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Behavioral Modeling of RF Systems With VHDL 

by 

Anil Sama 

Dr. James R. Armstrong, Chairman 

Electrical Engineering 

(ABSTRACT) 

Behavioral modeling of RF systems with VHDL is considered and a modeling method- 

ology is developed for modeling the I/O response of these systems. A Pulsed Doppler 

radar system is chosen as a representative system, and a VHDL model for this system 

is presented. The modeling approach and the working of the model are explained, and 

some example runs are provided. Some problems that are posed by VHDL in attempt- 

ing to model the behavior of RF systems are discussed, along with the solutions that we 

adopted. 

A fault diagnosis methodology for systems of this type that uses information about the 

behavior of the system (extracted from a VHDL model of the system) is discussed, and 

an example is presented.
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Chapter 1. Introduction. 

1.1. Motivation 

Hardware description languages have traditionally been used to model digital circuits of 

varying sizes and complexity. These languages have been used for modeling at varied 

levels of abstraction; from the transistor or switch level up to the system level. 

One such hardware description language is the VHSIC Hardware Description Language 

(VHDL) [4]. VHDL has proven to be a very powerful hardware description language 

and judging from the events during the past few years, 1t seems to be fast becoming the 

industry standard. 

Up until recently, the power of VHDL has been demonstrated by modeling a wide range 

of digital circuits and systems. Work is being successfully done in using VHDL not only 

for chip level and system level design validation, testing, and documentation, but also 

as a very powerful tool for synthesis from behavioral descriptions, as was recently dem- 

onstrated at the VHDL 1991 Spring Users Group Conference [10]. However, little work 
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exists in the literature to date as far as the behavioral modeling of analog or mixed 

(digital and analog) systems is concerned. This is a growing area of interest and it is 

hoped that VHDL can prove to be a powerful tool in this area as well. 

The prime objectives of this thesis have been to : 

1. Assess the capability of VHDL as a tool to model the behavior of analog and mixed 

systems. By modeling the behavior of analog systems, we mean the modeling of the 

1/O response, and not the detailed electrical response of these systems. 

2. To determine if these behavioral models could be used for system level fault diag- 

nosis, and to suggest a fault diagnosis methodology for them. 

This thesis concentrates on the first objective in considerable detail, in attempting to 

establish a modeling methodology for RF systems at the behavioral level, and takes a 

cursory look at the second objective, 1.e., suggests a fault diagnosis methodology. 

Modeling of analog systems in VHDL is a very young area of research, but one of 

growing interest, and it is hoped that this research provides some insight and ideas for 

future efforts. 

1.2. Features of VHDL 

VHDL has a few important unique features that make it suitable for attempting to 

model analog behavior. In particular, four features of VHDL that distinguish it from 
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other hardware description languages, and that make it suitable to model the behavior 

of analog systems are: 

1. The capability of performing real number arithmetic. This capability is combined 

with an algorithmic approach not much unlike that of a high level programming 

language. Aside from performing the basic arithmetic operations (addition, sub- 

traction, multiplication, division), this gives users the flexibility to define their own 

procedures and functions and expand the arithmetic capability of VHDL. 

2. The definition and use of abstract data types. Apart from the basic pre-defined 

types like BIT, INTEGER, REAL, TIME, etc. VHDL allows users to define their 

own data types. Abstract data types can be defined as desired, and their units and 

scope can also be specified. VHDL also allows the definition of signals as a record 

of abstract data types. This allows basic analog types to be defined, and then an 

analog signal can be defined as a record of these basic analog types. Each field of 

this record then specifies some property of the analog signal. 

3. The use of the WAIT statement. The WAIT statement is a VHDL construct that 

allows for realistic modeling. Timing can be incorporated into the model using the 

WAIT statement, which allows processes to be suspended till some condition is met. 

It also lets the user incorporate delay into the model, so as to model real hardware 

more accurately. 

4. The use of File 1/0. VHDL File I/O (and TEXTIO) lets the user input and output 

data into and from the simulation under simulation control. Analog signal data (for 

example random signal data generated by an external program and written to a file) 

can thus be generated outside of VHDL and inputted to the model by File I/O. This 
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is specially useful when simulations are required to be repeatable; for example in 

diagnosis or testing areas. Similarly, output data from the model can be written out 

to a file for further processing. 

These features, are unique to VHDL and as will be seen in later chapters, are instru- 

mental in allowing us to model analog behavior, and make VHDL a suitable language 

for modeling analog systems. 
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Chapter 2. An Example RF System 

2.1. Radar - An RF System 

In order to develop a methodology for the behavioral modeling of RF systems, we need 

a representative RF system. A RADAR system proves to be an excellent example of 

an RF system for this purpose. Radar systems are widely used and are fairly complex. 

They include many of the basic analog entities like amplifiers, mixers, transmitters, re- 

ceivers, etc. Moreover, these systems are good examples of mixed type systems and 

contain both analog and digital sub-systems. Certain aspects of radar systems like the 

representation of radar targets, antenna movement, and the search for targets are chal- 

lenging to model using VHDL. Thus, these aspects represent an interesting application 

of the language. 

A pulsed Doppler radar system was chosen as the RF system to model. Pulsed Doppler 

radar systems are the most common types of radar systems encountered and are used in 

all commercial and military aircraft. A modeling methodology was developed, and a 
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model was written for this system. The model that was written represents the behavior 

of a generic pulsed Doppler radar system. 

In order to understand the modeling process, and the modeling methodology that was 

developed, it is necessary to first gain a brief background of the operation of pulsed 

Doppler radar. 

2.2. Overview of Radar 

A brief overview of the operation and working of a pulsed Doppler radar system is pre- 

sented below. [7,8,9] 

Refer to Figure 1 on page 7 which shows the very basic elements of a radar system. 

The system essentially consists of an RF transmitter that transmits a very high power 

pulse of RF energy (typically a megawatt at 8-12 GHz for X band operation [8]) for a 

very short period of time. This pulse of RF energy is radiated out into the environment 

through a bi-directional antenna system (capable of transmitting as well as receiving). 

This antenna concentrates the energy into a small beam (typically 2 degrees). The RF 

energy that is radiated is an electromagnetic wave that travels at the speed of light. If 

there exists a target in the beam, it scatters this energy in all directions and part of it is 

radiated back towards the antenna, where it is received by the antenna during the receive 

cycle, and passed on to the receiver section. If the time between transmission and re- 

ception is known, then the range of the target can be found. As opposed to continuous 

wave radar systems, where the system transmits and receives concurrently, the operation 

of a pulsed radar system involves distinct non-overlapping transmit and receive cycles. 
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Refer to Figure 2 on page 8 which illustrates the operation of a pulsed radar system. 

The figure shows one complete transmit and receive cycle. The total duration of the 

transmit and receive cycles is “T’. The transmit cycle consists of a pulse of RF energy. 

This is a short pulse that occurs at the start of the cycle. The receive cycle, wherein the 

radar system listens for echoes of the transmitted pulse off targets, immediately follows 

the transmit cycle. The receive cycle is typically many times longer than the transmit 

cycle. The receive cycle can be viewed as being divided into several small distinct inter- 

vals of time called “range gates” or “range bins”. These can be viewed as being sequen- 

tially numbered up from zero to some maximum. If these intervals of time are counted, 

and the count is incremented at every interval, then a target’s range can be told by the 

range bin count. For example, if the target return is received after a time duration ‘t’, 

then the “range bin it falls into” gives an indication as to the range of the target. In 

actual hardware, this range gating mechanism corresponds to a sequential memory sys- 

tem, where the output of the receiver is dumped for analysis of the returns. The address 

to this memory location is provided by the range bin count. 

Refer to Figure 3 on page 10 which illustrates the change in frequency of the received 

signal due to the Doppler effect [9]. This arises because the target has a finite velocity 

with respect to the line of sight of the radar system. If the wavelength of operation of 

the radar system is ‘p’, and the velocity of the target along the line of sight of the radar 

is ‘v’, then the frequency of the received signal is changed by a factor 2v/p. Note that 

the velocity may be positive or negative, depending on whether the target 1s approaching 

the radar or travelling away from it. 
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2.3. Specifics of the Radar System 

The model that was written represents a generic pulsed Doppler radar system, but it was 

based on one of General Dynamics Corporation’s fighter aircraft RADAR systems [3]. 

This RADAR is a multimode pulse Doppler radar system. It consists of four major 

LRU’s (Line Replaceable Units). These are : 

1. MLPRF (Modular Low Power RF) 

2. DMT (Dual Mode Transmitter) 

3. PSP (Programmable Signal Processor) 

4. ANTENNA 

A brief description of the function of each of these units follows : 

The MLPRF generates and processes the low power RF signals that are involved with 

the RADAR process. The STALO (Stable Local Oscillator) section of the MLPRF is 

responsible for generating and mixing the signals that are used to form the transmission 

signal at the frequency of operation, and at the required pulse width. The RCVR section 

of the MLPRF provides amplification, down conversion, range-gate forming, and digital 

conversion of the RF returns; a major part of the receive process. 

The DMT section of the radar system provides the high power amplification of the radar 

system. It consists of a dual mode TWT amplifier. It accepts a low power X-band sig- 
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nal from the MLPRF and provides gating and amplification to deliver pulsed high power 

RF to the ANTENNA unit. 

The data from the RCVR section of the MLPRF is collected by the PSP in digital form, 

and processed to determine target detection, range, target velocity, etc. A part of the 

PSP section is also responsible for the timing and control portion of the RADAR sys- 

tem. 

The ANTENNA section receives commands from the PSP and rotates the ANTENNA 

in both azimuth and elevation to point the ANTENNA in a certain direction, as required 

by the operation. It radiates the high power X-band RF signal received from the Dual 

Mode Transmitter, listens for RF echoes, and delivers them to the MLPRF. The AN- 

TENNA can be gimballed in both directions, and can scan +/- 60 degrees in either 

azimuth or elevation. 
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Chapter 3. The Radar System Model 

3.1. The Top Level Entity 

In order to introduce the radar system model, we first start with the top level entity 

(called RADAR_SYSTEM), describe its structure, and discuss the working of the model 

as seen from this top level. An example run is also presented, so as to illustrate what the 

model accomplishes. 

Refer to Figure 4 on page 14 which shows a block diagram representation of the system 

model. This is the structure of the top level entity RADAR _SYSTEM, and is a struc- 

tural composition of eight entities. These eight entities are very briefly introduced below, 

and their relation to the four basic LRUs introduced in chapter 2 are identified. The 

eight entities are : 

1. The STALO entity. 

2. The RCVR entity. 

Chapter 3. The Radar System Model 13
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(The STALO and RCVR entities together model the MLPRF LRU). 

3. The DMT entity. 

(The DMT entity models the DMT LRU) 

4. The ANTENNA entity. 

(The ANTENNA entity models the ANTENNA LRU) 

5. The PSP entity. 

(The PSP entity models the PSP LRU) 

6. OUTSIDE WORLD. This entity reads in target information from an external file 

at system START_UP. It is used by the ANTENNA entity to scan for radar tar- 

gets. It models the target environment. 

7. INITIALIZER. This entity initializes some of the signal values that will be used 

during the radar process. It initializes Antenna scan range, maximum detection 

range, etc. This can be viewed as the entity that acts as the human element in radar 

operation. 

8. NOISE_GENERATOR. This entity produces gaussian distributed random noise in 

the receiver, which is amplified along with the received signal. It was introduced to 

more accurately model the radar process, and to model for false alarms, and missed 

detections. 

Each of these eight entities were modeled as behavioral entities. The detailed description 

of each of these entities will be described in the following chapter. 
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The entity declaration and architecture body of the top level entity RADAR_SYSTEM 

appear below. The signals that are internal to the RADAR SYSTEM as a whole are 

first declared. These include all the I/O ports of the eight entities. After the signal dec- 

laration section, templates are made for each of the components that make up this 

RADAR SYSTEM. In this case, the components are the eight entities. In the main 

body of the architecture declaration, the components are instantiated and the ports are 

mapped to the signals declared above. Configuration statements are used in the declar- 

ative section of the architecture body to specify the entity and architecture to be used 

for the component being instantiated. 

ENTITY RADAR_SYSTEM : 

use work.all, work.radar.all; 

use STD.TEXTIO.ALL; 

entity RADAR_SYSTEM is 

end RADAR _ SYSTEM; 

use work.all, work.radar.all; 

use std. TEXTIO.all; 

architecture STRUCTURAL of RADAR_SYSTEM is 

signal FRO, LOI, LO2, LO3, OP_FREQ : HIGH_FREQUENCY := 0 MHz; 

signal TARGET_DOPPLER : LOW_FREQUENCY := 0 Hz; 

signal TX_EN, RX_EN, START_UP, DETECTED, INIT: BIT := ‘0; 

signal XMT_DRIVE, XMT_OUT, RCVD_SIG, AMP1_SIG, IFI, 

IF2, AMP2_SIG, RCVR_OUT, ANT_IN , ANT_OUT : RADAR_SIGNAL := 

(0 MHz, 0 Hz, 0 mW, 0 pW); 

signal MAX_DET_RANGE, RCVR_NOISE, AMPLIFIED_RCVR_NOISE : 
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REAL := 0.0; 

signal DETECTION_THRESHOLD : LOW_POWER := 0 pW; 

signal AZIM_SCAN_RANGE, ELEV_SCAN_RANGE, ANGLE ELEV, 

ANGLE_AZIM : ANGLE := 0 degrees; 

signal PULSE_ON_TIME: TIME := 10 ns; 

signal RANGE_BIN, NUMBER_TARGETS : NATURAL := 1; 

signal RANGE_BIN_LIMIT : NATURAL; 

signal FLAG : NATURAL := 0; 

signal TARGET_INFO : DETECTIONS; 

signal TEMP_TARGET : TARGET; 

signal TARGET_MAP : TARGET_ENVIRONMENT; 

signal POINTER : POSITIVE; 

signal RANDOM_NOISE : GAUSSIAN_REAL; 

component STALO_TEMPLATE 

port (FRO: in HIGH_FREQUENCY := 0 MHz; 

TX_EN: in BIT; 

LOI, LO2, LO3 : inout HIGH_FREQUENCY := 0 MHz; 

OP_FREQ: out HIGH_FREQUENCY := 0 MHz; 

XMT_DRIVE: out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW)); 

end component; 

for L1 : STALO_TEMPLATE use entity STALO(BEHAVIOR), 

component RCVR_TEMPLATE 

port (RCVD_SIG: in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

RCVR_NOISE : in REAL := 0.0; 
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AMPLIFIED_RCVR_NOISE : out REAL := 0.0; 

AMP1 SIG, IF1, IF2, AMP2_SIG : inout RADAR_SIGNAL 

:= (0 MHz, 0 Hz, 0 mW, 0 pW); 

RCVR_OUT: out RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

RX_EN, START_UP: in BIT := '0; 

LOI, LO2, LO3 : in HIGH_ FREQUENCY := 0 MHz); 

end component; 

for L2: RCVR_TEMPLATE use entity RCVR(BEHAVIOR); 

component PSP_TEMPLATE 

port (START_UP, INIT: in BIT := ‘0; 

RCVR_OUT : in RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

MAX_DET_RANGE: in REAL := 0.0; -- Max around 160 miles. 

DETECTION_THRESHOLD : in LOW_POWER := 0 pW; 

AZIM_SCAN_RANGE : in ANGLE := 0 degrees; 

ELEV_SCAN_RANGE : in ANGLE := 0 degrees; 

FRO: in HIGH _ FREQUENCY := 0 MHz; 

OP_FREQ: in HIGH_FREQUENCY := 0 MHz; 

AMPLIFIED_RCVR_NOISE: in REAL := 0.0; 

PULSE_ON_TIME: in TIME; 

RANGE BIN : inout NATURAL; 

RANGE_BIN_LIMIT: in NATURAL; 

RX_EN, TX_EN: out BIT := ‘0; 

ANGLE_ELEV, ANGLE_AZIM : in ANGLE := 0 degrees; 

DETECTED : inout BIT := ’0’; 

TARGET_INFO: out DETECTIONS; 
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TARGET_DOPPLER : inout LOW_FREQUENCY := 0 Hz); 

end component; 

for L3 : PSP_TEMPLATE use entity PSP(BEHAVIOR); 

component DMT_TEMPLATE 

port (XMT_DRIVE: in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

TX_EN : in BIT; 

XMT_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW)); 

end component; 

for L4: DMT_TEMPLATE use entity DMT(BEHAVIOR); 

component ANTENNA_TEMPLATE 

port (ANGLE _ELEV, ANGLE_AZIM : inout ANGLE := 0 degrees; 

ELEV_SCAN_RANGE, AZIM_SCAN_ RANGE: in ANGLE := 0 degrees; 

XMT_IN: in RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW), 

ANT_IN: inout RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

RANGE BIN: in NATURAL; 

OP_FREQ: in HIGH_FREQUENCY := 0 MHz; 

START_UP, TX_EN, RX_EN, INIT: in BIT; 

RCVD_SIG, ANT_OUT : out RADAR SIGNAL := 

(0 MHz, 0 Hz, 0 mW, 0 pW); 

NUMBER_TARGETS : in NATURAL; 

FLAG : inout NATURAL := 1; 

TEMP_TARGET : inout TARGET; 

PULSE_ON_TIME: in TIME; 
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TARGET_MAP: in TARGET_ENVIRONMENT); 

end component; 

for LS: ANTENNA_TEMPLATE use entity ANTENNA(BEHAVIOR); 

component OUTSIDE_WORLD_TEMPLATE 

port (TARGET_MAP: out TARGET_ENVIRONMENT; START_UP: in BIT; 

NUMBER_TARGETS : out NATURAL); 

end component; 

for L6: OUTSIDE_WORLD_TEMPLATE use entity 

OUTSIDE_WORLD(BEHAVIOR); 

component INITIALIZER_TEMPLATE 

port (INIT : in BIT; 

AZIM_SCAN_RANGE, ELEV_SCAN_RANGE: inout ANGLE := 0 degrees; 

DETECTION_THRESHOLD : out LOW_POWER := 0 pW; 

MAX_DET_RANGE : inout REAL := 0.0; 

RANGE_BIN_LIMIT: out NATURAL; 

PULSE_ON_TIME: in TIME); 

end component; 

for L7: INITIALIZER_TEMPLATE use entity INITIALIZER(BEHAVIOR); 

component NOISE_ GENERATOR_TEMPLATE 

port (POINTER : inout POSITIVE; 

RANGE _ BIN: in NATURAL; 

RANDOM_NOISE : inout GAUSSIAN_REAL; 

RCVR_NOISE : inout REAL := 0.0; 

Chapter 3. The Radar System Model 20



INIT : in BIT); 

end component; 

for L8 : NOISE GENERATOR_TEMPLATE use entity 

NOISE_GENERATOR (BEHAVIOR); 

begin 

L1: STALO_TEMPLATE 

port map(FRO, TX_EN, LO1, LO2, LO3, OP_FREQ, XMT_DRIVE); 

L2 : RCVR_TEMPLATE 

port map(RCVD_ SIG, RCVR_NOISE, AMPLIFIED_RCVR_NOISE, 

AMP1 SIG, IF1, IF2, AMP2_SIG, RCVR_OUT, RX_EN, 

START_UP, LOI, LO2, LO3); 

L3 : PSP_TEMPLATE 

port map(START_UP, INIT, RCVR_OUT, MAX_DET_RANGE, 

DETECTION_THRESHOLD, 

AZIM_SCAN_RANGE, ELEV_SCAN_RANGE, FRO, OP_FREQ, 

AMPLIFIED_RCVR_NOISE, PULSE_ON_TIME, RANGE BIN, 

RANGE BIN_LIMIT, RX_EN, TX_EN, ANGLE_ELEV, 

ANGLE_AZIM, DETECTED, TARGET_INFO, 

TARGET_DOPPLER); 

L4: DMT_TEMPLATE 

port map(XMT_DRIVE, TX_EN, XMT_OUT); 
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L5: ANTENNA_TEMPLATE 

port map(ANGLE_ELEV, ANGLE_AZIM, ELEV_SCAN_RANGE, 

AZIM_SCAN_RANGE, XMT_OUT, ANT_IN, RANGE _BIN, 

OP_FREQ, START_UP, TX_EN, RX_EN, INIT, RCVD_SIG, 

ANT_OUT, NUMBER_TARGETS, FLAG, TEMP_TARGET, 

PULSE_ON_TIME, TARGET_MAP); 

L6 : OUTSIDE_WORLD_TEMPLATE 

port map(TARGET_MAP, START_UP, NUMBER_TARGETS); 

L7 : INITIALIZER_TEMPLATE 

port map (INIT, AZIM_SCAN_RANGE, ELEV_SCAN_RANGE, 

DETECTION_THRESHOLD, MAX _DET_RANGE, 

RANGE_BIN_LIMIT, PULSE_ON_TIME); 

L8 : NOISE_GENERATOR_TEMPLATE 

port map (POINTER, RANGE_BIN, RANDOM_NOISE, RCVR_NOISE, INIT); 

PULSE_ON_TIME <= transport 10 us; 

FRO <= transport 158 MHz after 1 ns; 

INIT < = transport ‘1’ after 2 ns; 

START_UP <= transport ‘1’ after 3 ns; 

end STRUCTURAL; 
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3.2. System Model Operation 

A brief description of the system model operation as a whole is presented here. Many 

of the signal names and procedure names used in this section are described in more detail 

in the next chapter. Only a brief description is presented here in order to follow the flow 

of the model. 

