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The composition of dissolved organic matter (DOM) in a mid-Atlantic forested watershed was evaluated using two fluorescence
models—one based on previously validated model (Cory and McKnight, 2005) and the other developed specifically for our
study site. DOM samples for the models were collected from multiple watershed sources over a two-year period. The previously
validated parallel factor analysis (PARAFAC) model had 13 DOM components whereas our site-specific model yielded six distinct
components including two terrestrial humic-like, twomicrobial-derived humic-like, and two protein-like components.The humic-
like components were highest in surficial watershed sources and decreased from soil water to groundwater whereas the protein-like
components were highest for groundwater sources. Discriminant analyses indicated that our site-specific model was more sensitive
to subtle differences in DOM and the sum of the humic- and protein-like constituents yieldedmore pronounced differences among
watershed sources as opposed to the prevalidated model. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON)
concentrations and selectedDOMmetricswere alsomore strongly correlatedwith the site-specificmodel components.These results
suggest that while the pre-validated model may capture broader trends in DOM composition and allow comparisons with other
study sites, a site-specific model will be more sensitive for characterizing within-site differences in DOM.

1. Introduction

Dissolved organic matter (typically <0.45 𝜇m) is a heteroge-
neous mixture of aromatic and aliphatic organic compounds,
ranging from proteins, carbohydrates, polysaccharides, and
lipids to humic and fulvic acids [1]. In terrestrial and aquatic
ecosystems, DOM does not only influence the geochemical
and photochemical reactions by participating in carbon (C)
and nutrient (N, P, and S) cycles, but also control microbially
mediated reactions by serving as potential substrate. It also
plays a key role in transport and transformation of major
contaminants and/or pollutants and their reactivity with
the environment [2, 3]. Additionally, DOM exerts a strong
control in the formation of disinfection byproducts (DBPs),
for example, trihalomethanes (THMs) and haloacetic acids

(HAAs), during the drinking water supply treatments with
disinfectants [4]. The amount and quality of DOM in terres-
trial and aquatic environments influence biological processes
such as microbial degradation [5, 6]. It is also a key player in
altering the depth of the photic zone in aquatic ecosystems by
controlling the incident UV radiation [7]. Thus, DOM plays
an ecologically important role in various biochemical and
physical processes linking terrestrial and aquatic ecosystems.

In the last two decades, the availability of opticalmeasure-
ment techniques such as ultraviolet (UV) absorption [8, 9]
andfluorescence spectroscopy [10, 11] has provided important
insights into the character and composition of DOM. Some
of the optical indices that have been implemented to char-
acterize DOM quality include specific ultraviolet absorbance
(SUVA; [9]), absorption coefficient [12, 13], spectral slope
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ratio (S
𝑅
; [14, 15]), humification index (HIX; [16]), fluores-

cence index (FI; [17]), and %protein-like fluorescence [18]
derived from absorption measurements and fluorescence-
based excitation emission matrices (EEMs, [11, 17]). While
UV absorption and fluorescence spectroscopy have provided
important insights into DOM composition, these analyses
also yield large amounts of data with high dimensionality
and nonlinearity. To process this data and gain meaningful
insights, a variety of multivariate statistical tools have been
employed [19]. Boehme et al. (2004) examined the DOM
fluorescence variability using EEMs coupled with principal
component analysis (PCA) [20]. Likewise, parallel factor
analysis in conjunction with fluorescence EEMs has been
used to identify biogeochemically meaningful components
of DOM [19]. One fluorescent model adapted by the water
science community is the Cory and McKnight model [17],
which was developed using DOM from a wide range of
aquatic environments.

Although the benefits of PARAFAC models to extract
biogeochemical information from EEMs are indisputable,
there is some uncertainty on whether a new, site-specific
PARAFAC model should be developed or whether a previ-
ously validated model [17] is adequate to characterize the
variability of DOM at a given site. Fellman et al. (2009)
recently addressed this issue for a study site in Alaska where
they compared a new, site-specific PARAFAC model against
the Cory and McKnight (2005) model (hereafter referred as
CM model) for EEMs derived from soil and stream waters
[17, 21]. While they did not find any significant differences
between the two PARAFAC models, they did observe that
the site-specificmodel was more sensitive to particular DOM
constituents. They found that the Cory and McKnight model
[17] was unable to characterize a humic-like component that
was specific to soil waters and that the site-specific model did
a better job in characterizing the variability of the protein-
like region of DOM. Similarly, Larsen et al. (2010) reported
a limited resolving power of the Cory and McKnight (2005)
model in characterizing protein-like and phenolic DOM
fractions [17, 22].

We recently characterized the composition of DOM
for multiple watershed sources using UV absorption and
fluorescence techniques in a 12 ha forested watershed located
in the Piedmont region of Maryland [23, 24]. Watershed
DOM sources that were studied included throughfall, litter
leachate, soil pore water, wetland soil water, hyporheic water,
stream runoff, groundwater seeps, and riparian, shallow,
and deep groundwater. EEMs for DOM samples from these
watershed sources were fitted to the previously validated
Cory and McKnight [17] PARAFAC model. In addition,
multiple spectrofluorometric indices were also determined
for the DOM samples which included absorption coefficient
at 254 nm (a

254
), SUVAat 254 nm (SUVA

254
),HIX, FI, and SR.

These indices revealed distinct patterns inDOMcomposition
acrosswatershed sources [23].The surficialwatershed sources
were rich in humic and aromatic DOM constituents while
DOM in groundwater or along deeper flow paths was low in
humic-like and high in protein-like DOM [23].

Using the same 714 EEMs collected from our field site,
we developed a new, site-specific Fair Hill PARAFAC model

(hereafter referred to as the FHmodel). Our overall objective
here was to investigate how this new site-specific FH model
compared with the CM model in characterizing the DOM
composition at our site. Specific questions that we addressed
were (a) How does the new site-specific FHmodel character-
ize theDOMcomposition? Is the site-specific FHmodelmore
sensitive than the CM model for characterizing DOM and
does it allow for a greater differentiation among watershed
sources? If yes, which model components and watershed
sources reveal the largest differences between the FH andCM
models? The unique aspect of this study is the availability
of strong dataset on multiple and distinct watershed DOM
sources to assess the differences between the two PARAFAC
models.

