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(ABSTRACT)

Some engineered systems now in use are not adequately meeting the naeds
for which they were developed, nor are they very ccst-eifective in terms of
consumer utilization. Many preblems associated with unsatisfactory system
performance and high life-cycle cost are the direct result of decisions made
during early phases of system design.

To develop quality systems, both engineering and managemaent need
fundamantal principles and methodologies to guide decision making during
system design and advanced planning. In order to provide for the efficient
resolution of complex system design decisions involving uncertainty, human
judgments, and vaiue trade-offs, an efiicient and effective decision analysis.
framawoik i3 required.

Experience indicates that an effective approach to improving the guality of
detail dasigns is through the application of Genichi Taguchi's phitosaphy of
robust design. How {c apply Taguchi's phiiosophy of robust design o system
design evaluation at the preliminary design stage is an open guesiion.



The goal of this research is to develop a unified decision analysis framework
to support the need for developing better system designs in the face of various
uncertainties. This goal is accomplished by adapting and integrating statistical
decision theory, utility theory, elements of the systems engineering process, and
Taguchi's philosophy of robust design. The result is a structured, systematic
methodology for evaluating system design aiternatives. '

The decision analysis framework consists of two parts: (1) decision analysis
foundations, and (2) an integrated approach. Part | (Chapters 2 through 5)
covers the foundations for design decision analysis in the face of uncertainty.
This research begins with an examination of the life cycle of engineered systems
and identification of the elements of the decision process of system design and
development. After investigating various types of uncertainty involved in the
process of system design, the concept of robust design is defined from the
perspective of system life-cycle engineering. Some common measures for
assessing the robustness of candidate system designs are then identified and
examined.

Then the problem of design evaluation in the face of uncertainty is studied
within the context of decision theory. After classifying design decision problems
into four categories, the structure of each typa of problem in terms of sequence
and causal relationsnips between various decisions and uncertain outcomss is
represented by & decision tree. Based upon statistical decision theory, the
foundations for clioosing a best design in the face of uncertainty are identified.
The assumptions underlying common objective functions in gesign oplimization
are also investigated. Some confusion and controvaisy which surround
Taguchi's robust design criteria — loss functions and signai-{c-noise ratios -- are
adaressed and clarified.

Part I (Chaplers 6 through ) covers models and their application to design
evaiuation in the face of uncertainty. Based upon the decision analysis
foundations, an integrated approach is developed and presented for resolving
beth discrete decisions, continuous decisions, and decisions involving both
uncertainty and multiple attributes. Application of the approach is illustrated by
two hiypothetical examples: bridge design and repairable equipmerit population
system design.
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I. INTRODUCTION

1.1 Problem Definition

1.2 Problem Statement

1.3 Research Objectives

1.4 Uniqueness and Premise of this Research
1.5 Organization of the Decision Framework

1.1 Problem Definition

With the introduction of new technologies in design, engineered systems
and products are becoming more complex. However, many of the systems in
use are not meeting the needs for which they were developed, nor they are very
cost-effective in terms of consumer utilization (Blanchard, 1991). Although
various factors are contributing to such unacceptable situations, one of the major
causes is that the system developed is not robust with respect to its operational
environment. Many systems are not easily maintained and cannot be efficiently
supported. Some systems are completely unavailable when needed and others
are operating at less than full capacity in terms of desired output or at high
operational cost.

Many problems associated with unsatisfactory system performance and high
life-cycle cost are the direct result of decisions made during early phases of
system design and advanced planning. Inefficient product design is viewed as
one of the bottlenecks to improved product/system quality and time to market.
Those early decisions pertaining to utilization of new technologies in design, the
selection of component parts and materials, the selection of a manufacturing
process, the identification of maintenance support policies, etc., have a major
effect on both total quality and life-cycle cost.



In order to develop robust designs, only education pertaining to the
importance and possible benefits alone is not sufficient. These is an urgent
need for the development of new design methodologies and approaches for
design engineers. Observations and research have shown that design theories
and methodologies are essential to the development of sound pedagogical
techniques (EiMaraghy, et al., 1989). To provide a theoretical basis for the
development of tools to aid designers, the study of design theory and
methodology is developing into a central field of research.

The overall goal of research in engineering design is to improve the
performance and outcome of the design process. Due to various uncertainties,
engineering designs are typically represented imprecisely at the early,
conceptual and preliminary stages. Technical tools to aid this area of the design
process are rare, largely because of the scarcity of techniques capable of
handling imprecise data (Wood and Antonsson, 1989). Little research has been
conducted on the development of design analysis and evaluation methodology
for early system design activities. There is not a complete, cohesive structure
for the determination of design criteria, their modeling in terms of system
variables/parameters, the synthesis and screening of alternatives, and formal
optimization. Most of these activities and decisions have been accomplished in
an ad hoc or empirical manner. New tools are often built generally without
consideration of the overall effects on the process, and without the use of any
formal mathematical models of the process.

Taguchi's philosophy of robust design is very important to design decision
analysis in the face of uncertainty. However, there has been relatively little
research on the mathematical foundation, assumption, and techniques of
Taguchi's approach. Furthermore, there has been little research to compare his
techniques to other methods, either analytically or experimentally, except for
comparisons with experimental design techniques from which Taguchi's
approach is derived. In addition, as indicated by Otto and Antonsson (1991),
there has been little research attempting to improve the approach itself.

How to apply Taguchi's philosophy of robust design for design evaluation at
the preliminary system design stage is an open question. Taguchi's parameter
design approach relies on direct experimentation. When a mathematical model
or a computer model of the design exists, Box and Fung (1986) argued that a



more appropriate means of identifying a robust design is through nonlinear
optimization techniques. More recently, a number of researchers have
implemented Taguchi's philosophy using nonlinear programming, goal
programming, and simulation approaches, including d'Entremont and Ragsdell
(1988), Sandgren (1989), Sundaresan et al. (1989), Belegundu and Zhang
(1989), Parkingson et al. (1990), and Ramakrishnan and Rao (1991). But the
problem is to determine under what condition each approach should be used.
What is needed is a unified framework for design evaluation which integrates
various approaches based on solid mathematical foundation of robust design.

To obtain better system performance, both engineering and management
needs fundamental principles and methodologies to guide decision making in
design. in order to provide for the efficient resolution of complex system design
decisions involving uncertainty, human judgments, and multiple attributes, an
efficient and effective decision analysis framework is required. System
optimization can be achieved only through a systematic approach to design
evaluation.

1.2 Problem Statement

System design and development requires that timely evaluations of design
alternatives be made as the design concept evolves. In most instances,
specified requirements can be satisfied by one or more design alternatives. The
problem is to identify the best design alternatives through an iterative process of
systems analysis using selected analytical methods. Design evaluation is
invoked as a basis for choice in finalizing the design quickly.

Choice of the best design is a trade-off among design characteristics. The
design selected should not only be feasible, but also optimal and robust with
respect to various uncertainties over the system's life cycle. This research aims
to improve the performance of engineering design processes through the
development of a unified decision analysis framework for system design
evaluation in the face of uncertainty.



1.3 Research Objectives

The goal of this research is to develop a unified decision analysis framework
to support the need and requirement for developing better system designs in the
face of uncertainty. Specific objectives are to:

« Define and operationalize the concept of robust system design.

» Identify decision analysis foundations for design evaluation in the face of
uncertainty through mathematically modeling the functional relationships
between design decisions and the overall worth of a candidate design.

« Identify and integrate appropriate decision analysis approaches into a unified
framework for system design evaluation in the face of uncertainty.

o Present examples to illustrate the application of the framework.

1.4 Uniqueness and Premise of this Research

Developing explicit design evaluation procedures has been recognized as a
crucial step toward development of a more formal theory and methodology of
design (Chandrasekran, 1989; Finger and Dixon, 1989). It has been noted that
a major research issue in design theory and methodology is the analysis and
evaluation of designs in the preliminary stage of design (Finger and Dixon,
1989-Il).

The uniqueness of this research is to integrate and adapt statistical decision
theory, elements of the systems engineering process, and Taguchi's philosophy
of robust design to meet the needs of system design and development. Instead
of concentrating on performance variability alone, a structured approach is taken
in this research to quantify uncertainties, risk attitudes, value trade-offs, and
expected gains and losses during system life cycle. This approach is offensive
in that it does not remove the uncertainty. The effect of uncertainty on the
relative desirability of design alternatives is incorporated into the design
evaluation process.

This approach is useful in the early stages of the design process. It can
facilitate the integration of performance-related characteristics and logistic
support requirements in system design. The approach will be applicable at the
macro level for the evaluation of candidate systems, or at the micro level for



design iteration. Integration of the evaluation approach with CAE/CAD tools may
increase design productivity, and provide technical capabilities needed to
dramatically influence the decision process during system design evolution.
Accordingly, this research is expected to impact the development and design of
complex technological systems, both commercial and public sector, while also
influencing some aspects of strategic planning.

The underlying premise of this research is that major decisions in the design
process would be improved if the factors which influence the decisions are
quantified and made visible. Such factors include uncertainty, hard and soft
operational and technological considerations, human factors, and other
judgmental elements. The need for visibility and quantification of uncertainty
and judgmental factors arises not only from a desire for logical consistency in
the treatment of decision elements, but also from the need for people to
communicate, review, and discuss such factors as part of the total decision
process.

In this research, the methodology and models will be developed to optimize
the total problem-solving process rather than just the decision per se; provide for
insufficiencies in data base as well as for uncertainties in cause-effect
relationships. The idea is not to fully automate the design process, nor to
automatically generate design alternatives. Rather, the goal is to make it easier
for the designer to evaluate more alternatives in less time, and to provide more
information on the performance of each alternative. Since most important (and
costly) decisions in the design process are made in the early stages, the effect
will be greater the earlier in the design process the information is made
available. Thus, these developments form a semi-automated approach to
design analysis and evaluation.

1.5 Organization of the Decision Framework

A unified decision analysis framework is presented for system design
evaluation in the face of uncertainty. This framework consists of two parts: (1)
decision analysis foundations, and (2) an integrated approach. Figure 1.1
shows the basic organization.
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Part I, consisting of Chapters 2 through 5, covers decision analysis
foundations for design analysis and evaluation in the face of uncertainty. In
Chapter 2, the decision process of system design and development is
investigated from the perspective of concurrent life-cycle engineering. The
elements of the decision process are identified. Then the focus of the research
is defined.

Chapter 3 defines and operationalizes the concept of robust system design.
After identifying various uncertainties involved in the process of engineered
system design, the concept of robust design is defined from the perspective of
system life-cycle engineering. Some common measures of the robustness of
candidate designs are also examined.

Chapters 4 and 5 study the problem of design decisions in the face of
uncertainty within the context of decision theory. The concept of best design is
investigated and clarified. The focus of Chapter 4 is on the modeling of design
decisions in the face of uncertainty. After classifying design decision problems
into four categories, the structure of a decision problem in terms of the sequence
and causal relationships between various decisions and uncertain outcomes are
represented by decision trees.

Once the decision problem has been modeled, a choice must be made.
Chapter 5 investigates the foundations for choosing a best design in the face of
uncertainty. After summarizing the concepts of choices, preferences, and utility
theory, three decision analysis approaches are identified for design evaluation in
the face of uncertainty.

Part Il, made up of Chapters 6 through 9, covers models and applications of
design evaluation in the face of uncertainty. An integrated approach is
developed and presented in Chapter 6 for conducting design analysis and
evaluation for both discrete and continuous decisions. Chapter 7 presents a
hypothetical bridge design example to explain the concepts underlying the
decision analysis framework. In Chapter 8, the framework is extended to
resolve design decision problems involving both uncertainties and multiple
attributes. Chapter 9 presents an example of repairable equipment population
system (REPS) design.

Chapter 10 summarizes the contribution of this research and discusses the
possibilities for future research.



Il. THE DECISION PROCESS
FOR ENGINEERED SYSTEM DESIGN

2.1 Introduction

2.2 The System Life Cycle

2.3 System Design and Development
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2.6 Decision Models for Design Analysis and Evaluation

2.1 Introduction

In this chapter, the decision process of system and development is
examined from the perspective of concurrent life-cycle engineering. Elements of
the decision process are identified. Then the focus of this research is defined.
Two important decision models for design analysis and evaluation are also
introduced.

2.2 The System Life Cycle

In general, the life cycle of a system can be divided into two phases: the
acquisition phase and the utilization phase. In the acquisition phase, decisions
progress from identifying the need through conceptual design and preliminary
design, detail design and development, and production/construction. The
utilization phase includes activities of system deployment, use, phaseout, and
disposal.



The concurrent life-cycle engineering design approach goes beyond
consideration of the life-cycle of the product/system itself. This approach
encompasses three concurrent life cycles as illustrated in Figure 2.1: product life
cycle, manufacturing system life cycle, and support system life cycle (Fabrycky,
1991; Blanchard and Fabrycky, 1990; Midkiff and Fabrycky, 1991).

In this approach, conceptual design is initiated first to meet the need for the
system. Then, during conceptual/preliminary design of the system, consideration
is given simultaneously to its ease of manufacture. This gives rise to a parallel
life cycle for bringing a manufacturability capability into being; that is, design for
manufacture. Another life cycle is for the logistic activities needed to service the
system during use and to support the manufacturing facility during its duty cycle.
This approach indicates that logistics and maintenance requirements planning
should begin during system conceptual design in a coordinated manner.

The knowledge acquired, life-cycle cost committed, and ease of design
change for each stage in the system life-cycle process is illustrated in Figure
2.2. As indicated in this figure, a large portion of the total cost for a system is
associated with its operation and support. The costs associated with different
phases of the life cycle are interrelated. Commitment of these costs is based on
the decisions made in the early stages of the system life cycle.

[¢——————ACQUISITION PHASE ———————>{4——UTILIZATION PHASE —#|

L

Conceptual/ Detail Production

Preliminary Design/ and/or n_""’d“f}c_u“’ )

Design Development | Constructi ¥ P
'Y

>

ommzI

Manufacturing Manutacturing
System Design Operations

L

>
Product Support System Product Support
Design/Deployment and Maintenance

>

Figure 2.1. Product, process, and support life cycles
(Blanchard and Fabrycky, 1990)
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Figure 2.2. Commitment of resources, life-Cycle cost committed,
and cost incurred in a system's life cycle (Fabrycky and Blanchard, 1991)
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2.3 System Design and Development

The system acquisition phase consists of two subphases: (1) design and
development, and (2) production and/or construction. The design process
follows from a set of stated requirements for a given system and evolves through
three steps: (1) conceptual design, (2) preliminary design, and (3) detail design
(Figure 2.3). This process generally begins with a visualization of what is
required and extends through the development, test, and evaluation of an
engineering or prototype model of the system. The output constitutes a
configuration that can be directly produced or constructed from specifications, a
set of drawings, and supporting documents.

Preliminary system design follows conceptual design and extends through
the translation of established system-level requirements into detailed qualitative
and quantitative design requirements (Blanchard and Fabrycky, 1990). As
illustrated in Figure 2.3, preliminary design includes the process of functional
analysis and requirement allocation, the accomplishment of trade-off studies and
optimization, system synthesis, and configuration definition in the form of
detailed specifications.

The emphasis of this research is on the process of system level trade-off
studies and optimization. Various activities in this process can be grouped into
four categories: design generation, design analysis, design evaluation, and
design optimization. The relationships between these activities can be
illustrated by the conceptual model in Figure 2.4.

Design generation. Design generation is a process of identifying and
describing candidate alternatives. Each alternative must be described in
sufficient detail to permit subsequent estimates of outcomes. To identify the
possible courses of action, as summarized by Ackoff (1962), two tasks need to
be accomplished: (1) identifying the variables that significantly affect the
outcome of the problem, and (2) determining which of these variables can be
controlled directly or indirectly by the decision maker.

11
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From definition of needs

I
L

SYNTHESIS OF DESIGN ALTERNATIVES
Output: Description of candidate alternatives

DESIGN ANALYSIS
Output: Assessment of outcomes

.

DESIGN EVALUATION
Output: Identification of an optimal design

DESIGN OPTIMIZATION

DECISION
Adequate ?

To detail design activities

Figure 2.4. The process of system trade-off studies and optimization
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Design analysis. Design analysis represents the activities to transform the
description of each candidate alternative into estimates of outcomes. The
results generated from design analysis will be used for design evaluation.

Design evaluation. Design evaluation denotes the activities to transform
the estimates of outcomes into a utility estimate. All alternatives are compared
equivalently under the same set of criteria. To make a logical decision, a
common measure is required.

Design optimization. The information obtained by performing the
foregoing computations can be used to obtain better candidate solutions. The
design model is improved through iterative redesign. This decision process is
continued until the utility of making another iteration is less than the utility of
mapping to another level of abstraction. If the process is successful, the design
evolves and the output of this decision process is mapped into a less abstract
modeling schema, and the sequence repeats until a suitable system design is
defined. Thus, design alternates between optimization and mapping (Bell, et al.,
1991). Since only partial information is available at each stage, incorrect
decisions are probable. The process must be iterative as well as concurrent.

2.4 Elements of the Design Decision Process

A typical design decision process consists of four elements: the decision
maker, the candidate design altemnatives, the states of nature, and the outcome.
These are discussed below.

Decision maker (DM): An individual or groups of individuals who
have the authority and responsibility to select the alternative to be implemented.
Depending on the level of problem considered, the decision maker may be the
designers or upper-level management.

Candidate alternatives {a}: A set of mutually exclusive courses of action
which satisfy all functional design criteria and provide for the solution of a design

14



problem. Each alternative requires a description so that it can be identified and
analyzed to determine the consequences of its selection. This description
includes specifying characteristics which can be selected by the decision maker
when a given decision is made. The set of these characteristics will be
designated the control variables. The vector of control variables are specified
by X.

States of nature {s}: A set of mutually exclusive and exhaustive states of
nature. The states of nature represent those aspects of the problem
environment which are not subject to the decision maker's control, but may affect
the consequences of the choice of action.

Outcome {c;}: The consequences associated with implementing a
candidate alternative given a state of nature. An outcome may consist of a
single attribute or multiple attributes, or dimensions. Each dimension of an
outcome which is significantly affected by the choice of an alternative, and which
the decision maker considers to be important in making the decision, is
designated an evaluation attribute or decision criterion.

Evaluation attributes are the variables used to rank or measure the
desirability of possible outcomes. By the functions of the criteria, the set of
decision criteria has three major subsets: effectiveness criteria, cost criteria, and
schedule criteria (Lifson, 1972). Each subset represents an important area of
concern. An effectiveness criterion is an attribute of a system which is directly
related to the fulfiliment of needs; a cost criterion reflects the resources required
to implement a course of action; a schedule criterion is related to the time the
system is needed. By the nature of the criteria, the set of criteria may also be
partitioned into subsets of quantified criteria and nonquantified criteria. The
focus of this research will be on quantified criteria.

2.5 Design Decisions in the Face of Uncertainty
The focus of this research is on resolving design decisions in the face of

uncertainties. The relationships between the elements of the design decision
process can be illustrated by a decision evaluation matrix as in Figure 2.5.
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Figure 2.5. A decision evaluation matrix for making design decisions
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The decision maker has identified each state of nature and the
corresponding probability of its occurrence. The outcome associated with each
alternative and each state of nature is also known. It can be assumed that the
decisions are exclusive and exhaustive. That is, one of decisions has to be
taken, and at most one of them can be taken. The choice of any one excludes
the choice of any other. Now the problem is to select the alternative to maximize
the expected worth of the system with respect to various uncertain states of
nature. This best alternative is expected to satisfy recognized human needs
and/or desires best according to some specified criterion of goodness.

Traditional decision theory classifies decisions into three categories (Luce
and Raiffa, 1957): (1) decisions under certainty, (2) decisions under risk, and (3)
decisions under uncertainty. Depending upon whether the probability of the
state of nature is specified, "decisions under risk" and "decisions under
uncertainty" are distinguished.

Now in both the communities of decision research and engineering design,
this distinction between "decisions under risk" and "decisions under uncertainty"
is not made strictly. According to Lindley (1985), there is only one logical way to
make a decision in the presence of uncertainty. Three basic principles must be
followed: (1) assigning probabilities to uncertain events, (2) assigning utilities to
the possible outcomes, and (3) choosing that decision that maximizes expected
utility. Thus, if the quantification of judgment in the form of probability and utility
estimates can be made, then decisions under uncertainty can be converted into
decisions under risk. Therefore, in this research, "decisions under uncertainty"
and “decisions under risk" will not be distinguished. In keeping with the
terminology of engineering design, the term "design evaluation in the face of
uncertainty” will be used.

2.6 Decision Models for Design Analysis and Evaluation

To study the design decision process quantitatively, decision models are
very helpful. A model may be used as a representation of a system to be
brought into being, or to analyze a system aiready in being. Two decision
models which are particularly useful for design analysis and evaluation are
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introduced below. One is the decision model presented by Churchman et al.
(1957). The other is the Design Dependent Parameter Approach developed by
Blanchard and Fabrycky (1990) and Fabrycky and Blanchard (1991).

2.6.1 Decision model of Churchman et al.

For any system, its evaluation attribute is a function of various variables and
parameters. Churchman et al. (1957) classified the variables and parameters
which affect the outcome of a system into two groups: (1) the variables which are
subject to control by the decision maker, and (2) the factors (variable or
constant) which are not subject to the control by the decision maker within the
scope of the problem as defined. The former are often called control variables,
while the latter is called system parameters. The functional relationship between
the evaluation attribute E, control variables X, and system parameters Y, in its
unconstrained form, is expressed as

E=f(X.Y). (2.1)

This decision model is useful for design optimization. The model enables the
decision makers to determine what values of the controllable variables provide
the best level of the evaluation attribute under the conditions described by the
system parameters.

2.6.2 Design Dependent Parameter Approach (DDP)

Blanchard and Fabrycky (1990) extended Churchman et al.'s decision model
to design and operational decision situations involving multiple alternatives.
This extension identifies and isolates design-dependent system parameters from
design-independent parameters. @ The purpose of the design-dependent
parameters is to define each alternative explicitly. In the process of design
analysis and evaluation, the DDP approach uses a design evaluation function to
express the relationship between the evaluation attribute(s), design variables,
design-dependent parameters, and design-independent parameters. The design
evaluation function has the following form:
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E=f(X;Y,.Y,) (2.2)
subjectto  g,(X;¥,,¥)<0, j=1,--k

where: E = a vector of evaluation attributes
X = a vector of design variables
Y, = a vector of design-dependent parameters
Y, = a vector of design-independent parameters

The procedures to apply the DDP approach in design analysis and
evaluation can be illustrated by Figure 2.6. According to the DDP approach,
design decision analysis follows four steps:

Step 1: ldentify possible levels of design-dependent parameters. Each set
of design-dependent parameter values determines a unique design alternative.

Step 2: For each design alternative, determine the setting of design
variable values which optimize the evaluation attribute. The optimum value of
the evaluation attribute for each alternative is then obtained. This step provides
optimization within an alternative.

Step 3: Compare the optimum values of the evaluation attribute for all
alternatives and select the alternative which gives the best attribute value.

Step 4: Decide if the optimum attribute level obtained from the optimum
alternative meets the design requirements. If yes, go to the next design phase.
Otherwise, go back to step 1.

The design evaluation function provides a mathematical means to assess a
system's response to changes in both controllable and uncontrollable factors.
The importance of the DDP approach is in distinguishing choice-based design
and optimization-based design (Fabrycky, 1992). By considering design
variables and design-dependent parameters at different levels of the design
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Figure 2.6. Procedures for application of the DDP approach
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decision process, the implementation of system trade-off studies and
optimization as illustrated in Figure 2.4 becomes more structured and
systematic. When applied in the evaluation of system design, the evaluation
function can be optimized in terms of life-cycle cost and/or the multiple system
effectiveness measures, as shown in Figure 2.7.

21



Cost Effectiveness

:
. 1
( Life Cycle Cost B | System Effectiveness ]
t
e Research & Development Cost * .&;’VS:‘em F; egrc‘)rma:\ce nes. Capaci
e Production & Construction Cost S?zce "x:i ot aéatg ensucs, Capacity,
¢ Operatnon & Suppon Cost e System Effectiveness -
® Retirement & Disposal Cost Availability, Dependabiity, Etc.
r[Sesign & Production Altributesw&ogistics Support Elements :ll
| Functional Design L Customer Service
| Reliability Design __ Supply Support
L Maintainability Design | Test & Support Equipment
L Human Factors Design | Training
L. Safety Design |__ Transportation & Handling
| Producibility . Technical Data J
L Other Design Characteristics __ Facilities
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lll. CONCEPTUALIZATION OF ROBUST SYSTEM DESIGN

3.1 Introduction
3.2 Sources of Uncertainty in Engineered Systems
3.3 The Effect of Uncertainties
3.4 The Concept of Robust System Design
3.5 Measures of the Robustness of Candidate Systems
3.6 Review of Some Existing Approaches

3.1 Introduction

This chapter defines and operationalizes the concept of robust system
design. After identifying various types of uncertainty involved in the process of
system design, the concept of robust design is defined from the perspective of
system life-cycle engineering. Some common measures for assessing the
robustness of candidate designs are examined. Within the context of robust
design, a brief review is then made on some existing approaches for design
optimization.

