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(ABSTRACT) 

Some engineered systems now in use are not adequately meeting the needs 

for which they were developed, nor are they very cost-sifective in terms of 

consumer utilization. Many problems associated with unsatisfactory system 

performance and high life-cycle cost are the direct result of decisions made 

during eariy phases of system design. 

To develop quality systems, both engineering and management need 

fundamental principles and methodologies to guide decision making during 

system design and advanced planning. In order to provide for the efficient. 

resdiution, of complex system design decisions involving uncertainty, human 

juagments, and vaiue trade-offs, an efficient and effective decision analysis. 

framewors< is required. 

Experience indicates that an effective approach to improving the quality of 

detail designs is through the application of Genichi Taguchi's phiiosaphy of 

robust design. How te apply Taguchi's philosophy of robust design to sysiem 

design evaluation at the preliminary design stage is an open question.



The goal of this research is to develop a unified decision analysis framework 

to support the need for developing better system designs in the face of various 

uncertainties. This goal is accomplished by adapting and integrating statistical 

decision theory, utility theory, elements of the systems engineering process, and 

Taguchi's philosophy of robust design. The result is a structured, systematic 

methodology for evaluating system design alternatives. . 

The decision analysis framework consists of two parts: (1) decision analysis 

foundations, and (2) an integrated approach. Part I (Chapters 2 through 5) 

covers the foundations for design decision analysis in the face of uncertainty. 

This research begins with an examination of the life cycle of engineered systems 

and identification of the elements of the decision process of system design and 

development. After investigating various types of uncertainty involved in the 

process of system design, the concept of robust design is defined from the 

perspective of system life-cycle engineering. Some common measures for 

assessing the robustness of candidate system designs are then identified and 

examined. 

Then ihe problem of design evaluation in the face of uncertainty is studied 

within the context of decision theory. After classifying Gesign decision problems 

into four categories, the structure of each type of problem in terms of sequence 

and causal relationsnips between various decisions and uncertain outcomes is 

represenied by a decision tree. Based upon statistical decision theory, the 

foundations for crioosing a best design in the face of uncertainty are identified. 

The assumptions underlying common objective functions in Gesign oplimization 

are also irvestigated. Some confusion and controversy which surround 

Taguchi's robust design criteria — loss functions and signal-to-noise ratios -- are 

addressed and clarified. 

Part Il (Chapters 6 through 9) covers mcdels and their application to design 

evaiuation in the face of uncertainty. Based upon the decision analysis 

foundations, an integrated approach is developed and presented for resolving 

beth discrete decisions, continuous decisions, and decisions involving both 

uncertainty and multiple attributes. Application of the approach is illustrated by 

two hypothetical examples: bridge design and repairable equipment population 

system design.
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I. INTRODUCTION 

  

1.1 Problem Definition 

1.2 Problem Statement 

1.3 Research Objectives 

1.4 Uniqueness and Premise of this Research 

1.5 Organization of the Decision Framework 

  

1.1 Problem Definition 

With the introduction of new technologies in design, engineered systems 

and products are becoming more complex. However, many of the systems in 

use are not meeting the needs for which they were developed, nor they are very 

cost-effective in terms of consumer utilization (Blanchard, 1991). Although 

various factors are contributing to such unacceptable situations, one of the major 

causes is that the system developed is not robust with respect to its operational 

environment. Many systems are not easily maintained and cannot be efficiently 

supported. Some systems are completely unavailable when needed and others 

are operating at less than full capacity in terms of desired output or at high 

operational cost. 

Many problems associated with unsatisfactory system performance and high 

life-cycle cost are the direct result of decisions made during early phases of 

system design and advanced planning. Inefficient product design is viewed as 

one of the bottlenecks to improved product/system quality and time to market. 

Those early decisions pertaining to utilization of new technologies in design, the 

selection of component parts and materials, the selection of a manufacturing 

process, the identification of maintenance support policies, etc., have a major 

effect on both total quality and life-cycle cost.



In order to develop robust designs, only education pertaining to the 

importance and possible benefits alone is not sufficient. These is an urgent 

need for the development of new design methodologies and approaches for 

design engineers. Observations and research have shown that design theories 

and methodologies are essential to the development of sound pedagogical 

techniques (EiMaraghy, et al., 1989). To provide a theoretical basis for the 

development of tools to aid designers, the study of design theory and 

methodology is developing into a central field of research. 

The overall goal of research in engineering design is to improve the 

performance and outcome of the design process. Due to various uncertainties, 

engineering designs are typically represented imprecisely at the early, 

conceptual and preliminary stages. Technical tools to aid this area of the design 

process are rare, largely because of the scarcity of techniques capable of 

handling imprecise data (Wood and Antonsson, 1989). Little research has been 

conducted on the development of design analysis and evaluation methodology 

for early system design activities. There is not a complete, cohesive structure 

for the determination of design criteria, their modeling in terms of system 

variables/parameters, the synthesis and screening of alternatives, and formal 

optimization. Most of these activities and decisions have been accomplished in 

an ad hoc or empirical manner. New tools are often built generally without 

consideration of the overall effects on the process, and without the use of any 

formal mathematical models of the process. 

Taguchi's philosophy of robust design is very important to design decision 

analysis in the face of uncertainty. However, there has been relatively little 

research on the mathematical foundation, assumption, and techniques of 

Taguchi's approach. Furthermore, there has been little research to compare his 

techniques to other methods, either analytically or experimentally, except for 

comparisons with experimental design techniques from which Taguchi's 

approach is derived. In addition, as indicated by Otto and Antonsson (1991), 

there has been little research attempting to improve the approach itself. 

How to apply Taguchi's philosophy of robust design for design evaluation at 

the preliminary system design stage is an open question. Taguchi's parameter 

design approach relies on direct experimentation. When a mathematical model 

or a computer model of the design exists, Box and Fung (1986) argued that a



more appropriate means of identifying a robust design is through nonlinear 

optimization techniques. More recently, a number of researchers have 

implemented Taguchi's philosophy using nonlinear programming, goal 

programming, and simulation approaches, including d'Entremont and Ragsdell 

(1988), Sandgren (1989), Sundaresan et al. (1989), Belegundu and Zhang 

(1989), Parkingson et al. (1990), and Ramakrishnan and Rao (1991). But the 

problem is to determine under what condition each approach should be used. 

What is needed is a unified framework for design evaluation which integrates 

various approaches based on solid mathematical foundation of robust design. 

To obtain better system performance, both engineering and management 

needs fundamental principles and methodologies to guide decision making in 

design. in order to provide for the efficient resolution of complex system design 

decisions involving uncertainty, human judgments, and multiple attributes, an 

efficient and effective decision analysis framework is required. System 

optimization can be achieved only through a systematic approach to design 

evaluation. 

1.2 Problem Statement 

System design and development requires that timely evaluations of design 

alternatives be made as the design concept evolves. In most instances, 

specified requirements can be satisfied by one or more design alternatives. The 

problem is to identify the best design alternatives through an iterative process of 

systems analysis using selected analytical methods. Design evaluation is 

invoked as a basis for choice in finalizing the design quickly. 

Choice of the best design is a trade-off among design characteristics. The 

design selected should not only be feasible, but also optimal and robust with 

respect to various uncertainties over the system's life cycle. This research aims 

to improve the performance of engineering design processes through the 

development of a unified decision analysis framework for system design 

evaluation in the face of uncertainty.



1.3 Research Objectives 

The goal of this research is to develop a unified decision analysis framework 

to support the need and requirement for developing better system designs in the 

face of uncertainty. Specific objectives are to: 

e Define and operationalize the concept of robust system design. 

e Identify decision analysis foundations for design evaluation in the face of 

uncertainty through mathematically modeling the functional relationships 

between design decisions and the overall worth of a candidate design. 

e Identify and integrate appropriate decision analysis approaches into a unified 

framework for system design evaluation in the face of uncertainty. 

e Present examples to illustrate the application of the framework. 

1.4 Uniqueness and Premise of this Research 

Developing explicit design evaluation procedures has been recognized as a 

crucial step toward development of a more formal theory and methodology of 

design (Chandrasekran, 1989; Finger and Dixon, 1989). It has been noted that 

a major research issue in design theory and methodology is the analysis and 

evaluation of designs in the preliminary stage of design (Finger and Dixon, 

1989-I1). 

The uniqueness of this research is to integrate and adapt statistical decision 

theory, elements of the systems engineering process, and Taguchi's philosophy 

of robust design to meet the needs of system design and development. Instead 

of concentrating on performance variability alone, a structured approach is taken 

in this research to quantify uncertainties, risk attitudes, value trade-offs, and 

expected gains and losses during system life cycle. This approach is offensive 

in that it does not remove the uncertainty. The effect of uncertainty on the 

relative desirability of design alternatives is incorporated into the design 

evaluation process. 

This approach is useful in the early stages of the design process. It can 

facilitate the integration of performance-related characteristics and _ logistic 

support requirements in system design. The approach will be applicable at the 

macro level for the evaluation of candidate systems, or at the micro level for



design iteration. Integration of the evaluation approach with CAE/CAD tools may 

increase design productivity, and provide technical capabilities needed to 

dramatically influence the decision process during system design evolution. 

Accordingly, this research is expected to impact the development and design of 

complex technological systems, both commercial and public sector, while also 

influencing some aspects of strategic planning. 

The underlying premise of this research is that major decisions in the design 

process would be improved if the factors which influence the decisions are 

quantified and made visible. Such factors include uncertainty, hard and soft 

operational and technological considerations, human factors, and other 

judgmental elements. The need for visibility and quantification of uncertainty 

and judgmental factors arises not only from a desire for logical consistency in 

the treatment of decision elements, but also from the need for people to 

communicate, review, and discuss such factors as part of the total decision 

process. 

In this research, the methodology and models will be developed to optimize 

the total problem-solving process rather than just the decision per se; provide for 

insufficiencies in data base as well as for uncertainties in cause-effect 

relationships. The idea is not to fully automate the design process, nor to 

automatically generate design alternatives. Rather, the goal is to make it easier 

for the designer to evaluate more alternatives in less time, and to provide more 

information on the performance of each alternative. Since most important (and 

costly) decisions in the design process are made in the early stages, the effect 

will be greater the earlier in the design process the information is made 

available. Thus, these developments form a semi-automated approach to 

design analysis and evaluation. 

1.5 Organization of the Decision Framework 

A unified decision analysis framework is presented for system design 

evaluation in the face of uncertainty. This framework consists of two parts: (1) 

decision analysis foundations, and (2) an integrated approach. Figure 1.1 

shows the basic organization.
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Part I, consisting of Chapters 2 through 5, covers decision analysis 

foundations for design analysis and evaluation in the face of uncertainty. In 

Chapter 2, the decision process of system design and development is 

investigated from the perspective of concurrent life-cycle engineering. The 

elements of the decision process are identified. Then the focus of the research 

is defined. 