The package RADAR that is pointed to in the entity declaration and architecture body 

of the top level entity is a package that contains all the analog type definitions and the 

procedures and functions that were defined in order to model the system. These analog 

types and procedures and functions are treated in detail in the next chapter in illustrating 

the modeling methodology that was developed. 

There are four signals that are input through the top-level entity. These are: 

1. Signal PULSE _ON_TIME. (On time of transmit pulse) 

2. Signal FRO (Frequency of the Stable Oscillator). 

3. Signal INIT 

4. Signal START_UP. 

PULSE _ON_TIME is the time during which the RF energy is transmitted from the 

radar system in every transmit/receive cycle. It is used to control the timing and gating 

of the transmitted pulse, to determine the range resolution, and the number of range bins 
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that will be needed in order to satisfy the requirement of the desired range that the radar 

should operate upto. It is inputted as soon as the simulation starts. 

FRO is the frequency of the stable master oscillator that is used in the STALO portion 

of the MLPRF. This is used to determine the frequency of operation of the radar sys- 

tem, and also the Local Oscillator frequencies. Since the frequency of operation is input 

at the top level, it is dynamically changeable. It is also inputted as soon as simulation 

Starts. 

Signal INIT is asserted after 1 ns. This initializes scan volume (+ /- 60 degrees azimuth 

and elevation) that the antenna goes through, maximum detectable range (100 statute 

miles), and detection threshold (10 uW). This signal behaves like a button that a human 

operator would control to load in new values of the above-mentioned system parame- 

ters. If the simulation needs to be run with a different set of system parameters, the 

required changes need to be made in the architecture body of entity INITIALIZER. 

These could be defined as generic parameters or actual values could be input at simu- 

lation start if it is desired to change these values frequently. 

Signal START_UP triggers the process of radar transmission and reception. When sig- 

nal START_UP goes to ‘1’, ANGLE_AZIM is at -60 degrees (60 degrees left) and 

ANGLE ELEV is +60 degrees (60 degrees up), RANGE_BIN 1s at 0. 

Shortly after START_UP is asserted (1 delta time later), TX_EN goes to ‘1’. TX_EN 

(Transmitter Enable) is the signal that, when asserted, causes the DMT and STALO 

sections to output an RF signal. During this time, RX_EN remains at ‘0’. RX_EN 

(Receiver Enable) is used to enable the receive process. 
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During this time when TX_EN is asserted, the DMT outputs the high power RF signal 

that is generated in the STALO section of the MLPRF to the ANTENNA. 

After one PULSE_ON_TIME (10 us in this case), RX_EN goes to ‘1’, and TX_EN goes 

to ‘0’. This stops the transmit process, and causes the receive process to start. 

As soon as the receive process starts, RANGE_BIN is incremented to value 1 (up from 

0). Throughout the receive process, RANGE _BIN is incremented at intervals equal to 

the PULSE ON_TIME. When RANGE BIN goes to 1, and also each time 

RANGE BIN changes to a non-zero value, a LOOK_FOR_TARGET procedure in en- 

tity ANTENNA is executed. This procedure checks to see if a target is found in the 

beam, and if it falls in the current range bin (it will be described in detail in the next 

chapter). At the same time, a new value for average noise power level is picked from 

the array RANDOM_NOISE (this is an array of gaussian distributed noise power lev- 

els), and assigned to the input of the receiver. This is done to model false alarms or 

missed detections due to noise in the receiver. A false alarm is a false target detection 

caused by excessive noise in the receiver. A missed detection is caused by the atten- 

uation of the otherwise detectable signal due to noise. 

If there exists a target in the beam whose return would fall into the current range bin (as 

determined by procedure LOOK_FOR_TARGET), then ANT_IN is assigned an RF 

signal that corresponds to the return from that target. If there does not exist a target 

in the beam whose return would fall into the current range_bin, then ANT_IN is up- 

dated to a value that represents no return, i.e. zero frequency, and zero power levels. 

This implies that only noise is present at the input of the receiver. 
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As soon as ANT_IN is updated, processes in entity RCVR start to execute. The RF 

signal is passed through the RECEIVER PROTECTOR stage (in the RCVR). This 

stage checks to see if the power_level of the returned signal is excessive. If so, the re- 

ceiver section would be damaged and an assertion error occurs if the error condition is 

met. After the signal passes the Receiver Protector, it is amplified in the FET_AMP 

stage. The output is the input signal with the power_level boosted by 30 dB. 

The output of the FET_AMP is then passed to the MIXERI stage. This is the mixer 

stage where the incoming radar signal is down converted from RF to IF. 

The output signal from the first IF MIXER stage is then passed through an AMPLI- 

FIER stage. The signal power_level is further boosted by 27 dB. 

The signal passes through another mixer stage, MIXER2, and is further down converted. 

It is again down converted by MIXER3 to a video signal, RCVR_OUT. This signal is 

then passed to the DETECTOR in the PSP. 

When RCVR_OUT is updated, process CHECK_FOR_DETECTION in the PSP (this 

procedure checks to see if the power level of the output of the receiver is high enough 

to be detectable) is executed. For this purpose the signal power levels and noise power 

levels (after amplification through the receiver) are added. If the power level of the re- 

sultant signal is above detectable limits, signal DETECTED is asserted. 

If a target is DETECTED, procedure WRITE_TARGET (elaborated upon in the next 

chapter) is called, and information about the target is written to the output file. If not, 

the process of searching for another target continues. 
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The value of RANGE BIN is incremented every PULSE_ON_TIME nas, and after 

RANGE_BIN_LIMIT is reached, the value of RANGE BIN is returned to zero. At 

this point, procedure SCAN ADVANCE (used to advance the antenna) is called, the 

antenna is advanced further, and the whole process as outlined above is repeated. This 

process continues until the antenna completes one entire scan of the environment. 

3.3. An Example Run 

Section 3.1 presented some of the basic aspects of the operation of the system model. 

Presented in this section is an example run of the model (a simulation) which will give 

an indication as to what the model accomplishes, 

A file of targets (we use text files to input target information into the system) that was 

used in a simulation run appears below. Following that is the output file that was cre- 

ated by the VHDL model. Several other runs with different target files are provided in 

the appendix. 

In the input file, the targets are listed in order by increasing angles of azimuth. This 

was done to reduce the time spent in looking for the target each time the value of the 

RANGE _BIN changed. Every five lines represents one target. The information that is 

provided for every target is: 

e LINE 1: Azimuth angle of the target. 

e LINE 2: Elevation angle of the target. 
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e LINE 3 : Time Away (An indication of the round trip range of the 

target) 

e LINE 4: Doppler shift (Shift in frequency that the transmitted signal undergoes 

after reflecting off a moving target). 

e LINE 5: Attenuation (Round Trip Attenuation that indicates the attenuation the 

signal underwent from the time it left the transmitter till the time it returned). 

The following file is the targets file °TARGETS.” that is read in at the start of simu- 

lation. This file was generated by a program written in Pascal. The Pascal code for the 

program appears in Appendix D. After one complete cycle, the results are output to 

the file DETECTED.OUT. 

File “TARGETS.IN”: 

-60 

59 

650 us 

4.5E+11 

221 

-57 

S51 

490 us 

1LSE+ 12 

400 

60 
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13 

1203 us 

4,.2E+19 

338 

149 

-43 

945 us 

4.7E+ 06 

315 

110 

34 

330 us 

1.6E+ 06 

288 

-103 

34 

592 us 

2.9E+ 06 

298 

164 

58 

52 us 

7.6E+ 5 

145 

27 

-49 
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686 us 

3.4E+ 06 

222 

-120 

-32 

377 us 

1.9E+06 

168 

4) 

-5 

530 us 

2.6E + 06 

239 

162 

-11 

846 us 

4.2E+ 06 

365 

-101 

16 

729 us 

3.6E+ 06 

113 

-159 

29 

910 us 
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4.5E+ 06 

249 

The results of the simulation were output to the file”"DETECTED.OUT”. The contents 

of the file appear below : 

TARGET DETECTED AT A DISTANCE OF: 

60.47 MILES WITH A RELATIVE VELOCITY OF: 

5.82 METERS PER SEC. CLOSING. IT’S POSITION IS: 

60 DEGREES ELEVATION, 

-60 DEGREES AZIMUTH 

TARGET DETECTED AT A DISTANCE OF: 

45.47 MILES WITH A RELATIVE VELOCITY OF: 

10.53 METERS PER SEC. CLOSING. IT’S POSITION IS: 

51 DEGREES ELEVATION, 

-57 DEGREES AZIMUTH 

AS seen in the output of the file” DETECTED.OUT”, only two targets were detected. 

Even though the third target in the input file was in the beam, it was not detected, as it 

is at a large range, and provides a much larger attenuation. All the other targets were 

not in the scan volume, and were not detected. 
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Chapter 4. Modeling Methodology 

4.1. Modeling Methodology 

In this chapter, some basic modeling methodology for modeling RF systems at the be- 

havioral level is first presented. 

We need to represent the behavior of an analog entity. That is, we need some way to 

model the relation between an analog entity’s inputs and outputs. The following three 

points bring out the essential aspects of the methodology that was developed, as will be 

seen often in the model that is later presented. 

1. Use of real number arithmetic. 

We make use of real number arithmetic to model the relation between the analog 

input(s) and analog output(s) of an entity. For example, for an amplifier one can 

have the power level of the output as some real gain factor times the power level of 

the input. Generic functions and procedures can be written for analog behavior and 
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these can form part of a package. These functions and procedures can be called by 

the model. 

2. Use of abstract data types. 

We use abstract data types to define basic analog types that will be needed, and then 

define analog signals as a record of these types. After analog signals have been de- 

fined in this manner, one can refer to the fields as and when needed. 

e.g., type POWER is range 0 to 1E9 

units pW; 

nW = 1000 pW; 

uW = 1000 nW; 

end units; 

type FREQUENCY is range 0 to 1E9 

units Hz; 

KHz = 1000 Hz; 

MHz = 1000 KHz; 

end units; 

type ANALOG SIGNAL is 

record 

POWER LEVEL : POWER; 

FREQ: FREQUENCY; 

end record; 
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3. Use of File I/O. 

We make use of VHDL File I/O and TEXTIO to input data (target information and 

noise information) into the model and to output data (detections) from the model. 

4.2. The Package RADAR 

In order to see how the above methodology was applied to the radar system that was 

modeled, the VHDL code for the package that was defined in order to model the radar 

system is presented below. Following that package is a brief description of the types that 

were defined and the functions and procedures that were written. 

  

use WORK.all, STD. TEXTIO.all; 

package RADAR is 

constant PI : REAL := 3.142;  -- Value of Pi. 

constant C : REAL := 3.0E8; -- Speed Of Light in meters per 

-- second. 

type LOW_FREQUENCY is range -2E9 to 2E9 

units Hz; 

KHz = 1000 Hz; 

end units; 
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type HIGH_FREQUENCY is range -le9 to IE9 

units MHz; 

GHz = 1000 MHz; 

end units; 

type ANGLE is range -360 to 360 

units degrees; 

end units; 

type HIGH_POWER is range 0 to 2e9 

units mW; 

W = 1000 mW; 

KW = 1000 W; 

end units; 

type LOW_POWER is range 0 to 1e9 

units pW; 

nW = 1000 pW; 

uW = 1000 nW; 

end units; 

type RADAR_SIGNAL is 

record 

HIFREQ : HIGH_FREQUENCY;, 

Chapter 4. Modeling Methodology 35



LOFREQ : LOW_FREQUENCY; 

HIPOWER_LEVEL : HIGH_POWER; 

LOPOWER_LEVEL : LOW_POWER; 

end record; 

type GAUSSIAN_REAL is array (INTEGER range I to 100) of REAL; 

type TARGET is 

record 

AZIMUTH : ANGLE; 

ELEVATION : ANGLE; 

TIME AWAY : TIME; -- in microseconds. 

TARGET_DOPPLER : LOW_FREQUENCY,;, -- in Hertz 

ATTENUATION : REAL; 

end record; 

type TARGET_FILE 1s file of TARGET; 

type DIRECTION is (OPENING, CLOSING); 

type DETECTIONS is | 

record 

TARGET_RANGE: REAL; -- in miles; 

REL VEL: REAL; 

VEL_DIR : DIRECTION; 

TARGET_ELEVATION : ANGLE; 
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TARGET_AZIMUTH : ANGLE; 

end record; 

type DETECTIONS_FILE is file of DETECTIONS; 

type TARGET ENVIRONMENT is array (INTEGER range 0 to 20) of 

TARGET; 

file I: TEXT is in “filename”; 

file O : TEXT is out "DETECTED.OUT’; 

function MAX_RANGE_BIN (PULSE_ON_TIME: TIME; 

MAX _DET_RANGE : REAL) 

return NATURAL; 

function TIME _TO_REAL IN_NS (A: TIME) return REAL; 

function HIFREQ TO_REAL_IN_MHz (A: HIGH_FREQUENCY) return REAL; 

function LOFREQ TO_REAL_IN_Hz (A: LOW_FREQUENCY) return REAL; 

function ANGLE_TO_REAL_IN_DEG (A: ANGLE) return REAL; 

function BIN_DISTANCE (A : TIME) return REAL; 

Chapter 4. Modeling Methodology 37



procedure SCAN ADVANCE (signal AZIM, ELEV : in ANGLE; 

signal ELEV_RANGE, AZIM_RANGE: in ANGLE; 

signal AZIM_1, ELEV_1 : out ANGLE); 

procedure INCREMENT_RANGE BIN (signal RANGE_BIN : in NATURAL; 

signal RANGE_BIN_2: out NATURAL; 

signal RANGE_BIN_LIMIT : in NATURAL); 

procedure READ_TARGET_ENVIRONMENT (signal TARGET _MAP: out 

TARGET ENVIRONMENT; signal NUMBER_TARGETS : out INTEGER); 

procedure WRITE_TARGET (signal TARGET_DOPPLER : in LOW_FREQUENCY; 

signal ANGLE_ELEV, ANGLE_AZIM : in ANGLE; 

signal PULSE_ON_TIME: in TIME; 

signal RANGE_BIN: in NATURAL; 

signal OP_FREQ: in HIGH_FREQUENCY; 

signal TARGET_INFO: out DETECTIONS; 

signal DETECTED : out BIT); 

procedure LOOK_FOR_TARGET (signal ANGLE_ELEV, 

ANGLE_AZIM : in ANGLE; 

signal RANGE_BIN : in NATURAL; 

signal TARGET_MAP : in TARGET_ENVIRONMENT; 

signal NUMBER_TARGETS : in INTEGER; 

signal FLAG : inout NATURAL; 

signal PULSE_ON_TIME: in TIME); 
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procedure POTENTIAL_TARGET_INFO 

(signal TARGET_MAP_FLAG: in TARGET; 

signal ANT_OUT : out RADAR _ SIGNAL; 

signal OP_FREQ: in HIGH_FREQUENCY; 

signal FLAG : out NATURAL); 

procedure AMPLIFY_BY_K (variable K : in REAL; 

signal AMPLIFIER_IN: in RADAR_SIGNAL; 

signal AMPLIFIER_OUT: out RADAR _ SIGNAL); 

procedure CHECK FOR_DETECTION (signal RCVR_OUT : 

in RADAR_ SIGNAL; 

signal AMPLIFIED_RCVR_NOISE: in REAL; 

signal DETECTION_THRESHOLD : in LOW_POWER; 

signal DETECTED_1: out BIT); 

procedure READ _GAUSSIAN_NOISE 

(signal RANDOM_NOISE : out GAUSSIAN_REAL); 

end RADAR; 

The basic analog types (physical types): LOW_FREQUENCY, HIGH_FREQUENCY, 

LOW_POWER, and HIGH_POWER are defined first. Their scope and units are also 

defined. These are used as fields of a data type (a record - RADAR_SIGNAL) that will 

represent all radar signals used in the model. Type ANGLE is defined for target placing 
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and antenna positioning. Its range limits are from -180 to 180 degrees. This is sufficient 

to specify any position for the target or the antenna. 

A special abstract data type TARGET is defined to represent all targets that will be seen 

by the radar system. It is a record of five fields, and the information contained in the 

fields is: 

e Target positioning i.e. azimuth and elevation angles (fields 1 and 2) 

e The time it takes for a target echo to return to the radar (which is a representation 

of its distance from the radar - field 3). 

e The Doppler shift - frequency shift that comes about due to the relative velocity of 

the target with respect to the radar (field 4). 

e The total attenuation that the radar signal undergoes from the time it leaves the 

transmitter to the time it reaches back to the receiver (field 5). 