3.2 Sources of Uncertainty in Engineered Systems

The English language has a number of words to describe the nature of
various uncertainties: possible, odds, probable, plausible, chance, likely, and
many others. The richness of the language reflects the ubiquity of the concept
of uncertainty. In engineering design, the magnitude of a system evaluation
attribute depends both on the state of nature and on the alternative selected.
Since a state of nature is associated with some future date, the state which will
occur cannot, in general, be determined with certainty at the time the decision is
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made. The states of nature are inherently probabilistic. It is evident that, even
given the state and the alternative, the magnitude of a given attribute cannot be
known with certainty at the time the alternative must be selected. Whenever
one can define possible states of nature it is possible to estimate the probability
associated with the choice. This does not mean that we can always obtain
estimates in which we have confidence.

3.2.1 Sources of uncertainty

In the process of design decision making, there are various types of
quantities to be considered. These include decision variables, empirical
quantities, outcome criterion, defined constants, and others. For design
evaluation in the face of uncertainty, the empirical quantities demand special
attention because they represent measurable properties of the real-world
systems being modeled.

There have been several attempts to create taxonomies of different kinds of
uncertainty. Most of these have concentrated on uncertainty in empirical
quantities which constitute the majority of quantities in models for design
analysis and evaluation. Uncertainties in empirical quantities can arise from a
variety of different kinds of sources. According to Morgan and Henrion (1990),
various sources of uncertainty can be divided into seven categories:

1) Random error and statistical variation

2) Systematic error and subjective judgment
3) Linguistic imprecision

4) Variability

5) Inherent randomness

6) Disagreement

7) Approximation

In developing engineered systems, two major types of uncertainties are the
uncertainty associated with the inherent variability of the physical process and
the uncertainty associated with the imperfection in the modeling of the physical
process (Ang and Tang, 1984).
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Uncertainty due to inherent variability. The randomness in a physical
process contributes to uncertainty because it is inherently not possible to
ascertain the realization of the process. From a practical standpoint, inherent
variability is essentially a state of nature and the resulting uncertainty cannot be
avoided. Even if the physical laws governing a system are well understood, its
behavior may be unpredictable because of modeling and computational
limitations. The issues of inherent randomness and the limits of predictability do
not seem to pose practical difficulties for uncertainty in risk analysis and other
quantitative policy analysis. In this context, the main objective is to distinguish
uncertainty that might be reducible by further research or more detailed
modeling from uncertainty that is unlikely to be reducible, whether because of
'inherent randomness" or because of practical unpredictability.

Uncertainty associated with prediction error. In most problem
environments of engineering design, predictions and estimations of the states of
nature are often performed under conditions of incomplete or inadequate
information. The potential errors of an imperfect prediction model cannot be
entirely corrected deterministically. Errors of prediction include estimation error
(such as statistical sampling error) as well as the imperfection of the prediction
model. Such prediction error may include a systematic component (bias) as well
as a random component (random error). The systematic errors often arise from
biases in the measuring apparatus and experimental procedure. The uncertainty
associated with prediction or modeling error may be reduced through the use of
more accurate models and/or the acquisition of additional data.

3.2.2 Variations over the system life cycle

Uncertainties are involved in all phases of a system's life cycle. When the
decision is made to begin concept formulation, uncertainties are great. In fact,
there are few certainties. Needs may be known vaguely; cost of acquisition and
use are essentially unknown; feasibility, both financial and technical, has not
been established. As the life cycle progresses, uncertainty is reduced by
gaining more information. Due to uncertainties involved in the system life cycle,
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there exist three sources of variation when a system design is implemented
(Taylor, 1991):

1) Manufacturing variation
2) Variation due to deterioration
3) Usage variation

Manufacturing variation is the variation in system performance resulting from
such things as fluctuations in the process parameters and materials, wearing
and changing in tooling, and changes in the methods, operators, and
manufacturing environment. Statistical process control addresses only this
source of variation. Formally, manufacturing variation should be defined as the
variation up to the time the system is delivered to the customer.

In the customer's eyes, the last two types of variations are just as important
as manufacturing variation. All three cause a system to deviate from the ideal.
When reducing variation, these last two sources should not be overlooked.

The sources of performance variations are called noise factors in Taguchi's
terminology. Taguchi (1986) classifies various noise factors in a system into
three types: (1) internal noise errors inherent in the design, such as wear,
storage deterioration of materials, etc., (2) variational noise errors due to
variation in the supplied materials and manufacturing processes, and (3)
external noise errors due to environmental fluctuations.

3.2.3 Uncertainty about models for design evaluation

Design decision analysis depends on the decision models used to represent
the system. The models are representation of states, objects, and events. The
model form incorporates both the factual and value structure of the model being
employed. They are idealized in the sense that they are less complicated than
reality and hence easier to use for research purposes. The simplicity of models,
compared with reality, lies in the fact that only the relevant properties of reality
are represented. They are utilized to accumulate and relate the knowledge we
have about different aspects of reality.
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Uncertainty about the form of a model is generally harder to think about than
uncertainty about the value of a quantity. In general, approximation uncertainty
arises because the model is only a simplified version of the real-worid system
being modeled. There has been relatively little research into situations in which
there is uncertainty or disagreement about what form of model to use, for either
facts or values; and much remains to be done in developing methods of dealing
with them. Ackoff (1962) pointed out that there are four ways in which a model
could be in error:

1) The model may contain irrelevant variables which have no effect on the
outcome.

2) The model may not include variables which are relevant.

3) The function which relates the controllable and uncontrollable variables to
the outcome may be incorrect.

4) The numeric values assigned to the variables may be inaccurate.

3.3 The Effect of Uncertainties

Following the design decision model of Fabrycky and Blanchard (1991), a
general design evaluation model has the form:

Maximize E=f(X;Y,.Y,)
subject to g(X;¥,,Y,)<0, j=1,--k
where: E = a vector of evaluation attributes

X = a vector of design variables
Y, = a vector of design-dependent parameters
¥; = a vector of design-independent parameters

In general, for a given set of nominal values for X, Y, and Y, there can be
fluctuations &X, 6Y,, and oY, about these nominal values. We are interested in

how these fluctuations are transmitted to the objective and constraint functions.
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The fluctuations &X are variations from the derived values of the design
variable that arise primarily when the design is implemented. In general, the
design can specify a tolerance band for these fluctuations. 6Y, may be due to
errors in estimating and/or predicting the values of the design-dependent
parameters. The fluctuations &Y, represent variations over which the designer
has no control or very limited control. They are primarily because of uncertainty
in the values of ¥,

Because the amount of these fluctuations is unknown, X, Y, and Y; are
actually random variables. Thus, the evaluation attribute E is optimized while a
set of stochastic functional relationships constraint the vector of design
variables. Since design-independent parameters are empirical quantities, the
uncertainty associated with them can often be expressed by probability
distributions. Design variables and design-dependent parameters are decision
variables. As argued by Morgan and Henrion (1990), it is generally
inappropriate to represent uncertainty about decision variables by probability
distributions. Instead, a parametric sensitivity analysis should be conducted on
these quantities, that is to examine the effect on the outcome of deterministic
changes to the uncertain quantity.

The uncertainties about design variables, design-dependent parameters,
and design-independent parameters may have significant effects on design
decision making. Two of the problems they may cause are discussed below:

Feasibility. In a constrained design space, the scope of the feasible region
may be reduced due to variations in design-dependent and/or design-
independent parameters. In many traditional design optimization formulations,
an optimal solution is obtained by assuming a "best value" for each uncertain
parameter. If some of the "best estimates” vary in practice, the optimal solution
previously identified may not be feasible.

Performance variations. The traditional approach to design optimization
is to optimize an idealized model and then rely on a continuity principle: what is
optimal at the model should be optimal nearby. Unfortunately, this reliance on
continuity is confounded: the classical optimized procedures tend to be
discontinuous in the statistically meaningful topologies (Huber, 1977). Because
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of uncertainties, both the values of design variables and system parameters may
deviate from the ideal conditions when a system is implemented. As a result, the
variation of the evaluation attribute will increase. The uncertainty associated
with estimates of outcomes is often regarded as a risk in system design.

3.4 The Concept of Robust System Design
3.4.1 Dealing with uncertainty in system design

One of the principal aims of engineering design is the assurance of system
performance within the constraint of economy. Indeed, the assurance of
performance is primarily (if not solely) the responsibility of designers. The
achievement of this objective, however, is generally not a simple problem,
particularly for large systems. Risk is generally implicit in all engineered
systems.

There are three ways to approach this uncertainty in the engineering design
decision process:

1) Obtaining better estimates of uncertainties in design-independent
parameters. If the decision maker must act and cannot delay the problem,
then the estimate of the probability should be made in such a way as to take
into account of the serious outcomes.

2) Controlling the variations in controllables. The variations in the settings of
design variables can be reduced by enforcing tighter control. However,
reducing the tolerance band will increase manufacturing costs.

3) Controlling the transmitted variation by minimizing sensitivities of constraints
and objective function to various variations. Developing a design which is
less sensitive to the uncertain factors is called robust design in Taguchi's
terminology. For some key inputs which are outside of the manufacturer's
control, e.g., usage conditions, only robust design will work. It is not possible
to tighten up on usage conditions without reducing the functionability of the
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system. Instead, interaction between usage conditions and other key inputs
can be used to make the system insensitive to the variations in usage
conditions.

3.4.2 The philosophy of robust design

The logic of robust design can be illustrated with an example from the
military. It is clear that the outcome of a battle often depends on what an enemy
does. But what the enemy does cannot be accurately predicted. The strategy
should be to attempt to develop equipment and tactics which are less sensitive
to whatever the enemy does.

As applied in engineered system design, the concept of robust design is
very important. When a candidate design is selected and realized, the system's
response depends both on the values for design variables and uncontrollable
system parameters (or noise factors). In many instances, the optimum values for
the controllable system design variables are obtained to optimize the evaluation
function with respect to its target value. The variation of the evaluation attribute
with respect to uncontrollable parameters is often ignored in this process. Since
the values of the uncontrollable factors are uncertain in the process of system
design and planning, the robustness of the proposed design is essential in
implementing a solution on a real system. By requiring the design to be
insensitive to the uncertainty in the value of system parameters, an additional
criterion is available to distinguish between designs which are approximately
equivalent in meeting other design criteria.

3.4.3 Definitions of robustness

As used in engineered product and process design, robustness is a vague
construct or concept devised for measuring the desirability of a design. To study
the concept, we need to operationalize and define it. The most common way to
operationalize a concept is to select measurable variables to represent the
concept. However, one must keep in mind that these variables only give an
incomplete representation.
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Before selecting specific variables to study, we need to review the literature
to determine how other researchers operationalize the concept of robustness.
The literature must be examined critically and problems with operational
definitions of concepts should be noted.

According to the American Héritage Dictionary (Houghton Mifflin, 1985), the
word "robust" has five meanings: (1) vigorous, (2) powerfully built, (3) requiring
or suited to physical strength or endurance, (4) rough, and (5) marked by
richness and fuliness. In the scientific research community, the word "robust" is
loaded with many — sometimes inconsistent — connotations. To study the
robustness of statistical methods and models, "robust statistics" has been
developed into an important branch of statistics. In the sense of statistical
analysis, "robustness" means the insensitivity of the decision to uncertain
assumptions in the analysis (Huber, 1977). It signifies insensitivity of the
decision against small deviations from the assumptions.

Thanks to the recent success in applying Taguchi's philosophy of product
and process design, "robustness” has become a popular term in the engineering
design community. The original idea of Taguchi's robust design is to use
statistically planned experiments to identify process control parameter settings
that reduce the process's sensitivity to manufacturing variation (Kackar and
Shoemaker, 1986).

The word "robustness" now means different things to different people. The
connotation depends on the purposes of the study and the environment
wherever the concept is used. For some researchers, robust design means
minimizing the variations in system performance with respect to various settings
of design variables (Sundaresan et al., 1991; d'Entremont and Ragsdell, 1988).
Optimal tolerance design is considered as a part of robust design by Parkinson
et al. (1990). Parameter sensitivity analysis is another term for robust design
(Eggert and Mayne, 1990; Beltracchi and Gabriele, 1988). Among others, the
term "robust design" is used as a buzzword to label any design optimization
techniques. There is no general and formal definition given in the literature.

As indicated before, uncertainties are involved in all phases of a system's
life cycle. Thus, the robustness of a system should be studied from the
perspective of life-cycle engineering. Various definitions of robust design used
in developing engineered systems can be summarized into a general definition:
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In system design, robustness expresses the insensitivity of the
system's performance to uncertainties in both the system
acquisition phase and the system utilization phase.

In the preliminary design stége, design analysis and evaluation depends
upon the decision model used to represent the system. As identified in Section
3.2, uncertainties are associated with decision variables and design-
independent parameters. The uncertainty about design-independent parameters
is not controllable. The variations of decision variables are controllable. With
the help of a design evaluation function, the robustness of a candidate system
can be estimated by assessing the variations of the evaluation attribute due to
uncertainties in decision variables and design-independent parameters. Thus,
by incorporating the general definition of robust design into a design decision
model, two operational definitions are obtained, each representing the decision
maker's concern to each type of uncertainty:

1) Robustness represents the insensitivity of the system's evaluation attribute
to the uncertainty in uncontroliable (design-independent) parameters.

2) Robustness represents the insensitivity of the system's evaluation attribute
to uncertainties in design-independent parameters as well as variations in
design variables and design-dependent parameters.

3.5 Measures of the Robustness of Candidate Systems

Due to various uncertainties, the evaluation attribute of a system is a
random variable. The robustness of a candidate system can be expressed and
estimated by studying the variations of the evaluation attribute due to various

uncertainties. Some of the common measures of the variations in the evaluation
attributes are identified next.

3.5.1 Probability distribution

As discussed in Section 3.2, there is a functional dependency between the
evaluation attribute £ and design variables X, design-dependent parameters Y,
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and design-independent parameters Y. Since E is a function of random
variables, it is a random variable itself and cannot be described deterministically.
The randomness in a physical process and unknown states of nature
contribute to uncertainty. The conceivable or possible realizations of system
response can be represented with a probability mass function (PMF) or a
probability distribution function.
If an evaluation attribute E is continuous, its cumulative distribution function

(CDF) is

F.(e)=P(E<e) foralle (3.1)
If F(e) has a first derivative, the probability density function (PDF) of E is

ar, (e)

Je(e)= (3.2)

The probabilistic characteristics of an evaluation attribute would be
described completely if the form of the distribution function (or PMF) and the
associated parameters are specified. A probability distribution, in terms of the
evaluation attribute, contains all the information. In practice, the form of the
distribution function may not be known; consequently, approximate description of
a random variable is often necessary. The probabilistic characteristics of the
evaluation attribute may be described approximately in terms of certain main
descriptors of the random variable. The most important of these quantities are
the central value of the evaluation attribute, and a measure of dispersion of its
values.

Moreover, even when the distribution function is known, the main
descriptors remain useful. In practice, it usually is hard to look at probability
distributions and internalize the risk and opportunities of various design
alternatives. Rather than try to assimilate the entire probability distribution for
the evaluation attribute, comparisons can be made on the basis of some
summary measures.

33



3.5.2 Mean, variance, and standard deviation

One of the most important summary measures for a random variable is the
expected value of E. For a discrete evaluation attribute £ with probability mass
function p,(e,), its expected value, denoted by x,, is

Bz =2.ePs(€). (3.3)

Similarly, for a continuous evaluation attribute £ with PDF £, (e), the mean value
is

ps = efs(e) de. (3.4)

Using the mean of the evaluation attribute is not enough to describe its
probabilistic characteristics. The variation of the evaluation attribute around the
mean results in a risk in system design. To measure the risk, we need to
determine the variability or dispersion in the evaluation attribute.

If the deviations are taken with respect to the mean value, a suitable
average measure of dispersion is the variance. For a discrete evaluation
attribute E with probability mass function p.(e,), the variance of E , denoted by

o is
o% = Z(ei _ﬂz)z Pg (e;' ) (35)

If E is continuous with PDF £ (e), the variance is

oy =[ (e~ us) fs(e) de. (36)

Dimensionally, a more convenient measure of dispersion is the square root
of the variance, or the standard deviation o. That is:

— % (3.7)
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It is hard to say, solely on the basis of the variance or standard deviation,
whether the dispersion is large or small. For this purpose, the measure of
dispersion relative to the mean is more useful. Thus, the coefficient of variation

(COV),

5, =& - (3.8)

is often a preferred and convenient nondimentional measure of variability.

The use of variance as a measure of robustness of a system implies that
deviations below the expected value are regarded in the same way as deviations
above the expected value (Figure 3.1). Even though this measure has been
criticized as too conservative, since it regards all extreme values as undesirable,
variance is still a popular measure of risk because of its familiarity and ease of
computation (Mantell, 1972).

fle)

&
< >

Negative deviation Positive deviation

>
Expected value Evaluation attribute e

Figure 3.1. Variance as a measure of an evaluation attribute's variability
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3.5.3 Semivariance

Variance is an even function of the deviations. Whether a deviation is
above or below the mean value is of no significance. In some cases, however,
we are concerned with the variability only on the undesirable side of the
expected value. The semivariance of the evaluation attribute is a measure

focusing on such variability (Figure 3.2).
For a continuous evaluation attribute £ with PDF £, (e), the semivariance, S,

is

Sy=|_(h—e) () de. (3.9)

f(e) W

]

Negative deviation

b
L4

Expected value Evaluation attribute e

Figure 3.2. Semivariance as a measure of an evaluation attribute's variability
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3.5.4 Probability of loss

Another measure of robustness for a system is the probability of loss
criterion (Bonni, 1975). This measure, along with some variants of it, has
become known as the reliability criterion or the safety-first rule in the community
of engineering design, particularly in civil engineering. The measure treats only
the values of the evaluation attribute below a certain value as unfavorable (more
is preferable) (Figure 3.3). The critical level is called aspiration level, which is
widely used in project evaluation. For example, if the evaluation attribute of
concern is the reliability of a system, the probability of loss measure considers
only the possibilities of reliability being below a critical level, say 0.8.

For an evaluation attribute £ with PDF £ (e), if its aspiration level is e,, the

probability of loss is

P, =P(E<e)=[" fy(e)de, (3.10)

The probability-of-loss calculation obscures the magnitude of the variability of
the evaluation attribute. Thus, this measure provides less information than the
probability distribution itself.

A
f(e) Area under the curve up to a critcal level
//% >
Critcal level ©

Figure 3.3. Probability of loss as a measure of a system's robustness
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3.5.5 Taguchi's loss function

Taguchi (1986) recommends the use of a squared-error loss function to
measure the loss in value due to the deviation of the evaluation attribute from its
target value. For an evaluation attribute E, the loss function takes the following

form:
L=k(E-e.) (3.11)

where e is the target value of the evaluation attribute E, and & is a constant.
The function (3.11) can be expressed as

L=kE-e¢,)
=k(E-pg+pg—e )
=k[(E-:UE)2 +2(E - pg Xpg —er )+ (g —eT)z]

Taking expectation of the loss function, we obtain the expected loss
E(L)=k[(ug —e;)* +0%] (3.12)

The first term within the brackets represents the bias. Thus, the expected loss is
a function of both bias and variance.

3.5.6 Taguchi's signal-to-noise ratios

To evaluate the robustness of various candidate designs, Taguchi (1986)
defined a series of statistics. These statistics are called signal-to-noise ratios.
Taguchi classifies various design decision problems into three categories:
smaller the better, larger the better, nominal the better. The signal-to-noise ratio
is defined for each category below.
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Smaller the better (STB). The overriding concern is to get the value of an
evaluation attribute as close as to zero as possible. To obtain as many of the
values as low as possible requires concentrating on both reducing the average
and on reducing the variation around this average. Taguchi recommends the
following performance measure (Taguchi, 1987):

PM = -10log[ st ] (3.13)

Let ¢, e,, ..., e, approximate a random sample from the distribution of E for a
given level of design-independent parameters. Taguchi presents the following
signal-to-noise ratio to approximate the performance measure:

SIN= -101og[i (%)] (3.14)

=l

Larger the better (LTB). In this type of problem the overriding concern
is getting some characteristic as high as possible. Lower values must be
guarded against. To get as many of the values as high as possible requires
concentrating primarily on driving the average higher. However, variation
cannot be ignored. No matter how high an average is obtained, excessive
variation can still cause some units to fall below the lower specification limit.
The performance measure and signal-to-noise ratio for this case are (Taguchi,
1987)

PM = _101og[i2], (3.15)

E

SIN= —101og[i (#)] (3.16)

i=1 i

Nominal the better (NTB). The third category is characterized by the
existence of an ideal value called target value. Every unit should be as close to
this target value as possible. Both excessively high and excessively low values
must be guarded against. This requires the average be as close to the target as
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possible and minimizing the variation around this target. The performance
measure and signal-to-noise ratio recommended by Taguchi are (Taguchi,
1987):

. 2
PM:lOlog[&], (3.17)
0%

S/N= IOIog[i (;—‘2)], (3.18)

where s is the standard deviation of the sample.
3.5.7 Sensitivity ratio

To use semivariance and the probability of loss as a measure of robustness
in design evaluation, full knowledge of the probability distribution of each
alternative's evaluation attribute is required. As an alternative, when the design
evaluation function

E=f(X;Y,.Y)

is defined for the design decision problem, the variation of the evaluation
attribute with respect to the design-independent parameters may be estimated
directly by using the theory of sensitivity analysis of linear systems.

Let Y = the estimated value of ¥, . If the design evaluation function is

differentiable, the sensitivity of the evaluation attribute with respect to ¥, is

df(X;¥,.1)

- for¥ =%Y". (3.19)
i

The objective of robust design is to find X so that the sensitivity ratio (3.19)
becomes minimum. For specified values of X,Y,, and ¥, the change of E due to

the variation 6%, in ¥, is then given by

| 243

T I"

(3.20)
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3.6 Review of Some Existing Approaches

There are a number of approaches developed for design analysis and
evaluation. In this section, after discussing the limitations of some traditional
techniques, the advantages and limitations of Taguchi's approach are reviewed.
This review indicates some areas for further research.

3.6.1 Limitations of the traditional approaches

The difficulty with most existing tools for design analysis and evaluation is
not that they solve the problem incorrectly, but they are being applied to solve
the wrong problem (Sandgren, 1989). Little research has been conducted on
the development of decision analysis methodology for early system design
activities. There is not a complete, cohesive structure for the determination of
design criteria, their modeling in terms of system variables and parameters, the
synthesis and screening of alternatives, and formal optimization. Most of these
activities and decisions have been accomplished in an ad hoc manner or, at
best, in separate activities without close coordination with other segments of the
process. The selection of design criteria is often subjective and influenced by
factors such as design application, judgment of the designer, timing, etc.

Deterministic optimization techniques have been employed to solve a wide
variety of engineering design problems. Nonlinear programming has shown
some promise as a general design tool. But the rigid structure imposed by the
problem formulation has made it difficult to include many important design
issues. There is no convenient way to bring knowledge of the design trade-offs
into the optimization. Deterministic models do not portray the nature and impact
of random variations that occur in actual manufacturing processes or operating
conditions (Eggert, 1991). In an optimally designed system based on
deterministic considerations, the designs may be sensitive to variations in
design variables or system parameters. Such variations may lead to unexpected
constraint violations and an unsatisfactory design (Eggert, 1991).
Consequently, the optimized system tends to be more sensitive to fabrication
defects and improper definition of the environment (Ang and Tang, 1984).
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3.6.2 Taguchi's approach

To improve product quality, a new approach to engineering design has been
developed by Taguchi. Different from traditional optimization methods,
Taguchi's approach employs statiétically designed experiments for product and
process design. Taguchi (1986) divided the design process into three steps:
system design, parameter design, and tolerance design. At the heart of
Taguchi's philosophy is the concept of the quality loss function, which is used as
a criterion to be optimized in parameter design. Quality loss is defined as the
loss incurred by society from the time a product is released for shipment
(Taguchi et al., 1989).

Taguchi's work is closely aligned with statistical experimental design and
addresses the uncertainty issue as a normal part of the design process. The
philosophy is to identify settings of controllable factors that minimize
performance variations, while keeping performance as close as possible to its
target value. Parameter design is usually accomplished by using an orthogonal
experimental design approach.

Experiences indicated that Taguchi's parameter design approach worked
well in manufacturing after the system design has been completed. But it is
difficult to apply at the conceptual design level. Since the model development
and interpretation of the approach relies on direct experimentation, it is difficult
to apply to designs which do not yet exist. However, as Sandgren (1989)
indicated, the time to consider the sensitivity of a design change should be
during the initial design phase. If design sensitivities are considered early on in
the process, it may well reduce the number of local minima present.

Taguchi's philosophy of reducing variation in performance through reducing
the sensitivity of an engineering design to sources of variation rather than
controlling the sources is very important to the development of quality design.
However, this concept is often used without considering other concerns such as
costs of experimentation and manufacturing. Otto and Antonsson (1991) argued
that applying this concept in preliminary system design would generally lead to
overly expensive products. In the preliminary design stage, the design-
dependent parameters are selected. According to Taguchi's concept, there
would be an illusion that we shouid always pick the parameters which minimize
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performance variations, even if this means greatly increased expense to the
designer, manufacturer, or company. This is unacceptable, as Taguchi readily
admits (1986). In this sense, Taguchi's loss function is not complete. System
life-cycle cost may be a more appropriate measure.

