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HYPERREAL STRUCTURES ARISING FROM
AN INFINITE BASE LOGARITHM

by
Eric Lengyel

Peter E. Haskell, Chair

Department of Mathematics
(ABSTRACT)

This paper presents new concepts in the use of infinite and infinitesimal numbers
in real analysis. The theory is based upon the hyperreal number system developed
by Abraham Robinson in the 1960’s in his invention of “nonstandard analysis”. The
paper begins with a short exposition of the construction of the hyperreal number sys-
tem and the fundamental results of nonstandard analysis which are used throughout
the paper. The new theory which is built upon this foundation organizes the set of
hyperreal numbers through structures which depend on an infinite base logarithm.
Several new relations are introduced whose properties enable the simplification of
calculations involving infinite and infinitesimal numbers. The paper explores two
areas of application of these results to standard problems in elementary calculus.
The first is to the evaluation of limits which assume certain indeterminate forms.
The second is to the determination of convergence of infinite series. Both applica-
tions provide methods which greatly reduce the amount of computation necessary

in many situations.
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Overview

In the 1960’s, Abraham Robinson developed what is called “nonstandard analysis”,
and in doing so provided a rigorous foundation for the use of infinitesimals in anal-
ysis. A new number system known as the set of hyperreal numbers was constructed
which includes the set of real numbers and also contains infinite and infinitesimal
numbers. This paper begins with the construction of the hyperreals as a set of
equivalence classes of sequences of real numbers. Included in this introductory sec-
tion is the method by which relations defined on the real numbers are extended to
relations on the hyperreal numbers. Through these extensions, it is possible to prove
statements that hold true over the hyperreal numbers which are the “nonstandard”
equivalents of statements that hold true over the real numbers. In nonstandard
analysis, the proofs of these statements are usually facilitated by the utilization of
what is called the transfer principle. This concept, however, requires a great deal
of development of rigorous logic which will not be needed in the remainder of the
paper. Therefore, the transfer principle is not used in the introductory section at
all, and alternate proofs of nonstandard results are instead given.

In section 2, we begin the study of new hyperreal structures which organize the
set of hyperreal numbers into classes called zones, and we introduce the notions
of superiority and local equality. These concepts depend on the logarithms of the
hyperreal numbers taken to a fixed infinite base. We will be using infinite and
infinitesimal numbers in such a way that our calculations will not require knowledge
of how the hyperreal number system was constructed. Nor will our calculations
require us to know what specific member of the set of hyperreals that we are using
as the infinite base of our logarithm - knowing only that the number is infinite will
suffice.

Once the theory has been developed in section 2, we proceed in sections 3 and 4 to

present applications in two areas. The first application is to the evaluation of certain



limits which assume the indeterminate forms 0/0, co/oo, 1%, and oo — oo. The
methods presented will provide alternatives to I’'Hopital’s rule which generally allow
much more efficient computation. The second application is to the determination
of the convergence of infinite series. Two new convergence tests will be presented
which are analogous to the comparison test and limit comparison test. As with
limit evaluation, these tests significantly reduce the amount of computation in many

situations.



1 Introduction to nonstandard analysis

This section presents the reader with the fundamentals of nonstandard analysis
which are used throughout the remainder of this paper. We begin with the ultra-
power construction of the set of hyperreal numbers and then proceed to introduce
several relations and algebraic structures which are defined on this set. This section
consists only of the necessary background information which can be found in any
introductory text on nonstandard analysis, most notably [3]. Many of the proofs
included in this section can also be found in the literature, the exceptions being

those which rely on the transfer principle.

1.1 Construction of the hyperreal number system

The goals of the construction of the hyperreal number system are to build a field
which contains an isomorphic copy of the real numbers as a proper subfield and
also contains infinite and infinitesimal numbers. Furthermore, it is desired that the
numbers in this new field obey all of the same laws which hold true over the real
numbers. A field having these properties is constructed by using a free ultrafilter to
partition the set of all sequences of real numbers into equivalence classes. It is then
these equivalences classes which are the elements of the set of hyperreal numbers.
Before presenting the actual construction of the hyperreals, we include the defi-

nition of a filter.

(1.1) DEFINITION. A filter F on a set S is a nonempty collection of subsets
of S having the following properties.

(a) 2¢F
(by if Ac Fand BeF then ANBeTF
(c)if AeFand ACBC S then BeTF



Note that by (c), a filter F on S always contains S, and that by (a) and (b), no two
elements of F are disjoint.

An wultrafilter on an infinite set S is a maximal filter on S. The existence of an
ultrafilter follows from Zorn’s lemma. A filter F on S is an ultrafilter if and only if

it has the following property.
(d) if A C S then either A€ For S\AeTF

An ultrafilter U on an infinite set S is called fized or principal if there exists a € S
such that U = { A C S| a € A}. Ultrafilters which are not fixed are called free. An
important fact is that free ultrafilters cannot contain any finite sets. By (d), this
implies that if U is free then every cofinite subset of S is contained in U.

We now construct the set of hyperreal numbers and prove that it is a linearly
ordered field. We begin the construction by choosing a free ultrafilter U on the
set of natural numbers N. The ultrafilter U is not explicitly defined since it does
not matter which free ultrafilter on N that we use. The set of all free ultrafilters
on N determines a set of isomorphic fields from which we can choose any member
to be the set of hyperreal numbers. Using U, the hyperreals are constructed by
considering the set of all sequences of real numbers indexed by N and defining the

following relation on this set.

(1.2) DEFINITION. Given two sequences of real numbers (a,,) and (b,.), (a,) =
{b,) if and only if {n € N | a, = b, } € U. The entries of the sequences {a,) and

(b,) are then said to be equal “almost everywhere”.

The phrase “almost everywhere” (abbreviated a.e.) is used to signify that the
entries of a sequence have a certain property on some set in the ultrafilter U. For
instance, if the sequence (a,) has the property that a, is an integer for all n in some

member of U, then a, is said to be an integer almost everywhere.

(1.3) PROPOSITION. The relation = is an equivalence relation.



Proof. Let {(a,), {b,), and {c,) be sequences of real numbers. {(a,) = (a,), and thus
= is reflexive, since N € U. Because equality on the reals is symmetric, if (a,) = (b,)
then (b,) = (a,), and thus = is symmetric. For transitivity, suppose (a,) = (b,)
and (b,) = (c,). Let A={neN|a,=0b,}and B={neN|b, =¢,}. Then
ANB ={n € N|a, = ¢, }. Since A and B are elements of the ultrafilter U,
AN B e U. Therefore, (a,) = {(c,). n

The set of hyperreal numbers, which is denoted by *R, is defined to be the set
of all equivalence classes induced by the equivalence relation =. We will use the
notation [(a,)] to represent the equivalence class containing {a,,).

Addition, multiplication, and an ordering are defined on *R as follows.

(1.4) DEFINITION. Let [(a,}], [{b,)] € *R. The operations + (addition) and -
(multiplication) and the relation < (less than) are defined by

(a) [an)] + [(bn)] = [{an + by)]
(b) [{an)] - [{bn}] = [{an - bn)]
(¢) [{an)] < [{by)] ifand only if {n € N|a, <b,} €U

(1.5) PROPOSITION. The operations + and - and the relation < are well-
defined.