2. Site Description and Methods

2.1. Site Description. A detailed description of the study site
and sampling procedures has been previously reported [23,
24]. Briefly, the study watershed (12 ha) is located within
the Fair Hill Natural Resources Management Area (NRMA)
(39∘42󸀠N, 75∘50󸀠W) in Cecil County, MD (Figure 1), and is
part of the Big Elk Creek drainage basin which lies within
the Piedmont physiographic region. Big Elk Creek eventually
drains into the Chesapeake Bay.

Cecil County has a humid, continental climate with well-
defined seasons and mean annual rainfall of 1221mm [25].
The study watershed predominantly is forest cover with
deciduous canopy dominated by Fagus grandifolia (American
beech), Liriodendron tulipifera (yellow poplar), and Acer
rubrum (red maple) species [26]. The study watershed is
primarily underlain by Wissahickon formation comprised of
metamorphosed crystalline, sedimentary, and igneous rocks
including mica-rich schist, amphibolites, and gneiss. The
soils are coarse loamy, mixed, mesic Lithic Dystrudepts,
Oxyaquic Dystrudepts, with subhorizons indicating seasonal
water saturation.

2.2. Watershed Sampling. Watershed sampling was perform-
ed at baseflow (1–3 times a month) as well as during
storm events. Manual grab sampling during baseflow over
a two-year period (2008-09) was conducted for multiple
watershed locations which included stream (ST), seeps (P),
hyporheic zone (HY), wetland soil water (WSW), shallow
(SGW), and deep (DGW) groundwater, soil pore water
(U), and riparian groundwater (RGW). Storm samples were
collected using automated ISCO sampler (Teledyne Isco Inc.,
Lincoln, NE, USA) during the events for stream water (at
the 12 ha watershed outlet), forest floor (or litter leachate,
LT), throughfall (TF), and rainfall (R) (Figure 1). All water
samples were filtered through a 0.45 micron nitrocellulose
membrane filter (MilliporeCorp., Billerica,MA,USA)within
24 hours of collection and stored at 4∘C for further analyses.
Dissolved organic carbon analysis for the water samples
was conducted at the biogeochemistry laboratory of SUNY-
ESF, NY, using the Tekmar-Dohrmann Phoenix 8000 TOC
analyzer. Nitrate-Nwas determined using aDionex IC, NH

4

+

with an autoanalyzer using the Berthelot Reaction followed
by colorimetric analysis, and total dissolved nitrogen (TDN)
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Figure 1: Location of the study site in the mid-Atlantic Piedmont region of northeastern Maryland (inset: location of catchment indicated
by filled circle) and sampling locations are marked within the 12 ha forested watershed.

using the persulfate oxidation procedure [27] followed by
colorimetric analysis on an autoanalyzer. Dissolved organic
nitrogen concentrations were computed as the difference
between TDN and inorganic N (NO

3

−, NH
4

+).

2.3. UV-Vis and Fluorescence Spectroscopy. Absorption spec-
tra (190–1100 nm) were obtained for each sample at room
temperature at 1 nm intervals using a UVmini-1240 (Shi-
madzu Scientific Instruments, Columbia, MD, USA) single-
beam spectrophotometer equipped with a 1 cm path-length

quartz cuvette (volume of ∼4mL). The instrument was set
up and corrected for scattering and baseline fluctuations after
running particle-free Nanopure Milli-Q (18.2MΩ) water on
daily basis prior to running water samples.

Water samples for fluorescence analysis were treated
in a similar manner as for absorption measurements. To
account for the inner filter effects (IFEs), samples reflecting
absorbance greater than 0.2 at 254 nm (A

254
≥ 0.2) were

diluted with particle-free Nanopure Milli-Q water (also
used as a blank). Excitation-emission matrices (EEMs) were
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generated using a Horiba Jobin Yvon Fluoromax-3P (Horiba
Scientific, Edison, NJ, USA) spectrofluorometer equipped
with a 150W ozone-free xenon arc lamp. The spectroflu-
orometer was set to collect the signal in ratio mode (S/R
mode) with dark offsets using a 5 nm bandpass on the excita-
tion as well as emission monochromators. Factory-supplied
correction factors were applied to the scans to correct for
instrument configuration. The EEM spectra were recorded
for excitation spectra from 240 to 450 nm at every 10 nm
intervals while the emission spectra ranged between 300 and
550 nm, with data saved for every 2 nm over an integration
time of 0.25 s. Absorption correctionswere applied to account
for inner filter effects in “Blank” and sample EEMs. Then,
corrected Milli-Q water (Blank) EEMs were subtracted from
the sample EEMs to eliminate any influence of Raman peaks.
Subsequently, EEMs were normalized to daily determined
water Raman integrated area under maximum fluorescence
intensity (350 ex/397 em, 5 nm bandpass) as suggested by
Lawaetz and Stedmon [28]. Using this approach, EEMs data
were normalized and reported in Raman Units (R.U.) which
in turn are quantitatively independent from any instrumental
parameters provided spectrally corrected data used. Finally,
the EEMs were multiplied with dilution factor (if samples
were diluted) to obtain the fluorescence intensity for the
original undiluted sample [5]. Consequently, the corrected
EEMs were exported in MATLAB 7.12 (MathWorks Inc.,
Natick, MA, USA) for premodel run steps.

