (3.2.66) and (3.2.68), we conclude that

EAD) + LE(r) = by u(r) (3.2.70)
where

b= p{x)6(L[2)b(x) (3.2.71)

for a point force actuator in the center of the plate. We may include a damping factor

{ as in the one dimensional case such that
EQD) + 201 2EL0) + A& 1) = by u(e). (3.2.72)

We truncate the infinite sequence (3.2.72) to a finite sequence which can be put in state
space form, as in the one-dimensional case, where the eigenvalues and mode shapes for
the plate replace those for the beam. Hence, except for the change in the spatial domain

to two-dimensional mode shapes, the model for the dynamics for plates is similar to the
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model found in the previous sections for beams. The modes may be divided into design
and remaining modes exactly the same manner as the development for the cantilevered
beam. Similarly, the design may be converted to discrete time.

We have derived a finite dimensional state space model approximating the solution
of the partial differential equation governing the dynamics of a flexible beam. We
extended those results to the partial differential equation governing a flexible plate. We
found the models for the plate and beam to be similar in that the shape of the flexible
structure in each case can be defined by the weighted sum of mode shapes. The spatial

dimensions of the mode shapes correspond to the spatial dimensions of the structure.

3.3 Control System Design

In this section, we present design methods for control systems based on both the
continuous and discrete-time sensors. The idea in each case is to control the modes that
lie well within response time of the sensor (and actuator) and our knowledge of the
system. The designs developed here will form the architectures implemented in the
remaining chapters.

The first part presents a state space plus observer, or deterministic Linear
Quadratic Guassian, design based on the continuous time sensor. To maintain
compatibility with the implementation hardware, the continuous time control system
operates on the spatially distributed measurements in the space domain only. In the
second part we perform a spillover analysis. In the third part we simplify the estimator
and consider a functional estimator design. The fourth part uses the results for the

continuous time sensor to derive a similar control system for the discrete time sensor,
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but delay operation is used to operate on the distributed measurements in both time and
space. The fifth part extends the continuous and discrete-time designs for the control

of a plate structure. The designs are summarized in the last part.

3.3.1 The Continuous Time Control System

In this part we use the model developed in the previous section and the continuous
time distributed sensor developed in Chapter 2 to design a control system to damp
vibrations in a beam. The design method is similar to the usual deterministic Linear
Quadratic Gaussian approach. The design will be based on the design model (3.2.40).
The only difficulty involved in applying the Linear Quadratic Quassian design method
is in the accomodation of the distributed measurement (3.2.42). The method must be
generalized to include the continuum of outputs corresponding to each point along the
length of the beam.

We choose the control to be given by a linear combination of the states,
u(t) = Fny(2). (3.3.1)

In the Linear Quadratic Gaussian design method, a control vector F is found to

minimize the cost functional

J=J (00 () + uT (W Ru(r) (3.3.2)
0
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where Q, >0 is the weight placed on the states, and R, > 0 is the weight places on the

control. It has been shown [19] that (3.3.2) is minimized by
F=R'Bs, (3.3.3)
where S is found by solving the Riccoti equation
0=SA4,+ A’S—SBR.'BIS + Q.. | (3.3.9)

Hence, the control vector F is designed using doublet (A4,, B,) and the design parameter
doublet (R,, Q.).
Unfortunately, our sensor does not measure #,(z) directly. The measurement in the

design system is given by

M
n(xD) =D pRED) = Py(x) E,). (3.3.5)
{m]

Therefore, an observer (or estimator) must be designed to extract =,(¢) from (3.3.5), and
to estimate the derivatives =Z,(¢) to fully estimate n,(r) = 7,(f). The state feedback control

(3.3.1) can be rewritten as,

u(t) = F (1), (3.3.6)
where
d L
Iﬁl(!) = A, 1,(0) + Byu(r) + J- K(x) (#x,0) = Cy(x) 71,(1)) dx. (3.3.7)
0
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In the Linear Quadratic Guassian method the observer (3.3.7) is designed by
duality using the doublet (4,, C,(x)) , where the components of the remaining modes are
ignored. Unlike the controller design, the observer design is based on the vector function
Ci(x). Standard design methods are accomodated by discretizing each element of C(x)
in space and interpolating between the elements in the rows of the resulting observer
matrix to generate an observer vector function. Hence, finite dimensional metﬁods may
be used to design an infinite dimensional observer.

The design of the observer begins by spatially sampling the measurement function
yi(x,t) at M uniformly spaced points over the length of the beam. This is analogous to

assuming M point sensors are located at the points

x,=L( Mi—l ) i=0,1,.., M—1. (3.3.8)

Let the sampled measurement be
y(@)=Cimy(1) (3.3.9)

where C, is the (M x 2N,) matrix equal to (3.2.33) evaluated at the points in (3.3.8).
The spatially sampled version of the observer (3.3.7) is of the form

4

20 = 4y (0 + B + K (50 - C (), (3.3.10)

where the estimator matrix K must be determined. The estimator matrix can be found
to minimize noises, but we shall use a deterministic approach. In the deterministic
Linear Quadratic Gaussian estimator, the pair (4,, B,) and (R, Q,) is replaced by
(A7, C7) and (R,, Q,) in the Riccati equation (3.3.4). Then by duality [19], the estimator

matrix is given by
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K=SC]R;! (3.3.11)
where S is the solution of a Riccati equation. We will take

R,=r Ly, where re R>0. (3.3.12)
In this way, K may be expressed in the form
K = 5C7, where §=(+)S. (3.3.13)

After solving the system (3.3.13) for S, K(x) may be calculated as
K(x)=S5Cl (). (3.3.14)

Hence, finite dimensional techniques may be used to generate an infinite dimensional
observer. This completes the design. In the next part, we show that the design solves

the spillover problem.

3.3.2 Spillover Analysis

The designs presented in Section 3.3.1 assumed that a model of the beam consists
of exactly N,. In this part we analyze the effects of the truth model on the design model.
The interaction between the design model and truth model is often called spillover [3].
Methods have been devised to evaluate the system order required for convergence to an
infinite dimensional Linear Quadratic Gaussian design [20] [21] [22], but often practical
consideration such as computational limitations, sensor bandwidth, and actuator

bandwidth dictate the number of order of the design model. Therefore, the design
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method must account for the additional states in the truth model. We will show that our
distributed sensor and processing scheme theoretically allows us to use the orthogonality
of the mode shapes to truncate the design to any even order without any interaction with
the remaining states in the truth model.

To analyze the interaction between design model and truth model, we must
formulate the closed-loop system in state space form. This will allow us to evaluate the
effectiveness of the pole placement in the presence of the remaining dynamics [23]. The
closed-loop system can be formulated by combining the systems (3.3.40) and (3.3.44)

with the control law (3.3.6) and the observer (3.3.7). We begin by rewriting the observer.