Type DIRECTION is defined in order to identify the direction of the target’s velocity 

with respect to the radar. “OPENING” implies that the target’s velocity has a direction 

that enables it to distance itself from the radar, and “CLOSING” implies just the oppo- 

site. 

Type DETECTIONS is a data type that is used to represent the information about a 

detected target. It is a record of five fields and the information in the fields is : 
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e Target Range (field 1) 

e §6Target velocity (field 2) 

e Velocity direction (field 3) 

e Target elevation and azimuth angles (fields 4, 5) 

The data type TARGET_ENVIRONMENT is defined in order to represent all the tar- 

gets that can possibly exist and can be detected around and about the radar system. It 

is a restricted array of type TARGET. Note that a maximum of twenty targets can be 

represented, since the size of the array has been constrained to that value. 

Type GAUSSIAN_REAL is an array of type real that holds a string of gaussian dis- 

tributed real numbers, which represents gaussian noise at the inputs of the receiver. 

MAX _ RANGE BIN is a function that uses the pulse width of the transmitted signal, 

and the maximum desired detectable range, and outputs an integer value that corre- 

sponds to the maximum value that the range_bin_counter must count up to. 

TIME _TO_REAL IN_NS is a function that was defined in order to convert a 

signal/variable of type time TIME to one of type REAL. Since VHDL is very strongly 

typed, and does not have any pre-defined functions for conversion of physical types to 

real types for the purposes of calculation (since this situation never arises in digital cir- 

cuit modeling), these functions have to be defined in this package. Type TIME is con- 

verted to a REAL number (relative to 1 ns) which is returned by the function. 
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Similarly, HIFREQ TO_REAL_IN_MHZ, LOFREQ TO_REAL_IN_HZ, — and 

ANGLE_TO_REAL_IN_DEG convert types HIFREQ, LOFREQ, and ANGLE re- 

spectively to type REAL. 

BIN_DISTANCE is a simple function that takes the value of type TIME as input, and 

returns a REAL value corresponding to the round trip range in miles that a signal would 

cover, if it returns to the radar in that time. 

SCAN_ADVANCE is a procedure that takes as input the present position of the an- 

tenna in azimuth and elevation, and also the limits on the angles of azimuth and ele- 

vation which represent the maximum scan range that the antenna goes through. Every 

time this function is called, (provided of course that the entire scan has not been com- 

pleted) it advances the antenna one position to the right in azimuth. If the azimuth limit 

has been reached, it advances the antenna in elevation, and returns the azimuth to its 

least value. The scanning of the antenna continues till an entire scan of the target en- 

vironment is complete. 

INCREMENT_RANGE BIN is a procedure that takes the current value of the 

RANGE BIN and increments it if the value of the range bin limit has not been reached. 

If the value of the limit has been reached, then RANGE BIN is assigned 0. 

READ_TARGET_ENVIRONMENT is a procedure that reads information about all 

the possible targets (ranging from 1 to 20 in number) that are randomly positioned 

anywhere about the radar system. These are read into a signal that is an array of type 

TARGET that represents target information. The file that contains the information 1s 

randomly generated by a Pascal program that generates anywhere between one and 
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twenty targets, positions them randomly at various azimuth and elevation angles, and 

assigns a random value of range, target Doppler, and attenuation to each target. 

WRITE_TARGET is a procedure that takes as its input information regarding the de- 

tected target. This procedure is called whenever a target return is found to have a signal 

strength strong enough to be detected. The information that is passed to the procedure 

includes target Doppler, angles of elevation and azimuth, the range bin value of the 

counter at the time the target is detected, the value of the pulse width of the transmitted 

signal, and the operating frequency of the radar. After the necessary calculations in or- 

der to determine the range, velocity, etc., the information about the target is written out 

to a text file “DETECTED.OUT”. The information about the target includes its ap- 

proximate range, its relative velocity (to the line of sight of the radar), direction of ve- 

locity, and the position of the target (i.e. approximate azimuth and elevation angles). 

LOOK_FOR_TARGET is a procedure that is called each time the value of the 

RANGE _BIN changes. Each time this occurs, the target map (signal that represents the 

target environment) is scanned to see if the current angle of azimuth and elevation that 

the antenna is pointing in, match with those of any of the targets (within the beamwidth 

of course). If they do, the procedure checks to see if target’s range allows the return to 

fall within the current value of the range bin. If it does not fall within the current range 

bin, then the process continues scanning the other targets to see it they are in the beam 

and satisfy this condition. It does this till all the targets have been scanned. If a target 

is in the beam and does fall within the current range bin, then the procedure assigns to 

signal FLAG (integer), the array index of the possibly detectable target. This target is 

still only potentially detectable since it is still to be determined if this target returns a 

signal strong enough to be detected. At the end of the procedure, signal FLAG either 
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contains a non-zero value or a zero value depending on whether any target is potentially 

detectable. 

POTENTIAL_TARGET_INFO is a procedure that is called each time a target is in the 

beam and in detectable range. (determined by procedure LOOK_FOR_TARGET). Ifa 

target is in the beam and its return falls within the current range bin, then the received 

signal ANT_IN is assigned a signal (RADAR_SIGNAL) whose power level is that of 

the transmitted signal divided by the value of the attenuation. Its frequency is that of 

the transmitted signal with the target Doppler added to it. At the same time that this 

is done, FLAG is reset to zero. 

AMPLIFY_BY_K is a generic amplification procedure that is called from an amplifier 

entity. It is passed a RADAR_SIGNAL, and a generic amplification factor K as its 

input. It returns a RADAR SIGNAL as its output after amplification. 

Procedure CHECK FOR_DETECTION is a procedure that takes as input a 

RADAR SIGNAL (output from the _ receiver) and a _ noise _ signal, 

AMPLIFIED_RCVR_NOISE, sums them and determines if the power level of the re- 

sulting RADAR SIGNAL is. strong enough to be detected above the 

DETECTION_THRESHOLD. If yes, then it asserts signal DETECTED. 

Procedure READ _GAUSSIAN_NOISE is a procedure that is executed at START_UP. 

It reads an external file of gaussian distributed real numbers and assigns them to a signal 

RANDOM_NOISE, which is an array of REAL and represents noise in the receiver. 

This external file is created externally by a Pascal program. Its code can be found in the 

Appendix. 
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The body of the package, i.e., the part of the package where all the functions and pro- 

cedures are expanded upon, appears in Appendix A. 
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Chapter5. The Entities of the Radar System Model 

5.1. The Entity Descriptions 

Presented below is the main text of the VHDL code for the entity declarations and the 

corresponding architecture bodies of the eight behavioral entities that make up the sys- 

tem. At the end of each entity and its corresponding architecture body, appears a de- 

scription of the functioning of the entity. 

Entity STALO : 

  

use work.all, work. RADAR. all; 

entity STALO is 

port (FRO : in HIGH _ FREQUENCY := 0 MHz; 

TX_EN : in BIT; 

LOI, LO2, LO3 : inout HIGH _ FREQUENCY := 0 MHz; 
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OP_FREQ: out HIGH _ FREQUENCY := 0 MHz; 

XMT_DRIVE: out RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW)); 

end STALO; 

architecture BEHAVIOR of STALO is 

begin 

GEN_LO_FREQ: 

Process (FRO) 

Begin 

LOI] <= 48 * FRO; 

LO2 <= 8 * FRO; 

LO3 <= FRO; 

end process; 

OUTPUT_SIGNAL : 

Process (TX_EN) 

begin 

If TX_EN = ‘I’ then 

XMT_DRIVE.HIFREQ <= LOI] + LO2 + LO3; 

XMT_DRIVE.LOFREQ < = 0 Hz; 

XMT_DRIVE.HIPOWER_LEVEL <= 150 mW; 

XMT_DRIVE.LOPOWER_LEVEL <= 0 pW; 

OP_FREQ <= LOI + LO2 + LO3; 
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else 

XMT_DRIVE.LOFREQ < = 0 Hz; 

XMT_DRIVE.HIFREQ < = 0 MHz; 

XMT_DRIVE.HIPOWER_LEVEL < = 0 mW; 

XMT_DRIVE.LOPOWER_LEVEL <= 0 pW; 

end if; 

end process; 

end BEHAVIOR; 

The entity STALO 1s part of the MLPRF. It generates the Local Oscillator signals and 

provides transmitter drive, when required. (i.e. at the given PRF and pulse width) This 

timing is initiated by the TX_EN signal which is generated by the PSP. The local 

oscillator signals are multiples of the FRO frequency which is the stable oscillator ref- 

erence. LOI, LO2, LO3 are mixed (added) to form the output signal or operating fre- 

quency of the radar system. When TX_EN goes to ‘1’, the transmitter drive signal takes 

on the value of the radar signal, whose power level is 150 mW (22dbm), and whose fre- 

quency is the frequency of operation. When TX_EN goes to ’0’, all fields of the radar 

signal that form the transmitter drive go to zero. 

ENTITY RCVR: 

  

use work.all, work.RADAR.all; 

entity RCVR is 

port (RCVD_SIG: in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

RCVR_NOISE : in REAL := 0.0; 
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AMPLIFIED_RCVR_NOISE: out REAL := 0.0; 

AMPI SIG, IF1, IF2, AMP2_SIG: inout RADAR_ SIGNAL := 

(0 MHz, 0 Hz, 0 mW, 0 pW); 

RCVR_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

RX_EN, START_UP: in BIT; 

LOI, LO2, LO3 : in HIGH_FREQUENCY := 0 MHz); 

end RCVR; 

architecture BEHAVIOR of RCVR is 

begin 

-- RECEIVER PROTECTOR : 

process (RCVD_SIG) 

begin 

assert not (RCVD_SIG.POWER_LEVEL > 10 mW) 

report "RECEIVED SIGNAL POWER EXCEEDED SAFE LIMIT” 

severity note; 

end process; 

-- FET_AMP: 

process (RCVD_SIG) 

variable K : REAL := 1000.0; 

begin 

AMPLIFY_BY_K (K, RCVD_SIG, AMPI_SIG); 

end process; 
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-- MIXERI : 

process(AMP1 SIG) 

begin 

if AMP1_SIG.HIFREQ /= 0 MHz then 

IFI.LHIFREQ <= AMPI1_SIG.HIFREQ - LOI; 

else IFI.HIFREQ <= 0 MHz; 

end if; 

IFI1.LOFREQ <= AMPI_SIG.LOFREQ; 

IFI.LHIPOWER_LEVEL < = AMPI1_SIG.HIPOWER_LEVEL; 

IF1.LOPOWER_LEVEL <= AMPI_SIG.LOPOWER_ LEVEL; 

end process; 

-- AMPLIFIER : 

process (IF1) 

variable K : REAL := 500.0; 

begin 

AMPLIFY_BY_K (K, IFl, AMP2_SIG); 

end process; 

-- MIXER2: 

process (AMP2_SIG) 

begin 

If AMP2_SIG.HIFREQ /= 0 MHz then 

IF2.HIFREQ <= AMP2_SIG.HIFREQ - LO2; 

else IF2.HIFREQ < = 0 MHz; 

end if; 
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IF2. LOFREQ <= AMP2_ SIG.LOFREQ; 

IF2.HIPOWER_LEVEL < = AMP2_SIG.HIPOWER_LEVEL; 

IF2.LOPOWER_LEVEL < = AMP2_SIG.LOPOWER_LEVEL; 

end process; 

-- MIXER3 : 

process (IF2) 

begin 

If IF2.HIFREQ /= 0 MHz then 

RCVR_OUT.HIFREQ < = IF2.HIFREQ - LO3;--Target_doppler. 

else 

RCVR_OUT.HIFREQ < = 0 MHz; 

end if; 

RCVR_ OUT.LOFREQ < = IF2.LOFREQ; 

RCVR_OUT.HIPOWER_LEVEL < = IF2.HIPOWER_LEVEL; 

RCVR_OUT.LOPOWER_LEVEL < = IF2.LOPOWER_LEVEL; 

end process; 

-- NOISE_AMPLIFICATION 

process (RCVR_NOISE) 

begin 

if START_UP = ‘I’ then 

AMPLIFIED_RCVR_NOISE < = 5.0E5 * RCVR_NOISE; 

end if; 

end process; 
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end BEHAVIOR; 

  

Entity RCVR is also part of the MLPRF. It forms the received path of the radar signal. 

It consists of several processes. Receiver Protector is a process that accepts the signal 

RCVD_SIG which is input from the antenna and checks to see if it exceeds a certain 

value using an assert statement. If it does, it reports this as an assertion error in the 

output. This process is executed each time that the value of the signal RCVD_SIG 

changes. 

FET_AMP is a process that is also executed each time RCVD_SIG changes. It ampli- 

fies the incoming signal to a power_level 1000 times (30 db) greater. The frequency and 

other fields remain unchanged. The output is called AMPI_ SIG. An event on this 

output signals triggers another process MIXERI. 

MIXERI is a mixer stage that takes the AMP1_SIG as one of it’s inputs. Local 

oscillator signal LO] is the other input to this mixer stage. The frequency of the signal 

that comes out of the mixer stage is the first IF frequency. It is the difference of the 

frequency of the AMP1_SIG and the LOI frequency. All other fields remain unchanged. 

The output signal is called IFl. An event on IF1 causes the process AMPLIFIER to 

be executed. 

AMPLIFIER takes the output of the mixer stage and amplifies it to a power level 500 

(27 db) times it’s input. The other fields remain unchanged. The output of the AM- 

PLIFIER is called AMP2_SIG. 
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An event on AMP2_ SIG causes the process MIXER2 to be executed. It 1s another 

mixer stage in which the two inputs to be mixed are the AMP2_SIG and the 2nd Local 

Oscillator signal LO2. The frequency of the output is the difference between the fre- 

quency of the AMP2_SIG and the LO2 signal. The output is called IF2. 

An event on IF2 triggers the process MIXER3. This process mixes the IF2_SIG and 

the LO3 signal. The frequency of the output is the difference between the frequency of 

the IF2_SIG and the LO3 signal. All other fields remain unchanged. The output signal 

RCVR_OUT is the signal coming out of the receiver. It has a low frequency and is a 

video signal. 

NOISE AMPLIFICATION is a process that amplifies noise at the input of the receiver 

by a factor equal to the amplification that the received signal goes through. The signal 

AMPLIFIED_RCVR_NOISE is the noise signal available at the output of the receiver. 

It is obtained by amplifying the noise signal RCVR_NOISE (assigned to the input of the 

receiver) by a factor 5.0E5, which is the same as the gain for the signal path through the 

receiver. 

ENTITY PSP : 

    

use work.all, work. RADAR.all; 

entity PSP is 

port (START_UP, INIT : in BIT; 

RCVR_OUT : in RADAR _ SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

MAX _DET_RANGE: in REAL := 0.0; — -- Max around 160 miles. 

DETECTION_THRESHOLD : in LOW_POWER := 0 pW; 

AZIM_SCAN_RANGE: in ANGLE := 0 degrees; 
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ELEV_ SCAN RANGE: in ANGLE := 0 degrees; 

FRO: in HIGH_FREQUENCY := 0 MHz; 

OP_FREQ: in HIGH_FREQUENCY := 0 MHz; 

AMPLIFIED_RCVR_NOISE : in REAL := 0.0; 

PULSE_ON_TIME: in TIME; 

RANGE BIN: inout NATURAL; 

RANGE _BIN_LIMIT: in NATURAL; 

RX_EN, TX_EN: out BIT; 

ANGLE_ELEV, ANGLE_AZIM : in ANGLE := 0 degrees; 

DETECTED : inout BIT; 

TARGET_INFO: out DETECTIONS; 

TARGET_DOPPLER : inout LOW_FREQUENCY := 0 Hz); 

end PSP; 

architecture BEHAVIOR of PSP is 

signal DETECTED_1I, DETECTED _2: BIT := ‘0’; 

signal RANGE_BIN_1, RANGE_BIN_2: NATURAL := 0; 

Begin 

-- CHECK FOR_DETECTION : 

Process (AMPLIFIED_RCVR_NOISE) 

begin 

if START_UP = ‘1’ then 

CHECK_FOR_DETECTION (RCVR_OUT, AMPLIFIED_RCVR_NOISE, 

DETECTION_THRESHOLD, DETECTED_}); 

end if; 

end process; 
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-- DETECTION : 

Process (DETECTED) 

Begin 

If DETECTED = ‘1’ and not DETECTED’STABLE then 

WRITE_TARGET (TARGET_DOPPLER, ANGLE_ELEV, ANGLE_AZIM, 

PULSE_ON_TIME, RANGE BIN, 

OP_FREQ, TARGET_INFO, DETECTED_2); 

end if: 

end process; 

-- DETECTED_MUX: 

DETECTED < = transport DETECTED_1 when not DETECTED_1’QUIET else 

DETECTED_2 when not DETECTED_2’QUIET else DETECTED; 

-- SYNCHRONIZER : 

Process (RANGE_BIN, START_UP) 

Begin 

If (RANGE_BIN = 0 and START_UP = ‘1’) then 

TX_EN <= 1 

RX_EN <= 0; 

elsif (not (RANGE_BIN = 0) and START_UP = ’1’) then 

TX_EN <= 0; 

RX_EN <= 15 
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end if; 

end process; 

-- RANGE_INITIALIZE: 

Process (INIT) 

begin 

if INIT = ‘1’ and not INIT’STABLE then 

RANGE _BIN_1 <= 0; 

end if; 

end process; 

-- RANGE_INCREMENT 

Process 

Begin 

if START_UP = ‘I’ then 

if(not((ANGLE_AZIM = AZIM_SCAN_RANGE) and (ANGLE_ELEV = - 

ELEV_SCAN_RANGE)) 

and ((START_UP = ‘I’ and not START_UP’STABLE) or 

(START_UP = ‘I’ and not RANGE_BIN’STABLE))) then 

wait for PULSE ON_TIME; 

INCREMENT_RANGE BIN (RANGE BIN, RANGE _BIN_2, 

RANGE _BIN_LIMIT); 

else 

wait until (not(((ANGLE_AZIM = AZIM_SCAN_RANGE) and 

(ANGLE_ELEV = - ELEV_SCAN_RANGBE)) and 

((START_UP = ‘I’ and not START_UP’STABLE) or 

(START_UP = ‘I’ and not RANGE _BIN’STABLE))); 
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end if; 

else 

wait until START_UP = ‘1’; 

end if; 

end process; 

-- RANGE_BIN_MUX: 

RANGE BIN <= transport RANGE_BIN_1 when not RANGE_BIN_1’QUIET else 

RANGE_BIN_2 when not RANGE_BIN_2’QUIET else 

RANGE BIN; 

-- ASSIGN_TARGET_DOPPLER : 

TARGET_DOPPLER < = RCVR_OUT.LOFREQ; 

end BEHAVIOR; 

  

The entity PSP is the heart of the system. It takes care of all the timing and control 

associated with the radar process. Most of the decision making occurs in this entity. 