2.4. DOM Characterization Using FH and CM PARAFAC
Models. Following EEMs exported in MATLAB, a premodel
step involves a mean centering across the samples to reduce
any offsets [29]. Then, each EEM scan was normalized to
1.0 by dividing the whole EEM by the maximum recorded
fluorescence intensity value for the sample to ensure that no
samples dominated the PARAFAC analysis [30]. Following
the procedures of EEM corrections and normalizations, data
were fit to a 13-component PARAFAC model developed
previously using 379 samples across the wide range of aquatic
environments [17]. Residual peaks were less than 10% after
fitting EEMs to the 13-component model, confirming that
EEMs obtained in this study were well fit to the CM model
[31].

The site-specific FH model was developed using the
DOMFluor toolbox (ver. 1.7; Feb. 2009) developed for MAT-
LAB by Colin Stedmon (NERI, Aarhus University, Den-
mark). Based on the Stedmon and Bro [32] study, PARAFAC
constraints, such as nonnegativity, and model initialization
values derived from singular value decomposition (SVD)
were used. The PARAFAC model development was initiated
using an EEMs dataset of 747 samples with 121 emission
and 22 excitation wavelengths without any assumptions on
the number of components (or distinct fluorophores), shape
of the resulting spectra, or structure of noise [32]. The
number of components (i.e., model validation) was achieved
by split-half analysis and by the visual analysis of residuals
and corresponding component loadings [19, 32]. Following
this methodology, six components were identified for the
dataset with some unexplained variability (less than 10%)

remaining in the residuals (Figure 2). A seven- (and eight-
) component PARAFAC model was rejected as they could
not be validated using split-half and random initialization
techniques suggesting that the selection of the six-component
model in this study is justified (Figure 2). High scattering
Raman and Rayleigh bands were set as missing data and
subsequently were removed to avoid any influence by these
values in the final dataset according to reported studies
[19, 32]. PARAFAC component scores as 𝐹max are reported
for each water sample collected in this EEM dataset. We
applied leverage and loading techniques [32] to identify
the outliers before a final PARAFAC model. After close
inspection of outliers in samples and in excitation-emission
loadings, 33 samples, one emission wavelength (300 nm),
and the first three excitation wavelengths (240, 250, and
260 nm) were discarded. At the end, the final PARAFAC
model was developed on the EEM dataset containing 714
samples, 62 emissions, and 19 excitationwavelengths to derive
six validated individual components (Figure 2). While the
PARAFAC model was built using 714 samples collected for
stormflow and baseflow over a 2-year period, here we present
results from 367 samples that include the baseflow sampling
and storm-event samples for litter leachate and throughfall.

Similar to the CM model, the % contributions of the
individual PARAFAC components for the FH model were
determined by dividing each component 𝐹max score by the
sum of the total fluorescence intensity (sum of 𝐹max scores
of all components). To supplement our assessment of the
PARAFAC components, we also include the concentrations
for DOC and DON and the values for selected DOM
metrics such as a

254
, HIX, and FI. The a

254
values were

calculated from the absorbance values using the equation
given by Green and Blough [33]. Humification index was
calculated according to Ohno [16] and provides a degree
of humification in DOM samples (values ranging from 0
to 1). Fluorescence index (FI) was calculated using a ratio
of fluorescence emission intensities computed at 470 and
520 nm with excitation intensity at 370 nm [17]. This index
has been used to differentiate between terrestrial (FI: 1.2 to
1.5) and microbial sources (FI: 1.6–2.0) [11].

2.5. Comparison of the Two PARAFAC Models. The two
PARAFAC models were compared using multiple appro-
aches. In the first approach, we compared the sum of the
two major fluorescing groups %humic-like and %protein-
like DOM from the two models for the watersheds sources.
An ANOVA analysis was performed to determine the degree
of differentiation among the watershed sources based on
data from the PARAFAC models. Additionally, a discrim-
inant function analysis was performed to identify whether
watershed sources could be differentiated by their PARAFAC
components. Sampling locations were selected as depen-
dent variables whereas humic-like and protein-like DOM
compositions were selected as independent variables for the
discriminant analysis. Wilks’ lambda distribution was used
for the forward stepwise selection of independent variables.
Finally, we investigated the correlations (Pearson) between
the sum of %humic- and %protein-like components against
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Figure 2: Spectral positions of excitation and emission loading maxima derived from the six-component PARAFAC model using split-half
validation technique are given in Table 1. Solid blue and red lines represent excitation and emission loadings for site-specific FHmodel. Dotted
and dashed black lines represent excitation and emission loadings, respectively, for two random halves of the complete dataset used for model
validation. Broken blue and red lines represent excitation and emission loadings for CMmodel. EEM contour plots of six different fluorescent
components identified by the site-specific PARAFAC (FH) model are shown in corresponding insets.
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the DOC and DON concentrations and the DOMmetrics of
a
254

, HIX, and FI. The intent here was to determine if the
strength of the correlations differed among the two models
and how they varied for watershed sources. All statistical
analysis was performed with MATLAB 7.12 and a JMP 9.0
statistical software package (SAS Institute Inc., Cary, NC,
USA).

3. Results

3.1. Components for the Fair Hill PARAFAC Model. A total
of six components were identified by the FH PARAFAC
model. Component 1 (FH1) was comprised of bimodal
excitation maximum peaks at 250 and 330 nm with an
emissionmaximumpeak at 460 nm (Figure 2(a) and Table 1).
This component is identified as humic-like in character and
resembles a mixture of A and C peaks described by Coble
[34]. The spectral characteristic of this component is close
to the “unknown” component 1 identified by the CM model,
despite having a red-shift of 10 nm in the emission maximum
obtained in our study.High concentrations of this component
(similar to FH1 component) have been reported by Stedmon
et al. (2003) in forest streams and wetlands [19]. Likewise, the
abundance of this component was reported for wetlands and
forest streams by Fellman et al. (2010) [35].

Component 2 (FH2) showed two peaks of excitation
maxima at 250 and 310 nm having an emission maximum at
400 nm (Figure 2(b) and Table 1). This component is similar
in spectral features to component 12 (Q3) of the CM model,
which has a fluorescence comparable to oxidized quinone-
like DOM moieties. Previous studies have attributed the
origin of this component to the presence of biologically
labile organic matter primarily rich in aliphatic carbon
content (e.g., Table 1, [3, 35, 36]). Cory and McKnight (2005)
suggested that the microbial origin of this component existed
typically in oxidized environments whereas Yamashita et
al. (2010) attributed the microbial origin to autochthonous
production of biologically labile organic matter (e.g., Table 1,
[17, 37]).