Let
d L
—r M) = A (0) + Byu(r) + _[ K(x) (xyt) = (), (1))dbx
0
= A7) + Byu(s)
t (1) )
+ | K@) [Ci(x) Cyx)] -G, (x)nl(l)>dx
b n,(?) (3.3.15)
= Al;\ll(‘) + Byu(r)
L L L .
+ J. K(x)Cy(x)dx n,(¢) + J K(x)Cy(x)dx ny(1) — J K(x)C(x)dx n,(¢)
0 0 0
= (4, = K)) #1(0) + Byu() + Kyny (1) + Komy (1),
where,

~ L
K = _[0 K(x)C\(x)dx, (3.3.16)
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and

~ L
K= _L K(x)Cy(x)dx. (3.3.17)

Then the closed-loop system is given by

(1,00 4 BF 0 ||
% m | = E‘ A, — K+ B\F ;(z m(@) |- (3.3.18)
”2(’) 0 BQF A2 7]2([)

The term K; causes the so-called observation spillover [3] because it allows the remaining
states in the truth model to contaminate the estimate of the design states. However, for

our dirtributed sensor
Cix)=L[CP, 0] and Gyx)=[P, 01, (3.3.19)

so if we use (3.3.14) and the mode orthogonality property,

L
K, = J 5CT(x)Cy(x)dx = 0. (3.3.20)
0

Hence, the obsevation spillover is zero. Therefore, the controller and observer poles for
the design system may be placed independently, and the eigenvalues of the remaining

system will be unaffected by the feedback. This decoupling of the design model and
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remaining dynamics in the truth model is the principle performance advantage in the
distributed sensor control system.

In point sensing systems,

Cyx) = [Py(x)é(x —x,) 01, (3.3.21)

where d(x) is the Dirac delta function. Therefore,

~ L
K, = L K(x)Cyp(x)dx
= K(x,)Pa(x,),

(3.3.22)

indicating that I?, is nonzero for all x, where P, is nonzero. In other words, observation
spillover is always present for point sensors. Hence, point sensing systems must evaluate
the effects of the truth model on the control design explicitly. Since this is not always
possible, as when the truth model is unknown, point sensor systems usually perform

conservatively.

3.3.3 Simplification of the Continuous-Time Design

The estimator design may be separated further into spatial and temporal
components while maintaining the modal filtering property, and the seperate
components may be condensed. First, we may divide equation (3.3.7) into temporal and

spatial parts,

L
2010 = A0+ Bt + | K () = G (O
(3.3.23)
~ A L
= (A= R0+ Byt + | K et
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The integral in (3.3.23) is the spatial part. This separation allows us to directly
implement the design, and most of the computation is performed by the temporal
procesor. However, the output of the spatial processor is 2N, signals instead of the
desired single signal; requiring 2N, optical processors in parallel to process the
measurement [24]. We proceed by first condensing the spatial component.

We condense the spatial processor by replacing the vector function K(x) with a

single valued function g(x), where
g(x)=GP](x) (3.3.24)

where P,(x) is the vector of the first N, modes shapes, and G is a vector of arbitrary

weights. Then the signal

L
&(t) = J‘o g(x) y(x,0)dx

L T,
- [ GPlwptoenax
0 (3.3.25)
=GZE,(1)
= 5’!1(’)
where
G =[G 0] (3.3.26)

filters the remaining modes from the measurement, and results in a single valued signal
for temporal processing. The observer can then be designed to estimate the modal

amplitudes and velocities from &(7) as
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% (1) = (4, — HG)#,(1) + Bu(r) + He(1), (3.3.27)

where H is the new observer vector. The observer (3.3.27) combines the spatial filters
in (3.3.23) into the single spatial filter (3.3.24). Next, we condense the temporal
processor.

The temporal processor is still required to perform matrix-vector multiplications
involving matrices and vectors of dimension 2N,. If N, is large, this may be difficult for
a modest processor. To ease the computatioal burden, we could replace the state
estimator with a functional estimator [25] [26]. A functional estimator can be used to
calculate a linear combination of the states. The linear combination is arbitrary, and
may be taken to yield the control signal.

The derivation of the functional estimator is given in Appendix A. The functional
estimator that will implement the control design of Section 3.3 is summarized here. If

the desired control signal is

u(t) = Fn(1)

(3.3.28)
i)
=[F, K]l . )
()
then the function w(z) will converge to u(f) as t — oo, where
w(r) = (1) + &(1)
(3.3.29)

() = — az(t) + €,(8) + pw(0).

The functions ¢,(¢) and ¢,(r) are given as in (3.3.25) by
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L
ed) = || ute) st

(3.3.30)
L
es) = | gl e,
0
where
B=12, z,1B
£4(x) = ©OP/(x)
gs(x) = QP (x)
Z,=FRAy —aoF (3.3.31)

5=K
@ =0aZ, — 2ARHAN
Q=F1 +F2AN1+GF2

where Ay, and { are defined in Section 3.2, and a is chosen to place the single observer
pole. The functional estimator allows us to condense the temporal processor into a
single integrator regardless of the number of modes controlled. This reduced order-type
observer is not expected to suffer from high frequency process noise, because the spatial

filter removes all of the remaining modes including the high frequency modes.

3.3.4 The Discrete-Time Control System

We found that finite dimensional methods applied in the design of a control system
utilizing a continuous time distributed sensor in the preceeding part. An observer was

designed to extract N, of the modal amplitudes and the velocities from a distributed
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measurement. Those modal amplitudes and velocities were then used to control N,
modes of the beam. In the discrete-time case, the modes are not estimated and used in
the control explicitly. Nevertheless, finite dimensional methods can be used in the
design.

Instead of estimating the modal amplitudes explicitly, the states are maintained in
their distributed form as position and velocity functions. The velocity function, as in
continuous-time control design, is not measured and must therefore be estimated. The
outputs of the estimator are a smoothed version of the position function and an estimate
of the velocity function. The distributed observer output is then processed by a
distributed controller to generate a single output signal for each actuator. The
innovation of this method is that it combines the temporal and spatial processing which
were separated in the continuous time design. This method is considered because it can
be implemented using an all-optical processor which may offer performance and
computational advantages.

The system (3.2.46) is used in the design of the control system. The design is
similar to the design presented in Section 3.3.1., except the discrete-time Riccati equation

is used. The control is to be of the form,
u(k) = F 4(k), (3.3.32)

with the observer of the form

L
gk + 1) = A g(k) + Bu(k) + J- K(x) (7(k) — Cq(k))dx, (3.3.33)
0

where C and j are defined as in (3.3.9).