Proof. Suppose [{(a,)] = [(b,)] and [(c,)] = [(d,)] and let A = {n € N|a, =b,}
and C ={n e€N|e¢,=4d,} (thus A,C €U). Then {neN|a,+c¢c,=b,+d,} =
ANC € U. So the two sums are equal elements of the hyperreals. The same
argument holds true for multiplication.

Now suppose [{(@,)] < [{c.)] and let K = {n € N | a, < ¢, } € U. Then the
set on which b, < ¢, contains K N A and is therefore in U. So [(b,)] < [{c.)]- Let
L ={n€N|b, <ec,}. Then the set on which b, < d, contains L N C and is
therefore in U. Thus [(b,)] < [{d.)]. n



We now claim that the set of hyperreal numbers combined with the operations

and ordering given in definition 1.4 is a linearly ordered field.
(1.6) PROPOSITION. The structure (*R,+, -, <) is a linearly ordered field.

Proof. In order to show that *R is zi field, we need only prove that *R contains
inverses since the associative, commutative, and distributive laws as well as closure
are inherited from the real numbers. Let [{a,)] € *R such that [{(a,)] # [(0,0,0,...}].
Then the set {n € N|a, =0} ¢ U. Thus we know that the complement of this set
is in U. So define (b,) by

b — {0, 1f a, = 0;

" l/a,, ifa,#0.
Then the product [{a,)][(b.)] is equivalent to 1 since {n € N | ayb, =1} ={n €
N | a, # 0} € U. Therefore a, is invertible and "R is a field.

Now let [(a,)],[(b.)] € *R such that [{a,)] # [{b.)]. To prove that *R is linearly
ordered, we must show that either [{a,)] < [{bs)] or [{bs)] < [({an)]. Let A =
{neNJa, <b,},B={neN|b, <a,},and E ={n € N|a, =b,}.
Since [{a,)] # [(bn)], £ & U. So the complement of F, which is AU B, is in
U. If A e U, then [{a,)] < [(by)]. If A & U, then BU E € U, in which case
(AUB)N(BUE) =B €U, so [(b,)] < [{(an)]. Thus [{a,)] and [(b,)] are ordered. m

Now that we have shown that *R is a linearly ordered field, we wish to show
that *R has a proper subfield which is isomorphic to R. We embed the reals in the
hyperreals by defining the map ¢ : R — *R by 0(r) = [(r,r,r,...}]. To show that
6 maps R to a proper subfield of *R, note that [(1,2,3,...})] is not equivalent to
the image of any real number. This equivalence class is actually an example of an

infinite number as is defined below.



1.2 Infinite and infinitesimal numbers

Whether a number is infinite or infinitesimal is independent of the number’s sign,
so the definitions of infinite and infinitesimal numbers will involve absolute values.
Absolute value is a function that is already defined on the real numbers which we
need to extend to the hyperreal numbers. To do this, we simply apply the absolute
value entrywise to an equivalence class representative in *R. Much more will be said
about extending functions from the real numbers to the hyperreal numbers shortly,

but right now we only need the following definition.
(1.7) DEFINITION. For all [{a,)] € "R, [[{a.)]| = [{|a.])]-

Note that this definition is equivalent to the hyperreal analog of the definition of

absolute value on the fea,ls,

_ [Uan)],  if [{an)] = 0;
el = {—[(an)], if [{a,)] < 0.

This is because if [{(a,)] > 0 then a, = |a,| on the same set in the ultrafilter for
which a, > 0, and if [{a,)] < 0 then —a, = |a,| on the same set in the ultrafilter
for which a,, < 0.

From this point on, we will use single letters to denote elements of *R. When we
speak of a real number r € *R, we mean the equivalence class [{r,r,r,...)]. Although
technically speaking, the sets R, Q, Z, and N are not true subsets of the hyperreals,
we will use these symbols to refer to the images of these sets embedded in *R.

We can now define what is means for a number to be infinite or infinitesimal.

(1.8) DEFINITION. Let a € *R. Then « is infinite if and only if |a| > r for
every positive real number r. If ¢ is not infinite then it is finite. We call a

infinitesimal if and only if |a| < r for every positive real number r.

Note that the set of finite numbers is a subring of *R and the set of infinitesimals

is an ideal of the finite numbers. More importantly, note that the set of hyperreal



numbers is nonarchimedean. Not every bounded subset of *R is guaranteed to have a
least upper bound or greatest lower bound. For example, the set of infinite numbers
is bounded below by any finite number but has no greatest lower bound.

We now introduce an equivalence relation which associates numbers which only

differ by an infinitesimal.

(1.9) DEFINITION. Given z,y € *R, x and y are near or infinitely close if and
only if z — y is an infinitesimal. In this case, we write  ~ y. The equivalence
classes induced by ~ are called monads. Thus, the monad about a number

a € *R, written m(a) is defined by m(a) = {zx € "R |z~ a }.
*R is also partitioned into classes whose elements differ by finite amounts.

(1.10) DEFINITION. The galary about a number a € *R, written G(a), is
defined by G(a) = {z € "R | 2 — a is finite }.

Using monads and galaxies, we can use m(0) to represent the set of all infinites-
imal numbers and G(0) to represent the set of all finite numbers. As shown below,
the set of real numbers is isomorphic to the quotient ring G(0)/m(0).

Numbers in *R which are not images of real numbers are called nonstandard.
Nonstandard finite numbers are always infinitely close to exactly one real number,

which is called its standard part.

(1.11) PROPOSITION. Let a be a finite hyperreal number. Then there exists

a unique real number r such that r ~ a.

Proof. Let A={z € R|z <a}. Sincea is finite, A is nonempty and is bounded
above. Let r be the least upper bound of A. For any real ¢ > 0, r — ¢ € A and
r+e ¢ Aand thusr —e <a <r+e. So|r—a| <e from which is follows that
r ~ a. To show that this r is unique, suppose that there exists a real number s such
that s ~ a. Then since =~ is transitive, s >~ r. So |s — r| < ¢ for every real ¢ > 0,

and thus s = r. N



(1.12) DEFINITION. Let a € G(0). Then the standard part of a, denoted by
st(a) or °a, is the real number r such that a ~ r. The function st is called the

standard part map.

The standard part map is easily shown to be an order preserving homomorphism
from G(0) onto R with kernel m(0). The quantity « —st(z) is sometimes called the

nonstandard part of z.

1.3 Relations and *-transforms

We now discuss the method through which functions defined on the set of real num-
bers are extended to the hyperreals. The method actually applies to any arbitrary
relation defined on R, the set of which includes all of the functions defined on R.
The process of extending a relation from R to "R is called a *-transform for which

the general definition is next given.

(1.13) DEFINITION. Let P be an n-ary relation on R. Then the *-transform
of P, denoted by *P is the set of all n-tuples ([{(ay):)],[{(@2):)],- ., [{(an):)]) €
(*R)™ satisfying {7 € N | ((@1);, (a2)sy ..., (an);) € P} € U.

An n-ary relation on R is simply a subset of R". Thus, unary relations on R are
just subsets of R. Equality, the ordering given by <, and functions of one variable
are examples of binary relations. In order to acquire a more intuitive feeling for how
relations on R are extended to *R, we consider a few examples.

Let A C R. Then A is a unary relation on R, so *A consists of those elements
a, € *R such that {n € N|a, € A} € U (i.e., a, € A almost everywhere). It
should now be clear why the notation *R is used to represent the set of hyperreal
numbers, for if A = R then {n € N | a, € A} = N € U, so *R consists of all
equivalence classes represented by any sequence of real numbers.