Chapter 3 defines and operationalizes the concept of robust system design. 

After identifying various uncertainties involved in the process of engineered 

system design, the concept of robust design is defined from the perspective of 

system life-cycle engineering. Some common measures of the robustness of 

candidate designs are also examined. 

Chapters 4 and 5 study the problem of design decisions in the face of 

uncertainty within the context of decision theory. The concept of best design is 

investigated and clarified. The focus of Chapter 4 is on the modeling of design 

decisions in the face of uncertainty. After classifying design decision problems 

into four categories, the structure of a decision problem in terms of the sequence 

and causal relationships between various decisions and uncertain outcomes are 

represented by decision trees. 

Once the decision problem has been modeled, a choice must be made. 

Chapter 5 investigates the foundations for choosing a best design in the face of 

uncertainty. After summarizing the concepts of choices, preferences, and utility 

theory, three decision analysis approaches are identified for design evaluation in 

the face of uncertainty. 

Part Il, made up of Chapters 6 through 9, covers models and applications of 

design evaluation in the face of uncertainty. An integrated approach is 

developed and presented in Chapter 6 for conducting design analysis and 

evaluation for both discrete and continuous decisions. Chapter 7 presents a 

hypothetical bridge design example to explain the concepts underlying the 

decision analysis framework. In Chapter 8, the framework is extended to 

resolve design decision problems involving both uncertainties and multiple 

attributes. Chapter 9 presents an example of repairable equipment population 

system (REPS) design. 

Chapter 10 summarizes the contribution of this research and discusses the 

possibilities for future research.



ll. THE DECISION PROCESS 

FOR ENGINEERED SYSTEM DESIGN 

  

2.1 Introduction 

2.2 The System Life Cycle 

2.3 System Design and Development 

2.4 Elements of the Design Decision Process 

2.5 Design Decisions in the Face of Uncertainty 

2.6 Decision Models for Design Analysis and Evaluation 

  

2.1 Introduction 

In this chapter, the decision process of system and development is 

examined from the perspective of concurrent life-cycle engineering. Elements of 

the decision process are identified. Then the focus of this research is defined. 

Two important decision models for design analysis and evaluation are also 

introduced. 

2.2 The System Life Cycle 

In general, the life cycle of a system can be divided into two phases: the 

acquisition phase and the utilization phase. In the acquisition phase, decisions 

progress from identifying the need through conceptual design and preliminary 

design, detail design and development, and production/construction. The 

utilization phase includes activities of system deployment, use, phaseout, and 

disposal.



The concurrent life-cycle engineering design approach goes beyond 

consideration of the life-cycle of the product/system itself. This approach 

encompasses three concurrent life cycles as illustrated in Figure 2.1: product life 

cycle, manufacturing system life cycle, and support system life cycle (Fabrycky, 

1991: Blanchard and Fabrycky, 1990; Midkiff and Fabrycky, 1991). 
In this approach, conceptual design is initiated first to meet the need for the 

system. Then, during conceptual/preliminary design of the system, consideration 

is given simultaneously to its ease of manufacture. This gives rise to a parallel 

life cycle for bringing a manufacturability capability into being; that is, design for 

manufacture. Another life cycle is for the logistic activities needed to service the 

system during use and to support the manufacturing facility during its duty cycle. 

This approach indicates that logistics and maintenance requirements planning 

should begin during system conceptual design in a coordinated manner. 

The knowledge acquired, life-cycle cost committed, and ease of design 

change for each stage in the system life-cycle process is illustrated in Figure 

2.2. As indicated in this figure, a large portion of the total cost for a system is 

associated with its operation and support. The costs associated with different 

phases of the life cycle are interrelated. Commitment of these costs is based on 

the decisions made in the early stages of the system life cycle. 

|}¢————-acauisition PHASE —————>}¢ UTILIZATION PHASE —>| 
.—~ 

Conceptual/ Detail Production 

Preliminary Design and/or Ph Pee eee cal 

Design Development | Construction aseou p 

~~ 
a 

  

o
O
m
m
a
2
 

    
  

Manutacturing Manufacturing 

System Design Operations   _~ 
ee 

Product Support System Product Support 
Design/Deployment and Maintenance 

- 

  

  

Figure 2.1. Product, process, and support life cycles 

(Blanchard and Fabrycky, 1990)



LCC Committed 

       

    

100% |—- — — — — — — — — — = 

80% 7 we 8 eee 8 ee ees ee > 

Cost Incurred 

66% |—.—.—. 

~~ Ease of Change Sf 
—ee, — 

| eee ——   
  

N Conceptual/ Detail Production Product Use/ 
Preliminary Design/ and/or Support 

Design Development |Construction]| Phaseout/Disposal 
os       

Figure 2.2. Commitment of resources, life-cycle cost committed, 

and cost incurred in a system's life cycle (Fabrycky and Blanchard, 1991) 
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2.3 System Design and Development 

The system acquisition phase consists of two subphases: (1) design and 

development, and (2) production and/or construction. The design process 

follows from a set of stated requirements for a given system and evolves through 

three steps: (1) conceptual design, (2) preliminary design, and (3) detail design 

(Figure 2.3). This process generally begins with a visualization of what is 

required and extends through the development, test, and evaluation of an 

engineering or prototype model of the system. The output constitutes a 

configuration that can be directly produced or constructed from specifications, a 

set of drawings, and supporting documents. 

Preliminary system design follows conceptual design and extends through 

the translation of established system-level requirements into detailed qualitative 

and quantitative design requirements (Blanchard and Fabrycky, 1990). As 

illustrated in Figure 2.3, preliminary design includes the process of functional 

analysis and requirement allocation, the accomplishment of trade-off studies and 

optimization, system synthesis, and configuration definition in the form of 

detailed specifications. 

The emphasis of this research is on the process of system level trade-off 

studies and optimization. Various activities in this process can be grouped into 

four categories: design generation, design analysis, design evaluation, and 

design optimization. The relationships between these activities can be 

illustrated by the conceptual model in Figure 2.4. 

Design generation. Design generation is a process of identifying and 

describing candidate alternatives. Each alternative must be described in 

sufficient detail to permit subsequent estimates of outcomes. To identify the 

possible courses of action, as summarized by Ackoff (1962), two tasks need to 

be accomplished: (1) identifying the variables that significantly affect the 

outcome of the problem, and (2) determining which of these variables can be 

controlled directly or indirectly by the decision maker. 

11
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From definition of needs 

I 
SYNTHESIS OF DESIGN ALTERNATIVES 

Output. Description of candidate alternatives 

  

  

      

    
DESIGN ANALYSIS 

Output: Assessment of outcomes 

  

      

    
DESIGN EVALUATION 

Ourput: Identification of an optimal design 
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To detail design activities 

Figure 2.4. The process of system trade-off studies and optimization 
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Design analysis. Design analysis represents the activities to transform the 

description of each candidate alternative into estimates of outcomes. The 

results generated from design analysis will be used for design evaluation. 

Design evaluation. Design evaluation denotes the activities to transform 

the estimates of outcomes into a utility estimate. All alternatives are compared 

equivalently under the same set of criteria.) To make a logical decision, a 

common measure is required. 

Design optimization. The information obtained by performing the 

foregoing computations can be used to obtain better candidate solutions. The 

design model is improved through iterative redesign. This decision process is 

continued until the utility of making another iteration is less than the utility of 

mapping to another level of abstraction. If the process is successful, the design 

evolves and the output of this decision process is mapped into a less abstract 

modeling schema, and the sequence repeats until a suitable system design is 

defined. Thus, design alternates between optimization and mapping (Bell, et al., 

1991). Since only partial information is available at each stage, incorrect 

decisions are probable. The process must be iterative as well as concurrent. 

2.4 Elements of the Design Decision Process 

A typical design decision process consists of four elements: the decision 

maker, the candidate design alternatives, the states of nature, and the outcome. 

These are discussed below. 

Decision maker (DM): An individual or groups of individuals who 

have the authority and responsibility to select the alternative to be implemented. 

Depending on the level of problem considered, the decision maker may be the 

designers or upper-level management. 

Candidate alternatives {a}: A set of mutually exclusive courses of action 

which satisfy all functional design criteria and provide for the solution of a design 

14



problem. Each alternative requires a description so that it can be identified and 

analyzed to determine the consequences of its selection. This description 

includes specifying characteristics which can be selected by the decision maker 

when a given decision is made. The set of these characteristics will be 

designated the control variables. The vector of control variables are specified 

by x. 

States of nature {s}: A set of mutually exclusive and exhaustive states of 

nature. The states of nature represent those aspects of the problem 

environment which are not subject to the decision maker's control, but may affect 

the consequences of the choice of action. 

Outcome {c,}: The consequences associated with implementing a 

candidate alternative given a state of nature. An outcome may consist of a 

single attribute or multiple attributes, or dimensions. Each dimension of an 

outcome which is significantly affected by the choice of an alternative, and which 

the decision maker considers to be important in making the decision, is 

designated an evaluation attribute or decision criterion. 

Evaluation attributes are the variables used to rank or measure the 

desirability of possible outcomes. By the functions of the criteria, the set of 

decision criteria has three major subsets: effectiveness criteria, cost criteria, and 

schedule criteria (Lifson, 1972). Each subset represents an important area of 

concern. An effectiveness criterion is an attribute of a system which is directly 

related to the fulfillment of needs; a cost criterion reflects the resources required 

to implement a course of action; a schedule criterion is related to the time the 

system is needed. By the nature of the criteria, the set of criteria may also be 

partitioned into subsets of quantified criteria and nonquantified criteria. The 

focus of this research will be on quantified criteria. 

2.5 Design Decisions in the Face of Uncertainty 

The focus of this research is on resolving design decisions in the face of 

uncertainties. The relationships between the elements of the design decision 

process can be illustrated by a decision evaluation matrix as in Figure 2.5. 
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Figure 2.5. A decision evaluation matrix for making design decisions 
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The decision maker has identified each state of nature and the 

corresponding probability of its occurrence. The outcome associated with each 

alternative and each state of nature is also known. It can be assumed that the 

decisions are exclusive and exhaustive. That is, one of decisions has to be 

taken, and at most one of them can be taken. The choice of any one excludes 

the choice of any other. Now the problem is to select the alternative to maximize 

the expected worth of the system with respect to various uncertain states of 

nature. This best alternative is expected to satisfy recognized human needs 

and/or desires best according to some specified criterion of goodness. 

Traditional decision theory classifies decisions into three categories (Luce 

and Raiffa, 1957): (1) decisions under certainty, (2) decisions under risk, and (3) 

decisions under uncertainty. Depending upon whether the probability of the 

state of nature is specified, "decisions under risk" and "decisions under 

uncertainty" are distinguished. 