Component 3 (FH3) is characterized by two excitation
maximum peaks at 250 and 410 nm, respectively, with a well-
defined emission peak at 512 nm (Figure 2(c) and Table 1).
This is similar to the semiquinone (SQ1) component identi-
fied in the CM model. Yamashita and Jaffé (2008) attributed
the abundance of this component (C2, Table 1) to terrestrial
organic matter rich in humic content, thus, indicating its
origin from higher vascular plants [3]. Component 4 (FH4;
Figure 2(d)) had an emission maximum at 460 nm with a
bimodality in excitation wavelengths at 250 and 370 nm.This
component is similar to “C” peak in spectral characteristics
mainly reported for organic matter of terrestrial origins
[34]. Cory and McKnight [17] reported this component as
semiquinone (SQ2) and attributed its origin to microbial
activity in reducing conditions (Table 1). This DOM fraction
has also been reported as DOM of high molecular weight
and high aromaticity derived mainly from terrestrial inputs
[35].

Component 5 (FH5) and component 6 (FH6) pos-
sessed single excitation/emission peaks at 280/328 nm and
270/312 nm, respectively (Figures 2(e) and 2(f); Table 1).
These two components are comparable to C8 and C13 as
reported in the CM model and are attributed to microbial
origin. Components C7 and C8 of the Alaska model of
Fellman et al. (2010) are similar to FH5 and FH6, respectively,
and have been reported as “free” tryptophan- and tyrosine-
like DOM moieties [35]. These protein-like components
could together be an indicator of DOM lability and bacterial
production in the watershed [39].

3.2. FH PARAFAC Components for Watershed Sources. The
distribution of FH PARAFAC components for DOM from
various watershed sources at our site is illustrated in Figures
3(a)–3(f). Median value of component FH1 was highest
(0.42 R.U.) for litter leachate followed by wetland soil water
(0.37 R.U.) and throughfall (0.36 R.U.) (Figure 3(a)). Riparian
water (0.19 R.U.), seep (0.21 R.U.), and deep groundwater
(0.14 R.U.) samples recorded the lowest median values for
component FH1. The largest variability in FH1 values was
observed for riparian, seep, and deep groundwater sources.
Overall, FH1 displayed a decreasing trend from surface to
subsurface watershed compartments (Figure 3(a)). Median
values for component FH2 were highest in soil pore waters
and seep (both, 0.30 R.U.), followed by hyporheic (0.29 R.U.)
and stream (0.28 R.U.) water samples. Wetland soil water
and shallow and riparian groundwater (all, 0.25 R.U.)
recorded intermediatemedian values for the component FH2
(Figure 3(b)).The lowest median value for FH2 was noted for
deep groundwater (0.22 R.U.). Again, similar to FH1, a large
variability in FH2 values was observed for riparian and seep
water samples.

For the soil-derived humic-like component (FH3),
median values of 𝐹max were highest in the wetland soil
water (0.23 R.U.) and litter leachate (0.22 R.U.) and lowest in
deep groundwater (0.07 R.U.) (Figure 3(c)). Similar to the
trend for FH1, the FH3 values for tension soil pore water
(0.16 R.U.) were much lower than the zero-tension wetland
soil water. Overall, FH3 displayed a trend similar to FH1
indicating a decrease in humic-like DOM from surficial
watershed sources to groundwater DOM sources. Median
value for visible humic-like component (FH4) was higher in
throughfall (0.14 R.U.) compared to litter leachate (0.11 R.U.;
Figure 3(d)). Thereafter, median values for FH4 were highest
for wetland soil water and then decreased for groundwater
sources.

The two protein-like components (FH5 and FH6)
revealed similar trends across the watershed sources (Figures
3(e) and 3(f)). Median 𝐹max values for FH5 and FH6 were
lowest for litter leachate and highest for the groundwater
sources including riparian, seep, and deep groundwater.
Median values for throughfall for both components were
greater than litter indicating that throughfall was enriched
in protein-like DOM. Compared to FH6, FH5 displayed
a higher variability for groundwater sources that included
riparian, seep, and deep groundwater. In contrast, FH6
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Table 1: Descriptions of the six PARAFAC identified components for the EEM dataset of Fair Hill site and their comparison with previously
reported studies.

Components
(Ex/Em in nm)

Designated
peaks/components in
previous studies∗

Descriptions Sources/environments reported in previous studies

FH1 (<250 [330]/460) C21, A peak3, C14, C15,
C16, C17, C38, C19

Humic-
like/unknown/UVC-
humic-like/fulvic-
like

Both terrestrial and marine [34]; both oxidized and reduced
[17]; river, estuarine, and near-shore marine ecosystems;
common to wetlands/forest streams [35]; terrestrial humic
origin [36]; terrestrially derived OM, highest concentration in
forest streams and wetlands [19]; observed in bay coastal areas in
surface waters, low at the bottom [3]

FH2 (<250 [310]/400) C61, Q34, C45, C36,
C47, C48, C39

Unknown-
nonhumic/quinone-
like
(lawsone)/humic-
like

Microbial origin, aliphatic C; oxidized environment [17]; river,
estuarine, and near-shore marine ecosystems; aliphatic C [35];
labile matter; biological production in the water column [36];
combination of N and T peaks, autochthonous and biologically
labile component [3]; microbial origin [37]

FH3 (<250 [410]/512) C51, D region2, SQ14,
C35, C46, C28, C29

Soil-fulvic-like/semi-
quinone-like/humic-
like

Black Sea [10]; aromatic C; reducing conditions; higher plant
matter [17]; river, estuarine, and near-shore marine ecosystems;
higher aromatic content [35]; derived from agricultural
catchments and exists in fresh water environments [36];
terrestrial origin, biogeochemical processing of terrestrial POM
[3]