In the discrete-time Linear Quadratic Gaussian design, we find F to minimize
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(e

J= zqr(k)ecq(k) + u"(k)R.u(0), (3.3.34)

k=1

where Q. >0 and R, > 0 as in the continuous-time design. It has been shown [19] that

(3.3.34) is minimized by
F=(R,+ B"sB)™'B"s4, (3.3.35)
where S is found by solving the discrete Riccati equation
0=S—A"SA+ ATSB(R+ B"sB)"'Bs"4 - Q. (3.3.36)

Hence, F is based on the system doublet (4, B), and the doublet of parameters (R,, Q.).
The observer function K(x) is determined using the method developed in Section 3.3.1
for K(x), except the discrete-time Riccati equation (3.3.36) is substituted for (3.3.4).

Using the matrix inversion lemma [27], the solution can be put in the form
K(x)=5C](x). (3.3.37)

Define the distributed states at time t = k = nT, where ne N, as

H(x,k)
O(x,k) = Py . (3.3.38)
37 VXK
Using the integral inner product, the state feedback signal is given by
L
u(k) = j [ (x) O(x,k)dx, (3.3.39)
0
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where f(x) is a distributed control function. Similarly, the distributed estimator is

defined by

<D(x, k+1)= J. a(x, X) <D(x k)dx

(3.3.40)
+ b(x)u(k) + J. ¢(x, XWX, k) — (X, k))dx,

where ¢ is the distributed observer function, a is the distributed system function, b is the

distributed influence function, and

A J(x,k)
O(x,k) = a . (3.3.41)
FrRASl o|
Using (3.3.41), the control (3.3.39) can be rewritten as
L A
u(k) =J- S (x)D(x,k)dx. (3.3.42)
0

The design process for the distributed discrete time control system is to find a, b, f and
¢ given 4, B, F, and K(x).
We begin by defining the diagonal matrix function

[diag( P(x)) 0
Mx) =

], such that f LI'I(x)!'IT(x)a'x=12N|. (3.3.43)
0 diag( P,(x)) 0

Then
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u(k) = F 4(k)

(3.3.44)
=F ( f Ll'l(x) I7(x) dx ) 4(k) = j “F N(x) 17(x) §(k) dx.
0 0
Noting that
I17(x) §(k) = D(x,k), | (3.3.45)
we can conclude
S(x)=FI(x). (3.3.46)

The observer in (3.3.33) estimates the modal amplitudes in discrete time. To transform
the observer to estimate the distributed states, we must first multiply (3.3.33) by I1(x).

Since
O(x, k + 1) = 1(x) §(k + 1), (3.3.47)

the observer will now estimate distributed states. Immediately, we recognize the the

system influence function is given by
b(x) = [7(x)B. (3.3.48)

The system function is calculated by placing an identity matrix between 4 and g(k) as

shown.
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L
T(x) 4 q(k) = T(x) 4 J N7 @NE)dx |§(k)
0

rL

= | M(x)4N7(x) 1) q(k) dx (3.3.49)
Yo
rL

= | ax HOE, k)dz.
Yo

Therefore, by matching coefficients,
a(x, ¥) = 17 (x) 4 TI(%), (3.3.50)
Similarly, using (3.3.37),
L —
H(x)'[ K(%) (k) — Cq(k))dx
0
L
= '[ N(x)K(X) (y(k) — Cq(k))dx (3.3.51)
0

= JLﬂ(x) § C7(x) (k) — C§(k))ax.
0

Therefore, matching coeflicients with (3.3.40),
¢(x, %) =T(x) S CT(%). (3.3.52)

The functions in equations (3.3.47,48,50,52) form the necessary set for the discrete-time

control system of (3.3.39).
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3.3.5 Extension to Plate Structures

In this part, the design methods are modified for two-dimensional structures such
as plates. We begin by considering the design for the continuous sensor. The controller
design proceeds as in the one-dimensional case using the pair (4,, B,) to calculate F such

that

u(t) = Fn, (1), (3.3.53)

where A4, depends on the eigenvalues for the design modes of the plate, and B, depends
on the position of the actuator. The state estimate 7,(¢) is a 2N, x 1 vector. The
estimator design uses the pair (4,, C,(x)), but the simple method of sampling C,(x) used
in the one-dimensional case must be modified when C|(x) is sampled to maintain matrix
compatibility. To understand the problem, consider first sampling the mode shapes in

the x, and x, directions so that the mode shapes become matrices. That is, if

Ci(xy, x2) = [21(xy, X3) palxys X3) .. pav, (X1, X3) 0. 0] (3.3.59)

is sampled at the points

Lii—1
u= 1(1’&4 ) i=1L2 .., M (3.3.55)
1
and
i—1
x2,=l’2—(jlw—) i=1,2,..., M, (3.3.56)
2
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where L, is the length of the plate in the x, direction, and L, is the length of the plate in

the x, direction, then the vector function C,(x,, x,) becomes the matrix

Ci=[p, PPy, 0..0], (3.3.57)
where
plxyys x21)  pdXi2 X21) oo PUX M X21)
_ px1 X22)  PdXy20 X22) - PAX1pp X22)

pi= : (3.3.58)

pixy1s xzu,) Pix12s xzu,) P:(xwl: xzu,)

L. -

While this matrix notation allows us to easily match elements of the matrix (3.3.57) with
points in the function (3.3.54) (an important advantage in implementation), it is not
compatible with the state vector n. The compatibility can be rectified by concatenating

the columns of C, such that
Ci=[p pr..py, 0..0], (3.3.59)

where

- —

T
Codxyr, Xa1) Py, ¥22) - Py, Xaur) ]

R Lpdx12: x21) Plx12, X22) - Pdx12s xz,w,)]r
pi= . (3.3.60)

T
[Pl(xw,’le) Pdx a0 X22) - P:(Xw‘»szz)]

We may now use the pair (4,, (:‘l) to calculate the observer matrix,
A -_— A T
K=S C, (3.3.61)
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where the product S CT is the result of solving a Riccati equation, as in Section 3.3.1.
We may convert the observer matrix into a vector function by calculating the matrix S

explicitely, and interpolating between the elements in the columns of C;. That is, if

C, =[710%) 7o) - P(x) 0...07, (3.3.62)
where
PAx11, X3)
Pdx12, X3)
pix) = , (3.3.63)
pixy My x3)
L .

then the observer function is given by
K(x) =5 CT(xy), (3.3.64)

and the resulting observer is given by

LM,
dit m(0) = Ay 1,(0) + Byu(r) + f K(xy) 5/(xy) — El(xz) 11(1)) dox,. (3.3.65)
0

This observer assumes the measurement can be expressed in a form y(x,) compatible with

the estimate.
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The two-dimensional discrete-time design is similar to that of the one-dimensional
design. First we must calculate the control vector and observer matrix by sampling the
two-dimensional structure as above, and applying the discrete-time Linear Quadratic
Gaussian design method. Then we convert to distributed form. If F and K(x,) are the

solutions from the Linear Quadratic Design, then let

.3(-"2) = [El(x2) ;2(-”2) --~;N1(x2) 0..0 ], (3.3.66)
and
diag(p(x;)) O
I(x,y) = - . (3.3.67)
0 diag(p(x,))

Then the control is given by

LM,
utk) = J S (x)D(x,)dx,, (3.3.68)
0
where
LM,
D(xy, k + 1) = J a(xy, Fp)D(Fy k)d7, + b(xy)u(k)
0 (3.3.69)
LM,
+ J £(x;, fz)(.;"(fm k) —}"\(fz' k))dx,,
0
and
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a(xy, %) = [(x;) ATT7 ()
b(x;) = I1(x,) B
(3.3.70)
£(x3, X3) = [1(x) K(x3)

flx) = FIT(xy).