Now in both the communities of decision research and engineering design, 

this distinction between "decisions under risk" and "decisions under uncertainty" 

is not made strictly. According to Lindley (1985), there is only one logical way to 

make a decision in the presence of uncertainty. Three basic principles must be 

followed: (1) assigning probabilities to uncertain events, (2) assigning utilities to 

the possible outcomes, and (3) choosing that decision that maximizes expected 

utility. Thus, if the quantification of judgment in the form of probability and utility 

estimates can be made, then decisions under uncertainty can be converted into 

decisions under risk. Therefore, in this research, "decisions under uncertainty" 

and “decisions under risk" will not be distinguished. In keeping with the 

terminology of engineering design, the term "design evaluation in the face of 

uncertainty" will be used. 

2.6 Decision Models for Design Analysis and Evaluation 

To study the design decision process quantitatively, decision models are 

very helpful. A model may be used as a representation of a system to be 

brought into being, or to analyze a system already in being. Two decision 

models which are particularly useful for design analysis and evaluation are 
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introduced below. One is the decision model presented by Churchman et al. 

(1957). The other is the Design Dependent Parameter Approach developed by 

Blanchard and Fabrycky (1990) and Fabrycky and Blanchard (1991). 

2.6.1 Decision model of Churchman et al. 

For any system, its evaluation attribute is a function of various variables and 

parameters. Churchman et al. (1957) classified the variables and parameters 

which affect the outcome of a system into two groups: (1) the variables which are 

subject to control by the decision maker, and (2) the factors (variable or 
constant) which are not subject to the control by the decision maker within the 

scope of the problem as defined. The former are often called control variables, 

while the latter is called system parameters. The functional relationship between 

the evaluation attribute EZ, control variables X, and system parameters Y, in its 

unconstrained form, is expressed as 

E= f(X,Y). (2.1) 

This decision model is useful for design optimization. The model enables the 

decision makers to determine what values of the controllable variables provide 

the best level of the evaluation attribute under the conditions described by the 

system parameters. 

2.6.2 Design Dependent Parameter Approach (DDP) 

Blanchard and Fabrycky (1990) extended Churchman et al.'s decision model 

to design and operational decision situations involving multiple alternatives. 

This extension identifies and isolates design-dependent system parameters from 

design-independent parameters. The purpose of the design-dependent 

parameters is to define each alternative explicitly. In the process of design 

analysis and evaluation, the DDP approach uses a design evaluation function to 

express the relationship between the evaluation attribute(s), design variables, 

design-dependent parameters, and design-independent parameters. The design 

evaluation function has the following form: 
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E = f(X;Y,,Y¥,) (2.2) 

subjectto g,(X;¥,,¥,)<0, j=1,---,k 

where: E = a vector of evaluation attributes 

X = a vector of design variables 

Y, = a vector of design-dependent parameters 

Y, = a vector of design-independent parameters 

The procedures to apply the DDP approach in design analysis and 

evaluation can be illustrated by Figure 2.6. According to the DDP approach, 

design decision analysis follows four steps: 

Step 1: \dentify possible levels of design-dependent parameters. Each set 

of design-dependent parameter values determines a unique design alternative. 

Step 2: For each design alternative, determine the setting of design 

variable values which optimize the evaluation attribute. The optimum value of 

the evaluation attribute for each alternative is then obtained. This step provides 

optimization within an alternative. 

Step 3: Compare the optimum values of the evaluation attribute for all 

alternatives and select the alternative which gives the best attribute value. 

Step 4: Decide if the optimum attribute level obtained from the optimum 

alternative meets the design requirements. If yes, go to the next design phase. 

Otherwise, go back to step 1. 

The design evaluation function provides a mathematical means to assess a 

system's response to changes in both controllable and uncontrollable factors. 

The importance of the DDP approach is in distinguishing choice-based design 

and optimization-based design (Fabrycky, 1992). By considering design 

variables and design-dependent parameters at different levels of the design 
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decision process, the implementation of system trade-off studies and 

optimization as illustrated in Figure 2.4 becomes more structured and 

systematic. When applied in the evaluation of system design, the evaluation 

function can be optimized in terms of life-cycle cost and/or the multiple system 

effectiveness measures, as shown in F igure 2.7. 
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3.1 Introduction 

This chapter defines and operationalizes the concept of robust system 

design. After identifying various types of uncertainty involved in the process of 

system design, the concept of robust design is defined from the perspective of 

system life-cycle engineering. Some common measures for assessing the 

robustness of candidate designs are examined. Within the context of robust 

design, a brief review is then made on some existing approaches for design 

optimization. 

3.2 Sources of Uncertainty in Engineered Systems 

The English language has a number of words to describe the nature of 

various uncertainties: possible, odds, probable, plausible, chance, likely, and 

many others. The richness of the language reflects the ubiquity of the concept 

of uncertainty. In engineering design, the magnitude of a system evaluation 

attribute depends both on the state of nature and on the alternative selected. 

Since a state of nature is associated with some future date, the state which will 

occur cannot, in general, be determined with certainty at the time the decision is 
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made. The states of nature are inherently probabilistic. It is evident that, even 

given the state and the alternative, the magnitude of a given attribute cannot be 

known with certainty at the time the alternative must be selected. Whenever 

one can define possible states of nature it is possible to estimate the probability 

associated with the choice. This does not mean that we can always obtain 

estimates in which we have confidence. 

3.2.1 Sources of uncertainty 

In the process of design decision making, there are various types of 

quantities to be considered. These include decision variables, empirical 

quantities, outcome criterion, defined constants, and others. For design 

evaluation in the face of uncertainty, the empirical quantities demand special 

attention because they represent measurable properties of the real-world 

systems being modeled. 

There have been several attempts to create taxonomies of different kinds of 

uncertainty. Most of these have concentrated on uncertainty in empirical 

quantities which constitute the majority of quantities in models for design 

analysis and evaluation. Uncertainties in empirical quantities can arise from a 

variety of different kinds of sources. According to Morgan and Henrion (1990), 

various sources of uncertainty can be divided into seven categories: 

1) Random error and statistical variation 

2) Systematic error and subjective judgment 

3) Linguistic imprecision 

4) Variability 

5) Inherent randomness 

6) Disagreement 

7) Approximation 

In developing engineered systems, two major types of uncertainties are the 

uncertainty associated with the inherent variability of the physical process and 

the uncertainty associated with the imperfection in the modeling of the physical 

process (Ang and Tang, 1984). 

24



Uncertainty due to inherent variability. The randomness in a physical 

process contributes to uncertainty because it is inherently not possible to 

ascertain the realization of the process. From a practical standpoint, inherent 

variability is essentially a state of nature and the resulting uncertainty cannot be 

avoided. Even if the physical laws governing a system are well understood, its 

behavior may be unpredictable because of modeling and computational 

limitations. The issues of inherent randomness and the limits of predictability do 

not seem to pose practical difficulties for uncertainty in risk analysis and other 

quantitative policy analysis. In this context, the main objective is to distinguish 

uncertainty that might be reducible by further research or more detailed 

modeling from uncertainty that is unlikely to be reducible, whether because of 

‘inherent randomness" or because of practical unpredictability. 

Uncertainty associated with prediction error. In most problem 

environments of engineering design, predictions and estimations of the states of 

nature are often performed under conditions of incomplete or inadequate 

information. The potential errors of an imperfect prediction model cannot be 

entirely corrected deterministically. Errors of prediction include estimation error 

(such as statistical sampling error) as well as the imperfection of the prediction 

model. Such prediction error may include a systematic component (bias) as well 

as a random component (random error). The systematic errors often arise from 

biases in the measuring apparatus and experimental procedure. The uncertainty 

associated with prediction or modeling error may be reduced through the use of 

more accurate models and/or the acquisition of additional data. 

3.2.2 Variations over the system life cycle 

Uncertainties are involved in all phases of a system's life cycle. When the 

decision is made to begin concept formulation, uncertainties are great. In fact, 

there are few certainties. Needs may be known vaguely; cost of acquisition and 

use are essentially unknown; feasibility, both financial and technical, has not 

been established. As the life cycle progresses, uncertainty is reduced by 

gaining more information. Due to uncertainties involved in the system life cycle, 
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there exist three sources of variation when a system design is implemented 

(Taylor, 1991): 

1) Manufacturing variation 

2) Variation due to deterioration 

3) Usage variation 

Manufacturing variation is the variation in system performance resulting from 

such things as fluctuations in the process parameters and materials, wearing 

and changing in tooling, and changes in the methods, operators, and 

manufacturing environment. Statistical process control addresses only this 

source of variation. Formally, manufacturing variation should be defined as the 

variation up to the time the system is delivered to the customer. 

In the customer's eyes, the last two types of variations are just as important 

as manufacturing variation. All three cause a system to deviate from the ideal. 

When reducing variation, these last two sources should not be overlooked. 

The sources of performance variations are called noise factors in Taguchi's 

terminology. Taguchi (1986) classifies various noise factors in a system into 

three types: (1) internal noise errors inherent in the design, such as wear, 

storage deterioration of materials, etc., (2) variational noise errors due to 

variation in the supplied materials and manufacturing processes, and (3) 

external noise errors due to environmental fluctuations. 

3.2.3 Uncertainty about models for design evaluation 

Design decision analysis depends on the decision models used to represent 

the system. The models are representation of states, objects, and events. The 

model form incorporates both the factual and value structure of the model being 

employed. They are idealized in the sense that they are less complicated than 

reality and hence easier to use for research purposes. The simplicity of models, 

compared with reality, lies in the fact that only the relevant properties of reality 

are represented. They are utilized to accumulate and relate the knowledge we 

have about different aspects of reality. 
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Uncertainty about the form of a model is generally harder to think about than 

uncertainty about the value of a quantity. In general, approximation uncertainty 

arises because the model is only a simplified version of the real-world system 

being modeled. There has been relatively little research into situations in which 

there is uncertainty or disagreement about what form of model to use, for either 

facts or values; and much remains to be done in developing methods of dealing 

with them. Ackoff (1962) pointed out that there are four ways in which a model 

could be in error: 

1) The model may contain irrelevant variables which have no effect on the 

outcome. 

2) The model may not include variables which are relevant. 

3) The function which relates the controllable and uncontrollable variables to 

the outcome may be incorrect. 

4) The numeric values assigned to the variables may be inaccurate. 