The set *N is called the set of hypernatural numbers and consists of the numbers

[{(a,)] € *R for which a,, € N almost everywhere. Likewise, *Z = {[{a,)] € *R | a,, €



Z a.e.} and *Q = {[(a,)] € *R | a,, € Q@ a.e. }. These are called the hyperintegers

and hyperrationals respectively.

(1.14) PROPOSITION. Let S C R be a set which contains an infinite subset

of N. Then *S contains infinite numbers.

Proof. Let A be an infinite subset of N contained in S. We construct an infinite
number in *S as follows. Let @, be the least element of A and then choose each a,, to
be the least element of the set A\ {a1,as,...,a,-1}. Since A has no upper bound,
the sequence (a,) must have the property that given any positive real number r,
there exists an N € N such that for all n > N, we have a,, > r. Thus a,, > r almost

everywhere, satisfying the requirement for [{a,)] to be infinite. ]

Given a set S C *R, we use the notation S, to represent the set of infinite
numbers in S. Thus, *Z., is the set of infinite hyperintegers in *R.

Let us consider equality on R for a moment as a set of duplets and write (a,b) € E
if and only if @ = b. Then *F is the set of all duplets ([(a.)], [{b.)]) € ("R)? satisfying
{n € N|a, =b,} €U, which is exactly how we defined equality on the hyperreals.

A function f on R of n variables can be thought of as a set of (n 4 1)-tuples
which has the property that if (e1,¢2,...,¢n,a) € f and (e1,¢2,...,¢4,0) € f,
then @ = b. The *-transform of f is the set of all (n + 1)-tuples of the form

([{(e)a)]; [{(e2)a)], - - - [{(en))], [{as)]) € ("R)™*' which satisfy
{1 e N[ {(e1)s,(e2)is- -y (cn)isai) € f} el

So if f is a function of one variable, then *f([{c;}]) = [(f(c:))}]. That is, we just let

f operate entrywise on an equivalence class representative of a number in *R.
Note that operations such as addition and multiplication are actually functions

of two variables. In the next section, we will be taking logarithms of hyperreal

numbers using a hyperreal number for the base. The logarithm is also a function of

10



two variables so we have

“logyg,yl{an)] = [(log;, an)] .

If we choose [(b,)] = [{1,2.3,...)] and [{a,)] = [(2,2,2,...)], then the first entry of
*logy(s,.y[(@n)] is logy 2 which is undefined. This is acceptable, however, since we can
assign any value we wish to the first entry and the function will still hold true on a
set in the ultrafilter U. As long as the *-transform of a function is defined almost

everywhere for the entries of an equivalence class representative (a,), it is defined

for [{a,)].

1.4 Sequences and series

Sequences and series of hyperreal numbers will be an important area of study later
in this paper. When we speak of a sequence of hyperreal numbers, we are actually
talking about a sequence of sequences of real numbers, and this sequence is indexed
not by the natural numbers, but by the hypernatural numbers. Below, we examine
how sequences of real numbers indexed by the natural numbers are *-transformed
to sequences of hyperreal numbers indexed by the hypernatural numbers.

Let (s, | n € N) be a sequence of real numbers. This sequence is actually a
function s : N — R where s(n) = s,, so we can think of (s,) as the set of duplets
{(1,51),(2,52),(3,53),...}. The *transform of s is the function *s : *N — *R
where *s([{a,)]) = [(s(an)}] for any [(a,)] € *N. The sequence (*s,, | n € "N} is an
extension of the sequence (s, | n € N) in that for any n € N, *s,, is simply the image
of s, in the hyperreals.

If a sequence (s} tends to a limit in the real numbers, then the sequence (*s,)
tends to the same limit in the hyperreal numbers. This is proven shortly, but first we
need to discuss a little notation. The symbol oo is used in the real number system
to denote that which is potentially arbitrarily large. Thus the expression lim, ., s,

denotes the value that s, approaches as n becomes an arbitrarily large natural

11



number. In the hyperreal number system, the symbol co has the same meaning,
but by arbitrarily large, we mean even larger than any infinite number in *R. So
the expression lim,_ ., *s,, denotes the value that *s, approaches as n becomes an

arbitrarily large hypernatural number. We now have the following proposition.

(1.15) PROPOSITION. Suppose that lim,_, s, = L for some real number L.

Then lim,—oo *s, = L.

Proof. The fact that lim,_, s, = L means that given ¢ > 0 there exists an N € N
such that for all n > N, |s, — L| < . Now let ¢ be a positive hyperreal number
and let {¢;) be an equivalence class representative of €. We define the hypernatural
number N = [(N;)] by choosing N; to be any natural number for which |s, — L| < ¢;
for all n > N;. Then for any hypernatural number n > N, |*s, — L| < . So

lim, oo *s, = L. ]

More important to this paper are infinite series of hyperreal numbers. We define

an infinite series in terms of its sequence of partial sums. Consider the standard

sequence
n
S$(N, 1, T2y e ey Ty) = Z alk,z1,22,...,2m)
k=1
which is defined as a function of the natural index n and real numbers x,, z,, ..., x,,.
The sum of the infinite series is represented by lim, ., s(n, 21, Z2,...,2,). The *-
transform of s is the sequence
n
% . p A % .
S$(n,xy, Ty ey ) = Z alk,z1,29,...,2,,)
k=1
where zq,2,..., 2, are hyperreal numbers and the right hand side represents the

definition of the nonstandard summation from 1 to a hypernatural number n. This

summation is written in equivalence class form as

b e = [($ath b )]

k=1 k=1

12



An important addition to this definition is the requirement that for each of the
hyperreal numbers x1, 2, ..., z,, only one equivalence class representative may be
used throughout the entire summation. That is, to calculate s(n, z1,22,...,2,) for
a single hypernatural number n, we first choose equivalence class representatives for
each of the zq,,,..., 2z, and use the same representatives each time that we eval-
uate *a(k,z1,x2,...,%n) in the summation. Without this restriction, is it possible
to find ill-defined summations when n is infinite by choosing different equivalence
class representatives for each index k.
The sum of the infinite series
oo

* Z"a(k,xl,z:g, RPN

is defined to be lim,,_,, *s(n, z1, z2, ..., 2,,) where n approaches infinity through the
hypernatural numbers. If this limit exists and 1s equal to any hyperreal number,
including infinite numbers, then the series is said to be convergent.

We consider an example which will be used later in this paper. Let s(n,a,b,t)
represent the sequence of partial sums of the binomial series for (a + b)*. This can
be written as the summation

n
s(n,a,b,t) Z()t_kbk.
k=1
In order to use the binomial expansion in the case where a, b, and ¢ are hyperreal

numbers, we need the *-transform of s which is given by

“s(n,a,b,t) = *Z(Z)at_kbk

k=1

Sy G

In this summation, we must use fixed pre-chosen equivalence class representatives

for a, b, and ¢t for every index k.

13



1.5

Limits

One final result of nonstandard analysis that will be needed in this paper is the

following statement about the limit of a function at a point or at infinity.

(1.16) PROPOSITION. Let L be a real number.

(a) lim,—, f(z) = L if and only if * f(z) ~ L for all z € m(a) \ {e}.

(b) limy—o f(z) = L if and only if *f(z) ~ L for all positive infinite z.

Proof. All parts are proven by contrapositive.