3.3.6 Design Summary

We have presented a design method for using a distributed sensor to control the
vibration in a set of selected modes in one-dimensional and two-dimensional flexible
structures. The design method is a generalization of the usual Linear Quadratic Gaussian
method to a single-input infinite-output system. The method applies equally well to the
discrete-time system capable of distributed storage. The continuous design assumes only
spatially distributed processing. Therefore, the continuous time processor must be
supplemented with a temporal processor to complete the processing. In the discrete
case, the sensor is also used in the processor to allow simultaneous temporal and spatial

processing.

3.4 Summary

We modelled the structure using orthogonal mode shapes in the space domain, and
the natural frequencies in the time domain. We calculated the mode shapes and natural

frequencies from a partial differential equation. The control system design utilized the
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infinite point (continuous) measurement of the holographic-type sensor, but is otherwise

finite dimensional.
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4.0 Example

4.1 Introduction

We have shown how to sense distributed functions, and presented a design method
for processing the sensor measurements for control. The design was shown to solve the
spillover problem. Now we will demonstrate the analytical results using a particular
example.

The continuous system will be considered exclusively. Discrete implementations
should anticipate aliasing problems if the sample rate is not sufficiently high. We use a
cantilevered beam as our example structure. First, we illustrate the advantage of
distributed sensing over point sensing. Next, since the analysis assumed exact
knowledge of the design system, we use simulation to show that the design can tolerate
some modelling error. Finally, the functional estimator design is compared to the full

state estimator by pole placement and time response.
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4.2 The Simulations

Our test structure is the uniform cantilevered beam of unit mass per unit length,
and length L shown in Figure 4. We will consider a beam with length L =5 in which
the effects of the uncontrolled modes are significant. The open-loop system includes
0.5% proportional damping ({ = 0.005).

We consider two sensing methods. The first sensor is an ideal tip displacement
sensor which senses the displacement of the free end. The second is an ideal distributed
displacement sensor which senses the displacement of the beam along its entire length.
The first four vibrational modes are selected for the design (N, =4). A Linear Quadratic
Gaussian design for the distributed sensor is performed to calculate F and K(x) using the
method described in Section 3.3.1 with M = 128,

1 [Am O

Q= o | R.=3, Q,=.0002 Ly, Ry=2.5x 107 L. 4.2.1)
N

The closed-loop poles for this 4-mode design are shown in Figure 10. Using the pole
lqcations in Figure 10, pole placement is used to place the poles of the point-sensor
observer. The controller design for the distributed-sensor may be used directly for the
point-sensor system. The resuiting closed-loop pole locations for the point-sensor
system are identical to those shown in Figure 10. Both designs are made without
considering the uncontrolled modes.

The capability of the design in the control of the truth model may be tested by
including some of the higher-order dynamics in the calculation of the closed-loop poles.
If a 12-mode beam model is controlled by the distributed control system design based

on the 4-mode model (N, = 8) , the resulting pole locations are shown in Figure 11. If
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Figure 10.
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Closed-loop Poles for 4-mode Design: The Linear Quadratic Gaussian design method is
used to place the poles assuming distributed sensing and only four vibrational modes exist.
Pole placement is use to place the poles of the observer and controller in the same locations
for the point sensor feedback.
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locations for a cantilevered beam with 12 vibrational modes controll
sensor based control system designed to damp only four modes.
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the same 12-mode model is controlled by the 4-mode point sensor based control system,
the resulting pole locations are shown in Figure 12. Comparison of Figure 11 and
Figure 12 shows that the higher-order dynamics have little effect in the distributed case,
while the poles of the point system are greatly displaced from their nominal locations,
and some of the poles corresponding to the uncontrolled modes are driven unstable.
This is clearly a poor design for the point sensor based system, but it illustrates how the
uncontrolled modes rnu#t be considered if distributed sensing is not used. The
distributed sensor based control system is insensitive to the affects of the uncontrolled
modes.

Our spillover result assumes exact knowledge of the mode shapes and modal
frequencies. This is an unrealistic assumption in practice, because the modelling and
system identification processes inevitably contain errors. We shall demonstrate, by
example, that our design can tolerate significant errors in the parameters. We use the
4-mode design based on exact knowledge of the mode shapes and modal frequencies as
our control system, and perturb the parameters of the 12-mode model in the simulation.
The parameters of the 12-mode model are perturbed by altering the modal frequencies
and mode shapes. The errors introduced are not related to any specific error in the
modelling (such as non-uniformities). A uniformly distributed random number is added
to the nominal modal frequencies to acheive a certain maximum percentage error.
Another independent set of modal frequency perturbations are collected for use in the
calculation of the mode shapes. Similar error might be expected if identification
experiments are conducted to calculate the mode shapes and modal frequencies. For the
given design, if errors up to 2% are introduced in the modal frequencies, then the
simulations shown in Figure 13 demonstrate that the closed-loop system remains stable
and the design modes remain well damped. If perturbations up to 5% are introduced,

some of the systems are driven unstable under closed-loop control, as shown in
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4-mode Point Sensor Design Controlling a 12-mode Beam: The close-loop pole locations
for a cantilevered beam with 12 vibrational modes controlled by the point sensor based
control system designed to damp only four modes.
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Figure 13. Closed-loop Poles with 2% Parameter Perturbations:
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Figure 14,
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Figure 14. Hence, the spatial filtering property is reduced in the presence of parameter
errors, but exact knowledge of the parameters does not appear to be necessary. It
should be noted that 2% errors in the natural frequencies used to calculate the mode
shapes causes large errors in the mode shapes, as shown in Figure 15. Robust control
design for the distributed sensor is an interesting topic for future reseach.

Instead of using the full state estimator, we could use the functional estimator. A
functional estimator may be designed using the control vector F from the previous
design. Since the estimator has only a single pole, it cannot be placed to perform exactly
the same as the full state estimator. If we select a = 1, the estimator pole will be placed
at s=—1. The resulting integrating kernels g,(x) and g,(x) are shown in Figure 16.

