
Behavioral Modeling of RF Systems With VHDL

by

Anil Sama

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

APPROVED:

De Aames R. Armstrong, Chairman ve

Dr. Walling R¥ Cyre Dr. a G. Tront

May, 1991

Blacksburg, Virginia

C, YY
LQ

a

N
O

Y
O

O
O

—
|

W
S

=
>

5 268
C.2

Behavioral Modeling of RF Systems With VHDL

by

Anil Sama

Dr. James R. Armstrong, Chairman

Electrical Engineering

(ABSTRACT)

Behavioral modeling of RF systems with VHDL is considered and a modeling method-

ology is developed for modeling the I/O response of these systems. A Pulsed Doppler

radar system is chosen as a representative system, and a VHDL model for this system

is presented. The modeling approach and the working of the model are explained, and

some example runs are provided. Some problems that are posed by VHDL in attempt-

ing to model the behavior of RF systems are discussed, along with the solutions that we

adopted.

A fault diagnosis methodology for systems of this type that uses information about the

behavior of the system (extracted from a VHDL model of the system) is discussed, and

an example is presented.

Acknowledgements

I would like to thank Dr. James Armstrong for his support and guidance throughout this

project. I would also like to thank Dr. Walling Cyre and Dr. Joseph Tront for serving

as members of my committee.

In addition, I would like to acknowledge the General Dynamics Corporation for their

support and funding of this project.

Acknowledgements iii

Table of Contents

Chapter 1. Introduction. 2.0... .. 2. cc cc ce ccc cece eee eee eee ee eee eee eee eee 1

1.1. Motivation 0... 0... eee ee teen eee ee eee tne eens 1

1.2. Features of VHDL .. 1... ee ee ee eee ee ene eee eens 2

Chapter 2. An Example RF System 2.0... . cece ccc eee ere eee rece tee ee eee eenens 5

2.1. Radar - An RF System .. 0... ce ce ee ne ee eee nee e eens 5

2.2. Overview of Radar 2... eee een eee teen ee 6

2.3. Specifics of the Radar System 2.6... ee eee nee eee 11

Chapter 3. The Radar System Model 0. ccc cece cece ere e eee e eee e ees 13

3.1. The Top Level Entity 2.0... cc eee eee eter eee e ees 13

3.2. System Model Operation 0... cece eee ene eee ena 23

3.3. An Example Run... ccc ce ce eee te ee ee erent eee eees 27

Chapter 4. Modeling Methodology ccc ccc sce cere cree e teers e eee eees 32

4.1. Modeling Methodology 0... . eee eee ee eee eee eee e eee 32

4.2. The Package RADAR 0... ce ce ee ee eee ee ee eens 34

Table of Contents iv

Chapter5. The Entities of the Radar System Model 000. cccceeeenesceceees 46

5.1. The Entity Descriptions 2.0.0... 0... cc ee ee ee ee eee eens 46

Chapter 6. Some Problems Posed by VHDL and VHDL Tools) 2... eee eee eee 74

6.1. Type Conversions 2.0.0... ee te eee nee ee eee eens 75

6.2. The Range Restriction Problem 0.2.0... ccc eee ee tee nea 76

6.3. Problems Posed by VHDL Tools 2.1... . cee eee eee eae 79

Chapter 7. A Fault Diagnosis Methodology ccc cece cece cece eee e ee eaee 84

7.1. Introduction 2.0... eee cc eee ee ee eee e een eee eens 84

7.2. Hierarchy of Paths of Interaction 2... 0.0.0... . cece eee eee e nes 91

7.3. Discrepancy Detection & Constraint Suspension 0.022. cee eee eee 91

7.4. A Diagnosis Example ee ee ee ee eet ne eens 97

Chapter 8: Conclusions 2.0.0.0... 0 ccc cece eee tee eee tee e eee e ee teeees 106

8.1. Conclusions 2.2... ce ee nee ee eee ee eee eee teens 106

Bibliography 2.0... cc eect eee ee eee eee eee eee eee eee estes ences 107

Appendix A. The Package Body ccc eee e eee r eee e cect newer ene eeeees 108

Appendix B. Constraints for the Diagnosis Example0c cece veer eeees 116

Appendix C. Pascal Code for the Noise File 2... cece cece cece eee eee eens 120

Appendix D. Pascal Code for the Targets File. 20... 0... ccc cere ee ee ce ee te eee 121

Table of Contents v

Table of Contents vi

List of Illustrations

Figure

Figure

Figure

Figure

Figure

. The Basic Elements of a Radar System cece eee ee eee 7

Operation of Pulsed Doppler Radar cc cece eee eee eee 8

Observed Doppler Shift . 1... 0... ccc eee eee eee ee 10

Block Diagram Representation of the System Model 14

The Diagnosis Example 1... 0... . ccc cece eee ee eee eens 96

List of Illustrations vii

Chapter 1. Introduction.

1.1. Motivation

Hardware description languages have traditionally been used to model digital circuits of

varying sizes and complexity. These languages have been used for modeling at varied

levels of abstraction; from the transistor or switch level up to the system level.

One such hardware description language is the VHSIC Hardware Description Language

(VHDL) [4]. VHDL has proven to be a very powerful hardware description language

and judging from the events during the past few years, 1t seems to be fast becoming the

industry standard.

Up until recently, the power of VHDL has been demonstrated by modeling a wide range

of digital circuits and systems. Work is being successfully done in using VHDL not only

for chip level and system level design validation, testing, and documentation, but also

as a very powerful tool for synthesis from behavioral descriptions, as was recently dem-

onstrated at the VHDL 1991 Spring Users Group Conference [10]. However, little work

Chapter 1. Introduction. 1

exists in the literature to date as far as the behavioral modeling of analog or mixed

(digital and analog) systems is concerned. This is a growing area of interest and it is

hoped that VHDL can prove to be a powerful tool in this area as well.

The prime objectives of this thesis have been to :

1. Assess the capability of VHDL as a tool to model the behavior of analog and mixed

systems. By modeling the behavior of analog systems, we mean the modeling of the

1/O response, and not the detailed electrical response of these systems.

2. To determine if these behavioral models could be used for system level fault diag-

nosis, and to suggest a fault diagnosis methodology for them.

This thesis concentrates on the first objective in considerable detail, in attempting to

establish a modeling methodology for RF systems at the behavioral level, and takes a

cursory look at the second objective, 1.e., suggests a fault diagnosis methodology.

Modeling of analog systems in VHDL is a very young area of research, but one of

growing interest, and it is hoped that this research provides some insight and ideas for

future efforts.

1.2. Features of VHDL

VHDL has a few important unique features that make it suitable for attempting to

model analog behavior. In particular, four features of VHDL that distinguish it from

Chapter 1. Introduction. 2

other hardware description languages, and that make it suitable to model the behavior

of analog systems are:

1. The capability of performing real number arithmetic. This capability is combined

with an algorithmic approach not much unlike that of a high level programming

language. Aside from performing the basic arithmetic operations (addition, sub-

traction, multiplication, division), this gives users the flexibility to define their own

procedures and functions and expand the arithmetic capability of VHDL.

2. The definition and use of abstract data types. Apart from the basic pre-defined

types like BIT, INTEGER, REAL, TIME, etc. VHDL allows users to define their

own data types. Abstract data types can be defined as desired, and their units and

scope can also be specified. VHDL also allows the definition of signals as a record

of abstract data types. This allows basic analog types to be defined, and then an

analog signal can be defined as a record of these basic analog types. Each field of

this record then specifies some property of the analog signal.

3. The use of the WAIT statement. The WAIT statement is a VHDL construct that

allows for realistic modeling. Timing can be incorporated into the model using the

WAIT statement, which allows processes to be suspended till some condition is met.

It also lets the user incorporate delay into the model, so as to model real hardware

more accurately.

4. The use of File 1/0. VHDL File I/O (and TEXTIO) lets the user input and output

data into and from the simulation under simulation control. Analog signal data (for

example random signal data generated by an external program and written to a file)

can thus be generated outside of VHDL and inputted to the model by File I/O. This

Chapter |. Introduction. 3

is specially useful when simulations are required to be repeatable; for example in

diagnosis or testing areas. Similarly, output data from the model can be written out

to a file for further processing.

These features, are unique to VHDL and as will be seen in later chapters, are instru-

mental in allowing us to model analog behavior, and make VHDL a suitable language

for modeling analog systems.

Chapter 1. Introduction. 4

Chapter 2. An Example RF System

2.1. Radar - An RF System

In order to develop a methodology for the behavioral modeling of RF systems, we need

a representative RF system. A RADAR system proves to be an excellent example of

an RF system for this purpose. Radar systems are widely used and are fairly complex.

They include many of the basic analog entities like amplifiers, mixers, transmitters, re-

ceivers, etc. Moreover, these systems are good examples of mixed type systems and

contain both analog and digital sub-systems. Certain aspects of radar systems like the

representation of radar targets, antenna movement, and the search for targets are chal-

lenging to model using VHDL. Thus, these aspects represent an interesting application

of the language.

A pulsed Doppler radar system was chosen as the RF system to model. Pulsed Doppler

radar systems are the most common types of radar systems encountered and are used in

all commercial and military aircraft. A modeling methodology was developed, and a

Chapter 2. An Example RF System 5

model was written for this system. The model that was written represents the behavior

of a generic pulsed Doppler radar system.

In order to understand the modeling process, and the modeling methodology that was

developed, it is necessary to first gain a brief background of the operation of pulsed

Doppler radar.

2.2. Overview of Radar

A brief overview of the operation and working of a pulsed Doppler radar system is pre-

sented below. [7,8,9]

Refer to Figure 1 on page 7 which shows the very basic elements of a radar system.

The system essentially consists of an RF transmitter that transmits a very high power

pulse of RF energy (typically a megawatt at 8-12 GHz for X band operation [8]) for a

very short period of time. This pulse of RF energy is radiated out into the environment

through a bi-directional antenna system (capable of transmitting as well as receiving).

This antenna concentrates the energy into a small beam (typically 2 degrees). The RF

energy that is radiated is an electromagnetic wave that travels at the speed of light. If

there exists a target in the beam, it scatters this energy in all directions and part of it is

radiated back towards the antenna, where it is received by the antenna during the receive

cycle, and passed on to the receiver section. If the time between transmission and re-

ception is known, then the range of the target can be found. As opposed to continuous

wave radar systems, where the system transmits and receives concurrently, the operation

of a pulsed radar system involves distinct non-overlapping transmit and receive cycles.

Chapter 2. An Example RF System 6

Wia}]SAS
J
e
p
e
y

e
jo

S}uaWwa|y
JIseg

“1
ainbiy

(#4
=4y)

My

yoHue

JaAIa0ayY

Jaywsuedy

Chapter 2. An Example RF System

JUsWaINSeajy
aBuey

sepey
asing

‘z
anbi4

<
—

Ll
—

~~
}

uunyay
sajey

/

jyobuey
obuey

asind

yuwsued |

Chapter 2. An Example RF System

Refer to Figure 2 on page 8 which illustrates the operation of a pulsed radar system.

The figure shows one complete transmit and receive cycle. The total duration of the

transmit and receive cycles is “T’. The transmit cycle consists of a pulse of RF energy.

This is a short pulse that occurs at the start of the cycle. The receive cycle, wherein the

radar system listens for echoes of the transmitted pulse off targets, immediately follows

the transmit cycle. The receive cycle is typically many times longer than the transmit

cycle. The receive cycle can be viewed as being divided into several small distinct inter-

vals of time called “range gates” or “range bins”. These can be viewed as being sequen-

tially numbered up from zero to some maximum. If these intervals of time are counted,

and the count is incremented at every interval, then a target’s range can be told by the

range bin count. For example, if the target return is received after a time duration ‘t’,

then the “range bin it falls into” gives an indication as to the range of the target. In

actual hardware, this range gating mechanism corresponds to a sequential memory sys-

tem, where the output of the receiver is dumped for analysis of the returns. The address

to this memory location is provided by the range bin count.

Refer to Figure 3 on page 10 which illustrates the change in frequency of the received

signal due to the Doppler effect [9]. This arises because the target has a finite velocity

with respect to the line of sight of the radar system. If the wavelength of operation of

the radar system is ‘p’, and the velocity of the target along the line of sight of the radar

is ‘v’, then the frequency of the received signal is changed by a factor 2v/p. Note that

the velocity may be positive or negative, depending on whether the target 1s approaching

the radar or travelling away from it.

Chapter 2. An Example RF System 9

yWlys
saj\ddog

paalissqo
‘¢

ainbi4

(dja)
+

¥
Wayey

(d/A)
+

J
a
a
l
a
o
a
y

(d/az)+}
SAla0aY

J Wluusuesy

10 Chapter 2. An Example RF System

2.3. Specifics of the Radar System

The model that was written represents a generic pulsed Doppler radar system, but it was

based on one of General Dynamics Corporation’s fighter aircraft RADAR systems [3].

This RADAR is a multimode pulse Doppler radar system. It consists of four major

LRU’s (Line Replaceable Units). These are :

1. MLPRF (Modular Low Power RF)

2. DMT (Dual Mode Transmitter)

3. PSP (Programmable Signal Processor)

4. ANTENNA

A brief description of the function of each of these units follows :

The MLPRF generates and processes the low power RF signals that are involved with

the RADAR process. The STALO (Stable Local Oscillator) section of the MLPRF is

responsible for generating and mixing the signals that are used to form the transmission

signal at the frequency of operation, and at the required pulse width. The RCVR section

of the MLPRF provides amplification, down conversion, range-gate forming, and digital

conversion of the RF returns; a major part of the receive process.

The DMT section of the radar system provides the high power amplification of the radar

system. It consists of a dual mode TWT amplifier. It accepts a low power X-band sig-

Chapter 2. An Example RF System [1

nal from the MLPRF and provides gating and amplification to deliver pulsed high power

RF to the ANTENNA unit.

The data from the RCVR section of the MLPRF is collected by the PSP in digital form,

and processed to determine target detection, range, target velocity, etc. A part of the

PSP section is also responsible for the timing and control portion of the RADAR sys-

tem.

The ANTENNA section receives commands from the PSP and rotates the ANTENNA

in both azimuth and elevation to point the ANTENNA in a certain direction, as required

by the operation. It radiates the high power X-band RF signal received from the Dual

Mode Transmitter, listens for RF echoes, and delivers them to the MLPRF. The AN-

TENNA can be gimballed in both directions, and can scan +/- 60 degrees in either

azimuth or elevation.

Chapter 2. An Example RF System 12

Chapter 3. The Radar System Model

3.1. The Top Level Entity

In order to introduce the radar system model, we first start with the top level entity

(called RADAR_SYSTEM), describe its structure, and discuss the working of the model

as seen from this top level. An example run is also presented, so as to illustrate what the

model accomplishes.

Refer to Figure 4 on page 14 which shows a block diagram representation of the system

model. This is the structure of the top level entity RADAR _SYSTEM, and is a struc-

tural composition of eight entities. These eight entities are very briefly introduced below,

and their relation to the four basic LRUs introduced in chapter 2 are identified. The

eight entities are :

1. The STALO entity.

2. The RCVR entity.

Chapter 3. The Radar System Model 13

‘TSaCOW
W
S
L
S
A
S

SHL
40

N
O
T
L
Y
L
N
S
S
S
N
d
3
Y

W
A
S
V
M
I
G

M
O
O
T

“bp
a
u
n
b
i
 4

3S
nd

>
Oud

>

dn
T
u
s
?

4INT™)
wazid

NaS
~ILINI

3S10 N
M
A
D

ino
é

> e
I

ABNOIS
“4

_
O3AI303a

G7aH0om |
‘NT

iNew

—
,
)

H
N
N
3
L
N
Y

H
1
W
O

(°928
NIG

B
o
n
d
)

H
L
H

(Na
XS)

|
N
S

XL)

S
O
I
L

YF |
OONIWIL

C
I
S
L
N
O

dSd

Irlo
XI

14 Chapter 3. The Radar System Model

(The STALO and RCVR entities together model the MLPRF LRU).

3. The DMT entity.

(The DMT entity models the DMT LRU)

4. The ANTENNA entity.

(The ANTENNA entity models the ANTENNA LRU)

5. The PSP entity.

(The PSP entity models the PSP LRU)

6. OUTSIDE WORLD. This entity reads in target information from an external file

at system START_UP. It is used by the ANTENNA entity to scan for radar tar-

gets. It models the target environment.

7. INITIALIZER. This entity initializes some of the signal values that will be used

during the radar process. It initializes Antenna scan range, maximum detection

range, etc. This can be viewed as the entity that acts as the human element in radar

operation.

8. NOISE_GENERATOR. This entity produces gaussian distributed random noise in

the receiver, which is amplified along with the received signal. It was introduced to

more accurately model the radar process, and to model for false alarms, and missed

detections.

Each of these eight entities were modeled as behavioral entities. The detailed description

of each of these entities will be described in the following chapter.

Chapter 3. The Radar System Model 1S

The entity declaration and architecture body of the top level entity RADAR_SYSTEM

appear below. The signals that are internal to the RADAR SYSTEM as a whole are

first declared. These include all the I/O ports of the eight entities. After the signal dec-

laration section, templates are made for each of the components that make up this

RADAR SYSTEM. In this case, the components are the eight entities. In the main

body of the architecture declaration, the components are instantiated and the ports are

mapped to the signals declared above. Configuration statements are used in the declar-

ative section of the architecture body to specify the entity and architecture to be used

for the component being instantiated.

ENTITY RADAR_SYSTEM :

use work.all, work.radar.all;

use STD.TEXTIO.ALL;

entity RADAR_SYSTEM is

end RADAR _ SYSTEM;

use work.all, work.radar.all;

use std. TEXTIO.all;

architecture STRUCTURAL of RADAR_SYSTEM is

signal FRO, LOI, LO2, LO3, OP_FREQ : HIGH_FREQUENCY := 0 MHz;

signal TARGET_DOPPLER : LOW_FREQUENCY := 0 Hz;

signal TX_EN, RX_EN, START_UP, DETECTED, INIT: BIT := ‘0;

signal XMT_DRIVE, XMT_OUT, RCVD_SIG, AMP1_SIG, IFI,

IF2, AMP2_SIG, RCVR_OUT, ANT_IN , ANT_OUT : RADAR_SIGNAL :=

(0 MHz, 0 Hz, 0 mW, 0 pW);

signal MAX_DET_RANGE, RCVR_NOISE, AMPLIFIED_RCVR_NOISE :

Chapter 3. The Radar System Model 16

REAL := 0.0;

signal DETECTION_THRESHOLD : LOW_POWER := 0 pW;

signal AZIM_SCAN_RANGE, ELEV_SCAN_RANGE, ANGLE ELEV,

ANGLE_AZIM : ANGLE := 0 degrees;

signal PULSE_ON_TIME: TIME := 10 ns;

signal RANGE_BIN, NUMBER_TARGETS : NATURAL := 1;

signal RANGE_BIN_LIMIT : NATURAL;

signal FLAG : NATURAL := 0;

signal TARGET_INFO : DETECTIONS;

signal TEMP_TARGET : TARGET;

signal TARGET_MAP : TARGET_ENVIRONMENT;

signal POINTER : POSITIVE;

signal RANDOM_NOISE : GAUSSIAN_REAL;

component STALO_TEMPLATE

port (FRO: in HIGH_FREQUENCY := 0 MHz;

TX_EN: in BIT;

LOI, LO2, LO3 : inout HIGH_FREQUENCY := 0 MHz;

OP_FREQ: out HIGH_FREQUENCY := 0 MHz;

XMT_DRIVE: out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW));

end component;

for L1 : STALO_TEMPLATE use entity STALO(BEHAVIOR),

component RCVR_TEMPLATE

port (RCVD_SIG: in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

RCVR_NOISE : in REAL := 0.0;

Chapter 3. The Radar System Model 17

AMPLIFIED_RCVR_NOISE : out REAL := 0.0;

AMP1 SIG, IF1, IF2, AMP2_SIG : inout RADAR_SIGNAL

:= (0 MHz, 0 Hz, 0 mW, 0 pW);

RCVR_OUT: out RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

RX_EN, START_UP: in BIT := '0;

LOI, LO2, LO3 : in HIGH_ FREQUENCY := 0 MHz);

end component;

for L2: RCVR_TEMPLATE use entity RCVR(BEHAVIOR);

component PSP_TEMPLATE

port (START_UP, INIT: in BIT := ‘0;

RCVR_OUT : in RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

MAX_DET_RANGE: in REAL := 0.0; -- Max around 160 miles.