FH4 (<250 [370]/460)
C11, C peak3, SQ24,
C25, C26, C37, C58,
C49

Humic-like/semi-
quinone-like/
Humic-like

Both terrestrial and marine [34]; microbial origin; reducing
conditions [17]; river, estuarine, and near-shore marine
ecosystems; high molecular weight/aromatic [35]; terrestrial
humic origin, related to terrestrial particulate organic matter
[36]; high molecular weight fraction of terrestrially derived
humic matter, common to wide range of fresh water
environments [19]; terrestrial origin [3]; microbial humic [37]

FH5 (280/328) C71, T peak3, C84,
C75, C57, C78, C59

Protein-like
(tryptophan)/UVB
protein-like
(tryptophan)

Both terrestrial and marine [34]; microbial origin [17]; river,
estuarine and near-shore marine ecosystems;
free-tryptophan-like [35]; combination of N and T peaks, labile
matter, autochthonous DOM [19]; tryptophan-like, blue shifted
from authentic tryptophan, autochthonous, biologically labile
[3]; freshly produced tryptophan-like DOM [37]

FH6 (270/312) B peak3, C134, C85,
C88

Protein-like
(tyrosine)

Both terrestrial and marine [34]; River, estuarine, and
near-shore marine ecosystems; free-tyrosine-like [35]; tyrosine
like, degradation processes important for the dynamics of this
component [3]

∗[38]1, [10]2, [34]3, [17]4, [35]5, [36]6, [19]7, [3]8, [37]9.

revealed a larger range of variability for stream and shallow
groundwater samples.

3.3. DOM Concentrations and Metrics for Watershed Sources.
DOC and DON concentrations for the entire sample set and
values for selected DOM metrics (a

254
, HIX, and FI) are

presented in Figure 4. Both DOC and DON concentrations
were the highest in surficial sources, especially litter leachate
(Figures 4(a) and 4(b), resp.), and declined rapidly from
soil water to groundwater sources. The lowest DOC con-
centration was recorded for groundwater seeps (Figure 4(a)).
The values for a

254
and HIX, which provide a measure of

DOM aromaticity and humic content, respectively, were also

highest for surficial watershed sources and lowest in deep
groundwater (Figures 4(c) and 4(d), resp.). In contrast, FI,
which has been used to indicate DOM of microbial origins
[11], revealed an opposite trend with low values for surficial
sources (except throughfall) and high values for groundwater
sources (Figure 4(e)).

3.4. Comparison of the FH and CM Models for Humic-
and Protein-Like Components. The comparison of the sums
of the humic- and protein-like DOM components for the
FH and CM models is presented in Figure 5. Summation
of the humic-like components for the FH model included
components FH1, FH3, and FH4 while for the CM model
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Figure 3: Spatial distributions of each PARAFAC component (a) FH1, (b) FH2, (c) FH3, (d) FH4, (e) FH5, and (f) FH6 over the two-year
study period (2008-2009) across watershed compartments. Red lines in the box-plot represent median values and red-filled circles represent
mean values connected with broken red lines. Empty circles represent outlier data points.

they included components C1, C5, and C7. Similarly, the
sum of components FH5 and FH6 represented the protein-
like DOM for the FH model while comparable compo-
nents from the CM model included C8 and C13. Overall,
compared to the CM model, the FH model generated a

greater contrast in humic-like and protein-like components
among the watershed sources (Figure 5). The FH model also
displayed greater variability in humic- and protein-like DOM
for individual watershed sources (as indicated by the error
bars in Figure 5) as opposed to the CM model. In addition,
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Figure 4: Spatial distributions of DOM quantity and quality parameters (a) DOC, (b) DON, (c) a
254

, (d) HIX, and (e) FI over the two-year
study period (2008-2009) across watershed compartments. Red lines in the box-plot represent median values and red-filled circles represent
mean values connected with broken red lines. Empty circles represent outlier data points. (a), (b), and (c) are log-scaled data for 𝑦-axis to
capture distinctiveness in data.

the % values for the humic-like DOM fractions in surficial
sources were much greater for the FH model versus the CM
model. Similarly, the %protein-like DOM values for ground-
water sources were considerably greater for the FH model
compared to the CM model. For the FH model, the relative

contribution of %humic-like DOMfluorescence ranged from
18% in deep groundwater to 67% in litter leachate samples,
reflecting an almost fourfold increase of humic-like DOM
for surficial sources (Figure 5(a)). In contrast, for the CM
model, the highest %humic-like contribution was only 26%
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Figure 5: Distributions of (a) %humic-like, (c) %protein-like DOM composition derived using site-specific PARAFAC (FH model) across
watershed sources are shown. Sources represented with same letters are not significantly different. Results for the same using CMmodel are
shown in (b) and (d), respectively. Standard deviation from means is shown using error bars.

in throughfall, approximately 1.5 times greater than that
for deep groundwater (16%, Figure 5(b)). ANOVA on the
%humic-like DOM derived from the FH model yielded six
distinct classes or categories among the watershed sources
(A to F, Figure 5(a)) while the same analyses for the CM
model yielded five distinct classes (A to E, Figure 5(b)). The
FH model was able to differentiate (𝑝 < 0.05) between
throughfall (TF) and litter leachate (LT) while the same
distinction was not possible with the CM model. Similarly,
the FH model indicated that litter leachate and wetland
soil water were significantly different while the same was
not true for the CM model. For groundwater sources, CM
model values resulted in a significant difference between
the %humic-like DOM for riparian and deep groundwater
samples, which was however not replicated by the FHmodel.