3.3 The Effect of Uncertainties 

Following the design decision model of Fabrycky and Blanchard (1991), a 

general design evaluation model has the form: 

Maximize E= f(X;yY,,¥,) 

subject to g(X;Y,,¥,)<0, j=1,---,k 

where: E = a vector of evaluation attributes 

X = a vector of design variables 

Y, = a vector of design-dependent parameters 

Y, = a vector of design-independent parameters 

In general, for a given set of nominal values for X, Y,, and Y,, there can be 

fluctuations dX, dY,, and 6¥, about these nominal values. We are interested in 

how these fluctuations are transmitted to the objective and constraint functions. 
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The fluctuations &¥ are variations from the derived values of the design 

variable that arise primarily when the design is implemented. In general, the 

design can specify a tolerance band for these fluctuations. dY, may be due to 

errors in estimating and/or predicting the values of the design-dependent 

parameters. The fluctuations 6Y, represent variations over which the designer 

has no control or very limited control. They are primarily because of uncertainty 

in the values of Y;. 

Because the amount of these fluctuations is unknown, X, Y,, and Y, are 

actually random variables. Thus, the evaluation attribute E is optimized while a 

set of stochastic functional relationships constraint the vector of design 

variables. Since design-independent parameters are empirical quantities, the 

uncertainty associated with them can often be expressed by probability 

distributions. Design variables and design-dependent parameters are decision 

variables. As argued by Morgan and Henrion (1990), it is generally 

inappropriate to represent uncertainty about decision variables by probability 

distributions. Instead, a parametric sensitivity analysis should be conducted on 

these quantities, that is to examine the effect on the outcome of deterministic 

changes to the uncertain quantity. 

The uncertainties about design variables, design-dependent parameters, 

and design-independent parameters may have significant effects on design 

decision making. Two of the problems they may cause are discussed below: 

Feasibility. \n a constrained design space, the scope of the feasible region 

may be reduced due to variations in design-dependent and/or design- 

independent parameters. In many traditional design optimization formulations, 

an optimal solution is obtained by assuming a “best value” for each uncertain 

parameter. If some of the “best estimates" vary in practice, the optimal solution 

previously identified may not be feasible. 

Performance variations. The traditional approach to design optimization 

is to optimize an idealized model and then rely on a continuity principle: what is 

optimal at the model should be optimal nearby. Unfortunately, this reliance on 

continuity is confounded: the classical optimized procedures tend to be 

discontinuous in the statistically meaningful topologies (Huber, 1977). Because 

28



of uncertainties, both the values of design variables and system parameters may 

deviate from the ideal conditions when a system is implemented. As a result, the 

variation of the evaluation attribute will increase. The uncertainty associated 

with estimates of outcomes is often regarded as a risk in system design. 

3.4 The Concept of Robust System Design 

3.4.1 Dealing with uncertainty in system design 

One of the principal aims of engineering design is the assurance of system 

performance within the constraint of economy. Indeed, the assurance of 

performance is primarily (if not solely) the responsibility of designers. The 

achievement of this objective, however, is generally not a simple problem, 

particularly for large systems. Risk is generally implicit in all engineered 

systems. 

There are three ways to approach this uncertainty in the engineering design 

decision process: 

1) Obtaining better estimates of uncertainties in design-independent 

parameters. If the decision maker must act and cannot delay the problem, 

then the estimate of the probability should be made in such a way as to take 

into account of the serious outcomes. 

2) Controlling the variations in controllables. The variations in the settings of 

design variables can be reduced by enforcing tighter control. However, 

reducing the tolerance band will increase manufacturing costs. 

3) Controlling the transmitted variation by minimizing sensitivities of constraints 

and objective function to various variations. Developing a design which is 

less sensitive to the uncertain factors is called robust design in Taguchi's 

terminology. For some key inputs which are outside of the manufacturer's 

control, e.g., usage conditions, only robust design will work. It is not possible 

to tighten up on usage conditions without reducing the functionability of the 
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system. Instead, interaction between usage conditions and other key inputs 

can be used to make the system insensitive to the variations in usage 

conditions. 

3.4.2 The philosophy of robust design 

The logic of robust design can be illustrated with an example from the 

military. It is clear that the outcome of a battle often depends on what an enemy 

does. But what the enemy does cannot be accurately predicted. The strategy 

should be to attempt to develop equipment and tactics which are less sensitive 

to whatever the enemy does. 

As applied in engineered system design, the concept of robust design is 

very important. When a candidate design is selected and realized, the system's 

response depends both on the values for design variables and uncontrollable 

system parameters (or noise factors). In many instances, the optimum values for 

the controllable system design variables are obtained to optimize the evaluation 

function with respect to its target value. The variation of the evaluation attribute 

with respect to uncontrollable parameters is often ignored in this process. Since 

the values of the uncontrollable factors are uncertain in the process of system 

design and planning, the robustness of the proposed design is essential in 

implementing a solution on a real system. By requiring the design to be 

insensitive to the uncertainty in the value of system parameters, an additional 

criterion is available to distinguish between designs which are approximately 

equivalent in meeting other design criteria. 

3.4.3 Definitions of robustness 

As used in engineered product and process design, robustness is a vague 

construct or concept devised for measuring the desirability of a design. To study 

the concept, we need to operationalize and define it. The most common way to 

operationalize a concept is to select measurable variables to represent the 

concept. However, one must keep in mind that these variables only give an 

incomplete representation. 
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Before selecting specific variables to study, we need to review the literature 

to determine how other researchers operationalize the concept of robustness. 

The literature must be examined critically and problems with operational 

definitions of concepts should be noted. 

According to the American Heritage Dictionary (Houghton Mifflin, 1985), the 

word "robust" has five meanings: (1) vigorous, (2) powerfully built, (3) requiring 

or suited to physical strength or endurance, (4) rough, and (5) marked by 

richness and fullness. In the scientific research community, the word "robust" is 

loaded with many — sometimes inconsistent — connotations. To study the 

robustness of statistical methods and models, "robust statistics" has been 

developed into an important branch of statistics. In the sense of statistical 

analysis, "robustness" means the insensitivity of the decision to uncertain 

assumptions in the analysis (Huber, 1977). It signifies insensitivity of the 

decision against small deviations from the assumptions. 

Thanks to the recent success in applying Taguchi's philosophy of product 

and process design, "robustness" has become a popular term in the engineering 

design community. The original idea of Taguchi's robust design is to use 

Statistically planned experiments to identify process control parameter settings 

that reduce the process's sensitivity to manufacturing variation (Kackar and 

Shoemaker, 1986). 

The word "robustness" now means different things to different people. The 

connotation depends on the purposes of the study and the environment 

wherever the concept is used. For some researchers, robust design means 

minimizing the variations in system performance with respect to various settings 

of design variables (Sundaresan et al., 1991; d'Entremont and Ragsdell, 1988). 

Optimal tolerance design is considered as a part of robust design by Parkinson 

et al. (1990). Parameter sensitivity analysis is another term for robust design 

(Eggert and Mayne, 1990; Beltracchi and Gabriele, 1988). Among others, the 

term “robust design" is used as a buzzword to label any design optimization 

techniques. There is no general and formal definition given in the literature. 

As indicated before, uncertainties are involved in all phases of a system's 

life cycle. Thus, the robustness of a system should be studied from the 

perspective of life-cycle engineering. Various definitions of robust design used 

in developing engineered systems can be summarized into a general definition: 
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In system design, robustness expresses the insensitivity of the 

system's performance to uncertainties in both the system 

acquisition phase and the system utilization phase. 

In the preliminary design stage, design analysis and evaiuation depends 

upon the decision model used to represent the system. As identified in Section 

3.2, uncertainties are associated with decision variables and design- 

independent parameters. The uncertainty about design-independent parameters 

is not controllable. The variations of decision variables are controllable. With 

the help of a design evaluation function, the robustness of a candidate system 

can be estimated by assessing the variations of the evaluation attribute due to 

uncertainties in decision variables and design-independent parameters. Thus, 

by incorporating the general definition of robust design into a design decision 

model, two operational definitions are obtained, each representing the decision 

maker's concern to each type of uncertainty: 

1) Robustness represents the insensitivity of the system's evaluation attribute 

to the uncertainty in uncontrollable (design-independent) parameters. 

2) Robustness represents the insensitivity of the system's evaluation attribute 

to uncertainties in design-independent parameters as well as variations in 

design variables and design-dependent parameters. 

3.5 Measures of the Robustness of Candidate Systems 

Due to various uncertainties, the evaluation attribute of a system is a 

random variable. The robustness of a candidate system can be expressed and 

estimated by studying the variations of the evaluation attribute due to various 

uncertainties. Some of the common measures of the variations in the evaluation 

attributes are identified next. 

3.5.1 Probability distribution 

As discussed in Section 3.2, there is a functional dependency between the 

evaluation attribute E and design variables X, design-dependent parameters Y,, 
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and design-independent parameters ¥, Since E is a function of random 

variables, it is a random variable itself and cannot be described deterministically. 

The randomness in a physical process and unknown states of nature 

contribute to uncertainty. The conceivable or possible realizations of system 

response can be represented with a probability mass function (PMF) or a 

probability distribution function. 

If an evaluation attribute E is continuous, its cumulative distribution function 

(CDF) is 

F,(e)= P(E se) for alle (3.1) 

If F.(e) has a first derivative, the probability density function (PDF) of £ is 

dF ,(e) de (3.2) Fz(e)= 

The probabilistic characteristics of an evaluation attribute would be 

described completely if the form of the distribution function (or PMF) and the 

associated parameters are specified. A probability distribution, in terms of the 

evaluation attribute, contains all the information. In practice, the form of the 

distribution function may not be known; consequently, approximate description of 

a random variable is often necessary. The probabilistic characteristics of the 

evaluation attribute may be described approximately in terms of certain main 

descriptors of the random variable. The most important of these quantities are 

the central value of the evaluation attribute, and a measure of dispersion of its 

values. 

Moreover, even when the distribution function is known, the main 

descriptors remain useful. In practice, it usually is hard to look at probability 

distributions and internalize the risk and opportunities of various design 

alternatives. Rather than try to assimilate the entire probability distribution for 

the evaluation attribute, comparisons can be made on the basis of some 

summary measures. 
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3.5.2 Mean, variance, and standard deviation 

One of the most important summary measures for a random variable is the 

expected value of E. For a discrete evaluation attribute E with probability mass 

function p,(e,), its expected value, denoted by y,, is 

Hz = 21¢Ps(). (3.3) 

Similarly, for a continuous evaluation attribute £ with PDF /,(e), the mean value 

is 

uz =| _ef,(e) de. (3.4) 

Using the mean of the evaluation attribute is not enough to describe its 

probabilistic characteristics. The variation of the evaluation attribute around the 

mean results in a risk in system design. To measure the risk, we need to 

determine the variability or dispersion in the evaluation attribute. 