As with any new techniques,'there are many criticisms and controversies
regarding Taguchi's approach. Much of the controversies are focused on
technical issues that pertain to certain pieces of the overall scheme. As stated
by Box (1985), it is very important to separate Taguchi's quality engineering
ideas from the statistical techniques he used to put these ideas in practice.
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IV. DESIGN EVALUATION BY DECISION THEORY:
CLASSIFICATION AND MODELING OF DESIGN DECISIONS

4.1 Introduction

4.2 Design Evaluation by Decision Theory

4.3 Concepts of Decision Modeling

4.4 Classification of System Design Decision Problems
4.5 Discrete Decisions and Discrete Events

4.6 Discrete Decisions and Continuous Events

4.7 Continuous Decisions and Discrete Events

4.8 Continuous Decisions and Continuous Events

4.1 Introduction

The objective of design evaluation is to identify a best design. In this
chapter and Chapter V, problems of design evaluation in the face of uncertainty
are studied based upon statistical decision theory. The focus of this chapter is
on the structuring and modeling of design decisions in the face of uncertainty.
Chapter V will discuss the concepts and approaches for choosing a best design.

4.2 Design Evaluation by Decision Theory
4.2.1 Robust design vs. "best design”
To solve a design problem is to make the best choice from among the

available courses of action. In order to maximize the chance of attaining or
approximating the best solution to a design problem, one must understand what



the "best" solution to the problem is. However, as pointed out by Ackoff (1962),
it is not at all obvious what is meant by the "best" solution to a problem. A final
definition of "best" in this context has not yet been attained, and it is not likely
that it ever will be.

In resolving system design decisions in the face of uncertainty, does a
robust design as defined in Chapter lil represent the best design for the overall
decision problem? To answer this question, three aspects of the design
decision problem must be considered. One is the variations in the value of the
system's evaluation attribute(s) due to various uncertainties. Experience
indicates that use of mean as the decision criterion for design evaluation in the
face of uncertainty may result in a poor design. Attempts to minimize the
variation of the evaluation attribute have led to the philosophy of robust design.
Actually, the concept of minimization of variation is often incorrectly interpreted
as Taguchi method. This misconception leads some to believe that variance
minimization is an objective criterion for identifying a best design.

A design which generates a minimum variance for the evaluation attribute is
not necessarily the best design. Variations represent the risks involved in the
process of design evaluation. In comparing various candidate designs, one
must keep in mind that different decision makers may not have identical risk
attitudes. This subjective nature of the DM must be considered in order to select
a best design. Thus, the second aspect of the design decision problem
concerns the risk attitude of the DM toward various levels of the evaluation
attribute.

Taguchi's robust design approach is often used by considering only a single
attribute. However, a design which is optimal for individual attributes of a
system may not be best overall. Taguchi's approach does not address the third
aspect of the design decision problem; that is, the value trade-offs among
multiple attributes or objectives.

In many cases, to identify the best design, designers have to consider more
than one attribute. Some attributes may be more important than others and
some may be hard while others may be soft criteria. Specific requirements for
these attributes may be associated with any level of the design process.
Examples of the requirements include factors such as how well the design
specifications are met as well as cost, reliability, and maintainability. To obtain
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the best design possible with the resources available, the DM must weigh value
judgments that involve various factors. Thus, to make the optimal decision is to
choose the alternative from among those available that will give the best
performance, considering all factors, including robustness. This best
performance represents the optimum compromise of all the factors considered.

Thus, to resolve design decisions problems under uncertainty, one must
consider performance variations, risk attitudes, and value trade-offs jointly. We
would like to select the alternative which is expected to result in the greatest
degree of achievement of our objectives. A best design is not only robust for an
individual attribute, but also provides an optimal trade-off among various
attributes of concern. In this sense, the "best design" is subjective. It depends
upon the value preferences and risk attitudes of the decision maker.

4.2.2 Design evaluation by decision theory

As defined in Section 3.4.3, "robustness” means the insensitivity of a design
to uncertainties in both the system acquisition stage and the system utilization
stage. Since the design of engineered systems is often accomplished without
complete information, the assurance of performance can seldom be perfect.
Moreover, many decisions that are required during the process of planning and
design are invariably made under conditions of uncertainty. Therefore, there is
invariably some chance of nonperformance or failure and of its associated
adverse consequences; hence, risk is often unavoidable. Under such
conditions, it is not feasible (practically or economically) to assure absolute
performance of engineered systems. Thus, instead of talking about robust
design in a narrow sense, the purpose of design optimization should be to
develop the "best design" by considering three aspects of the design decision
problem discussed above.

In determining what a design decision is best, one is concerned with the
choices a decision maker should make, not necessarily with those the DM
normally makes. In order to apply the concept of "best decision" to design
evaluation under uncertainty, it is necessary to evaluate the losses (and gains)
from falsely (or correctly) rejecting or accepting an alternative. It is also
necessary to evaluate the losses due to error in estimating the value of a
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parameter, when this estimate may be used for many purposes of which the
research cannot be aware. Thus, design evaluation in the face of uncertainty is
actually a problem of decision making under uncertainty. As indicated by
Singpurwalla (1991), the term "design by decision theory" would more accurately
encapsulate the totality of Taguch'i's ideas. Such an approach would raise the
level of awareness in engineering design by shifting emphasis from the narrow
aspect of experimental design to the more encompassing one of decision
making under uncertainty.

The decision analysis approach can integrate the key steps of engineering
design. Instead of focusing on certain parts of the design decision process,
such as experimental design, signal to noise ratios, etc., the decision analysis
approach concentrates on the overall design decision process. Statistical theory
underlying this theme is well developed, and like the statistical theory of the
design of experiments, design engineers should learn to apply the results of this
theory to design practice.

4.3 Modeling of Design Decision Problems
4.3.1 Decision tree

Design decision problems in the face of uncertainty are made up of
decisions and uncertain events. The structure of a decision problem in terms of
the sequence and causal relationships between various decisions and uncertain
outcomes can be effectively represented by a decision tree.

Conceptually, the symbolic logic of the decision tree representation is
closely akin to that of network analysis. Decision trees are built up as a
connection of essentially two fundamental units, namely decision nodes and
chance nodes. Decision nodes are conventionally represented by a square box
(Figure 4.1) and indicate that subsequent nodes connected to this box can be
reached according to deterministic choice on the part of the decision maker at
this point. The set of subsequent nodes attached to the box will thus represent
the DM's set of feasible decisions, and these nodes can be future decision
nodes, terminal payoffs or, more usually, chance nodes.
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Chance nodes are conventionally represented by circles (Figure 4.1) and
indicate that the set of subsequent nodes connected to this circle will be reached
according to some probabilistic process over which the DM has no control
(although the DM will typically have some beliefs upon which are more or less
likely than others). Thus this set of subsequent nodes will represent the set of
possible outcomes and will be either future decision or chance nodes, or a final

terminal payoff.

A decision node

/
\

A chance node

Figure 4.1. A decision node and a chance node

Decision trees link together these two types of nodes to represent possible
outcomes. For example, suppose a particular decision, say, a,, is selected and
the uncertain event, s, occurs. The occurrence of the event will remove all
uncertainty from the problem and the action, a, will produce a definite result
which can be foreseen with certainty. In other words, the combination of a, with
s; will result in a foreseeable consequence. This consequence can be written c;.

An example of decision trees is given in Figure 4.2.
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Figure 4.2. An example of decision trees

4.3.2 Two types of outcome spaces

The starting point for the modeling of decision making under uncertainty is
to specify the outcome space. The end points in a decision tree represent the
outcome space for the model of the decision problem. The levels of the
evaluation attribute assigned to the end points are specific values of a random
variable.

Basically, the outcome space for design decision problems can be modeled
either discretely or continuously. The type of models used for describing an
outcome space depends on the characteristics of both design alternatives and
design-independent parameters. If the outcomes of a design decision problem
are either continuous or consist of a large number of possible outcomes, a
continuous model should be used. For example, in some cases, the outcome
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space is actually continuous, such as the gas mileage of a car (neglecting
limitations due to measurement accuracy). In other cases, the outcome space is
defined essentially by continuous variables. For example, the number of new
cars sold in a certain geographical area during a month might cover the range of
whole numbers between 1,000 to 10,000. From a practical point of view, it may
be impossible to separately assess probabilities for each of the 9001 points
required by such a model. A model based on a continuous set of outcomes may
be the best approximation available for this essentially continuous outcome
space.

Decision diagrams represent continuous random variables by fans and a
single representative outcome. They do not show individual branches. Instead,
event fans and alternative fans are used. Figure 4.3 shows a hypothetical
alternative fan and a hypothetical event fan.

4.3.3 Conversion of continuous probability models to discrete models

Continuous probability models are often used to represent uncertain events
with continuous outcomes or a large number of outcomes in order to obtain a
good model. If a continuous probability distribution can be approximated by a
discrete distribution, computations can be facilitated. The ability to generate
discrete approximations for continuous distributions allows all definitions and
manipulations for discrete random variables to be used for continuous random
variables.

In principle, discrete approximations to continuous probability distributions
can be made as accurate as desired. The limiting factor is the number of
intervals used in the approximation. With the availability of computers, it is
feasible to use a large number of discrete points similar to discrete
approximations used in numerical integration. On the other hand, a small
number of intervals usually provides an adequate approximation. There are
several ways of making this approximation. The essential problem is to capture
the important characteristics of a distribution with a few discrete points.
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A continuous alternative
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A continuous event

Figure 4.3. A continuous alternative and a continuous event

4.4 Classification of System Design Decision Problems

The outcome space of a system design decision problem is determined by
three factors: the set of design alternatives, the set of design variables, and the
set of design-independent parameters. In preliminary system design, the most
common situation is that there exists a list a,, a,, ..., a, of / exclusive and
exhaustive design alternatives. The design alternatives are usually identified
before design evaluation is started. For a design alternative, the design
variables form the set of decision variables for the problem. The various
combinations of the settings of the design variables determine a set of possible
decisions available within the design alternative, {d}. Due to uncertainties in
design-independent parameters, there is a set of uncertain events, {s}. The
events are determined by the settings of the design-independent parameters.
The decision problem is to select a single alternative and a single decision
within the alternative, not knowing which member of the event set will be true.
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Depending upon whether the decisions and the uncertain events can be
represented by discrete models or by continuous models, various design
decision problems can be classified into four categories (Table 4.1). Each
category is discussed below.

Table 4.1. Classification of Design Decision Problems

Uncertain Events

Decisions

Discrete Continuous
Discrete Category 1 Category 2
Continuous Category 3 Category 4

4.5 Discrete decisions and discrete events

In preliminary system design, a common situation is that for each design
alternative, there exist a list 4, d,, ..., d,, of m exclusive and exhaustive design
decisions to be selected and there is a second list s,, s, ..., s, of n exclusive and
exhaustive uncertain events. Thus, both the decisions and the events can be
represented by discrete models. The structure of this type of design decision
problem can be represented by a multi-stage decision diagram as in Figure 4.4.
Since both decisions and events are discrete, the outcome space of the problem
is also discrete.

In constructing the decision tree, design alternatives are identified at the
leftmost decision node. This corresponds to the first step of the Design
Dependent Parameter approach. For each alternative, various decisions are
identified at the decision nodes in the middle column by varying the settings of
the design variables. The chance nodes reflect the uncertainties in the design-
independent parameters. At each chance node, all of the possible uncertain
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Figure 4.4. Discrete decisions and discrete events



events are identified by varying the possible settings of the design-independent
parameters. Thus, the outcome for each decision within each design alternative
depends upon the uncertain event taken.

The decision diagram provides a structured model for the decision process.
Design evaluation begins with the right side of the tree and works backwards.
For each uncertain event, the outcome of each decision is estimated based upon
the design evaluation function. The outcomes from each decision within the
same alternative are then compared to choose an optimal decision for each
alternative. This step is called optimization within an alternative. Finally the
optimal decisions from each alternative are compared to obtain the best decision
for the overall problem.

4.6 Discrete decisions and continuous events

In this type of problem, for each design alternative identified, there are a
finite number of exhaustive and mutually exclusive decisions, d,, d,, ..., d,, but
there are a large or infinite number of uncertain events. The uncertain events
must be represented by a continuous model. Such a decision problem can be
represented by Figure 4.5. Since the events are continuous, the outcome space
of this type of problem is also continuous. [f the probability distribution of the
events can be approximated by a discrete distribution, this category of problem
is reduced to Category 1.

4.7 Continuous decisions and discrete events

When there are a large or infinite number of decisions for each alternative,
decisions must be represented by a continuous model. Depending upon
whether the events due to the uncertainty in design-independent parameters are
discrete or continuous, the problems of continuous decisions can be divided into
two categories: (1) the decisions are continuous, but the events are discrete,
and (2) both decisions and events are continuous. The outcome space for both
types of problems is continuous. The problems of continuous decisions and
discrete events can be represented by Figure 4.6.
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Design alternatives  Design decisions Uncertain events

Figure 4.6. Continuous decisions and discrete events
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4.8 Continuous decisions and continuous events

If both decisions and uncertain events are continuous, continuous models
must be used. The decision tree for this category is given in Figure 4.7. If the
probability distribution of the events can be approximated by a discrete
distribution, this category is reduced to Category 3.

57



Design alternatives  Design decisions Uncertain events

Figure 4.7. Continuous decisions and continuous events
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V. DESIGN EVALUATION BY DECISION THEORY:
FOUNDATIONS FOR CHOOSING A BEST DESIGN

5.1 Introduction

5.2 Need for Decision Rules for Choosing a Best Design

5.3 Existence of a Numerical Scale to Measure the Desirability of Designs

5.4 The Concepts of Choices, Preferences, and Utility

5.5 Sequential Decision Analysis Using the Maximum Expected Utility Principle
5.6 Output Dominance and Stochastic Dominance

5.7 Mean-Variance Analysis

5.8 Assumptions Underlying Common Objective Functions

5.1 Introduction

Decision trees are useful for modeling and structuring the process of design
evaluation in the face of uncertainty. To make a selection from various design
alternatives, a general investigation of the desirability of system designs is
needed. In this chapter, the concepts of preferences and choices are discussed
under the context of design evaluation. By adapting statistical decision theory to
the needs of design decision making, three decision analysis approaches are
identified for design evaluation in the face of uncertainty. Then the assumptions
underlying some objective functions which are commonly used in design
optimization are also investigated.

5.2 Need for Decision Rules for Choosing a Best Design

The objective of design evaluation is to identify a best design. But it is a
long way between naming the objective and obtaining suitable decision rules for
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representing the objective. Due to uncertainties with design-independent
parameters, the evaluation attribute(s) of a candidate design is a random
variable. The most complete way to describe the characteristics of a random
variable is to use a probability distribution. In design evaluation, however, it is
difficult to directly compare the probability distributions of the evaluation attribute
from various design alternatives. Thus, decision rules are needed for the
comparison.

Since the choice of the best design is a trade-off among different design
characteristics, the evaluation of candidate designs depends on the decision
rules applied. These decision rules form the basis under which alternative
designs may be compared. They also provide the basis for formulating the
design optimization problem.

For identifying appropriate rules and approaches for selecting a best design,
some considerations are made in the research. First, the decision maker is
assumed to be rational. Rationality means logical consistency in processing the
information on which decisions are based. Consistency, in turn, requires that
the information is stated explicitly and quantitatively. Rationality also implies
validity in the models used for representing real-world systems. A model should
accurately describe some set of system characteristics. However, the more
accurately a real-world problem is described, the more complicated the
description becomes. The models for implementing the decision process must,
therefore, be manageable with the resources available to the decision maker.
We would like to select the alternative which is expected to result in the greatest
degree of achievement of our objectives. Furthermore, we would like our
decision methodology to be generally applicable; to be applicable to any stage
of the system life cycle.

Second, a quantitatively defined outcome is assumed for the design
decision problem. A quantitative outcome is one which is (or is not) obtained in
various degrees. A single evaluation attribute is used to represent the outcomes
of the candidate designs. This attribute must be meaningful in the sense that it
is adequate for the DM to choose among alternatives. To simplify the
presentation, we assume that the DM would like to maximize the value of the
evaluation attribute. This is true if the evaluation attribute is a measure of the
design's performance effectiveness. However, the methods, theorems, and

60



rules developed for the larger-the-better case can be easily applied to the case
of the smaller the better. The extension of the approaches to multiattribute
design decision problems will be discussed in Chapter VIil.

5.3 Existence of a Numerical Scale to Measure the Desirability of Designs

In order to develop the best design, a measure of the desirability of a design
should be identified. To be consistent, the measure must be quantitative in
character. It should be able to capture both the random nature of the evaluation
attribute and the DM's attitudes towards it. To identify such a measure, we need
to investigate the characteristics of the outcomes of design decisions.

The outcomes of design decisions in the face of uncertainty have two
characteristics. One is the nonlinearity between usual evaluation measures,
such as manufacturing cost, and their relative worth. In design evaluation, faced
with similar sets of candidate designs with the same mean, two decision makers
may not select the same alterative. This indicates that the mean of the
evaluation attribute as the decision criterion may not reflect the DM's actual
preferences for the attribute and his attitude toward risks.

Another characteristic of design decisions is that the outcomes, in general,
are multidimensional. There is a fundamental difficulty involved in considering
multidimensional outcomes. Evaluation and optimization of alternatives can be
accomplished only with respect to a single criterion. Since all members of the
set of criteria significantly influence the decision, no individual criterion can
rationally be used as the only basis for the decision. These two characteristics
indicate the existence of a preference scale, which measures relative
contribution to success of the design.

The easiest and most useful way to order things is by means of numbers. It
is natural to use this device in design evaluation. Our aim is to describe the
desirability of design numerically, for numbers are the essence of the scientific
method and it is by measuring things we know them. Specifically, what we want
to do is to attach to any design alternative a number that describes the degrees
of its desirability.
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The needed scalar measure of relative contribution of design to success has
been referred in the literature by various names: system worth, figure of merit,
cost effectiveness, cost benefit, and utility. In fact, robustness is a new term for
the same purpose. It describes the system's degree of fulfillment of needs and
objectives under the influence of uncertain noises. However, robustness is not
sufficient to represent the two characteristics of the outcomes of design
decisions. A new measure is needed.

In this research, based upon statistical decision theory, a scalar measure,
utility, will be used to represent the relative contribution of a design to success.
This measure reflects the design's degree of fulfillment of the DM's needs and
objectives. Although there are some unfortunate historical connotations to the
term utility, there are advantages associated with the continued use of a term
whose historical development can be traced and with which a considerable body
of theory has been developed. Ultility theory is introduced below under the
context of design evaluation.

5.4 The Concepts of Choices, Preferences, and Utility Theory

Decision trees can be used to model and structure the process of design
evaluation. To make a selection from various design alternatives, a general
investigation of the desirability of system designs is needed. Underlying all
comparison methods of alternatives are assumptions regarding the DM's
preferences and risk attitudes.

5.4.1 Basic concepts

Preferences. The term "preference" is based on relationships among
design alternatives. If a DM prefers one alternative to another, it is attributed to
his "preferences." The focus of this research is on preferences for alternatives
involving uncertain events. The uncertainty introduces an element called risk.
An individual's risk preference reflects an underlying attitude toward uncertain
outcomes.
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Utility. Utility is defined on a numerical scale that represents the DM's
preferences for a set of consequences. The higher the utility, the more desirable
the consequence. Though any positive and negative numbers can be used to
measure utility, it is convenient to measure utility on a probability scale so that
the laws of probability can be used. The usual meaning of utility in economics
is not the same as the preference scale here.

Utility is used to measure preferences for design alternatives with uncertain
outcomes. It is sometimes difficult to attach a number to a consequence
because the relevant features may not be naturally quantifiable. However, as
indicated before, the scope of this research is limited to design problems in
which a quantitative outcome is defined. If the outcome is denoted by e, its
utility is represented by u(e).

Reference gamble. A reference gamble can be established for any set of
uncertain events. It is simply a two-outcome gamble (Figure 5.1). One outcome
has a payoff greater than or equal to the maximum payoff for any outcome in the
events considered. The other outcome has a payoff equal to or less than the
minimum payoff for any outcome. In defining a reference gamble for design
evaluation, two usable outcomes are the best possible outcome and the worst
outcome possible.

Win (p)
$100,000

Lose (1-p)

Figure 5.1. An example of reference gambles
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Certainty equivalent (CE). Certainty equivalents establish an equivalence
between uncertain events and a certain value. For an uncertain event, its
certainty equivalent is that certain value of an evaluation attribute which a DM is
just willing to accept in lieu of the gamble represented by the uncertain event. A
certainty equivalent is a decision, not an estimate. It is a value the DM decides
to just accept in lieu of facing the uncertain event. It is not in any sense an
estimate of what the DM thinks he will receive. Assessing certainty equivalents
requires the DM to process information of two types simultaneously: (1)
information on the probability that a set of outcomes will occur, and (2)
information on the consequences of the outcomes as measured by the
evaluation attribute.

5.4.2 Attitudes toward risk

Three basic attitudes toward risk can be identified: risk aversion, risk
neutrality, and risk seeking. The choice process in design evaluation is affected
by the type of risk attitude that the DM possesses.

1) Risk aversion

For an evaluation attribute of the greater the better, if the DM's certainty
equivalent for an uncertain event is less than the expected value of the
evaluation measure, the DM is called risk-averse. The difference between the
expected value of the evaluation attribute and the certainty equivalent is called
risk premium. Two special cases of risk aversion are deserve more attention:

Decreasing risk aversion. One special case of risk aversion is decreasing
risk aversion. This condition implies that the degree of risk aversion decreases
as the value of the evaluation attribute increases. To be more precise, the risk
premium decreases for gambles that are identical except for adding the same
constant to each value of the evaluation attribute.

Constant risk aversion. This condition implies that the risk premium is
the same for gambles that are identical except for adding the same constant to



each level of the evaluation attribute. Constant risk aversion corresponds to an
exponential preference function of the form

u(e) = a-bexp(—Ae),

where A4 is a constant that determines the degree of risk aversion, and a and »
are scaling constants. These scaling constants can be used to make the
preference function lie between 0 and 1 over the range of interest.

2) Risk neutrality

Risk neutrality corresponds to a zero risk premium. The preference curve is
a straight line. Expected values are certainty equivalents for the special case of
risk neutrality. Therefore, if the DM is risk neutral, choices can be made by
comparing the expected values of the evaluation attribute for different design
alternatives.

3) Risk seeking

Risk seeking behavior is the opposite of risk-averse behavior in that the
certainty equivalent for a gamble is greater than the expected value of the
evaluation attribute. Thus, the risk premium for risk seeking decision makers is
negative.

5.4.3 Empirical evidence on risk-taking behavior

Empirical evidence indicates that individuals are risk neutral when the
"stakes" are low. The most usual reaction when the "stakes" are high is risk
aversion, although in special cases, including gambles with negative expected
values, some individuals display risk-seeking characteristics. In general, it
appears that decision makers in large companies are quite risk-averse
(Holloway, 1979). In making design decisions, many designers have shown risk-
averse behavior. As shown later in the chapter, Taguchi's philosophy of robust
design by reducing performance variations is actually based upon the
assumption that less risk is preferred in product design.
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5.4.4 Utility assessment using 50-50 gambles

The methods for obtaining utility curves can be divided into two categories.
The first uses the basic reference gamble directly. The second method uses a
variety of 50-50 gambles. The choice among the procedures should be based
on ease of use by the DM. Presumably a procedure that is easier to think about
will result in assessments that are more consistent and in which the DM will have
more confidence. Since probabilities are difficult to conceptualize, particularly
when small differences or small probabilities are being considered, the 50-50
method is recommended. The argument is that a 50-50 gamble is the simplest
of all settings that include uncertainty and therefore is the best setting to use for
assessing preferences. The utility assessment procedures using 50-50 gambles
are summarized below (Holloway, 1979):

1) Establish the payoffs for a reference gamble for the decision problem.
2) Determine certainty equivalents CE,, CE,, and CE, for the reference gamble
with
p=1,p=0,andp=0.5,

respectively. Record them on a plot with p on the vertical axis and the
certainty equivalent on the horizontal axis. This establishes

#(CE,)= 1.0, 4(CE,)=0, and «(CE,)=0.5

as the utilities for these certainty equivalents.

3) Create a sequence of new gambles, each with a probability of winning of p =
0.5. The payoffs CE, and CE, are varied and restricted to values of certainty
equivalents previously specified (Figure 5.2).

4) Determine certainty equivalents, CE,, for each gamble.

5) For each gamble calculate the expected utility of Alternatives A and B.

For Alternative A,

E(U,) = (0.5)(CE)) + (0.5)u(CE).

For Alternative B,
E(U,) = (Mu(CE)).
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Indifference between A and B means that
E(U,)=E(u,) or

(CE,) = (0.5)u(CE) + (0.5)u(CE).

6) Plot each [CE,u(CE))] pair with CE, on the horizontal axis and «(CE,) on the
vertical axis.

7) Repeat steps 3, 4, 5 and 6 until the plot is well defined.

8) Draw a curve through the plotted points.

p =05
CE;
Alternative A
1-p = 0.5
CEI-
Alternative B
CE,

Figure 5.2. Utility assessment using 50-50 gambles
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5.4.5 Utility functions for special risk attitudes

The shape of the utility curve depends on an individual's attitude toward risk.
Three general categories of attitudes have been identified: risk averse, risk
neutral, and risk seeking. Figure 5.3 shows examples of utility curves for each
category. The shape of the risk-averse curve is concave. The risk-seeking
curve is convex. The risk-neutral curve is a straight line.

1.0

0.8 -
risk averse

Utility

0.4 -
risk seeking

0.2

0.0

Evaluation attribute (larger the better)

Figure §.3. Three forms of utility functions
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1) Risk neutrality — linear utility function

The utility curve for risk neutral decision makers is a straight line. The
second derivative of the utility function

u"(e) = 0.