The PSP is mostly digital. In actuality, almost all signals like AZIM ANGLE, 

AZIM_SCAN_RANGE have their values digitally encoded. However, since we wish to 

deal with them as if they are physical types in VHDL, we have defined them as such. 

Some of the signals are bits. These are mostly for control purposes. For example, 

START_UP and INIT are signals of type bit. They are input by the user when initial- 

ization and start_up are required. 
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CHECK_FOR_DETECTION is a process that is triggered each time the value of 

RCVR_OUT (the signal out of the receiver portion), or. AMPLIFIED_RCVR_NOISE 

changes. If the value of the power_level of the output of the receiver exceeds the de- 

tection threshold, signal DETECTED is asserted. The assertion of DETECTED causes 

process DETECTION to execute. This process passes the necessary information re- 

garding the target that was detected, and some of the system parameters to procedure 

WRITE_TARGET (declared in package RADAR). This procedure performs the nec- 

essary calculations, and writes the target detection out to the output file. At the same 

time that this is done, DETECTED is de-asserted. 

Process DETECTED_MUkxX is a process that is used so that signal DETECTED receives 

the value of DETECTED_1!1 or DETECTED_2 whichever has changed most recently. In 

actual hardware, this corresponds to time multiplexing. 

SYNCHRONIZER is a process that is triggered each time RANGE_BIN changes value 

or at system START_UP. (Note that mostly all the processes in each entity will execute 

as required only after system START_UP as this condition has been inserted in the 

process control statements). For this particular process, every time RANGE_BIN 

changes to a 0 after system START_UP, TX_EN 1s asserted, and RX_EN is deasserted. 

These are inputs to the MLPRF. The DMT outputs a transmitter drive (non-zero) only 

when TX_EN Is asserted; whereas the antenna and receive processes update signals 

ANT_IN and RCVD_SIG only when RX_EN is asserted and TX_EN is deasserted. 

This is the case whenever RANGE _ BIN is non-zero. 

RANGE_INITIALIZE simply initializes RANGE_BIN to 0 when the INIT signal 1s 

asserted. 
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RANGE_INCREMENT is a process that waits until START_UP = ‘1’. When 

START_UP = ‘I’, it checks to see if RANGE_BIN or START_UP have just changed, 

and also if the antenna has not completed one entire scan. If these conditions are sat- 

isfied, then the process waits for one PULSE_ON_TIME and then increments the 

range bin value by calling procedure INCREMENT_RANGE BIN. If any of these 

conditions are not satisfied, and START_UP = ‘1’, then it waits until all the conditions 

are satisfied. This is how the RANGE BIN value is incremented every 

PULSE ON_TIME. 

RANGE_BIN_MU%X is similar to DETECTED_MUX. It is needed as two separate 

processes affect the value that RANGE_BIN takes on. Since two drivers can not drive 

the same port at the same time, the mux function is necessary. 

Lastly process ASSIGN_TARGET_DOPPLER is a_ process in which 

TARGET_DOPPLER is assigned the value of RCVR_OUT.LOFREQ each time 

RCVR_OUT changes. 

ENTITY DMT : 

  

use work.all, work. RADAR.all; 

entity DMT is 

port (XMT_DRIVE: in RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

TX_EN : in BIT; 

XMT_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW)); 

end DMT; 
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architecture BEHAVIOR of DMT is 

begin 

Process (TX_EN’DELAYED) 

Begin 

If TX_EN’DELAYED = ‘I’ then 

XMT_OUT.HIFREQ <= XMT_DRIVE.HIFREQ; 

XMT_OUT.LOFREQ < = XMT_DRIVE.LOFREQ; 

XMT_OUT.HIPOWER_LEVEL <= 15 kW; 

XMT_OUT.LOPOWER_LEVEL <= 0 pW; 

else 

XMT_OUT.LOFREQ <= 0 Hz; 

XMT_OUT.HIFREQ < = 0 MHz; 

XMT_OUT.LOPOWER_LEVEL <= 0 pW; 

XMT_OUT.HIPOWER LEVEL <= 0 mW; 

end if; 

end process; 

end BEHAVIOR; 

  

Entity DMT receives the transmitter drive from the MLPRF. It also receives the 

TX_EN signal from the PSP. When TX_EN is a’l’, the output of the DMT is the 

transmitter drive signal amplified to a power level of 15 kW. Otherwise, the DMT does 

not output an RF signal. Notice that TX_EN’DELAYED is used in the sensitivity list 

of this process, since it takes one delta time for TX_EN to change to a ‘I’ (in the PSP) 

after RANGE_BIN becomes a 0. 
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ENTITY ANTENNA : 

use work.all, work.RADAR.all; 

entity ANTENNA 1s 

port (ANGLE_ELEV, ANGLE_AZIM : inout ANGLE := 0 degrees; 

ELEV_SCAN_RANGE, AZIM_SCAN_RANGE: in ANGLE := 0 degrees; 

XMT_IN: in RADAR SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

ANT_IN: inout RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pW); 

RANGE_BIN: in NATURAL; 

OP_FREQ: in HIGH_FREQUENCY := 0 MHz; 

START_UP, TX_EN, RX_EN, INIT: in BIT; 

RCVD_SIG, ANT_OUT : out RADAR_SIGNAL := (0 MHz, 0 Hz, 0 mW, 0 pw); 

NUMBER_TARGETS : in NATURAL; 

FLAG : inout NATURAL := 1; 

TEMP_TARGET : inout TARGET; 

PULSE_ON_TIME: in TIME; 

TARGET_MAP: in TARGET_ENVIRONMENT), 

end ANTENNA; 

use work.all, work.RADAR.all; 

use std.textio.all; 

architecture BEHAVIOR of ANTENNA is 

signal ANGLE_ELEV_1, ANGLE_ELEV_2, ANGLE_AZIM_l, 

ANGLE_AZIM_2: ANGLE; 

begin 

-- SCAN : 

ChapterS. The Entities of the Radar System Model 61



Process (RANGE_BIN, START_UP) 

Begin 

if(not((ANGLE_AZIM = AZIM_SCAN_RANGE) and (ANGLE_ELEV = - 

ELEV_SCAN_RANGE)) and 

(RANGE_BIN = 0 and START_UP’STABLE and START_UP = ’1’)) 

then 

SCAN_ADVANCE (ANGLE_AZIM, ANGLE _ELEV, ELEV_SCAN_RANGE, 

AZIM_SCAN_RANGE, ANGLE_AZIM_1, ANGLE_ELEV_1]); 

end if; 

end process; 

-- ASSIGN_SCAN_LIMITS 

Process (START_UP) 

Begin 

if START_UP = ’1’ and not START_UP’STABLE then 

ANGLE_AZIM_2 <= - AZIM _SCAN_RANGE; 

ANGLE_ELEV_2 <= ELEV_SCAN_RANGE; 

end if; 

end process; 

-- ASSIGN_ANTENNA_I/O 

Process (ANT_IN, XMT_IN) 

Begin 

if (not (RANGE_BIN = 0) and (RX_EN = ’1’)) then 

RCVD_SIG <= ANT_IN; 

end if; 
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if (RANGE_BIN = 0 and TX_EN = ’1’) then 

ANT_OUT <= XMT_IN; 

end if; 

end process; 

-- ANGLE_ELEV_MUX 

ANGLE_ELEV <= transport ANGLE_ELEV_1 when not ANGLE _ELEV_1’QUIET 

else ANGLE_ELEV_2 when not ANGLE_ELEV_2’QUIET else 

ANGLE_ELEV; 

-- ANGLE_AZIM_MUX 

ANGLE_AZIM <= transport ANGLE_AZIM_1 when not ANGLE_AZIM_1’QUIET 

else ANGLE_AZIM_2 when not ANGLE _AZIM_2’QUIET else 

ANGLE_AZIM; 

-- ASSIGN_TEMP_TARGET : 

Process (FLAG) 

begin 

if not (FLAG’STABLE) and (START_UP = ’1’) and not (FLAG = 0) then 

TEMP_TARGET <= TARGET_MAP(FLAG); 

end if; 

end process; 

-- CHECK_POTENTIAL_TARGET : 

Process (FLAG’DELAYED) 

begin 
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if (not (FLAG’DELAYED = 0)) and (START_UP = ‘1’) and 

not FLAG’DELAYED’STABLE then 

POTENTIAL_TARGET_INFO (TEMP_TARGET, ANT_IN, OP_FREQ, 

FLAG); 

elsif START_UP = ‘I’ and not FLAG’DELAYED’STABLE then 

ANT_IN.LOFREQ <= 0 Hz; 

ANT_IN.HIFREQ <= 0 MHz; 

ANT_IN.HIPOWER_LEVEL <= 0 mW; 

ANT_IN.LOPOWER_LEVEL <= 0 pW; 

end if; 

end process; 

-- TARGET_SEARCH : 

Process (RANGE_BIN) 

begin 

if (not (RANGE BIN = 0) and not RANGE_BIN’STABLE) then 

LOOK_FOR_TARGET (ANGLE_ELEV, ANGLE_AZIM, RANGE BIN, 

TARGET_MAP, NUMBER_TARGETS, FLAG, 

PULSE ON_TIME); 

end if; 

end process; 

end BEHAVIOR; 
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Entity ANTENNA performs antenna positioning and receives the signal returned from 

a target if the target is in range, and in the beam. In addition, it also outputs the high 

power RF signal from the output of the DMT to the exterior environment in the direc- 

tion of the beam. It uses the signal TARGET MAP to determine if any target lies 

within the beam at a given range. Other signals input to it include system parameters 

like operating frequency and range bin, Antenna Scan Limits, the high power RF signal 

from the DMT, the returned signal from the target, and timing signals from the PSP 

section. 

Process SCAN is executed after START_UP when RANGE BIN takes on the value 0 

for the second time and every time thereafter, until one complete scan of the environ- 

ment is done (the first time RANGE_BIN is zero is at START_UP and at this time the 

antenna is already stowed at the starting position , so it is only from the second time 

that range bin goes to zero that the antenna needs to be moved in order to scan the 

environment). The antenna is scanned by calling procedure SCAN_ADVANCE written 

in package RADAR. The parameters passed to this procedure are the angles of 

Azimuth and Elevation that the antenna is currently in and also the limits to the angles 

of Azimuth and Elevation that the Antenna should scan to. The antenna has a beam- 

width of two degrees, and is moved three degrees in azimuth each time the scan is ad- 

vanced. If the azimuth limit is reached, the azimuth is returned to it’s least value, and 

the antenna is scanned in elevation by three degrees. This whole process repeats until 

one complete scan of the desired portion of the environment is completed. 

Process ASSIGN_SCAN_LIMITS is executed at START_UP. This points the antenna 

to the starting position. The starting position is specified by the 
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AZIM_SCAN_RANGE and ELEV_SCAN_RANGE signals that are initialized through 

by the user when INIT is asserted. 

ASSIGN_ANTENNA_I/O is a process that is executed each time that ANT_IN or 

XMT_IN changes value. XMT_IN is the high power RF input to the antenna that is 

provided by the output of the DMT to be output into the environment; and the 

ANT_IN signal is the radar_signal that is returned by a target in the beam if it is in 

range. So if ANT_IN changes, then RCVD_SIG is assigned ANT_IN. RCVD_SIG 

is the RF output from the antenna section into the receiver section. If XMT_IN 

changes, ANT_OUT is assigned XMT_IN. ANT_OUT is the signal that is output from 

the antenna during the transmit cycle. 

Processes ANGLE ELEV MUX and ANGLE_AZIM_MUX re similar to the 

RANGE_BIN_MUX and DETECTED_MUX processes. They are required because 

output from more than one process changes the value of signals ANGLE _ELEV and 

ANGLE_AZIM respectively. 

ASSIGN_TEMP_TARGET executes whenever FLAG changes value. When FLAG 

changes to a non-zero value after START_UP, TEMP_TARGET (a signal of type 

TARGET) is assigned that target from the TARGET_MAP array that appears to be in 

the beam and whose range falls in the current value of the range bin. 

The TARGET_SEARCH process is executed each time RANGE_BIN changes value. 

If RANGE_BIN changes to a non-zero value, the LOOK_FOR_TARGET procedure 

written in the package RADAR is called. Parameters passed to it are the position of the 

antenna, the TARGET MAP, and some system operating parameters, along with the 

current value of the RANGE BIN. Procedure LOOK _FOR_TARGET scans the envi- 
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ronment to check to see if any targets lie in the beam and if they do, checks if their 

corresponding range would be such as to return a signal in the current range bin. If not, 

flag remains zero, If there is such a target, then flag changes to a value that points to 

the target in the TARGET_MAP array. 

Process CHECK POTENTIAL_TARGET is executed a delta time after FLAG changes 

value (so that procedure LOOK_FOR_TARGET may be run in that one delta time), 

procedure POTENTIAL_TARGET INFO declared in package RADAR is executed. 

To it are passed parameters like signal TEMP TARGET which is a signal of type target 

and is the target that signal FLAG points to in the array TARGET_MAP. Also passed 

are system parameters like operating frequency. POTENTIAL_TARGET_INFO will 

use this information to assign signal ANT_IN with the return that is received from this 

target. This target is a potentially detectable target, since it is still to be determined in 

the PSP whether this target return will have a sufficient power_level; hence the name for 

this process. 

FLAG_MUxX is a process that was written to resolve the value of signal FLAG, since 

it is assigned a value from two different processes. 

ENTITY OUTSIDE_WORLD : 

  

use work.all, work.RADAR.all; 

entity OUTSIDE_WORLD is 

port (TARGET_MAP : out TARGET_ENVIRONMENT; START_UP : in BIT; 

NUMBER_TARGETS : out NATURAL); 

end OUTSIDE_WORLD; 
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architecture BEHAVIOR of OUTSIDE_WORLD is 

begin 

-- POWER_UP: 

process (START_UP) 

begin 

If START_UP = ‘I’ and not START_UP’STABLE then 

READ_TARGET_ENVIRONMENT (TARGET_MAP, NUMBER TARGETS), 

end if; 

end process; 

end BEHAVIOR; 

    

OUTSIDE_WORLD is an entity that represents the environment around the radar sys- 

tem. At system START _UP, the target scenario is loaded into the system through this 

entity. The target scenario is stored in a file. This file is read and information about the 

targets are assigned to a signal TARGET MAP which is an array of type TARGET. 

The number of targets that are present in the file is also input into the system by means 

of a signal called NUMBER_TARGETS. The behavior of this entity is fairly straight- 

forward. When signal START_UP 1S asserted, procedure 

READ_ TARGET _ ENVIRONMENT is called. This procedure uses package TEXTIO 

to read in the information from the text file and performs type conversions to assign 

them to an array of signals of type TARGET. 
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ENTITY INITIALIZER : 

use Work.all, work.RADAR.all; 

use std. TEXTIO.all; 

entity INITIALIZER is 

port (INIT : in BIT; 

AZIM_SCAN_RANGE, ELEV_SCAN_RANGE : inout ANGLE := 0 degrees; 

DETECTION_THRESHOLD : out LOW_POWER := 0 pW; 

MAX_DET_RANGE: inout REAL := 0.0; 

RANGE_BIN_LIMIT : out NATURAL; 

PULSE_ON_TIME: in TIME); 

end INITIALIZER; 

use work.all,work.RADAR.all; 

use std. TEXTIO.all; 

architecture BEHAVIOR of INITIALIZER is 

begin 

-- POWER_UP_INITIALIZATION : 

Process (INIT) 

Begin 

If (INIT = ‘1’ and not INIT’STABLE) then 

AZIM_SCAN_RANGE <= _ 60 degrees; 

ELEV_SCAN_RANGE <= _ 60 degrees; 

DETECTION_THRESHOLD <= 100 uW; 

MAX_DET_RANGE <= 100.0; -- miles. 
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end if; 

end process; 

Process (INIT’DELAYED) 

begin 

if INIT’7DELAYED = ‘I!’ then 

RANGE _BIN_LIMIT <= MAX_RANGE BIN (PULSE_ON_TIME, 

MAX_DET_RANGEB); 

end if; 

end process; 

end BEHAVIOR; 

  

Entity INITIALIZER is used to act as the human interface between the radar system 

and the user. It initializes certain signals before the radar system starts functioning. In 

effect, it gives the radar system some information as to what the maximum detectable 

range should be, what detection threshold should be set at, and what the scan volume 

should be. It is executed when signal INIT is asserted. The RANGE _BIN_LIMIT is 

also set at this time (one delta time later in order to allow signal MAX _DET_RANGE 

to be assigned its new value). Function MAX RANGE BIN in package RADAR is 

used to compute the RANGE BIN_LIMIT, given the maximum detectable range de- 

sired, and the pulse_on_time of the transmitter. 
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ENTITY NOISE_GENERATOR : 

  

use work.all, work.RADAR.all; 

use std.textio.all; 

entity NOISE_GENERATOR is 

port (POINTER : inout POSITIVE; 

RANGE _BIN: in NATURAL; 

RANDOM _NOISE: inout GAUSSIAN_REAL; 

RCVR_NOISE: inout REAL := 0.0; 

INIT : in BIT); 

end NOISE_ GENERATOR; 

use work.all, work.RADAR. all; 

use std. TEXTIO.all; 

architecture BEHAVIOR of NOISE _ GENERATOR is 

begin 

-- READ NOISE FILE: 

process (INIT) 

begin 

if INIT = ‘I’ then 

READ_GAUSSIAN_NOISE(RANDOM_NOISBE); 

end if; 

end process; 

-- ASSIGN_RCVR_NOISE: 

process (RANGE_BIN) 

begin 
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RCVR_NOISE < = RANDOM_NOISE(POINTER); 

end process; 

-- UPDATE_POINTER : 

process (RCVR_NOISE) 

begin 

if POINTER < 100 then 

POINTER <= POINTER + 1; 

else 

POINTER <= 1]; 

end if; 

end process; 

end BEHAVIOR; 

Entity NOISE GENERATOR was introduced to more accurately model the radar 

process. In order to model for false alarms (where a target that should not be detected 

is detected due to excess noise in the receiver), and to model for missed detections (where 

a target that should be detected is not detected due to noise in the receiver), we need 

some way to introduce noise into the receiver. This was achieved by reading a file of 

gaussian distributed (random) real numbers which were to represent randomly distrib- 

uted noise power levels at the input to the receiver. Since this noise is bipolar, after 

amplification in the receiver, it tends to either enhance or attenuate the received signal 

strength. If the received signal strength (of a detectable target) is attenuated due to 

noise to a power level less than that required for detection, a missed detection scenario 

is modeled. If the noise power levels enhance the power level of an otherwise undetect- 

able return to the point where it becomes detectable, a false alarm scenario is modeled. 
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When INIT is asserted, procedure READ_GAUSSIAN_NOISE is called which reads in 

this file of gaussian distributed real numbers. This numbers are assigned to a signal 

RANDOM_NOISE which is an array of real. 