If the deviations are taken with respect to the mean value, a suitable 

average measure of dispersion is the variance. For a discrete evaluation 

attribute E with probability mass function p,(e,), the variance of E , denoted by 

o7, is 

On = d~, —fzy Pz (é;). (3.5) 

lf E is continuous with PDF f,(e), the variance is 

of, =[ (e- uz)’ fe(€) ae. (3.6) 

Dimensionally, a more convenient measure of dispersion is the square root 

of the variance, or the standard deviation o. That is: 

o, =o. (3.7) 
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It is hard to say, solely on the basis of the variance or standard deviation, 

whether the dispersion is large or small. For this purpose, the measure of 

dispersion relative to the mean is more useful. Thus, the coefficient of variation 

(COV), 

6, = 2E (3.8) 
Hy 

is often a preferred and convenient nondimentional measure of variability. 

The use of variance as a measure of robustness of a system implies that 

deviations below the expected value are regarded in the same way as deviations 

above the expected value (Figure 3.1). Even though this measure has been 

criticized as too conservative, since it regards all extreme values as undesirable, 

variance is still a popular measure of risk because of its familiarity and ease of 

computation (Mantell, 1972). 

f(e) 

v   

dé. 
= 

Negative deviation Positive deviation 

    —> 

Expected value Evaluation attribute e 

  

Figure 3.1. Variance as a measure of an evaluation attribute's variability 
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3.5.3 Semivariance 

Variance is an even function of the deviations. Whether a deviation is 

above or below the mean value is of no significance. In some cases, however, 

we are concerned with the variability only on the undesirable side of the 

expected value. The semivariance of the evaluation attribute is a measure 

focusing on such variability (Figure 3.2). 

For a continuous evaluation attribute E with PDF /,(e), the semivariance, S,, 

is 

5,=[G-e)' fe(e) a. (3.9) 

fle) f 

<—_——_ 

Negative deviation 

    ~~ 
F   

Expected value Evaluation attribute e 

Figure 3.2. Semivariance as a measure of an evaluation attribute's variability 

36



3.5.4 Probability of loss 

Another measure of robustness for a system is the probability of loss 

criterion (Bonni, 1975). This measure, along with some variants of it, has 

become known as the reliability criterion or the Safety-first rule in the community 

of engineering design, particularly in civil engineering. The measure treats only 

the values of the evaluation attribute below a certain value as unfavorable (more 

is preferable) (Figure 3.3). The critical level is called aspiration level, which is 

widely used in project evaluation. For example, if the evaluation attribute of 

concern is the reliability of a system, the probability of loss measure considers 

only the possibilities of reliability being below a critical level, say 0.8. 

For an evaluation attribute E with PDF /,(e), if its aspiration level is e,, the 

probability of loss is 

P, = P(E<e,)=|" fg (e)de, (3.10) 

The probability-of-loss calculation obscures the magnitude of the variability of 

the evaluation attribute. Thus, this measure provides less information than the 

probability distribution itself. 

fle) 4 Area under the curve up to a critcal level 

    Li 
Critcal level 6 

  

Figure 3.3. Probability of loss as a measure of a system's robustness 
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3.5.5 Taguchi's loss function 

Taguchi (1986) recommends the use of a squared-error loss function to 

measure the loss in value due to the deviation of the evaluation attribute from its 

target value. For an evaluation attribute £, the loss function takes the following 

form: 

L=k(E-e,y (3.11) 

where e, is the target value of the evaluation attribute Z, and k is a constant. 

The function (3.11) can be expressed as 

L=k(E-e,) 
= K(E — uy + Hr —e,) 

= K{(E~ Wg)? + 2(E— Hy Koby ~ ep) + (ey ~ ep] 

Taking expectation of the loss function, we obtain the expected loss 

E(L) = k| (ug —e7)’ + 0% | (3.12) 

The first term within the brackets represents the bias. Thus, the expected loss is 

a function of both bias and variance. 

3.5.6 Taguchi's signal-to-noise ratios 

To evaluate the robustness of various candidate designs, Taguchi (1986) 

defined a series of statistics. These statistics are called signal-to-noise ratios. 

Taguchi classifies various design decision problems into three categories: 

smaller the better, larger the better, nominal the better. The signal-to-noise ratio 

is defined for each category below. 
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Smaller the better (STB). The overriding concern is to get the value of an 

evaluation attribute as close as to zero as possible. To obtain as many of the 

values as low as possible requires concentrating on both reducing the average 

and on reducing the variation around this average. Taguchi recommends the 

following performance measure (Taguchi, 1987): 

PM = -10log| 17; | (3.13) 

Let e,, e, .... e, approximate a random sample from the distribution of £ for a 

given level of design-independent parameters. Taguchi presents the following 

signal-to-noise ratio to approximate the performance measure: 

SIN= -1otog| -(£.) (3.14) 
i=] 

Larger the better (LTB). In this type of problem the overriding concern 

is getting some characteristic as high as possible. Lower values must be 

guarded against. To get as many of the values as high as possible requires 

concentrating primarily on driving the average higher. However, variation 

cannot be ignored. No matter how high an average is obtained, excessive 

variation can still cause some units to fall below the lower specification limit. 

The performance measure and signal-to-noise ratio for this case are (Taguchi, 

1987) 

PM = “10109 I } (3.15) 
2 
E 

SIN = -10¥g| (25) (3.16) 
i=l i 

Nominal the better (NTB). The third category is characterized by the 

existence of an ideal value called target value. Every unit should be as close to 

this target value as possible. Both excessively high and excessively low values 

must be guarded against. This requires the average be as close to the target as 
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possible and minimizing the variation around this target. The performance 

measure and signal-to-noise ratio recommended by Taguchi are (Taguchi, 

1987): 

2 

PM = og “| (3.17) 
OF 

S/N= oto (=) (3.18) 
i=l 

where s is the standard deviation of the sample. 

3.5.7 Sensitivity ratio 

To use semivariance and the probability of loss as a measure of robustness 

in design evaluation, full knowledge of the probability distribution of each 

alternative's evaluation attribute is required. As an alternative, wnen the design 

evaluation function 

E= f(X;Y,,¥) 

is defined for the design decision problem, the variation of the evaluation 

attribute with respect to the design-independent parameters may be estimated 

directly by using the theory of sensitivity analysis of linear systems. 

Let Y° = the estimated value of ¥ . If the design evaluation function is 

differentiable, the sensitivity of the evaluation attribute with respect to ¥, is 

df(X;Y,,¥) 7q¥ forY=Y,. (3.19) 
i   

The objective of robust design is to find X so that the sensitivity ratio (3.19) 

becomes minimum. For specified values of X,Y,, and ¥,, the change of £ due to 

the variation dY in ¥, is then given by 

OE = oY, (3.20) d f(X°;¥;,Y) 
d 
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3.6 Review of Some Existing Approaches 

There are a number of approaches developed for design analysis and 

evaluation. In this section, after discussing the limitations of some traditional 

techniques, the advantages and limitations of Taguchi's approach are reviewed. 

This review indicates some areas for further research. 

3.6.1 Limitations of the traditional approaches 

The difficulty with most existing tools for design analysis and evaluation is 

not that they solve the problem incorrectly, but they are being applied to solve 

the wrong problem (Sandgren, 1989). Little research has been conducted on 

the development of decision analysis methodology for early system design 

activities. There is not a complete, cohesive structure for the determination of 

design criteria, their modeling in terms of system variables and parameters, the 

synthesis and screening of alternatives, and formal optimization. Most of these 

activities and decisions have been accomplished in an ad hoc manner or, at 

best, in separate activities without close coordination with other segments of the 

process. The selection of design criteria is often subjective and influenced by 

factors such as design application, judgment of the designer, timing, etc. 

Deterministic optimization techniques have been employed to solve a wide 

variety of engineering design problems. Nonlinear programming has shown 

some promise as a general design tool. But the rigid structure imposed by the 

problem formulation has made it difficult to include many important design 

issues. There is no convenient way to bring knowledge of the design trade-offs 

into the optimization. Deterministic models do not portray the nature and impact 

of random variations that occur in actual manufacturing processes or operating 

conditions (Eggert, 1991). In an optimally designed system based on 

deterministic considerations, the designs may be sensitive to variations in 

design variables or system parameters. Such variations may lead to unexpected 

constraint violations and an_ unsatisfactory design (Eggert, 1991). 

Consequently, the optimized system tends to be more sensitive to fabrication 

defects and improper definition of the environment (Ang and Tang, 1984). 
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3.6.2 Taguchi's approach 

To improve product quality, a new approach to engineering design has been 

developed by Taguchi. Different from traditional optimization methods, 

Taguchi's approach employs statistically designed experiments for product and 

process design. Taguchi (1986) divided the design process into three steps: 

system design, parameter design, and tolerance design. At the heart of 

Taguchi's philosophy is the concept of the quality loss function, which is used as 

a criterion to be optimized in parameter design. Quality loss is defined as the 

loss incurred by society from the time a product is released for shipment 

(Taguchi et al., 1989). 

Taguchi's work is closely aligned with statistical experimental design and 

addresses the uncertainty issue as a normal part of the design process. The 

philosophy is to identify settings of controllable factors that minimize 

performance variations, while keeping performance as close as possible to its 

target value. Parameter design is usually accomplished by using an orthogonal 

experimental design approach. 

Experiences indicated that Taguchi's parameter design approach worked 

well in manufacturing after the system design has been completed. But it is 

difficult to apply at the conceptual design level. Since the model development 

and interpretation of the approach relies on direct experimentation, it is difficult 

to apply to designs which do not yet exist. However, as Sandgren (1989) 

indicated, the time to consider the sensitivity of a design change should be 

during the initial design phase. If design sensitivities are considered early on in 

the process, it may well reduce the number of local minima present. 

Taguchi's philosophy of reducing variation in performance through reducing 

the sensitivity of an engineering design to sources of variation rather than 

controlling the sources is very important to the development of quality design. 

However, this concept is often used without considering other concerns such as 

costs of experimentation and manufacturing. Otto and Antonsson (1991) argued 

that applying this concept in preliminary system design would generally lead to 

overly expensive products. in the preliminary design stage, the design- 

dependent parameters are selected. According to Taguchi's concept, there 

would be an illusion that we should always pick the parameters which minimize 
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performance variations, even if this means greatly increased expense to the 

designer, manufacturer, or company. This is unacceptable, as Taguchi readily 

admits (1986). In this sense, Taguchi's loss function is not complete. System 

life-cycle cost may be a more appropriate measure. 

As with any new techniques, there are many criticisms and controversies 

regarding Taguchi's approach. Much of the controversies are focused on 

technical issues that pertain to certain pieces of the overall scheme. As stated 

by Box (1985), it is very important to separate Taguchi's quality engineering 

ideas from the statistical techniques he used to put these ideas in practice. 
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IV. DESIGN EVALUATION BY DECISION THEORY: 

CLASSIFICATION AND MODELING OF DESIGN DECISIONS 

  

4.1 Introduction 

4.2 Design Evaluation by Decision Theory 

4.3 Concepts of Decision Modeling 

4.4 Classification of System Design Decision Problems 

4.5 Discrete Decisions and Discrete Events 

4.6 Discrete Decisions and Continuous Events 

4.7 Continuous Decisions and Discrete Events 

4.8 Continuous Decisions and Continuous Events 

  

4.1 Introduction 

The objective of design evaluation is to identify a best design. In this 

chapter and Chapter V, problems of design evaluation in the face of uncertainty 

are studied based upon statistical decision theory. The focus of this chapter is 

on the structuring and modeling of design decisions in the face of uncertainty. 