(a)

Suppose *f(z) # L for some z ~ a. We want to show that there exists an
¢ > 0 such that for any ¢ > 0 there exists an z such that |z — a| < 6, but
|f(z) = L| > . Since *f(z) % L, we have [*f(2) — L| 2 0. If *f(z) is
finite, choose ¢ = st(%]*f(z) — L|), and if * f(z) is infinite, choose ¢ to be any
positive real number. Let (z,) be an equivalence class representative of .
Since z ~ a, we know that Z = {n € N | |z, —a| < é} € U. We also know
that F ={n e N||f(z,) — L| > e} € U. Choose N € ZN F and let z = zy.
Then |z — a| < 6, but |f(z) — L| > e. Therefore lim,_,, f(z) # L.

Now we assume lim,_,, f(z) # L. Then there exists an ¢ > 0 such that
for every 6 > 0 we can find « such that |z — «a| < §, but |f(z) — L| > . We
construct a sequence {z,) by choosing each z, such that |z, — a| < 1/n and
|f(z,) — L| > e. Then we have [(z,)] ~ a since for any positive real number
r, |z, —a| < r for all n > N where N is the least natural number satisfying
1/N < r. But *f([{(@,)]) # L because |f(z,) — L| > ¢ for all n € N. So we
have found a number infinitely close to a for which the function value is not

infinitely close to L.

Suppose *f(z) % L for some positive infinite number z. We want to show that

there exists an ¢ > 0 such that for any m € N there exists an ¢ > m such

14



that |f(z) — L] > . As in part (a), [*f(z) — L| 2 0. So if *f(z) is finite,
choose ¢ = st(3[*f(z) — L|), and if * f(z) is infinite, choose ¢ to be any positive
real number. Let (z,) be an equivalence class representative of z. Since z
is infinite, we know that Z = {n € N | z, > m} € U. We also know that
F={neN||f(za)—L| >} €U Choose N € ZNF and let = = zy.
Then x > m, but |f(z) — L| > . Therefore lim,_., f(z) # L.

Now we assume lim,_, f(z) # L. Then there exists an € > 0 such that
for every N € N we can find # > N such that |f(z) — L| > . We construct
a sequence (z,) by choosing each z, such that z, > n and |f(z,) — L] > e.
Then [{z,)] is infinite since for any positive real number r, z,, > r for alln > r.
But *f([(x,)]) % L because |f(z,) — L| > ¢ for all n € N. So we have found

an infinite number for which the function value is not infinitely close to L. =



2 Development of new hyperreal structures

This section introduces the concept of superiority and the equivalence relation called
local equality. Many structures which arise in the set of hyperreal numbers due to
these concepts are examined along with their relationships to existing structures.
Succeeding sections discuss applications of the properties of these new structures.
The following notation will be used in this and later sections. The set of all
infinite numbers in *R will be denoted by T, and the set of all infinitesimal numbers
in *R will be denoted by S. The symbols < and 2 will be used to mean “less than
or infinitely close to” and “greater than or infinitely close to” respectively. The
symbols 5 and Z will be used to mean “less than but not infinitely close to” and

“greater than but not infinitely close to” respectively.

2.1 Orders of numbers and the superiority relation

The order of a number and all subsequently dependent relations will be based upon
the choice of a positive infinite number w. We do not give an explicit equivalence
class representative for w since all calculations that we perform which involve w will
not actually rely on its value. Thus all of the relations and structures defined in
this section will have the same properties for every possible choice of w. We need
only remember that during any one calculation that w represents a constant positive
infinite hyperreal number. This method will allow us to perform computations in
the hyperreal numbers and at the same time abstract beyond the need to know
anything about the the ultrafilter used to construct the hyperreals or the sequences
which represent equivalence classes. All symbolic manipulation will be done with
real numbers and functions of w. We use the letter « to represent 1/w for any choice
of w. The arbitrary nature of w and « will allow us to show in a single calculation
that certain properties hold for all positive infinite or infinitesimal numbers.

We first define an equivalence relation which partitions *R into what are called
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zones. This is done by considering the logarithm base w of each hyperreal number.
We will use the symbol log to represent the function *log on *R as well as the

function log on R.

(2.1) DEFINITION. The order of a number a € *R, written ord(a), is defined
as ord(a) = log, |a|]. The order of 0 is defined to be —oo.

The order of a number represents the size of the number on a scale which transcends
infinitesimal, finite, and infinite numbers. Although this order depends upon the
choice of w, we have the following property which does not depend on the value of

w, but only on the fact that w is infinite.

(2.2) LEMMA. All numbers in G(0) \ m(0) (i.e., all finite non-infinitesimals)

have infinitesimal order.

Proof. Let = € G(0) \ m(0). Since z is not infinitesimal or infinite, there exist
positive real numbers a and b such that a < |z| < b. For every positive real number
r,ord(r) = Inr/lnw € S. Since the logarithm is a strictly increasing function, we

have ord(a) < ord(z) < ord(b). So z has infinitesimal order. n

Clearly, every infinite number has positive order and every infinitesimal number
has negative order. What is interesting is that although most infinite and infinites-
imal numbers do not have infinitesimal order, there are elements of T and S which

do, and these numbers are given the following special names.

(2.3) DEFINITION. Ift € T and ord(t) € S, then t is called semi-infinite. The

set of infinite numbers less the set of semi-infinite numbers is denoted by T'.

(2.4) DEFINITION. Ifs € S andord(s) € S, then s is called semi-infinitesimal.
The set of infinitesimal numbers less the set of semi-infinitesimal numbers is

denoted by S'.
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An example of a semi-infinite number is Inw whose order is Inlnw/Inw. All semi-
infinitesimal numbers are reciprocals of semi-infinite numbers and vice-versa, so
1/Inw is semi-infinitesimal. Properties of semi-infinite and semi-infinitesimal num-
bers are identified throughout this section.

The order of each hyperreal number is used to define the following relation on

“R.

(2.5) DEFINITION. Given a,b € *R, we say ¢ and b are isometric and write
a © bif and only if ord(a) ~ ord(b).

The relation & is an equivalence relation since S is a group under addition. The
name “isometric” is used because two numbers whose orders differ only by an in-
finitesimal are of the same general size when considered as members of the vast
infinitesimal and infinite extent of the set of hyperreal numbers.

We now introduce the superiority relation which is used to relate two numbers

which are not isometric.

(2.6) DEFINITION. Let a,b € *R such that ¢ @ b. If ord(a) g ord(b), then
we say a is inferior to b and write a & b, and if ord(a) 2 ord(b), then we say a

is superior to b and write a O b.

The symbol & will be used to mean “inferior to or isometric to”, and the symbol &
will be used to mean “superior to or isometric to”. Note that 0 & « for all nonzero
a € *R. Also note that if |a| < b then a & 6. This property will be useful in several
proofs later in this paper.

[f two numbers a and b in *R are related by &, &, or ), then multiplication

of both by any nonzero z € *R preserves this relation.

(2.7) LEMMA. Let a,b,2 € *R. Then ¢ © b implies ax © bz and if x # 0 then
a & bimplies ax & bz.
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Proof. Suppose a © b. Then ord(a) ~ ord(b). Adding ord(z) to both sides, we
have ord(a) 4+ ord(z) ~ ord(b) + ord(z). Therefore ord(az) ~ ord(bz), so ax © bz.

Now suppose @ & b. Then ord(a) 5 ord(b), so by a similar argument ord(az) 5
ord(bz) and thus ez & ba. ]

Addition of equals does not preserve the relations &, &, and . Consider as an
example that 1 + o @ 1 + o2, but if we add —1 to both sides then we would have

a © o which is not true.