Each time the RANGE BIN signal changes value, process ASSIGN_RCVR_NOISE is 

executed in which a noise level is assigned to the input of the receiver. This is achieved 

by assigning a real value from the array RANDOM_NOISE to the RCVR_NOISE sig- 

nal. The value of POINTER (integer) is used to point to this noise level within the ar- 

ray. 

The value of pointer is also updated at each new value of the RANGE BIN signal. It 

is accomplished by process UPDATE POINTER which is executed each time 

RCVR_NOISE changes. 
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Chapter 6. Some Problems Posed by VHDL and 

VHDL Tools 

In previous chapters, a modeling methodology for modeling RF systems was developed, 

and a RADAR system was modeled using this methodology. Though the RADAR 

system model works well, there are a few inherent problems that are posed by VHDL in 

modeling RF systems. 

These problems will be discussed here, and the solutions that were adopted, along with 

the consequences of those solutions are also presented. 

In addition, it was found that there is a vast difference in the way in which VHDL tools 

simulate these models. Tests were run using two simulators in particular. A discussion 

pertaining to these tests is also presented. 
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6.1. Type Conversions 

Since VHDL is a very strongly typed language, it does not allow signals or variables 

of different types to be used in a mathematical relation for purposes of calculation. 

Since, the modeling methodology heavily involves the use of arithmetic to model an 

analog entity, values of all physical types must first be converted to real numbers before 

they can be used in a mathematical relation for the purposes of calculation. This is 

currently achieved by first converting the physical type to a universal integer by dividing 

it by one unit of its base type. Once this is done, the REAL operator is used on this 

universal integer to convert it to a real number. This real number is then used in cal- 

culations, and needs to be converted back to its physical type after the calculations are 

done. This is achieved by multiplying the intermediate real value obtained after calcu- 

lations by one unit of the base type. 

An example is presented below. Suppose that the POWER of an analog signal 

ANALOG _IN needs to be multiplied by a real factor K and assigned to an analog signal 

called ANALOG_OUT, and that the base unit of POWER is pW. The following VHDL 

code achieves this. 

TEMP_REAL := REAL(ANALOG_IN.POWER/1 pW); 

ANALOG_OUT.POWER < = (K*TEMP_REAL)*1 pW; 

Even though this procedure is straight-forward, the problem faced due to this procedure 

is that simulator overhead is required in order to perform type conversions and real 

number arithmetic. Moreover, since calculations need to be performed using real num- 

bers (as opposed to performing calculations with abstract data types that have integer 
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representations), these take a longer time (since floating point arithmetic takes longer to 

accomplish relative to integer arithmetic). Asa result of this, simulation times are longer 

than they would have been otherwise. This would be true particularly when the simu- 

lation is expected to perform calculations heavily and repeatedly, and when these calcu- 

lations involve physical types. 

6.2. The Range Restriction Problem 

Another problem that VHDL poses is the restriction on the range of values that physical 

types can take on. Physical types can only take on values ranging from approximately 

-2E9 to 2E9. This poses a problem when attempting to model a RADAR system for 

two reasons : 

e It is required to represent a wide range of power levels; from Mega watts (during 

transmission) to several pico watts (reception). Clearly, this cannot be achieved with 

the restriction on the range of values that physical types can take on. Since, if the 

base unit of an abstract type POWER is defined as pico watts, then a signal of type 

POWER can at most represent a power level of approximately 2 mW. 

e A similar problem is faced in representing frequency. The frequency of operation 

of the system is well up in the X band (8 - 12 GHz). Whereas, the Doppler fre- 

quency that we need to represent is anywhere from a few Hz to several KHz. There 

again arises a problem, since if the base unit of type FREQUENCY is defined as 

Hz, then one can at most represent approximately 2 GHz. 

Chapter 6. Some Problems Posed by VHDL and VHDL Tools 76



The solution that was arrived at for this problem was to declare two different types for 

representing power and two different types for representing frequency of a 

RADAR SIGNAL. One type would represent the low power range or low frequency 

range and the other would represent the high power range or high frequency range. For 

example, consider the definition of an analog signal as: 

type LOW_FREQUENCY is range 0 to 2E9 

units Hz; 

KHz = 1000 Hz; 

end units; 

type HIGH_FREQUENCY is range 0 to 2E9 

units MHz; 

GHz = 1000 MHz; 

end units; 

type LOW_POWER is range 0 to 2E9 

units pW; 

nW = 1000 pW; 

uW = 1000 nW; 

end units; 

type HIGH_POWER is range 0 to 2E9 

units mW; 

W = 1000 mW; 

KW = 1000 W; 
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end units; 

type ANALOG_SIGNAL 1s record 

LO_FREQ : LOW_FREQUENCY; 

HI_FREQ : HIGH_FREQUENCY; 

LO_POWER : LOW_POWER; 

HI_POWER : HIGH_POWER; 

end record; 

Once an analog signal is thus defined, we can find the total power in the system as the 

sum of the power in both the fields, LO_LPOWER and HIPOWER. Likewise, when the 

frequency of the signal is needed for the purposes of calculation, we can sum the 

LO_FREQ and HI_FREQ fields. 

The disadvantage of this solution is that simulator overhead is required when converting 

the low and high range types to real, summing them up, using the intermediate value in 

calculations, and then converting them back to low and high types. 

Though the solution is not an elegant one, it seems to be the only way to solve the 

problem given the range restriction. Another possibility that was considered was to use 

a log scale (db) to represent power and frequency. In the case of frequency, this was 

not possible since the operation of the model required frequencies to be added and sub- 

tracted, and this would not be possible if a log scale was used. Power, however can be 

represented using a db scale, since the model involves only multiplications and divisions 

with power levels. However, a separate mathematical package would be needed (for the 

log function) to convert powers to a logarithmic scale. Furthermore, since such loga- 

rithmic functions are an approximation that involve summing of a series, this approach 
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is viewed as inefficient since it would add a greater simulator overhead than the ap- 

proach that was adopted. 

6.3. Problems Posed by VHDL Tools 

It was found that simulation run times varied widely depending on the simulator being 

used, and the machine on which the model was run. Though some difference in simu- 

lation times is expected due to simulation tools originating from different vendors, some 

interesting points were noted about the implementation of these tools, and a brief dis- 

cussion follows. In particular, two tools were compared on an Apollo DN3500 work- 

station. These were the Synopsys VHDL System Simulator Version 2.1c, and the MCC 

CAD VHDL System Version 2.0. 

On finding initially that simulation of the model took a very long time to complete (88 

minutes on the Synopsys simulator with scan limits of +/- 60 degrees, and a maximum 

detectable range of 100 miles), it was felt that the long run time was due to the simulator 

spending a considerable amount of time in performing type conversions, and real arith- 

metic. (Note that for the above values of range, and scan limits, the RANGE BIN 

signal changes value approximately 41*41*MAX RANGE BIN times. This works out 

to 179866. This is the number of times that the target array is scanned, and the number 

of times that noise is amplified in the receiver). It can thus be appreciated that the 

model is inherently compute intensive. 

However, after tests were run, it was determined that the simulator spent a large part 

of this simulation time in scheduling events, and monitoring processes and signal values. 

In order to reduce the run time for the tests, the simulation parameters were changed to 
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a maximum detectable range of 50 miles, and antenna scan limits of +/- 30 degrees. 

The value of MAX_RANGE_BIN for these parameters is 54. The number of times that 

RANGE BIN changes value throughout the simulation in this case then is 23761. (The 

simulation then takes 11 minutes and 50 seconds to run to completion with the same 

simulator. This confirms that the run time is approximately proportional to the number 

of times that signal RANGE_BIN changes value. 

A simple test was written to determine the amount of time the simulator spends in 

scheduling events, and monitor processes and signal values. The code for the test ex- 

ample appears below : 

use work.all:; 

entity TEST is 

port (A: in INTEGER := 0; B: inout INTEGER := 0; C: in bit); 

end TEST; 

use work.all; 

architecture TEST of TEST is 

begin 

process 

begin 

ifC = ‘I’ and not C’STABLE then 

foriinltoA 

loop 
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If B < 54 then 

-- B<=B+t+1; 

wait for 10 us; 

else 

-- B <= 0; 

wait for 10 us; 

end if; 

end loop; 

end if; 

wait on C; 

end process; 

end TEST; 

use work.all; 

entity TEST_BENCH is 

end TEST_BENCH; 

architecture T of TEST_BENCH is 

signal A, B: INTEGER := 0; 

signal C : bit; 

component TEST_THIS 

port (A: in INTEGER := 0; B: inout INTEGER := 0; C: in bit); 

end component; 

for LI : TEST_THIS use entity TEST(TEST); 
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begin 

LI: TEST_THIS 

port map (A, B, C); 

A <= 23761; 

C <= transport ‘1’ after 1 ns; 

end T; 

This test example simply reads in the value of a signal A of type INTEGER and on as- 

sertion of signal C, a loop is entered whose body is executed A times, or in this case, 

23761 times. Note that all that the body of the loop contains is a wait statement, “wait 

for 10 us”. The integer add is commented out, and does not take place. (It 1s “decom- 

mented” in a following test to determine how much time the simulation takes, if an in- 

teger add is inserted in the body of the loop). Surprisingly, it was found that the 

scheduling of events due to the wait statement takes a relatively long time to accomplish. 

(Note that there is a similar situation in the radar system model, where process 

RANGE INCREMENT increments the value of RANGE_BIN after every 

PULSE_ON_TIME ns). In particular, it takes 29 seconds for the Synopsys simulator 

to execute the test model, but it takes 145 seconds for the MCC simulator to execute the 

test. After the integer add statements were “decommented”, the simulator from Synopsys 

ran the model in 38 seconds, whereas the MCC simulator ran the model in 153.7 sec- 

onds. This implies that the time spent in performing the integer additions 1s about the 

same for both simulators. 
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Furthermore, on changing the wait statement, and making the model wait for 10 ns (as 

opposed to 10 us) in the body of the loop, the run time changed dramatically. Using the 

Synopsys simulator, the run time reduced to 21 seconds with the integer additions “de- 

commented” (a reduction of 45 per cent), but the run time reduced to 24.7 seconds for 

the MCC simulator (a reduction in run time of 84 per cent). 

However, on changing the PULSE_ON_TIME in the radar system model from 10 us to 

10 ns, a minimal change was observed in the run time using the Synopsys simulator, but 

run time reduced by a significant amount using the MCC simulator. In particular, the 

MCC simulator took 19 minutes, and 40 seconds to run the model with a 

PULSE_ON_TIME of 10 us, but took 11 minutes, and 24 seconds to run with a 

PULSE_ON_TIME of 10 ns (a reduction in run time of 42 per cent). On the other hand, 

the Synopsys simulator took 44 minutes and 52 seconds to run the model with a 

PULSE_ON_TIME of 10 us, but took 44 minutes and 31 seconds to run the model with 

a PULSE _ON_TIME of 10 ns (a reduction in run time of just 0.8 per cent). 

It is thus felt that a significant part of the run time is spent in scheduling of events, and 

not all of it is attributed to type conversions and arithmetic. Furthermore, VHDL tools 

vary as far as implementation of the scheduling of events is concerned, and one should 

first make comparisons before determining which tool to use to run simulations of 

VHDL models, so as to minimize run time. 
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Chapter 7. A Fault Diagnosis Methodology 

7.1. Introduction 

As the follow-on part of this research, it is proposed to develop a fault diagnosis meth- 

odology for locating faults at the system level from first principles [2] using knowledge 

of the behavior of the system. In future research work, it is hoped that this fault diag- 

nosis methodology is adopted, and a reasoning system is built that uses VHDL Behav- 

ioral descriptions to perform diagnostic reasoning. Fault diagnosis systems of this type 

have been built in the past for digital systems, and one such system is due to Marcotte, 

Neiberg, Piazza, and Holtzblatt of the MITRE Corp. [6]. 

A method of reasoning from first principles [2] is required, since we need to reason from 

the behavior and structure of the system and its components. Once it is determined that 

the system is misbehaving (or is not behaving as it was intended to) then we need some 

method of using the VHDL model and localizing the fault to an entity or entities that 

seem most likely to be responsible. In real applications, it is intended that the model 
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and its fault diagnosis reasoning tool are used to diagnose faults in the actual RF system 

which is mis-behaving. 

Work exists in the literature that uses techniques of artificial intelligence to perform di- 

agnostic reasoning based on structure and behavior. Work in this area by Dr. Randall 

Davis [2] of the Massachusetts Institute of Technology, (mostly performed in the digital 

domain) is particularly interesting. This chapter borrows from much of that work, and 

it is proposed to apply some of these techniques for fault diagnosis of RF systems. By 

fault diagnosis is meant the localizing of faults to certain entities that are determined to 

be potentially responsible for the faulty behavior; and not the generation of test vectors 

that will detect the fault. In an actual RF system, this diagnosis methodology will help 

in determining which Line Replaceable Units (LRUs) to replace in a malfunctioning ra- 

dar system (say), which would help in bringing up the system in a very short time. 

Specifically, methods of discrepancy detection and constraint suspension [2], first discussed 

by R. Davis, are proposed to be used that make use of the structural and behavioral 

information about a system, provided by VHDL descriptions. These methods are elab- 

orated upon later on in this chapter. 

We have then, a VHDL model of an RF system, and we also have available the faulty 

symptoms of the real RF system, which reportedly is malfunctioning. We have to use 

this information to try and locate the fault to within an entity or an LRU, so that the 

system may be brought back up with a minimum of delay, by replacing the suspected 

component(s). An essential aspect to consider when attempting to use these techniques 

for diagnostic reasoning is the paths of causal interaction [2] to consider between these 

various components or entities that will be held accountable for the fault. That is, we 

need to ask “How are the different entities related to each other ?”, so we may determine 
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the effect of one over the others. This is an important question to ask, since we are at- 

tempting to track down the fault to some component(s), using first principles and 

knowledge of behavior, and not by using some fault model or previously encountered 

fault data base. These latter methods become cumbersome and very time-consuming 

as systems grow large, and it is proposed that these methods be used at a later stage, 

after the fault has been narrowed down to within a few entities to further narrow down 

the search, if necessary. 

One obvious path of causal interaction is that provided by the structural description of 

the entire system, which in turn provides information as to how the entities are con- 

nected together. This information is inherent in VHDL descriptions, and makes up 

functional adjacency. By functional adjacency we mean the adjacency that 1s provided in 

a VHDL model by the signal interconnect information. For systems that we are mod- 

eling though, it becomes important to consider RF effects, temperature effects, shielding 

effects, etc., which are proximity effects. By proximity effects we mean the effect an entity 

could have over some other entity because they are physically close together. 

Fortunately, VHDL has the potential to allow one to include this information in the 

descriptions of entities by the use of user defined attributes [4]. Once knowledge of the 

physical proximity of these various entities in a real system are obtained, VHDL attri- 

butes can be used which allow one to specify the proximity of one entity to another. 

For example, for boxes (sub-units or LRUs within the real system), knowledge of ther- 

mal adjacency is important since these boxes or units can transfer heat between them. 

In a real system, cooling methods may be incorporated externally that take heat away 

from these boxes in order to prevent high temperature effects. Once this knowledge 

about thermal adjacency and cooling effects in the real system is obtained, attributes can 
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be defined that will specify for each entity (according to the box in which it lies), its 

susceptibility to temperature effects from all the other entities. An additional attribute 

can be defined that specifies for each entity, whether the box in which it lies has some 

cooling mechanism, since this will allow for modeling of the failure of the cooling 

mechanism as well. 

An example of how temperature susceptibility information could be extracted from the 

model is now discussed. After knowledge of the real system is obtained, one associates 

with the definition of each entity two attributes, its ID. NUMBER and its 

TEMP_VECTOR. ID NUMBER takes the form of an integer number which is unique 

to that entity. This number identifies the entity, and the attribute could be called 

ID_NUMBER. The second attribute, TEMP VECTOR takes the form of a bit vector, 

and it can specify the susceptibility of the entity to temperature effects from other enti- 

ties. 

All the entities that make up the system are then numbered from 1 through n, and thus 

uniquely identified by the ID NUMBER (assuming there are n entities in all). The 

TEMP_VECTOR would then be n bits long and could completely specify the temper- 

ature susceptibility of the entity to all the other entities. 

Consider for example that it is needed to determine the susceptibility of entity ‘p’ to 

temperature effects from entity ‘q’. Where ’p’ and ’‘q’ are ID NUMBERS. This can 

be achieved by looking up the TEMP_VECTOR of entity ’p’, and referring to the ele- 

ment in it that is indexed by the value of ’q’. If this value is a ’0’, ‘p’ is not susceptible 

to temperature effects from ‘q’, If it is a ‘1’, then “p’ is susceptible to temperature effects 

from ‘q’. 
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In order to do this it is required to first define these TEMP_VECTORs and assign values 

to them in the VHDL model. This is done by first determining from the knowledge of 

the real system, the temperature susceptibilities of the entities to each other. For ex- 

ample, one way to do this would be to assume that if entity ’q’ lies in the same box as 

entity ‘p’, then TEMP_VECTOR[q] of entity ‘p’ = ‘1’. Again, if entity ’q’ lies in an 

immediately adjacent box, and is not thermally insulated from it, or cooled, then again 

TEMP _VECTOR{q] of entity ‘p’ = ‘1’. On the other hand, if entity ’q’ lies in a box that 

is some distance away, or is not in the immediately adjoining box to that of entity ‘p’, 

or it is thermally insulated, then TEMP_VECTOR{[q] of entity ‘p’ = ’0’. 

Consider as an example that we have four entities ENTITY1, ENTITY2, ENTITY3, and 

ENTITY4. Then, the entity declaration of ENTITY1 would be as under : 

package ATTRIBUTE_DEFS is 

attribute ID NUMBER: INTEGER; 

attribute TEMP_VECTOR : BIT_VECTOR(I to 4); 

end ATTRIBUTE_DEFS; 

entity ENTITY1 is 

port (....); 

generic (...); 

end ENTITY]; 
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After the entity is thus defined, attribute specification can take place in the structural 

architecture in which the ENTITYI is used. For example consider architecture 

STRUCTURAL of an entity EXAMPLE in which ENTITY1 is instantiated. 

use WORK.ATTRIBUTE_DEFS.ALL; 

entity EXAMPLE is 

end EXAMPLE; 

architecture STRUCTURAL of EXAMPLE is 

signal ... 

signal ... 

component ENTITY1 is 

port (...); 

generic (...); 

end component; 

for Ll : ENTITY1 use ENTITY l(architecture_name); 

attribute ID NUMBER of ENTITY is 1; 

attribute TEMP_VECTOR of ENTITY 1 is (0100); 

eoeer 

The attributes specifications above indicate that ENTITY] is identified as 1, and it is 

susceptible to temperature effects from entity 2 only, since TEMP_VECTOR[2] of 1 = 

TV. 
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Attributes may again be defined which specify the susceptibility of the system to RFI. 