DETECTION_THRESHOLD : in LOW_POWER := 0 pW;

AZIM_SCAN_RANGE : in ANGLE := 0 degrees;

ELEV_SCAN_RANGE : in ANGLE := 0 degrees;

FRO: in HIGH _ FREQUENCY := 0 MHz;

OP_FREQ: in HIGH_FREQUENCY := 0 MHz;

AMPLIFIED_RCVR_NOISE: in REAL := 0.0;

PULSE_ON_TIME: in TIME;

RANGE BIN : inout NATURAL;

RANGE_BIN_LIMIT: in NATURAL;

RX_EN, TX_EN: out BIT := ‘0;

ANGLE_ELEV, ANGLE_AZIM : in ANGLE := 0 degrees;

DETECTED : inout BIT := ’0’;

TARGET_INFO: out DETECTIONS;

Chapter 3. The Radar System Model 18

TARGET_DOPPLER : inout LOW_FREQUENCY := 0 Hz);

end component;

for L3 : PSP_TEMPLATE use entity PSP(BEHAVIOR);

component DMT_TEMPLATE

port (XMT_DRIVE: in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

TX_EN : in BIT;

XMT_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW));

end component;

for L4: DMT_TEMPLATE use entity DMT(BEHAVIOR);

component ANTENNA_TEMPLATE

port (ANGLE _ELEV, ANGLE_AZIM : inout ANGLE := 0 degrees;

ELEV_SCAN_RANGE, AZIM_SCAN_ RANGE: in ANGLE := 0 degrees;

XMT_IN: in RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW),

ANT_IN: inout RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

RANGE BIN: in NATURAL;

OP_FREQ: in HIGH_FREQUENCY := 0 MHz;

START_UP, TX_EN, RX_EN, INIT: in BIT;

RCVD_SIG, ANT_OUT : out RADAR SIGNAL :=

(0 MHz, 0 Hz, 0 mW, 0 pW);

NUMBER_TARGETS : in NATURAL;

FLAG : inout NATURAL := 1;

TEMP_TARGET : inout TARGET;

PULSE_ON_TIME: in TIME;

Chapter 3. The Radar System Model 19

TARGET_MAP: in TARGET_ENVIRONMENT);

end component;

for LS: ANTENNA_TEMPLATE use entity ANTENNA(BEHAVIOR);

component OUTSIDE_WORLD_TEMPLATE

port (TARGET_MAP: out TARGET_ENVIRONMENT; START_UP: in BIT;

NUMBER_TARGETS : out NATURAL);

end component;

for L6: OUTSIDE_WORLD_TEMPLATE use entity

OUTSIDE_WORLD(BEHAVIOR);

component INITIALIZER_TEMPLATE

port (INIT : in BIT;

AZIM_SCAN_RANGE, ELEV_SCAN_RANGE: inout ANGLE := 0 degrees;

DETECTION_THRESHOLD : out LOW_POWER := 0 pW;

MAX_DET_RANGE : inout REAL := 0.0;

RANGE_BIN_LIMIT: out NATURAL;

PULSE_ON_TIME: in TIME);

end component;

for L7: INITIALIZER_TEMPLATE use entity INITIALIZER(BEHAVIOR);

component NOISE_ GENERATOR_TEMPLATE

port (POINTER : inout POSITIVE;

RANGE _ BIN: in NATURAL;

RANDOM_NOISE : inout GAUSSIAN_REAL;

RCVR_NOISE : inout REAL := 0.0;

Chapter 3. The Radar System Model 20

INIT : in BIT);

end component;

for L8 : NOISE GENERATOR_TEMPLATE use entity

NOISE_GENERATOR (BEHAVIOR);

begin

L1: STALO_TEMPLATE

port map(FRO, TX_EN, LO1, LO2, LO3, OP_FREQ, XMT_DRIVE);

L2 : RCVR_TEMPLATE

port map(RCVD_ SIG, RCVR_NOISE, AMPLIFIED_RCVR_NOISE,

AMP1 SIG, IF1, IF2, AMP2_SIG, RCVR_OUT, RX_EN,

START_UP, LOI, LO2, LO3);

L3 : PSP_TEMPLATE

port map(START_UP, INIT, RCVR_OUT, MAX_DET_RANGE,

DETECTION_THRESHOLD,

AZIM_SCAN_RANGE, ELEV_SCAN_RANGE, FRO, OP_FREQ,

AMPLIFIED_RCVR_NOISE, PULSE_ON_TIME, RANGE BIN,

RANGE BIN_LIMIT, RX_EN, TX_EN, ANGLE_ELEV,

ANGLE_AZIM, DETECTED, TARGET_INFO,

TARGET_DOPPLER);

L4: DMT_TEMPLATE

port map(XMT_DRIVE, TX_EN, XMT_OUT);

Chapter 3. The Radar System Model 21

L5: ANTENNA_TEMPLATE

port map(ANGLE_ELEV, ANGLE_AZIM, ELEV_SCAN_RANGE,

AZIM_SCAN_RANGE, XMT_OUT, ANT_IN, RANGE _BIN,

OP_FREQ, START_UP, TX_EN, RX_EN, INIT, RCVD_SIG,

ANT_OUT, NUMBER_TARGETS, FLAG, TEMP_TARGET,

PULSE_ON_TIME, TARGET_MAP);

L6 : OUTSIDE_WORLD_TEMPLATE

port map(TARGET_MAP, START_UP, NUMBER_TARGETS);

L7 : INITIALIZER_TEMPLATE

port map (INIT, AZIM_SCAN_RANGE, ELEV_SCAN_RANGE,

DETECTION_THRESHOLD, MAX _DET_RANGE,

RANGE_BIN_LIMIT, PULSE_ON_TIME);

L8 : NOISE_GENERATOR_TEMPLATE

port map (POINTER, RANGE_BIN, RANDOM_NOISE, RCVR_NOISE, INIT);

PULSE_ON_TIME <= transport 10 us;

FRO <= transport 158 MHz after 1 ns;

INIT < = transport ‘1’ after 2 ns;

START_UP <= transport ‘1’ after 3 ns;

end STRUCTURAL;

Chapter 3. The Radar System Model 22

3.2. System Model Operation

A brief description of the system model operation as a whole is presented here. Many

of the signal names and procedure names used in this section are described in more detail

in the next chapter. Only a brief description is presented here in order to follow the flow

of the model.

The package RADAR that is pointed to in the entity declaration and architecture body

of the top level entity is a package that contains all the analog type definitions and the

procedures and functions that were defined in order to model the system. These analog

types and procedures and functions are treated in detail in the next chapter in illustrating

the modeling methodology that was developed.

There are four signals that are input through the top-level entity. These are:

1. Signal PULSE _ON_TIME. (On time of transmit pulse)

2. Signal FRO (Frequency of the Stable Oscillator).

3. Signal INIT

4. Signal START_UP.

PULSE _ON_TIME is the time during which the RF energy is transmitted from the

radar system in every transmit/receive cycle. It is used to control the timing and gating

of the transmitted pulse, to determine the range resolution, and the number of range bins

Chapter 3. The Radar System Model 23

that will be needed in order to satisfy the requirement of the desired range that the radar

should operate upto. It is inputted as soon as the simulation starts.

FRO is the frequency of the stable master oscillator that is used in the STALO portion

of the MLPRF. This is used to determine the frequency of operation of the radar sys-

tem, and also the Local Oscillator frequencies. Since the frequency of operation is input

at the top level, it is dynamically changeable. It is also inputted as soon as simulation

Starts.

Signal INIT is asserted after 1 ns. This initializes scan volume (+ /- 60 degrees azimuth

and elevation) that the antenna goes through, maximum detectable range (100 statute

miles), and detection threshold (10 uW). This signal behaves like a button that a human

operator would control to load in new values of the above-mentioned system parame-

ters. If the simulation needs to be run with a different set of system parameters, the

required changes need to be made in the architecture body of entity INITIALIZER.

These could be defined as generic parameters or actual values could be input at simu-

lation start if it is desired to change these values frequently.

Signal START_UP triggers the process of radar transmission and reception. When sig-

nal START_UP goes to ‘1’, ANGLE_AZIM is at -60 degrees (60 degrees left) and

ANGLE ELEV is +60 degrees (60 degrees up), RANGE_BIN 1s at 0.

Shortly after START_UP is asserted (1 delta time later), TX_EN goes to ‘1’. TX_EN

(Transmitter Enable) is the signal that, when asserted, causes the DMT and STALO

sections to output an RF signal. During this time, RX_EN remains at ‘0’. RX_EN

(Receiver Enable) is used to enable the receive process.

Chapter 3. The Radar System Model z4

During this time when TX_EN is asserted, the DMT outputs the high power RF signal

that is generated in the STALO section of the MLPRF to the ANTENNA.

After one PULSE_ON_TIME (10 us in this case), RX_EN goes to ‘1’, and TX_EN goes

to ‘0’. This stops the transmit process, and causes the receive process to start.

As soon as the receive process starts, RANGE_BIN is incremented to value 1 (up from

0). Throughout the receive process, RANGE _BIN is incremented at intervals equal to

the PULSE ON_TIME. When RANGE BIN goes to 1, and also each time

RANGE BIN changes to a non-zero value, a LOOK_FOR_TARGET procedure in en-

tity ANTENNA is executed. This procedure checks to see if a target is found in the

beam, and if it falls in the current range bin (it will be described in detail in the next

chapter). At the same time, a new value for average noise power level is picked from

the array RANDOM_NOISE (this is an array of gaussian distributed noise power lev-

els), and assigned to the input of the receiver. This is done to model false alarms or

missed detections due to noise in the receiver. A false alarm is a false target detection

caused by excessive noise in the receiver. A missed detection is caused by the atten-

uation of the otherwise detectable signal due to noise.

If there exists a target in the beam whose return would fall into the current range bin (as

determined by procedure LOOK_FOR_TARGET), then ANT_IN is assigned an RF

signal that corresponds to the return from that target. If there does not exist a target

in the beam whose return would fall into the current range_bin, then ANT_IN is up-

dated to a value that represents no return, i.e. zero frequency, and zero power levels.

This implies that only noise is present at the input of the receiver.

Chapter 3. The Radar System Model 25

As soon as ANT_IN is updated, processes in entity RCVR start to execute. The RF

signal is passed through the RECEIVER PROTECTOR stage (in the RCVR). This

stage checks to see if the power_level of the returned signal is excessive. If so, the re-

ceiver section would be damaged and an assertion error occurs if the error condition is

met. After the signal passes the Receiver Protector, it is amplified in the FET_AMP

stage. The output is the input signal with the power_level boosted by 30 dB.

The output of the FET_AMP is then passed to the MIXERI stage. This is the mixer

stage where the incoming radar signal is down converted from RF to IF.

The output signal from the first IF MIXER stage is then passed through an AMPLI-

FIER stage. The signal power_level is further boosted by 27 dB.

The signal passes through another mixer stage, MIXER2, and is further down converted.

It is again down converted by MIXER3 to a video signal, RCVR_OUT. This signal is

then passed to the DETECTOR in the PSP.

When RCVR_OUT is updated, process CHECK_FOR_DETECTION in the PSP (this

procedure checks to see if the power level of the output of the receiver is high enough

to be detectable) is executed. For this purpose the signal power levels and noise power

levels (after amplification through the receiver) are added. If the power level of the re-

sultant signal is above detectable limits, signal DETECTED is asserted.

If a target is DETECTED, procedure WRITE_TARGET (elaborated upon in the next

chapter) is called, and information about the target is written to the output file. If not,

the process of searching for another target continues.

Chapter 3. The Radar System Model 26

The value of RANGE BIN is incremented every PULSE_ON_TIME nas, and after

RANGE_BIN_LIMIT is reached, the value of RANGE BIN is returned to zero. At

this point, procedure SCAN ADVANCE (used to advance the antenna) is called, the

antenna is advanced further, and the whole process as outlined above is repeated. This

process continues until the antenna completes one entire scan of the environment.

3.3. An Example Run

Section 3.1 presented some of the basic aspects of the operation of the system model.

Presented in this section is an example run of the model (a simulation) which will give

an indication as to what the model accomplishes,

A file of targets (we use text files to input target information into the system) that was

used in a simulation run appears below. Following that is the output file that was cre-

ated by the VHDL model. Several other runs with different target files are provided in

the appendix.

In the input file, the targets are listed in order by increasing angles of azimuth. This

was done to reduce the time spent in looking for the target each time the value of the

RANGE _BIN changed. Every five lines represents one target. The information that is

provided for every target is:

e LINE 1: Azimuth angle of the target.

e LINE 2: Elevation angle of the target.

Chapter 3. The Radar System Model 27

e LINE 3 : Time Away (An indication of the round trip range of the

target)

e LINE 4: Doppler shift (Shift in frequency that the transmitted signal undergoes

after reflecting off a moving target).

e LINE 5: Attenuation (Round Trip Attenuation that indicates the attenuation the

signal underwent from the time it left the transmitter till the time it returned).

The following file is the targets file °TARGETS.” that is read in at the start of simu-

lation. This file was generated by a program written in Pascal. The Pascal code for the

program appears in Appendix D. After one complete cycle, the results are output to

the file DETECTED.OUT.

File “TARGETS.IN”:

-60

59

650 us

4.5E+11

221

-57

S51

490 us

1LSE+ 12

400

60

Chapter 3. The Radar System Model 28

13

1203 us

4,.2E+19

338

149

-43

945 us

4.7E+ 06

315

110

34

330 us

1.6E+ 06

288

-103

34

592 us

2.9E+ 06

298

164

58

52 us

7.6E+ 5

145

27

-49

Chapter 3. The Radar System Model 29

686 us

3.4E+ 06

222

-120

-32

377 us

1.9E+06

168

4)

-5

530 us

2.6E + 06

239

162

-11

846 us

4.2E+ 06

365

-101

16

729 us

3.6E+ 06

113

-159

29

910 us

Chapter 3. The Radar System Model 30

4.5E+ 06

249

The results of the simulation were output to the file”"DETECTED.OUT”. The contents

of the file appear below :

TARGET DETECTED AT A DISTANCE OF:

60.47 MILES WITH A RELATIVE VELOCITY OF:

5.82 METERS PER SEC. CLOSING. IT’S POSITION IS:

60 DEGREES ELEVATION,

-60 DEGREES AZIMUTH

TARGET DETECTED AT A DISTANCE OF:

45.47 MILES WITH A RELATIVE VELOCITY OF:

10.53 METERS PER SEC. CLOSING. IT’S POSITION IS:

51 DEGREES ELEVATION,

-57 DEGREES AZIMUTH

AS seen in the output of the file” DETECTED.OUT”, only two targets were detected.

Even though the third target in the input file was in the beam, it was not detected, as it

is at a large range, and provides a much larger attenuation. All the other targets were

not in the scan volume, and were not detected.

Chapter 3. The Radar System Model 31

Chapter 4. Modeling Methodology

4.1. Modeling Methodology

In this chapter, some basic modeling methodology for modeling RF systems at the be-

havioral level is first presented.

We need to represent the behavior of an analog entity. That is, we need some way to

model the relation between an analog entity’s inputs and outputs. The following three

points bring out the essential aspects of the methodology that was developed, as will be

seen often in the model that is later presented.

1. Use of real number arithmetic.

We make use of real number arithmetic to model the relation between the analog

input(s) and analog output(s) of an entity. For example, for an amplifier one can

have the power level of the output as some real gain factor times the power level of

the input. Generic functions and procedures can be written for analog behavior and

Chapter 4. Modeling Methodology 32

these can form part of a package. These functions and procedures can be called by

the model.

2. Use of abstract data types.

We use abstract data types to define basic analog types that will be needed, and then

define analog signals as a record of these types. After analog signals have been de-

fined in this manner, one can refer to the fields as and when needed.

e.g., type POWER is range 0 to 1E9

units pW;

nW = 1000 pW;

uW = 1000 nW;

end units;

type FREQUENCY is range 0 to 1E9

units Hz;

KHz = 1000 Hz;

MHz = 1000 KHz;

end units;

type ANALOG SIGNAL is

record

POWER LEVEL : POWER;

FREQ: FREQUENCY;

end record;

Chapter 4. Modeling Methodology 33

3. Use of File I/O.

We make use of VHDL File I/O and TEXTIO to input data (target information and

noise information) into the model and to output data (detections) from the model.

4.2. The Package RADAR

In order to see how the above methodology was applied to the radar system that was

modeled, the VHDL code for the package that was defined in order to model the radar

system is presented below. Following that package is a brief description of the types that

were defined and the functions and procedures that were written.

use WORK.all, STD. TEXTIO.all;

package RADAR is

constant PI : REAL := 3.142; -- Value of Pi.

constant C : REAL := 3.0E8; -- Speed Of Light in meters per

-- second.

type LOW_FREQUENCY is range -2E9 to 2E9

units Hz;

KHz = 1000 Hz;

end units;

Chapter 4. Modeling Methodology 34

type HIGH_FREQUENCY is range -le9 to IE9

units MHz;

GHz = 1000 MHz;

end units;

type ANGLE is range -360 to 360

units degrees;

end units;

type HIGH_POWER is range 0 to 2e9

units mW;

W = 1000 mW;

KW = 1000 W;

end units;

type LOW_POWER is range 0 to 1e9

units pW;

nW = 1000 pW;

uW = 1000 nW;

end units;

type RADAR_SIGNAL is

record

HIFREQ : HIGH_FREQUENCY;,

Chapter 4. Modeling Methodology 35

LOFREQ : LOW_FREQUENCY;

HIPOWER_LEVEL : HIGH_POWER;

LOPOWER_LEVEL : LOW_POWER;

end record;

type GAUSSIAN_REAL is array (INTEGER range I to 100) of REAL;

type TARGET is

record

AZIMUTH : ANGLE;

ELEVATION : ANGLE;

TIME AWAY : TIME; -- in microseconds.