Chapter V will discuss the concepts and approaches for choosing a best design. 

4.2 Design Evaluation by Decision Theory 

4.2.1 Robust design vs. "best design" 

To solve a design problem is to make the best choice from among the 

available courses of action. In order to maximize the chance of attaining or 

approximating the best solution to a design problem, one must understand what



the "best" solution to the problem is. However, as pointed out by Ackoff (1962), 

it is not at all obvious what is meant by the "best" solution to a problem. A final 

definition of "best" in this context has not yet been attained, and it is not likely 

that it ever will be. 

In resolving system design decisions in the face of uncertainty, does a 

robust design as defined in Chapter Ill represent the best design for the overall 

decision problem? To answer this question, three aspects of the design 

decision problem must be considered. One is the variations in the value of the 

system's evaluation attribute(s) due to various uncertainties. Experience 

indicates that use of mean as the decision criterion for design evaluation in the 

face of uncertainty may result in a poor design. Attempts to minimize the 

variation of the evaluation attribute have led to the philosophy of robust design. 

Actually, the concept of minimization of variation is often incorrectly interpreted 

as Taguchi method. This misconception leads some to believe that variance 

minimization is an objective criterion for identifying a best design. 

A design which generates a minimum variance for the evaluation attribute is 

not necessarily the best design. Variations represent the risks involved in the 

process of design evaluation. In comparing various candidate designs, one 

must keep in mind that different decision makers may not have identical risk 

attitudes. This subjective nature of the DM must be considered in order to select 

a best design. Thus, the second aspect of the design decision problem 

concerns the risk attitude of the DM toward various levels of the evaluation 

attribute. 

Taguchi's robust design approach is often used by considering only a single 

attribute. However, a design which is optimal for individual attributes of a 

system may not be best overall. Taguchi's approach does not address the third 

aspect of the design decision problem; that is, the value trade-offs among 

multiple attributes or objectives. 

In many cases, to identify the best design, designers have to consider more 

than one attribute. Some attributes may be more important than others and 

some may be hard while others may be soft criteria. Specific requirements for 

these attributes may be associated with any level of the design process. 

Examples of the requirements include factors such as how well the design 

specifications are met as well as cost, reliability, and maintainability. To obtain 
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the best design possible with the resources available, the DM must weigh value 

judgments that involve various factors. Thus, to make the optimal decision is to 

choose the alternative from among those available that will give the best 

performance, considering all factors, including robustness. This best 

performance represents the optimum compromise of all the factors considered. 

Thus, to resolve design decisions problems under uncertainty, one must 

consider performance variations, risk attitudes, and value trade-offs jointly. We 

would like to select the alternative which is expected to result in the greatest 

degree of achievement of our objectives. A best design is not only robust for an 

individual attribute, but also provides an optimal trade-off among various 

attributes of concern. In this sense, the "best design" is subjective. It depends 

upon the value preferences and risk attitudes of the decision maker. 

4.2.2 Design evaluation by decision theory 

As defined in Section 3.4.3, "robustness" means the insensitivity of a design 

to uncertainties in both the system acquisition stage and the system utilization 

stage. Since the design of engineered systems is often accomplished without 

complete information, the assurance of performance can seldom be perfect. 

Moreover, many decisions that are required during the process of planning and 

design are invariably made under conditions of uncertainty. Therefore, there is 

invariably some chance of nonperformance or failure and of its associated 

adverse consequences; hence, risk is often unavoidable. Under such 

conditions, it is not feasible (practically or economically) to assure absolute 

performance of engineered systems. Thus, instead of talking about robust 

design in a narrow sense, the purpose of design optimization should be to 

develop the “best design" by considering three aspects of the design decision 

problem discussed above. 

In determining what a design decision is best, one is concerned with the 

choices a decision maker should make, not necessarily with those the DM 

normally makes. In order to apply the concept of "best decision" to design 

evaluation under uncertainty, it is necessary to evaluate the losses (and gains) 

from falsely (or correctly) rejecting or accepting an alternative. It is also 

necessary to evaluate the losses due to error in estimating the value of a 
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parameter, when this estimate may be used for many purposes of which the 

research cannot be aware. Thus, design evaluation in the face of uncertainty is 

actually a problem of decision making under uncertainty. As indicated by 

Singpurwalla (1991), the term “design by decision theory” would more accurately 

encapsulate the totality of Taguchi's ideas. Such an approach would raise the 

level of awareness in engineering design by shifting emphasis from the narrow 

aspect of experimental design to the more encompassing one of decision 

making under uncertainty. 

The decision analysis approach can integrate the key steps of engineering 

design. Instead of focusing on certain parts of the design decision process, 

such as experimental design, signal to noise ratios, etc., the decision analysis 

approach concentrates on the overall design decision process. Statistical theory 

underlying this theme is well developed, and like the statistical theory of the 

design of experiments, design engineers should learn to apply the results of this 

theory to design practice. 

4.3 Modeling of Design Decision Problems 

4.3.1 Decision tree 

Design decision problems in the face of uncertainty are made up of 

decisions and uncertain events. The structure of a decision problem in terms of 

the sequence and causal relationships between various decisions and uncertain 

outcomes can be effectively represented by a decision tree. 

Conceptually, the symbolic logic of the decision tree representation is 

closely akin to that of network analysis. Decision trees are built up as a 

connection of essentially two fundamental units, namely decision nodes and 

chance nodes. Decision nodes are conventionally represented by a square box 

(Figure 4.1) and indicate that subsequent nodes connected to this box can be 

reached according to deterministic choice on the part of the decision maker at 

this point. The set of subsequent nodes attached to the box will thus represent 

the DM's set of feasible decisions, and these nodes can be future decision 

nodes, terminal payoffs or, more usually, chance nodes. 
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Chance nodes are conventionally represented by circles (Figure 4.1) and 

indicate that the set of subsequent nodes connected to this circle will be reached 

according to some probabilistic process over which the DM has no control 

(although the DM will typically have some beliefs upon which are more or less 

likely than others). Thus this set of subsequent nodes will represent the set of 

possible outcomes and will be either future decision or chance nodes, or a final 

terminal payoff. 

a 
  

A decision node 
      

A chance node 

Figure 4.1. A decision node and a chance node 

Decision trees link together these two types of nodes to represent possible 

outcomes. For example, suppose a particular decision, say, a,, is selected and 

the uncertain event, 5, OCCUTFS. The occurrence of the event will remove all 

uncertainty from the problem and the action, a, will produce a definite result 

which can be foreseen with certainty. In other words, the combination of a, with 

s, will result in a foreseeable consequence. This consequence can be written c,, 

An example of decision trees is given in Figure 4.2. 
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Co} 

S2 

Figure 4.2. An example of decision trees 

4.3.2 Two types of outcome spaces 

The starting point for the modeling of decision making under uncertainty is 

to specify the outcome space. The end points in a decision tree represent the 

outcome space for the model of the decision problem. The levels of the 

evaluation attribute assigned to the end points are specific values of a random 

variable. 

Basically, the outcome space for design decision problems can be modeled 

either discretely or continuously. The type of models used for describing an 

outcome space depends on the characteristics of both design alternatives and 

design-independent parameters. If the outcomes of a design decision problem 

are either continuous or consist of a large number of possible outcomes, a 

continuous model should be used. For example, in some cases, the outcome 
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space is actually continuous, such as the gas mileage of a car (neglecting 

limitations due to measurement accuracy). In other cases, the outcome space is 

defined essentially by continuous variables. For example, the number of new 

cars sold in a certain geographical area during a month might cover the range of 

whole numbers between 1,000 to 10,000. From a practical point of view, it may 

be impossible to separately assess probabilities for each of the 9001 points 

required by such a model. A model based on a continuous set of outcomes may 

be the best approximation available for this essentially continuous outcome 

space. | 

Decision diagrams represent continuous random variables by fans and a 

single representative outcome. They do not show individual branches. Instead, 

event fans and alternative fans are used. Figure 4.3 shows a hypothetical 

alternative fan and a hypothetical event fan. 

4.3.3 Conversion of continuous probability models to discrete models 

Continuous probability models are often used to represent uncertain events 

with continuous outcomes or a large number of outcomes in order to obtain a 

good model. If a continuous probability distribution can be approximated by a 

discrete distribution, computations can be facilitated. The ability to generate 

discrete approximations for continuous distributions allows all definitions and 

manipulations for discrete random variables to be used for continuous random 

variables. 

In principle, discrete approximations to continuous probability distributions 

can be made as accurate as desired. The limiting factor is the number of 

intervals used in the approximation. With the availability of computers, it is 

feasible to use a large number of discrete points similar to discrete 

approximations used in numerical integration. On the other hand, a small 

number of intervals usually provides an adequate approximation. There are 

several ways of making this approximation. The essential problem is to capture 

the important characteristics of a distribution with a few discrete points. 
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    A continuous alternative 
  

A continuous event 

Figure 4.3. A continuous alternative and a continuous event 

4.4 Classification of System Design Decision Problems 

The outcome space of a system design decision problem is determined by 

three factors: the set of design alternatives, the set of design variables, and the 

set of design-independent parameters. In preliminary system design, the most 

common situation is that there exists a list a,, a, ..., a, of / exclusive and 

exhaustive design alternatives. The design alternatives are usually identified 

before design evaluation is started. For a design alternative, the design 

variables form the set of decision variables for the problem. The various 

combinations of the settings of the design variables determine a set of possible 

decisions available within the design alternative, {d}. Due to uncertainties in 

design-independent parameters, there is a set of uncertain events, {s}. The 

events are determined by the settings of the design-independent parameters. 

The decision problem is to select a single alternative and a single decision 

within the alternative, not Knowing which member of the event set will be true. 
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Depending upon whether the decisions and the uncertain events can be 

represented by discrete models or by continuous models, various design 

decision problems can be classified into four categories (Table 4.1). Each 

category is discussed below. 

Table 4.1. Classification of Design Decision Problems 

  

Uncertain Events 

  

  

Decisions 

Discrete Continuous 

Discrete Category 1 Category 2 
Continuous Category 3 Category 4 

  

4.5 Discrete decisions and discrete events 

In preliminary system design, a common situation is that for each design 

alternative, there exist a list d,, d,, ..., d,, Of m exclusive and exhaustive design 

decisions to be selected and there is a second list s,, s,, ..., s, Of m exclusive and 

exhaustive uncertain events. Thus, both the decisions and the events can be 

represented by discrete models. The structure of this type of design decision 

problem can be represented by a multi-stage decision diagram as in Figure 4.4. 