We will compare the functional estimator to the full state estimator by pole
placement and time response. The closed-loop pole locations for the functional
estimator are shown in Figure 17. Comparison of Figure 17 and Figure 11 shows both
methods place the controlled poles in the same locations. The only difference is in the
observer poles, as expected. The performance of the designs may be compared by
comparing the time responses to the same initial condition. The time response of bearﬁ
under the control of the full state estimator based control system is shown in
Figure 18. The time response of the beam under the control of the functional observer
based control system is shown in Figure 19. The square error in the responses is shown
in Figure 20. We can conclude from these simulations that the functional estimator
design slightly out performs the full state estimator design, because the functional
response has a smaller transient response and reduces the error to a lower level.
However, this does not imply that the functional estimator design will always out
perform the full state estimator design. It does show the performance of both designs

is satisfactory.
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Figure 16.

Chapter 4

Integrating Kernels for Functional Estimator: The top figure is g.(x), and the bottom
figure is g,(x)
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The close-loop time response for a cantilevered beam with 12 vibrational

modes controlled by the distributed sensor based control system designed to damp only

Figure 18. Time Response:
four modes.
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Figure 19. Time Response of Functional Observer: The time response of the 4-mode control system
controlling the 12-mode cantilevered beam given a particular initial condition.
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4.3 Summary

In this chapter, we demonstrated through simulation that our design is insensitive
to the inclusion of uncontrolled dynamics. We considered an example where a 4-mode
design was used to control a cantilevered beam with 12 vibrational modes. In the
example, the distributed sensor design was found to decouple the design modes from the
remaining modes, allowing the the 4 poles of the design to be placed arbitrarily. When
the same design was attempted for a single point sensor colocated at the actuator, the
result was an unstable system. Parameter perturbation simulations show that small
errors in the modal frequencies and modes shapes do not destabilize the system. Finally,
the full state estimator and functional estimator designs were compared. The functional
estimator design was shown to effectively place the design poles and to out perform the

full state estimator design in a time response simulation.
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5.0 Implementation

5.1 Introduction

We have shown how to sense the distributed deflections of a flexible structure, how
to design control systems to utilize the measurecments, and how distributed sensing
improves the resulting control system. Now we will consider the technology required to
implement the control designs. We consider only the multifrequency continuous-time
and discrete-time holographic sensors, but the processing methods apply equally well to

any optical sensing method with an output given by
Ii(x,0) = I, + y(x,1) (5.1.1)

where I, is a bias intensity. For the holographic sensor, the bias is set by adjusting the
difference in the path lengths of the object and reference beams. The bias I, may also
be a function of the x, but for simplicity, I, is taken to be constant over the length of the

beam. A typical intensity function is shown in Figure 4.
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In the next section, implementations using mixed temporal-spatial processors are
considered for the continuous time multifrequency holographic sensor. In Section 5.3
implementations of the all-optical processor are discussed for the discrete-time
holographic sensor. In Section 5.4, the designs are extended to two-dimensional plate
structures.  The advantages and disadvantages of the all-optical and mixed

implementations are summarized in the last section.

5.2 Mixed Processor

In this section, we present simple and effective implementations for the spatial part
of the full state mixed processor and the entire functional estimator-type processor. In
the Section 3.3.2, we demonstrated that the spatial processor must perform the spatial
integral given in (3.3.25). The remaining of the processing may be performed by some
temporal processor. In the case of full state estimation, the temporal processor is likely
to be implemented using a microprocessor. However, in the functional estimator
implementation, a single temporal analog integrator and a few analog adders should
suffice.

The integral (3.3.25) is computed in two parts. First, the pointwise multiplication
() =gx)y(xt) for0<x<L (8.2.1)

is performed by focusing the beam /(x,r) onto a gray scaled transparency with an
absorption characteristic d(x) as shown in Figure 21. When the beam [(x,) passes
through the transparency I;(x), the absorption characteristic of the transparency absorbs

the radiation in [(x,). Hence, a pointwise multiplication is performed. The
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Figure 21. Pointwise Multiplication by Absorption Transparency: The output from the sensor is
passed through an absorption transparency. The transparency scales the sensor signal as
a function of x. The output is the function indicated in the figure.
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transparency must be constructed to scale [(x,f) as a function of x such that
0 < I(x) < 1. Therefore, if 0 < g(x) < 1, then we may take [,(x) = g(x) . The second part
of the processor consists of a photodetector. A photodetector is a transducer for
converting the average incident intensity into a proportional electrical signal. We choose
a photodectector with dimensions matching the area of the absorption transparency, as
shown in Figure 22. The photodetector may be followed by an amplifier to set the
proportionality constant of the conversion. The spatial average is performed
continuously (we assume the temporal averaging is outside the control system

bandwidth). Therefore, we can express the output from the photodetector as

L
&5(f) = L L), (x,)dx. (5.2.2)

Hence, the spatial processor consists of an absorption transparency mounted on the
front of a photodetector. The output is an electrical signal to the temporal processor.

The output of the spatial processor (5.2.3) may be expanded as

L
exlt) = jo Lx) L(x,) d

= ng(x) (I, + y(x,0))dx (5.2.3)
0

L

= I+ [ syten) d,
0

where
L
I,= I I,g(x) dx = constant. (8.2.9)
0
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Therefore, the implementation of Figure 22 produces the signal
e(r) = &;(1) — I, (5.2.5)

indicating that it should compute the desired integral.

The implementation of Figure 22 requires g(x) >0 as presented. This is always
possible because the deflection of the structure is merely the sum of mode shapes, and
the structure can always be flexed so that its deflection is positive. For a cantilevered
beam, the weighting of the modes is particularly simple. The sum of the first N modes
will be positive if they are equally weighted, as shown in Figure 23. If the modes are
summed using some other weighting, the resulting filter may be bipolar (positive for
some x, negative for other x) . Such a weighting scheme is necessary for the functional
estimator implementation, as was shown in Figure 16 on page 82. However, care must
be exercised in the implementation. For instance, consider the bipolar processor created

by adding a bias to the bipolar function as in

g(x) = Iz + g(x) (5.2.6)

so that

0<gx) <. (5.2.7)

While this appears to allow bipolar g(x) with positive g(x), we must take special
measures to avoid losing the modal filtering property of the spatial filter. To see this,

calculate ¢,(¢) with g(x) replaced with g(x) ,

Chapter 5§ 93



It / \
1 L ‘! i
/ \ N
! | i \
! \ Vi kS
f{ \] / ’ \\
l“ \ /
1 o § \ s L
; ‘\“ /.'
/ \\.-f/
f
\ £ \
U . i L \ 1 - L 1- -
( 5 {0 15 20 o Al 1
(a) First 4 modes for a cantilevered beam, equally

Figure 23. Sum of Modes for Cantilevered Beam:
weighted. (b) The sum of the first four modes.
94