TARGET_DOPPLER : LOW_FREQUENCY,;, -- in Hertz

ATTENUATION : REAL;

end record;

type TARGET_FILE 1s file of TARGET;

type DIRECTION is (OPENING, CLOSING);

type DETECTIONS is |

record

TARGET_RANGE: REAL; -- in miles;

REL VEL: REAL;

VEL_DIR : DIRECTION;

TARGET_ELEVATION : ANGLE;

Chapter 4. Modeling Methodology 36

TARGET_AZIMUTH : ANGLE;

end record;

type DETECTIONS_FILE is file of DETECTIONS;

type TARGET ENVIRONMENT is array (INTEGER range 0 to 20) of

TARGET;

file I: TEXT is in “filename”;

file O : TEXT is out "DETECTED.OUT’;

function MAX_RANGE_BIN (PULSE_ON_TIME: TIME;

MAX _DET_RANGE : REAL)

return NATURAL;

function TIME _TO_REAL IN_NS (A: TIME) return REAL;

function HIFREQ TO_REAL_IN_MHz (A: HIGH_FREQUENCY) return REAL;

function LOFREQ TO_REAL_IN_Hz (A: LOW_FREQUENCY) return REAL;

function ANGLE_TO_REAL_IN_DEG (A: ANGLE) return REAL;

function BIN_DISTANCE (A : TIME) return REAL;

Chapter 4. Modeling Methodology 37

procedure SCAN ADVANCE (signal AZIM, ELEV : in ANGLE;

signal ELEV_RANGE, AZIM_RANGE: in ANGLE;

signal AZIM_1, ELEV_1 : out ANGLE);

procedure INCREMENT_RANGE BIN (signal RANGE_BIN : in NATURAL;

signal RANGE_BIN_2: out NATURAL;

signal RANGE_BIN_LIMIT : in NATURAL);

procedure READ_TARGET_ENVIRONMENT (signal TARGET _MAP: out

TARGET ENVIRONMENT; signal NUMBER_TARGETS : out INTEGER);

procedure WRITE_TARGET (signal TARGET_DOPPLER : in LOW_FREQUENCY;

signal ANGLE_ELEV, ANGLE_AZIM : in ANGLE;

signal PULSE_ON_TIME: in TIME;

signal RANGE_BIN: in NATURAL;

signal OP_FREQ: in HIGH_FREQUENCY;

signal TARGET_INFO: out DETECTIONS;

signal DETECTED : out BIT);

procedure LOOK_FOR_TARGET (signal ANGLE_ELEV,

ANGLE_AZIM : in ANGLE;

signal RANGE_BIN : in NATURAL;

signal TARGET_MAP : in TARGET_ENVIRONMENT;

signal NUMBER_TARGETS : in INTEGER;

signal FLAG : inout NATURAL;

signal PULSE_ON_TIME: in TIME);

Chapter 4. Modeling Methodology 38

procedure POTENTIAL_TARGET_INFO

(signal TARGET_MAP_FLAG: in TARGET;

signal ANT_OUT : out RADAR _ SIGNAL;

signal OP_FREQ: in HIGH_FREQUENCY;

signal FLAG : out NATURAL);

procedure AMPLIFY_BY_K (variable K : in REAL;

signal AMPLIFIER_IN: in RADAR_SIGNAL;

signal AMPLIFIER_OUT: out RADAR _ SIGNAL);

procedure CHECK FOR_DETECTION (signal RCVR_OUT :

in RADAR_ SIGNAL;

signal AMPLIFIED_RCVR_NOISE: in REAL;

signal DETECTION_THRESHOLD : in LOW_POWER;

signal DETECTED_1: out BIT);

procedure READ _GAUSSIAN_NOISE

(signal RANDOM_NOISE : out GAUSSIAN_REAL);

end RADAR;

The basic analog types (physical types): LOW_FREQUENCY, HIGH_FREQUENCY,

LOW_POWER, and HIGH_POWER are defined first. Their scope and units are also

defined. These are used as fields of a data type (a record - RADAR_SIGNAL) that will

represent all radar signals used in the model. Type ANGLE is defined for target placing

Chapter 4. Modeling Methodology 39

and antenna positioning. Its range limits are from -180 to 180 degrees. This is sufficient

to specify any position for the target or the antenna.

A special abstract data type TARGET is defined to represent all targets that will be seen

by the radar system. It is a record of five fields, and the information contained in the

fields is:

e Target positioning i.e. azimuth and elevation angles (fields 1 and 2)

e The time it takes for a target echo to return to the radar (which is a representation

of its distance from the radar - field 3).

e The Doppler shift - frequency shift that comes about due to the relative velocity of

the target with respect to the radar (field 4).

e The total attenuation that the radar signal undergoes from the time it leaves the

transmitter to the time it reaches back to the receiver (field 5).

Type DIRECTION is defined in order to identify the direction of the target’s velocity

with respect to the radar. “OPENING” implies that the target’s velocity has a direction

that enables it to distance itself from the radar, and “CLOSING” implies just the oppo-

site.

Type DETECTIONS is a data type that is used to represent the information about a

detected target. It is a record of five fields and the information in the fields is :

Chapter 4. Modeling Methodology 40

e Target Range (field 1)

e §6Target velocity (field 2)

e Velocity direction (field 3)

e Target elevation and azimuth angles (fields 4, 5)

The data type TARGET_ENVIRONMENT is defined in order to represent all the tar-

gets that can possibly exist and can be detected around and about the radar system. It

is a restricted array of type TARGET. Note that a maximum of twenty targets can be

represented, since the size of the array has been constrained to that value.

Type GAUSSIAN_REAL is an array of type real that holds a string of gaussian dis-

tributed real numbers, which represents gaussian noise at the inputs of the receiver.

MAX _ RANGE BIN is a function that uses the pulse width of the transmitted signal,

and the maximum desired detectable range, and outputs an integer value that corre-

sponds to the maximum value that the range_bin_counter must count up to.

TIME _TO_REAL IN_NS is a function that was defined in order to convert a

signal/variable of type time TIME to one of type REAL. Since VHDL is very strongly

typed, and does not have any pre-defined functions for conversion of physical types to

real types for the purposes of calculation (since this situation never arises in digital cir-

cuit modeling), these functions have to be defined in this package. Type TIME is con-

verted to a REAL number (relative to 1 ns) which is returned by the function.

Chapter 4. Modeling Methodology 41

Similarly, HIFREQ TO_REAL_IN_MHZ, LOFREQ TO_REAL_IN_HZ, — and

ANGLE_TO_REAL_IN_DEG convert types HIFREQ, LOFREQ, and ANGLE re-

spectively to type REAL.

BIN_DISTANCE is a simple function that takes the value of type TIME as input, and

returns a REAL value corresponding to the round trip range in miles that a signal would

cover, if it returns to the radar in that time.

SCAN_ADVANCE is a procedure that takes as input the present position of the an-

tenna in azimuth and elevation, and also the limits on the angles of azimuth and ele-

vation which represent the maximum scan range that the antenna goes through. Every

time this function is called, (provided of course that the entire scan has not been com-

pleted) it advances the antenna one position to the right in azimuth. If the azimuth limit

has been reached, it advances the antenna in elevation, and returns the azimuth to its

least value. The scanning of the antenna continues till an entire scan of the target en-

vironment is complete.

INCREMENT_RANGE BIN is a procedure that takes the current value of the

RANGE BIN and increments it if the value of the range bin limit has not been reached.

If the value of the limit has been reached, then RANGE BIN is assigned 0.

READ_TARGET_ENVIRONMENT is a procedure that reads information about all

the possible targets (ranging from 1 to 20 in number) that are randomly positioned

anywhere about the radar system. These are read into a signal that is an array of type

TARGET that represents target information. The file that contains the information 1s

randomly generated by a Pascal program that generates anywhere between one and

Chapter 4. Modeling Methodology 42

twenty targets, positions them randomly at various azimuth and elevation angles, and

assigns a random value of range, target Doppler, and attenuation to each target.

WRITE_TARGET is a procedure that takes as its input information regarding the de-

tected target. This procedure is called whenever a target return is found to have a signal

strength strong enough to be detected. The information that is passed to the procedure

includes target Doppler, angles of elevation and azimuth, the range bin value of the

counter at the time the target is detected, the value of the pulse width of the transmitted

signal, and the operating frequency of the radar. After the necessary calculations in or-

der to determine the range, velocity, etc., the information about the target is written out

to a text file “DETECTED.OUT”. The information about the target includes its ap-

proximate range, its relative velocity (to the line of sight of the radar), direction of ve-

locity, and the position of the target (i.e. approximate azimuth and elevation angles).

LOOK_FOR_TARGET is a procedure that is called each time the value of the

RANGE _BIN changes. Each time this occurs, the target map (signal that represents the

target environment) is scanned to see if the current angle of azimuth and elevation that

the antenna is pointing in, match with those of any of the targets (within the beamwidth

of course). If they do, the procedure checks to see if target’s range allows the return to

fall within the current value of the range bin. If it does not fall within the current range

bin, then the process continues scanning the other targets to see it they are in the beam

and satisfy this condition. It does this till all the targets have been scanned. If a target

is in the beam and does fall within the current range bin, then the procedure assigns to

signal FLAG (integer), the array index of the possibly detectable target. This target is

still only potentially detectable since it is still to be determined if this target returns a

signal strong enough to be detected. At the end of the procedure, signal FLAG either

Chapter 4. Modeling Methodology 43

contains a non-zero value or a zero value depending on whether any target is potentially

detectable.

POTENTIAL_TARGET_INFO is a procedure that is called each time a target is in the

beam and in detectable range. (determined by procedure LOOK_FOR_TARGET). Ifa

target is in the beam and its return falls within the current range bin, then the received

signal ANT_IN is assigned a signal (RADAR_SIGNAL) whose power level is that of

the transmitted signal divided by the value of the attenuation. Its frequency is that of

the transmitted signal with the target Doppler added to it. At the same time that this

is done, FLAG is reset to zero.

AMPLIFY_BY_K is a generic amplification procedure that is called from an amplifier

entity. It is passed a RADAR_SIGNAL, and a generic amplification factor K as its

input. It returns a RADAR SIGNAL as its output after amplification.

Procedure CHECK FOR_DETECTION is a procedure that takes as input a

RADAR SIGNAL (output from the _ receiver) and a _ noise _ signal,

AMPLIFIED_RCVR_NOISE, sums them and determines if the power level of the re-

sulting RADAR SIGNAL is. strong enough to be detected above the

DETECTION_THRESHOLD. If yes, then it asserts signal DETECTED.

Procedure READ _GAUSSIAN_NOISE is a procedure that is executed at START_UP.

It reads an external file of gaussian distributed real numbers and assigns them to a signal

RANDOM_NOISE, which is an array of REAL and represents noise in the receiver.

This external file is created externally by a Pascal program. Its code can be found in the

Appendix.

Chapter 4. Modeling Methodology 44

The body of the package, i.e., the part of the package where all the functions and pro-

cedures are expanded upon, appears in Appendix A.

Chapter 4. Modeling Methodology 45

Chapter5. The Entities of the Radar System Model

5.1. The Entity Descriptions

Presented below is the main text of the VHDL code for the entity declarations and the

corresponding architecture bodies of the eight behavioral entities that make up the sys-

tem. At the end of each entity and its corresponding architecture body, appears a de-

scription of the functioning of the entity.

Entity STALO :

use work.all, work. RADAR. all;

entity STALO is

port (FRO : in HIGH _ FREQUENCY := 0 MHz;

TX_EN : in BIT;

LOI, LO2, LO3 : inout HIGH _ FREQUENCY := 0 MHz;

ChapterS. The Entities of the Radar System Model 46

OP_FREQ: out HIGH _ FREQUENCY := 0 MHz;

XMT_DRIVE: out RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW));

end STALO;

architecture BEHAVIOR of STALO is

begin

GEN_LO_FREQ:

Process (FRO)

Begin

LOI] <= 48 * FRO;

LO2 <= 8 * FRO;

LO3 <= FRO;

end process;

OUTPUT_SIGNAL :

Process (TX_EN)

begin

If TX_EN = ‘I’ then

XMT_DRIVE.HIFREQ <= LOI] + LO2 + LO3;

XMT_DRIVE.LOFREQ < = 0 Hz;

XMT_DRIVE.HIPOWER_LEVEL <= 150 mW;

XMT_DRIVE.LOPOWER_LEVEL <= 0 pW;

OP_FREQ <= LOI + LO2 + LO3;

ChapterS. The Entities of the Radar System Model 47

else

XMT_DRIVE.LOFREQ < = 0 Hz;

XMT_DRIVE.HIFREQ < = 0 MHz;

XMT_DRIVE.HIPOWER_LEVEL < = 0 mW;

XMT_DRIVE.LOPOWER_LEVEL <= 0 pW;

end if;

end process;

end BEHAVIOR;

The entity STALO 1s part of the MLPRF. It generates the Local Oscillator signals and

provides transmitter drive, when required. (i.e. at the given PRF and pulse width) This

timing is initiated by the TX_EN signal which is generated by the PSP. The local

oscillator signals are multiples of the FRO frequency which is the stable oscillator ref-

erence. LOI, LO2, LO3 are mixed (added) to form the output signal or operating fre-

quency of the radar system. When TX_EN goes to ‘1’, the transmitter drive signal takes

on the value of the radar signal, whose power level is 150 mW (22dbm), and whose fre-

quency is the frequency of operation. When TX_EN goes to ’0’, all fields of the radar

signal that form the transmitter drive go to zero.

ENTITY RCVR:

use work.all, work.RADAR.all;

entity RCVR is

port (RCVD_SIG: in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

RCVR_NOISE : in REAL := 0.0;

ChapterS. The Entities of the Radar System Model 48

AMPLIFIED_RCVR_NOISE: out REAL := 0.0;

AMPI SIG, IF1, IF2, AMP2_SIG: inout RADAR_ SIGNAL :=

(0 MHz, 0 Hz, 0 mW, 0 pW);

RCVR_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

RX_EN, START_UP: in BIT;

LOI, LO2, LO3 : in HIGH_FREQUENCY := 0 MHz);

end RCVR;

architecture BEHAVIOR of RCVR is

begin

-- RECEIVER PROTECTOR :

process (RCVD_SIG)

begin

assert not (RCVD_SIG.POWER_LEVEL > 10 mW)

report "RECEIVED SIGNAL POWER EXCEEDED SAFE LIMIT”

severity note;

end process;

-- FET_AMP:

process (RCVD_SIG)

variable K : REAL := 1000.0;

begin

AMPLIFY_BY_K (K, RCVD_SIG, AMPI_SIG);

end process;

ChapterS. The Entities of the Radar System Model 49

-- MIXERI :

process(AMP1 SIG)

begin

if AMP1_SIG.HIFREQ /= 0 MHz then

IFI.LHIFREQ <= AMPI1_SIG.HIFREQ - LOI;

else IFI.HIFREQ <= 0 MHz;

end if;

IFI1.LOFREQ <= AMPI_SIG.LOFREQ;

IFI.LHIPOWER_LEVEL < = AMPI1_SIG.HIPOWER_LEVEL;

IF1.LOPOWER_LEVEL <= AMPI_SIG.LOPOWER_ LEVEL;

end process;

-- AMPLIFIER :

process (IF1)

variable K : REAL := 500.0;

begin

AMPLIFY_BY_K (K, IFl, AMP2_SIG);

end process;

-- MIXER2:

process (AMP2_SIG)

begin

If AMP2_SIG.HIFREQ /= 0 MHz then

IF2.HIFREQ <= AMP2_SIG.HIFREQ - LO2;

else IF2.HIFREQ < = 0 MHz;

end if;

Chapter5. The Entities of the Radar System Model 50

IF2. LOFREQ <= AMP2_ SIG.LOFREQ;

IF2.HIPOWER_LEVEL < = AMP2_SIG.HIPOWER_LEVEL;

IF2.LOPOWER_LEVEL < = AMP2_SIG.LOPOWER_LEVEL;

end process;

-- MIXER3 :

process (IF2)

begin

If IF2.HIFREQ /= 0 MHz then

RCVR_OUT.HIFREQ < = IF2.HIFREQ - LO3;--Target_doppler.

else

RCVR_OUT.HIFREQ < = 0 MHz;

end if;

RCVR_ OUT.LOFREQ < = IF2.LOFREQ;

RCVR_OUT.HIPOWER_LEVEL < = IF2.HIPOWER_LEVEL;

RCVR_OUT.LOPOWER_LEVEL < = IF2.LOPOWER_LEVEL;

end process;

-- NOISE_AMPLIFICATION

process (RCVR_NOISE)

begin

if START_UP = ‘I’ then

AMPLIFIED_RCVR_NOISE < = 5.0E5 * RCVR_NOISE;

end if;

end process;

ChapterS. The Entities of the Radar System Model 51

end BEHAVIOR;

Entity RCVR is also part of the MLPRF. It forms the received path of the radar signal.

It consists of several processes. Receiver Protector is a process that accepts the signal

RCVD_SIG which is input from the antenna and checks to see if it exceeds a certain

value using an assert statement. If it does, it reports this as an assertion error in the

output. This process is executed each time that the value of the signal RCVD_SIG

changes.

FET_AMP is a process that is also executed each time RCVD_SIG changes. It ampli-

fies the incoming signal to a power_level 1000 times (30 db) greater. The frequency and

other fields remain unchanged. The output is called AMPI_ SIG. An event on this

output signals triggers another process MIXERI.

MIXERI is a mixer stage that takes the AMP1_SIG as one of it’s inputs. Local

oscillator signal LO] is the other input to this mixer stage. The frequency of the signal

that comes out of the mixer stage is the first IF frequency. It is the difference of the

frequency of the AMP1_SIG and the LOI frequency. All other fields remain unchanged.

The output signal is called IFl. An event on IF1 causes the process AMPLIFIER to

be executed.

AMPLIFIER takes the output of the mixer stage and amplifies it to a power level 500

(27 db) times it’s input. The other fields remain unchanged. The output of the AM-

PLIFIER is called AMP2_SIG.

ChapterS. The Entities of the Radar System Model 52

An event on AMP2_ SIG causes the process MIXER2 to be executed. It 1s another

mixer stage in which the two inputs to be mixed are the AMP2_SIG and the 2nd Local

Oscillator signal LO2. The frequency of the output is the difference between the fre-

quency of the AMP2_SIG and the LO2 signal. The output is called IF2.

An event on IF2 triggers the process MIXER3. This process mixes the IF2_SIG and

the LO3 signal. The frequency of the output is the difference between the frequency of

the IF2_SIG and the LO3 signal. All other fields remain unchanged. The output signal

RCVR_OUT is the signal coming out of the receiver. It has a low frequency and is a

video signal.

NOISE AMPLIFICATION is a process that amplifies noise at the input of the receiver

by a factor equal to the amplification that the received signal goes through. The signal

AMPLIFIED_RCVR_NOISE is the noise signal available at the output of the receiver.

It is obtained by amplifying the noise signal RCVR_NOISE (assigned to the input of the

receiver) by a factor 5.0E5, which is the same as the gain for the signal path through the

receiver.

ENTITY PSP :

use work.all, work. RADAR.all;

entity PSP is

port (START_UP, INIT : in BIT;

RCVR_OUT : in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

MAX _DET_RANGE: in REAL := 0.0; — -- Max around 160 miles.