Since both decisions and events are discrete, the outcome space of the problem 

is also discrete. 

In constructing the decision tree, design alternatives are identified at the 

leftmost decision node. This corresponds to the first step of the Design 

Dependent Parameter approach. For each alternative, various decisions are 

identified at the decision nodes in the middle column by varying the settings of 

the design variables. The chance nodes reflect the uncertainties in the design- 

independent parameters. At each chance node, all of the possible uncertain 
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Figure 4.4. Discrete decisions and discrete events



events are identified by varying the possible settings of the design-independent 

parameters. Thus, the outcome for each decision within each design alternative 

depends upon the uncertain event taken. 

The decision diagram provides a structured model for the decision process. 

Design evaluation begins with the right side of the tree and works backwards. 

For each uncertain event, the outcome of each decision is estimated based upon 

the design evaluation function. The outcomes from each decision within the 

same alternative are then compared to choose an optimal decision for each 

alternative. This step is called optimization within an alternative. Finally the 

optimal decisions from each alternative are compared to obtain the best decision 

for the overall problem. 

4.6 Discrete decisions and continuous events 

In this type of problem, for each design alternative identified, there are a 

finite number of exhaustive and mutually exclusive decisions, d,, d,, ..., d,,, Dut 

there are a large or infinite number of uncertain events. The uncertain events 

must be represented by a continuous model. Such a decision problem can be 

represented by Figure 4.5. Since the events are continuous, the outcome space 

of this type of problem is also continuous. If the probability distribution of the 

events can be approximated by a discrete distribution, this category of problem 

is reduced to Category 1. 

4.7 Continuous decisions and discrete events 

When there are a large or infinite number of decisions for each alternative, 

decisions must be represented by a continuous model. Depending upon 

whether the events due to the uncertainty in design-independent parameters are 

discrete or continuous, the problems of continuous decisions can be divided into 

two categories: (1) the decisions are continuous, but the events are discrete, 

and (2) both decisions and events are continuous. The outcome space for both 

types of problems is continuous. The problems of continuous decisions and 

discrete events can be represented by Figure 4.6. 
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Figure 4.5. Discrete decisions and continuous events



Design alternatives Design decisions Uncertain events 

  

      

  

      

  

      

Figure 4.6. Continuous decisions and discrete events 
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4.8 Continuous decisions and continuous events 

If both decisions and uncertain events are continuous, continuous models 

must be used. The decision tree for this category is given in Figure 4.7. If the 

probability distribution of the events can be approximated by a discrete 

distribution, this category is reduced to Category 3. 
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Figure 4.7. Continuous decisions and continuous events 
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V. DESIGN EVALUATION BY DECISION THEORY: 

FOUNDATIONS FOR CHOOSING A BEST DESIGN 

  

5.1 Introduction 

5.2 Need for Decision Rules for Choosing a Best Design 

5.3 Existence of a Numerical Scale to Measure the Desirability of Designs 

5.4 The Concepts of Choices, Preferences, and Utility 

5.5 Sequential Decision Analysis Using the Maximum Expected Utility Principle 

5.6 Output Dominance and Stochastic Dominance 

5.7 Mean-Variance Analysis 

5.8 Assumptions Underlying Common Objective Functions 

  

5.1 Introduction 

Decision trees are useful for modeling and structuring the process of design 

evaluation in the face of uncertainty. To make a selection from various design 

alternatives, a general investigation of the desirability of system designs is 

needed. In this chapter, the concepts of preferences and choices are discussed 

under the context of design evaluation. By adapting statistical decision theory to 

the needs of design decision making, three decision analysis approaches are 

identified for design evaluation in the face of uncertainty. Then the assumptions 

underlying some objective functions which are commonly used in design 

optimization are also investigated. 

§.2 Need for Decision Rules for Choosing a Best Design 

The objective of design evaluation is to identify a best design. But it is a 

long way between naming the objective and obtaining suitable decision rules for 
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representing the objective. Due to uncertainties with design-independent 

parameters, the evaluation attribute(s) of a candidate design is a random 

variable. The most complete way to describe the characteristics of a random 

variable is to use a probability distribution. In design evaluation, however, it is 

difficult to directly compare the probability distributions of the evaluation attribute 

from various design alternatives. Thus, decision rules are needed for the 

comparison. 

Since the choice of the best design is a trade-off among different design 

characteristics, the evaluation of candidate designs depends on the decision 

rules applied. These decision rules form the basis under which alternative 

designs may be compared. They also provide the basis for formulating the 

design optimization problem. 

For identifying appropriate rules and approaches for selecting a best design, 

some considerations are made in the research. First, the decision maker is 

assumed to be rational. Rationality means logical consistency in processing the 

information on which decisions are based. Consistency, in turn, requires that 

the information is stated explicitly and quantitatively. Rationality also implies 

validity in the models used for representing real-world systems. A model should 

accurately describe some set of system characteristics. However, the more 

accurately a real-world problem is described, the more complicated the 

description becomes. The models for implementing the decision process must, 

therefore, be manageable with the resources available to the decision maker. 

We would like to select the alternative which is expected to result in the greatest 

degree of achievement of our objectives. Furthermore, we would like our 

decision methodology to be generally applicable; to be applicable to any stage 

of the system life cycle. 

Second, a quantitatively defined outcome is assumed for the design 

decision problem. A quantitative outcome is one which is (or is not) obtained in 

various degrees. A single evaluation attribute is used to represent the outcomes 

of the candidate designs. This attribute must be meaningful in the sense that it 

is adequate for the DM to choose among alternatives. To simplify the 

presentation, we assume that the DM would like to maximize the value of the 

evaluation attribute. This is true if the evaluation attribute is a measure of the 

design's performance effectiveness. However, the methods, theorems, and 
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rules developed for the larger-the-better case can be easily applied to the case 

of the smaller the better. The extension of the approaches to multiattribute 

design decision problems will be discussed in Chapter VIII. 

5.3 Existence of a Numerical Scale to Measure the Desirability of Designs 

In order to develop the best design, a measure of the desirability of a design 

should be identified. To be consistent, the measure must be quantitative in 

character. It should be able to capture both the random nature of the evaluation 

attribute and the DM's attitudes towards it. To identify such a measure, we need 

to investigate the characteristics of the outcomes of design decisions. 

The outcomes of design decisions in the face of uncertainty have two 

characteristics. One is the nonlinearity between usual evaluation measures, 

such as manufacturing cost, and their relative worth. In design evaluation, faced 

with similar sets of candidate designs with the same mean, two decision makers 

may not select the same alternative. This indicates that the mean of the 

evaluation attribute as the decision criterion may not reflect the DM's actual 

preferences for the attribute and his attitude toward risks. 

Another characteristic of design decisions is that the outcomes, in general, 

are multidimensional. There is a fundamental difficulty involved in considering 

multidimensional outcomes. Evaluation and optimization of alternatives can be 

accomplished only with respect to a single criterion. Since all members of the 

set of criteria significantly influence the decision, no individual criterion can 

rationally be used as the only basis for the decision. These two characteristics 

indicate the existence of a preference scale, which measures relative 

contribution to success of the design. 

The easiest and most useful way to order things is by means of numbers. It 

is natural to use this device in design evaluation. Our aim is to describe the 

desirability of design numerically, for numbers are the essence of the scientific 

method and it is by measuring things we know them. Specifically, wnat we want 

to do is to attach to any design alternative a number that describes the degrees 

of its desirability. 
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The needed scalar measure of relative contribution of design to success has 

been referred in the literature by various names: system worth, figure of merit, 

cost effectiveness, cost benefit, and utility. In fact, robustness is a new term for 

the same purpose. It describes the system's degree of fulfillment of needs and 

objectives under the influence of uncertain noises. However, robustness is not 

sufficient to represent the two characteristics of the outcomes of design 

decisions. A new measure is needed. 

In this research, based upon statistical decision theory, a scalar measure, 

utility, will be used to represent the relative contribution of a design to success. 

This measure reflects the design's degree of fulfillment of the DM's needs and 

objectives. Although there are some unfortunate historical connotations to the 

term utility, there are advantages associated with the continued use of a term 

whose historical development can be traced and with which a considerable body 

of theory has been developed. Utility theory is introduced below under the 

context of design evaluation. 

5.4 The Concepts of Choices, Preferences, and Utility Theory 

Decision trees can be used to model and structure the process of design 

evaluation. To make a selection from various design alternatives, a general 

investigation of the desirability of system designs is needed. Underlying all 

comparison methods of alternatives are assumptions regarding the DM's 

preferences and risk attitudes. 

§.4.1 Basic concepts 

Preferences. The term "preference" is based on relationships among 

design alternatives. !f a DM prefers one alternative to another, it is attributed to 

his "preferences." The focus of this research is on preferences for alternatives 

involving uncertain events. The uncertainty introduces an element called risk. 

An individual's risk preference reflects an underlying attitude toward uncertain 

outcomes. 
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Utility. Utility is defined on a numerical scale that represents the DM's 

preferences for a set of consequences. The higher the utility, the more desirable 

the consequence. Though any positive and negative numbers can be used to 

measure utility, it is convenient to measure utility on a probability scale so that 

the laws of probability can be used. The usual meaning of utility in economics 

is not the same as the preference scale here. 

Utility is used to measure preferences for design alternatives with uncertain 

outcomes. It is sometimes difficult to attach a number to a consequence 

because the relevant features may not be naturally quantifiable. However, as 

indicated before, the scope of this research is limited to design problems in 

which a quantitative outcome is defined. If the outcome is denoted by e, its 

utility is represented by u(e). 

Reference gamble. A reference gamble can be established for any set of 

uncertain events. It is simply a two-outcome gamble (Figure 5.1). One outcome 

has a payoff greater than or equal to the maximum payoff for any outcome in the 

events considered. The other outcome has a payoff equal to or less than the 

minimum payoff for any outcome. In defining a reference gamble for design 

evaluation, two usable outcomes are the best possible outcome and the worst 

outcome possible. 

Win (p) 

$100,000 

Lose (1-p) 

Figure 5.1. An example of reference gambles 
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Certainty equivalent (CE). Certainty equivalents establish an equivalence 

between uncertain events and a certain value. For an uncertain event, its 

certainty equivalent is that certain value of an evaluation attribute which a DM is 

just willing to accept in lieu of the gamble represented by the uncertain event. A 

certainty equivalent is a decision, not an estimate. It is a value the DM decides 

to just accept in lieu of facing the uncertain event. It is not in any sense an 

estimate of what the DM thinks he will receive. Assessing certainty equivalents 

requires the DM to process information of two types simultaneously: (1) 

information on the probability that a set of outcomes will occur, and (2) 

information on the consequences of the outcomes as measured by the 

evaluation attribute. 