Whereas temperature effects are accounted for due to the proximity of boxes, RF effects 

can be accounted for due to the proximity of wires. It is then possible by a similar 

method to model for RF effects of one signal over another. This can occur for example 

if two signals share the same cable. 

Consider for example that there are n signals associated with the top level entity. In the 

architecture description of the top level entity where all the signals to be used in the top 

level entity are declared, it is possible to again associate with each signal two attributes, 

a SIG_ID (1 through n), and an RFI_VECTOR ( bits long). If it is possible to have 

RFI between signal ‘i’ and signal ‘j’, then RFI_VECTOR|i] of signal ‘j’ is ‘1’, and 

RFI_VECTOR{j] of signal ‘i’ is also ‘1’. The attribute declarations for the RFI case are 

similar to that for the temperature case, but are associated with the signals, rather than 

the entities. 

Note that by changing the type of the TEMP_VECTOR or RFI_VECTOR from 

BIT_VECTOR to an array of integers, it is possible to scale the susceptibility of entities 

to RFI or temperature with respect to some maximum. This is in contrast to using only 

‘1’s and ’0’s to represent susceptibility, which might be viewed as a weak system of rep- 

resentation, if accurate data about RFI between signals, or temperature effects between 

boxes is available. Hence it becomes possible to more accurately represent temperature 

and RFI data to the diagnostic system. 
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7.2. Hierarchy of Paths of Interaction 

A hierarchy of types of paths of causal interaction needs to be considered in order to 

consider a broad range of faults. That which is higher up in the hierarchy is that which 

is most likely to yield candidate information, and that which is lower on ts only resorted 

to if the higher one fails to yield a candidate. It is natural then to consider the functional 

adjacency [2] first, as this is most likely to yield a candidate, whose symptoms of mal- 

function are realistic. If this fails, then we may look at proximity effects (temperature, 

RFI etc.) 

7.3. Discrepancy Detection & Constraint Suspension 

The methods of discrepancy detection and constraint suspension will now be defined and 

elaborated upon [2]. Each sub-system or entity that we consider as a candidate has a 

set of constraints associated with it which are complete in describing the behavior of that 

sub-system. That is, given these constraints, we can use them to figure the outputs of 

the sub-system for any combination of inputs. Furthermore, given the outputs, we can 

figure out what the inputs should have been. This process of back propagating through 

the model (figuring out the inputs or values at certain nodes given the outputs) is a dif- 

ficult process and proves to be cumbersome for fault diagnosis of large digital systems. 

Fortunately, behavioral modeling of RF systems (like the radar system that we mod- 

eled), involve sub-systems whose behavior can be represented using some simple math- 

ematical function (subtraction, addition, multiplication, division, etc.), usually on one 
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or two variables (as compared to digital systems, where the entire truth table need be 

considered). This makes the process of back propagating easier. 

Given these constraints, we can model the system as a network made up of connected 

constraints. A VHDL model provides information about structure and behavior. From 

this, a network of constraints can be extracted. The behavioral descriptions provide in- 

formation about the constraints themselves, and the structural hierarchy can provide 

information about the way in which these networks are connected. 

Constraint suspension asks : Is there some constraint, the suspension of which will leave 

the network in a consistent state ? That is, we look for global consistency. If global 

consistency is found, each such constraint accounts for all the observed symptoms. The 

implication here is that the failure of the sub-system whose constraint(s) are suspended, 

explains all the observed symptoms. We assume here a single point of failure; where 

“point” here refers to a sub-system. But which constraint do we look to suspend ? 

Logically, any constraint lying along a path from an incorrect output to an input can 

be responsible for incorrect behavior. So, we need only consider those constraints that 

are on a path that lie from an incorrect output to an input. We can thus create de- 

pendency chains that trace outputs to inputs. This information is provided by VHDL 

and can be extracted from the various entity declarations of the VHDL model. Each 

constraint (or sub-system) lying on a chain from a defective output to an input (chain 

here refers to all those sub-systems that are interconnected via the path of causal inter- 

action under consideration), can conceivably be responsible for the fault. 

This is a good strategy since we simply assume that we know nothing about the correct 

functioning of the sub-system (or how it is supposed to function or what its behavior 1s), 

but assume that it is functioning in an incorrect manner; then we try and determine if 
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this faulty sub-system alone can explain all the discrepancies (as well as the good out- 

puts) assuming all the other sub-systems are not faulty; i.e. we look for consistency. 

We need a way of generating candidates that may be responsible for the faulty condition 

that we come across. The idea here is to exonerate those that clearly cannot be re- 

sponsible for the faulty condition. Once multiple candidates are generated by consider- 

ing one path of interaction, we can slip down one level of hierarchy in the structure of 

the system (using the VHDL description), and try and determine for each of these can- 

didates, whether the sub-components of the candidate are likely to be responsible for the 

fault, using here the same techniques as for the parent component. If given the inputs 

and outputs of the parent candidate, the sub-components cannot interact in any way to 

produce that fault, that parent candidate can then be exonerated, and another candidate 

is considered. 

So, in effect, after constraint suspension is performed at the top most level of the struc- 

tural hierarchy, we move down one level in the hierarchy and try to determine from first 

principles (this time using the behavioral description of the parent candidate, and per- 

forming constraint suspension on the sub-components of the parent candidate) if these 

sub-systems can be globally consistent in explaining the parent candidate’s symptoms. 

(where “symptoms” refer to the value on its ports that were obtained while checking for 

consistency of the parent candidate) 

Thus, three things need to be done to generate candidates. First, simulate the system 

and collect discrepancies between predicted outputs and actual outputs. This is the dis- 

crepancy detection stage. Second, determine potential candidates that could be respon- 

sible by considering the dependency chain from the faulty output to the inputs. Third, 
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for each of these candidates, perform constraint suspension to determine if they are 

globally consistent. If they are globally consistent, then they are likely candidates. 

An algorithmic approach is presented below. Once, the path of causal interaction to be 

considered has been selected, the constraint network is extracted from the VHDL model, 

and the following algorithm is performed. 

1. Step 1. 

e A) Simulate the VHDL model by providing primary inputs and collect all dis- 

crepancies in outputs. That is, find out all those outputs of the simulation that 

differ from the actual outputs of the system. 

2. Step 2. 

e A) For each of these outputs, determine the dependance chain for that faulty 

output. The sub-systems or entities lying on the dependency chain are potential 

candidates. 

e 8B) Take the intersection of all the candidates obtained after considering all the 

discrepancies. The common ones are most likely to be at fault and to explain 

all the discrepancies. 

3. Step 3. For each of these candidates, we need to determine global consistency. 

Consider for this purpose, the constraint network of the model. 

e A) Select a candidate, if any, from the list of possible ones. 
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e B) Suspend the constraints that model that candidate’s behavior. Turn on all 

other constraints. 

¢ CC) Apply the primary inputs to the constraint network, and also apply the “ob- 

served outputs” from the VHDL simulation at the outputs of the constraint 

network. By back propagating, and forward implication, determine whether the 

suspension of the candidate’s constraints can explain all the observed outputs. 

If yes, then this process of back propagating of outputs and forward implication 

of inputs will provide a set of values on the ports of the suspected candidate. 

These are its “symptoms”, and explain what the candidate may be doing. 

(These can, at a later stage, be used to go one level down in the candidate’s hi- 

erarchy, whose sub-components may then be examined in a similar manner for 

consistency using these values or “symptoms”) Add this candidate to the list of 

globally consistent candidates, and delete it from the list of possible candidates. 

¢ D) If (C) does not lead to global consistency for the candidate, then abandon 

that candidate, and remove it from the list of possible candidates, since it cannot 

be held responsible for the observed outputs. 

e EE) Return to Step 3, part (A). 

If the algorithm does not yield any consistent candidate, considering the current path 

of causal interaction, we can slip down one level in the hierarchy of paths of interaction 

to be considered, try another path of causal interaction, and extract the constraint net- 

work using this current path to determine if we can find a likely candidate here. This 

process is continued till a candidate is found, or till all the paths of causal interaction to 

be considered are exhausted. 

Chapter 7. A Fault Diagnosis Methodology 95



  

  

( ANT _OLIT 

ANT _IN 

  

  

ANTENNA 

SCAN 

LIMITS 
ANGLE AZIM 

ANGLE ELEV Ny 

RANGE_BIN 
INCREMENTER 

  

   
   
    

   

  

OP
 

FR
EQ

 

          
DETECTION 

CHECKER 

D
E
T
E
C
T
I
O
N
 

T
H
R
E
S
H
O
L
D
   

   

       
  

(Y 
i 

RCVR_OUT 

DETECTED «STARTUP 
¢—INII__ 

DETECTION ¢—PULSE_ON- 
INFO _TIME     

Figure 5. The Diagnosis Example     
  

Chapter 7. A Fault Diagnosis Methodology 96



7.4, A Diagnosis Example 

In order to demonstrate how this methodology works in localizing faults in a high level 

behavioral model of an RF system, consider Figure 5 on page 96 which shows the pic- 

torial representation of a subset of the model that was written for the radar system. It 

shows the major signals involved, indicates the analog signal data path, and the control 

signals through the system. Note that the primary inputs to this system are 

START_UP, DETECTION_THRESHOLD, FRO, ANTENNA _SCAN_LIMITS, 

ANT_IN, INIT, and PULSE_ON_TIME. The primary outputs are ANGLE_ELEV, 

ANGLE_AZIM, ANT_OUT, DETECTED and DETECTION_INFO. The VHDL 

code for all these sub-systems can be found in the main code for the radar system which 

is in the appendix. 

A brief explanation as to the working of this model is now given in order to understand 

the behavior of the system, which will aid in the fault diagnosis part. Upon START_UP, 

initialization of ANTENNA _SCAN_LIMITS (also used to position the antenna at 

START_UP) takes place, and initialization of DETECTION THRESHOLD is 

achieved. Then, entity SYNCHRONIZER asserts TX_EN which signals the TRANS- 

MITTER to transmit a high power analog signal (15 KW, 5700 MHz) to the AN- 

TENNA unit. 

The ANTENNA unit directs this signal out into the TARGET_ENVIRONMENT upon 

receipt of the TX_EN signal to a particular direction (initially to that specified by 

SCAN_LIMITS); that are specified by ANGLE AZIM and ANGLE_ELEV. 

ANT_OUT 1s the signal sent out into the environment. 
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TX_EN is then de-asserted, and RX_EN is asserted; which in turn signals the 

RANGE _INCREMENTER to begin incrementing RANGE_BIN up from zero to 

RANGE BIN_LIMIT at regular intervals. Meanwhile, RCVD_SIG is assigned a re- 

turned signa! if a target is present in the current beam position, and if the return from 

it falls within the current RANGE _BIN. Otherwise, it is assigned (OQ KW, 0 MHz). 

The received signal RCVD_SIG is processed in the receiver, i.e. it is down converted 

(mixed with LOI, LO2, LO3) and amplified (3 stages), and passed on to the 

DETECTION CHECKER, where the DETECTION_CHECKER checks to see if 

RCVR_OUT exceeds the threshold. If it does, it outputs information into the signal 

DETECTION_INFO about the target’s range, its velocity, and its position (Azimuth 

and Elevation). At the same time, it asserts DETECTED, to inform of a target de- 

tection. 

After one receive cycle is thus completed (specified by one complete cycle of the 

RANGE BIN signal from 0 to RANGE_BIN_LIMIT), the ANTENNA advances by 2 

degrees in AZIMUTH, and goes through the transmit and receive cycles again. This 

process continues till an entire scan of the environment is completed. 

To model a fault scenario, suppose that a target that should have been detected, is not 

detected. That is, suppose that there exists just one target in the 

TARGET_ENVIRONMENT and of the various primary outputs, we find that signal 

DETECTED never goes high throughout the entire scan, and DETECTION INFO 

does not provide information relating to a target detection. (DETECTION_INFO 

provides information about the target and its information is only updated, when a DE- 

TECTION is sensed. At all other times, its output is not valid, and stays at 0 degrees, 

0 degrees, 0 miles, OPENING, 0 m/s). The other primary outputs ANGLE_ELEV, 
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ANGLE_AZIM, and ANT_OUT function properly. In other words, the only discrep- 

ancy in operation is sensed at the primary outputs DETECTED, and 

DETECTION_INFO. 

Suppose that the target that should have been detected is present at -59 degrees 

Azimuth, 59 degrees Elevation, is 650 ns of round trip range time away, provides an at- 

tenuation of 4.5E+11, and a Doppler shift of -2200 Hz. According to proper operation 

of the system (provided by the simulation), it is predicted that the target should be de- 

tected when the center of the beam is at -60 degrees Azimuth, 60 degrees Elevation, and 

it should be detected in RANGE _BIN 65. 

As mentioned earlier, it is found that the only primary outputs where a discrepancy is 

found is signal DETECTED, and signal DETECTION_INFO. All other primary out- 

puts function as predicted. We will now apply the above fault diagnosis methodology 

to the model using discrepancy detection and constraint suspension, to try and diagnose 

the fault. 

Suppose that we have a VHDL model that specifies the Behavior and Structure of the 

system as explained above and as specified by the process model graph (refer to the 

model that was written for the radar system). What we then need is a program that uses 

this VHDL model to extract information about structure from the model (assuming 

functional adjacency), and then for each entity or sub-unit it finds, it forms a set of 

constraints using the VHDL behavioral descriptions. One such program (GMODS) has 

been written and tested by the MITRE corporation for digital circuit descriptions. See 

[2] for details. Once the constraints associated with the sub-systems are obtained, a 

constraint network is formed using information about the structure (connectivity) of the 

system (for a path of causal interaction corresponding to functional adjacency). For ex- 
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ample, the constraints for the Transmitter (referring to the VHDL model) could look like 

this : 

TRANSMITTER_CONSTRAINTS : 

Begin 

IN : FRO. 

OUT : OP_FREQ, LO1, LO2, LO3, XMT_OUT. 

OP_FREQ = LOI + LO2 + LO3 (TX_EN’DELAYED = 1). 

XMT_OUT.FREQ = OP_FREQ (TX_EN’DELAYED = 1). 

XMT_OUT.POWER = 15 KW (TX_EN’DELAYED = 1). 

LOI = 48 * FRO (TX_EN = 1). 

LO2 = 8* FRO (TX_EN = 1). 

LO3 = 1* FRO (TX_EN = 1). 

End TRANSMITTER_CONSTRAINTS. 

The constraints for the other sub systems can be found in Appendix B. Looking at the 

algorithm for fault diagnosis of this system, we see that the first step is to collect dis- 

crepancies. The only discrepancies that are found are on signals DETECTED, and 

DETECTION_INFO. 

Next (Step 2), we have to follow the dependency chain back to the inputs for each of 

these outputs. Here, we find that each and every sub-system of the graph is part of the 

dependency chain for both the outputs. So, after taking the intersection of the sets, we 

find that we have to perform constraint suspension on each and every sub-system in order 

to determine global consistency, i.e. in order to determine if that sub-system could indeed 
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be responsible for all the symptoms (faulty and good) on its own. So, the candidates 

are ; 

1. Synchronizer 

2. Transmitter 

3. Antenna 

4. Range _Bin_Incrementer 

5. Receiver 

6. Detection_Checker 

Constraint Suspension on SYNCHRONIZER : 

Turning off the constraints on SYNCHRONIZER alone, we have to see if there are any 

set of values on the ports of SYNCHRONIZER that can account for all the observed 

outputs (good and faulty). If so, then these values give an idea as to what the possible 

“symptoms” of the failed SYNCHRONIZER could be. 

Since a DETECTION is never made, a value of RCVR_OUT = (0 uW, X Hz) can be 

assumed (by back propagating through the DETECTION_CHECKER) ; where *X’ im- 

plies a ‘don’t care’ state. This, when propagated back through the RECEIVER, gives a 

value of RCVR_IN (input to the receiver) = (0 pW, X MHz). Since ANT_OUT = (15 

KW, 5700 MHz), a value of ANT_IN = (333 pW, 5700 MHz - 2200 Hz) is obtained 

(knowing the characteristics of the target), So, then considering the ports of 

SYNCHRONIZER, RX_EN = 0 (when it should be 1), TX_EN = 0, RANGE_BIN 
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= 65 can account for all the observed symptoms, so this makes SYNCHRONIZER a 

globally consistent candidate. 

Constraint Suspension on TRANSMITTER : 

Are there any values on the ports of TRANSMITTER that will justify all the observed 

outputs (good and faulty) ? If yes, then TRANSMITTER alone could be responsible 

for all the observed outputs. And if so, then these values are the possible “symptoms” 

of failure of the TRANSMITTER. 

Since ANT_OUT = (15 KW, 5700 MHz) during the transmit phase and (0 KW, 0 MHz) 

in the receive phase, back propagating through the ANTENNA, we find that 

XMT_OUT must be (15 KW, 5700 MHz) and (0 KW, 0 MHz) respectively. Also, back 

propagating through DETECTION_CHECKER, RECEIVER, we see that LOI, LO2, 

LO3, OP_FREQ = X, since any arbitrary values on these do not explain the missed 

detection. No assignment of values on the ports of TRANSMITTER could be found, 

so TRANSMITTER is not a globally consistent candidate. 

Constraint Suspension on ANTENNA : Suspending the constraints on ANTENNA 

alone, can we place some value on each of the ports of ANTENNA that will explain the 

malfunctioning of the entire system, assuming that ANTENNA alone is at fault ? Sup- 

pose that primary input SCAN_LIMITS = +/- 60 degrees. Since ANT_OUT (primary 

output) is (15 KW, 5700 MHz), ANT_IN must be = (333 pW, 5700 MHz - 2200 Hz) 

(for this target) when ANGLE_AZIM = -60 degrees, ANGLE_ELEV = 60 degrees, 

RANGE BIN = 65, TX_EN = 0, RX_EN = 1. Looking at the ports of ANTENNA, 

we see that the outputs ANGLE_ELEV, ANGLE _AZIM, ANT_OUT, ANT_IN are as 

expected. The only other port that could explain the discrepancy is RCVD_SIG. Back 

propagating through the DETECTION CHECKER and the RECEIVER, we see that 
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a value of RCVD_SIG = (0 KW, X MHz), when it should have been (333 pW, 5700 

MHz - 2200 Hz), would explain all the observed symptoms of the system. Hence, AN- 

TENNA is a likely candidate, and is globally consistent. 

Constraint Suspension on RANGE _BIN_INCREMENTER : 

Using the observed outputs of the system, and given the inputs to the system, is it pos- 

sible to obtain a set of values {at the ports of RANGE BIN_INCREMENTER) by 

forward and backward propagating through the constraints of the other entities ? If so, 

then constraint suspension yields a likely candidate that accounts for all the symptoms. 