DETECTION_THRESHOLD : in LOW_POWER := 0 pW;

AZIM_SCAN_RANGE: in ANGLE := 0 degrees;

ChapterS. The Entities of the Radar System Model 53

ELEV_ SCAN RANGE: in ANGLE := 0 degrees;

FRO: in HIGH_FREQUENCY := 0 MHz;

OP_FREQ: in HIGH_FREQUENCY := 0 MHz;

AMPLIFIED_RCVR_NOISE : in REAL := 0.0;

PULSE_ON_TIME: in TIME;

RANGE BIN: inout NATURAL;

RANGE _BIN_LIMIT: in NATURAL;

RX_EN, TX_EN: out BIT;

ANGLE_ELEV, ANGLE_AZIM : in ANGLE := 0 degrees;

DETECTED : inout BIT;

TARGET_INFO: out DETECTIONS;

TARGET_DOPPLER : inout LOW_FREQUENCY := 0 Hz);

end PSP;

architecture BEHAVIOR of PSP is

signal DETECTED_1I, DETECTED _2: BIT := ‘0’;

signal RANGE_BIN_1, RANGE_BIN_2: NATURAL := 0;

Begin

-- CHECK FOR_DETECTION :

Process (AMPLIFIED_RCVR_NOISE)

begin

if START_UP = ‘1’ then

CHECK_FOR_DETECTION (RCVR_OUT, AMPLIFIED_RCVR_NOISE,

DETECTION_THRESHOLD, DETECTED_});

end if;

end process;

ChapterS. The Entities of the Radar System Model 54

-- DETECTION :

Process (DETECTED)

Begin

If DETECTED = ‘1’ and not DETECTED’STABLE then

WRITE_TARGET (TARGET_DOPPLER, ANGLE_ELEV, ANGLE_AZIM,

PULSE_ON_TIME, RANGE BIN,

OP_FREQ, TARGET_INFO, DETECTED_2);

end if:

end process;

-- DETECTED_MUX:

DETECTED < = transport DETECTED_1 when not DETECTED_1’QUIET else

DETECTED_2 when not DETECTED_2’QUIET else DETECTED;

-- SYNCHRONIZER :

Process (RANGE_BIN, START_UP)

Begin

If (RANGE_BIN = 0 and START_UP = ‘1’) then

TX_EN <= 1

RX_EN <= 0;

elsif (not (RANGE_BIN = 0) and START_UP = ’1’) then

TX_EN <= 0;

RX_EN <= 15

ChapterS. The Entities of the Radar System Model 55

end if;

end process;

-- RANGE_INITIALIZE:

Process (INIT)

begin

if INIT = ‘1’ and not INIT’STABLE then

RANGE _BIN_1 <= 0;

end if;

end process;

-- RANGE_INCREMENT

Process

Begin

if START_UP = ‘I’ then

if(not((ANGLE_AZIM = AZIM_SCAN_RANGE) and (ANGLE_ELEV = -

ELEV_SCAN_RANGE))

and ((START_UP = ‘I’ and not START_UP’STABLE) or

(START_UP = ‘I’ and not RANGE_BIN’STABLE))) then

wait for PULSE ON_TIME;

INCREMENT_RANGE BIN (RANGE BIN, RANGE _BIN_2,

RANGE _BIN_LIMIT);

else

wait until (not(((ANGLE_AZIM = AZIM_SCAN_RANGE) and

(ANGLE_ELEV = - ELEV_SCAN_RANGBE)) and

((START_UP = ‘I’ and not START_UP’STABLE) or

(START_UP = ‘I’ and not RANGE _BIN’STABLE)));

ChapterS. The Entities of the Radar System Model 56

end if;

else

wait until START_UP = ‘1’;

end if;

end process;

-- RANGE_BIN_MUX:

RANGE BIN <= transport RANGE_BIN_1 when not RANGE_BIN_1’QUIET else

RANGE_BIN_2 when not RANGE_BIN_2’QUIET else

RANGE BIN;

-- ASSIGN_TARGET_DOPPLER :

TARGET_DOPPLER < = RCVR_OUT.LOFREQ;

end BEHAVIOR;

The entity PSP is the heart of the system. It takes care of all the timing and control

associated with the radar process. Most of the decision making occurs in this entity.

The PSP is mostly digital. In actuality, almost all signals like AZIM ANGLE,

AZIM_SCAN_RANGE have their values digitally encoded. However, since we wish to

deal with them as if they are physical types in VHDL, we have defined them as such.

Some of the signals are bits. These are mostly for control purposes. For example,

START_UP and INIT are signals of type bit. They are input by the user when initial-

ization and start_up are required.

ChapterS. The Entities of the Radar System Model 57

CHECK_FOR_DETECTION is a process that is triggered each time the value of

RCVR_OUT (the signal out of the receiver portion), or. AMPLIFIED_RCVR_NOISE

changes. If the value of the power_level of the output of the receiver exceeds the de-

tection threshold, signal DETECTED is asserted. The assertion of DETECTED causes

process DETECTION to execute. This process passes the necessary information re-

garding the target that was detected, and some of the system parameters to procedure

WRITE_TARGET (declared in package RADAR). This procedure performs the nec-

essary calculations, and writes the target detection out to the output file. At the same

time that this is done, DETECTED is de-asserted.

Process DETECTED_MUkxX is a process that is used so that signal DETECTED receives

the value of DETECTED_1!1 or DETECTED_2 whichever has changed most recently. In

actual hardware, this corresponds to time multiplexing.

SYNCHRONIZER is a process that is triggered each time RANGE_BIN changes value

or at system START_UP. (Note that mostly all the processes in each entity will execute

as required only after system START_UP as this condition has been inserted in the

process control statements). For this particular process, every time RANGE_BIN

changes to a 0 after system START_UP, TX_EN 1s asserted, and RX_EN is deasserted.

These are inputs to the MLPRF. The DMT outputs a transmitter drive (non-zero) only

when TX_EN Is asserted; whereas the antenna and receive processes update signals

ANT_IN and RCVD_SIG only when RX_EN is asserted and TX_EN is deasserted.

This is the case whenever RANGE _ BIN is non-zero.

RANGE_INITIALIZE simply initializes RANGE_BIN to 0 when the INIT signal 1s

asserted.

ChapterS. The Entities of the Radar System Model 58

RANGE_INCREMENT is a process that waits until START_UP = ‘1’. When

START_UP = ‘I’, it checks to see if RANGE_BIN or START_UP have just changed,

and also if the antenna has not completed one entire scan. If these conditions are sat-

isfied, then the process waits for one PULSE_ON_TIME and then increments the

range bin value by calling procedure INCREMENT_RANGE BIN. If any of these

conditions are not satisfied, and START_UP = ‘1’, then it waits until all the conditions

are satisfied. This is how the RANGE BIN value is incremented every

PULSE ON_TIME.

RANGE_BIN_MU%X is similar to DETECTED_MUX. It is needed as two separate

processes affect the value that RANGE_BIN takes on. Since two drivers can not drive

the same port at the same time, the mux function is necessary.

Lastly process ASSIGN_TARGET_DOPPLER is a_ process in which

TARGET_DOPPLER is assigned the value of RCVR_OUT.LOFREQ each time

RCVR_OUT changes.

ENTITY DMT :

use work.all, work. RADAR.all;

entity DMT is

port (XMT_DRIVE: in RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

TX_EN : in BIT;

XMT_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW));

end DMT;

Chapter5. The Entities of the Radar System Model 59

architecture BEHAVIOR of DMT is

begin

Process (TX_EN’DELAYED)

Begin

If TX_EN’DELAYED = ‘I’ then

XMT_OUT.HIFREQ <= XMT_DRIVE.HIFREQ;

XMT_OUT.LOFREQ < = XMT_DRIVE.LOFREQ;

XMT_OUT.HIPOWER_LEVEL <= 15 kW;

XMT_OUT.LOPOWER_LEVEL <= 0 pW;

else

XMT_OUT.LOFREQ <= 0 Hz;

XMT_OUT.HIFREQ < = 0 MHz;

XMT_OUT.LOPOWER_LEVEL <= 0 pW;

XMT_OUT.HIPOWER LEVEL <= 0 mW;

end if;

end process;

end BEHAVIOR;

Entity DMT receives the transmitter drive from the MLPRF. It also receives the

TX_EN signal from the PSP. When TX_EN is a’l’, the output of the DMT is the

transmitter drive signal amplified to a power level of 15 kW. Otherwise, the DMT does

not output an RF signal. Notice that TX_EN’DELAYED is used in the sensitivity list

of this process, since it takes one delta time for TX_EN to change to a ‘I’ (in the PSP)

after RANGE_BIN becomes a 0.

ChapterS. The Entities of the Radar System Model 60

ENTITY ANTENNA :

use work.all, work.RADAR.all;

entity ANTENNA 1s

port (ANGLE_ELEV, ANGLE_AZIM : inout ANGLE := 0 degrees;

ELEV_SCAN_RANGE, AZIM_SCAN_RANGE: in ANGLE := 0 degrees;

XMT_IN: in RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

ANT_IN: inout RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW);

RANGE_BIN: in NATURAL;

OP_FREQ: in HIGH_FREQUENCY := 0 MHz;

START_UP, TX_EN, RX_EN, INIT: in BIT;

RCVD_SIG, ANT_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pw);

NUMBER_TARGETS : in NATURAL;

FLAG : inout NATURAL := 1;

TEMP_TARGET : inout TARGET;

PULSE_ON_TIME: in TIME;

TARGET_MAP: in TARGET_ENVIRONMENT),

end ANTENNA;

use work.all, work.RADAR.all;

use std.textio.all;

architecture BEHAVIOR of ANTENNA is

signal ANGLE_ELEV_1, ANGLE_ELEV_2, ANGLE_AZIM_l,

ANGLE_AZIM_2: ANGLE;

begin

-- SCAN :

ChapterS. The Entities of the Radar System Model 61

Process (RANGE_BIN, START_UP)

Begin

if(not((ANGLE_AZIM = AZIM_SCAN_RANGE) and (ANGLE_ELEV = -

ELEV_SCAN_RANGE)) and

(RANGE_BIN = 0 and START_UP’STABLE and START_UP = ’1’))

then

SCAN_ADVANCE (ANGLE_AZIM, ANGLE _ELEV, ELEV_SCAN_RANGE,

AZIM_SCAN_RANGE, ANGLE_AZIM_1, ANGLE_ELEV_1]);

end if;

end process;

-- ASSIGN_SCAN_LIMITS

Process (START_UP)

Begin

if START_UP = ’1’ and not START_UP’STABLE then

ANGLE_AZIM_2 <= - AZIM _SCAN_RANGE;

ANGLE_ELEV_2 <= ELEV_SCAN_RANGE;

end if;

end process;

-- ASSIGN_ANTENNA_I/O

Process (ANT_IN, XMT_IN)

Begin

if (not (RANGE_BIN = 0) and (RX_EN = ’1’)) then

RCVD_SIG <= ANT_IN;

end if;

ChapterS. The Entities of the Radar System Model 62

if (RANGE_BIN = 0 and TX_EN = ’1’) then

ANT_OUT <= XMT_IN;

end if;

end process;

-- ANGLE_ELEV_MUX

ANGLE_ELEV <= transport ANGLE_ELEV_1 when not ANGLE _ELEV_1’QUIET

else ANGLE_ELEV_2 when not ANGLE_ELEV_2’QUIET else

ANGLE_ELEV;

-- ANGLE_AZIM_MUX

ANGLE_AZIM <= transport ANGLE_AZIM_1 when not ANGLE_AZIM_1’QUIET

else ANGLE_AZIM_2 when not ANGLE _AZIM_2’QUIET else

ANGLE_AZIM;

-- ASSIGN_TEMP_TARGET :

Process (FLAG)

begin

if not (FLAG’STABLE) and (START_UP = ’1’) and not (FLAG = 0) then

TEMP_TARGET <= TARGET_MAP(FLAG);

end if;

end process;

-- CHECK_POTENTIAL_TARGET :

Process (FLAG’DELAYED)

begin

ChapterS. The Entities of the Radar System Model 63

if (not (FLAG’DELAYED = 0)) and (START_UP = ‘1’) and

not FLAG’DELAYED’STABLE then

POTENTIAL_TARGET_INFO (TEMP_TARGET, ANT_IN, OP_FREQ,

FLAG);

elsif START_UP = ‘I’ and not FLAG’DELAYED’STABLE then

ANT_IN.LOFREQ <= 0 Hz;

ANT_IN.HIFREQ <= 0 MHz;

ANT_IN.HIPOWER_LEVEL <= 0 mW;

ANT_IN.LOPOWER_LEVEL <= 0 pW;

end if;

end process;

-- TARGET_SEARCH :

Process (RANGE_BIN)

begin

if (not (RANGE BIN = 0) and not RANGE_BIN’STABLE) then

LOOK_FOR_TARGET (ANGLE_ELEV, ANGLE_AZIM, RANGE BIN,

TARGET_MAP, NUMBER_TARGETS, FLAG,

PULSE ON_TIME);

end if;

end process;

end BEHAVIOR;

ChapterS. The Entities of the Radar System Model 64

Entity ANTENNA performs antenna positioning and receives the signal returned from

a target if the target is in range, and in the beam. In addition, it also outputs the high

power RF signal from the output of the DMT to the exterior environment in the direc-

tion of the beam. It uses the signal TARGET MAP to determine if any target lies

within the beam at a given range. Other signals input to it include system parameters

like operating frequency and range bin, Antenna Scan Limits, the high power RF signal

from the DMT, the returned signal from the target, and timing signals from the PSP

section.

Process SCAN is executed after START_UP when RANGE BIN takes on the value 0

for the second time and every time thereafter, until one complete scan of the environ-

ment is done (the first time RANGE_BIN is zero is at START_UP and at this time the

antenna is already stowed at the starting position , so it is only from the second time

that range bin goes to zero that the antenna needs to be moved in order to scan the

environment). The antenna is scanned by calling procedure SCAN_ADVANCE written

in package RADAR. The parameters passed to this procedure are the angles of

Azimuth and Elevation that the antenna is currently in and also the limits to the angles

of Azimuth and Elevation that the Antenna should scan to. The antenna has a beam-

width of two degrees, and is moved three degrees in azimuth each time the scan is ad-

vanced. If the azimuth limit is reached, the azimuth is returned to it’s least value, and

the antenna is scanned in elevation by three degrees. This whole process repeats until

one complete scan of the desired portion of the environment is completed.

Process ASSIGN_SCAN_LIMITS is executed at START_UP. This points the antenna

to the starting position. The starting position is specified by the

Chapter5. The Entities of the Radar System Model 65

AZIM_SCAN_RANGE and ELEV_SCAN_RANGE signals that are initialized through

by the user when INIT is asserted.

ASSIGN_ANTENNA_I/O is a process that is executed each time that ANT_IN or

XMT_IN changes value. XMT_IN is the high power RF input to the antenna that is

provided by the output of the DMT to be output into the environment; and the

ANT_IN signal is the radar_signal that is returned by a target in the beam if it is in

range. So if ANT_IN changes, then RCVD_SIG is assigned ANT_IN. RCVD_SIG

is the RF output from the antenna section into the receiver section. If XMT_IN

changes, ANT_OUT is assigned XMT_IN. ANT_OUT is the signal that is output from

the antenna during the transmit cycle.

Processes ANGLE ELEV MUX and ANGLE_AZIM_MUX re similar to the

RANGE_BIN_MUX and DETECTED_MUX processes. They are required because

output from more than one process changes the value of signals ANGLE _ELEV and

ANGLE_AZIM respectively.

ASSIGN_TEMP_TARGET executes whenever FLAG changes value. When FLAG

changes to a non-zero value after START_UP, TEMP_TARGET (a signal of type

TARGET) is assigned that target from the TARGET_MAP array that appears to be in

the beam and whose range falls in the current value of the range bin.

The TARGET_SEARCH process is executed each time RANGE_BIN changes value.

If RANGE_BIN changes to a non-zero value, the LOOK_FOR_TARGET procedure

written in the package RADAR is called. Parameters passed to it are the position of the

antenna, the TARGET MAP, and some system operating parameters, along with the

current value of the RANGE BIN. Procedure LOOK _FOR_TARGET scans the envi-

ChapterS. The Entities of the Radar System Model 66

ronment to check to see if any targets lie in the beam and if they do, checks if their

corresponding range would be such as to return a signal in the current range bin. If not,

flag remains zero, If there is such a target, then flag changes to a value that points to

the target in the TARGET_MAP array.

Process CHECK POTENTIAL_TARGET is executed a delta time after FLAG changes

value (so that procedure LOOK_FOR_TARGET may be run in that one delta time),

procedure POTENTIAL_TARGET INFO declared in package RADAR is executed.

To it are passed parameters like signal TEMP TARGET which is a signal of type target

and is the target that signal FLAG points to in the array TARGET_MAP. Also passed

are system parameters like operating frequency. POTENTIAL_TARGET_INFO will

use this information to assign signal ANT_IN with the return that is received from this

target. This target is a potentially detectable target, since it is still to be determined in

the PSP whether this target return will have a sufficient power_level; hence the name for

this process.

FLAG_MUxX is a process that was written to resolve the value of signal FLAG, since

it is assigned a value from two different processes.

ENTITY OUTSIDE_WORLD :

use work.all, work.RADAR.all;

entity OUTSIDE_WORLD is

port (TARGET_MAP : out TARGET_ENVIRONMENT; START_UP : in BIT;

NUMBER_TARGETS : out NATURAL);

end OUTSIDE_WORLD;

Chapter5. The Entities of the Radar System Model 67

architecture BEHAVIOR of OUTSIDE_WORLD is

begin

-- POWER_UP:

process (START_UP)

begin

If START_UP = ‘I’ and not START_UP’STABLE then

READ_TARGET_ENVIRONMENT (TARGET_MAP, NUMBER TARGETS),

end if;

end process;

end BEHAVIOR;

OUTSIDE_WORLD is an entity that represents the environment around the radar sys-

tem. At system START _UP, the target scenario is loaded into the system through this

entity. The target scenario is stored in a file. This file is read and information about the

targets are assigned to a signal TARGET MAP which is an array of type TARGET.

The number of targets that are present in the file is also input into the system by means

of a signal called NUMBER_TARGETS. The behavior of this entity is fairly straight-

forward. When signal START_UP 1S asserted, procedure

READ_ TARGET _ ENVIRONMENT is called. This procedure uses package TEXTIO

to read in the information from the text file and performs type conversions to assign

them to an array of signals of type TARGET.

ChapterS. The Entities of the Radar System Model 68

ENTITY INITIALIZER :

use Work.all, work.RADAR.all;

use std. TEXTIO.all;

entity INITIALIZER is

port (INIT : in BIT;

AZIM_SCAN_RANGE, ELEV_SCAN_RANGE : inout ANGLE := 0 degrees;

DETECTION_THRESHOLD : out LOW_POWER := 0 pW;

MAX_DET_RANGE: inout REAL := 0.0;

RANGE_BIN_LIMIT : out NATURAL;

PULSE_ON_TIME: in TIME);

end INITIALIZER;

use work.all,work.RADAR.all;

use std. TEXTIO.all;

architecture BEHAVIOR of INITIALIZER is

begin

-- POWER_UP_INITIALIZATION :

Process (INIT)

Begin

If (INIT = ‘1’ and not INIT’STABLE) then

AZIM_SCAN_RANGE <= _ 60 degrees;

ELEV_SCAN_RANGE <= _ 60 degrees;

DETECTION_THRESHOLD <= 100 uW;

MAX_DET_RANGE <= 100.0; -- miles.

ChapterS. The Entities of the Radar System Model 69

end if;

end process;

Process (INIT’DELAYED)

begin

if INIT’7DELAYED = ‘I!’ then

RANGE _BIN_LIMIT <= MAX_RANGE BIN (PULSE_ON_TIME,

MAX_DET_RANGEB);

end if;

end process;

end BEHAVIOR;

Entity INITIALIZER is used to act as the human interface between the radar system

and the user. It initializes certain signals before the radar system starts functioning. In

effect, it gives the radar system some information as to what the maximum detectable

range should be, what detection threshold should be set at, and what the scan volume

should be. It is executed when signal INIT is asserted. The RANGE _BIN_LIMIT is

also set at this time (one delta time later in order to allow signal MAX _DET_RANGE

to be assigned its new value). Function MAX RANGE BIN in package RADAR is

used to compute the RANGE BIN_LIMIT, given the maximum detectable range de-

sired, and the pulse_on_time of the transmitter.