Since certainty equivalents are equal to expected values, the curve is not
required for evaluating design alternatives.

2) Risk aversion — convex utility function

If the DM is risk-averse over the entire range of interest, the utility curve
must be relatively smooth. Risk-averse individuals have a positive risk premium.
The size of the risk premium depends upon (1) the degree of risk aversion, (2)
the values taken on by the evaluation attribute, and (3) the probability
distribution for the evaluation attribute. For a utility function with first and second
derivatives, the risk aversion function is defined as

_ un( e)

r(e)=m- (51)

If the DM is decreasingly risk averse, the first derivative of the risk aversion
function, 7(e), is less than zero. If the DM is constantly risk averse, r'(e) = 0. For
a DM of increasing risk aversion, r'(e) > 0.

Knowing that a positive risk premium exists restricts the shape of the utility
curve. Since a risk averse individual has a positive risk premium, the utility
curve will always lie to the left or above the risk-neutral curve. Thus, the utility
curve is always concave. These requirements mean that a few assessments
rapidly restrict the shape of the utility curve.

A special case of risk aversion is the constant risk aversion. Constant risk
aversion impilies a utility function of the form

u(e)=a - bexp(—Ae), (5.2)
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where E is the evaluation measure. If we require

u(erm'n)

=0, u(e,) = 1.0,

where e,,, is the lowest value for.the preference scale and e, is the highest,
only one more equation is needed to find the values for parameters a, 5, and A.
This means that a single certainty equivalent assessment is all that is required to
completely specify the utility function. By using the 50-50 gamble shown in
Figure 5.4,

u(CE) = 0.5u(e,,,) + 0.5u(e,,,),
u(e,.) = 1.0,
)=0.

u(emin

Thus,

)

exp(-
exp(—Ae,, ) — exp(—Aey,, )

a=

_ 1
" exp(—Aey, ) — €Xp(=Abpy )

exp(-ACE) = 0.5[exp(- e, ) + exp(~ e, )]
For any values of CE, e,,,, e, a and b can be evaluated directly. A can be
found by trial and error or by means of a complicated search procedure on a
computer.

3) Risk seeking — convex utility function

The second derivative of the utility function u"(e) > 0.
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Alternative A

Alternative B
CE

Figure 5.4. Estimating the utility function for constant risk aversion
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5.4.6 Procedures for assessing utility functions

In practice, according to Keeney (1977), the assessment of a utility function
follows three phases: (1) ask some questions to determine the general shape of
the utility function, (2) ask some Speciﬂc questions to quantify a specific utility
function, and (3) check consistency and make modifications. Once the attribute
is specified, the assessment process can be broken into five parts (Keeney,
1977; Keeney and Raiffa, 1976):

Step 1: Preparing for the assessment. The decision maker is
familiarized with the terminology and procedures used in the assessment. The
analyst is familiarized with the design decision problem and the meaning of the
attribute.

Step 2: Identifying the relevant qualitative characteristics. These
characteristics can be determined by investigating three questions: (1) is the
utility function monotonic, (2) is the decision maker risk averse, risk neutral, or
risk prone, and (3) if the decision maker is risk averse, is his utility function
increasingly, decreasingly, or constantly risk averse?

Step 3: Specifying quantitative estimation. The Ltilities of a few
particular points on the utility function are determined. This usually involves
determining the certainty equivalents for a few 50-50 gambles. If the decision
maker is risk averse, his certainty equivalents (CE) must be larger than the
expected consequences for montonically decreasing utility functions. For
increasing utility function, the CE's must be less than the expected
consequences.

Before determining the CE's, the end points for the attribute E, i.e., the best
value e* and the worst value e°, should be determined. These could be the best
and worst conceivable values for the attribute; or they could be numbers
bounding the alternatives to be considered by the analysis; or they could have
some other convenient interpretation (Watson and Buede, 1987). In this
research, u(e*) is defined to be equal 1.0 and u(e?) is equal to 0.0.
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Step 4: Choose a utility function. In utility assessment, the question is
whether or not a utility function exists that simultaneously satisfies all of the
information obtained from the assessment. We would like to find a parametric
family of utility functions that possesses the relevant characteristics (such as risk
aversion). Then by using the certainty equivalents, a specific member of that
family which is appropriate for the DM is identified. The CE's are used to specify
values for the parameters of the original family of utility functions.

Step 5: Checking for consistency. The consistency of above
assessments must be examined. If some of the assessments are not
consistent, more assessments should be conducted.

5.4.7 Axioms for choices

The utility analysis method introduced above is valid if certain behavioral
assumptions are satisfied. These assumptions are: (1) Comparability, (2)
Transitivity, (3) Reduction of compound uncertain events, (4) Continuity, (5)
Substitutability, and (6) Monotonicity. If these assumptions are satisfied, there
exist a utility so that the DM's preferences for various design alternatives can be
determined by calculating expected preferences. These six axioms are
explained in detail in Appendix A.1.

5.5 Sequential Decision Analysis Using the Maximum Expected Utility

Principle

Combining the decision models presented in Chapter IV with utility theory
results in a logical decision process for design evaluation under uncertainty.
This approach is called sequential decision analysis using the Maximum
Expected Utility (MEU) principle. The decision criterion used in the approach is
maximization of expected utility.
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5.5.1 The Maximum Expected Utility principle

In the process of design evaluation, the selection of a design alternative is
influenced by various uncertainties. Due to these uncertainties, the selection of
a design decision may result in many possible consequences. Based upon
utility theory, the DM's preferences for the various consequences of a design
decision can be described in terms of utilities. Thus, the design alternatives can
be compared based upon their expected utilities.

Principle of Maximum Expected Utility (MEU): There are a set of
mutually exclusive design alternatives, a,, a,, ..., a,. The set of states of nature
for the problem are identified as s,, s,, ..., s,. If the probability that s, occurs,
p,(sy), is known, the expected utility of Alternative a, is given by

u, =ip:(sk)xu(ai:sk)' (5.3)

The alternative with the maximum expected utility is preferred.

If a single attribute, E, is sufficient to represent the consequences of the
design alternatives, the expected utility for Alternative g, is equal to

u = ZPE (e, ) xu(e,), (5.4)
k=1
where Px(e,) = the probability mass function of £

e, = the value of E for Altenative i when s, occurs

5.5.2 Procedures of sequential decision analysis

As discussed in Section 4.2, design decision problems in the face of
uncertainty are made up of decisions and uncertain events. The problem is to
select an alternative from a set of mutually exclusive alternatives, not knowing
which member of the uncertain event set will be true. Such a problem can be
resolved by using the sequential analysis approach along with the MEU
principle.
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The paradigm of sequential design decision analysis includes structural
analysis, uncertainty analysis, and utility analysis. According to Lindley (1985),
three basic principles should be followed in the decision process: assigning
probabilities to uncertain events; assigning utilities to possible consequences;
and choosing the decision that maximizes expected utility. For evaluating
design alternatives, the approach proceeds in seven steps below:

Step 1. Identify all design alternatives (a,, a,, ..., a,,).
Step 2. List the uncertain events (s, s, ..., s,).

Step 3. Construct a decision tree to link the decision nodes and the chance
nodes. The decision tree is written out in chronological order, the decisions and
uncertain events being described by branches in the order in which they occur.

Step 4. Assign probabilities to the uncertain events. Probabilities are
attached to the branches emanating from random nodes in any coherent and
consistent way.

Step 5. Determine the value of the evaluation attribute for each alternative
i under each possible uncertain event j, that is, e,.

Step 6. Assign utilities to the values of the evaluation attribute. Utility u(e,)
is attached to ¢, for each possible outcome.

Step 7. Choose that alternative of maximum expected utility. Proceeding
back from the terminals to the base, (1) at a random node, take an expectation
of the utilities; (2) at a decision node, choose among alternatives at this node
which has a maximum expected utility; and (3) eliminate the decision node by
crossing out all but the preferred alternative. Keep moving backward by taking
expectations at random nodes and maximization at decision nodes. The best
decisions and their expected utilities are then determined.
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5.5.3 Justification of the use of the MEU principle

By adapting decision theory and utility theory for design decision making,
the expected utility of the evaluation attribute is recommended as the objective
function for design evaluation. For each evaluation attribute E, three measures
are incorporated into the function: the value of E, the probability distribution of E,
and the utility of the various levels of E. The uncertainty associated with an
attribute is characterized by its probability distribution. The relative worth of a
design alternative is reflected by the utilities. By converting the values of the
evaluation attribute into utilities, the contribution of different levels of the
evaluation attribute to the desirability of a design is determined. Embedded in
the utility function are the designer's value judgments and attitudes toward risk.

Probabilistic utility analysis is employed to determine the effect of
uncertainty in the level of the evaluation attribute on the ultimate desirability and
ordinary ranking of alternatives. The resulting expected utility over a range of
possible ultimate levels of the evaluation attribute reflects the negative impact
that uncertainty has on the desirability of a design alternative. The magnitude of
the impact is determined by the degree of risk aversion exhibited by the DM and
the extent of the uncertainty in the attribute level. The uncertainty of the
outcome with respect to various states of nature and preferences for various
levels of the evaluation attribute are processed in the computation of expected
utility.  Since the outcomes are the realization of random quantities,
mathematical expectation is taken for the utilities.

Thus, expected utility combines information conceming the utility of
outcomes and the probability of outcomes into an estimate of expected utility.
The overall objective is to maximize the expected utility for the evaluation
attribute by choosing elements of the design variable vector. This principle is in
keeping with Taguchi's dictum that good quality is that which minimizes the total
loss to society. However, the utility function is more general and complete than
represented by Taguchi's loss function. It is capable of considering various
attributes of concern, including system life-cycle costs and the cost of selecting a
particular alternative.

76



5.6 Outcome Dominance and Stochastic Dominance

With the help of utility theory, stochastic dominance rules can be developed
for design evaluation under uncertainty. These rules incorporate the DM's
preferences and the probability distributions of the evaluation attribute.

5.6.1 Outcome dominance

The most basic method of choosing two design alternatives is to compare
them directly and, using some intuitive process, select one over the other. In
some cases designers may find this method adequate. However, as the
complexity of a problem increases, it is hard to resolve the problem directly.

There are two ways that outcome dominance can arise. The first is when
the worst outcome for Alternative A is at least as good as the best outcome for
Alternative B. In this case, 4 dominates B. Another type of outcome dominance
may exist when two alternatives are followed by the same uncertain event, say
the same set of design-independent parameters. That is, the alternatives differ
only in the consequences associated with the outcomes. In this case, the
following rule applies:

Outcome Dominance Rule: [f Alternative A is at least as preferred as
Alternative B for each outcome, and if 4 is strictly preferred to B for one
outcome, then 4 dominates B.

An example of outcome dominance is given in Table 5.1. There are two
design alternatives. The life-cycle costs for each alternative are given with
respect to different states of nature. According to the Outcome Dominance
Rule, Alternative B dominates Alternative A.
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Table 5.1. An Example of Outcome Dominance

Outcome (life-cycle cost)
State of Nature '

Altermnative A Alternative B
1 $2,500,000 $2,500,000
2 $2,800,000 $2,700,000
3 $3,000,000 $2,900,000

5.6.2 Stochastic dominance

If the outcome dominance rule is not sufficient to resolve a design decision
problem, stochastic dominance can be applied. The most general form of
stochastic dominance makes no assumption about the form of the probability
distribution of the evaluation attribute. Furthermore, the user does not have to
assume the specific form of the DM's utility functions. There are three
progressively stronger assumptions about the DM's behavior that are used in
stochastic dominance literature (Elton and Gruber, 1981). They lead to first-,
second-, and third-order stochastic dominance.

Definition of Stochastic Dominance (Hanoch and Levy, 1969): Given two
random variables X and Y with cumulative probability distribution function F(X)
and G(Y), we say that X dominates Y if

E[u(x)]= E[u(y)]

for every utility function in the class of functions, and if the inequality holds
strictly for at least one function in the class.
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First-Order Stochastic Dominance Theorem (Hanoch and Levy, 1969):
Let F(X) and G(¥) be cumulative distributions for random variables X and Y. Let
u be any nondecreasing function with finite values for any finite x. A necessary
and sufficient condition for X to dominate Y is that

F(x)<G(x) for everyx

and F(x,)<G(x,) for some x,.

The theorem states that the cumulative distribution function (CDF) of X must
lie below that of Y for at least one value and must lie nowhere above it. This
theorem is equally valid for continuous and discrete probability distributions.
Applying the theorem to evaluate two design alternatives, we have the following
decision rule:

First-Order Stochastic Dominance Rule: [f the designer prefers more of
the evaluation attribute to less, and if the cumulative probability of the evaluation
attribute for Alternative 4 is never greater than the cumulative probability for
Alternative B and sometimes less, then 4 is preferred to B.

Obviously, outcome dominance is contained in the First-Order Stochastic
rule. If Alternative 4 dominates Alternative B by outcome dominance, 4
dominates B by first-order stochastic dominance. However, the reverse may not
be true. That is, if 4 dominates B by first-order stochastic dominance, 4 may not
dominate B by outcome dominance. A stochastically dominated alternative can
have an actual outcome that is better than the actual outcome from the
alternative dominated it. But the dominating alternative has higher chance of
obtaining a favorable outcome.

Second-Order Stochastic Dominance Theorem (Hanoch and Levy,
1969): Let F(X) and G(Y) be cumulative distributions for random variables X
and Y. Let u be any nondecreasing, concave utility function. A necessary and
sufficient condition for X to dominate Y is that
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f mF(t)dt < f mG(t)dt for every x

and strict inequality hods at some x,,

This theorem states that the integral of the CDF of X must lie below that of ¥
for at least one value and must lie nowhere above it. By interpreting the theorem
in non-mathematical terms, the decision rule is:

Second-Order Stochastic Dominance Rule: |If (1) the decision maker
prefers more of the evaluation attribute to less, and (2) the decision maker is
risk-averse, and (3) the sum of the cumulative probabilities for the evaluation
attribute is never more with 4 than B and sometimes less, then 4 dominates B by
second-order stochastic dominance.

Third-Order Stochastic Dominance Theorem (Whitmore, 1970): Let F(X)
and G(¥) be cumulative distributions for random variables X and Y. Let » be any
nondecreasing, concave utility function with nonnegative third derivative. A
necessary and sufficient condition for X to dominate Y is that

[ [ Fayataw< " [ G(eydtaw for every x

and strict inequality hods at some x,and E(X) > E(Y).
Thus, another stochastic dominance rule for design evaluation is:

Third-Order Stochastic Dominance Rule: Alternative 4 dominates
Alternative B if: (1) the DM prefers more of the evaluation attribute to less of the
attribute, and (2) the DM is risk averse with decreasing absolute risk aversion,
and (3) the mean of the evaluation attribute for 4 is greater than that for B, and
(4) the sum of the sum of the cumulative probability distribution for all values of
the evaluation attribute are never more with 4 than B and sometimes less.
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Since the assumptions underlying the three rules are progressively stronger,
if Alternative 4 dominates Alternative B by first-order stochastic dominance, 4
also dominates B by second- and third-order stochastic dominance. Similarly, if
A dominates B by second-order dominance, it is certain that 4 dominates B by
third-order dominance. Thus, if a design decision problem can be resolved
using a lower order rule, a higher order rule does not need to be used.

In order to implement any of the three stochastic dominance tests, we need
detailed information about the probability distributions of the performance
measure. The analysis may become complicated and tedious for a large number
of alternatives.

5.7 Mean-Variance Analysis

According to the philosophy of Taguchi's robust design, two objectives need
to be achieved in order to develop a best design: (1) make the mean as close to
the target, and (2) make the variance as small as possible. If the DM's
preferences for gains and losses can be fully represented by the mean and
variance of the system's evaluation attribute, a natural way to evaluate design
alternatives is to compare their means and variances. This approach is named
Mean-Variance analysis. The term originated from Markowitz's outstanding
book on portfolio selection (1959).

5.7.1 Mean-Variance (E-V) rules

If a DM is risk averse, less risk is preferred to more risk. The notion of risk
involves both uncertainty and the magnitude of the evaluation attribute. But
there is not a precise definition of risk that can be used to calculate a value of
risk. An often-used surrogate for risk is the variance (or standard deviation) of
the probability distribution for the evaluation attribute. Since the variance is a
measure of dispersion, it can be thought of as describing the amount of
uncertainty, and consequently, it captures an important part of the notion of risk.

Following this line of reasoning, a risk-averse DM would want to minimize
the variance, everything else being equal. Thus, if a DM prefers more of the
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evaluation attribute and is risk averse, the following rules of thumb result for
choosing between two alternatives:

E-V Rule 1: Alternative 1 is preferred to Alternative 2 if

102 4P and [a2]° <[02]”.

E-V Rule 2: Alternative 1 is preferred to Alternative 2 if

o2 <o’ and E(e)> E(e,),

where 4{ and [o? ]0) denote the mean and variance of E for Alternative 1, and

42 and [of]m represent the mean and variance of E for Alternative 2.

In other words, the DM prefers to maximize the expected value and minimize the
variance. Thus, for two alternatives with "well-behaved" symmetrical probability
distributions for the evaluation measure, a risk-averse designer will prefer:

1) The alternative with the lower variance if the expected values are equal,
or if the alternative with the lower variance has a higher expected value.

2) The alternative with the higher expected value if the variances are equal,
or if the alternative with the higher expected value has a lower variance.

To compare various alternatives, we plot each pair (4,,0?) on an E-V chart.
The horizontal axis of the E-V chart represents the variance of the evaluation
attribute, while the vertical axis denotes the mean of the attribute. Figure 5.5 is
an example of the E-V chart.
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Figure 5.5. Efficient frontier

On an E-V chart, a possible point (u,07") is called efficient if no other
possible point (4,,0?) has

B.z2p, ad o, <0}

The efficient points form the highest left boundary of the set of possible points.
The boundary is called efficient frontier and the set of efficient points is called
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efficient set. In Figure 5.5, the efficient frontier bc is a curve drawn through the
points representing alternatives that are not dominated by some other
alternatives. Any point below and to the right of the efficient frontier represents
an alternative dominated by one on the frontier. For any obtainable E-V
combination except on arc bc it is 'possible to find a feasible combination with at
least as much mean and less variance; or to find one with less variance and no
less mean, or both. Any such combination is considered inefficient. For
example, from point A, we can move to i obtaining less variance and no less
mean; we can move to k£ to obtain more mean and no more variance; or we can
move diagonally from A to J obtaining both more mean and less variance. These
points are considered inefficient. We cannot move upward from an E-V
combination on the arc bc, except for 5.

The application of the E-V rules can be illustrated with an example.
Suppose we want to evaluate five design alternatives with the evaluation
attribute for this case being reliability. The mean and variance of the reliability
for each alternative are given in Table 5.2. Plotting each pair of mean and
variance on Figure 5.6, we find that Alternative 1 is not efficient, since
Alternative 2 has an equal mean and less variance. Similarly, Alternatives 3 and
4 are not efficient. The efficient set consist of Alternatives 2 and 5.

Table 5.2. Means and Variances for Five Alternatives

ALT 1 ALT 2 ALT 3 ALT 4 ALT S
E(R) 0.90 0.90 0.85 0.80 0.80
Var(R) 5.00 3.00 3.50 4.00 2.50
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5.7.2 Utility indifference curves

As discussed above, to develop a best design, we must make the evaluation
attribute meet a target value. The target value can be a specific number, or a
value as large as possible, or a value as small as possible. If there is more than
one alternative which meets the target value, the decision is easy. That is,
according to the E-V rules, pick the alternative which has the minimum variance.

However, the problem of design evaluation in the face of uncertainty is often
more complicated in practice. In some cases, the mean and variance of the
evaluation attribute for a design may be dependent. As a result, more than one
efficient alternative can be identified in the E-V analysis. This makes it
impossible to achieve the optimum for both the mean and variance jointly.

Since the E-V rules cannot help us choose between the alternatives in the
efficient set, we must resort other information to make a choice. The ultimate
choice between the elements in the efficient set depends upon the DM's trade-
off between the mean and variance, that is, the trade-off between the bias and
variance. Thus, the DM must make a trade-off between attainment of a target
value and the variability at the target value. Utility theory can be used to
represent the DM's willingness to make such trade-offs.

For a rational decision maker, he can be assumed to be indifferent to sets of
(u4,,02). That is, an indifference curve of mean and variance exists. The DM is
indifferent to any point on the indifference curve. So, for the same level of utility,
such an indifference curve can be defined:

U=uu,,a?). (5.5)

Operationally, the utility indifference curve that relates the mean and variance of
the evaluation attribute provides a foundation for Mean-Variance analysis.
Thus, the decision problem can be solved if we can determine which point of
(u,,0%) on the E-V chart is on a higher utility curve (Figure 5.7).

Thus, to compare design alternatives in an efficient set, we must define a
utility function to accurately reflect the DM's preference and willingness to make
trade-offs over the mean and variance. In general, the utility function of mean
and variance has the following characteristics (see Figure 5.7):
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Figure 5.7. Utility indifference curves
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1) It is an increasing function of the evaluation attribute (for the larger the

better case).
2) ltis a decreasing function of variance. The curve is convex on the E-V

chart.
3) The intersection point of a curve with the vertical axis (u, ) represents the

certainty equivalent for all points on that curve. Since variance is zero at
this point, the outcome is certain.

There are no easy guidelines currently available for assessing such a
general multiattribute utility function. However, in many circumstances, certain
conditions can be satisfied in order to decompose the joint utility function (5.5)
into a function of single attribute utility functions, that is,

u(p,,03) = fw () 1,(02)] (5.6)

According to the multiattribute utility theory (Keeney and Raiffa, 1976), if the
mean and variance are mutually utility independent, the utility function can be
decomposed into a multiplicative model:

u(p,,02)= k[u(1,)]+ k[u,(62)]+ (- k- k, Y ()], ()] (5.7)

where k, = scaling constant for the mean
k, = scaling constant for the variance
u,(u,) = utility function for the mean

u,(o?) = utility function for the variance

If the mean and the variance are additively independent, utility function (5.6)
is then reduced to the additive form:

u(,,02) = k[u(p,)]+k[uw(0?)] (5.8)
Since the random nature of the decision problem is reflected by the

variance, no expectation is needed. Thus, the utility function is simply a value
model to help decision makers make a trade-off between mean and variance.
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5.7.3 Relationships between E-V analysis and the MEU principle

As presented above, E-V analysis is based on utilty theory. The
relationship between the E-V analysis and the MEU principle was discussed by
Markowitz (1987). Allen (1953) prowded a simple mathematical derivation to
illustrate the relationship:

For evaluation attribute E, take a Taylor series expansion of its utility
function with respect to a constant c,

du(c) d 2u(c)

“dE* 3!

s d° du(c) . 4 d"u(c)

(E ) TdE® 4!(E Vgt

u(Ey=u(c)+(E-c)—— (E c)

Letting ¢ = u,, the expected value of the evaluation attribute, then

2d hadiiad Vad 24 3d3 z 1 . 4 .
wE)=u(p)+(E- M—LL)+ (E-p ) 555 ""‘ +5 (E 2) ;fg’? ’+z(E-p,> —d:fg‘” )y

Taking mathematical expectation of each side of the equation, we obtain the
expected utility of selecting a design alternative:

u(E) u(ﬂs)+—0'2 dzu(/‘E) 1 dsu(luE) d‘u(,ug) (59)

dE? 3! dE? 4! T dE*

where s=E(E-ug), the skewness of the probability distribution of £
k=E(E- ug;)*, the kurtosis of the probability distribution of £

Equation (5.9) represents the expected utility of £ in terms of (1) the
moments of the PDF of E, that is, the mean, variance, skewness, and kurtosis;
and (2) the first four derivatives of the utility function of E. Thus, the number of
terms used to calculate the expected utility for a design alternative depends
upon: (1) the number of moments that describe the distribution of E, and (2) the
number of derivatives that can be taken from the utility function.
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In order to represent the expected utility as a function of only the first two
moments, mean and variance, either of the conditions must be satisfied: (1) the
third and higher derivatives of the utility function are equal to zero, or (2) the
probability distribution of £ has only the first two moments.

Thus, the MEU principle is a general decision rule. E-V analysis is just a
special case of the MEU principle. Under either of the following two conditions,
using E-V analysis and the MEU principle will generate the same optimum:

1) If the utility function is a quadratic equation, then only the first two
derivatives are non-zero, and the expected utility is derived using only the
first two terms.

2) If the probability distribution of E is normal, which has only two moments,
the mean and variance, the expected utility becomes a function of the first
two moments.

Therefore, the E-V analysis approach holds exactly when the decision
maker is an expected utility maximizer, prefers more to less, is risk averse, and
either (1) the values of the evaluation attribute are normally distributed, or (2)
the utility function of the evaluation attribute is quadratic. Furthermore, the
analysis is robust in that, as Markowitz (1976) has shown, it frequently holds
approximately even when assumptions (1) or (2) are violated. For example,
quadratic approximations are almost always good local approximations to
nonquadratic utility functions (Elton and Gruber, 1981).