2.2 Zones and worlds

An equivalence class created by the equivalence relation & is given the following

name.

(2.8) DEFINITION. The equivalence class induced by & containing a € *R is
called the zone about a. This is written zone(a) = {z € *R | 2 © a }. We define
zone(0) = {0}.

The zone about « is the set of all numbers whose order is in the monad about ord(a).

Thus it is possible to express the zone about a as
Zone(a) = mlord(a)) u _mlord(a))

Note that since ord(z) = ord(—z) for all € *R, if * € zone(a) then —z € zone(a).
Also note that since ord(1) = 0, zone(1l) is the set of all elements of *R having

infinitesimal order. Therefore zone(1) contains all of the nonzero real numbers.
(2.9) THEOREM. zone(1l) is a multiplicative subgroup of *R.

Proof. We need to prove closure and containment of inverses. Let a,b € zone(1).
Then ord(a) € S and ord(b) € S. Therefore, ord(ab) = ord(a) + ord(b) € S. So

ab € zone(l) and thus zone(l) is closed under multiplication. zone(l) contains
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multiplicative inverses since for all z € *R, ord(z™!') = —ord(z) and S contains

additive inverses. -

Every zone is a coset of zone(1). We therefore have the properties that for all
a € "R, zone(a) = azone(1) and zone(a) is closed under multiplication by elements
of zone(1).

All semi-infinite and semi-infinitesimal numbers are contained in zone(1). We
can therefore express the set of semi-infinite numbers as T N zone(1), and we can
express the set of semi-infinitesimal numbers as S N zone(1).

No zone (excluding zone(0)) is closed under addition since for any 6  a, a+b €
zone(a), but @ + b — a ¢ zone(a). The smallest additive subgroup of *R containing
zone(a) therefore contains every number which is inferior to a. This set is given the

following name.

(2.10) DEFINITION. The world about a € *R, denoted W(a), is defined by
W(a)={ze*R|zQ a}.

We use the notation Wy(a) to represent the set {z € *R | 2 & a}. Wy(a) can be
thought of as the interior of the set of zones contained in W (a), and zone(a) can be
thought of as the boundary of the set of zones contained in W(a). We thus have for
the zone about a the alternate notation W (a).

(2.11) THEOREM. W{(a) and Wy(a) are groups under addition for all a € *R.

Proof. 0 € W(a) and 0 € Wy(a) because 0 & «a for all a« € *R. Each zone which
is contained in W (a) contains its own additive inverses. We are left with proving
closure, which we first prove for the W(a) case.

Let z,y € W(a). Without loss of generality, we can assume that * & y. We will
show that z+y € W(z) C W(a). This means we must show that ord{z+y) < ord(z).

20



Let z = max(|z|, |y|). Then

VAN

log,, (|| + |y[)
log,, 2=

ord(z +y) = log, |z + |

IN

log, 2+ log, =
ord(z). (2.1)

2

If 2 © ythen 2 @ z. If 2 © y then z = |z|. In both cases, ord(z) ~ ord(z).
Therefore, from the above equation, ord(z + y) < ord(z).

Closure of Wy(a) is proven in the exact same manner since for z,y € Wy(a) with
rQy, W(z) C Wo(a). ]

An important observation is that if x & y then x 4+ y © = since otherwise, if
r+y =2& zthen z = z —y & z, a contradiction. This is the fundamental
concept behind what will soon be defined to be local equality.

(2.12) THEOREM. W/(a) and Wy(a) are rings if and only if ¢ & 1.

Proof. Assume ¢ € 1. By theorem 2.11, W(a) and Wy(a) are additive subgroups
of *R. We need only prove closure under multiplication. Let z,y € W{(a). Since
a © 1 and both 2 & @ and y © «, ord(z) < 0 and ord(y) < 0. Therefore,
ord(zy) = ord(z) + ord(y) < 0. So zy € W(a) and W(a) is thus closed under
multiplication. For z,y € Wy(a), we have the simpler situation that ord(z) < 0 and
ord(y) < 0. Therefore, ord(zy) < 0 and we have zy € Wy(a).

Now suppose that ¢ & 1. Then ord(a) Z 1. So we have ord(a*) = 2ord(a) 2
ord(a) and thus a* ¢ W(a). Therefore W(a) is not closed under multiplication.
Also, Wy(a) is not closed since if we let b = \/|a_| € Wy(a), then b* & Wy(a). ]

It turns out that for any two rings of the type mentioned in theorem 2.12, the

smaller subring is an ideal of the larger.
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(2.13) THEOREM. Let a,b€ *R such that ¢« & 6 & 1. Then

(a) Let z € W(a) and y € W(b). Then ord(z) < 0 (since ¢ & 1) and ord(y) < 0.
So ord(zy) = ord(z) + ord(y) < ord(z), which implies zy © =z, and thus
ry € W(a).

(b) Identical to (a).
(c) Similar to (a), except ord(y) < 0. So ord(zy) 3 ord(z), which implies zy & =.
(d) Identical to (c). ]

(2.14) THEOREM. Wy(1) is a maximal ideal of W (1).

Proof. Suppose there exists an ideal I of W(1) with Wy(1) € I C W(1). Then
there exists ¢ € I such that ¢ © 1 and is therefore an element of zone(1). But
by theorem 2.9, zone(1) contains multiplicative inverses, so x is a unit and thus

I =W(1). So Wy(1) must be maximal. [

We have now constructed a field W(1)/Wy(1) which is considerably smaller than
*R which still contains an isomorphic copy of the real numbers through the map
r— [{r,r,r,...)] + Wo(1) and also contains infinite and infinitesimal numbers such

as Inw + Wo(1) and 1/ Inw + Wo(1).
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2.3 Local equality

The concept of local equality involves choosing a “level” to work on and equating
any two numbers in "R which differ by an insignificant amount with respect to this
level. For example, on the finite level (i.e., the level of 1), any two numbers which
differ by a sufficiently small infinitesimal are considered to be locally equal. The

precise definition is as follows.

(2.15) DEFINITION. Let a,b,¢ € *R with £ # 0. We say a is locally equal to b
on the level of ¢ and write a = b if and onlyifa—b6& ¢.

Local equality on the level of £ is an equivalence relation since 0 & ¢ for all £ € *R
and Wy(¢) is closed under addition by theorem 2.11. One immediate observation is
that if x @ ¢ then z L0 Ifat b, then obviously a + ¢ L b+ cfor any ¢ € *R.
Also, it follows immediately from lemma 2.7 that if a £ b then ac £ be.

If two numbers are locally equal on the level of £ then they are also locally equal
on the level of any element of zone(¢). Replacing the level representative with an
isometric number does not change anything. Local equality is also preserved if the

level representative is replaced by a superior number. In general, if a £ b and

m £, then a Z b.
(2.16) LEMMA. Ifa = bthena ® b.