Chapter §



L
ex(t) = fo (L, + y(x,0) (x) dx
= J'L(Ia +y(x,t))(lﬂ + g(x))dx (5.2.8)
0
=1, + JLI y(x,0)dx + J.Lg(x) y(x,t)dx.
0 ﬂ 0

The term

£4(0) = J;L Iﬂy(x,t)dx (5.2.9)

contains both the effects of the design modes and the remaining modes. The observer
is designed without knowledge of the remaining modes. Therefore, it cannot compensate
for the created bias (5.2.9). However, we can measure the bias directly and subtract it
from the result. A processor designed for bipolar operation is shown in Figure 24. The
processor is essentially two spatial processors of the type shown in Figure 22, where the
second processor removes the bias created by the first. The output of the second

spatially integrating photodetector is given by

£a(t) = J; L1ﬁ1¢ + Iy y(x,1)dx. (5.2.10)

Therefore, the processor output is
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Figure 24. Bipolar Spatial Processor: The second absorption transparency and photodetector allow
the bias of the first filter to be removed in the time domain, allowing bipolar spatial
filtering. .
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e(f)=¢ey— ¢4
L
= [ 800 + gCetepax (5.2.11)
0
L
= 1+ [ ) 0,
0

as in (5.2.2).

A useful application of the bipolar processor is in the implementation of the
functional estimator, where bipolar filters are required because the modal filtering, the
control law, and the estimator are all combined. The output of the spatial processors
is processed by a first order temporal processor to yield the control signal, as shown in

Figure 25.

5.3 The All-Optical Processor

In this section, we consider an all-optical implementation of the distributed control
system design [28]. The all-optical processor does not estimate the modal amplitudes
explicitely. Instead, it estirnates a shape by approximating the measurement with only
the design modes. An optical inner product operation is then performed to create a
control signal. We consider the discrete-time sensor only, because it does not require
distributed integration. This implementation concept is still preliminary; many of the

details remain.
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We begin by simplifying the observer (3.3.40) to remove two summing operation

as shown,

A L A
O(x, k+ 1) =J a(x, xX) O(x, k)dx
0

+ b(x)u(k) + _[ " fx BYHF, k) — P, K))dF
0
(5.3.1)
= JL(a(x, %) — &(x, %)) O(F, k)dx
0

+ b(x)u(k) + _LL{(x, W, k)F.

We expand (5.3.1) to show the actual operations required,

ﬁ(x,k +1)
% Dk +1)

- -

L L
fo (@6, %) = £,0e, ) () dE fo ay, B () dF || Poek)

(5.3.2)

L L d
[(@en-tem )@ [ an)a |4 5wh
i 0 0 L d

-

[ L
by(x) jo 445, %) () dE |[xk)
+ u(k) + s
L
by(x) J; fz(x, x)(.)dx 0

where
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L L k)
u(k)=[joﬁ(x)(-)dx fofz(x)(-)dx] d ,

. 5.3.3
el (5:33)

Equation (5.3.2) is shown graphically in Figure 26, where each block represents an
optical operation. The integrals with one and two-dimensional kernels could be
performed using Fourier optical computers (Figure 27 and Figure 28), while the
summations could be performed using beam splitters (Figure 29), and the remaining
operations could be performed using temporal light modulators (Figure 30). Imaging
between the sensor and the various optical blocks requires careful attention to maintain

the coherence of the distributed signal.

5.4 Extensions to Two-Dimensional Structures

It is a simple matter to extend the implementation of the mixed processor to
two-dimensions. We must merely replace the absorption transparency in Figure 22 with
a two-dimensional transparency g(x,, x;) consisting of the sum of the two-dimensional

modes. Since the integrator integrates in both directions, the output is given by

Ll
)= [ | Bz x b, x)d, de (5.4.1)
0 Yo

where

Il(xh vat) = Ia +y(x1’ x2’1)v (5'4‘2)
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Figure 26. Block Diagram of an All-Optical Processor: This processor implements a functional state
space control law with a functional observer.
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Figure 27. Integrator with one-dimensional kernel:  This unit is used to compute the control signal
given the estimate of the distributed states. The transparency scales the incoming signal
as a function of x, . The first cylindrical lens transforms the product of the incoming signal
and the transparency function into the spatial frequency domain. An filter approximating
a Dirac delta function é(x,) filters the frequency domain signal. The second lens inverts
the process of the first lens to yeild the desired integral.
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Figure 28. Integrator with two-dimensional kernel:  All remaining integrals use this unit. The concept
is the same as the integrator with a one-dimensional kernel. To allow two-dimensional
kernel, make the incoming transparency a function of both x, and x,, replace the
cylindrical lenses with spherical lenses, and approximate a two-dimensional delta function
in the frequency domain.
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Figure 29. Beam Splitter for Addition: Beam splitter adds the amplitudes of two collimated beams.
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Figure 30. Control Modulator: A device such as a cross polarizer is modulated by the control signal
and scaled by a transparency to feedback the control signal in the observer.
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I(xy, x;) = g(xy, x3). (5.4.3)

Of course, if g(x,, x,) is bipolar, then a similar processor must be constructed using the
bipolar design of Figure 24.

Extending the all-optical implementation to a second dimension appears to be
awkward. The problem is that two-dimensional measurements require spatial integrators
operating in four spatial dimensions. In Section 3.3.5, the discrete-time design is
performed by assuming that the measurement is converted from two dimensions to a
single dimension by scanning the structure. If the sensor were modified to scan the
structure, then an implementation similar to that offered for one-dimensional sensing
would be suitable. Another conceivable solution is to divide the processor into many
parallel processors with interleaving optics, but such a system would be too complex and
speculative to discuss at this level. We conclude that the extension of the all-optical

implementation to a second dimension remains an open problem.

5.5 Summary

Full state estimator based and functional estimator based mixed processors were
presented which divide the processing duties between an optical processor performing
space domain operations only, and a temporal processor performing the remaining time
domain operations. Very few optical operations are required, limiting the round-off
error due to inaccuracies in the filters and error due to cumulative optical operations.
The optical operations do not require coherent optics, further lessening the senstivity

of the computation to optical flaws. In both processors, the spatial processor performs
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the modal filtering operation to generate a signal containing the modal amplitudes of
only a finite number of modes, while a temporal processor performs the remaining
computation. In the functional estimator based implementation, the spatial processor
combines the measured modes in a linear combination which greatly simplifies the
temporal processing. In the full state estimator based implementation, the spatial
processor is simpler, but more temporal processing is required. The mixed processors
apply equally well for both one and two dimensional structures.