In design evaluation, using E-V analysis has some advantages. First, the
concept is straightforward and easy to understand. In the community of
engineering design, mean and variance are more familiar terms than utility. In
practice the mean and variance of a system's evaluation attribute are easy to
estimate. Another advantage of working with the mean and variance is that a
utility function is not needed in some cases. The problem may be solved by just
using the E-V rules. However, the user must keep in mind the assumption
underlying E-V analysis. The underlying assumption is that the DM's
preferences for a design can be represented by a function of the mean and
variance of the evaluation attribute.
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5.8 Assumptions Underlying Common Objective Functions

There are a variety of objective functions (or decision rules) used to resolve
problems of design evaluation under uncertainty. In this section, five commonly
used functions are identified (Tablé 5.3). Based upon decision theory and utility
theory introduced above, the decision analysis foundations underlying these
rules are examined. Compared with the MEU principle, their limitations and
advantages are obvious. Underlying all these rules are assumptions regarding
the decision maker's preference or utility function.

Table 5.3. Some Decision Rules for Design Evaluation
in the Face of Uncertainty

Maximizing expected value
Probability of loss

Linear function of mean and variance
Taguchi's loss function

Taguchi's Signal-to-Noise ratios

5.8.1 Maximizing expected value

In design optimization, a commonly used objective function is maximization
(or minimization) of the mean of an evaluation attribute E, .. The underlying

assumption for the use of this objective function can be identified based on utility

theory.
For an evaluation measure E, suppose its probability density function is fe)
and its utility function is u(e). The expected utility of E is given by

E[u(e)]=["_u(e) f(e)de.
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If u(e) = be + ¢, where b and ¢ are constants, then we have

E[u(e)]= [ (be+c)f(e)de = bug +c.

Since b and ¢ are constants, maximizing the expected utility is equivalent to
maximizing u., the mean of E. Thus, if the objective function is to maximize the

mean of an evaluation attribute, a linear utility function is implied. According to
utility theory, a linear utility function implies that the DM is risk neutral. Since the
expected value of an evaluation attribute is the certainty equivalent for the case
of risk neutrality, choices of design alteratives can be made by comparing the
expected values directly.

5.8.2 Probability of loss

The probability of loss criterion has been used as a measure of the
desirability of a system design. The measure treats only the values of the
evaluation attribute below a certain value as unfavorable (more is preferable) as
in Figure 3.3. In applying the probability of loss rule for design evaluation, three
decision rules can be employed (Elton and Gruber, 1981):

Rule 1: Minimize the probability of the evaluation measure E below a
critical level e,, that is,

Minimize P(E <e,).

Rule 2: Maximize the aspiration level e, subject to the constraint that the
probability of the evaluation attribute E less than, or equal to, the aspiration level
is not greater than some predetermined valuea. In symbols, the decision model

is:
Minimize e,,

subjectto P(E<e,)<a.
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Rule 3: Maximize the expected value of the evaluation attribute, subject to
the constraint that the probability of the evaluation attribute less than, or equal
to, the aspiration level is not greater than some predetermined number. The
decision model is formulated as:

Maximize u,,

subjectto P(E<e,)<a.

Among these rules, the first is the most widely used. These models have
been used as an objective function for design optimization. To apply the rules,
however, we must keep in mind that a strong assumption about the DM's
behavior is underlain in these rules.

In applying the probability of loss criterion, the concern is on the probability
of the evaluation attribute below a critical level. This rule is often used without
specifying the DM's behavior. However, since probability and utility are both
elements of decision making, treating only probability explicitly in the objective
function does not cause utility to disappear. An objective function which
contains only probabilities implies strong value judgments. The assumptions
about utility implied in the use of the rule are discussed below.

For an evaluation attribute E with PDF f,(e), the reliability of the system,

denoted by R, is

R=P(E <e,)=[ fy(e)de.
If the utility of E is u(e), the expected utility of E is given by
Efu(e)]=[" u(e) fz(e)de

=" u(e) f5(e)de+ Eu(e) f(e)de.

Since the values of E below e, are unfavorable, and amounts over e, are
treated as favorable and give the same contribution to the success of the
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system, the utility function of E must be as shown in Figure 5.8. The expected
utility of E is equal to

E[u(e)]= [ (0f5(e) de+ [ (1) 5(e) de

=[fs)de=R

Thus, when the probability of loss criterion is used in design evaluation, a
utility function such as given in Figure 5.8 is implied. The underlying assumption
is that there is an aspiration level that is important to the DM. Amounts below
the aspiration level are of little or no importance. Amounts above the level give
the same contribution.

5.8.3 Linear function of mean and variance

A linear function of the mean and variance for an evaluation attribute has
been used as the objective function for design optimization in some literature.
For evaluation attribute £, the objective function used is

Maximize  wu, +w,0% (5.10)

where w, and w, are constants, representing the weights given to the mean and
variance of E, respectively. If the objective is to maximize the evaluation
attribute E, w, should be positive, while w, must be negative.

The underlying foundation for model (5.10) can be identified by comparing
this model with the additive utility model given by Equation (5.8). There are
three assumptions underlying the model:

1) The DM's preferences for a design can be measured by the mean and
variance of the evaluation attribute for the design.

2) The utility functions for both the mean and the variance are linear.

3) The mean and the variance are additively independent.
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Figure 5.8. Utility function for the probability of loss criterion
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5.8.4 Taguchi's loss function

As indicated in Section 4.2, in the process of design evaluation by decision
theory, there is the need to know the possible consequences of any design
decision. Often the knowledge can be quantified by determining the gain or the
loss that would be incurred for each possible decision for the various states of
nature. So far the problem of design evaluation have been discussed in terms of
gains — utility. In Taguchi's approach, this problem is discussed from the
perspective of loss. Since a loss is just a negative of a gain, the loss function
can be defined from the utility function.

If the state of nature can be represented by a vector s, a represents an
action to select a design alternative, the loss function is defined for all possible
(s,a), that is, L(s,a). In making a decision, the loss function should, ideally, be
developed according to the utility function (Berg, 1985), that is

L(s,a) = - u(s,a).

Since decisions are made in the presence of uncertainty, the incurred actual
loss, L(s,a), will never be known with certainty at the time of decision making. A
natural method of proceeding in the face of this uncertainty is to consider the
"expected loss" of selecting an alternative and then choose an "optimal"
alternative with respect to this expected loss. In this way, instead of trying to
estimate the actual loss, we can measure the amount "lost" by not having the
most favorable possibility occur; that is, measure the regret we have for not
using the best action. This measure is called regret loss in statistical decision
theory.

One of the standard loss functions used in statistical decision analysis is the
squared-error loss. As given in Section 3.5.5, Taguchi's loss function takes this
form:

L=k(E-e.)

where e; is the target value of the evaluation attribute E, and & is a constant.
The function is used to measure the loss in value as a part deviates from its
target value.

96



It is understandable that some researchers have questioned the automatic
use of a squared-error loss function. Squared-error loss functions are just one
of the standard loss functions used in decision analysis. There are some
criticisms of the function. For example, the function is not bounded. Depending
on the DM's attitudes toward risk and preferences for the evaluation attribute,
other forms of loss function may be used.

5.8.5 Taguchi's signal-to-noise ratios

In the evaluation of various design alternatives, Taguchi does not use the
loss function directly as the decision criterion. Instead, he defines a number of
simple decision rules to operationalize the concept of loss. These decision rules
are called signal-to-noise ratios. Taguchi classifies various design decision
problems into three categories. The signal-to-noise ratio for each category is
given in Section 3.5.6.

The automatic use of the S/N ratios has generated a lot of controversy
among statisticians (Box et. al, 1988; Box, 1985; Easterling, 1985; Freund, 1985;
Fung, 1986; Hunter, 1985; Leon et. al, 1987; Kackar, 1985). There is also some
confusion regarding the relationship between Taguchi's squared loss function
and S/N ratios (Leon et al.,, 1987). Some have incorrectly interpreted that
Taguchi may be steering away from his notion of the squared error loss when he
advocates the use of the S/N ratios.

The foundation of Taguchi's S/N ratios lies in utility theory. If these S/N
ratios are considered under the context of decision theory, the performance
measures for the smaller-the-better case and the larger-the-better case are just
applications of the maximum expected utility principle. Since, these measures
are directly derived from Taguchi's squared-error loss function, minimizing
expected loss means maximizing expected utility.

The performance measure for the case of Nominal the Better can be
regarded as an application of E-V analysis. The S/N ratio can be considered a
multiattribute utility function representing the DM's preferences for mean and
variance. Thus, the use of both the squared-error loss function and the S/N ratio
is not contradictory if one understands the relationship between the MEU
principle and E-V analysis (see Section 5.7.3). The foundation of the NTB S/N
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ratio is in E-V analysis, while the foundation for the loss function is the principle
of minimizing expected loss. For a quadratic utility function, the expected utility
can be represented as a function of the mean and variance.

Observations have indicated that using S/N ratios cannot guarantee
generation of a best design. Wilde (1991) gives a counter-example to the use of
the NTB S/N ratio as a criterion for design optimization. This situation is easy to
explain if we consider the NTB S/N ratio as a special utility function for the mean
and variance. Under some situations, this function may not accurately represent
the DM's preferences and risk attitude. Thus, using it as a general utility
function does not guarantee generation of best design. Depending on the
nature of the design decision problem and the DM's preferences and risk
attitude, other forms of utility function may be more appropriate.  Different
engineering designs can lead to different functions. In fact, Taguchi has defined
more than 60 different signal-to-noise ratios in conducting his parameter designs
(Kackar, 1985). Kackar also indicates that the function, in general, is unknown
and must be estimated. This point of view agrees with utility theory.

It should be noted that the NTB S/N ratio does not directly optimize the
evaluation attribute. In practice Taguchi employs a two-phase approach to
derive a robust design. At the first phase, the settings of design variables are
identified to maximize the S/N ratio, that is, minimize the coefficient of variation
o,/ ug. At the second step, the mean is moved toward a target value by
changing the setting of some adjusting parameters. The adjustment parameters
are special design variables that have a large effect on the mean, but almost no
effect on the variance. However, in many cases, such a variable may not be
available. In this case, design evaluation must be carried out by using the
decision analysis approaches presented in Sections 5.5, 5.6, and 5.7.
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VL. AN INTEGRATED APPROACH FOR DESIGN
EVALUATION IN THE FACE OF UNCERTAINTY

6.1 Introduction

6.2 A Conceptual Model for Preliminary System Design
6.3 A Structured Model for Design Analysis

6.4 Design Evaluation for Discrete Decisions

6.5 Design Evaluation for Continuous Decisions

6.1 Introduction

Decision analysis foundations have been identified in Chapters IV and V for
design evaluation in the face of uncertainty. The decision rules, decision
diagrams, and decision analysis approaches form the basis under which
alternative designs can be compared. In this chapter, these approaches are
integrated into a structured, systematic approach for resolving different design
decision problems.

6.2. A Conceptual Model for Preliminary System Design

A conceptual model was presented in Chapter |l for representing the design
decision process in the preliminary design stage (Figure 6.1). This model
divides the design decision process into four basic steps: synthesis of design
alternatives, design analysis, design evaluation, and design optimization.

At the first step in Figure 6.1, based upon the information available, such as
the need, user's requirements, and designer's experiences, various design
alternatives are generated and synthesized. This task is accomplished by
selecting, estimating, or predicting the levels of design-dependent parameters.
Each set of design-dependent parameter values determines a unique design
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alternative. The next step is design analysis. Design analysis is conducted to
structure the decision problem and assess outcomes for each decision. After
the design analysis is completed, design evaluation starts. The objective of
design evaluation is to identify the best design strategy. When an optimal
strategy is identified, the design is examined with respect to the user's needs
and requirements defined. If the design is adequate, it is recommended for
detail design. If the design is unsatisfactory, an iterative resign process is
conducted. The information obtained is used to identify better designs.

6.3 A structured model for design analysis

The objective of design analysis is to structure the decision problem and
assess various possible outcomes for each design strategy. The process of
design analysis is illustrated by Figure 6.2. This process is divided into four
steps: preanalysis, structural analysis, outcome analysis, and uncertainty
analysis. These steps are interrelated and concurrent.

Preanalysis. The decision problem is identified and defined. This includes
identification of all mutually exclusive decisions for each design alternative,
identification of all possible uncertain events, and specification of objectives.
Appropriate evaluation attributes are identified to represent the objectives. Also,
general information about the DM's preferences and risk attitudes toward the
evaluation attributes should be collected and processed.

Structural analysis. The qualitative anatomy of the decision problem is
structured by decision trees. Depending upon the characteristics of the
decisions and events, the problem is modeled by one of the four models in Table
4.1. The construction of the decision tree follows the procedures of sequential
decision analysis. At the leftmost decision node, each design alternative
generated is represented by a branch. A decision node is attached for each
alternative. Various decisions for each alternative are then attached to the
decision node. Uncertain events are identified and represented by chance
nodes.
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Uncertainty analysis. The DM assigns probabilities to the branches
emanating from the chance nodes. According to Keeney and Raiffa (1976),
these assignments are made by actually mixing various techniques and
procedures based on past empirical data, on assumptions fed into and results
taken from various stochastic, dynamic models, on expert testimony, and on the
subjective judgment of the DM. The assignments should be checked for internal
inconsistencies.

Outcome analysis. Design evaluation functions are determined to
quantitatively describe the relationships between the evaluation attributes,
design variables, design-dependent parameters, and design-independent
parameters. Based on the evaluation functions, all outcomes for each decision
within each design alternative are determined with respect to each uncertain
event. Then a probability distribution for each outcome — the probability
distribution over the set of evaluation attributes for each decision — is estimated.

Evaluation of the probability distributions of the evaluation attributes
depends on the assumptions made, the amount of statistical data available, the
complexity of the functional relationship, and the complexity of the analytical
functions chosen to represent the probability distributions. When the probability
distributions of the design-independent parameters are known, four techniques
can be used (Sidall, 1982; Hahn and Shapiro, 1967). transformation of variables,
independent cell method, moment transfer, and simulation.

After the four-step design analysis process is completed, the outputs are
evaluated against the needs of design evaluation. If the outputs are adequate,
go to the next stage in Figure 6.1; that is, design evaluation. Otherwise, the
analysis process is repeated.
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6.4 Design Evaluation for Discrete Decisions

The objective of design evaluation is to select a decision strategy which
gives the maximum expected utility for the DM. In practice, the approach used to
identify such a strategy depends upon the outcome space of the decision
problem. Some of the decision approaches identified in Chapter IV can be
applied to both the problems of continuous outcome space and the problems of
discrete outcome space. However, in general, the problem of discrete decisions
and the problem of continuous decisions need to be resolved through different
evaluation approaches. In this section, the decision analysis approaches which
apply to the category of discrete decisions are identified. These approaches are
then integrated into a structured design evaluation framework.

6.4.1 A structured model for design evaluation

For a problem of discrete decisions, the outcome space is discrete if the
events are discrete. For this category of problems (Category 1), the dominance
rules, the Mean-Variance rules, and the Maximum Expected Utility principle
presented in Chapter V can be directly applied for design evaluation. A
structured framework is presented to help apply these approaches (Figure 6.3).

The framework is developed based on a consideration that the approaches
which require fewer assumptions about the DM's behavior should be used first in
evaluating design decisions. Four decision approaches are identified in the
framework. The order of applying the approaches are determined according to
their underlying assumptions. Outcome dominance is used first since it is an
objective criterion. If all outcomes of Decision A dominate the corresponding
outcomes of Decision B, Decision A is preferable. The only assumption made is
that the DM prefers more (or less) of an evaluation attribute. If the decision
problem is resolved by the application of the Outcome Dominance rule, other
approaches are not needed. Then an optimal design strategy is recommended
for examination by the decision makers.

The outcome dominance rule is helpful for eliminating some of the poor
decisions. If it is not adequate to resolve the decision problem, a stronger
approach should be used. If the DM is risk neutral, the decision problem can
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be resolved by comparing the expected outcome for each decision. If the DM
prefers more to less of the evaluation attribute, the optimal strategy is the one
which has the maximum expected value.

If the DM is not risk neutral, design evaluation cannot be conducted by
simply comparing the expected outcomes. Variance provides another dimension
for comparison. Thus, the mean variance rules (E-V rules) may be used. If the
DM prefers more (or less) of the evaluation attribute and also wants to minimize
the attribute's variance, E-V diagrams can be developed to identify the efficient
decisions. The inefficient decisions will be eliminated. If there is only one
efficient decision, the problem is resolved. Thus, the efficient decision is the
optimal decision.

If there exists more than one efficient decision, stochastic dominance may
be used to compare the members of the efficient set. There are three stochastic
dominance rules, which are based on progressively stronger assumptions. First,
the First-Order Stochastic Dominance rule is used. If one decision is found to
dominate other decisions, this decision is the optimal decision. The dominated
decisions are eliminated. If some of the decisions do not dominate each other,
the Second-Order Stochastic Dominance rule may be applied. A stronger
assumption is made in the application of Second-Order Stochastic dominance;
that is, the DM is risk averse. If the problem cannot be resolved by Second-
Order Stochastic Dominance, Third-Order Stochastic Dominance may be used
when the DM is risk averse with decreasing absolute risk aversion. In applying
these rules, their underlying assumptions must be examined carefully. If any
assumption is not true for a dominance rule, the rule itself and the higher-order
rule cannot be used. Instead, the next approach in the framework, the MEU
principle should be employed.

The MEU principle can be used as a general criterion for evaluating design
decisions. The behavior assumptions underlying the principle are the six axioms
for choice. The DM can be risk averse, risk neutral, or risk seeking. The
application of the MEU principle follows the sequential decision analysis
procedures in Section 5.5. After the utility function is assessed, the strategy
which has the maximum expected utility is optimal. The consistency of utility
analysis should be checked. If the assessment is not consistent, the process
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should start again. After design evaluation, the optimal design is recommended
to the DM for review.

If the events must be represented by continuous models, the structured
evaluation framework presented above can still be used. There are no technical
difficulties for application of the approaches. However, if the continuous
probability distribution of the events can be approximated by a discrete
distribution, the computation will be simplified. All the calculation procedures
developed for discrete random variables can be used.

6.4.2 Utility analysis of problems of continuous events

When the events are continuous, utility analysis for continuous outcome
should be used. The application of utility analysis for problems of continuous
events is explained below.

Since the outcome space is continuous due to continuous events, the
expected utility for each decision must be defined by using a continuous model.
The procedures for obtaining the expected utility for a given decision are
illustrated in Figure 6.4.

In Figure 6.4a, the probability distribution of the events, g(s), is identified.
For each decision, the values of the evaluation attribute, £, are determined as a
function of the event variable. Figure 6.4b shows the evaluation attribute of a
selected decision for any event represented by a continuous variable, S. The
values of the evaluation attribute are bounded by 4 and B. The probability
distribution of the evaluation attribute for each decision, f(e), is obtained based
upon a design evaluation function (Figure 6.4c). In this figure, the expected
value of the evaluation attribute is given by u,. For each value of E, its
corresponding utility, u;(e), is obtained according to the DM's utility function
(Figure 6.4d). The probability distribution of the utilities is illustrated in Figure
6.4e. The expected utility for each decision is given by

Elu,(e)]= [__u(e)fi(e)de. (6.1)

where f(e) is the probability density function of E for alternative i.

107



gls)

(a)
E
B
(b)
A
f,(e)
(c)
U el ............. S
@
A ' Mean B e
Plu i(e)lT
(e)

Expected utility “ule)

Figure 6.4. Utility analysis of problems of continuous events

108



6.5 Design Evaluation for Continuous Decisions

In the case of continuous decisions, it is impossible to compare individual
decisions. For each design alternative, the evaluation attribute is a function of
both the design variables and design-independent parameters. The objective is
to determine a set of values for the design variables so that the system's
expected utility is maximized. An evaluation process is presented for this type of
problem (Figure 6.5).

The first step is to determine an objective function for design optimization.
The function is actually the expected utility for the evaluation attribute. For a
given utility function u(e), the expected utility is

Efu(e)]= [ u(e)/ (e)de 6.2)

where fle) is the probability density function of E. For each alternative, the
decision problem becomes one of determining the design variable settings which

maximize E[u(e)]= [ u(e)f(e)de.

After an objective function is determined, the next step is to select an
approach to solve this problem. An effective approach to the solution of the
problem is to use optimization techniques. In practice, the problem may be
formulated as a nonlinear optimization problem or as a stochastic optimization
problem. If analytical models cannot be formulated, the problem may be
formulated as a Monte-Carlo simulation model. Taguchi's parameter design may
be used to convert a continuous problem into a discrete problem.

The optimization problem is to determine optimal settings of the design
variables for each alternative. Then the expected utilities achieved by the
optimal decision for each alternative are compared. The design which has the
maximum expected utility is the optimal design.
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In applying this approach, determination of the objective function should
follow the procedures for the assessment of utility functions given in Section
5.4.6. In the literature on design optimization, a special function of mean and/or
variance was often used as the objective function without giving the underlying
decision analysis foundations. For example, a common problem formulation is
a nonlinear optimization problem in which the variance of the evaluation attribute
is minimized while the evaluation attribute is constrained to a target value
(Ramakrishnan and Rao, 1991, d'Entremont and Ragsdell, 1988). In the
formulation of stochastic optimization problems, a linear function of mean and
variance was often assumed as the objective function (Eggert and Mayne, 1990;
Rao and Reddy, 1979; Sundaresan et al., 1991). Though these formulations
may be more appropriate to consider risks in design than the traditional problem
formulation in which a mean is optimized, one must keep in mind their underlying
assumptions as discussed in Section 5.8. The assumptions for each objective
function should be examined to enable the objective function to accurately
reflect the DM's preferences and risk attitudes. As indicated in Section 5.5.3,
the objective function should combine information concemning the utility of
outcomes and the probability of outcomes into an estimate of expected utility.
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Vil. AN EXAMPLE OF BRIDGE DESIGN

7.1 Introduction

7.2 Description of the Problem

7.3 Determination of Design Evaluation Function
7.4 Problem Solution under Certainty

7.5 The Uncertainty Problem

7.6 Design Evaluation in the Face of Uncertainty

7.1 Introduction

A hypothetical example is presented in this chapter to illustrate the
application of the framework presented in Chapter VI. The example originates
from the bridge design evaluation model given in Chapter 10 of Fabrycky and
Blanchard's Life-Cycle Cost and Economic Analysis (1991).

7.2 Description of the Problem

The classical situation of bridge design was studied by Fabrycky and
Blanchard (1991) to illustrate design optimization. An evaluation model was
developed to help decision makers optimally allocate the anticipated capital
investment to superstructure and to piers in the preliminary design stage. It
assumes that there exists an inverse relationship between the cost of the
superstructure and the number of piers. As the number of piers increases, the
cost of the superstructure decreases. Conversely, the cost of the superstructure
increases as the number of piers decreases. Pier cost is directly related to the
number specified. @ Two bridge superstructure design alternatives were
compared in their study (Figure 7.1). The objective is to select an alternative
with the minimum total first cost.
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7.3 Determination of Design Evaluation Function

All variables, parameters, and performance measures in the problem are
classified into four groups: design variables, design-dependent parameters,
design-independent parameters, and evaluation attributes (Table 7.1). The
notation used in the example is:

L = bridge length (feet)

W = superstructure weight (pounds per foot)

S = span between piers (feet)

C, = erected cost of superstructure (dollars per pound)
C, = installed cost of piers (dollars per pier)

TFC = total first cost

Table 7.1. List of Design Variables, Parameters, and Evaluation Attribute

Design Variable S
Design-Dependent Parameters A, B
Design-Independent Parameters C,C,L
Evaluation Attributes IFC

Assume that the weight of the superstructure is a linear function of the span
between piers. That is,

W=AS +B,
where 4 and B are constants established by statistical estimation for the design
alternative under consideration.
The total first cost of the bridge, TFC, is the sum of the superstructure cost,
SC, and the total cost of piers, PC. TFC can be expressed as

TFC=S8C+PC. (7.1)
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The superstructure cost, SC, is given by

SC=WxLsz

= (A4S +B)Lx C; (7.2

The total cost of piers, PC, is the product of the number of piers and the
installed cost for each pier. If the two abutments are considered as piers, the
total cost of piers is equal to

L
PC= (E + I)C,. (7.3)
Thus, the total first cost is expressed as

TFC=(A4S +B)LxC, + (-ﬁ- + 1)C,. (7.4)

This is the design evaluation function for the bridge design problem, which
represents the evaluation attribute, 7FC, as a function of design variables,
design-dependent parameters, and design-independent parameters. The
decision problem is to select an alternative which has the minimum 7FC.

7.4 Problem Solution under Certainty

Two design alternatives are compared in this example. The basic
evaluation process will follow the steps of the Design Dependent Parameter
Approach. First, the decisions within each alternative, i.e., selecting span
between piers, are compared separately to obtain an optimal solution. Then the
optimal decision for Alternative 1 is compared with that of Alternative 2. The
alternative with the lowest total first cost is selected as the best solution for the

overall problem.
To find the optimum span between piers for each alternative, differentiate

Equation (7.4) with respect to § and equate the result to zero, giving
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d LxC
IS,-(YFC)=AXLXC3— & £=0,

S" = |—2—. (7.5)

Since

2LxC,
3 >0,

2 (TFC) =

the minimum 7FC is obtained by selecting § = S*, giving

IFC’=2.JAXCPXL2XC, +BxLxC,+C,. (7.6)

Thus, if a superstructure design is selected and the settings of all of the
design-dependent parameters and design-independent parameters are
determined, the optimal pier spacing can be found by using Equation (7.5).

7.4.1 Data inputs
The values of various input parameters are given in Table 7.2, which are the

same as given by Fabrycky and Blanchard (1991). In the following study, the
unit pier cost will also be used as the estimated cost for each abutment.