Proof. If a = b then a — b & a. So we can write b = @ + ¢ where ¢ & a. Since

a+e&® a, we know b § a. [

An immediate consequence of this lemma is that if @ = b then « £ b. This also
lets us make the statement that if @ = b then 1/a Ye 1/b. This is because if we
divide both sides of a = b by a, we have 1 = b/a. Then dividing both sides by b
gives us 1/b EA 1/a. By the lemma, this is equivalent to 1/a L 1/b. This property

of local equality will be useful in section 4.
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Here are some example local equalities.

aéaz
3 2 4
546a = 5
7+ﬁ¥7

Note that in the last example given above, even though 1/Inw is an infinitesimal,
it is too large to be ignored on the finite level. The reason is that 1/lnw is a
semi-infinitesimal and semi-infinitesimals are not inferior to any finite number.
The equivalence classes of local equality on the level of 1 are analogous to monads.
Numbers which are in m(a) but not in {z | z = a} are exactly those which differ
from @ by a semi-infinitesimal. So =z = y implies * ~ y, but the converse is not

necessarily true.

2.4 Summary

All of the structures and relations introduced in this section depend upon a positive
infinite number w whose exact value is left undefined but is considered to be held
constant throughout any statement, proof, calculation, etc. Whenever the number w
appears in an expression, it is assumed to be the same w that any relations appearing
in the expression such as inferiority and local equality depend on through the order
function.

The arbitrary nature of w allows us to conclude statements such as if f(w) ~ L
independently of the choice of w, then f(¢) ~ L for all positive infinite numbers t.
This becomes an invaluable tool when used in conjunction with local equality for
evaluating limits which assume an indeterminate form and also for testing infinite

series for convergence. These topics are discussed in the next two sections.
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3 Evaluation of limits

We now use the concept of local equality to develop a system for evaluating certain
types of limits at points where they assume indeterminate forms. The methods
presented are alternatives to I’'Hopital’s Rule which are generally easier to use and
in most cases allow much faster computation. Several examples are given which
demonstrate the new methods on limits which assume the indeterminate forms 0/0,

oo/oo, 1°°, and oo — oo.

3.1 Preliminary Theory

Nonstandard analysis tells us that lim,_,., f(x) exists and is equal to L if *f(z) ~ L
for all positive infinite € *R (see section 1.5). When evaluating limits of this form,
we will be able to show that *f(w) = L independently of the choice of w. Thus, in a
single calculation, we will be able to show that * f(w) ~ L for every infinite number
w. This implies that lim,_.., f(z) = L.

A similar method will be used for limits of the form lim,_¢ f(z). In this case,
we need to show that *f(z) ~ L for all infinitesimal x. We will be able to obtain
*fla) = L independently of the choice of a, from which is follows that lim,_.¢ flz) =
L.

The way in which we will use local equality at first is by using the fact that given
p(z) € R[z], if we choose a € S"UT’, then every term of p(z) evaluated at a belongs
to a different zone. Thus we have properties such as p(w) is locally equal on its own
level to the highest degree term of p(z) evaluated at w.

The following lemma becomes useful in several places where we are working with
infinite series of infinitesimals. (The * is omitted from the summations in this section

— all summations are nonstandard.)

(3.1) LEMMA. If §is an infinitesimal, then >°°, 5" © 3.
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Proof. We have the equation

oo

2. 8"

n=1

< 2"’3n’

- wgw-w

s

= 2]

e s (3.1)

This tells us that >_o2, 5* & B. Since § itself is a summand, }_>2, 5" © . [

n=1

In many of the examples in this section, we will use power series to represent
exponential and trigonometric functions. These series will then be evaluated at «

making 1t possible to use the following lemma.

(3.2) LEMMA. Suppose 8 & 1 and let {a, | n € N) be a sequence of real

numbers such that |a,| is bounded by some real number m. Then for any finite

* gk k
k7 E’)(;O:] anﬁn - Zn:l *anan_

Proof. We need to show that 32, | *a,3" © B*. We can write this sum as

oo 00
D Talft <Y [anp
n=k+1 n=k+1
k — k
= 187 D """
n=k+1

o
= 8% 3 ["anss
n=1

IA

mlg" Y 167). (32)
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By lemma 3.1, 3>, |8"| © 8. Therefore,

m|p% > 187 © B (3.3)
n=1
This tells us that
3 6,87 Q g (3.4)
n=k+1
Since 8 Q 1, f*t1 © B, so the entire sum is inferior to 5. n

3
This lemma allows us to make statements such as sina = o — a3/6.

3.2 Limits of the form 0/0 and oco/oc

For limits which assume the form 0/0 or co/oo, we need to examine the properties
of local equality as it pertains to quotients a/b. If ¢ & b, then a/b = 0, and if
a O b, then a/b is infinite. For the remaining case, a @ b, we have the following

theorem.

(3.3) THEOREM. Let ay, as, by, and by be nonzero elements of *R. Suppose we

ay a]lb] ag

have the local equalities a; 2 a4 and b 2l by. Then i

Proof. Write ay = ay + ¢, where ¢, & a; and write by = b; + ¢, where ¢, & by.
Multiplying €, by b, and ¢, by a1, we have the relations by, & a1b; and a6, € a1b;.
Since Wy(a1by) is closed under addition, a6, —bi1g, & a1b;. By lemma 2.16, b; © b,.
So we can write

a1y — blea @ 0,162. (35)

The left side of this equation can be rewritten by adding and subtracting a;b; to

obtain

a1(61 + Eb) - bl(al —+ Ea) @ albg. (36)
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Replacing by + &5 by by and a; + ¢, by a5 and then dividing both sides by b1b, (using
lemma 2.7) we have

ajby — a2bl ar

b] bg b} .

az
by ?

(3.7)

The left side of this equation is simply %11— so the proof is complete since this is

a»libl an

now the definition of ;—1 =. n
1 2

A trivial example of the application of theorem 3.3 is a quotient of polynomials.
If we have lim,_, p(2)/g(x), then we substitute w for z in both p(z) and ¢(z). If
p(w) © q(w), which is true if and only if p and g have the same degree, then the
limit is equal to the quotient of the leading coefficients of p and ¢. Slightly less

trivial examples in which trigonometric functions appear follow.

sin x

(3.4) EXAMPLE. lim

z—0 1 + x?
We replace the sine function with its power series and evaluate at a to obtain

' 3 5
o [¢]
a_¥_|_ﬁ__+...

a+ a?
By lemma 3.2, a——%—f—i—%ﬁ——%—--- = o and a+ao? = o, so we can apply theorem 3.3
as follows. , .
a—F+ -+ ey
a+ a? o )

sinx =1

Since this local equality holds for any choice of «, we know lim,_.q *=

A similar example involving the cosine function is given next.

1 - P
(3.5) EXAMPLE. lim ——~

z—0 g2 — 324

As above, we replace the cosine function with its power series and evaluate at «a to

obtain
2

1_<1_%+%_+...) %~%+_...

a? — 3ot a? — 3ot
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This time we have 5y — ¢ e 10? and o? —3a* o a?, so applying theorem 3.3,

oS det L
a? — 3at a2
Again, this local equality is independent of a. So lim,_g l_i# =1/2. n

Evaluating the limit in example 3.5 would require two applications of I’'Hopital’s
rule. However, using local equality enables the limit to be evaluated in a single step

once the trigonometric function is replaced by its power series.

3.3 Limits of the form 1

Far more interesting situations arise when we examine limits which assume the form

1°°. For this case, we need the following theorem.