The all-optical processor is considered for its potential performance advantages and
the novelty of distributed computation. Temporal and spatial processing is combined
and performed in a simultaneous process. The processing speed is limited by the sample
rate of the discrete-time sensor. Hence, this implementation has the potential for
controlling a large number of modes without a separate temporal processor. Presently,

the all-optical implementation does not apply well to two-dimensional structures.
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6.0 Summary and Recommendations

6.1 Summary

This dissertation has addressed the problem of developing a control system for
flexible structures based on distributed optical sensing. Specifically, we have shown that
holographic sensing methods can be used to sense the distributed shape of one and two
dimensional flexible structures. Furthermore, the optical output of the sensor can be
processed optically to generate a control signal to damp the vibrations in the structure
using a point actuator. The combination of optical sensing and processing presented
may solve both the spillover and implementation problems in the theory of the control
of flexible structures.

First, the necessary sensing technology was presented in Chapter 2. It was shown
that multifrequency real-time holography can generate an intensity function
corresponding to the deflection of the flexible structure in space. Several other optical
methods were also presented in the development including an intensity imaging method

and interferometric methods.
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In Chapter 3 we presented a design method based on a modal model from a partial
differential equation. The control system design is based on standard deterministic
Linear Quadratic Guassian state feedback plus observer. The design is unusual in that
it accomodates the continuous output function of the holographic sensor. The design
controls (damps) a finite number of vibrational modes. Analysis was presented to show
the design solves the spillover problem by eliminating the observation spillover.

In Chapter 4 simulation examples were given to compare the performance of the
distributed sensor to a point sensor, and to test the sensitivity of the design to modelling
errors. The simulations demonstrated that the distributed sensor provides clear
performance advantages over point sensing, the modelling for the distributed sensor can
tolerate small errors, and that the functional estimator based control system compares
satisfactorally with the full state estimator based control system.

Finally, in Chapter 5 implementations for the control system were considered.
Mixed processing implementations were considered which divide the processing into
spatial and temporal parts, and all-optical implementations were considered which
combined the temporal and spatial processing. Both approaches maintain the modal
filtering aspect of the designs. Both mixed and all-optical implementations were
considered which simplify temporal processing to eliminate the need for a

microprocessor in the computation of the control signal.

6.2 Recommendations for Future Work

The theoretical analysis presented in this dissertation indicates that holographic

sensing should be capable of performing the required measurement function, and that
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optical methods can be used to efficiently process the measurement into a useful form.
Thus, further reseach beyond this purely theoretical study appears to be justified. In this
section, we divide the areas for further research into two parts. The first part is on proof
of concept experiments. The technology cited in this dissertation has been largely
established by others, but it has not been verified in the specific context of distributed
sensing for control. The second part is on areas for further control theoretic study.
Further control work includes analysis of the effects of numerical modelling on the
spillover result, analysis with non-ideal processing elements, and development of control
laws which further exploit the architecture of the processors. In summary, future work

is required to verify and refine the results presented.

6.2.1 Experiments

The experiments presented in this section are designed to verify the sensing and
processing concepts described in Chapters 2 and 5. The sensor is likely to be more
difficult to build. Therefore, the experiments have been designed so that the sensor and
processor may be tested independently. As the sensing and processing technologies
become available, they may be combined to test the overall system. That is, the tests for

the sensor and processor are separate, but compatible.

Sensing Experiments
In Chapter 2 we concluded that a multifrequency method of real-time holography
would be required to fulfill our sensing needs. Several other methods were also

presented. Rather than beginning with the multifrequency holographic method, it would
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be useful to verify the operation of the other methods. This would allow us to gain
experience with the optics. Furthermore, the additional insight may lead to new
approaches to solving the sensing problem.

For example, we could verify the effectiveness of the imaging method presented in
Section 2.3. The principle problem with this method is its lack of sensitivity at distances
sufficient for effective focussing by the lens. Perhaps a coating could be developed to
alter the reflective characteristics of the structure to improve the sensitivity. While any
light source could be used for the imaging sensor, and the beam splitter are not required
as shown in Figure 5, including these devices will allow us to easily modify the
experiment to verify the Michelson interferometer.

The Michelson interferometer presented in Section 2.4 was deemed too sensitive.
However, if fringe interpretation methods are developed, or if vibrations on the order
of a fraction of the optical wave length are to be controlled, the interferometer could be
a viable alternative. This experiment could be desensitized using a multifrequency laser.
While demodulation problems exist in the multifrequency interferometer, the
multifrequency laser is required in the holographic sensor, and it may be characterized
in the interferometric setting. The sensor arrangement will also function as a testbed for
other creative solutions to the demodulation problem described in Section 6.5.

Simultaneously, one may wish to develop experience in holography on film.
Combining the multifrequency laser technology with the holographic process can be
used to test how the real-time holographic sensor is likely to perform on static objects.
Problems encountered on film are also likely to exist when the hologram is formed in a
photorefractive crystal. As photorefractive crystals become available, the experience
developed from working on film should be readily applicable. If only slow crystals are
available, a small artificial flexible structure may be constructed to simulate the sluggish

vibrations of large space structures.
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The bandwidth of the real-time holographic sensor will depend on the type of
crystal, whether the crystal is operated in the photoconductive or photovoltaic modes,
and the intensity of the available light signals. The intensity of the light signals will
depend on the size of the flexible structure, its reflective properties, and the output of the
laser. Characterizing each of these quantities is important in the design of the control
laws. Therefore, sensor characterization is necessary if the sensor is to be combined with

the processor for closed-loop control.

Mixed Processor Experiments

The processing hardware and control theory can also be tested in stages,
independent of the sensing hardware, by simulating the output of the sensor. The
output of the sensor is simulated for static structures using the slide projector-type
arrangement shown in Figure 31. The output of the simulator could be used to test the
mixed processing systems shown in Figure 22 and Figure 24. At this stage, tests to
verify the accuracy of the pointwise multiplication and the spatial filtering property are
important. A narrow aperature or scanning photodetector (such as a CCD digitizing
camera) may be used in the static simulations if a suitable integrating photodetector is
not available.

To simulate the dynamic sensor output, the slide projector in the simulator could
be replaced with a movie projector or a video monitor. A video monitor with high
resolution under computer control would be ideal. The motions of the structure could
be animated and programmed to react under closed-loop control. In this way, the
closed-loop processor can be fully tested without the sensor. The concepts for

two-dimensional processing may be confirmed in a similar manner.
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Figure 31. Slide Projector-type Sensor Output Simulator: A slide transparency attenuates the
uniform intensity of the light source to produce a collimated light beam where the intensity

represents a structure undergoing deflection from equilibrium.
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All-Optical Processor Experiments

The concepts for the all-optical processor may also be verified and further
developed through experiment in stages. First, the operation of the individual
operational blocks in Figure 26 must be verified and characterized. In particular, a
detailed evaluation of the limits of the computational accuracy must be conducted to
determine an upper limit on the bandwidth of the control system, if one exists.
Approximations made in the description or optical components may be more limiting
than the tolerances of the components, in which case better approximation methods
must be developed to describe higher order effects.