Table 7.2. Data Inputs for the Bridge Design Example

Bridge length, L 1,000 feet
Erected cost of superstructure, C, $0.65 per pound
Installed cost of piers, C, $80,000 per pier

Weight of superstructure, W
Alternative 1
Alternative 2

W =16 §+ 600 pounds per foot
W =225+ 0 pounds per foot
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7.4.2 Alternative 1

For Alternative 1, based on Equation (7.5), the optimum span between piers

is equal to
S = 1/ 80000 _g7 4 (feet)
16 x0.65 .

The number of piers is then given by

£,+1=Eo—0+1= 12.4.
S 7.7

This result must be adjusted to obtain an integer number of piers. The number
can be found by calculating the 7FC with respect to various numbers of piers
around 12.4.

The total first costs for different number of piers are calculated by using the
design evaluation function (7.4) and plotted along with the pier cost and the
superstructure cost in Figure 7.2. The decision of 12 piers has the minimum
TFC, which is equal to $2,295,455.

7.4.3 Alternative 2

Similarly, the pier cost, superstructure cost, and total cost for various
numbers of piers are calculated and plotted in Figure 7.3. The optimal span
between piers, S*, is found to be

s = | 3000 248 (feet)
22+0.65

The lowest-cost integer number of piers is 14 piers, whose 7FC is $2,220,000.
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7.4.4 Comparison

The characteristics of the optimal solutions for Alternatives 1 and 2 are
listed in Table 7.3. Ailternative 2 has a lower total first cost. Thus, if the data
inputs are as given in Table 7.2, Alternative 2 is preferable. The optimal number
of piers is 14, with a total first cost of $2,220,000.

Table 7.3. Optimal Solutions for Alternatives 1 and 2

Alternative Optimal Pier Cost Superstructure  Total First
Pier Number (%) Cost ($) Cost ($)

1 12 960,000 1,300,000 2,260,000

2 14 1,120,000 1,100,000 2,220,000

7.5 The Uncertainty Decision Problem

In the last section, the problem was solved by assuming that all design-
independent parameter values in Table 7.2 are known constants. However, in
practice, the settings of those parameters are not subjected to the designer's
control. Their values may be difficult to estimate and are not known with
certainty during the preliminary system design stage. This type of uncertainty
causes difficulties in the evaluation of the design alternatives.

7.5.1 Functional dependence
There are three design-independent parameters in the example problem: C,,
C,, and L. Among these parameters, bridge length L is the easiest to determine

and is usually known in the preliminary design stage. When a superstructure
configuration is selected, its corresponding design-dependent parameters 4 and
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B are determined. Thus, for each candidate design, the total first cost becomes
a function of C,, C,, and design variable S.

For a specific number of piers, according to Equation (7.4), TFC can be
represented as a linear function of C; and C,. That s,

TFC = kCy +bCp | (7.7)

where k, =(AS+B)L andk, =(L/S+1). This equation represents the functional
dependence of TFC on two design-independent parameters. Since C, and G,
are not subject to the DM's control, they can be treated as random variables.
Thus, TFC is a function of two random variables. If the probability distributions
of C, and C, are known, the probability distribution of 7FC can be determined by
Equation (7.7).

Suppose that the mean and the variance of C, and C, are given as:

E(C)=m, Var(C,)=0};
E(C,)=m, val(c,)=c.

Taking expectation of both sides of Equation (7.7), we obtain the mean and the
variance of 7FC:

E(TFC)= ks, + ko,
Var(TFC) = K*a? + K:a +2cov(C,,C, ).
If C,and C, are not correlated, then

Var (TFC) = k0% + k262
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7.5.2 Probability distribution of C,

In this hypothetical example, the original problem of bridge design is
modified to illustrate the approach for design evaluation under uncertainty. We
assume that C, is a random variable with its probability distribution given in
Figure 7.4, and let other parameters be the same as given in Table 7.2. As
given in Figure 7.4, C,has a mean of 0.65, which is equal to the constant setting
of C, given in the original problem (see Table 7.2). However, here C, is not a
constant, rather a random variable with a variance of 0.0039. To reduce the
amount of computation, we let C, be a constant. But the approach can be easily
extended to consideration of C, and C, simultaneously.

7.5.3 The effect of uncertainties on TFC

As a random variable, C, can take any of the six settings in Figure 7.4.
What is the effect of the uncertainty with C, on the evaluation of the design
alternatives? For each setting of C,, the optimal span and the corresponding
TFC are calculated using Equations (7.5) and (7.6). The results for Alternative 1
are plotted in Figure 7.5.

As indicated in Figure 7.5, both the optimal span (§*) and the minimum 7FC
(TFC*) vary greatly with the settings of C,. With the increase of C,, the optimal
span between piers decreases, while the 7FC goes up. Not any single specific
number of piers can achieve a minimum total first cost for all settings of C.,.
These trends are also true for Alternative 2 (Figure 7.6).

In this example, TFC is a function of two independent variables, C, and the
number of piers. Since C, is a random variable, 7FC is also a random variable.
To measure a random variable, one needs to specify its probability distribution.
Based upon the design evaluation function (7.4), the probability distributions,
mean, and variance of the TFC for each decision are obtained in Table 7.4 and
Table 7.5. The variations of TFC with respect to C, are illustrated in Figures 7.7
and 7.8 for each alternative.
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7.6 Design Evaluation in the Face of Uncertainty
7.6.1 The evaluation approach

In the certainty case, the values obtained for 7FC* are considered to be a
constant. We compared the values of the 7FC for various number of piers and
selected the decision that has the lowest 7FC. However, TFC is a random
variable under the uncertainty case. A selection cannot be made by simply
comparing any >particular values of 7FC, e.g., the mean, since the setting which
C, will take is unknown. Because of uncertainties involved in C,, there exists a
problem of decision making under uncertainty. The problem can be represented
by a decision tree (Figure 7.9).

In this design evaluation problem involving uncertainties, the different
settings of C, actually represent different states of nature. Though C, can take
any of the six settings in Figure 7.4, these settings are mutually exclusive. That
is, only one particular setting of C, will occur in practice. However, which setting
C, will actually take is unknown in the preliminary system design stage. Since
the selections of the number of piers are mutually exclusive, the decision
problem is which number of piers to select in the face of uncertainties in C,.

As illustrated in the decision tree, a sequential decision analysis approach
will be used to evaluate the various design decisions. Decision analyses begin
with the right side of the tree and work backwards. For each decision, the
evaluation attribute, 7FC, is estimated with respect to the different settings of C,.
Then the values of TFC from each decision are compared to identify an optimal
decision for each alternative. Finally, the optimal decision from Alternative 1 is
compared with that of Alternative 2 to identify the best decision for the overall
problem. Within each step of the decision tree, the evaluation approach for
discrete decisions presented in Chapter V is used to make a selection.

7.6.2 Regret loss -- the cost of making a selection
As indicated in Figure 7.7, the optimal number of piers for Alternative 1

varies from 11 to 14, depending upon the setting of C, taken. Since the actual
setting which C, will take is unknown during the preliminary design stage, making
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a selection from any of the decisions may result in some opportunity cost. In the
term of statistical decision theory, this cost is called regret loss. The regret loss
represents the difference between the actual cost of the decision selected and
the minimum cost that could be achieved with perfect knowledge. The regret
losses for various decisions are calculated below with respect to each possible
setting of C,.

For Alternative 1, regret losses are calculated in the following way: subtract
the minimum 7FC in each column of Table 7.4 from each value of 7FC in the
same column. The results for selecting 11 through 14 piers are given in Table
7.6. Several conclusions can be drawn from the calculations. The regret loss
for each decision varies significantly with the level of C,. For each level of C,, if
the decision is optimal, zero regret loss is incurred. However, not any single
decision has zero regret loss for all levels of C,. It seems that the decision of 12
piers is preferable because it has the lowest expected regret loss ($2,527).
However, if the minimax regret criterion is used, 13 piers should be selected.

Table 7.6. Regret Losses (RL) for Alternative 1 (dollars)

No. of C, Mean Max.

Piers 0.55 0.60 0.65 0.70 0.75 0.80 of RL RL
11 0 7,273 14,545 26,667 40,000 55,385 17,436 55,385
12 0 0 0 4848 10,909 19,021 2,527 19,021
13 13,333 7,273 1,212 0 0 2051 3436 13,333
14 36,923 25,734 14545 8205 3,077 0 16,513 36,923

Similarly, the regret losses for four decisions from Alternative 2 are
calculated in Table 7.7. The decision of 14 piers has the lowest expected regret
loss, while the decision of 15 piers has the smallest maximum regret loss.
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Table 7.7. Regret Losses (RL) for Alternative 2 (dollars)

No. of C. Mean Max

Piers 0.55 0.60 0.65 0.70 0.75 0.80 of RL RL
13 0 4615 11,667 23,333 36,429 53,333 14,816 53,333
14 2,436 0 0 4615 10,659 20,513 2,797 20,513
16 15952 7,473 1,429 0 0 3,810 3,923 15,952
16 38,333 24615 13,333 6667 1429 0 15566 38,333

7.6.3 Assumptions about the DM's preferences and risk attitude

The existence of non-zero regret losses for each decision represents the
risk involved in the decision process. In order to identify the best alternative, we
need to determine the decision maker's preferences for both gains and losses.

The preferences of a decision maker can be described by a utility function.
However, the selection of utility functions is subjective. There is not a single
utility function which can fit all types of decision makers. The type of the utility
function depends on the decision maker's behavior.

In this example, two assumptions are made about the DM's preferences and
risk attitudes: (1) the DM prefers less TFC, and (2) the DM is risk averse. The
first assumption means that the utility function is a decreasing function of 7FC.
The second assumption implies that the utility function is a decreasing function
of the variance of 7FC.

7.6.4 Mean-Variance analysis

In evaluating various decisions in the problem, the first thought is to use the
mean of the TFC as the decision criterion and select the decision which has the
minimum expected 7FC. However, as shown in Figures 7.10 and 7.11, each
mean is associated with a variance. The variance measures the variability of the
TFC for each decision. It reflects the risk involved in the decision process. Thus,
as indicated in Chapter IV, if the DM is not risk neutral, the criterion of
minimizing the expected 7FC is not valid.
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One way to evaluate the decisions involving uncertainty is to apply Mean-
Variance analysis. Instead of comparing only the means of the decisions, we
can compare the means and variances of the T7FC together. As shown in
Figures 7.10 and 7.11, both the mean and variance of 7FC vary significantly with
the number of piers. For Alternative 1, the decision of 12 piers has the minimum
expected 7FC, while the decision of 18 piers has the minimum variance for 7FC.
To find an optimal decision, a trade-off must be made between the mean and
variance of the TFC. Given the two assumptions about the decision maker's
behavior, the Mean-Variance analysis is now applied to resolve the trade-off
problem. "

In order to compare the decisions for each alternative, each pair of mean
and variance of TFC is plotted on an E-V chart (Figures 7.12 and 7.13). The
horizontal axis of the E-V charts represents the variance of the 7FC, while the
vertical axis denotes the mean of the TFC. Each point in the chart represents a
decision, that is, selecting a specific number of piers. Thus, for each design
alternative, there are a total of 11 points on its E-V chart, representing the
number of piers from 8 through 18.

At the beginning of the section, it was assumed that the DM always prefers
less value of 7FC and is risk averse. Thus, on an E-V chart, a possible point

(6% ime ) is called efficient if no other possible point (62, s ) has

P S Prc, 8N Ofe < 0T

The efficient points form the lowest left boundary of the set of possible points on
the E-V chart. The boundary is called the efficient frontier and the set of efficient
points is called an efficient set. The efficient frontier is drawn through the points
representing the decisions that are not dominated by some other decisions. Any
point above and to the right of the efficient frontier represents a decision
dominated by one on the frontier. For any obtainable E-V combination, except in
the efficient set, it is possible to find a feasible combination with less mean and
no more variance, or to find one with less variance and no more mean, or both.
Any such combination is considered inefficient.
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The efficient set for Alternative 1 consists of decisions of selecting 12, 13,
14, 15, 16, 17, and 18 piers. None of the decisions dominates each other. The
decisions of 8, 9, 10, and 11 piers are found to be inefficient, since we can
always find a member from the efficient set which dominates them. Similarly, for
Alternative 2, its efficient set consists of 14, 15, 16, 17, and 18 piers. The
decisions of 8 through 13 piers are found to be inefficient. To resolve the
decision problem, the E-V dominance rules introduced in Chapter IV are applied:

E-V Rule 1: If Decision 4 has a mean of 7FC the same as or lower than that
of Decision B, and has a lower variance of TFC than B, then Decision 4 is
preferred.

E-VRule 2: If Decision 4 has a variance of TFC the same as or lower
than that of B, and has a lower mean of 7FC than B, then Decision 4 is preferred.

By applying the E-V rules, those inefficient decisions are eliminated (Table
7.8). For Alternative 1, four decisions are dropped and seven decisions remain.
For Alternative 2, six decisions are eliminated and five decisions remain. Thus,
the decision problem is reduced to the evaluation of the remaining decisions. To
compare the members in an efficient set using the E-V analysis, we need to
develop a two-attribute utility function which quantifies the DM's preferences for
the mean and variance of TFC. By plotting utility indifference curves on the E-V
charts, the point on the efficient frontier which gives highest utility provides the
optimal decision.

Table 7.8. List of the Decisions Eliminated and the Decisions Remaining

Alternative Decisions Eliminated Decisions Remaining
1 8,9, 10, 11 12, 13, 14, 15, 16, 17, 18
2 8,9,10,11,12,13 14, 15, 16, 17, 18
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7.6.5 Stochastic dominance

As discussed in Chapter V, one consideration in applying the framework for
design evaluation in the face of uncertainty is to use utility analysis as the last
resort. It is recommended that the use of utility functions be deferred if other
approaches which require less strict assumptions are valid. Stochastic
dominance is applied below to evaluate the members of the efficient set
identified by Mean-Variance analysis. As presented in Section 4.5, the
stochastic dominance rules are based on several progressively stronger
assumptions about the decision maker's behavior.

First-Order Stochastic Dominance Rule: If the DM prefers less TFC to
more TFC, and if the cumulative probability of Decision 4 is never greater than
the cumulative probability of Decision B and sometimes less, then B is preferred
to 4.

The cumulative probabilities of TFC for the members in the efficient set of
Alternative 1 are plotted in Figure 7.14. In this figure, the horizontal axis and
the vertical axis are exchanged so that all decisions can be compared
simultaneously. For each level of cumulative probability, the value of TFC at
which the cumulative probability is achieved is reflected by the height of the bar
chart. Thus, if the bar height for Decision 4 is always lower than that for
Decision B under the same level of the cumulative probability, the cumulative
probability of Decision A is greater than that of Decision B. For example, the
decision of 18 piers has a higher value of 7FC than the decision of 17 piers for
each level of cumulative probability. Thus, the decision of 17 piers dominates
the decision of 18 piers by first-order stochastic dominance. Inspecting Figure
7.14, we find that the decisions of 13 and 14 piers dominate the decisions of 15,
16, 17, and 18 piers by first-order stochastic dominance. But for 12, 13, and 14
piers, none of them dominates each other. The conclusions are obvious in
Table 7.4. Under any level of C,, the decisions of 15 through 18 piers always
have higher values of 7FC than decisions of 13 piers and 14 piers. Similarly, the
cumulative probabilities for various decisions in Alternative 2 are compared in
Figures 7.15. The results are summarized in Table 7.9.
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Table 7.9. List of Decisions Dominated and Decisions Remaining

Alternative Decisions Eliminated Decisions Remaining
1 15, 16, 17, 18 12,13, 14
2 17,18 14, 15, 16

In applying the First-Order Stochastic Dominance Rule, the only assumption
made about the DM's behavior is that he prefers less 7FC to more 7FC. A more
strict rule is needed in order to compare the decisions remaining in Table 7.9.
Thus the Second-Order Stochastic Dominance Rule presented in Section 4.5 is
applied to this problem.

Second-Order Stochastic Dominance Rule: If (1) the DM prefers less
TFC to more TFC, and (2) the DM is risk-averse, and (3) the sum of the
cumulative probabilities for all 7FC's are never more with 4 than B and sometime
less, then B dominates 4 by second-order stochastic dominance.

Now this rule is applied to compare the remaining decisions for each
alternative in Table 7.9 one by one. First, this rule is used to compare the
decisions of 12 piers and 13 piers of Alternative 1. The sums of cumulative
probabilities for both decisions are plotted in Figure 7.16. For each possible
level of TFC, the sum of cumulative probabilities for 12 piers is always higher
than that for 13 piers. This indicates that the decision of 12 piers dominates the
decision of 13 piers by second-order stochastic dominance. This conclusion is
further confirmed by inspecting the cumulative probabilities of both decisions in
Figure 7.16. For the cumulative probability of 7FC less than or equal to 0.75, the
decision of 12 piers has less TFC than the decision of 13 piers. That is, the
probability that selecting 12 piers will result in higher 7FC than selecting 13 piers
is no more than 0.25. Thus, if the decision maker is risk averse, he will select 12
piers.
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Figure 7.19. Comparison of the sums of cumulative probabilities (Alternative 2: 14 piers and 16 piers)



Then the decisions of 12 piers and 14 piers of Alternative 1 are compared.
The sums of their cumulative probabilities are plotted in Figure 7.17. Since the
sum of cumulative probabilities of 12 piers is higher for each level of TFC, the
decision of 12 piers also dominates the decision of 14 piers by second-order
stochastic dominance. Thus, the optimal decision for Alternative 1 is 12 piers.

Similarly, for Alternative 2, the decision of 14 piers is found to dominate the
decisions of 15 piers and 16 piers by second-order dominance (see Figures 7.18
and 7.19). Thus, the optimal decision for Alternative 2 is 14 piers.

7.6.6 Comparison of Alternative 1 and Alternative 2

In the previous section, the optimal decision for each alternative has been
identified. According to the decision tree in Figure 7.9, the next step is to
compare the optimal decision from each alternative and select the better one.
The probability distributions of TFC for the optimal decision from each alternative
are given in Table 7.10. Both the Mean-Variance rules and the Stochastic
Dominance rules are now used below to make a comparison.

Mean-Variance analysis. The means and variances for both alternatives
are plotted in Figure 7.20. Alternative 1 is inefficient since it has both a higher
mean and a greater variance than Alternative 2. According to the E-V rules,
Alternative 2 is preferable.

Stochastic dominance. To further assure that Alternative 2 is preferred,
we compare the optimal decisions for each alternative by employing the First-
Order Stochastic Dominance rule. The cumulative probabilities of 7FC for both
alternatives are plotted in Figure 7.21. For each level of 7FC, the cumulative
probability of Alternative 2 is no more than that of Alternative 1. Thus,
Alternative 2 dominates Alternative 1 by first-order stochastic dominance. This
conclusion is obvious in Figure 7.22, where Alternative 2 always has less TFC
for any level of C,. Thus, the regret loss for selecting Alternative 2 is always
zero.
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7.6.7 Characteristics of the optimal decision

The best decision for the bridge design problem involving uncertainty is
Alternative 2 with 14 piers. The probability distribution of its 7FC is given in
Figure 7.23. The mean and variance of the TFC are $2,224,231 and 1.11x101°,
respectively. Since the decision problem has been resolved by second-order
stochastic dominance, there is no need to assess the DM's utility function
quantitatively.

Though the best decision is the same as that identified in the case of
evaluation under certainty, this coincidence is an exception rather than a general
conclusion. For this problem, the coincidence in the solutions is mainly due to
the type of probability distribution specified for the erected cost of the
superstructure (C). In the certainty case, C; is a constant and equal to $0.65
per pound. In the uncertainty case, C, is a random variable. As given in Figure
7.4, the probability that C, is equal to 0.65 is 0.45. Compared to other settings of
C,, this particular setting has a very large probability. As a result, it has a large
effect on the final solution.

it must be noted that the nature of the decision problem in the face of
uncertainty is different from that under certainty. Under the certainty case, the
evaluation attribute is a constant. Thus, the best decision identified dominates
other decisions deterministically. However, under the uncertainty case, the
evaluation attribute is a random variable. The best decision was identified
based on some assumptions about the decision maker's preferences and risk
attitudes. Depending upon the actual setting of C;, this best decision may not
always dominate other decisions.
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VIil. MULTIATTRIBUTE DESIGN EVALUATION
IN THE FACE OF UNCERTAINTY

8.1 Introduction
8.2 Descriptive Procedures for Choices with Multiple Attributes
8.3 The Need for a Systematic Approach to Deal with Multiple Attributes
8.4 Multiattribute Utility Theory (MAUT)
8.5 A Structured Approach for Multiattribute Design Evaluation
in the Face of Uncertainty

8.1 Introduction

The problem of design evaluation in the face of uncertainty was analyzed
and modeled in Chapters V and VI by considering only one evaluation attribute.
If a single evaluation attribute is not adequate to describe the outcome of a
decision, a multiple attribute problem exists. The set of attributes might include
reliability, maintainability, manufacturing cost, life-cycle cost, weight, speed,
capacity, etc. Because multiple attributes are involved, the outcomes for the
design decisions are multidimensional. Thus, this type of decision problem
becomes a problem of multiattribute design evaluation under uncertainty.

Finding an optimal decision for a multiattribute design evaluation problem in
the face of uncertainty is very difficult. Two major factors contributing to this
difficulty are (1) the large uncertainties about what the impact of any alternative
will eventually be and the difficulty in separating this from one's preferences
concerning "possible" consequences, and (2) the multidimentional outcomes of
the problem and the necessity to make value trade-offs among various levels of
different attributes.
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In Chapter VI, an integrated approach was developed to deal with
uncertainty in design evaluation involving a single attribute. In this chapter, the
approach is extended to resolve design decision problems involving both
uncertainties and multiple attributes.

8.2 Descriptive Procedures for Choices with Multiple Attributes

Holloway (1979) summarized four descriptive procedures for dealing with
multiattribute decision problems. These procedures are simple and
straightforward. They are:

Dominance: Alternatives are compared attribute by attribute. If Alternative
A is at least preferred as Alternative B on all attributes and strictly preferred on
at least one attribute, A dominates B.

Satisficing: Satisfactory levels are set for each separate attribute. Any
alternative that meets the satisficing levels for every attribute is kept. Others are
discarded.

Lexicographic procedure: Atftributes are ranked in order of importance.
Then alternatives are compared one attribute at a time, starting with the highest-
ranked attribute. Lower-ranked attributes are used until they are exhausted or
until a unique choice is made.

Combination procedure: The dominance, satisficing, and lexicographic
procedures are used in combination. First, dominance is used to eliminate any
dominated alternatives. Next, satisficing is used to eliminate alternatives that
are not adequate on one or more of the attributes. Those alternatives that
survive both the dominance and satisficing procedures are subjected to the
lexicographic procedure.

The dominance procedure works only in special cases. The satisficing
procedure and the lexicographic procedure rely on strong assumptions

156



concerning the independence of the attributes. This is required because the
attributes are treated separately. Holloway (1979) suggested that these
procedures be used in combination. However, if decisions are complicated by
both multiple attributes and uncertainty, the descriptive procedures are difficult
to use, if possible, since the levels of the attributes are not known with certainty.

8.3 The Need for a Systematic Approach to Deal with Multiple Attributes

Multiattribute design evaluation in the face of uncertainty is complicated
because uncertainties and multidimensional outcomes must be considered
together. As indicated in Section 8.1, there is a fundamental difficulty involved in
considering multidimensional outcomes. Evaluation and optimization of
alternatives can be accomplished only with respect to a single attribute; since all
members of the set of attributes, by definition, significantly influence the
decision, no criterion for any single attribute can rationally be used as the only
basis for the decision.

During the early stages of system design, it is important to identify the most
desirable combination of various attribute levels. Design analysis and
evaluation must be based on a rigorously determined multiattribute objective
function. The function must be defined to accurately reflect the DM's
preferences and willingness to make trade-offs over multiple attributes. To be
consistent, the multidimensional outcome must be transformed into a single
figure of merit. A scale which measures relative contribution to success of the
candidate design must be identified, and a means for measuring the
multidimensional outcome on this scale must be formulated so that evaluation
and optimization of alternatives can be accomplished. As identified in Chapter
IV, the scale should be utility. Thus, the goal should not simply be to optimize
any single attribute, such as performance variations claimed in Taguchi's
philosophy. Instead, the goal should be to maximize the DM's utility.

The transformation of the multidimensional outcome into utility is not always
accomplished explicitly. It may be done subjectively, intuitively and implicitly —
but it must be done (Lindley, 1984; Lifson, 1972). The identification of the
criteria on which the decision is really based and recognition of the relationships
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between such criteria and human values constitute the value problem present in
all decision situations. In the next section, multiattribute utility theory is
introduced to show how such a transformation can be accomplished.

8.4 Multiattribute Utility Theory (MAUT)

Suppose we have two attributes E, and E,. The consequence space is
E=E xE, A specific consequence is designated by e or (¢,e,). We are
interested in assessing a utility function over E, denoted by u(e) or u(e,,e,). The
preference structure and all of the trade-offs between attributes are specified

once u is known.
In order to determine how the worth of a design as a function of the mulitiple

attributes is calculated, the conditions under which various forms of the utility
function, u(e), are appropriate should be determined. The utility function defined

should accurately reflect the DM's preferences for each attribute and his risk
attitude for various levels of the individual attribute. Three independence
conditions which help in minimizing the level of effort required to determine such
a utility function are described below.