(3.6) THEOREM. Leta € *R and suppose a—1 & 1/t for some positive infinite
number ¢ € *R. Then for any b € *R satisfying b A a, we have a' = b,

Proof. Let ¢ = b — a and assume ¢ # 0. Expanding (a + ¢) with the binomial

theorem, we obtain

o' = (a+e¢) :Z() (3.8)

For k = 0, the summand is simply a’. We wish to show that the sum of the terms
for k > 1 is inferior to a’. So we rewrite equation 3.8 as

> [t
b =a'+) (k) al=kek (3.9)

k=1
and show that this sum for £ > 1 satisfies the hypothesis of lemma 3.1. (We will
actually be applying this lemma twice.)
The binomial coefficient (Z) =tt—1(t—2)---(t —k+1)/k! is a degree k
polynomial in £. When the numerator is expressed as a sum of powers of ¢, the
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coefficient of the degree j term is given by the Stirling number of the first kind
s(k,7) where s(k,7) =0if 7 <1 or j > k. Thus we can write equation 3.9 as

b =d + i (at_ksk Zk: —'S(l;;—"])tj) X (3.10)
k=1 =1
Since ¢ & 1/, we can write ¢ = 3/t where 8 & 1. Replacing ¢ with 3/t and
factoring t* out of the inner sum we have
b =a'+ i (at"fﬁ’“ i ?ﬂ;;—‘;])tj—k) : (3.11)
k=1 j=1
We now reverse the order of summation for the inner sum through the map j —
k 4+ 1 — 7 so that the terms are arranged in the order necessary for the application
of lemma 3.1. This gives us

o0 k N )
b =a'+ ) (at‘kﬂk > stk k ;;1 ])zl—ﬂ) : (3.12)
k=1 .

=1

For convenience, we define

_\i kk“ D) =i (3.13)

When £k is finite, u;, © 1 since it is a finite sum of elements of W(1). The Stirling
numbers of the first kind obey the recurrence relation s(k,j) = s(k - 1,7 — 1) —
(k—1)s(k—1,7). Starting with s(1,1) = 1, an easy induction argument shows that
|s(k,7)| < k! for all k£ and j. So when £ is infinite, we have

Fo|s(kyk+1— :
|uky S Z'S + )Itl_J

J=1

1-

: >f
( ) (3.14)

IN
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Lemma 3.1 applies to the last sum of this equation giving us $°2,t77 @ 1/t.
Therefore, 352, 77 © 1. Since this expression is greater than |u|, we must have
ur @ 1. Substituting uy into equation 3.12 and factoring a’ out of the summation,
we have

: = B -
=a' |1+ Z — Uk | - (3.15)
k=1 a

Since ux € 1 for all k, we know

oo 2k oc ﬁk
D uw| < Z |k
k=19

4% 5

I (3.16)

Since 8 & 1 and a & 1, we have 3/a & 1. So lemma 3.1 applies to this sum and
we obtain Y32, |3%/a*| @ B/a. Thus, S2,(8%/d")ur © Bla 1. Calling this
sum &, we now have b' = a'(1 + &) = a' + a’¢ where ¢’¢ & a*. So o' = 2 bt and the

theorem is proven. n

The simplest application of theorem 3.6 is to the evaluation of lim,_,,(1+¢/z)”
When we substitute w for z, we have (1 + ca)*. Since e =1 + ca + ?a?/2! + - - -,

we have 1 + ca = e°®. Therefore, by theorem 3.6 and since e®®¥ = e°,

we have
(1 4 ca)” £ ¢° which is equivalent to (1 + ca) = ¢°. This happens independently
of our choice of w, so lim,_,o(1 4+ ¢/z)* = €°.

Theorem 3.6 tells us much more than this. In fact, it is now easy to show that
for any f(z) satisfying * f(w) & a, the limit lim,_..(1+¢/z+ f(z))* does not differ
from limy oo (1 4+ ¢/2)".

We can also use theorem 3.6 to more easily evaluate limits of this form where ¢

is a function of x instead of a constant. This is demonstrated in the first example

below.

1 4 ey
(3.7) EXAMPLE. lim L+ %)
i—c0 g4 1
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We first evaluate at w to obtain the expression
(I1+alnw)®
w+1 '
Since Inw € zone(1), local equality on the level of « is equivalent to local equality on

alnw

the level of alnw. So 1 +alnw = ¢ = w®, from which theorem 3.6 tells us that

(1+ alnw)® = w. We also have for the denominator w -+ 1 = w, so by theorem 3.3,

(1+ alnw)” 1

1.
w+1

Therefore, the value of the limit is 1. [ |

P

T b;z: T
(3.8) EXAMPLE. lim (“ it )

a® + b\~
5 .

Using the identity ¢ = e*!"¢, this can be rewritten as

eozlna_;r_ealnb w
5 .

Adding the power series for the exponentials together, we obtain

Evaluating at a, we have

1 1 2 2 2 v
(1+—2—a(lna+lnb)+ 70*((lna)? + (Inb) )+---) .

Even though the above expression is not the power series for e(e+128)/2 — \/qp it

is locally equal to this power series on the level of a. So we can apply theorem 3.6

to obtain
1 . 1 . . w
(1 + —2—a(1n a+Inb)+ Zaz((ln a)® + (Inb)?) + - ) 2 /ab.
Therefore, the value of the limit is Vab. ™

(3.9) EXAMPLE. lim(cos z)*

r—0
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Evaluating at « and substituting power series, we have

1—a? 24—

2 3 air .
2 [0 a—a® /34—
(COSCY)COt o ( 2 )

. 1—a? /24— 1 . 1
For the exponent we can use theorem 3.3 to obtain % = w? since cos o = 1

and sina = . So we write t = cot’a = w? + 3 where 8 @ 1. Now for the base

we have cosa — 1 @ o? © 1/t. All of this shows that (cosa)®"* satisfies the

1/2)a®

conditions for theorem 3.6. Since ef~ 2 cosa and cos a © 1, theorem 3.6 tells

us that

(COSOZ)thQ < (e(_1/2)02)cot2a
(6(—1/2]a2)w2+3

_ e l2,0-1/2)e%5,

Since & 1, (—1/2)a*f is an infinitesimal which we will call 4. We now have

6—1/26(—1/2)a26 — /2y
~1/2 7
(e £5)

Using lemma 3.1,

IA
[ M

So we finally have
—1/2 1 1 —1/2_
[+25)

Therefore, the value of the limit is e='/2.
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These examples would require a great deal more work if we were to use I’'Hopital’s
rule to evaluate the limits. However, to one who is adept at using theorems 3.3 and

3.6, these limits can be evaluated with far less effort.

3.4 Uncompensated square completion

Another interesting situation arises for some limits which assume the form oo — co.
The example following the next theorem shows that we may sometimes add a number
to an expression in order to complete a square without ever subtracting the number

elsewhere — that is, we never have to compensate for the change to the expression.

(3.10) THEOREM. Let ¢ be a positive infinite number and let ¢ @ V/f. Then
Vit 1 \/Z

Proof. Expanding v/t + ¢ with the binomial theorem we have

<. (1/2
t+c = Z(l/g)tl/z—kck

k=0

1/2\
- \/_—i—\/_Z(/)tk. (3.17)
Since ’(1/2){ < 1 for all k, we can write

> (1) <

Since ¢ & t, ¢/t is an infinitesimal. So lemma 3.1 applies to this sum giving us

S22, (5 /)| © ¢/t. We now have
e} Ck
Vi ;:_:1 (122)15_’“ ) N (3.19)

Since ¢ V1, ¢/v/t @ 1. Therefore, from equation 3.17, v/ + ¢ = /t + £ where
f@l.Sth—{—cé\/z. ™

o
_k

(3.18)

Cc
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(3.11) EXAMPLE. lim Va2 + 6z — «

Evaluating at w, we have vVw? 4+ 6w — w. Theorem 3.10 tells us that for any ¢ &
Vw? 4 6w, we must have Vw? + 6w + ¢ L Vw? + 6w. So we choose the only value of

¢ that is of any advantage — the one which completes the square under the radical.