ChapterS. The Entities of the Radar System Model 70

ENTITY NOISE_GENERATOR :

use work.all, work.RADAR.all;

use std.textio.all;

entity NOISE_GENERATOR is

port (POINTER : inout POSITIVE;

RANGE _BIN: in NATURAL;

RANDOM _NOISE: inout GAUSSIAN_REAL;

RCVR_NOISE: inout REAL := 0.0;

INIT : in BIT);

end NOISE_ GENERATOR;

use work.all, work.RADAR. all;

use std. TEXTIO.all;

architecture BEHAVIOR of NOISE _ GENERATOR is

begin

-- READ NOISE FILE:

process (INIT)

begin

if INIT = ‘I’ then

READ_GAUSSIAN_NOISE(RANDOM_NOISBE);

end if;

end process;

-- ASSIGN_RCVR_NOISE:

process (RANGE_BIN)

begin

ChapterS. The Entities of the Radar System Model 71

RCVR_NOISE < = RANDOM_NOISE(POINTER);

end process;

-- UPDATE_POINTER :

process (RCVR_NOISE)

begin

if POINTER < 100 then

POINTER <= POINTER + 1;

else

POINTER <= 1];

end if;

end process;

end BEHAVIOR;

Entity NOISE GENERATOR was introduced to more accurately model the radar

process. In order to model for false alarms (where a target that should not be detected

is detected due to excess noise in the receiver), and to model for missed detections (where

a target that should be detected is not detected due to noise in the receiver), we need

some way to introduce noise into the receiver. This was achieved by reading a file of

gaussian distributed (random) real numbers which were to represent randomly distrib-

uted noise power levels at the input to the receiver. Since this noise is bipolar, after

amplification in the receiver, it tends to either enhance or attenuate the received signal

strength. If the received signal strength (of a detectable target) is attenuated due to

noise to a power level less than that required for detection, a missed detection scenario

is modeled. If the noise power levels enhance the power level of an otherwise undetect-

able return to the point where it becomes detectable, a false alarm scenario is modeled.

ChapterS. The Entities of the Radar System Model 72

When INIT is asserted, procedure READ_GAUSSIAN_NOISE is called which reads in

this file of gaussian distributed real numbers. This numbers are assigned to a signal

RANDOM_NOISE which is an array of real.

Each time the RANGE BIN signal changes value, process ASSIGN_RCVR_NOISE is

executed in which a noise level is assigned to the input of the receiver. This is achieved

by assigning a real value from the array RANDOM_NOISE to the RCVR_NOISE sig-

nal. The value of POINTER (integer) is used to point to this noise level within the ar-

ray.

The value of pointer is also updated at each new value of the RANGE BIN signal. It

is accomplished by process UPDATE POINTER which is executed each time

RCVR_NOISE changes.

ChapterS. The Entities of the Radar System Model 73

Chapter 6. Some Problems Posed by VHDL and

VHDL Tools

In previous chapters, a modeling methodology for modeling RF systems was developed,

and a RADAR system was modeled using this methodology. Though the RADAR

system model works well, there are a few inherent problems that are posed by VHDL in

modeling RF systems.

These problems will be discussed here, and the solutions that were adopted, along with

the consequences of those solutions are also presented.

In addition, it was found that there is a vast difference in the way in which VHDL tools

simulate these models. Tests were run using two simulators in particular. A discussion

pertaining to these tests is also presented.

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 74

6.1. Type Conversions

Since VHDL is a very strongly typed language, it does not allow signals or variables

of different types to be used in a mathematical relation for purposes of calculation.

Since, the modeling methodology heavily involves the use of arithmetic to model an

analog entity, values of all physical types must first be converted to real numbers before

they can be used in a mathematical relation for the purposes of calculation. This is

currently achieved by first converting the physical type to a universal integer by dividing

it by one unit of its base type. Once this is done, the REAL operator is used on this

universal integer to convert it to a real number. This real number is then used in cal-

culations, and needs to be converted back to its physical type after the calculations are

done. This is achieved by multiplying the intermediate real value obtained after calcu-

lations by one unit of the base type.

An example is presented below. Suppose that the POWER of an analog signal

ANALOG _IN needs to be multiplied by a real factor K and assigned to an analog signal

called ANALOG_OUT, and that the base unit of POWER is pW. The following VHDL

code achieves this.

TEMP_REAL := REAL(ANALOG_IN.POWER/1 pW);

ANALOG_OUT.POWER < = (K*TEMP_REAL)*1 pW;

Even though this procedure is straight-forward, the problem faced due to this procedure

is that simulator overhead is required in order to perform type conversions and real

number arithmetic. Moreover, since calculations need to be performed using real num-

bers (as opposed to performing calculations with abstract data types that have integer

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 75

representations), these take a longer time (since floating point arithmetic takes longer to

accomplish relative to integer arithmetic). Asa result of this, simulation times are longer

than they would have been otherwise. This would be true particularly when the simu-

lation is expected to perform calculations heavily and repeatedly, and when these calcu-

lations involve physical types.

6.2. The Range Restriction Problem

Another problem that VHDL poses is the restriction on the range of values that physical

types can take on. Physical types can only take on values ranging from approximately

-2E9 to 2E9. This poses a problem when attempting to model a RADAR system for

two reasons :

e It is required to represent a wide range of power levels; from Mega watts (during

transmission) to several pico watts (reception). Clearly, this cannot be achieved with

the restriction on the range of values that physical types can take on. Since, if the

base unit of an abstract type POWER is defined as pico watts, then a signal of type

POWER can at most represent a power level of approximately 2 mW.

e A similar problem is faced in representing frequency. The frequency of operation

of the system is well up in the X band (8 - 12 GHz). Whereas, the Doppler fre-

quency that we need to represent is anywhere from a few Hz to several KHz. There

again arises a problem, since if the base unit of type FREQUENCY is defined as

Hz, then one can at most represent approximately 2 GHz.

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 76

The solution that was arrived at for this problem was to declare two different types for

representing power and two different types for representing frequency of a

RADAR SIGNAL. One type would represent the low power range or low frequency

range and the other would represent the high power range or high frequency range. For

example, consider the definition of an analog signal as:

type LOW_FREQUENCY is range 0 to 2E9

units Hz;

KHz = 1000 Hz;

end units;

type HIGH_FREQUENCY is range 0 to 2E9

units MHz;

GHz = 1000 MHz;

end units;

type LOW_POWER is range 0 to 2E9

units pW;

nW = 1000 pW;

uW = 1000 nW;

end units;

type HIGH_POWER is range 0 to 2E9

units mW;

W = 1000 mW;

KW = 1000 W;

Chapter 6. Some Problems Posed by VHDL and VHDL Tools TT

end units;

type ANALOG_SIGNAL 1s record

LO_FREQ : LOW_FREQUENCY;

HI_FREQ : HIGH_FREQUENCY;

LO_POWER : LOW_POWER;

HI_POWER : HIGH_POWER;

end record;

Once an analog signal is thus defined, we can find the total power in the system as the

sum of the power in both the fields, LO_LPOWER and HIPOWER. Likewise, when the

frequency of the signal is needed for the purposes of calculation, we can sum the

LO_FREQ and HI_FREQ fields.

The disadvantage of this solution is that simulator overhead is required when converting

the low and high range types to real, summing them up, using the intermediate value in

calculations, and then converting them back to low and high types.

Though the solution is not an elegant one, it seems to be the only way to solve the

problem given the range restriction. Another possibility that was considered was to use

a log scale (db) to represent power and frequency. In the case of frequency, this was

not possible since the operation of the model required frequencies to be added and sub-

tracted, and this would not be possible if a log scale was used. Power, however can be

represented using a db scale, since the model involves only multiplications and divisions

with power levels. However, a separate mathematical package would be needed (for the

log function) to convert powers to a logarithmic scale. Furthermore, since such loga-

rithmic functions are an approximation that involve summing of a series, this approach

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 78

is viewed as inefficient since it would add a greater simulator overhead than the ap-

proach that was adopted.

6.3. Problems Posed by VHDL Tools

It was found that simulation run times varied widely depending on the simulator being

used, and the machine on which the model was run. Though some difference in simu-

lation times is expected due to simulation tools originating from different vendors, some

interesting points were noted about the implementation of these tools, and a brief dis-

cussion follows. In particular, two tools were compared on an Apollo DN3500 work-

station. These were the Synopsys VHDL System Simulator Version 2.1c, and the MCC

CAD VHDL System Version 2.0.

On finding initially that simulation of the model took a very long time to complete (88

minutes on the Synopsys simulator with scan limits of +/- 60 degrees, and a maximum

detectable range of 100 miles), it was felt that the long run time was due to the simulator

spending a considerable amount of time in performing type conversions, and real arith-

metic. (Note that for the above values of range, and scan limits, the RANGE BIN

signal changes value approximately 41*41*MAX RANGE BIN times. This works out

to 179866. This is the number of times that the target array is scanned, and the number

of times that noise is amplified in the receiver). It can thus be appreciated that the

model is inherently compute intensive.

However, after tests were run, it was determined that the simulator spent a large part

of this simulation time in scheduling events, and monitoring processes and signal values.

In order to reduce the run time for the tests, the simulation parameters were changed to

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 79

a maximum detectable range of 50 miles, and antenna scan limits of +/- 30 degrees.

The value of MAX_RANGE_BIN for these parameters is 54. The number of times that

RANGE BIN changes value throughout the simulation in this case then is 23761. (The

simulation then takes 11 minutes and 50 seconds to run to completion with the same

simulator. This confirms that the run time is approximately proportional to the number

of times that signal RANGE_BIN changes value.

A simple test was written to determine the amount of time the simulator spends in

scheduling events, and monitor processes and signal values. The code for the test ex-

ample appears below :

use work.all:;

entity TEST is

port (A: in INTEGER := 0; B: inout INTEGER := 0; C: in bit);

end TEST;

use work.all;

architecture TEST of TEST is

begin

process

begin

ifC = ‘I’ and not C’STABLE then

foriinltoA

loop

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 80

If B < 54 then

-- B<=B+t+1;

wait for 10 us;

else

-- B <= 0;

wait for 10 us;

end if;

end loop;

end if;

wait on C;

end process;

end TEST;

use work.all;

entity TEST_BENCH is

end TEST_BENCH;

architecture T of TEST_BENCH is

signal A, B: INTEGER := 0;

signal C : bit;

component TEST_THIS

port (A: in INTEGER := 0; B: inout INTEGER := 0; C: in bit);

end component;

for LI : TEST_THIS use entity TEST(TEST);

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 81

begin

LI: TEST_THIS

port map (A, B, C);

A <= 23761;

C <= transport ‘1’ after 1 ns;

end T;

This test example simply reads in the value of a signal A of type INTEGER and on as-

sertion of signal C, a loop is entered whose body is executed A times, or in this case,

23761 times. Note that all that the body of the loop contains is a wait statement, “wait

for 10 us”. The integer add is commented out, and does not take place. (It 1s “decom-

mented” in a following test to determine how much time the simulation takes, if an in-

teger add is inserted in the body of the loop). Surprisingly, it was found that the

scheduling of events due to the wait statement takes a relatively long time to accomplish.

(Note that there is a similar situation in the radar system model, where process

RANGE INCREMENT increments the value of RANGE_BIN after every

PULSE_ON_TIME ns). In particular, it takes 29 seconds for the Synopsys simulator

to execute the test model, but it takes 145 seconds for the MCC simulator to execute the

test. After the integer add statements were “decommented”, the simulator from Synopsys

ran the model in 38 seconds, whereas the MCC simulator ran the model in 153.7 sec-

onds. This implies that the time spent in performing the integer additions 1s about the

same for both simulators.

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 82

Furthermore, on changing the wait statement, and making the model wait for 10 ns (as

opposed to 10 us) in the body of the loop, the run time changed dramatically. Using the

Synopsys simulator, the run time reduced to 21 seconds with the integer additions “de-

commented” (a reduction of 45 per cent), but the run time reduced to 24.7 seconds for

the MCC simulator (a reduction in run time of 84 per cent).

However, on changing the PULSE_ON_TIME in the radar system model from 10 us to

10 ns, a minimal change was observed in the run time using the Synopsys simulator, but

run time reduced by a significant amount using the MCC simulator. In particular, the

MCC simulator took 19 minutes, and 40 seconds to run the model with a

PULSE_ON_TIME of 10 us, but took 11 minutes, and 24 seconds to run with a

PULSE_ON_TIME of 10 ns (a reduction in run time of 42 per cent). On the other hand,

the Synopsys simulator took 44 minutes and 52 seconds to run the model with a

PULSE_ON_TIME of 10 us, but took 44 minutes and 31 seconds to run the model with

a PULSE _ON_TIME of 10 ns (a reduction in run time of just 0.8 per cent).

It is thus felt that a significant part of the run time is spent in scheduling of events, and

not all of it is attributed to type conversions and arithmetic. Furthermore, VHDL tools

vary as far as implementation of the scheduling of events is concerned, and one should

first make comparisons before determining which tool to use to run simulations of

VHDL models, so as to minimize run time.

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 83

Chapter 7. A Fault Diagnosis Methodology

7.1. Introduction

As the follow-on part of this research, it is proposed to develop a fault diagnosis meth-

odology for locating faults at the system level from first principles [2] using knowledge

of the behavior of the system. In future research work, it is hoped that this fault diag-

nosis methodology is adopted, and a reasoning system is built that uses VHDL Behav-

ioral descriptions to perform diagnostic reasoning. Fault diagnosis systems of this type

have been built in the past for digital systems, and one such system is due to Marcotte,

Neiberg, Piazza, and Holtzblatt of the MITRE Corp. [6].

A method of reasoning from first principles [2] is required, since we need to reason from

the behavior and structure of the system and its components. Once it is determined that

the system is misbehaving (or is not behaving as it was intended to) then we need some

method of using the VHDL model and localizing the fault to an entity or entities that

seem most likely to be responsible. In real applications, it is intended that the model

Chapter 7. A Fault Diagnosis Methodology 84

and its fault diagnosis reasoning tool are used to diagnose faults in the actual RF system

which is mis-behaving.

Work exists in the literature that uses techniques of artificial intelligence to perform di-

agnostic reasoning based on structure and behavior. Work in this area by Dr. Randall

Davis [2] of the Massachusetts Institute of Technology, (mostly performed in the digital

domain) is particularly interesting. This chapter borrows from much of that work, and

it is proposed to apply some of these techniques for fault diagnosis of RF systems. By

fault diagnosis is meant the localizing of faults to certain entities that are determined to

be potentially responsible for the faulty behavior; and not the generation of test vectors

that will detect the fault. In an actual RF system, this diagnosis methodology will help

in determining which Line Replaceable Units (LRUs) to replace in a malfunctioning ra-

dar system (say), which would help in bringing up the system in a very short time.

Specifically, methods of discrepancy detection and constraint suspension [2], first discussed

by R. Davis, are proposed to be used that make use of the structural and behavioral

information about a system, provided by VHDL descriptions. These methods are elab-

orated upon later on in this chapter.

We have then, a VHDL model of an RF system, and we also have available the faulty

symptoms of the real RF system, which reportedly is malfunctioning. We have to use

this information to try and locate the fault to within an entity or an LRU, so that the

system may be brought back up with a minimum of delay, by replacing the suspected

component(s). An essential aspect to consider when attempting to use these techniques

for diagnostic reasoning is the paths of causal interaction [2] to consider between these

various components or entities that will be held accountable for the fault. That is, we

need to ask “How are the different entities related to each other ?”, so we may determine

Chapter 7. A Fault Diagnosis Methodology 85

the effect of one over the others. This is an important question to ask, since we are at-

tempting to track down the fault to some component(s), using first principles and

knowledge of behavior, and not by using some fault model or previously encountered

fault data base. These latter methods become cumbersome and very time-consuming

as systems grow large, and it is proposed that these methods be used at a later stage,

after the fault has been narrowed down to within a few entities to further narrow down

the search, if necessary.

One obvious path of causal interaction is that provided by the structural description of

the entire system, which in turn provides information as to how the entities are con-

nected together. This information is inherent in VHDL descriptions, and makes up

functional adjacency. By functional adjacency we mean the adjacency that 1s provided in

a VHDL model by the signal interconnect information. For systems that we are mod-

eling though, it becomes important to consider RF effects, temperature effects, shielding

effects, etc., which are proximity effects. By proximity effects we mean the effect an entity

could have over some other entity because they are physically close together.

Fortunately, VHDL has the potential to allow one to include this information in the

descriptions of entities by the use of user defined attributes [4]. Once knowledge of the

physical proximity of these various entities in a real system are obtained, VHDL attri-

butes can be used which allow one to specify the proximity of one entity to another.

For example, for boxes (sub-units or LRUs within the real system), knowledge of ther-

mal adjacency is important since these boxes or units can transfer heat between them.

In a real system, cooling methods may be incorporated externally that take heat away

from these boxes in order to prevent high temperature effects. Once this knowledge

about thermal adjacency and cooling effects in the real system is obtained, attributes can

Chapter 7. A Fault Diagnosis Methodology 86

be defined that will specify for each entity (according to the box in which it lies), its

susceptibility to temperature effects from all the other entities. An additional attribute

can be defined that specifies for each entity, whether the box in which it lies has some

cooling mechanism, since this will allow for modeling of the failure of the cooling

mechanism as well.

An example of how temperature susceptibility information could be extracted from the

model is now discussed. After knowledge of the real system is obtained, one associates

with the definition of each entity two attributes, its ID. NUMBER and its

TEMP_VECTOR. ID NUMBER takes the form of an integer number which is unique

to that entity. This number identifies the entity, and the attribute could be called

ID_NUMBER. The second attribute, TEMP VECTOR takes the form of a bit vector,

and it can specify the susceptibility of the entity to temperature effects from other enti-

ties.

All the entities that make up the system are then numbered from 1 through n, and thus

uniquely identified by the ID NUMBER (assuming there are n entities in all). The

TEMP_VECTOR would then be n bits long and could completely specify the temper-

ature susceptibility of the entity to all the other entities.

Consider for example that it is needed to determine the susceptibility of entity ‘p’ to

temperature effects from entity ‘q’. Where ’p’ and ’‘q’ are ID NUMBERS. This can

be achieved by looking up the TEMP_VECTOR of entity ’p’, and referring to the ele-

ment in it that is indexed by the value of ’q’. If this value is a ’0’, ‘p’ is not susceptible

to temperature effects from ‘q’, If it is a ‘1’, then “p’ is susceptible to temperature effects

from ‘q’.

Chapter 7. A Fault Diagnosis Methodology 87

In order to do this it is required to first define these TEMP_VECTORs and assign values

to them in the VHDL model. This is done by first determining from the knowledge of

the real system, the temperature susceptibilities of the entities to each other. For ex-

ample, one way to do this would be to assume that if entity ’q’ lies in the same box as

entity ‘p’, then TEMP_VECTOR[q] of entity ‘p’ = ‘1’. Again, if entity ’q’ lies in an

immediately adjacent box, and is not thermally insulated from it, or cooled, then again

TEMP _VECTOR{q] of entity ‘p’ = ‘1’. On the other hand, if entity ’q’ lies in a box that

is some distance away, or is not in the immediately adjoining box to that of entity ‘p’,

or it is thermally insulated, then TEMP_VECTOR{[q] of entity ‘p’ = ’0’.