8.4.1 Three independence conditions

Preferential Independence (Pl) (Keeney and Raiffa, 1976): Attribute E, is
preferentially independent of its complement E, if the preference order of
consequences involving only changes in the levels in £, does not depend on the
levels at which attributes in E, are held fixed.

Preferential independence implies that the conditional indifference curves
over E, do not depend on attributes in E,. The concept concerns the DM's
preferences for consequences where no uncertainty is involved. Symbolically,
E, is Pl if and only if for any consequences e, e/, ',

(e1,2) > (e ) = (e,) > (eng) foralle,.
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in design evaluation involving multiple attributes, Pl means that the DM
always prefers more of an attribute to less (or less to more, depending upon the
attribute) regardless of the level of other attributes. It should be noted that Pl
does not refer to independence between different attributes, but rather to the
worth a designer places on individual attribute levels. For example, the life-cycle
cost of a system is related to the reliability of the system. But the relative worth
to the designer over the range of acceptable levels of the life-cycle cost alone is
independent of the level of reliability.

Utility Independence (Ul) (Keeney and Raiffa, 1976): Attribute E, is utility
independent of its complement E, if the conditional preference order for lotteries
involving only changes in the levels of attributes in £, does not depend on the
levels at which the attributes in E, are held fixed.

Utility independence concermns preferences for lotteries that involve
uncertainty. For any lotteries é/,é, and consequence ¢, E, is Ul if and only if

(@.27)>(ene) = (e.8) - (é7g) forallg,

Ul means that the general shape or degree of nonlinearity of the value
function is not altered by changes in levels of the other attributes. By definition,
it follows that if £, is Ul, then E, is Pl. But the converse is not necessarily true.
The preferential independence can be stated in terms of the preference order for
degenerate lotteries, those involving no uncertainty. Thus, Ul is the stronger
condition.

Additive Independence (Keeney and Raiffa, 1976; Fishburn, 1988):
Attributes are additive independent if preferences over lofteries depend only on
their marginal probability distributions and not on their joint probability

distribution.
In two dimensions, an equivalent condition for two attributes, £, and E,, to

be additive independent is that lotteries

159



0.5 0.5

0.5

0.5 .
(e ,8%) ©7 .8,)

must be equally preferable for all (e,,e,) given an arbitrarily chosen e; and e;.

Note that in each of these two lotteries, there is a one-half probability of getting
either ¢, or ¢/ and a one-half probability of getting either e, or ¢;. The only
difference is how the levels of £, and E, are combined.

Additive independence is a stronger condition than utility independence. If
two attributes are additively independent, they must be mutually utility
independent. But the converse is not true. Mutual utility independence does not
imply that the attributes are additively independent.

8.4.2 Utility models

f Pl and Ul are satisfied, a general multiattribute utility function,
u(e,,e,,--+,€,), can be simplified and expressed as a function of single-attribute

utility functions. The function can take either a multiplicative or an additive form.

Multiplicative utility model. lLet E=E xE, x---E,. If any attribute E, is

preferentially independent and utility independent of its complement E, the
utility u(e,,e,,---,e,) can be represented as

u(el’ez""’en)=%[ﬁ(ﬂiul(ei)"'1)-1], (8.1)
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where

k, = scaling constant for attribute e,

u,(e;) = utility function for attribute e,

K = a scaling constant for normalizing utility function u(e,,e,,---,e,).
K can be obtained by solving

1+K = ﬂ(l+Kk,).
=1

Additive utility model. If the more restrictive additive independence
condition is satisfied, the utility u(e,,e,,---,e,) can be represented as

u(e,,e,,--,e,)= zn:ktui(e:)- (8.2)

where Z": k=1

i=1

8.4.3 Assessing multiattribute utility functions

According to Keeney (1977), the assessment of multiattribute utility
functions usually follows seven steps:

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.

Verification of Preferential Independence
Verification of Utility Independence

Ordering of the scaling constants

Assessing the scaling constants

Selecting an additive or multiplicative utility function
Assessing single-attribute utility functions

8.5 A Structured Approach for Multiattribute Design Evaluation in the Face
of Uncertainty

Based upon multiattribute utility theory, a structured approach can be
presented to quantify uncertainties and value trade-offs in design evaluation.
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This approach mathematically models the functional relationships between
design decisions and the overall worth of a candidate design. It focuses on
assessing and modeling uncertainties, not only on developing a value model to
study multiple attributes. The approach is useful in the early stages of the
design process. It can be used to (1) determine an objective function to be used
in place of the arbitrary "loss function", and (2) determine the best combination
of attribute levels available in the set of feasible design alternatives.

The approach centers around the development of a muiltiattribute utility
function which represents the DM's preferences for the attributes and his risk
attitude for the levels of each attribute. With such a utility function, the
evaluation framework presented in Chapter V can be extended to multiattribute
design evaluation under uncertainty. The decision criterion is the maximization
of expected utility.

For a discrete outcome space, the procedures for multiattribute design
evaluation are illustrated in Figure 8.1. After a design analysis is conducted to
assess all possible outcomes and their probability distributions, an outcome
dominance examination is made. Decisions or alternatives are compared
attribute by attribute. The dominated decisions are eliminated. If there is only
one decision remaining, the decision is optimal and is recommended. If there is
more than one decision remaining after the outcome dominance test, a
multiattribute utility function is defined and the utility for each possible outcome
of each decision is estimated. The decision which has the highest expected
utility is the optimal decision. If the decisions are continuous, a procedure
similar to that given in Figure 6.5 should be used. However, instead of using a
single-attribute utility function as the objective function, a multiattribute utility
function needs to be employed.

In applying the approach to resolving problems of multiattribute design
evaluation, because of uncertainties, expectation of the utilities should be taken.
Once a multiattribute utility function u(e) or u(e,e,, --,e,) is determined, the
expected utility E(») can be obtained as follows:

If the utility function is additive,

u(eheZ""’en)= Zkiui(ei )t
=1
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the expected utility is equal to

E[u(e, e,,--,e,)]= z":kiE[u,(e,. )] (8.3)

i=1

If the utility function takes the multiplicative form,

u(e,,€;,",e,) = ';—I:H(Kkiui(ei)"' 1) - l]a

i=1

the expected utility becomes

E[u(e, e3,-+-,,)]= %[I‘[ (KK, E[u,(e,)]+1) - 1]. (8.4)

=1

In Equations (8.3) and (8.4), E[y,(e;)] represents the expected value of the
single attribute utility function for Aftribute e,. If the Attribute e, is a discrete
variable, then

Elu(e)]= Y u(e,)p,. (8.5)

j

If Attribute e, is a continuous variable having probability distribution function
fi(e), then

Elu(e)]= [~ ue,)f,(e)de,. (86)
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IX. REPAIRABLE EQUIPMENT POPULATION
SYSTEM DESIGN

9.1 Introduction

9.2 Problem Description

9.3 Determination of Design Evaluation Functions

9.4 Decision Tree

9.5 Experimentation

9.6 Preliminary Findings

9.7 Assessment of Utility Function

9.8 Design Evaluation Using the Maximum Expected Utility Criterion

9.1 Introduction

In this chapter, an example is given to illustrate the framework presented in
Chapter VIl for multiattribute design evaluation in the face of uncertainty. This
example is a modified version of the Repairable Equipment Population System
(REPS) model, which is found in Chapter 13 of Fabrycky and Blanchard's Life-
Cycle Cost and Economic Analysis (1991). ‘

9.2 Problem Description

A finite population of repairable equipment is to be procured and maintained
in operation to meet a demand. As repairable equipment units fail, they will be
repaired and returned to service. As they age, the older units will be removed
from the system and replaced with new units. The system design problem is to
determine the population size, the replacement age of units, and the number of
repair channels so that design requirements will be met at a minimum life-cycle
cost. This repairable equipment population system is illustrated in Figure 9.1.
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Figure 9.1. Repairable equipment population system
(Fabrycky and Blanchard, 1991)
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The REPS model may be used to represent the operation of numerous
systems. For example, both the airlines and the military operate and maintain
aircraft with these system characteristics. In ground transit, vehicles such as
rental automobiles, taxis, and commercial trucks constitute repairable equipment
populations. Production equipmént such as weaving looms, drill presses, and
autoclaves are populations of equipment which fit the repairable classification.
The repairable unit may also be an inventory of components for the larger
entities mentioned. For example, aircraft hydraulic pumps, automobile starters
and alternators, truck engines, and electric motors also constitute repairable
equipment population systems.

9.3 Determination of Design Evaluation Functions

9.3.1 Design variables, parameters, and attributes

Various factors which influence decision making for the design of the REPS
are identified in Table 9.1. They are categorized into four groups: system design
variables, design-independent parameters, design-dependent parameters, and
evaluation attributes. There are three system design variables. These
controllable variables are the number of units to deploy or population size, the
number of repair channels, and the replacement age of units. Design-
independent parameters are those parameters not subject to the decision
maker's control. They include the interest rate, shortage penalty cost, the cost of
providing repair facilities, and demand. Design-dependent parameters include
MTBF, MTIR, design life, unit acquisition cost and operating cost, and the
estimated salvage value of a unit.

Two attributes are identified to measure the effectiveness of the REPS. One
is the system's annual equivalent lifecycle cost. This attribute measures the
cost-effectiveness of the REPS. Another attribute is the probability of no units
short. This measure reflects the availability of the overall system in meeting the
demand. It measures the performance effectiveness of the REPS. For a
commercial system, a shortage of units results in loss of revenue and goodwill.
For military systems, a shortage of units may be critical or even catastrophic.
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Table 9.1. List of Design Variables, Parameters, and Attributes

Category Notations  Measures

System design variables:

population size N units

number of repair channels M channels

replacement age n years
Design-independent parameters:

interest rate ir %

shortage penalty cost C, $ / unit short / year

cost of repair channels C, dollars per channel

demand D units
Design-dependent parameters:

mean time between failures MTBF years

mean time to repair MTIR years

design life L years

first or acquisition cost P dollars

unit operating cost C, dollars per unit per year

salvage value F dollars per unit
Attributes:

annual equivalent life-cycle cost AELCC dollars

probability of no units short PNUS
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9.3.2 Functional relationships

In Fabrycky and Blanchard's example, the following assumptions were
adopted in the development of the mathematical model for the REPS:

1) The interarrival times are exponentially distributed.

2) The repair times are exponentially distributed.

3) The interarrival times are statistically independent of the repair times.

4) The number of units in the population is small such that finite population
queueing models must be used.

5) The repair channels are parallel and each is capable of identical
performance.

6) The population size is always larger than or at least equal to the number of
repair channels.

7) Each repair channel performs service on one unit at a time.

8) MTBF and MTTR values vary for each age group and represent the
expected value of these variables for that age group.

9) Repaired units return to operation with the same operational characteristics
as their age group.

10) Only steady-state modes of operation are considered in the formulation of
the REPS model.

Given these assumptions, design evaluation functions are developed below
for each of the two attributes: (1) the annual equivalent life-cycle cost, and (2)
the probability of no units short.

Annual equivalent life-cycle cost

The annual equivalent life-cycle cost for REPS, AELCC, is composed of four
types of costs and can be expressed as

AELCC =PC+ OC + RC + SC (9.1)

where PC = annual equivalent population cost (dollars)
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OC = annual operating cost (dollars)
RC = annual repair facility cost (dollars)
SC = annual shortage penalty cost (dollars)

Annual equivalent population cost (PC):

The annual equivalent population cost of a deployed population of N units is

PC=C/N
where C,=(P-B)(**")+Bxir
P = acquisition cost of a unit

P-F

B=P-n

F = estimated salvage value of a unit
L = design life

n = replacement age

ir = annual interest rate

Annual operating cost (OC):
The annual cost of operating N units is given by
oCc=C,N

where C, = annual cost of energy, labor, and preventive maintenance,
and other operating costs

Annual repair facility cost (RC):

The annual cost of providing a repair facility to repair failed units is:

RC=CM
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where C, = annual fixed and variable repair cost per repair channel
M = number of repair channels

Annual shortage penalty cost (SC):

The annual shortage penalty cost is the product of the shortage cost per unit
short per year and the expected number of units short. It can be expressed as

SC = C,E(S)

where C, = shortage cost per unit short per year
E(S) = expected number of units short

In a finite population repairable equipment system, if the number of units in
operation is less than the demand due to random failures, a shortage is incurred.
The expected number of units short, £(S), can be found by using finite population
queueing theory. The results are summarized below:

For a population of N units and M repair channels, the probability that £
units fail is

P =a,F

where

Nt (a2
“’=<N—k)'k'[")
Wk u

ifk=0,1,2, .., M,

if k=M+1,M+2, ..., N,

- N! Y
FTOIN-RIMIMEM g4
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where A = failure rate of a unit, 1/MTBF
u = repair rate of a unit, 1/MTTR

For a population size of N and a demand of D, if the number of failed units
is greater than (N - D), a shortage of units is incurred. The expected number of
units short is then given by

D
E(S)= ij _'P(N-D+j) ,
j=1

Probability of no units short

For a repairable equipment population system with a population size of N
and a demand of D, the probability of no units short is equal to

N-D

PNUS=3 P, (9.2)
k=0

9.4 Decision Tree

Design evaluation functions are determined above to represent two
attributes, AELCC and PNUS, as functions of various design variables, design-
dependent parameters, and design-independent parameters. The next step in
design evaluation is to develop a decision tree which models the REPS decision
problem as a sequential decision process.

In developing a sequential decision model, several simplifications are made
to the original REPS model of Fabrycky and Blanchard (1991) in order to reduce
the amount of calculation. First, only two of the three system design variables
are selected as the decision variables: the population size N and the number of
repair channels M. The replacement age of each unit is held fixed at its design
life, that is, » = L. Thus, n becomes a design-dependent parameter. For each
alternative, the M7TBF and the MTTR represent the expected values of units
within their design life.
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Second, two of the design-independent parameters are considered as
random variables. They are the annual interest rate and the shortage penalty
cost. A discrete probability distribution will be specified for each of the variables.
The values of other design-independent parameters are assumed to be constant
and known. "

Given these two assumptions, the REPS decision problem can be
represented by a decision-tree diagram in Figure 9.2. At the left side decision
node, an alternative is selected. For each alternative, a population size is
selected at the next decision node in the middle. Then the number of repair
channels is determined at the right side decision nodes. Two types of chance
nodes in the figure represent various settings of two design-independent
parameters, the interest rate and the shortage penalty cost.

This decision tree in Figure 9.2 can be decomposed into the diagram given
in Figure 9.3. The decomposed decision tree combines the two types of chance
nodes for the interest rate and the shortage penalty cost. Thus, each
combination of the settings of the interest rate and the shortage penalty cost
represents a state of nature for the problem. In Figure 9.3, the decision nodes
for the population size and the decision nodes for the number of repair channels
are also combined. Thus, for each alternative, each decision in the diagram
represents a possible combination of the settings of two decision variables, N
and M.

The evaluation process begins with the right side of the tree in Figure 9.3
and works backwards. The outcomes of each decision are estimated by
calculating the values of two attributes for various possible states of nature.
Then the utility for each decision is assessed. The decision which has the
highest expected utility is identified for each alternative. Finally, the optimal
decision for the problem is obtained by comparing the expected utility of the best
decision for each alternative.

9.5 Experimentation

A computer model is developed to facilitate the computation of AELCC and
PNUS. The flowchart of the model is illustrated in Figure 9.4. The model is
programmed using C language (see Appendix A.2 for the program listing).

173



wejqosd S43y ay) jo uonejuesasda) 8aJ-uoisioep v ‘z'6 8inbi4

174

%Wy/ N
N S "= x
o .
S N
JJ ~— N
o y\ P W N \ P
N




Altemative 1

(i, spc)y,

o, o~
N~
NM,

/ J‘( (. spo),
L

N

Figure 9.3. A simplified decision-tree representation of the REPS problem

175



(o )
l

/ Read inputs from disk /

[ Print inputs for verification /

!

COUNT_N = O

COUNT_N
< size of N

COUNT_M = 0

Increase COUNT_N by 1|

No COUNT_M
< size of M

Yes

Calculate E(S) and PNUS

|

CR=CrxM

A 4

COUNT_IR = 0O

®

Figure 9.4. Flowcharts for the REPS model

176



("u02) |8poW Sd3H U} J0j HeYydIMOl] ‘g 8inbi4

8

AQ DdSTINNOD ©@sesudu|

[

\m:zn_ ‘D073V ‘OdS ‘HI ‘W ‘N EE\

I

SO + dJ + WO + 0D = DD73v

I

Ods x (S)3 = SO

DdS 40 ozjs >
JdSTINNOD

L A9 WTLNNOD eseeidu|

| 1 AQ W LNNOD eseeudu)

0 = OdSTINNOD

i

N xd) = gD

ON

s

Hl jo ezjs >
HI"INNOD

177



The experiments are conducted by using the input values from the examples
given by Blanchard and Fabrycky (1990). Two candidate systems are identified
in Table 9.2. The design life and salvage values are adjusted for the simplified
model formulation. The demand is assumed to be 15 units. The repair channel
cost is $45,000 per channel per yéar. The probability distributions of the interest
rate and the shortage penalty cost are given in Tables 9.3a and 9.3b,

respectively.

Table 9.2. Design-Dependent Parameters for Candidate Systems

Parameter Candidate System 1 Candidate System 2
Unit acquisition cost, P $52,000 $43,000
Unit design life, L 4 years 4 years
Unit salvage value, F $22,000 $17,667
Unit operating cost, C, $1,750 $2,300
MTBF 0.2550 0.2225
MTTR 0.0425 0.0450

Table 9.3a. Probability Distribution of Annual Interest Rate

Interest rate, ir 9% 10% 1%
Probability 0.30 0.40 0.30
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Table 9.3b. Probability Distribution of Shortage Penalty Cost

Shortage penalty cost, C, ($/unit short/year) 68,000 73,000 78,000
Probability 0.25 0.50 0.25

The possible states of nature are determined by the combinations of the
interest rate and the shortage penalty cost. There are a total of 9 (3x3)
combinations, representing nine states of nature for the REPS problem. Since
the interest rate and the shortage penalty cost are independent, the probability
that a state occurs is equal to the product of the probabilities of the
corresponding interest rate level and the shortage penalty cost level. The
probabilities for the states of nature are plotted in Figure 9.5.

Experiments are conducted by letting N =18, 19, 20, 21, 22 andM =2, 3, 4,
5. For each alternative, there are 20 decisions (5x4). The results for each
alternative are listed in Table 9.4 and Table 9.5, respectively.

9.6 Preliminary Findings
9.6.1 Probability of no units short

Tables 9.6a and 9.6b summarize the probabilities of no units short for
Alternative 1 and Alternative 2 respectively. The value of PNUS depends upon
both the settings of N and M. Based upon the experimentation results, the
following conclusions can be drawn:

« For a constant population size, the PNUS increases with the number of

repair channels.
e For a constant number of repair channels, the PNUS increases with

population size.
« The decision of 22 units and 5 repair channels has the highest PNUS for

both alternatives.
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Table 9.6a. Probability of No Units Short (Alternative 1)

N M
2 3 4 5
18 01872 05459 07007  0.739%
19 0.2046 06222 08012  0.8594
20 02151 06744 08617  0.9202
21 02211 07107 08995  0.9525
22 02244 07362 _ 0.9241 _ 0.9705

Table 9.6b. Probability of No Units Short (Alternative 2)

N M

2 3 4 5
18 0.0688 0.3566 0.5563 0.6200
19 0.0734 0.4113 0.6607 0.7601
20 0.0757 0.4484 0.7296 0.8411
21 0.0769 0.4734 0.7764 0.8900
22 0.0774 0.4899 0.8088 0.9205

As indicated in the experimentation, for a specified combination of N and M,
the probability of no units short, PNUS, does not depend on the interest rate and
the shortage penalty cost. If the population size and the number of repair
channels are determined, the probability of no units short becomes a certainty.
Thus, in comparing several decisions, if the values of AELCC are the same, the
decisions which provides the highest PNUS is preferred. Based upon the three
conclusions above, those inefficient decisions can be eliminated by comparing
the AELCC's for the decisions.
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9.6.2 Annual equivalent life-cycle cost

As indicated in Section 9.3.2, the AELCC is a function of N, M, ir, and C,.
For a specified combination of N and M, the value of the AELCC depends upon
the settings of the interest rate and the shortage penalty cost. Since it is not
clear which state of nature will occur, uncertainties will result for the value of
AELCC. To compare the various decisions for each alternative, we apply an
outcome dominance test first.

For each decision, since the PNUS is constant and known, outcome
dominance can be carried out by applying the following rule:

If Decision A's PNUS is equal to or higher than that of Decision B
and A's AELCC is less than that of B under each state of nature,
then A is preferred.

By applying the outcome dominance test, a number of decisions are
eliminated for each alternative (Table 9.7). The expected AELCC and the PNUS
for the remaining decisions of each alternative are shown in Figures 9.6 and 9.7.
In order to identify the best decision for each alternative, a multiattribute utility
analysis is required.

Table 9.7. List of Decisions Dominated and Decisions Remaining

Alternative Decision Dominated Decision Remaining
1 1,2,3,4,5,8,9, 12, 13, 14, 17, 18 6,7, 10, 11, 15, 16, 18, 20

2 1,2,3,4,5,6,8,9,10, 13, 14, 17, 18 7,11,12, 15, 16, 18, 20
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9.7 Assessment of Utility Function

The REPS decision problem is complicated because of two factors. One is
the multiple objective aspect of the problem and the necessity to make value
trade-offs among various levels of different attributes. The other factor is the
uncertainties about what the impact of any alternative will eventually be and the
difficulty in separating this from one's preferences concerning "possible"
consequences. As indicated by Keeney (1977), no decision procedure can
circumvent the fact that preferences are a critical aspect in such problems and
further, that preferences are inherently subjective. A multiattribute utility function
is needed in order to identify the best decision for each alternative. A utility
function of this type is assessed below.

9.7.1 Determination of the best value and the worst value for each attribute

From Tables 9.3 and 9.4, the maximum and minimum values of AELCC and
PNUS each alternative will possibly take are identified and listed in Table 9.8a. If
everything else is the same, the DM will always prefer a lower value of AELCC
and a higher value of PNUS. According to the these extreme values for each
attribute, a best value and a worst value are determined for each attribute for the
assessment of utility functions (Table 9.8b). The levels in the table are adjusted
slightly to facilitate the assessment. Then a survey was conducted to assess the
DM's preferences and risk attitudes.

Table 9.8a. The Maximum and Minimum Values of AELCC and PNUS

AELCC PNUS
Alternative
Maximum  Minimum Maximum Minimum
1 $661,041 $450,262 0.9705 0.1872
2 $769,209  $458,188 0.9205 0.0688
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Table 9.8b. Best Level and Worst Level of AELCC and PNUS

Attribute Best Level Worst Level
AELCC (1000 dollars) 400 800
PNUS 1.00 0.05

9.7.2 Verification of preferential independence

In order to identify the form of the utility function for the REPS problem,
preferential independence assumptions need to be examined. The PI
assumption is verified through the survey below, where DA is the decision
analyst and DM denotes the decision maker.

DA: If everything else is the same, do you always prefer less AELCC to more
AELCC?

DM: Yes.

DA: This means that you have a decreasing utility function for AELCC.
Similarly, if everything else is the same, do you always prefer higher level
of PNUS to lower level of PNUS?

DM: Yes.

DA: This means that your utility function for PNUS is increasing. Now we
consider two attributes at once. Given the following consequences
(AELCC = $500,000, PNUS = 0.7) and (AELCC = $550,000, PNUS = 0.7),
which consequence do you prefer?

DM: The first one.

DA: O.K If we change PNUS from 0.7 to 0.8, that is, we have these two
consequences,
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DM:

DA:

DM:
DA:

(AELCC = $500,000, PNUS = 0.8) and (AELCC = $550,000, PNUS = 0.8),
do you still prefer the first one?

Yes.
This indicates that if the setting of PNUS is the same, you always prefer
lower level of AELCC regardiess what value PNUS is held fixed at, is that

true?

Yes.
This implies that AELCC is preferentially independent of PNUS.

9.7.3 Verification of utility independence

The utility independence condition is examined below:

DA: Suppose we have two lotteries for AELCC,

0.5
$460,000
L 1
0.5
$600,000
0.5
$460,000
L,
0.5
$650,000

For both lotteries, PNUS is held fixed at the same level. Which lottery do
you prefer?
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DM: The first one.

DA: O.K. Do you always prefer the first lottery if the PNUS is held fixed at
another level?

DM: Yes.

DA: This implies that AELCC is utility independent of PNUS.

According the MAUT theory introduced in Section 7.4, the preferential
independence and utility independence assumptions imply that the DM's utility
function must be either additive or multiplicative. That is, the utility function will
take either of the forms:

u(AELCC,, PNUS) = ku,(AELCC)) + k,u, (PNUS), or
u(AELCC, PNUS) = ku,(AELCC) + kyu, (PNUS) + (k, + k, — 1)u,(AELCC )u, (PNUS)

where k, = scaling constant for AELCC
k,= scaling constant for PNUS
u,(AELCC) = utility function of AELCC
u,(PNUS) = utility function of PNUS

9.7.4 Assessing the scaling constants

The scaling constants measure the relative importance of attributes as they
progress from their worst to best states. The constants are assessed through a
survey below:

DA: Assuming that AELCC and PNUS are at their worst levels in Table 9.8b.
If you have a choice to push one attribute at a time from its worst level to
its best level, which attribute will you push first?

DM: I'll push PNUS first.