Since all other entities are assumed to work right, back propagating through them gives 

a value of TX_EN = 0, and RX_EN = I during the receive cycle, when ANGLE_ELEV 

= 60 degrees, ANGLE AZIM = -60 degrees. The output port RANGE_BIN deter- 

mines whether the return from the target is assigned to ANT_IN. So, back propagating 

through the ANTENNA, we see that since ANGLE_ELEV and ANGLE_AZIM are as 

predicted, and these depend on the successful completion of the RANGE_BIN cycle, 

there is no assignment to the RANGE_BIN port which explains all the observed out- 

puts. We have considered all the ports of RANGE_BIN_INCREMENTER and there 

is nO assignment of values to them out of the ordinary that can explain all the discrep- 

ancies, and so RANGE_BIN_INCREMENTER is not globally consistent. 

Constraint Suspension on RECEIVER : 

Likewise, does constraint suspension on RECEIVER prove RECEIVER to be a globally 

consistent candidate ? If so, the symptoms of the malfunctioning RECEIVER will be 

available at its ports. Back propagating through the DETECTION_CHECKER, we see 

that RCVR_OUT.POWER < DETECTION_THRESHOLD. Then, RCVR_OUT = 

(0 KW, X MHz), LOI = 4800 MHz, LO2 = 800 MHz, LO3 = 100 MHz, RCVD_SIG 
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= (167 uW, 5700 MHz - 2200 Hz) are the “symptoms” of the malfunctioning RE- 

CEIVER. So, RECEIVER is a globally consistent candidate. 

Constraint suspension on DETECTION_CHECKER : Can DETECTION_CHECKER 

alone explain the malfunctioning of the system ? Is there any assignment of values to 

the ports of DETECTION CHECKER that makes the constraint network consistent ? 

Since RCVR_OUT = (167 uW, 2200 Hz) (output from RECEIVER), we see that 

RANGE BIN = ’X’, DETECTED = ’0’, DETECTION_INFO = (0 degrees, 0 de- 

grees, 0 miles, OPENING, 0 m/s) will explain the malfunctioning. So, an assignment 

of values to the ports (out of the ordinary) have been found and 

DETECTION_CHECKER is a globally consistent candidate. 

Thus, after having run the algorithm, we find that the possible entities that could be re- 

sponsible for the malfunctioning of the system are : 

1. SYNCHRONIZER 

2. ANTENNA 

3. RECEIVER 

4. DETECTION_CHECKER 

Hence, use of constraint suspension, and the use of functional adjacency as the path of 

causal interaction, has exonerated two candidates TRANSMITTER, and 

RANGE_BIN_INCREMENTER. It should be noted that this fault (where a detection 

is missed), is a very genera] fault and there can obviously be many reasons for it. Con- 
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sidering this, it does seem significant that two of the six candidates were exonerated by 

reasoning from first principles. 

However, note that the process can be repeated on each of these four likely candidates 

(using the “symptoms” available at its ports as primary inputs and outputs for the sub- 

systems of the candidate) by going down one level in the structural hierarchy and per- 

forming constraint suspension on the sub-systems. If this process fails to prove any of 

the sub-systems of a parent candidate as a globally consistent candidate, then the parent 

candidate is exonerated, since there is no way it can account for the observed symptoms 

present at its ports. This process may further reduce the number of possible faulty 

components or Line Replaceable Units. 

Though the method seems natural, what is required of future research in this area is a 

process of extraction of information about structure and behavior from VHDL models 

to form constraint networks on which the algorithm can be run. Clearly, this is not a 

simple task and it is hoped that future research efforts will concentrate in the direction 

of using this methodology to automate the process using VHDL models of RF systems. 

Chapter 7. A Fault Diagnosis Methodology 105



Chapter 8 : Conclusions 

8.1. Conclusions 

A methodology for modeling the behavior of RF systems using the VHSIC Hardware 

description language was developed, and a representative RF system - a pulsed Doppler 

radar system in particular, was modeled successfully using this methodology. The 

methodology is general enough and can be applied to any other RF systems. 

A methodology for fault diagnosis of the radar system using the VHDL model was 

suggested, and a fault diagnosis example was presented. It is hoped that this will aid 

future research efforts in developing an automated tool that will extract diagnosis in- 

formation from these VHDL models, and automate the process of fault diagnosis of RF 

systems. 
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Appendix A. The Package Body 

The package body of the package that was defined in chapter 4 appears below. Here 
all the procedures and functions that were defined in the package statement are ex- 
panded upon. 

The package body “RADAR’” : 

use work.all; 
use std. TEXTIO.all; 
package body RADAR is 

function MAX RANGE_BIN (PULSE_ON_TIME: TIME; 
MAX_DET_RANGE: REAL) 

return NATURAL is 

variable TEMP1 : NATURAL := 0; 
variable TEMP2 : REAL := 0.0; 
begin 

if not (PULSE_ON_TIME = 0 ns) then 
TEMP2 := (MAX_DET_RANGE*10666.7)/ 

(TIME_TO_REAL_IN_NS(PULSE_ON_TIME)); 
end if; 
loop 

If TEMP2 > 0.0 then 
TEMP1:= TEMPI1 + 1; 
TEMP2 := TEMP2 - 1.0; 
else 
exit; 

end if; 
end loop; 
return TEMPI; 

end MAX_RANGE BIN; 

function TIME_TO_REAL_IN_NS (A: TIME) return REAL is 
variable RETURN_THIS : REAL := 1.0, 
variable TEMP : INTEGER := 1; 
begin 

TEMP := A/I1 ns; 
RETURN_THIS := REAL(TEMP); 
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return RETURN_THIS; 
end TIME _TO_REAL IN_NS; 

function LOFREQ TO REAL IN_Hz (A: LOW_FREQUENCY) return REAL is 
variable TEMP : INTEGER := 0; 
variable RETURN_THIS: REAL := 0.0; 
begin 

TEMP := A/1 Hz; 
RETURN_THIS := REAL(TEMP); 
return RETURN_ THIS; 

end LOFREQ TO_ REAL _IN_Hz; 

function HIFREQ _TO_REAL_ IN_MHz (A: HIGH_FREQUENCY) 
return REAL is 

variable TEMP : INTEGER := 0; 
variable RETURN_THIS : REAL := 0.0; 
begin 
TEMP := A/! MHz; 
RETURN_THIS := REAL(TEMP); 
return RETURN_ THIS; 

end HIFREQ TO_ REAL_ IN_MHz; 

function ANGLE_TO_REAL IN_DEG (A: ANGLE) return REAL is 
variable TEMP : INTEGER := 0; 
variable RETURN_THIS: REAL := 0.0; 
begin 

TEMP := A/I1 degrees; 
RETURN_THIS := REAL(TEMP); 
return RETURN_THIS; 

end ANGLE_TO_REAL_ IN_ DEG; 

function BIN_DISTANCE (A : TIME) return REAL is 
variable RETURN_THIS : REAL := 0.0; 
begin 

RETURN_THIS := TIME_TO_REAL_IN_NS(A)/10667.0; 
return RETURN_THIS;  -- in miles. 

end BIN_DISTANCE; 

procedure SCAN_ADVANCE (signal AZIM, ELEV: in ANGLE; 
signal ELEV_RANGE, AZIM RANGE : in ANGLE; 
signal AZIM_1, ELEV_ 1 : out ANGLE) is 

-- Assumes a 3 degree beamwidth in Azimuth and Elevation and 
-- advances scan beam by 3 degrees in Azimuth and elevation 
-- Process keeps repeating until scan mode is changed. 

Begin 
If (AZIM_RANGE - 2 degrees) > AZIM then 
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AZIM_1 <= (AZIM + 3 degrees); 
ELEV_1 <= ELEV; 
elsif 
0 degrees -(ELEV_RANGE - 2 degrees) < ELEV then 
ELEV_1 <= ELEV - 3 degrees; 
AZIM_1 <= 0 degrees -(AZIM_RANGE); 
else 
AZIM_1 <= 0 degrees - (AZIM_RANGE); 
ELEV_1 <= ELEV_RANGE; 

end if; 
end SCAN_ADVANCE; 

procedure INCREMENT RANGE BIN (signal RANGE_BIN : in NATURAL; 
signal RANGE _BIN_2: out NATURAL; 
signal RANGE_BIN_LIMIT: in NATURAL) i 1S 

begin 
If RANGE BIN = RANGE_BIN_LIMIT then 
RANGE BIN_2 <= 0; 

else 
RANGE BIN_2 <= RANGE BIN + 1; 

end if: 
end INCREMENT_RANGE BIN; 

procedure READ_TARGET_ENVIRONMENT (signal TARGET_MAP: out 
TARGET ENVIRONMENT; 
signal NUMBER_ TARGETS : out INTEGER) is 

variable COUNT : INTEGER := 1]; 
variable TEMP_TIME: TIME; 
variable TEMP_ ANGLE : ANGLE; 
variable TEMP REAL: REAL; 
variable TEMP_INTEGER: INTEGER: 
variable L : LINE; 
variable FILENAME : STRING(1 to 8); 
file INFILE : text is in ”>TARGETS.”; 
begin 

Readline (1,L); 
Read (L, FILENAME); 

loop 
If not endfile(I NFILE) then 
Readline (INFILE, L); 
Read (L, TEMP_INTEGER); 
TARGET _MAP(COUNT).AZIMUTH < = TEMP_INTEGER*1 degrees; 
Readline (INFILE, L); 
Read (L, TEMP_INTEGER); 
TARGET _MAP(COUNT).ELEVATION < = TEMP_INTEGER*1 degrees; 
Readline (INFILE, L); 
Read (L, TEMP TIME); 
TARGET _MAP(COUNT).TIME AWAY <= TEMP_TIME; -- in us. 
Readline (INFILE, L); 
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Read (L, TEMP_REAL),; 
TARGET_MAP(COUNT).ATTENUATION < = TEMP_REAL; 
Readline (INFILE, L); 
Read (L, TEMP_INTEGER); 
TARGET_MAP(COUNT).TARGET_DOPPLER < = TEMP_INTEGER*! Hz; 
COUNT := COUNT + 1; 

else exit; 
end if; 

end loop; 
NUMBER_TARGETS < = COUNT - 1; 

end READ TARGET_ENVIRONMENT; 

procedure WRITE_TARGET (signal TARGET_DOPPLER : 
in LOW_FREQUENCY; 

signal ANGLE_ELEV, 
ANGLE_AZIM : in ANGLE; 

signal PULSE _ON_TIME: in TIME; 
signal RANGE_BIN: in NATURAL; 
signal OP_FREQ : in HIGH _ FREQUENCY; 
signal TARGET _INFO: out DETECTIONS; 
signal DETECTED : out BIT) is 

variable COUNT: INTEGER : = 0; 
variable TEMP_REAL: REAL := 0.0; 
variable TEMP : DETECTIONS; 
variable TEMP_DOPPLER, TEMP_OP: REAL := 1.0; 
variable L : LINE; 
variable M : STRING(I to 7); 
variable SPACE : CHARACTER := ”’; 
variable MILES : STRING(1 to 35) := 

“MILES WITH A RELATIVE VELOCITY OF: ”; 
variable ELE : STRING(1 to 18) := “DEGREES ELEVATION,’; 
variable AZI : STRING(1 to 15):= “DEGREES AZIMUTH’; 
variable MET : STRING(1 to 15) := “METERS PER SEC.”; 
variable TAR : STRING(1 to 34) := 

“TARGET DETECTED AT A DISTANCE OF: ”; 
variable POSI : STRING(1 to 20) := ”. IT’S POSITION IS: ”; 
begin 
TEMP _ DOPPLER := LOFREQ_TO_REAL IN_HZ(TARGET_DOPPLER), 
If TEMP_DOPPLER < 0.0 then 
TEMP_DOPPLER := 0.0 - TEMP_DOPPLER; 
TEMP.VEL DIR := OPENING; 
M := “OPENING’; 

else 
TEMP.VEL DIR := CLOSING; 
M := “CLOSING’; 

end if; 
TEMP_OP := HIFREQ TO_REAL_IN_MHZ(OP_FREQ)*1.0E6; 
TEMP. TARGET_ELEVATION := ANGLE_ELEV; 
TEMP.TARGET_ AZIMUTH := ANGLE_AZIM; 
if PULSE_ON_TIME > Ons then 
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TEMP_REAL := BIN_DISTANCE(PULSE_ON_TIME) * 
(REAL(RANGE BIN) - 0.5); 

end if; 
TEMP.TARGET RANGE := TEMP_REAL; 
if TEMP_OP > 0.0 then 

TEMP.REL_ VEL := (TEMP_DOPPLER * C)/(2.0 * TEMP_OP); 
end if; 
TARGET_INFO < = TEMP; 
WRITE (L, TAR); 
WRITELINE (0, L); 
WRITE (L, TEMP.TARGET_ RANGE, DIGITS = > 2); 
WRITE (L, SPACE); 
WRITE (L, MILES); 
WRITELINE (0, L); 
WRITE (L, TEMP.REL_VEL, DIGITS = > 2); 
WRITE (L, SPACE); 
WRITE (L, MET); 
WRITE (L, SPACE); 
WRITE (L, M); 
WRITE (L, POSI); 
WRITELINE (0, L); 
WRITE (L, TEMP.TARGET_ELEVATION/1 degrees); 
WRITE (L, SPACE); 
WRITE (L, ELE); 
WRITELINE (0, L); 
WRITE (L, TEMP.TARGET_AZIMUTH/1 degrees); 
WRITE (L, SPACE); 
WRITE (L, AZI); 
WRITELINE (0, L); 
WRITE (L, SPACE); 
WRITELINE (0, L); 
DETECTED <= ‘0’; 

end WRITE_TARGET; 

procedure LOOK_FOR_TARGET (signal ANGLE_ELEV, 
ANGLE_AZIM : in ANGLE; 

signal RANGE_BIN : in NATURAL; 
signal TARGET_MAP : 

in TARGET_ENVIRONMENT; 
signal NUMBER_TARGETS : in INTEGER; 
signal FLAG : inout NATURAL; 
signal PULSE_ON_TIME: in TIME) is 

variable TEMP : integer := 0; 
begin 
foriin 1 to NUMBER_TARGETS 

loop 
if (TARGET_MAP(i). AZIMUTH < ANGLE AZIM + 2 degrees) 
and 
(TARGET_MAP(i).AZIMUTH > ANGLE_AZIM - 2 degrees)) 
and 
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((TARGET_MAP(G).ELEVATION < ANGLE _ELEV + 2 degrees) 
and 

(TARGET_MAP(i). ELEVATION > ANGLE_ELEV - 2 degrees)) 
then 

if (TARGET_MAP(@).TIME_AWAY > = PULSE_ON_TIME * 
RANGE BIN) 

and (TARGET_MAP(i). TIME_AWAY < PULSE _ON_TIME * 
(RANGE _BIN + 1))) 
then 

FLAG <=14 
else 

FLAG <= 0; 
end if; 

end if: 
if TARGET_MAP(i).AZIMUTH + 2 degrees > ANGLE_AZIM 

then 
exit; 

end if: 
end loop; 

end LOOK_FOR_TARGET; 
procedure POTENTIAL_ TARGET _ INFO 

(signal TARGET_MAP_FLAG: in TARGET; 
signal ANT_OUT : out RADAR SIGNAL; 
signal OP_FREQ: in HIGH _FREQUENCY; 
signal FLAG : out NATURAL; 
signal PULSE_ON_TIME: in TIME) i 1S 

variable TEMP_HIPOWER, TEMP_ ~LOPOWER: INTEGER := 0; 
variable TEMP_POWER: REAL := 0.0, 
begin 

ANT_OUT.HIFREQ < = OP_FREQ; 
ANT_OUT.LOFREQ < = TARGET_MAP_FLAG.TARGET_DOPPLER; 
TEMP POWER := 15.0E15/TARGET_MAP_ FLAG.ATTENUATION; 
if TEMP POWER < 1.0E9 then 
ANT_OUT.LOPOWER_ LEVEL < = TEMP_POWER?*1 pW; 

else 
ANT_OUT.HIPOWER_LEVEL < = (TEMP_POWER/1.0E9)*1 mW; 

end if; 
FLAG <= 0 after PULSE_ON_TIME; 

end POTENTIAL_TARGET_INFO; 

procedure AMPLIFY _BY_K (variable K : in REAL; 
signal AMPLIFIER_IN : in RADAR_ SIGNAL; 
signal AMPLIFIER OUT : out RADAR SIGNAL) i 1S 

variable TEMP_LOPOWER, TEMP_HIPOWER: INTEGER := 0; 
variable TEMP_POWER: REAL := 0.0; 
variable COUNT : INTEGER := 0; 
begin 
TEMP_LOPOWER := AMPLIFIER_IN.LOPOWER_LEVEL/1 PW; 
TEMP_HIPOWER := AMPLIFIER_IN.HIPOWER_LEVEL/1 mW; 
TEMP POWER := K * (REAL(TEMP_LOPOWER) + 

REAL(TEMP_HIPOWER)*1.0E+ 9); 
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If (TEMP POWER > 1.0E+9) then 
TEMP_POWER := TEMP _POWER/I.0E+9 + 1.0; 
AMPLIFIER_ OUT. HIPOWER_LEVEL <= TEMP_ POWER*1 mW; 
AMPLIFIER, OUT. LOPOWER_ LEVEL <= 0 pW; 

else 

AMPLIFIER OUT.HIPOWER LEVEL <= 0mW; 
AMPLIFIER _OUT.LOPOWER_LEVEL < = TEMP_POWER * I pW; 

end if; 
AMPLIFIER_ OUT.LOFREQ < = AMPLIFIER_IN.LOFREQ; 
AMPLIFIER _ OUT.HIFREQ < = AMPLIFIER_ IN. HIFREQ; 

end AMPLIFY_BY_K; 

procedure CHECK FOR_DETECTION (signal RCVR_OUT : 
in RADAR_SIGNAL; 

signal AMPLIFIED. RCVR_NOISE: in REAL; 
signal DETECTION_THRESHOLD : in LOW POWER; 
signal DETECTED_1!: out BIT) is 

variable SIGNAL_REAL : REAL := 0.0; 
variable THRESHOLD_REAL : REAL := 0.0; 

begin 
SIGNAL_REAL := (REAL((RCVR_OUT.LOPOWER_LEVEL)/1 pW) + 

REAL((RCVR_ OUT.HIPOWER_LEVEL)/1 mW) * , OE9) + 
AMPLIFIED _RCVR_NOISE; 

THRESHOLD REAL := REAL((DETECTION_ THRESHOLD) 1 PW); 
if THRESHOLD_ REAL < SIGNAL_REAL then 
DETECTED _ 1<='l’ 

else 
DETECTED_1 <= 0 

end ift 
end CHECK FOR _DETECTION; 

procedure READ GAUSSIAN_NOISE 
(signal RANDOM_NOISE : out GAUSSIAN_REAL) is 

variable TEMP_REAL : REAL := 0.0; 
file INFILE : TEXT is in “NOISE.IN’; 
variable L : LINE; 
variable COUNT : INTEGER := 
begin 

loop 
if not endfile(INFILE) then 
Readline (INFILE, L); 
Read (L, TEMP_REAL); 
RANDOM_NOISE(COUNT) < = TEMP_REAL; 
COUNT := COUNT + 1; 

else 
exit; 

end if; 
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end loop; 
end READ GAUSSIAN_NOISE; 

end RADAR; 
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Appendix B. Constraints for the Diagnosis Example 

The following are the constraints that were extracted from the model (keeping in mind 
that the diagnostic example is a subset of the model that was written for the radar sys- 
tem and does not include noise effects. First the input and output ports for the con- 
straints of a sub-system are defined. The constraint are then either signal assignment 
statements, or signal assignment statements combined with mathematical expressions 
that are evaluated by some procedure which is within the package. In the latter case 
only the name of the procedure is specified. To the right of each statement of a con- 
straint is a boolean expression that fires that constraint. That boolean expression is 
evaluated exactly once every time any of the elements in the expression whose names 
appear in capital letters changes value, and not otherwise. This is equivalent to a sen- 
sitivity list for a process statement. Note that a value of ’X’ associated with an element 
or port implies a “don’t care” condition. 