Consider as an example that we have four entities ENTITY1, ENTITY2, ENTITY3, and

ENTITY4. Then, the entity declaration of ENTITY1 would be as under :

package ATTRIBUTE_DEFS is

attribute ID NUMBER: INTEGER;

attribute TEMP_VECTOR : BIT_VECTOR(I to 4);

end ATTRIBUTE_DEFS;

entity ENTITY1 is

port (....);

generic (...);

end ENTITY];

Chapter 7. A Fault Diagnosis Methodology 88

After the entity is thus defined, attribute specification can take place in the structural

architecture in which the ENTITYI is used. For example consider architecture

STRUCTURAL of an entity EXAMPLE in which ENTITY1 is instantiated.

use WORK.ATTRIBUTE_DEFS.ALL;

entity EXAMPLE is

end EXAMPLE;

architecture STRUCTURAL of EXAMPLE is

signal ...

signal ...

component ENTITY1 is

port (...);

generic (...);

end component;

for Ll : ENTITY1 use ENTITY l(architecture_name);

attribute ID NUMBER of ENTITY is 1;

attribute TEMP_VECTOR of ENTITY 1 is (0100);

eoeer

The attributes specifications above indicate that ENTITY] is identified as 1, and it is

susceptible to temperature effects from entity 2 only, since TEMP_VECTOR[2] of 1 =

TV.

Chapter 7. A Fault Diagnosis Methodology 89

Attributes may again be defined which specify the susceptibility of the system to RFI.

Whereas temperature effects are accounted for due to the proximity of boxes, RF effects

can be accounted for due to the proximity of wires. It is then possible by a similar

method to model for RF effects of one signal over another. This can occur for example

if two signals share the same cable.

Consider for example that there are n signals associated with the top level entity. In the

architecture description of the top level entity where all the signals to be used in the top

level entity are declared, it is possible to again associate with each signal two attributes,

a SIG_ID (1 through n), and an RFI_VECTOR (bits long). If it is possible to have

RFI between signal ‘i’ and signal ‘j’, then RFI_VECTOR|i] of signal ‘j’ is ‘1’, and

RFI_VECTOR{j] of signal ‘i’ is also ‘1’. The attribute declarations for the RFI case are

similar to that for the temperature case, but are associated with the signals, rather than

the entities.

Note that by changing the type of the TEMP_VECTOR or RFI_VECTOR from

BIT_VECTOR to an array of integers, it is possible to scale the susceptibility of entities

to RFI or temperature with respect to some maximum. This is in contrast to using only

‘1’s and ’0’s to represent susceptibility, which might be viewed as a weak system of rep-

resentation, if accurate data about RFI between signals, or temperature effects between

boxes is available. Hence it becomes possible to more accurately represent temperature

and RFI data to the diagnostic system.

Chapter 7. A Fault Diagnosis Methodology 90

7.2. Hierarchy of Paths of Interaction

A hierarchy of types of paths of causal interaction needs to be considered in order to

consider a broad range of faults. That which is higher up in the hierarchy is that which

is most likely to yield candidate information, and that which is lower on ts only resorted

to if the higher one fails to yield a candidate. It is natural then to consider the functional

adjacency [2] first, as this is most likely to yield a candidate, whose symptoms of mal-

function are realistic. If this fails, then we may look at proximity effects (temperature,

RFI etc.)

7.3. Discrepancy Detection & Constraint Suspension

The methods of discrepancy detection and constraint suspension will now be defined and

elaborated upon [2]. Each sub-system or entity that we consider as a candidate has a

set of constraints associated with it which are complete in describing the behavior of that

sub-system. That is, given these constraints, we can use them to figure the outputs of

the sub-system for any combination of inputs. Furthermore, given the outputs, we can

figure out what the inputs should have been. This process of back propagating through

the model (figuring out the inputs or values at certain nodes given the outputs) is a dif-

ficult process and proves to be cumbersome for fault diagnosis of large digital systems.

Fortunately, behavioral modeling of RF systems (like the radar system that we mod-

eled), involve sub-systems whose behavior can be represented using some simple math-

ematical function (subtraction, addition, multiplication, division, etc.), usually on one

Chapter 7. A Fault Diagnosis Methodology 91

or two variables (as compared to digital systems, where the entire truth table need be

considered). This makes the process of back propagating easier.

Given these constraints, we can model the system as a network made up of connected

constraints. A VHDL model provides information about structure and behavior. From

this, a network of constraints can be extracted. The behavioral descriptions provide in-

formation about the constraints themselves, and the structural hierarchy can provide

information about the way in which these networks are connected.

Constraint suspension asks : Is there some constraint, the suspension of which will leave

the network in a consistent state ? That is, we look for global consistency. If global

consistency is found, each such constraint accounts for all the observed symptoms. The

implication here is that the failure of the sub-system whose constraint(s) are suspended,

explains all the observed symptoms. We assume here a single point of failure; where

“point” here refers to a sub-system. But which constraint do we look to suspend ?

Logically, any constraint lying along a path from an incorrect output to an input can

be responsible for incorrect behavior. So, we need only consider those constraints that

are on a path that lie from an incorrect output to an input. We can thus create de-

pendency chains that trace outputs to inputs. This information is provided by VHDL

and can be extracted from the various entity declarations of the VHDL model. Each

constraint (or sub-system) lying on a chain from a defective output to an input (chain

here refers to all those sub-systems that are interconnected via the path of causal inter-

action under consideration), can conceivably be responsible for the fault.

This is a good strategy since we simply assume that we know nothing about the correct

functioning of the sub-system (or how it is supposed to function or what its behavior 1s),

but assume that it is functioning in an incorrect manner; then we try and determine if

Chapter 7. A Fault Diagnosis Methodology 92

this faulty sub-system alone can explain all the discrepancies (as well as the good out-

puts) assuming all the other sub-systems are not faulty; i.e. we look for consistency.

We need a way of generating candidates that may be responsible for the faulty condition

that we come across. The idea here is to exonerate those that clearly cannot be re-

sponsible for the faulty condition. Once multiple candidates are generated by consider-

ing one path of interaction, we can slip down one level of hierarchy in the structure of

the system (using the VHDL description), and try and determine for each of these can-

didates, whether the sub-components of the candidate are likely to be responsible for the

fault, using here the same techniques as for the parent component. If given the inputs

and outputs of the parent candidate, the sub-components cannot interact in any way to

produce that fault, that parent candidate can then be exonerated, and another candidate

is considered.

So, in effect, after constraint suspension is performed at the top most level of the struc-

tural hierarchy, we move down one level in the hierarchy and try to determine from first

principles (this time using the behavioral description of the parent candidate, and per-

forming constraint suspension on the sub-components of the parent candidate) if these

sub-systems can be globally consistent in explaining the parent candidate’s symptoms.

(where “symptoms” refer to the value on its ports that were obtained while checking for

consistency of the parent candidate)

Thus, three things need to be done to generate candidates. First, simulate the system

and collect discrepancies between predicted outputs and actual outputs. This is the dis-

crepancy detection stage. Second, determine potential candidates that could be respon-

sible by considering the dependency chain from the faulty output to the inputs. Third,

Chapter 7. A Fault Diagnosis Methodology 93

for each of these candidates, perform constraint suspension to determine if they are

globally consistent. If they are globally consistent, then they are likely candidates.

An algorithmic approach is presented below. Once, the path of causal interaction to be

considered has been selected, the constraint network is extracted from the VHDL model,

and the following algorithm is performed.

1. Step 1.

e A) Simulate the VHDL model by providing primary inputs and collect all dis-

crepancies in outputs. That is, find out all those outputs of the simulation that

differ from the actual outputs of the system.

2. Step 2.

e A) For each of these outputs, determine the dependance chain for that faulty

output. The sub-systems or entities lying on the dependency chain are potential

candidates.

e 8B) Take the intersection of all the candidates obtained after considering all the

discrepancies. The common ones are most likely to be at fault and to explain

all the discrepancies.

3. Step 3. For each of these candidates, we need to determine global consistency.

Consider for this purpose, the constraint network of the model.

e A) Select a candidate, if any, from the list of possible ones.

Chapter 7. A Fault Diagnosis Methodology 94

e B) Suspend the constraints that model that candidate’s behavior. Turn on all

other constraints.

¢ CC) Apply the primary inputs to the constraint network, and also apply the “ob-

served outputs” from the VHDL simulation at the outputs of the constraint

network. By back propagating, and forward implication, determine whether the

suspension of the candidate’s constraints can explain all the observed outputs.

If yes, then this process of back propagating of outputs and forward implication

of inputs will provide a set of values on the ports of the suspected candidate.

These are its “symptoms”, and explain what the candidate may be doing.

(These can, at a later stage, be used to go one level down in the candidate’s hi-

erarchy, whose sub-components may then be examined in a similar manner for

consistency using these values or “symptoms”) Add this candidate to the list of

globally consistent candidates, and delete it from the list of possible candidates.

¢ D) If (C) does not lead to global consistency for the candidate, then abandon

that candidate, and remove it from the list of possible candidates, since it cannot

be held responsible for the observed outputs.

e EE) Return to Step 3, part (A).

If the algorithm does not yield any consistent candidate, considering the current path

of causal interaction, we can slip down one level in the hierarchy of paths of interaction

to be considered, try another path of causal interaction, and extract the constraint net-

work using this current path to determine if we can find a likely candidate here. This

process is continued till a candidate is found, or till all the paths of causal interaction to

be considered are exhausted.

Chapter 7. A Fault Diagnosis Methodology 95

(ANT _OLIT

ANT _IN

ANTENNA

SCAN

LIMITS
ANGLE AZIM

ANGLE ELEV Ny

RANGE_BIN
INCREMENTER

OP

FR
EQ

DETECTION

CHECKER

D
E
T
E
C
T
I
O
N

T
H
R
E
S
H
O
L
D

(Y
i

RCVR_OUT

DETECTED «STARTUP
¢—INII__

DETECTION ¢—PULSE_ON-
INFO _TIME

Figure 5. The Diagnosis Example

Chapter 7. A Fault Diagnosis Methodology 96

7.4, A Diagnosis Example

In order to demonstrate how this methodology works in localizing faults in a high level

behavioral model of an RF system, consider Figure 5 on page 96 which shows the pic-

torial representation of a subset of the model that was written for the radar system. It

shows the major signals involved, indicates the analog signal data path, and the control

signals through the system. Note that the primary inputs to this system are

START_UP, DETECTION_THRESHOLD, FRO, ANTENNA _SCAN_LIMITS,

ANT_IN, INIT, and PULSE_ON_TIME. The primary outputs are ANGLE_ELEV,

ANGLE_AZIM, ANT_OUT, DETECTED and DETECTION_INFO. The VHDL

code for all these sub-systems can be found in the main code for the radar system which

is in the appendix.

A brief explanation as to the working of this model is now given in order to understand

the behavior of the system, which will aid in the fault diagnosis part. Upon START_UP,

initialization of ANTENNA _SCAN_LIMITS (also used to position the antenna at

START_UP) takes place, and initialization of DETECTION THRESHOLD is

achieved. Then, entity SYNCHRONIZER asserts TX_EN which signals the TRANS-

MITTER to transmit a high power analog signal (15 KW, 5700 MHz) to the AN-

TENNA unit.

The ANTENNA unit directs this signal out into the TARGET_ENVIRONMENT upon

receipt of the TX_EN signal to a particular direction (initially to that specified by

SCAN_LIMITS); that are specified by ANGLE AZIM and ANGLE_ELEV.

ANT_OUT 1s the signal sent out into the environment.

Chapter 7. A Fault Diagnosis Methodology 97

TX_EN is then de-asserted, and RX_EN is asserted; which in turn signals the

RANGE _INCREMENTER to begin incrementing RANGE_BIN up from zero to

RANGE BIN_LIMIT at regular intervals. Meanwhile, RCVD_SIG is assigned a re-

turned signa! if a target is present in the current beam position, and if the return from

it falls within the current RANGE _BIN. Otherwise, it is assigned (OQ KW, 0 MHz).

The received signal RCVD_SIG is processed in the receiver, i.e. it is down converted

(mixed with LOI, LO2, LO3) and amplified (3 stages), and passed on to the

DETECTION CHECKER, where the DETECTION_CHECKER checks to see if

RCVR_OUT exceeds the threshold. If it does, it outputs information into the signal

DETECTION_INFO about the target’s range, its velocity, and its position (Azimuth

and Elevation). At the same time, it asserts DETECTED, to inform of a target de-

tection.

After one receive cycle is thus completed (specified by one complete cycle of the

RANGE BIN signal from 0 to RANGE_BIN_LIMIT), the ANTENNA advances by 2

degrees in AZIMUTH, and goes through the transmit and receive cycles again. This

process continues till an entire scan of the environment is completed.

To model a fault scenario, suppose that a target that should have been detected, is not

detected. That is, suppose that there exists just one target in the

TARGET_ENVIRONMENT and of the various primary outputs, we find that signal

DETECTED never goes high throughout the entire scan, and DETECTION INFO

does not provide information relating to a target detection. (DETECTION_INFO

provides information about the target and its information is only updated, when a DE-

TECTION is sensed. At all other times, its output is not valid, and stays at 0 degrees,

0 degrees, 0 miles, OPENING, 0 m/s). The other primary outputs ANGLE_ELEV,

Chapter 7. A Fault Diagnosis Methodology 98

ANGLE_AZIM, and ANT_OUT function properly. In other words, the only discrep-

ancy in operation is sensed at the primary outputs DETECTED, and

DETECTION_INFO.

Suppose that the target that should have been detected is present at -59 degrees

Azimuth, 59 degrees Elevation, is 650 ns of round trip range time away, provides an at-

tenuation of 4.5E+11, and a Doppler shift of -2200 Hz. According to proper operation

of the system (provided by the simulation), it is predicted that the target should be de-

tected when the center of the beam is at -60 degrees Azimuth, 60 degrees Elevation, and

it should be detected in RANGE _BIN 65.

As mentioned earlier, it is found that the only primary outputs where a discrepancy is

found is signal DETECTED, and signal DETECTION_INFO. All other primary out-

puts function as predicted. We will now apply the above fault diagnosis methodology

to the model using discrepancy detection and constraint suspension, to try and diagnose

the fault.

Suppose that we have a VHDL model that specifies the Behavior and Structure of the

system as explained above and as specified by the process model graph (refer to the

model that was written for the radar system). What we then need is a program that uses

this VHDL model to extract information about structure from the model (assuming

functional adjacency), and then for each entity or sub-unit it finds, it forms a set of

constraints using the VHDL behavioral descriptions. One such program (GMODS) has

been written and tested by the MITRE corporation for digital circuit descriptions. See

[2] for details. Once the constraints associated with the sub-systems are obtained, a

constraint network is formed using information about the structure (connectivity) of the

system (for a path of causal interaction corresponding to functional adjacency). For ex-

Chapter 7. A Fault Diagnosis Methodology 99

ample, the constraints for the Transmitter (referring to the VHDL model) could look like

this :

TRANSMITTER_CONSTRAINTS :

Begin

IN : FRO.

OUT : OP_FREQ, LO1, LO2, LO3, XMT_OUT.

OP_FREQ = LOI + LO2 + LO3 (TX_EN’DELAYED = 1).

XMT_OUT.FREQ = OP_FREQ (TX_EN’DELAYED = 1).

XMT_OUT.POWER = 15 KW (TX_EN’DELAYED = 1).

LOI = 48 * FRO (TX_EN = 1).

LO2 = 8* FRO (TX_EN = 1).

LO3 = 1* FRO (TX_EN = 1).

End TRANSMITTER_CONSTRAINTS.

The constraints for the other sub systems can be found in Appendix B. Looking at the

algorithm for fault diagnosis of this system, we see that the first step is to collect dis-

crepancies. The only discrepancies that are found are on signals DETECTED, and

DETECTION_INFO.

Next (Step 2), we have to follow the dependency chain back to the inputs for each of

these outputs. Here, we find that each and every sub-system of the graph is part of the

dependency chain for both the outputs. So, after taking the intersection of the sets, we

find that we have to perform constraint suspension on each and every sub-system in order

to determine global consistency, i.e. in order to determine if that sub-system could indeed

Chapter 7. A Fault Diagnosis Methodology 100

be responsible for all the symptoms (faulty and good) on its own. So, the candidates

are ;

1. Synchronizer

2. Transmitter

3. Antenna

4. Range _Bin_Incrementer

5. Receiver

6. Detection_Checker

Constraint Suspension on SYNCHRONIZER :

Turning off the constraints on SYNCHRONIZER alone, we have to see if there are any

set of values on the ports of SYNCHRONIZER that can account for all the observed

outputs (good and faulty). If so, then these values give an idea as to what the possible

“symptoms” of the failed SYNCHRONIZER could be.

Since a DETECTION is never made, a value of RCVR_OUT = (0 uW, X Hz) can be

assumed (by back propagating through the DETECTION_CHECKER) ; where *X’ im-

plies a ‘don’t care’ state. This, when propagated back through the RECEIVER, gives a

value of RCVR_IN (input to the receiver) = (0 pW, X MHz). Since ANT_OUT = (15

KW, 5700 MHz), a value of ANT_IN = (333 pW, 5700 MHz - 2200 Hz) is obtained

(knowing the characteristics of the target), So, then considering the ports of

SYNCHRONIZER, RX_EN = 0 (when it should be 1), TX_EN = 0, RANGE_BIN

Chapter 7. A Fault Diagnosis Methodology 101

= 65 can account for all the observed symptoms, so this makes SYNCHRONIZER a

globally consistent candidate.

Constraint Suspension on TRANSMITTER :

Are there any values on the ports of TRANSMITTER that will justify all the observed

outputs (good and faulty) ? If yes, then TRANSMITTER alone could be responsible

for all the observed outputs. And if so, then these values are the possible “symptoms”

of failure of the TRANSMITTER.

Since ANT_OUT = (15 KW, 5700 MHz) during the transmit phase and (0 KW, 0 MHz)

in the receive phase, back propagating through the ANTENNA, we find that

XMT_OUT must be (15 KW, 5700 MHz) and (0 KW, 0 MHz) respectively. Also, back

propagating through DETECTION_CHECKER, RECEIVER, we see that LOI, LO2,

LO3, OP_FREQ = X, since any arbitrary values on these do not explain the missed

detection. No assignment of values on the ports of TRANSMITTER could be found,

so TRANSMITTER is not a globally consistent candidate.

Constraint Suspension on ANTENNA : Suspending the constraints on ANTENNA

alone, can we place some value on each of the ports of ANTENNA that will explain the

malfunctioning of the entire system, assuming that ANTENNA alone is at fault ? Sup-

pose that primary input SCAN_LIMITS = +/- 60 degrees. Since ANT_OUT (primary

output) is (15 KW, 5700 MHz), ANT_IN must be = (333 pW, 5700 MHz - 2200 Hz)

(for this target) when ANGLE_AZIM = -60 degrees, ANGLE_ELEV = 60 degrees,

RANGE BIN = 65, TX_EN = 0, RX_EN = 1. Looking at the ports of ANTENNA,

we see that the outputs ANGLE_ELEV, ANGLE _AZIM, ANT_OUT, ANT_IN are as

expected. The only other port that could explain the discrepancy is RCVD_SIG. Back

propagating through the DETECTION CHECKER and the RECEIVER, we see that

Chapter 7. A Fault Diagnosis Methodology 102

a value of RCVD_SIG = (0 KW, X MHz), when it should have been (333 pW, 5700

MHz - 2200 Hz), would explain all the observed symptoms of the system. Hence, AN-

TENNA is a likely candidate, and is globally consistent.