DA: This implies that &, > k,. Now we compare a lottery to a certain
consequence in order to assess the scaling constants.
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Then a series questions were asked to assess the scaling constants
(Figures 9.8 and 9.9). For the AELCC, the probability at which the DM is
indifferent between the lottery and the sure thing is around 0.45. Thus, %, =
0.45. For the PNUS, the probability p at which the DM is indifferent between the

lottery and the sure thing is close to 0.55. This implies that k, = 0.55.
Since k, + k, = 1.0, the utility function is additive. The additive

independence assumption was further confirmed by asking the DM to compare
two lotteries:

0.5
{LCC = $400,000, PNUS = 1.00)
L1
0.5
(LCC = $800,000, PNUS = 0.05)
0.5
(LCC = $400,000, PNUS = 0.05)
l‘2
0.5
(LCC = $800,000, PNUS = 1.00)

Since the DM is indifferent to these two lotteries, the utility function must take the
form

u(AELCC, PNUS) = ku,(AELCC)+ k,u,(PNUS).
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P Best system:
(AELCC = $400,00, PNUS = 1.00)

Alternative A

Worst system:

(AELCC = $800,00, PNUS = 0.05)

Certainty equivalent:
(AELCC = $400,00, PNUS = 0.05)

70%

60%

50%

30%

20%

10%

|||Il||||l|| I ||||||
:

nnnnennnnn

0%

Figure 9.8. Assessment of scaling constant k;
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Alternative A

Figure 9.9. Assessment of scaling constant &,
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Best system:
(AELCC = $400,00,

Worst system:
(AELCC = $800,00,

Certainty equivalent:
{(AELCC = $800,00,

40%

30%

20%

10%

0%

1.00)

= 0.05)

1.00)



9.7.5 Assessing single-attribute utility functions

The last step is to assess the utility function for AELCC and the utility
function for PNUS. The 50-50 lottery approach introduced in Section 5.4.4 is
used for this assessment. The cértainty equivalent for the AELCC is found to be
$675,000 (Figure 9.10). The certainty equivalent for the PNUS is found to be
0.45 (Figure 9.11).

Exponential functions are fit to the data. u,(AELCC) and u,(PNUS) are
plotted in Figure 9.12 and Figure 9.13, respectively.

9.7.6 Summary of assessments

The results of utility function assessment are summarized in Table 9.9. The
overall utility function is

u(AELCC, PNUS) = 0.45 [1.2342 - 0.0444 exp(0.0042 AELCC)]
+0.55 [2.1100 - 2.1826 exp(-0.6761 PNUS)]. (9.3)

Table 9.9. Utility Function and Scaling Constant for AELCC and PNUS

Attribute Utility Function Scaling Constant
AELCC 1.2342 - 0.0444 exp(0.0042 AELCC) 0.45
PNUS 2.1100 - 2.1826 exp(-0.6761 PNUS) 0.55
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0.5 Best system:
AELCC = $400,000

Alternative A

Worst system:
AELCC = $800,000

Alternative B

Certainty equivalent

$800,000
$750,000
$700,000
$650,000
$600,000

CE =
$550,000

$500,000

$450,000

|||ILI|I|I|||III|

$400,000

Figure 9.10. Assessment of the utility function for AELCC
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0.5 Best system:
PNUS = 1.00

Alternative A .

Worst system:
PNUS = 0.05

Alternative B
Certainty equivalent

1.00

0.80

0.80

0.70

0.60

CE = 0.50

0.40

0.30

0.20

0.10

nunnnnnnnn
HENEUEERUD

0.00

Figure 9.11. Assessment of utility function for PNUS
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9.8 Design Evaluation Using the Maximum Expected Utility Criterion

The Maximum Expected Utility (MEU) criterion is applied to compare the
remaining decisions for each alternative listed in Table 9.7. By using the single-
attribute utility functions given in Table 9.9, the utilities for various levels of
AELCC and PNUS of the decisions for each alternative are calculated in Tables
9.10 and 9.11.

Since AELCC is utility independent of PNUS, the expected overall utility for a

decision is
E[u(AELCC,PNUS)) = k,E[u,(AELCC)] + k,E[u,(PNUS)). (9.4)
For each decision, PNUS is degenerated to a constant, thus,
E[u(AELCC , PNUS)) = k,E[u,( AELCC)]+ k,[u, (PNUS)]. (9.5)

The expected overall utility for Alternatives 1 and 2 are calculated and
plotted in Figures 9.14 and 9.15 respectively. According to the MEU criterion,
the decision which has maximum utility is preferred. For Alternative 1, Decision
19 has the maximum expected utility (0.9223). For Alternative 2, Decision 20
provides the maximum expected utility (0.9108).

After the best decision for each alternative is identified, Alternatives 1 and 2
can be evaluated by comparing their best decisions. Since the utility of the best
decision from Alternative 1 is higher than that of the utility of the best decision
from Alternative 2, the optimal decision for the overall problem is Decision 19 of
Alternative 1. The characteristics of the optimal decision are summarized in
Table 9.12. The probability distribution of AELCC for the optimal decision is
plotted in Figure 9.16.
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Table 9.12. Characteristics of the Optimal Decision (Decision 19, Alt. 1)

Population size 22
Number of repair channels 4

Unit acquisition cost $52,000
Unit design life 4 years
Unit salvage value $22,000
Unit operating cost $1,750
MIBF 0.2550
MTTR 0.0425
Probability of no units short 0.9241
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X. SUMMARY, CONTRIBUTIONS, AND EXTENSIONS

10.1 Summary
10.2 Contributions
10.3 Extensions

10.1 Summary

Many problems associated with unsatisfactory system performance and
excessive life-cycle cost are the direct result of decisions made during the early
phases of system design and advanced planning. To develop quality systems,
both engineering and management require fundamental principles and
methodologies to guide design decision making and advanced planning. In
order to provide for the efficient resolution of complex design decisions involving
uncertainty, human judgments, and multiple attributes, a systematic decision
analysis framework is needed.

The goal of this research is to develop a unified decision analysis framework
to support the need and requirement for developing better system designs in the
face of uncertainty. To accomplish this goal, the research is divided into seven
parts:

1) The process of system design and development is examined from the
perspective of concurrent life-cycle engineering. Elements of the decision
process are identified. The Design Dependent Parameter Approach, an
important paradigm for design analysis and evaluation, is invoked.
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2)

Types of uncertainty involved in the process of engineered system design
are identified. The concept of robust system design is then defined from the
perspective of life-cycle engineering. Two operational definitions of
robustness are given based on the Design Dependent Parameter Approach.
Some common measures for asséssing the robustness of candidate system
designs are identified. After a brief review of the existing approaches to
design analysis and evaluation, the focus of this research is defined.

3) The problem of design evaluation in the face of uncertainty is studied within

the context of decision theory. After classifying design decision problems
into four categories, these problems are structured and modeled by
decision trees. Then the concept of choices, preferences, and utility theory
are discussed from the perspective of engineered system design. Based
upon statistical decision theory, three decision analysis approaches are
identified for design evaluation in the face of uncertainty. They are: (1)
sequential decision analysis using the maximum expected utility principle,
(2) stochastic dominance, and (3) mean-variance analysis. Under the
context of statistical decision theory, the assumptions underlying some
objective functions commonly used in design optimization are also clarified.

4) The decision analysis approaches identified and other effective approaches

are integrated into a structured, systematic approach for resolving design
decision problems under uncertainty. Structured models are developed for
design analysis and design evaluation.

5) A hypothetical bridge design example is presented to demonstrate the

concepts underlying the decision analysis framework. This example
illustrates the application of the framework for a single evaluation attribute
case for a simple static system.

6) The problem of multiattribute design evaluation in the face of uncertainty is

investigated. Descriptive approaches and Multiattribute utility analysis are
integrated to resolve design decision problems involving both uncertainties
and muiltiple attributes.
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7) An example from repairable equipment population system design is
presented to demonstrate the application of the framework for multiattribute
design evaluation in the face of uncertainty.

10.2 Contributions

The major contribution of this research is the adaptation and integration of
statistical decision theory, elements of the systems engineering process, and
Taguchi's philosophy of robust design for design decision analysis in the face of
uncertainty. As a result, a structured, systematic methodology is developed and
presented for evaluating system design alternatives.

The following findings were obtained from this research:

1) By investigating the concept of robust design from the perspective of system
life-cycle engineering, a general definition is presented for the robustness of
system designs:

In system design, robustness expresses the insensitivity of the
system's performance to uncertainties in both the system
acquisition phase and the system utilization phase.

To facilitate the application of the concept of robust system design in design
analysis and evaluation, two operational definitions are presented: (1)
Robustness represents the insensitivity of the system's evaluation
attribute(s) to the uncertainty in uncontroliable (design-independent)
parameters, and (2) robustness represents the insensitivity of the system's
evaluation attribute(s) to uncertainties in design-independent parameters as
well as variations in design variables and design-dependent parameters.

2) The foundations for design evaluation in the face of uncertainty are studied
within the context of statistical decision theory. This research indicates that
design evaluation in the face of uncertainty is actually a problem of decision
making under uncertainty. This concept more accurately encompasses the
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4)

totality of Taguchi's ideas. Instead of focusing on certain parts of the design
decision process, such as experimental design, the decision analysis
approach emphasizes the overall design decision process.

There are a variety of decision rules (or objective functions) used to resolve
problems associated with design evaluation in the face of uncertainty,
including the probability of loss criterion, maximization of expected value,
Taguchi's loss functions and signal-to-noise ratios, etc. Before applying
these rules in design evaluation, the assumptions underlying each rule must
be examined carefully. From the perspectives of statistical decision theory,
the foundations and assumptions are identified in this research for these
commonly used decision criteria in design evaluation. Some confusion and
controversy which surround Taguch's loss function and signai-to-noise ratios
are clarified. The results indicate that each of the these rules rely on some
strong assumptions about the decision maker's preferences and risk
attitudes.

To identify a best system design in the face of various uncertainties, one
must understand what the "best" solution is. Results of the research indicate
that three factors of system design decision problems need to be considered
in design evaluation: (1) performance variations, (2) risk attitudes, and (3)
value trade-offs.

Experience indicates that, when uncertainty exists, use of the mean as the
decision criterion for design evaluation may result in a poor design. Attempts
to minimize the variation of the evaluation attribute have led to the
philosophy of robust design. Taguchi's approaches focus on variance
minimization. However, a design which generates a minimum variance for
the evaluation attribute is not necessarily the best design. Variations
represent the risks involved in the process of design evaluation. In
comparing various candidate designs, different decision makers may not
have identical risk attitudes. Instead of concentrating on performance
variability alone, this subjective nature of the decision maker must be
considered in order to select a best design.
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Taguchi's robust design approach is often used by considering only a single
attribute. In many cases, to identify the best design, designers have to
consider more than one attribute. A design which is optimal for individual
attributes of a system may not be best overall. Thus, if there exists more
than one evaluation attribute, value trade-offs among these attributes must
be considered.

To resolve system design decision problems under uncertainty, one must
consider performance variations, risk attitudes, and value trade-offs jointly. A
best design is not only robust for an individual attribute, but also provides an
optimal trade-off among various attributes of concern. In this sense, the
"best" design is subjective. It depends upon the value preferences and risk
attitudes of the decision maker.

The research approach used herein placed emphasis on the need for
visibility and quantification of uncertainty and the judgmental factors involved
in major decisions within the design process. Following the concurrent life-
cycle engineering design philosophy, a structured approach was taken to
quantify uncertainties, value trade-offs, and expected gains and losses
during the system life cycle. By making these factors visible and quantitative,
design decisions can be improved, since this not only results in logical
consistency in the treatment of decision elements, but also facilitates the
communication and review of such factors as part of the total design decision
process. Such a systematic approach to design analysis and evaluation can
help the designer evaluate more alternatives in less time, and also provides
more information about the performance of each of those alternatives.

Based upon utility theory, this research indicates that a numerical scale
exists to measure the desirability of system designs. Instead of
concentrating on performance variability alone, the overall objective of
design evaluation should be that of maximizing expected utility rather than
just minimizing variation. Expected utility provides for three measures of
each evaluation attribute: (1) the values of the evaluation attribute, (2) the
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probability distribution of the evaluation attribute, and (3) the utility of the
evaluation attribute. Thus, information concerning uncertainty (made explicit
by probability measures) and relative worth (made explicit by utility functions)
is combined into a rational and theoretically sound decision rule for design
evaluation — maximizing expected utility.

A tility function represents an objective function resulting from adapting
decision and utility theory to the needs of decision making for system design.
A  dtility function which incorporates value trade-offs and designer's
preferences is more general and complete than Taguchi's loss function.
Taguchi's loss function and signal-to-noise ratios are just special cases of
utility functions. Utility functions may apply to any single evaluation attribute
or set of evaluation attributes. During the early stages of system design, it is
important to identify the decision rules for evaluating various design
alternatives. With the help of an accurately defined utility function, the
decision maker is able to consider system life-cycle costs and the cost of
selecting a particular alternative. Optimization methods and Taguchi's
parameter design approach can only be used after the utility function has
been defined.

In design evaluation, utility is simply a reflection of the resulting costs and
rewards from each candidate design. In the process of design decision
making, the importance for undertaking utility analysis is due to that the
complexity arising from uncertainty associated with the alternatives being so
great that the decision maker feels unsure of which choice to make. That is,
the decision maker realizes that the choice revolves around his preferences
as they relate to taking risks, that his feelings toward risk are not entirely
clear in his own mind, and that he cannot informally apply his feelings using
direct choice. Thus, utility analysis can help the decision maker clarify the
difficulty. The potential benefit is that a decision can be made which is
consistent with his attitude toward risk.

A unified decision analysis framework is developed for making design
decisions in the face of uncertainty. This framework integrates sequential
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decision analysis, utility theory, elements of the system engineering process,
and Taguchi's philosophy of robust design. Three effective approaches are
identified in the framework: (1) maximization of expected utility, (2) stochastic
dominance, and (3) mean-variance analysis.

Design decision problems in the face of uncertainty are made up of decisions
and uncertain events. The structure of a decision problem in terms of the
sequence and causal relationships between various decisions and uncertain
outcomes can be effectively represented by a decision tree. By integrating
sequential decision analysis with utility theory and the Design Dependent
Parameter Approach, the implementation of design analysis and evaluation
becomes more structured and systematic.

The decision analysis framework presented herein is useful for making
design decisions during the early stages of system design and development,
It is more systematic and complete than Taguchi's parameter design
approach, since it is capable of dealing with design decision problems
involving both uncertainty and multiple attributes. It applies to both discrete
decisions and continuous decisions. The approach facilitates the integration
of performance-related characteristics and logistic support requirements in
system design. It may be applied at the macro level for the evaluation of
candidate systems, or at the micro level for design iteration.

This approach is offensive in that it does not remove uncertainty. The effect
that uncertainty has on the relative desirability of design alternatives is
incorporated into the design evaluation process. Among other benefits of
this approach are increased objectivity, less risk of overlooking significant
factors, and perhaps most importantly, the ability to reconstruct the selection
process rather than invoking intuition in explaining the alternative selected.
Because the results are quantitative, evaluators can conduct sensitivity and
"what if' analyses at an early stage in system design to determine the
robustness of the results and to identify key factors that can affect the
results.
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In summary, this research (1) lays down theoretical foundations for
employing and developing more efficient techniques for system design
evaluation, (2) integrates Taguchi's philosophy of robust design and traditional
design approaches, (3) streamiines system design evaluation efforts and
resolves much confusion and controversy surrounding Taguchi's approaches,
and (4) helps develop strategies for dealing with a broader range of decision
problems pertaining to system design and development.

10.3 Extensions

There are several opportunities for further research related to system design
analysis and evaluation in the face of uncertainty. Additional work may be done
by extending the work presented in this dissertation. Areas identified for
additional study include the following:

1) As indicated in this research, uncertainties are associated with both design-
independent parameters and decision variables. The focus of the research
is on the uncertainty involved in the design-independent parameters. The
variations in the value of decision variables are not investigated. The effect
of variations in the decision variables on system design are usually
evaluated by sensitivity analysis. Further research needs to be done on
how to integrate the methodology presented herein with sensitivity analysis
approaches.

2) To facilitate the application of the approach for design evaluation under
uncertainty, a series of computer programs could be developed. Some
examples include: (1) programs for assessing utility functions of various
evaluation attributes of engineered systems, (2) programs for quantifying
various uncertainties and assessing joint probability distributions of an
evaluation attribute, (3) programs for automating the process of conducting
stochastic dominance and mean-variance analysis for engineered systems,
and (4) programs for documenting and presenting the results of analysis
and evaluation involving various uncertainties. Integration of the evaluation
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approach with CAE/CAD tools may increase design productivity, and
provide technical capabilities needed to dramatically influence the decision
process during system design evolution.

If the utilities and/or the probabilities of the evaluation attribute(s) are known
only approximately, they can be represented as fuzzy numbers (Whalen
and Bronn, 1982). Fuzzy expected utilities can be calculated by the
extension principle of fuzzy mathematics; this process reduces to ordinary
arithmetic when the operands are crisp. Further research is needed to
integrate the approaches presented herein with fuzzy utility analysis.

In identifying and developing approaches for design evaluation in the face of
uncertainty, the emphasis herein has been on discrete decisions. More
research is needed for resolving problems of continuous decisions,
including developing systematic procedures for the definition of objective
functions, problem formulation, problem solution, and muiltiattribute
sensitivity analysis.

5) As indicated herein, there are many approaches available for design

6)

analysis and evaluation. In order to efficiently evaluate design alternatives
in the face of uncertainty, there is a need to develop an expert system for
selecting appropriate approaches for different types of design decision
problems. Such an expert system may help designers find the most
efficient and effective ways to resolve decision problems.

Most decision models and approaches presented herein assume that a

single decision maker exists. Further research is needed to adapt the
approaches and models for group decision making situations.
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APPENDICES

A.1. Axioms of Utility Theory

Comparability. A DM can order (establish preference or indifference) any
two outcomes. That s, either 4, >~ 4,4, - 4,, Or 4, A,.

Transitivity. The ordering of outcomes is transitive. That is, if
A -A;,A;- 4, then 4, > 4,.

Reduction of compound uncertain events. The DM is indifferent
between a compound uncertain event and the simple uncertain event
determined by reduction according to the rules of the probability calculus.

Continuity. For each outcome A, the DM is indifferent between the
outcome and some uncertain event (lottery) involving only two basic outcomes —
A,, which is better than 4, and 4,, which is worse than 4.

This assumption suggests that the DM can always find p, the probability of
obtaining 4, in Figure A.1 such that he is indifferent between a, and a,.

Figure A.1 lllustration of the Continuity Axiom
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Substitutability. The DM is indifferent between any original uncertain
event and one formed by substituting, for some outcome 4, an uncertain event
that the DM has judged to be equivalent to the outcome A4.

Montonicity. For the two uncertain events given in Figure A.2, event E, is
preferred to E, if and only if p, > p,, where 4, > 4,.

P A,
=
1-p
Ay
P A,
E,
1-p
Ay

Figure A.2. lllustration of the Montonicity Axiom
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A.2. Program Listing of repsmod.c

/* reps.c */
/* Definitions
Arrays:
ir[] interest rate
spe] shortage penalty cost per unit short per year
pll probability of n failed units
Cn[] coefficient Cn
Variables:
AELCC annual equivalent life-cycle cost
PNUS probability of no units short
CP annual equivalent population cost
CO annual operating cost
CR annual repair facility cost
Cs annual shortage cost
FC first cost of a unit (P)
kcp annual equivalent cost per unit (Ci)
kco annual operating cost per unit
ker annual repair cost per channel (Cr)
life life of the unit (life = replacement age, L, n)
salv salvage value
D demand (D)
N population size
M number of repair channels
ES expected number of units short (E(S))
NIR ~ number of elements of IR[]
NCS number of elements of kcs[]
LM ratio of lambda and mu
*/
#include <stdio.h>
#define SIZE_ir 3
#define SIZE_spc 3
#idefine N_min 18
#define N_max 22
#define M_min 2
#define M_max 5
/* get inputs */

void getinput(int *, float *, int *, float *, float *, float *, float *, float *, float *);
/* print inputs */

void prtinput(int, float, int, float, float, float, float, float *, float *);

float getkcp(float, int, float, float); /* calculate kcp */

/* calculate prob and E(S) */

void getprob(int, int, int, float, float *, float *);

FILE *fptro;
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float ir[SIZE _ir], spc[SIZE_spc];
int N, M, D, life, count, j;
float LM, CP, CO, CR, CS, kcp, kco, kcr, ES, FC, salv, AELCC, PNUS;

printf("\x1B[2]"); /* clear screen */
printf("\x1B[10;10f™);
printf("REPSMOD is running, be patient...");

/* input */
getinput(&D, &FC, &life, &salv, &kco, &ker, &LM, ir, spc);  /* get inputs from disk */

fptro=fopen("output.dat”,"w"); /* open output file */

prtinput(D, FC, life, salv, kco, ker, LM, ir, spc); /* print inputs to disk*/

fprintf(fptro, "SUMMARY OF RESULTS:\n\n");

fprintf(fptro,” N M ir spc AELCC PNUS CP CO CR CS
ES\n\n");

/* calculation process */
for (N=N_min; N<=N_max; N++)
CO = kco*N; /* annual operation cost */
for (M=M_min; M<=M_max; M++)
{
CR = kcr*M; /* annual repair facility cost */
for (count=0; count<SIZE_ir; count++)
{
/* find annual equiv. cost per unit */
kep = getkep(FC, life, salv, irfcount]),
CP = kcp*N; /* annual population cost */
for (=0; j<SIZE_spc; j++)
{
/* find E(S) and Prob of no units short */
getprob(N, M, D, LM, &ES, &PNUS);
CS = spc[j]*ES; /* annual shortage cost */
AELCC =CO + CP + CR +CS; /* calculate total cost */
/* print outputs to the disk */
fprintf(fptro, "%5d %5d %7.0f %8.0f %10.0f %8.4f %8.0f
%8.0f %8.0f %8.0f %8.4f\n", N, M, ir[count], spc[j],
AELCC, PNUS, CP, CO, CR, CS, ES),
}
}
}
3
fprintf(fptro, "n END OF RESULTS \n\n");
fclose (fptro);

printf("x1B[12;10f");
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printf("The modeling process has been completed successfully.");
printf("\x1B[14;10f");
printf("Check file ‘output.dat' for results.\n\n\n\n");

}
/* getinput() */
/* get inputs from the disk */
void getinput(int *pD, float *pFC, int *plife, float *psalv, float *pkco, float *pkcr,
float *pLM, float *ptrl, float *ptr2)
{
FILE *fptr;
int size;
if ( (fptr=fopen("input.dat","r")=NULL)
{printf("Can't open file input.dat.”); exit(); }
fscanf(fptr, "%d %f %d %f %f %f %f", pD, pFC, plife, psalv, pkco, pkcr, pLM);
for (size=0; size<SIZE _ir; size++)
fscanf(fptr, "%f", ptrl1++);
for (size=0; size<SIZE_spc; sizet+t)
fscanf(fptr, "%f", ptr2++),
fclose(fptr);
}
/* prtinput() */
/* print inputs for verification */

void prtinput(int D, float FC, int life, float salv, float kco,
float kcr, float LM, float *ptrl, float *ptr2)
{

int size;

fprintf(fptro, "nLIST OF INPUTS:\n\n"),;

fprintf{fptro, "Demand = %d\nFirst cost = %0.2f\nDesign life = %d\n", D, FC, life);

fprintf{fptro, "salvage value = %0.2f\nkco = %0.2f\nkcr = %0.2f\nL.M = %.7f\n\n",
salv, keo, ker, LM),

for (size=0; size<SIZE_ir; size+t+)

fprintf{fptro, "ir(%d) = %8.1f\t", size, *(ptrl+size));

fprintf{fptro, "n");

for (size=0; 5ize<SIZE_spc; size++)
fprintf(fptro, "spc(%ed) = %8.11\t", size, *(ptr2+size));

fprintf{fptro, "\n: \n\n");

}

/* getkep() */
/* calculate annual equivalent cost per unit */
float getkcp(float FC, int life, float salv, float irr)
{

intn;

float ip1, AP;

ipl=1;

irr = irr/100.0;
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for (n=1; n<=life; n++)
ipl =ipl * (1 +irr);

AP =irr * ipl / (ipl - 1); /* calculate A/P factor */
return ( (FC-salv)*AP + salv*irr );

}

/* getprob() */

/* find expected number of units short and prob of no units short */
void getprob(int N, int M, int D, float LM, float *ptrn, float *ptrp)
{

float C[30], p[30], sum;

int count;

CI[0] = 1.0;

for (count=1; count<=M; count++) /* calculate Cn forn <=M */
Clcount] = C[count-1] * LM * (N+1-count)/count;

/* calculate Cn forn>M */
for (count=M+1; count<=N; count++)
C[count] = C[count-1] * LM * (N+1-count)/M;

/* calculate p0 */

sum = 0.0;

for (count=0; count<=N; count++)
sum = sum + C[count];

pl0] = 1.0/sum;

for (count=1; count<=N; count++) /* calculate pn */
plcount] = p[0] * C[count];

/* find prob of no units short */

*ptrp = 0;

for (count=0; count<=N-D; count++)
*ptrp = *ptrp + p[count];

/* find expected number of units short */
*ptrn = 0;
for (count=1; count <=D; count++)
*ptrn = *ptrn + count * p[N - D + count];
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