SYNCHRONIZER_CONSTRAINTS : 

Begin 
IN : RANGE BIN, START_UP. 
OUT : TX_EN, RX_EN. 

TX_EN = ‘I’, RX_EN = 0’ (RANGE BIN = 0) 
*(START_UP = 1) 

TX_EN = ’0’", RX_EN = ‘1’ (RANGE BIN /= 0) 
*(START_UP = 1) 

END SYNCHRONIZER_CONSTRAINTS. 

ANTENNA_CONSTRAINTS : 

Begin 

IN : ANGLE_AZIM, ANGLE_ELEV, ELEV_SCAN_RANGE, 
AZIM_SCAN_ RANGE, RANGE BIN, START_UP, ANT_IN, 
XMT_IN, FLAG, NUMBER_ TARGETS, TARGET_MAP. 

OUT : ANGLE_AZIM, ANGLE_ELEV, RCVD_SIG, ANT_OUT, TEMP_TARGET. 
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Procedure SCAN_ADVANCE 
((angle_azim /= azim_scan_range) 
+/(angle elev /= elev_scan_range)) 
*((RANGE_ BIN = 0) * (start_up = 1)) 

ANGLE_AZIM = -AZIM_SCAN_RANGE 
(START_UP = 1) 

ANGLE_ELEV = ELEV_SCAN_RANGE 
(START_UP = 1) 

RCVD_SIG <= ANT_IN 
(rx_en = 1) * (range_bin /= 0) 
*(ANT_IN = °X’) 

ANT_OUT <= XMT_OUT 
(tx_en = 1) * (range_bin = 0) 
*(XMT_OUT = ’X’) 

TEMP TARGET < = TARGET_MAP(FLAG) 
(FLAG /= 0) * (start_up = 1) 

Procedure LOOK_FOR_TARGET 
(RANGE _BIN /= 0) 

Procedure POTENTIAL _TARGET_INFO 
(FLAG’DELAYED /= 0) 
*(start_up = 1) 

ANT_IN.HIFREQ = 0 MHz 
ANT_IN.LOFREQ = 0 Hz 
ANT_IN.HIPOWER = 0 mW 
ANT_IN.LOPOWER = 0 pW 

(FLAG’DELAYED = 0) 
*(start_up = 1) 

END ANTENNA_CONSTRAINTS. 

RANGE_BIN_INCREMENTER_CONSTRAINTS : 

IN : AZIM_ANGLE, ELEV_ANGLE, AZIM_SCAN_RANGE, 
ELEV_SCAN_ RANGE, RANGE BIN, START_UP, INIT, 
PULSE_ON_TIME 

OUT : RANGE BIN 

Begin 

Appendix B. Constraints for the Diagnosis Example 117



RANGE BIN = 0 INIT = 1 

RANGE _BIN = RANGE BIN + 1 after PULSE ON_TIME 
(angle_azim /= azim_scan_range) 
+(angle elev /= elev_scan_range) 
*(START_UP = 1) 
*(RANGE BIN = ’X’) 

END RANGE _BIN_INCREMENTER_ CONSTRAINTS. 

RECEIVER_CONSTRAINTS : 

IN: RCVD_SIG, AMP1_ SIG, IF1, AMP2_SIG, IF2. 
OUT : RCVR_ OUT, AMPI1 _SIG, IF1, AMP2_ SIG, IF2. 

Begin 

AMPLIFY_BY_K (1000.0, RCVD_SIG, AMP1_SIG) 
RCVD_SIG = ’X’ 

IF1.HIFREQ = AMP!1_ SIG.HIFREQ- LOI 
AMP1_SIG.HIFREQ /= 0 MHz 

IF1 = (0 MHz, 0 Hz, 0 mW, 0 pW) 
AMPI1_ SIG.HIFREQ = 0 MHz 

AMPLIFTY_BY_K (500.0, IF1, AMP2_SIG) 
IFl = ’X’ 

IF2.HIFREQ = AMP2_SIG.HIFREQ - LO2 
AMP? SIG.HIFREQ /= 0 MHz 

IF2 = (0 MHz, 0 Hz, 0 mW, 0 pW) 
AMP2_SIG.HIFREQ = 0 MHz 

RCVR_OUT.HIFREQ = IF2.HIFREQ - LO3 
IF2.HIFREQ /= 0 MHz 

RCVR_OUT = (0 MHz, 0 Hz, 0 mW, 0 pW) 
IF2.HIFREQ = 0 MHz 

RCVR_OUT.LOFREQ = IF2. LOFREQ 
IF2 = ’X’ 

RCVR_OUT.HIPOWER_LEVEL = IF2.HIPOWER_LEVEL 
IF2 = ’X’ 

RCVR_OUT.LOPOWER_LEVEL = IF2.LOPOWER_LEVEL 
IF2 = ‘X’ 
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END RECEIVER_CONSTRAINTS. 

DETECTION_CHECKER_CONSTRAINTS : 

IN : RCVR_OUT, DETECTION_THRESHOLD, DETECTED) 
OUT : DETECTED 

Begin 

Procedure CHECK_FOR_DETECTION 
(start_up = 1) 
*(RCVR_OUT = ’X’) 

Procedure WRITE_TARGET 
(DETECTED /= 0) 

END DETECTION_CHECKER_ CONSTRAINTS. 
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Appendix C. Pascal Code for the Noise File 

The following Pascal code produces an external text file that consists of 100 real num- 
bers that are gaussian distributed between -10 and 10. The VHDL simulation reads in 
this file to represent noise in the receiver at simulation start. 

var NOISE : array [1 .. 100] of real; 
count, i, j, k, 1]: integer; 
r, s, sum: real; 
TEMP : array [1 .. 12] of real; 
noiz : text; 
filevar : string; 

begin 
count := 1; 
randomize; 
filevar := “Noise.In’; 
assign (noiz, filevar); 
rewrite (noiz); 
repeat 

i:= 1; 
sum := 0.0; 
begin 

repeat 
begin 

r:= random (65535)/65535; 
sum := sum + 1; 
i:=it+ I]; 

end 
until i = 13; 
sum := (sum - 6.0)/6.0; 
NOISE[count] := sum * 10.0; 

end; 
count := count + 1; 
until count = 101; 
fori:= 1 to 100 do 
writeln (noiz, noise[i]); 
close (noiz); 

end. 
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Appendix D. Pascal Code for the Targets File. 

This Pascal program generates random target information for input to 
the Radar System Simulator written in VHDL. The target information 
is in the form of a record with five fields. The program generates 
from | to 20 targets at random. The azimuth angle is restricted to 
anywhere between -180 and 180 degrees. The Elevation angle is 
restricted to anywhere between -60 and 60 degrees. Time_Away is 
between 10 and 1000 us. Target_Doppler is anywhere between 0 and 
40 KHz. Attenuation is dependant on the distance of the target from 
the radar, and is proportional to a randomly generated attenuation_ 
factor. 

type TARGET = record { This is the type definition of the } 
AZIMUTH : integer; { record that will be randomly generated } 
ELEVATION : integer; = { and written out to the file. } 
TIME_AWAY : integer; 
TARGET_DOPPLER : longint; 
ATTENUATION : real; 
end; 

type TARGET_ARRAY = array [1 .. 20] of TARGET; 

var 1, J, 1, count: integer; 
{ Some variable and constant declarations} 

k : longint; 
{ for use within the program. } 

r, S, t, attenuation_factor : real; 
write_this : target; 
target_info : target_array; 
num_targets : integer; 
targets : text; 
filevar : string; 

Procedure Write_Target_File; 
{ This procedure writes out the target 
variable into the output file. } 

begin 
writeln (targets, ’ ’,target_info[j].azimuth); 
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writeln (targets, ’ ’,target_infolj].elevation); 
write (targets, * ’,target_info[jJ.time_away); 
writeln (targets, ’ us’); 
writeln (targets, target_info[j].attenuation:4); 
writeln (targets, ’ ’,target_info|j].target_doppler); 

end; 

Procedure Sort_Target_Info; 
{ This procedure sorts the target_info } 

var a, b: integer; { by azimuth before it is written to the } 
temp : target; { output file. This is done to save search } 

begin { time during the execution 
{ of the simulation } 

if num_targets > 1 then 
begin 
fora:= 1 to num_targets-1 do 
begin 

forb:= a+1 to num_targets do 
begin 

if target_info[a].azimuth > 
target_info[b].azimuth then 
begin 

temp := target_info[a]; 
target_info[a] := target_info[b]; 
target_info[b] := temp; 

end; 
end; 

end; 
end; 

end; 

{ Main starts here } 
begin 

l:= 1; 
randomize; { Initialize the random number generator } 
filevar := 'TARGETS.IN’; 
Assign (targets, filevar); 
rewrite (targets); 
repeat 
num_targets := random (20); 
until num_targets <> 0; 
repeat 

begin 
r:= random (65535); 
repeat 

s:= random (65535); 
untils <> 0.0; 
t:= 1r/s; 

end 
until ((t > 0.001) and (t < 1.0)); 
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attenuation_factor := t*t*le3; 
repeat 
begin 

i:= random (180); 
j:= random (65535); 
Ifj/2 = trunc(j/2) then 
1:= -1 
write_this.azimuth := i; 
i:= random (60); 
j:= random (65530); 
If 3/2 = trunc(j/2) then 
1:= -1; 
write_this.elevation := i; 
repeat 
i:= random (1000); 
until (i > 10); 
write_this.time_away := 1; 
write_this.attenuation := attenuation_factor * 
write_this.time_away * write_this.time_away * 
write_this.time_away * write_this.time_away; 
k := random (500); 
j:= random(65530); 
if j/2 = trunc(j/2) then 
k — ‘ 

write this.target_doppler := k; 
target_info[l] := write_this; 
]1:= succ(l); 

end 
until (1 = num_targets+ 1); 
Sort_Target_Info; 
for}:= 1 to num_targets do 
Write_Target_ File; 
close (targets); 

end. 
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Appendix E. Some More Test Simulations 

There are four more test runs provided in this appendix. The test runs 
begin with the target file”*TARGETS.”’, and are followed by the output 
file “DETECTED.OUT”. The noise file used for all these test runs was 
the same, and a listing of this noise file is given at the end. The 
simulation was performed for a maximum detectable range of 100 miles, 
and antenna scan limits of +/- 60 degrees azimuth and elevation. 

File “TARGETS.” : 

-3 
50 
620 us 
6.4E+6 
-208 
83 
-43 
934 us 
9.6E+ 06 
-228 
106 
21 
532 us 
5.5E+06 
-334 
158 
20 
59 us 
6.1E+05 
401 
171 
-34 
437 us 
4.5E+ 06 
70 
177 
22 
49 us 
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5.0E+ 05 
-264 

File "DETECTED.OUT” created by VHDL for the above target scenario is : 

TARGET DETECTED AT A DISTANCE OF: 
57.65 MILES WITH A RELATIVE VELOCITY OF: 
547.37 METERS PER SEC. OPENING. IT’S POSITION IS: 
51 DEGREES ELEVATION, 
-3 DEGREES AZIMUTH 

Appendix E. Some More Test Simulations 125



File “TARGETS.” : 

-177 
-55 
698 us 
1.6E+09 
-300 
-106 
4| 
176 us 
4.0E+ 06 
-365 
-73 
22 
712 us 
1.6E+07 
-107 
-68 
-1 
808 us 
1.8E+10 
223 
-47 
-52 
942 us 
2.1E+12 
462 
-33 
-12 
607 us 
1.4E+07 
317 
-22 
26 
397 us 
9.1E+06 
95 
-] 
-15 
104 us 
2.4E+ 06 
-32 
3 
-44 1156 us 
2.0E+ 15 
-295 
6 
-26 
140 us 
3.2E+06 
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402 
7 
110 
174 us 
4.0E+06 
247 
51 
-37 
1091 us 
1.5E+ 14 
-73 
78 
-29 
991 us 
2.3E+07 
327 

File "DETECTED.OUT” created by VHDL for the above target scenario is : 

TARGET DETECTED AT A DISTANCE OF: 
37.03 MILES WITH A RELATIVE VELOCITY OF: 
2.50 METERS PER SEC. CLOSING. IT’S POSITION IS: 
27 DEGREES ELEVATION, 
-21 DEGREES AZIMUTH 

TARGET DETECTED AT A DISTANCE OF: 
56.72 MILES WITH A RELATIVE VELOCITY OF: 
8.34 METERS PER SEC. CLOSING. IT’S POSITION IS: 
-12 DEGREES ELEVATION, 
-33 DEGREES AZIMUTH 

TARGET DETECTED AT A DISTANCE OF: 
9.84 MILES WITH A RELATIVE VELOCITY OF: 
0.84 METERS PER SEC. OPENING. IT’S POSITION IS: 
-15 DEGREES ELEVATION, 
0 DEGREES AZIMUTH 

TARGET DETECTED AT A DISTANCE OF: 
13.59 MILES WITH A RELATIVE VELOCITY OF: 
10.58 METERS PER SEC. CLOSING. IT’S POSITION IS: 
-27 DEGREES ELEVATION, 
6 DEGREES AZIMUTH 

TARGET DETECTED AT A DISTANCE OF: 
88.59 MILES WITH A RELATIVE VELOCITY OF: 
12.16 METERS PER SEC. CLOSING. IT’S POSITION IS: 
-51 DEGREES ELEVATION, 
-48 DEGREES AZIMUTH 
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File “TARGETS.” : 

-177 
-22 
488 us 
8.7E+07 
-107 
-65 
-16 
985 us 
18E+11 
-150 
44 
-10 
414 us 
7.4E+06 
-218 

File "DETECTED.OUT” which was created by VHDL for the above target scenario is 

TARGET DETECTED AT A DISTANCE OF: 
38.91 MILES WITH A RELATIVE VELOCITY OF: 
5.74 METERS PER SEC. OPENING. IT’S POSITION IS: 
-9 DEGREES ELEVATION, 
45 DEGREES AZIMUTH 
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File ’TARGETS.” : 

-153 
17 
568 us 

4.7E+08 
487 
-108 
-57 
810 us 
6.7E+ 10 
252 
-80 
41 
272 us 
2.3E+06 
148 
-57 
-28 
758 us 
6.3E+10 
48 
~-24 
46 
365 us 
3.0E+08 
-164 
114 
58 
155 us 
1.3E+06 
-325 
160 
-56 
857 us 
TIE+ 13 
130 

File "DETECTED.OUT” which was created by VHDL for the above target scenario is 

TARGET DETECTED AT A DISTANCE OF: 
34.22 MILES WITH A RELATIVE VELOCITY OF: 
4.32 METERS PER SEC. OPENING. IT’S POSITION IS: 
45 DEGREES ELEVATION, 
-24 DEGREES AZIMUTH 

TARGET DETECTED AT A DISTANCE OF: 
70.78 MILES WITH A RELATIVE VELOCITY OF: 
1.26 METERS PER SEC. CLOSING. IT’S POSITION IS: 
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-27 DEGREES ELEVATION, 
-57 DEGREES AZIMUTH 
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The noise file “NOISE.IN” that was used for these simulations is given below : 

-2.3120978612E + 00 
9.2701101189E-01 
2.8122377350E-01 
2.2354467025E-02 
-5.1356781369E-01 
3.8414587621E-01 
-8.8283614357E-01 
1.2885989674E + 00 
5.9494926370E-01 
-7.1267261772E-01 
2.389 1050583E + 00 
-4.7659011727E-01 
1.5404491238E + 00 
-2.5378550902E + 00 
2.2679229928E + 00 
-2.2932529692E + 00 
-8.0364182334E-03 
-1.0312555637E-01 
7.7482770016E-01 
1.6896314946E + 00 
-4.8956028588E-01 
4.9243406826E-01 
1.8645761806E + 00 
6.1056432945E-01 
-1.7014572366E + 00 
2.4795147630E + 00 
3.5089392436E + 00 
2.3128353805E + 00 
2.9511965616E + 00 
5.0113171075E-01 
1.4464281173E+ 00 
-1.2395920755E + 00 
2.2049032323E + 00 
-2.3031967651E +00 
-4.0072734675E-01 
3.1222247653E + 00 
-9,7833218893E-01 
1.1187151903E+00 
-1.1766486102E + 00 
1.8771140100E-01 
-6.6124971394E-01 
2.1482 159660E + 00 
-2.6751862873E + 00 
1.7846697693E + 00 
-8.4814730047E-01 
-1.4204369167E +00 
-2.2568093386E + 00 
5.2814017951E-01 
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1.5988403143E + 00 
1.7033391826E + 00 
-7.6485847261E-01 
-1.4287530836E + 00 
7.0911217919E-01 
5.5898883499E-02 
2.8909742885E + 00 
-3.6453548995E + 00 
-3.1789628952E + 00 
-1.6339869287E-01 
-1.1825996287E + 00 
-3.0955469090E-01 
3.3150225068E-01 
1.9905139747E + 00 
-1.1116197456E-01 
1.7797105868E-01 
4.4586861978E-01 
9.5936013829E-01 
4.9624882374E-01 
6.2149996179E-01 
3.9281808702E + 00 
-1.5695429923E + 00 
2.9737290502E-01 
-1.2205945933E + 00 
3.8509956511E+ 00 
2.0875359222E + 00 
1.3003992777E + 00 
-2.2187126472E + 00 
1.6788484524E + 00 
1.0269067419E + 00 
-5.2796215787E-02 
1.5446453549E + 00 
-6.4843213554E-01 
-4.9225604643E-01 
8.6299941501E-01 
1.9094122729E-01 
-3.6325373210E +00 
7,0188957549E-01 
2.2734162406E + 00 
-1.2034536253E +00 
-1,4662139824E + 00 
2.1108059306E + 00 
-2.4569568427E-01 
1.1420869255E + 00 
-1.6174817528E +00 
-6.8500292468E-01 
-1,.6848249028E + 00 
3.4625518170E + 00 
-1,0787111213E +00 
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3.0582386002E + 00 
-3.8508939244E + 00 
-1.8025991201E + 00 
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