Constraint Suspension on RANGE _BIN_INCREMENTER :

Using the observed outputs of the system, and given the inputs to the system, is it pos-

sible to obtain a set of values {at the ports of RANGE BIN_INCREMENTER) by

forward and backward propagating through the constraints of the other entities ? If so,

then constraint suspension yields a likely candidate that accounts for all the symptoms.

Since all other entities are assumed to work right, back propagating through them gives

a value of TX_EN = 0, and RX_EN = I during the receive cycle, when ANGLE_ELEV

= 60 degrees, ANGLE AZIM = -60 degrees. The output port RANGE_BIN deter-

mines whether the return from the target is assigned to ANT_IN. So, back propagating

through the ANTENNA, we see that since ANGLE_ELEV and ANGLE_AZIM are as

predicted, and these depend on the successful completion of the RANGE_BIN cycle,

there is no assignment to the RANGE_BIN port which explains all the observed out-

puts. We have considered all the ports of RANGE_BIN_INCREMENTER and there

is nO assignment of values to them out of the ordinary that can explain all the discrep-

ancies, and so RANGE_BIN_INCREMENTER is not globally consistent.

Constraint Suspension on RECEIVER :

Likewise, does constraint suspension on RECEIVER prove RECEIVER to be a globally

consistent candidate ? If so, the symptoms of the malfunctioning RECEIVER will be

available at its ports. Back propagating through the DETECTION_CHECKER, we see

that RCVR_OUT.POWER < DETECTION_THRESHOLD. Then, RCVR_OUT =

(0 KW, X MHz), LOI = 4800 MHz, LO2 = 800 MHz, LO3 = 100 MHz, RCVD_SIG

Chapter 7. A Fault Diagnosis Methodology 103

= (167 uW, 5700 MHz - 2200 Hz) are the “symptoms” of the malfunctioning RE-

CEIVER. So, RECEIVER is a globally consistent candidate.

Constraint suspension on DETECTION_CHECKER : Can DETECTION_CHECKER

alone explain the malfunctioning of the system ? Is there any assignment of values to

the ports of DETECTION CHECKER that makes the constraint network consistent ?

Since RCVR_OUT = (167 uW, 2200 Hz) (output from RECEIVER), we see that

RANGE BIN = ’X’, DETECTED = ’0’, DETECTION_INFO = (0 degrees, 0 de-

grees, 0 miles, OPENING, 0 m/s) will explain the malfunctioning. So, an assignment

of values to the ports (out of the ordinary) have been found and

DETECTION_CHECKER is a globally consistent candidate.

Thus, after having run the algorithm, we find that the possible entities that could be re-

sponsible for the malfunctioning of the system are :

1. SYNCHRONIZER

2. ANTENNA

3. RECEIVER

4. DETECTION_CHECKER

Hence, use of constraint suspension, and the use of functional adjacency as the path of

causal interaction, has exonerated two candidates TRANSMITTER, and

RANGE_BIN_INCREMENTER. It should be noted that this fault (where a detection

is missed), is a very genera] fault and there can obviously be many reasons for it. Con-

Chapter 7. A Fault Diagnosis Methodology 104

sidering this, it does seem significant that two of the six candidates were exonerated by

reasoning from first principles.

However, note that the process can be repeated on each of these four likely candidates

(using the “symptoms” available at its ports as primary inputs and outputs for the sub-

systems of the candidate) by going down one level in the structural hierarchy and per-

forming constraint suspension on the sub-systems. If this process fails to prove any of

the sub-systems of a parent candidate as a globally consistent candidate, then the parent

candidate is exonerated, since there is no way it can account for the observed symptoms

present at its ports. This process may further reduce the number of possible faulty

components or Line Replaceable Units.

Though the method seems natural, what is required of future research in this area is a

process of extraction of information about structure and behavior from VHDL models

to form constraint networks on which the algorithm can be run. Clearly, this is not a

simple task and it is hoped that future research efforts will concentrate in the direction

of using this methodology to automate the process using VHDL models of RF systems.

Chapter 7. A Fault Diagnosis Methodology 105

Chapter 8 : Conclusions

8.1. Conclusions

A methodology for modeling the behavior of RF systems using the VHSIC Hardware

description language was developed, and a representative RF system - a pulsed Doppler

radar system in particular, was modeled successfully using this methodology. The

methodology is general enough and can be applied to any other RF systems.

A methodology for fault diagnosis of the radar system using the VHDL model was

suggested, and a fault diagnosis example was presented. It is hoped that this will aid

future research efforts in developing an automated tool that will extract diagnosis in-

formation from these VHDL models, and automate the process of fault diagnosis of RF

systems.

Chapter 8 : Conclusions 106

Bibliography

1. James R. Armstrong, “Chip Level Modeling with VHDL,” Prentice Hall, New
Jersey, 1989.

2. Davis Randall, “Diagnostic Reasoning Based on Structure and Behavior,” Artificial
Intelligence, Vol 24, pp.. 347-410.

3. General Dynamics Corporation, “Fire Control Radar Training Manual (General
Information), ”

4, “IEEE Standard VHDL Language Reference Manual ,” IEEE, New York, 1988.

5. Lipsett R, Schaefer C. F., Ussery C., “VHDL: Hardware Description and Design,
” Kluwer Academic Publishers, Boston, 1989.

6. Marcotte R. A., Neiberg M.J., Piazza R.L., Holtzblatt L.J., “Using VHDL Models
to Diagnose Faults within Digital Systems, ” The MITRE Corporation, 1990.

7. Morris G.V., “Airborne Pulsed Doppler Radar, ” Artech House, MA., 1988.

8. Skolnik M.I., “Introduction to Radar Systems, ” McGraw Hill Inc., 1980.

9. Stimson G.W. ,“Introduction to Airborne Radar, ” Hughes Aircraft Co., Calif.,
1983.

10. “ VHDL Spring 1991 Users Group Conference Proceedings ”

Bibliography
107

Appendix A. The Package Body

The package body of the package that was defined in chapter 4 appears below. Here
all the procedures and functions that were defined in the package statement are ex-
panded upon.

The package body “RADAR’” :

use work.all;
use std. TEXTIO.all;
package body RADAR is

function MAX RANGE_BIN (PULSE_ON_TIME: TIME;
MAX_DET_RANGE: REAL)

return NATURAL is

variable TEMP1 : NATURAL := 0;
variable TEMP2 : REAL := 0.0;
begin

if not (PULSE_ON_TIME = 0 ns) then
TEMP2 := (MAX_DET_RANGE*10666.7)/

(TIME_TO_REAL_IN_NS(PULSE_ON_TIME));
end if;
loop

If TEMP2 > 0.0 then
TEMP1:= TEMPI1 + 1;
TEMP2 := TEMP2 - 1.0;
else
exit;

end if;
end loop;
return TEMPI;

end MAX_RANGE BIN;

function TIME_TO_REAL_IN_NS (A: TIME) return REAL is
variable RETURN_THIS : REAL := 1.0,
variable TEMP : INTEGER := 1;
begin

TEMP := A/I1 ns;
RETURN_THIS := REAL(TEMP);

Appendix A. The Package Body 108

return RETURN_THIS;
end TIME _TO_REAL IN_NS;

function LOFREQ TO REAL IN_Hz (A: LOW_FREQUENCY) return REAL is
variable TEMP : INTEGER := 0;
variable RETURN_THIS: REAL := 0.0;
begin

TEMP := A/1 Hz;
RETURN_THIS := REAL(TEMP);
return RETURN_ THIS;

end LOFREQ TO_ REAL _IN_Hz;

function HIFREQ _TO_REAL_ IN_MHz (A: HIGH_FREQUENCY)
return REAL is

variable TEMP : INTEGER := 0;
variable RETURN_THIS : REAL := 0.0;
begin
TEMP := A/! MHz;
RETURN_THIS := REAL(TEMP);
return RETURN_ THIS;

end HIFREQ TO_ REAL_ IN_MHz;

function ANGLE_TO_REAL IN_DEG (A: ANGLE) return REAL is
variable TEMP : INTEGER := 0;
variable RETURN_THIS: REAL := 0.0;
begin

TEMP := A/I1 degrees;
RETURN_THIS := REAL(TEMP);
return RETURN_THIS;

end ANGLE_TO_REAL_ IN_ DEG;

function BIN_DISTANCE (A : TIME) return REAL is
variable RETURN_THIS : REAL := 0.0;
begin

RETURN_THIS := TIME_TO_REAL_IN_NS(A)/10667.0;
return RETURN_THIS; -- in miles.

end BIN_DISTANCE;

procedure SCAN_ADVANCE (signal AZIM, ELEV: in ANGLE;
signal ELEV_RANGE, AZIM RANGE : in ANGLE;
signal AZIM_1, ELEV_ 1 : out ANGLE) is

-- Assumes a 3 degree beamwidth in Azimuth and Elevation and
-- advances scan beam by 3 degrees in Azimuth and elevation
-- Process keeps repeating until scan mode is changed.

Begin
If (AZIM_RANGE - 2 degrees) > AZIM then

Appendix A. The Package Body 109

AZIM_1 <= (AZIM + 3 degrees);
ELEV_1 <= ELEV;
elsif
0 degrees -(ELEV_RANGE - 2 degrees) < ELEV then
ELEV_1 <= ELEV - 3 degrees;
AZIM_1 <= 0 degrees -(AZIM_RANGE);
else
AZIM_1 <= 0 degrees - (AZIM_RANGE);
ELEV_1 <= ELEV_RANGE;

end if;
end SCAN_ADVANCE;

procedure INCREMENT RANGE BIN (signal RANGE_BIN : in NATURAL;
signal RANGE _BIN_2: out NATURAL;
signal RANGE_BIN_LIMIT: in NATURAL) i 1S

begin
If RANGE BIN = RANGE_BIN_LIMIT then
RANGE BIN_2 <= 0;

else
RANGE BIN_2 <= RANGE BIN + 1;

end if:
end INCREMENT_RANGE BIN;

procedure READ_TARGET_ENVIRONMENT (signal TARGET_MAP: out
TARGET ENVIRONMENT;
signal NUMBER_ TARGETS : out INTEGER) is

variable COUNT : INTEGER := 1];
variable TEMP_TIME: TIME;
variable TEMP_ ANGLE : ANGLE;
variable TEMP REAL: REAL;
variable TEMP_INTEGER: INTEGER:
variable L : LINE;
variable FILENAME : STRING(1 to 8);
file INFILE : text is in ”>TARGETS.”;
begin

Readline (1,L);
Read (L, FILENAME);

loop
If not endfile(I NFILE) then
Readline (INFILE, L);
Read (L, TEMP_INTEGER);
TARGET _MAP(COUNT).AZIMUTH < = TEMP_INTEGER*1 degrees;
Readline (INFILE, L);
Read (L, TEMP_INTEGER);
TARGET _MAP(COUNT).ELEVATION < = TEMP_INTEGER*1 degrees;
Readline (INFILE, L);
Read (L, TEMP TIME);
TARGET _MAP(COUNT).TIME AWAY <= TEMP_TIME; -- in us.
Readline (INFILE, L);

Appendix A. The Package Body 110

Read (L, TEMP_REAL),;
TARGET_MAP(COUNT).ATTENUATION < = TEMP_REAL;
Readline (INFILE, L);
Read (L, TEMP_INTEGER);
TARGET_MAP(COUNT).TARGET_DOPPLER < = TEMP_INTEGER*! Hz;
COUNT := COUNT + 1;

else exit;
end if;

end loop;
NUMBER_TARGETS < = COUNT - 1;

end READ TARGET_ENVIRONMENT;

procedure WRITE_TARGET (signal TARGET_DOPPLER :
in LOW_FREQUENCY;

signal ANGLE_ELEV,
ANGLE_AZIM : in ANGLE;

signal PULSE _ON_TIME: in TIME;
signal RANGE_BIN: in NATURAL;
signal OP_FREQ : in HIGH _ FREQUENCY;
signal TARGET _INFO: out DETECTIONS;
signal DETECTED : out BIT) is

variable COUNT: INTEGER : = 0;
variable TEMP_REAL: REAL := 0.0;
variable TEMP : DETECTIONS;
variable TEMP_DOPPLER, TEMP_OP: REAL := 1.0;
variable L : LINE;
variable M : STRING(I to 7);
variable SPACE : CHARACTER := ”’;
variable MILES : STRING(1 to 35) :=

“MILES WITH A RELATIVE VELOCITY OF: ”;
variable ELE : STRING(1 to 18) := “DEGREES ELEVATION,’;
variable AZI : STRING(1 to 15):= “DEGREES AZIMUTH’;
variable MET : STRING(1 to 15) := “METERS PER SEC.”;
variable TAR : STRING(1 to 34) :=

“TARGET DETECTED AT A DISTANCE OF: ”;
variable POSI : STRING(1 to 20) := ”. IT’S POSITION IS: ”;
begin
TEMP _ DOPPLER := LOFREQ_TO_REAL IN_HZ(TARGET_DOPPLER),
If TEMP_DOPPLER < 0.0 then
TEMP_DOPPLER := 0.0 - TEMP_DOPPLER;
TEMP.VEL DIR := OPENING;
M := “OPENING’;

else
TEMP.VEL DIR := CLOSING;
M := “CLOSING’;

end if;
TEMP_OP := HIFREQ TO_REAL_IN_MHZ(OP_FREQ)*1.0E6;
TEMP. TARGET_ELEVATION := ANGLE_ELEV;
TEMP.TARGET_ AZIMUTH := ANGLE_AZIM;
if PULSE_ON_TIME > Ons then

Appendix A. The Package Body 11

TEMP_REAL := BIN_DISTANCE(PULSE_ON_TIME) *
(REAL(RANGE BIN) - 0.5);

end if;
TEMP.TARGET RANGE := TEMP_REAL;
if TEMP_OP > 0.0 then

TEMP.REL_ VEL := (TEMP_DOPPLER * C)/(2.0 * TEMP_OP);
end if;
TARGET_INFO < = TEMP;
WRITE (L, TAR);
WRITELINE (0, L);
WRITE (L, TEMP.TARGET_ RANGE, DIGITS = > 2);
WRITE (L, SPACE);
WRITE (L, MILES);
WRITELINE (0, L);
WRITE (L, TEMP.REL_VEL, DIGITS = > 2);
WRITE (L, SPACE);
WRITE (L, MET);
WRITE (L, SPACE);
WRITE (L, M);
WRITE (L, POSI);
WRITELINE (0, L);
WRITE (L, TEMP.TARGET_ELEVATION/1 degrees);
WRITE (L, SPACE);
WRITE (L, ELE);
WRITELINE (0, L);
WRITE (L, TEMP.TARGET_AZIMUTH/1 degrees);
WRITE (L, SPACE);
WRITE (L, AZI);
WRITELINE (0, L);
WRITE (L, SPACE);
WRITELINE (0, L);
DETECTED <= ‘0’;

end WRITE_TARGET;

procedure LOOK_FOR_TARGET (signal ANGLE_ELEV,
ANGLE_AZIM : in ANGLE;

signal RANGE_BIN : in NATURAL;
signal TARGET_MAP :

in TARGET_ENVIRONMENT;
signal NUMBER_TARGETS : in INTEGER;
signal FLAG : inout NATURAL;
signal PULSE_ON_TIME: in TIME) is

variable TEMP : integer := 0;
begin
foriin 1 to NUMBER_TARGETS

loop
if (TARGET_MAP(i). AZIMUTH < ANGLE AZIM + 2 degrees)
and
(TARGET_MAP(i).AZIMUTH > ANGLE_AZIM - 2 degrees))
and

Appendix A. The Package Body 112

((TARGET_MAP(G).ELEVATION < ANGLE _ELEV + 2 degrees)
and

(TARGET_MAP(i). ELEVATION > ANGLE_ELEV - 2 degrees))
then

if (TARGET_MAP(@).TIME_AWAY > = PULSE_ON_TIME *
RANGE BIN)

and (TARGET_MAP(i). TIME_AWAY < PULSE _ON_TIME *
(RANGE _BIN + 1)))
then

FLAG <=14
else

FLAG <= 0;
end if;

end if:
if TARGET_MAP(i).AZIMUTH + 2 degrees > ANGLE_AZIM

then
exit;

end if:
end loop;

end LOOK_FOR_TARGET;
procedure POTENTIAL_ TARGET _ INFO

(signal TARGET_MAP_FLAG: in TARGET;
signal ANT_OUT : out RADAR SIGNAL;
signal OP_FREQ: in HIGH _FREQUENCY;
signal FLAG : out NATURAL;
signal PULSE_ON_TIME: in TIME) i 1S

variable TEMP_HIPOWER, TEMP_ ~LOPOWER: INTEGER := 0;
variable TEMP_POWER: REAL := 0.0,
begin

ANT_OUT.HIFREQ < = OP_FREQ;
ANT_OUT.LOFREQ < = TARGET_MAP_FLAG.TARGET_DOPPLER;
TEMP POWER := 15.0E15/TARGET_MAP_ FLAG.ATTENUATION;
if TEMP POWER < 1.0E9 then
ANT_OUT.LOPOWER_ LEVEL < = TEMP_POWER?*1 pW;

else
ANT_OUT.HIPOWER_LEVEL < = (TEMP_POWER/1.0E9)*1 mW;

end if;
FLAG <= 0 after PULSE_ON_TIME;

end POTENTIAL_TARGET_INFO;

procedure AMPLIFY _BY_K (variable K : in REAL;
signal AMPLIFIER_IN : in RADAR_ SIGNAL;
signal AMPLIFIER OUT : out RADAR SIGNAL) i 1S

variable TEMP_LOPOWER, TEMP_HIPOWER: INTEGER := 0;
variable TEMP_POWER: REAL := 0.0;
variable COUNT : INTEGER := 0;
begin
TEMP_LOPOWER := AMPLIFIER_IN.LOPOWER_LEVEL/1 PW;
TEMP_HIPOWER := AMPLIFIER_IN.HIPOWER_LEVEL/1 mW;
TEMP POWER := K * (REAL(TEMP_LOPOWER) +

REAL(TEMP_HIPOWER)*1.0E+ 9);

Appendix A. The Package Body 113

If (TEMP POWER > 1.0E+9) then
TEMP_POWER := TEMP _POWER/I.0E+9 + 1.0;
AMPLIFIER_ OUT. HIPOWER_LEVEL <= TEMP_ POWER*1 mW;
AMPLIFIER, OUT. LOPOWER_ LEVEL <= 0 pW;

else

AMPLIFIER OUT.HIPOWER LEVEL <= 0mW;
AMPLIFIER _OUT.LOPOWER_LEVEL < = TEMP_POWER * I pW;

end if;
AMPLIFIER_ OUT.LOFREQ < = AMPLIFIER_IN.LOFREQ;
AMPLIFIER _ OUT.HIFREQ < = AMPLIFIER_ IN. HIFREQ;

end AMPLIFY_BY_K;

procedure CHECK FOR_DETECTION (signal RCVR_OUT :
in RADAR_SIGNAL;

signal AMPLIFIED. RCVR_NOISE: in REAL;
signal DETECTION_THRESHOLD : in LOW POWER;
signal DETECTED_1!: out BIT) is

variable SIGNAL_REAL : REAL := 0.0;
variable THRESHOLD_REAL : REAL := 0.0;

begin
SIGNAL_REAL := (REAL((RCVR_OUT.LOPOWER_LEVEL)/1 pW) +

REAL((RCVR_ OUT.HIPOWER_LEVEL)/1 mW) * , OE9) +
AMPLIFIED _RCVR_NOISE;

THRESHOLD REAL := REAL((DETECTION_ THRESHOLD) 1 PW);
if THRESHOLD_ REAL < SIGNAL_REAL then
DETECTED _ 1<='l’

else
DETECTED_1 <= 0

end ift
end CHECK FOR _DETECTION;

procedure READ GAUSSIAN_NOISE
(signal RANDOM_NOISE : out GAUSSIAN_REAL) is

variable TEMP_REAL : REAL := 0.0;
file INFILE : TEXT is in “NOISE.IN’;
variable L : LINE;
variable COUNT : INTEGER :=
begin

loop
if not endfile(INFILE) then
Readline (INFILE, L);
Read (L, TEMP_REAL);
RANDOM_NOISE(COUNT) < = TEMP_REAL;
COUNT := COUNT + 1;

else
exit;

end if;

Appendix A. The Package Body 114

end loop;
end READ GAUSSIAN_NOISE;

end RADAR;

Appendix A. The Package Body 115

Appendix B. Constraints for the Diagnosis Example

The following are the constraints that were extracted from the model (keeping in mind
that the diagnostic example is a subset of the model that was written for the radar sys-
tem and does not include noise effects. First the input and output ports for the con-
straints of a sub-system are defined. The constraint are then either signal assignment
statements, or signal assignment statements combined with mathematical expressions
that are evaluated by some procedure which is within the package. In the latter case
only the name of the procedure is specified. To the right of each statement of a con-
straint is a boolean expression that fires that constraint. That boolean expression is
evaluated exactly once every time any of the elements in the expression whose names
appear in capital letters changes value, and not otherwise. This is equivalent to a sen-
sitivity list for a process statement. Note that a value of ’X’ associated with an element
or port implies a “don’t care” condition.