Setting ¢ = 9, we have

Vil Fbw—w = Vwi+6w+9—w
= (w+3)? —w

Therefore, the value of the limit is 3. [

This method of uncompensated square completion provides a much faster alter-

native to the standard method of multiplying the expression by its conjugate.
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4 Infinite series

In this section we present two new tests for the convergence of infinite series which
are analogs of the comparison test and the limit comparison test of standard analysis.
Once these tests have been introduced, we examine some useful facts which allow

easier application of the tests and present some examples.

4.1 Convergence tests

Both of the new tests determine the convergence of a series Y72, f(n) by examining
the properties of * f(w). The first test checks to see whether *¢g(w) & * f(w) for some

convergent series 3 o>, f(n).

(4.1) THEOREM (Order Comparison Test). Let f(z) and g(x) be standard
positive-valued functions. If the series 320, f(n) converges and *g(w) & *f(w)

(independent on the choice of w) then the series 02, g(n) also converges.

Proof. Since *g(w) @ *f(w), we know that *g(w)/* f(w) & 1 and thus *g(w)/* f(w)
is an infinitesimal. Since this happens independently of the choice of w, this implies
that lim,—., g(x)/f(z) = 0. Therefore, given any ¢ > 0, there exists an N € N
such that for all n > N, g(n)/f(n) < e. Thus for all n > N, g(n) < ef(n). Since

>0 1 ef(n) converges, 3.o2, g(n) also converges by the comparison test. [

Note that the contrapositive of this theorem states that if the series .22, g(n)
diverges and *g(w) & *f(w), then the series 3.2 | f(n) also diverges.

Let z = ord(*¢g(w)) for some standard positive-valued function ¢g. It immediately
follows from the order comparison test that if = < —1 then the series 372, g(n)
converges since in this case we would have *¢g(w) © 1/w? for some real number p
with 1 < p < —=2. If z 7 —1, then the series 3°;7, g(n) diverges since in this case

we would have *g(w) & 1/w® for some real —z < p < 1.
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For the remaining case, z ~ 1, we cannot conclude anything from the order com-
parison test. This means that if * f(w) @ *¢g(w), then whether 3°°7, f(n) converges
tells us nothing about whether 3°°°, g(n) converges. However, if * f(w) B *g(w)
then we can infer the convergence of one series from the other. For this situation,

we have the following test.

(4.2) THEOREM (Local Equality Test). If f and g are standard positive-
valued functions which satisfy * f(w) ") *¢(w) (independent on the choice of

w), then the series Y 72, f(n) and Y02, g(n) either both converge or both diverge.

Proof. Since *f(w) ) *g(w), we know that *g(w)/*f(w) = 1 which implies that

*g9(w)/*f(w) ~ 1. Since this property is independent of the choice of w, this means
that lim,_.. g(z)/f(z) = 1. Therefore, by the limit comparison test, the series
Yoo, f(n) and 3522, g(n) either both converge or both diverge. n

4.2 Using the new tests

It is usually more convenient to think of an infinite series as a sum of the recipro-
cals of a function evaluated at each natural number. Fortunately, the order com-
parison test and local equality test work equally well for this situation. This is
because *f(w) @ *¢g(w) implies 1/*f(w) & 1/*¢(w) and *f(w) RS *g(w) implies
1/ f(w) TE 1) g(0).

In many cases when the order comparison test cannot be used, it will be possible
through local equality to reduce the number *f(w) to a number of the form 1/aw
where a € zone(1). When this happens, the following extension to the p-series test
is useful. We use the notation In™ to mean the natural logarithm taken n times;
3)

e.g.,In®z=Inlnlnz.

Let & € N and let m be the least natural number for which In® m is real and
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greater than 1. Then the series
oG l

=wnlnnn®@n... (ln(k) n)p

converges if and only if p > 1. We show this by using the integral test. The integral

/'OO ! dx (4.1)

m zlnzln®z--- (ln(k) ZL')P

can be evaluated by making the substitution v = In® z for which we have du =
1/zlnzn® z---In®*=Y 2. This gives us the integral
o  du
/1n(k> m uP (4.2)
which converges if and only if p > 1.
We conclude this section with a few examples.

n?—3n+2

(4.3) EXAMPLE. )’ T =1

n=1

Let f(n) = %}—1 We substitute w for n and notice

4% + 6w? — 1
w?2 —3w+2

6 w.

So if we can find a function g(n) such that 1/*g(w) = % for which we know

whether 322 . 1/g(n) converges, then we can use the local equality test to determine
whether 3272, 1/f(n) converges. By theorem 3.3,

403 + 6w? — 1
w? — 3w+ 2

=)

since 4w® + 6w? — 1 £ 40? and w? — 3w + 2 £ w2, Because o2, 1/4n diverges, the

local equality test tells us that the series that we are testing also diverges. [

The next example demonstrates the procedure for dealing with factorials. As
shown, the Stirling approximation for the factorial gives a good representation of

the size of w!.
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5

“.n
(4.4) EXAMPLE. ; —

From Stirling’s approximation to n!, we know that

. AV2rnnTe "
lim ———M =1.

Therefore w! ~ 27w w“e™. Using this, we can write

w! w¥T2e-w

Since 1 — Sa — = € zone(1), the exponent of w in this last expression is still an

Qa 1

infinite number, so w*?~2°"®z)  w?. Therefore, by the order comparison test,

the series converges. [

The above example may seem like a lot of work for such a simple summand.
The intent was to demonstrate that w! & w? for any finite number p. This fact will
usually be enough to tell quickly whether a series containing factorials converges.

We finish with a short example.

1

n(lnn)? —lnn

(4.5) EXAMPLE. Y}

n=1

The local equality test tells us that this series converges if and only if the series
52 . 1/n(Inn)? converges, which it does by the earlier remark pertaining to the

extended p-series test. n
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List of Notation

(xn) = {yn) Tn = yn almost everywhere

[{ax)] {{zn) | (zn) = {an) }

*A *-transform of A; {[{(a)] | an € A almost everywhere }
*N Hypernatural numbers

“Z Hyperintegers

Q Hyperrational numbers

R Hyperreal numbers

T Set of all infinite numbers

S Set of all infinitesimals

Ao Set of infinite numbers in A; ANT
x>~y x is infinitely close toy; x —y € S
xSy r<yorr>~y

z 2y r>yorx>y

T3y r<yandazxFy

T2y z>yandx %y

m(a) Monad about a; {z |z~ a}

G(a) Galaxy about a; {2 |  — a is finite }
ord(a) Order of a; log,, |a|

T {zeT|ord(z) ¢S}

S’ {zeS|ord(z)gS}

rQy z is isometric to y; ord(z) ~ ord(y)
rQy z is inferior to y; ord(z) 3 ord(y)
Oy x is superior to y; ord(z) 2 ord(y)

tQy tQyorz Oy
zQy tQuyorz8y

zone(a) Zone about a; {z |z & a}

W(a) World about a; {z |2 & a}

Wo(a) {z|2Q a}

r = z is locally equal to y on the level of /; z —y & ¢
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