Despite differences, both models produced the same
broader trend, that is, a decrease in humic-like DOM from

surficial sources to groundwater sources with a simultane-
ous increase in %protein-like DOM. With respect to the
%protein-like components, the FH model values ranged
from 11% for litter leachate to 68% for deep groundwater
(Figure 5(c)). In contrast, the range for the CM model
was narrower with minimum for litter leachate at 3% to a
maximum for deep groundwater at only 15%. However, while
the absolute %protein-like DOM values differed substantially
among the models, ANOVA analyses indicated that both
models classified the watershed sources into five distinct
classes. The FH model indicated that throughfall samples
were not significantly different from stream, hyporheic, and
shallow groundwater for %protein-like DOM (Figure 5(c)).
In contrast, the CMmodel suggested that throughfall was sig-
nificantly different from all otherDOMsources (Figure 5(d)).
Similarly, CM model values indicated that %protein-like
DOM for the litter samples was not significantly different



Journal of Ecosystems 11

from that of wetland soil water, contradicting the results
obtained with the FH model.

3.5. Discriminant Analyses for Watershed Sources Using FH
and CM PARAFAC Models. Forward stepwise discriminant
function analysis using FH and CM models revealed dis-
tinct differences among DOM for watershed compartments
(Figure 6). For each watershed source, the centroid of the
data along with the circle representing the 95% confidence
region is displayed (Figure 6). Riparian groundwater has a
large confidence region, probably due to the small sample
size (𝑛 = 12) whereas stream samples have the smallest
confidence region, likely, due to larger sample size (𝑛 = 82).
Biplot rays indicate the direction of variables (humic-like and
protein-likeDOMcompositions) used in space. However, the
entire separation (100%, 𝑝 < 0.001) in both the cases (FH and
CM models) occurred along the first dimension and humic-
like or protein-like DOM characteristic appears to provide
good separation. For the FH model, the first discriminant
function (Dimension 1) accounted for 81% (𝑝 < 0.001) of
the group (watershed sources) variation, while Dimension 2
accounted for the remaining 19% (𝑝 < 0.001) (Figure 6(a)).
In comparison, the same dimensions (1 and 2) explained 77%
(𝑝 < 0.001) and 23% (𝑝 < 0.001), of the variability for the
CMmodel (Figure 6(b)).The key observations that come out
of these analyses are (a) overall, bothmodels indicate a similar
broader trend with seep, riparian, and deep groundwater
clustered in the protein-like region while the remaining
watershed sources are located in the humic-like region of the
plots; (b) in comparison to the CM model, the FH model
displays greater separation among watershed sources which
is apparent from the reduced overlap of the circular source
regions (95% confidence region); and (c) there are slight
differences in how the sources are spatially positioned in the
discriminant space for the two models. In the CM model
space, throughfall is further away from the other humic-like
sources; however in the FH model it appears much closer to
the other humic-like sources with the exception of tension
soil water (U).

Discriminant analysis was used to determine if separation
existed between watershed sources based on DOM charac-
teristics (humic- and protein-like DOM composition). This
separation was determined using Wilks’ lambda multivariate
test statistic.Wilks’ lambda values for FHandCMmodelwere
0.11 (F = 75.88, 𝑝 < 0.001) and 0.17 (F = 56.12, 𝑝 < 0.001),
respectively. Hence, the greater between-groups variation
(separation between watershed sources) as a proportion of
the total variation is explained by larger F statistic observed
in case of FHmodel and the larger theWilks’ lambda statistic,
the greater is the within-group variation as a proportion
of the total variation as noticed for the CM model (also
low F statistic suggesting lower between-group variability
is explained in the case of CM model). Overall, discrim-
inant function analysis revealed a significant association
between-watershed sources and DOM characteristics (based
on humic- and protein-like DOM composition) for FH
model accounting for 59% of between watershed sources
variability, thus correctly classifying the groups (watershed

sources) from which samples were collected. In comparison
only 51% correct classification (samples predicted belong
to the same watershed source) was obtained for the CM
model. Biplot rays showed that DOM characteristics were
the major factor contributing to the discrimination between
watershed sources which is further indicated by the length (or
magnitude) of the rays (or vectors) in FH model.

3.6. Correlation between PARAFAC Model Components and
DOM Parameters. The correlations between the sum of
humic-like and protein-like components from the FH and
CM models against DOC and DON concentrations and
metrics a

254
, HIX, and FI are presented in Table 2. One of the

most significant results coming out of this comparison was
that, overall, the correlations between the FH model com-
ponents and the DOM parameters were much stronger than
the corresponding values for the CM model. This suggested
that the FH model characterized DOMmore accurately than
the CM model. Among watershed sources, the correlations
for both FH and CM models were generally weakest for
litter and throughfall underscoring the wide variability in
DOM composition for these watershed sources. In contrast,
correlations were strongest for wetland soil water and shallow
groundwater. Across most watershed sources, the humic-like
components were positively correlated and the protein-like
components were inversely correlated with both DOC and
DON(the correlationswithDOCbeing stronger).Thiswould
suggest that both C and N fractions of DOM contained a
greater fraction of humic DOM. Not surprisingly, in most
cases, humic-like components were positively correlated with
both a

254
and HIX while the protein-like components were

positively correlated with FI. This supports the aromatic
nature of the humic-like components and the microbial
origins of the protein-like DOM.