SYNCHRONIZER_CONSTRAINTS :

Begin
IN : RANGE BIN, START_UP.
OUT : TX_EN, RX_EN.

TX_EN = ‘I’, RX_EN = 0’ (RANGE BIN = 0)
*(START_UP = 1)

TX_EN = ’0’", RX_EN = ‘1’ (RANGE BIN /= 0)
*(START_UP = 1)

END SYNCHRONIZER_CONSTRAINTS.

ANTENNA_CONSTRAINTS :

Begin

IN : ANGLE_AZIM, ANGLE_ELEV, ELEV_SCAN_RANGE,
AZIM_SCAN_ RANGE, RANGE BIN, START_UP, ANT_IN,
XMT_IN, FLAG, NUMBER_ TARGETS, TARGET_MAP.

OUT : ANGLE_AZIM, ANGLE_ELEV, RCVD_SIG, ANT_OUT, TEMP_TARGET.

Appendix B. Constraints for the Diagnosis Example 116

Procedure SCAN_ADVANCE
((angle_azim /= azim_scan_range)
+/(angle elev /= elev_scan_range))
*((RANGE_ BIN = 0) * (start_up = 1))

ANGLE_AZIM = -AZIM_SCAN_RANGE
(START_UP = 1)

ANGLE_ELEV = ELEV_SCAN_RANGE
(START_UP = 1)

RCVD_SIG <= ANT_IN
(rx_en = 1) * (range_bin /= 0)
*(ANT_IN = °X’)

ANT_OUT <= XMT_OUT
(tx_en = 1) * (range_bin = 0)
*(XMT_OUT = ’X’)

TEMP TARGET < = TARGET_MAP(FLAG)
(FLAG /= 0) * (start_up = 1)

Procedure LOOK_FOR_TARGET
(RANGE _BIN /= 0)

Procedure POTENTIAL _TARGET_INFO
(FLAG’DELAYED /= 0)
*(start_up = 1)

ANT_IN.HIFREQ = 0 MHz
ANT_IN.LOFREQ = 0 Hz
ANT_IN.HIPOWER = 0 mW
ANT_IN.LOPOWER = 0 pW

(FLAG’DELAYED = 0)
*(start_up = 1)

END ANTENNA_CONSTRAINTS.

RANGE_BIN_INCREMENTER_CONSTRAINTS :

IN : AZIM_ANGLE, ELEV_ANGLE, AZIM_SCAN_RANGE,
ELEV_SCAN_ RANGE, RANGE BIN, START_UP, INIT,
PULSE_ON_TIME

OUT : RANGE BIN

Begin

Appendix B. Constraints for the Diagnosis Example 117

RANGE BIN = 0 INIT = 1

RANGE _BIN = RANGE BIN + 1 after PULSE ON_TIME
(angle_azim /= azim_scan_range)
+(angle elev /= elev_scan_range)
*(START_UP = 1)
*(RANGE BIN = ’X’)

END RANGE _BIN_INCREMENTER_ CONSTRAINTS.

RECEIVER_CONSTRAINTS :

IN: RCVD_SIG, AMP1_ SIG, IF1, AMP2_SIG, IF2.
OUT : RCVR_ OUT, AMPI1 _SIG, IF1, AMP2_ SIG, IF2.

Begin

AMPLIFY_BY_K (1000.0, RCVD_SIG, AMP1_SIG)
RCVD_SIG = ’X’

IF1.HIFREQ = AMP!1_ SIG.HIFREQ- LOI
AMP1_SIG.HIFREQ /= 0 MHz

IF1 = (0 MHz, 0 Hz, 0 mW, 0 pW)
AMPI1_ SIG.HIFREQ = 0 MHz

AMPLIFTY_BY_K (500.0, IF1, AMP2_SIG)
IFl = ’X’

IF2.HIFREQ = AMP2_SIG.HIFREQ - LO2
AMP? SIG.HIFREQ /= 0 MHz

IF2 = (0 MHz, 0 Hz, 0 mW, 0 pW)
AMP2_SIG.HIFREQ = 0 MHz

RCVR_OUT.HIFREQ = IF2.HIFREQ - LO3
IF2.HIFREQ /= 0 MHz

RCVR_OUT = (0 MHz, 0 Hz, 0 mW, 0 pW)
IF2.HIFREQ = 0 MHz

RCVR_OUT.LOFREQ = IF2. LOFREQ
IF2 = ’X’

RCVR_OUT.HIPOWER_LEVEL = IF2.HIPOWER_LEVEL
IF2 = ’X’

RCVR_OUT.LOPOWER_LEVEL = IF2.LOPOWER_LEVEL
IF2 = ‘X’

Appendix B. Constraints for the Diagnosis Example 118

END RECEIVER_CONSTRAINTS.

DETECTION_CHECKER_CONSTRAINTS :

IN : RCVR_OUT, DETECTION_THRESHOLD, DETECTED)
OUT : DETECTED

Begin

Procedure CHECK_FOR_DETECTION
(start_up = 1)
*(RCVR_OUT = ’X’)

Procedure WRITE_TARGET
(DETECTED /= 0)

END DETECTION_CHECKER_ CONSTRAINTS.

Appendix B. Constraints for the Diagnosis Example 119

Appendix C. Pascal Code for the Noise File

The following Pascal code produces an external text file that consists of 100 real num-
bers that are gaussian distributed between -10 and 10. The VHDL simulation reads in
this file to represent noise in the receiver at simulation start.

var NOISE : array [1 .. 100] of real;
count, i, j, k, 1]: integer;
r, s, sum: real;
TEMP : array [1 .. 12] of real;
noiz : text;
filevar : string;

begin
count := 1;
randomize;
filevar := “Noise.In’;
assign (noiz, filevar);
rewrite (noiz);
repeat

i:= 1;
sum := 0.0;
begin

repeat
begin

r:= random (65535)/65535;
sum := sum + 1;
i:=it+ I];

end
until i = 13;
sum := (sum - 6.0)/6.0;
NOISE[count] := sum * 10.0;

end;
count := count + 1;
until count = 101;
fori:= 1 to 100 do
writeln (noiz, noise[i]);
close (noiz);

end.

Appendix C. Pascal Code for the Noise File 120

Appendix D. Pascal Code for the Targets File.

This Pascal program generates random target information for input to
the Radar System Simulator written in VHDL. The target information
is in the form of a record with five fields. The program generates
from | to 20 targets at random. The azimuth angle is restricted to
anywhere between -180 and 180 degrees. The Elevation angle is
restricted to anywhere between -60 and 60 degrees. Time_Away is
between 10 and 1000 us. Target_Doppler is anywhere between 0 and
40 KHz. Attenuation is dependant on the distance of the target from
the radar, and is proportional to a randomly generated attenuation_
factor.

type TARGET = record { This is the type definition of the }
AZIMUTH : integer; { record that will be randomly generated }
ELEVATION : integer; = { and written out to the file. }
TIME_AWAY : integer;
TARGET_DOPPLER : longint;
ATTENUATION : real;
end;

type TARGET_ARRAY = array [1 .. 20] of TARGET;

var 1, J, 1, count: integer;
{ Some variable and constant declarations}

k : longint;
{ for use within the program. }

r, S, t, attenuation_factor : real;
write_this : target;
target_info : target_array;
num_targets : integer;
targets : text;
filevar : string;

Procedure Write_Target_File;
{ This procedure writes out the target
variable into the output file. }

begin
writeln (targets, ’ ’,target_info[j].azimuth);

Appendix D. Pascal Code for the Targets File. 121

writeln (targets, ’ ’,target_infolj].elevation);
write (targets, * ’,target_info[jJ.time_away);
writeln (targets, ’ us’);
writeln (targets, target_info[j].attenuation:4);
writeln (targets, ’ ’,target_info|j].target_doppler);

end;

Procedure Sort_Target_Info;
{ This procedure sorts the target_info }

var a, b: integer; { by azimuth before it is written to the }
temp : target; { output file. This is done to save search }

begin { time during the execution
{ of the simulation }

if num_targets > 1 then
begin
fora:= 1 to num_targets-1 do
begin

forb:= a+1 to num_targets do
begin

if target_info[a].azimuth >
target_info[b].azimuth then
begin

temp := target_info[a];
target_info[a] := target_info[b];
target_info[b] := temp;

end;
end;

end;
end;

end;

{ Main starts here }
begin

l:= 1;
randomize; { Initialize the random number generator }
filevar := 'TARGETS.IN’;
Assign (targets, filevar);
rewrite (targets);
repeat
num_targets := random (20);
until num_targets <> 0;
repeat

begin
r:= random (65535);
repeat

s:= random (65535);
untils <> 0.0;
t:= 1r/s;

end
until ((t > 0.001) and (t < 1.0));

Appendix D. Pascal Code for the Targets File. 122

attenuation_factor := t*t*le3;
repeat
begin

i:= random (180);
j:= random (65535);
Ifj/2 = trunc(j/2) then
1:= -1
write_this.azimuth := i;
i:= random (60);
j:= random (65530);
If 3/2 = trunc(j/2) then
1:= -1;
write_this.elevation := i;
repeat
i:= random (1000);
until (i > 10);
write_this.time_away := 1;
write_this.attenuation := attenuation_factor *
write_this.time_away * write_this.time_away *
write_this.time_away * write_this.time_away;
k := random (500);
j:= random(65530);
if j/2 = trunc(j/2) then
k — ‘

write this.target_doppler := k;
target_info[l] := write_this;
]1:= succ(l);

end
until (1 = num_targets+ 1);
Sort_Target_Info;
for}:= 1 to num_targets do
Write_Target_ File;
close (targets);

end.

Appendix D. Pascal Code for the Targets File. 123

Appendix E. Some More Test Simulations

There are four more test runs provided in this appendix. The test runs
begin with the target file”*TARGETS.”’, and are followed by the output
file “DETECTED.OUT”. The noise file used for all these test runs was
the same, and a listing of this noise file is given at the end. The
simulation was performed for a maximum detectable range of 100 miles,
and antenna scan limits of +/- 60 degrees azimuth and elevation.

File “TARGETS.” :

-3
50
620 us
6.4E+6
-208
83
-43
934 us
9.6E+ 06
-228
106
21
532 us
5.5E+06
-334
158
20
59 us
6.1E+05
401
171
-34
437 us
4.5E+ 06
70
177
22
49 us

Appendix E. Some More Test Simulations 124

5.0E+ 05
-264

File "DETECTED.OUT” created by VHDL for the above target scenario is :

TARGET DETECTED AT A DISTANCE OF:
57.65 MILES WITH A RELATIVE VELOCITY OF:
547.37 METERS PER SEC. OPENING. IT’S POSITION IS:
51 DEGREES ELEVATION,
-3 DEGREES AZIMUTH

Appendix E. Some More Test Simulations 125

File “TARGETS.” :

-177
-55
698 us
1.6E+09
-300
-106
4|
176 us
4.0E+ 06
-365
-73
22
712 us
1.6E+07
-107
-68
-1
808 us
1.8E+10
223
-47
-52
942 us
2.1E+12
462
-33
-12
607 us
1.4E+07
317
-22
26
397 us
9.1E+06
95
-]
-15
104 us
2.4E+ 06
-32
3
-44 1156 us
2.0E+ 15
-295
6
-26
140 us
3.2E+06

Appendix E. Some More Test Simulations 126

402
7
110
174 us
4.0E+06
247
51
-37
1091 us
1.5E+ 14
-73
78
-29
991 us
2.3E+07
327

File "DETECTED.OUT” created by VHDL for the above target scenario is :

TARGET DETECTED AT A DISTANCE OF:
37.03 MILES WITH A RELATIVE VELOCITY OF:
2.50 METERS PER SEC. CLOSING. IT’S POSITION IS:
27 DEGREES ELEVATION,
-21 DEGREES AZIMUTH

TARGET DETECTED AT A DISTANCE OF:
56.72 MILES WITH A RELATIVE VELOCITY OF:
8.34 METERS PER SEC. CLOSING. IT’S POSITION IS:
-12 DEGREES ELEVATION,
-33 DEGREES AZIMUTH

TARGET DETECTED AT A DISTANCE OF:
9.84 MILES WITH A RELATIVE VELOCITY OF:
0.84 METERS PER SEC. OPENING. IT’S POSITION IS:
-15 DEGREES ELEVATION,
0 DEGREES AZIMUTH

TARGET DETECTED AT A DISTANCE OF:
13.59 MILES WITH A RELATIVE VELOCITY OF:
10.58 METERS PER SEC. CLOSING. IT’S POSITION IS:
-27 DEGREES ELEVATION,
6 DEGREES AZIMUTH

TARGET DETECTED AT A DISTANCE OF:
88.59 MILES WITH A RELATIVE VELOCITY OF:
12.16 METERS PER SEC. CLOSING. IT’S POSITION IS:
-51 DEGREES ELEVATION,
-48 DEGREES AZIMUTH

Appendix E. Some More Test Simulations 127

File “TARGETS.” :

-177
-22
488 us
8.7E+07
-107
-65
-16
985 us
18E+11
-150
44
-10
414 us
7.4E+06
-218

File "DETECTED.OUT” which was created by VHDL for the above target scenario is

TARGET DETECTED AT A DISTANCE OF:
38.91 MILES WITH A RELATIVE VELOCITY OF:
5.74 METERS PER SEC. OPENING. IT’S POSITION IS:
-9 DEGREES ELEVATION,
45 DEGREES AZIMUTH

Appendix E. Some More Test Simulations 128

File ’TARGETS.” :

-153
17
568 us

4.7E+08
487
-108
-57
810 us
6.7E+ 10
252
-80
41
272 us
2.3E+06
148
-57
-28
758 us
6.3E+10
48
~-24
46
365 us
3.0E+08
-164
114
58
155 us
1.3E+06
-325
160
-56
857 us
TIE+ 13
130

File "DETECTED.OUT” which was created by VHDL for the above target scenario is

TARGET DETECTED AT A DISTANCE OF:
34.22 MILES WITH A RELATIVE VELOCITY OF:
4.32 METERS PER SEC. OPENING. IT’S POSITION IS:
45 DEGREES ELEVATION,
-24 DEGREES AZIMUTH

TARGET DETECTED AT A DISTANCE OF:
70.78 MILES WITH A RELATIVE VELOCITY OF:
1.26 METERS PER SEC. CLOSING. IT’S POSITION IS:

Appendix E. Some More Test Simulations 129

-27 DEGREES ELEVATION,
-57 DEGREES AZIMUTH

Appendix E. Some More Test Simulations 130

The noise file “NOISE.IN” that was used for these simulations is given below :

-2.3120978612E + 00
9.2701101189E-01
2.8122377350E-01
2.2354467025E-02
-5.1356781369E-01
3.8414587621E-01
-8.8283614357E-01
1.2885989674E + 00
5.9494926370E-01
-7.1267261772E-01
2.389 1050583E + 00
-4.7659011727E-01
1.5404491238E + 00
-2.5378550902E + 00
2.2679229928E + 00
-2.2932529692E + 00
-8.0364182334E-03
-1.0312555637E-01
7.7482770016E-01
1.6896314946E + 00
-4.8956028588E-01
4.9243406826E-01
1.8645761806E + 00
6.1056432945E-01
-1.7014572366E + 00
2.4795147630E + 00
3.5089392436E + 00
2.3128353805E + 00
2.9511965616E + 00
5.0113171075E-01
1.4464281173E+ 00
-1.2395920755E + 00
2.2049032323E + 00
-2.3031967651E +00
-4.0072734675E-01
3.1222247653E + 00
-9,7833218893E-01
1.1187151903E+00
-1.1766486102E + 00
1.8771140100E-01
-6.6124971394E-01
2.1482 159660E + 00
-2.6751862873E + 00
1.7846697693E + 00
-8.4814730047E-01
-1.4204369167E +00
-2.2568093386E + 00
5.2814017951E-01

Appendix E. Some More Test Simulations 131

1.5988403143E + 00
1.7033391826E + 00
-7.6485847261E-01
-1.4287530836E + 00
7.0911217919E-01
5.5898883499E-02
2.8909742885E + 00
-3.6453548995E + 00
-3.1789628952E + 00
-1.6339869287E-01
-1.1825996287E + 00
-3.0955469090E-01
3.3150225068E-01
1.9905139747E + 00
-1.1116197456E-01
1.7797105868E-01
4.4586861978E-01
9.5936013829E-01
4.9624882374E-01
6.2149996179E-01
3.9281808702E + 00
-1.5695429923E + 00
2.9737290502E-01
-1.2205945933E + 00
3.8509956511E+ 00
2.0875359222E + 00
1.3003992777E + 00
-2.2187126472E + 00
1.6788484524E + 00
1.0269067419E + 00
-5.2796215787E-02
1.5446453549E + 00
-6.4843213554E-01
-4.9225604643E-01
8.6299941501E-01
1.9094122729E-01
-3.6325373210E +00
7,0188957549E-01
2.2734162406E + 00
-1.2034536253E +00
-1,4662139824E + 00
2.1108059306E + 00
-2.4569568427E-01
1.1420869255E + 00
-1.6174817528E +00
-6.8500292468E-01
-1,.6848249028E + 00
3.4625518170E + 00
-1,0787111213E +00

Appendix E. Some More Test Simulations 132

3.0582386002E + 00
-3.8508939244E + 00
-1.8025991201E + 00

Appendix E. Some More Test Simulations 133

Vita

Anil Sama was born on September 7, 1966 in New Delhi, India. After completing his
high school education from Jai Hind College in Bombay, India in June 1985, he attended
the University of Bombay. Anil graduated from the University of Bombay in June 1989,
after receiving his Bachelor of Engineering degree in Electronics Engineering. Anil en-
rolled at the Virginia Polytechnic Institute and State University in Blacksburg, VA in
August 1989 and while there, completed requirements for a Master of Science degree in
Electrical Engineering in May 1991.

Anil has been employed with Intel Corporation in Folsom, California since July 1991.

Vita 134