While the individual components are under development, we can develop the
necessary interfacing optics to bring the output of one optical block to the next.
Diffraction, for instance, can destroy the results at the output of the integrators unless
the next component is place precisely in the back focal plane of the inverse Fourier
transform lens. In other cases the distributed signal must be converted from an
incoherent form to a coherent form. This interfacing problem is likely to require
additional optical technology such as optically addressed spatial light modulators [29].

The slide projector and video simulators can function in the all-optical processor
as in the mixed processor to simulate the output of the sensor. These techniques may
also be used in the processor itself to perform the distributed delay operation. As the
discrete-time holographic delay becomes available, it may be inserted in the processor
to replace the video simulated delay, or it may replace the simulated sensor output. In

this way, the capabilities of the processor my be built and characterized in stages.
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Verification of two-dimensional all-optical processors awaits the development of better

two-dimensional optical implementations.

6.2.2 Control Theory

The future work in the control theory for holographic sensing and processing can
be divided into two major areas, design and analysis. We have considered one approach
to designing the control system for specific structures. Other existing approaches could
be investigated, new approaches could be developed, and the methods could be
generalized. Throughout, we have assumed ideal sensing and processing. Non-idealities
could be identified and analyzed in both the sensor and processor. In summary, the
future work in control theory deals with the control issues requiring resolution before

actual construction begins.

Recommendations for Future Work in Design

In the area of design, we may generalize the method presented and consider new
methods. The method presented is restrictive in several ways. First, the method
presented requires us to sense the shape of the entire flexible structure. At this time, it
is difficult to guess whether or not this assumption is reasonable. However, it probably
would not be reasonable for a vary large structure, a complicated structure, or a
structure with three-dimensional vibrations. Therefore, one important generalization is
to modify the design method to allow the sensing of only part of the structure. We call
this the partial observation problem. The straightforward approach to solving the

partial observation problem is to use the part of the mode shapes corresponding to the
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part of the structure in view in the design. However, analysis show that parts of modes
are not orthogonal. Therefore, if a new set of mode shapes that are orthogonal over the
observed part of the structure could be found, the design method could be generalized
intact.

The design could also be generalized in the modelling area. We assumed a partial
differential equation exists to calculate the mode shapes and natural frequencies.
Generally, numerical (non-analytical) methods must be used to calculate these
parameters. Such methods are well-developed, but it remains to test their applicability
to this sensor and processor. In particular, a thorough test of the spillover resulting
from errors in numerical modelling is important.

In addition to generalizing the given method, we could consider developing new
design methods. The all-optical processor might be particularly interesting for radical
designs based on the control of distributed functions without resorting to variable
separation. Control designs based on the estimation of distributed functions have been
proposed [30]. Designs for the mixed processor which eliminate the temporal component
would be useful in simplifying the implementation.

The forward looking designer should anticipate time-varying spatial filters [29] for
adaptive control systems. Adaption could be useful both for self alignment of the system

and to identify and track parameter variations.

Recommendations for Future Work in Analysis

At least half of the future work in analysis will be in the identification of problems
requiring analysis. We mention a few here. First, it will be important to analyze the
effects of non-ideal hardware on the performance. The sensor will have a finite

bandwidth, and may have higher-order dynamics. The finite bandwidth is not expected
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to be a problem provided the design modes are within the bandwidth of the sensor. The
limited bandwidth of the sensor could possibly be beneficial in limiting the response due
to the remaining modes. However, if the design does not include the sensor dynamics,
the resulting system could lose performance. In addition to sensor dynamics, we can
investigate the effects quantization and round-off in the processing filters. Other
problems could be predicted such as misalignment and distortion in the optical
processing. The analysis of all of these "secondary” effects can be incorpofated into the
designs and construction. In particular, element sensitivities could be calculated to

specify tolerances for construction.
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Appendix A. Functional Estimator

The functional estimator is designed to estimate the product F7,(f) rather than
7,(t). This eliminates the need to form the product #,(s) after the estimate, and reduces
the computational burden in the estimator itself. The derivation closely follows a more

general derivation given in [26]. We begin by defining a new estimator of the form
2(8) = Yz(1) + Bu(r) + Oc(2), (4.1.1)

where z(1) = Zn,(1). If we multiply (3.3.27) by Z,
z% 5.0 = Z(A, — HGYA,(0) + ZBu(t) + ZHe(s), (4.1.2)

and match coefficients with (A.1.1), we find

©=2zH
(4.1.3)
B=2B,

and
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ZA, +¥YZ=0G. (A.1.4)

Assume
G =L[ly, 0], (4.1.5)

and let
w(t) = [z() + Qe(1). (4.1.6)

We want to choose I' and Q such that w(f) — Fn,(s). Partition the design system

d 111(?) Ay Ay || ma(0) By,
- - + u(z), (4.1.7)
m2(0) Az Ay [ ma(0) B,

and partition Z and F such that

(3.2.40) such that

Z=[2Z, Z,] and F=[F, F], (A4.1.8)
and (A.1.4) becomes

ZlA” + ZZA13 - \le = @

(4.1.9)
Z\ A+ 2,4, -YZ,=0.
Similarly, the partitioning causes (A.1.6) to become
rZ,+Q=F (4.1.10)
rZ,=F, (4.1.11)
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If we take I'=1 and ¥ = — a, where alpha is an arbitrary constant, then Z,= F, and

Z,+Q=F, From (3.2.28), we know A4, =0 and 4,, = [,,. Therefore, (A.1.9) siinpliﬂes

to

F2A13 + aZl = @

Z,+ LA +aF, =0,
implying

Z)=—(Rd\ +aF).
Therefore, from (A.1.10),

Q=F + KA+ aF,
and from (A.1.9)

O=—aZ + FA;.

Recalling the assumption (A.l.5), we see that

e(0) =Ly, 01m (o).

Therefore, in the estimator (A.1.1),

@c(r) = OLIy, 0In,(1).

Using (3.3.25), we may define ¢,(¢) such that
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(4.1.12)

(4.1.13)

(4.1.14)

(4.1.15)

(4.1.16)

(4.1.17)
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£4(t) = O¢(1)
[E;(t)]
=[® 0]] .
(0
L
= j OP[(x) P,(x) E,(¢) dx (4.1.18)
0
L
_ J OPT(x) y,(x,1) dx
0
L
= J OP](x) y(x,1) dx.
0

Therefore © is the weighting vector of the design modes in the spatial filter. Similarly,

L T,
ey(1) = Io QPT(x) y(x,1) dx, (4.1.19)

so Q is also a weighting vector of design modes in a spatial filter. The functional

estimator design is summarized in Section 3.3.3.
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