4. Discussion

4.1. DOM Characterization for Watershed Sources Using
the Site-Specific FH Model. This study revealed a marked
variability in humic-like components (FH1, FH3, and FH4)
across the watershed sources. Surficial sources (litter leachate
and wetland soil water) were especially high in humic-like
DOM,whereas groundwater sources, namely, riparian, seeps,
and deep groundwater, were not significant contributors of
humic-like DOM.These observations are in accordance with
previously reported studies [1, 38] as well as our own previous
characterization of DOM for this study site based on the CM
model [23]. The lack of humic DOM pool for groundwater
samples could be attributed to dilution [38] or processes
such as sorption and microbial degradation. For instance,
Kalbitz and Geyer [40] reported that sorption phenomena
with soil mineral surfaces could potentially reduce the humic
content of DOM along the hydrologic flow path or as
runoff water percolated through the soil profile. Similarly,
groundwater sources are prone to microbial decomposition
which can result in a significant drop in humic-like DOM in
groundwater [38]. The decrease in humic-like components is
also supported by DOM concentrations and metrics like a

254
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Figure 6: Scatter plot of discriminant function analysis showing separation of watershed sources for humic-like and protein-like DOM
components based on (a) FH model and (b) CMmodel results. The extension of biplot rays indicates the strength of correlation between the
measured variables.

and HIX (Figures 4(c) and 4(d), resp.). Both a
254

and HIX
reveal a substantial decrease in values moving from surficial
to groundwater sources. Using the UV absorbance values and
the equation proposed byWeishaar et al. (2003), we observed
lowest aromaticity in subsurface samples (ranged from 14% in
deep groundwater to 21% in seep samples) thus corroborating
our finding of low aromaticity in subsurface or groundwater
samples [9]. Similarly, DOC concentrations in groundwater
sources were lower than those for surficial sources suggesting
that humic-rich DOC is preferentially sorbed to soil along
the hydrologic flow path and/or is degraded by microbial
decomposition into lower molecular weight DOM [41–43]. It
should be noted that compared to litter leachate, the character
of throughfall DOMwas much less humic and more protein-
rich, indicating a release of less humic and more degradable
compounds for the forest canopy.

In contrast to the decrease in humic-like components, rel-
ative percent of the protein-like components (FH5 and FH6)
increased from surficial to groundwater sources (Figure 3).
The increasing trend of protein-like fluorescence is supported
by an increase in FI values indicating a greater influence
of DOM of microbial origin of DOM (Figure 4). Similar
observations have previously been reported by Chen et
al. (2010) and Williams et al. (2010) [6, 38]. There was a
sharp shift in the protein-like components (FH5 and FH6)
between shallow groundwater (SGW) and riparian, seep, and
deep groundwater (Figures 3(e) and 3(f), resp.). The shallow
groundwater sampled the full soil profile in the wetlands
while the other three sources represented water from deeper
in the soil profile. Clearly this change had a substantial impact
on the protein-like fluorescence of DOM. Furthermore, it
should be noted that there were slight differences in the trend
for FH5 and FH6 components across watershed sources. FH5

is considered to represent the relatively “fresher” protein-
like DOM moieties (tryptophan) whereas FH6 represents
more degraded (tyrosine) protein-like fractions [44]. The
higher 𝐹max values for FH6 at riparian, seep and deep
groundwater (compared to FH5) locations would tend to
suggest the existence of more degraded protein-like DOM at
these locations. Chen et al. (2010) have also reported more
degraded protein-like DOM for groundwater [38].

4.2. Comparison of Site-Specific versus Prevalidated PARAFAC
Models for Characterizing DOM. The only previous compar-
ison of a site-specific versus a pre-validated model was per-
formed by Fellman et al. (2009)who compared theCMmodel
against a model (referred to as AK) developed from 307
EEMs of soil and streamwater samples from southeast Alaska
[21]. They compared the two models by (i) examining the
EEM residuals obtained from CM model and (ii) determin-
ing the correlations between PARAFAC model components
and measurements such as DOC and DON concentrations,
%bioavailable DOC, and DOM components determined
from GC/MS analyses [21]. Based on the EEM residuals, they
found that among stream and soil water samples, the CM
model did a poor job in fitting the soil water samples from
upland and wetland sites. This result may not be surprising
considering that the CM model was developed primarily
using EEMs from a diverse range of aquatic ecosystems and
was not optimized for forested and soil dominated systems.
In addition, while comparing the protein-like PARAFAC
components against DOM concentrations, Fellman et al.
(2009) found that while the twomodels were not significantly
different in predicting DOM concentrations, the CM model
explained slightly less variation than the site-specific model
[21].
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Table 2: Correlations between DOM composition (%humic-like or %protein-like, derived from FH and CMmodel; see text for details) with
measured DOM concentrations (DOC and DON) and DOM metrics (derived from UV and fluorescence measurements) across watershed
sources.

Watershed sources DOM composition DOC DON a254 HIX FI

TF

%Humic-like (FH) 0.05 0.34 0.30 0.94 −0.23
%Humic-like (CM) 0.13 0.49 0.31 0.41 0.46
%Protein-like (FH) 0.01 −0.27 −0.22 −0.99 0.30
%Protein-like (CM) −0.05 −0.27 −0.19 −0.90 0.33

LT

%Humic-like (FH) −0.05 −0.04 0.09 0.88 −0.52
%Humic-like (CM) −0.18 −0.15 −0.23 0.12 −0.20
%Protein-like (FH) 0.05 −0.15 −0.27 −0.99 0.08
%Protein-like (CM) 0.04 0.05 −0.07 −0.92 0.40

U

%Humic-like (FH) 0.66 0.42 0.72 0.97 −0.24
%Humic-like (CM) −0.12 −0.15 −0.04 0.06 0.40
%Protein-like (FH) −0.64 −0.45 −0.68 −0.99 0.22
%Protein-like (CM) 0.23 0.43 0.12 −0.32 −0.23

WSW

%Humic-like (FH) 0.72 0.38 0.78 0.98 −0.29
%Humic-like (CM) 0.31 −0.03 0.39 0.39 0.16
%Protein-like (FH) −0.73 −0.45 −0.78 −0.99 0.18
%Protein-like (CM) −0.55 −0.28 −0.61 −0.93 0.26

ST

%Humic-like (FH) 0.64 0.46 0.65 0.98 −0.23
%Humic-like (CM) 0.11 0.09 0.23 0.32 −0.15
%Protein-like (FH) −0.63 −0.43 −0.60 −0.99 0.11
%Protein-like (CM) −0.53 −0.22 −0.52 −0.79 0.15

HY

%Humic-like (FH) 0.42 0.48 0.47 0.96 −0.60
%Humic-like (CM) 0.05 0.02 0.05 0.41 −0.36
%Protein-like (FH) −0.47 −0.45 −0.52 −0.99 0.42
%Protein-like (CM) −0.25 −0.18 −0.35 −0.73 0.42

SGW

%Humic-like (FH) 0.94 0.71 0.85 0.99 −0.87
%Humic-like (CM) 0.89 0.66 0.82 0.90 −0.76
%Protein-like (FH) −0.90 −0.67 −0.79 −0.99 0.80
%Protein-like (CM) −0.84 −0.61 −0.72 −0.92 0.77

RGW

%Humic-like (FH) 0.46 0.46 0.83 0.99 −0.52
%Humic-like (CM) 0.20 0.28 0.72 0.88 −0.56
%Protein-like (FH) −0.48 −0.44 −0.82 −0.99 0.53
%Protein-like (CM) −0.22 −0.04 −0.64 −0.79 0.85

P

%Humic-like (FH) 0.47 0.11 0.30 0.99 0.20
%Humic-like (CM) 0.27 −0.01 −0.02 0.77 0.30
%Protein-like (FH) −0.48 −0.11 −0.30 −0.99 −0.24
%Protein-like (CM) −0.25 −0.09 0.08 −0.79 −0.38

DGW

%Humic-like (FH) 0.41 0.17 −0.11 0.99 −0.21
%Humic-like (CM) 0.47 −0.08 −0.18 0.69 −0.34
%Protein-like (FH) −0.31 −0.17 0.12 −0.99 0.09
%Protein-like (CM) 0.14 0.41 0.17 −0.58 0.42

All correlations significant at 𝑝 < 0.05.

We took a slightly different approach than Fellman et al.
(2009) in that we directly compared the ability of the two
models (CMversus our own FHmodel) to differentiateDOM
fromvariouswatershed sources [21].Wedid not use the resid-
ual EEM approach as used by Fellman et al. (2009) because
while fitting the CM model we retained only EEMs that had
residuals less than 10% [21]. The direct comparison between

CM and FH models was possible because of the wide variety
of watershed sources that were sampled in our study and the
large dataset associated with each source. Our results clearly
showed that the FHmodel was muchmore sensitive to subtle
variations in DOM and did a much better job in highlighting
the differences in DOM among watershed sources. This was
highlighted both by the model differences in humic-like and
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Table 3:Mean (standard deviation) values for the changes in humic-
and protein-like DOM composition between FH and CM models
across watershed sources in this study.

Watershed
sources

Sample size
(𝑛)

Change in
%humic-like

Change in
%protein-like

TF 37 0.99 (0.22) 2.94 (0.53)
LT 42 1.65 (0.14) 2.16 (0.51)
U 24 1.49 (0.13) 3.34 (0.73)
WSW 49 1.45 (0.22) 3.74 (0.90)
ST 82 1.07 (0.30) 4.78 (1.24)
HY 27 1.14 (0.20) 4.31 (0.96)
SGW 29 1.12 (0.47) 3.98 (1.16)
RGW 12 0.27 (0.34) 4.30 (1.61)
P 37 0.29 (0.31) 4.17 (1.38)
DGW 28 0.06 (0.22) 3.78 (1.16)

protein-like components as well as the spatial separation of
watershed sources in discriminant analysis (Figure 6). Not
only did the FH model allow greater differentiation among
watershed sources, but the sum of humic- and protein-like
model components also yielded stronger relationships with
DOC and DON concentrations, thus providing important
insights into the ecological nature of theC andN inwatershed
pools. Among the humic-like and protein-like components,
the differences between FH and CM models were higher
for the protein-like components (Table 3). This suggests that
in our study the CM model tended to underpredict the
protein-like moieties for watershed sources. This assessment
was also recently alluded to by Larsen et al. (2010) who
implemented the CM model to characterize DOM for the
ridge and slough landscape in the Florida Everglades [22].
Larsen et al. (2010) found that the highest EEM residuals were
associated with the protein-like components which meant
that the model had limited capability in resolving these
compounds [22].They further speculated that the inability to
correctly resolve these reactive protein-like compounds could
hamper our understanding of associated processes such as
rapid microbial uptake and photo-degradation.

In light of the results from this study and the observations
previously made by Fellman et al. (2009) and Larsen et al.
(2010), we suggest that CM model would be appropriate to
characterize DOM and should be implemented where (a)
EEMs data is not sufficient to develop a PARAFACmodel, (b)
broad trends in DOM are required, and/or (c) DOM com-
parisons between disparate watershed sites are performed
[21, 22]. However, we suggest that developing a site-specific
PARAFAC model should be a preferred approach given that
a long-term EEM data is available. Given the sensitivity of
our results, a site-specific model could do a slightly better
job in characterizing the differences in DOM composition
among watershed sources, seasonal or spatial patterns in
DOM composition and consequently a better understanding
the potential processes (e.g., photodegradation, microbial
uptake, and sorption) affecting fate and transport of DOM.

5. Conclusions

This study compared a site-specific PARAFAC model (FH
model) against a prevalidated PARAFACmodel [17] for char-
acterizing DOM composition in a forested, headwater water-
shed.The PARAFACmodels were developed for fluorescence
EEMs determined for various watershed sources including
throughfall, litter leachate, wetland soil water, stream water,
hyporheic zone, shallow and deep groundwater, and ground-
water seeps. The site-specific model was more sensitive to
subtle differences in DOM and was able to provide a greater
level of distinction amongwatershed sources.Thehumic- and
protein-like constituents derived from the site-specificmodel
displayed more pronounced differences among watershed
sources compared to the prevalidated model. DOC and
DON concentrations and selected DOM metrics were also
more strongly correlated with components of the site-specific
PARAFAC model versus the prevalidated model. These
results suggest that while a prevalidated PARAFAC model
may capture the broad trends in DOM composition and
may allow comparisons with other study sites, a site-specific
model will do a better job in characterizing within-watershed
differences in DOM and consequently provide important
insights into processes and mechanisms influencing DOM.
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