5.4.2 Attitudes toward risk 

Three basic attitudes toward risk can be identified: risk aversion, risk 

neutrality, and risk seeking. The choice process in design evaluation is affected 

by the type of risk attitude that the DM possesses. 

1) Risk aversion 

For an evaluation attribute of the greater the better, if the DM's certainty 

equivalent for an uncertain event is less than the expected value of the 

evaluation measure, the DM is called risk-averse. The difference between the 

expected value of the evaluation attribute and the certainty equivalent is called 

risk premium. Two special cases of risk aversion are deserve more attention: 

Decreasing risk aversion. One special case of risk aversion is decreasing 

risk aversion. This condition implies that the degree of risk aversion decreases 

as the value of the evaluation attribute increases. To be more precise, the risk 

premium decreases for gambles that are identical except for adding the same 

constant to each value of the evaluation attribute. 

Constant risk aversion. This condition implies that the risk premium is 

the same for gambles that are identical except for adding the same constant to



each level of the evaluation attribute. Constant risk aversion corresponds to an 

exponential preference function of the form 

u(e)= a-— bexp(—Ae), 

where / is a constant that determines the degree of risk aversion, and a and b 

are scaling constants. These scaling constants can be used to make the 

preference function lie between O and 1 over the range of interest. 

2) Risk neutrality 

Risk neutrality corresponds to a zero risk premium. The preference curve is 

a straight line. Expected values are certainty equivalents for the special case of 

risk neutrality. Therefore, if the DM is risk neutral, choices can be made by 

comparing the expected values of the evaluation attribute for different design 

alternatives. 

3) Risk seeking 

Risk seeking behavior is the opposite of risk-averse behavior in that the 

certainty equivalent for a gamble is greater than the expected value of the 

evaluation attribute. Thus, the risk premium for risk seeking decision makers is 

negative. 

5.4.3 Empirical evidence on risk-taking behavior 

Empirical evidence indicates that individuals are risk neutral when the 

"stakes" are low. The most usual reaction when the "stakes" are high is risk 

aversion, although in special cases, including gambles with negative expected 

values, some individuals display risk-seeking characteristics. In general, it 

appears that decision makers in large companies are quite risk-averse 

(Holloway, 1979). In making design decisions, many designers have shown risk- 

averse behavior. As shown later in the chapter, Taguchi's philosophy of robust 

design by reducing performance variations is actually based upon the 

assumption that less risk is preferred in product design. 
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5.4.4 Utility assessment using 50-50 gambles 

The methods for obtaining utility curves can be divided into two categories. 

The first uses the basic reference gamble directly. The second method uses a 

variety of 50-50 gambles. The choice among the procedures should be based 

on ease of use by the DM. Presumably a procedure that is easier to think about 

will result in assessments that are more consistent and in which the DM will have 

more confidence. Since probabilities are difficult to conceptualize, particularly 

when small differences or small probabilities are being considered, the 50-50 

method is recommended. The argument is that a 50-50 gamble is the simplest 

of all settings that include uncertainty and therefore is the best setting to use for 

assessing preferences. The utility assessment procedures using 50-50 gambles 

are summarized below (Holloway, 1979): 

1) Establish the payoffs for a reference gamble for the decision problem. 

2) Determine certainty equivalents CE,, CE,, and CE, for the reference gamble 

with 
p=1, p=0, and p=0.5, 

respectively. Record them on a plot with p on the vertical axis and the 

certainty equivalent on the horizontal axis. This establishes 

u(CE,) = 1.0, u(CE,)=0, and u(CE;) = 0.5 

as the utilities for these certainty equivalents. 

3) Create a sequence of new gambles, each with a probability of winning of p = 

0.5. The payoffs CE; and CE, are varied and restricted to values of certainty 

equivalents previously specified (Figure 5.2). 

4) Determine certainty equivalents, CZ,, for each gamble. 

5) For each gamble calculate the expected utility of Alternatives A and B. 

For Alternative A, 

E(U,) = (0.5)u(CE,) + (0.5)u(CE). 

For Alternative B, 

E(U,) = (1)u(CE,). 
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Indifference between A and B means that 

E(U,) = E(u,) or 

u(CE,) = (0.5)u(CE,) + (0.5)u(CE)). 

6) Plot each [CE,u(CE,)] pair with CE, on the horizontal axis and «(CE,) on the 

vertical axis. 

7) Repeat steps 3, 4, 5 and 6 until the plot is well defined. 

8) Draw a curve through the plotted points. 

     

  

      

p = 0.5 
CE; 

Alternative A 

CE; 

Alternative B 

CE,   

Figure 5.2. Utility assessment using 50-50 gambles 
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§.4.5 Utility functions for special risk attitudes 

The shape of the utility curve depends on an individual's attitude toward risk. 

Three general categories of attitudes have been identified: risk averse, risk 

neutral, and risk seeking. Figure 5.3 shows examples of utility curves for each 

category. The shape of the risk-averse curve is concave. The risk-seeking 

curve is convex. The risk-neutral curve is a straight line. 

      
     

  

1.0 

0.8 - 
risk averse 

0.6 -— risk neutral 

£ 
= 

_ 

0.4 - 

risk seeking 

0.2     
  0.0 

Evaluation attribute (larger the better) 

Figure 5.3. Three forms of utility functions 
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1) Risk neutrality — linear utility function 

The utility curve for risk neutral decision makers is a straight line. The 

second derivative of the utility function 

u"(e) = 0. 

Since certainty equivalents are equal to expected values, the curve is not 

required for evaluating design alternatives. 

2) Risk aversion - convex utility function 

If the DM is risk-averse over the entire range of interest, the utility curve 

must be relatively smooth. Risk-averse individuals have a positive risk premium. 

The size of the risk premium depends upon (1) the degree of risk aversion, (2) 

the values taken on by the evaluation attribute, and (3) the probability 

distribution for the evaluation attribute. For a utility function with first and second 

derivatives, the risk aversion function is defined as 

—u"(e) 
=e). (5.1) 

If the DM is decreasingly risk averse, the first derivative of the risk aversion 

function, r’(e), is less than zero. If the DM is constantly risk averse, r'(e) = 0. For 

a DM of increasing risk aversion, r’(e) > 0. 

Knowing that a positive risk premium exists restricts the shape of the utility 

curve. Since a risk averse individual has a positive risk premium, the utility 

curve will always lie to the left or above the risk-neutral curve. Thus, the utility 

curve is always concave. These requirements mean that a few assessments 

rapidly restrict the shape of the utility curve. 

A special case of risk aversion is the constant risk aversion. Constant risk 

aversion implies a utility function of the form 

u(e) =a — bexp(—Ae), (5.2) 
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where £ is the evaluation measure. If we require 

U(C nin) = 9, UC max) = 1.0, 

where e,,,, is the lowest value for the preference scale and ¢,,. is the highest, 

only one more equation is needed to find the values for parameters a, 5, and 2. 

This means that a single certainty equivalent assessment is all that is required to 

completely specify the utility function. By using the 50-50 gamble shown in 

Figure 5.4, 

u(CE) = 0.5u(€,,,) + 0.54(€ min), 

u(€,.) = 1.0, 

u(e,,,,) = 0. 

Thus, 

a= exp(—Ae,,,, ) 
exp(—Aen in )— EXP(—Algux ) 

b= I 
exp(—Ae,,,, )— exp(—Ae,,,, ) 
  

exp(-—ACE) = 0.5[exp(—Ae,,;, + exp(—Ae,,.. )] 

For any values of CE, e,.., Csi» @ and 5 can be evaluated directly. 4 can be 

found by trial and error or by means of a complicated search procedure on a 

computer. 

3) Risk seeking — convex utility function 

The second derivative of the utility function «"/e) > 0. 
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©max 

Alternative A 

© min 

Alternative B 

CE   

Figure 5.4. Estimating the utility function for constant risk aversion 
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5.4.6 Procedures for assessing utility functions 

In practice, according to Keeney (1977), the assessment of a utility function 

follows three phases: (1) ask some questions to determine the general shape of 

the utility function, (2) ask some specific questions to quantify a specific utility 

function, and (3) check consistency and make modifications. Once the attribute 

is specified, the assessment process can be broken into five parts (Keeney, 

1977, Keeney and Raiffa, 1976): 

Step 1: Preparing for the assessment. The decision maker is 

familiarized with the terminology and procedures used in the assessment. The 

analyst is familiarized with the design decision problem and the meaning of the 

attribute. 

Step 2: Identifying the relevant qualitative characteristics. These 

characteristics can be determined by investigating three questions: (1) is the 

utility function monotonic, (2) is the decision maker risk averse, risk neutral, or 

risk prone, and (3) if the decision maker is risk averse, is his utility function 

increasingly, decreasingly, or constantly risk averse? 

Step 3: Specifying quantitative estimation. The utilities of a few 

particular points on the utility function are determined. This usually involves 

determining the certainty equivalents for a few 50-50 gambles. If the decision 

maker is risk averse, his certainty equivalents (CE) must be larger than the 

expected consequences for montonically decreasing utility functions. For 

increasing utility function, the CE’s must be less than the expected 

consequences. 

Before determining the CE’s, the end points for the attribute £, i.e., the best 

value e* and the worst value e°, should be determined. These could be the best 

and worst conceivable values for the attribute; or they could be numbers 

bounding the alternatives to be considered by the analysis; or they could have 

some other convenient interpretation (Watson and Buede, 1987). In this 

research, u(e*) is defined to be equal 1.0 and u(e?) is equal to 0.0. 
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Step 4: Choose a utility function. \n utility assessment, the question is 

whether or not a utility function exists that simultaneously satisfies all of the 

information obtained from the assessment. We would like to find a parametric 

family of utility functions that possesses the relevant characteristics (such as risk 

aversion). Then by using the certainty equivalents, a specific member of that 

family which is appropriate for the DM is identified. The CE's are used to specify 

values for the parameters of the original family of utility functions. 

Step 5: Checking for consistency. The consistency of above 

assessments must be examined. If some of the assessments are not 

consistent, more assessments should be conducted. 

5.4.7 Axioms for choices 

The utility analysis method introduced above is valid if certain behavioral 

assumptions are satisfied. These assumptions are: (1) Comparability, (2) 

Transitivity, (3) Reduction of compound uncertain events, (4) Continuity, (5) 

Substitutability, and (6) Monotonicity. If these assumptions are satisfied, there 

exist a utility so that the DM's preferences for various design alternatives can be 

determined by calculating expected preferences. These six axioms are 

explained in detail in Appendix A.1. 

5.5 Sequential Decision Analysis Using the Maximum Expected Utility 

Principle 

Combining the decision models presented in Chapter IV with utility theory 

results in a logical decision process for design evaluation under uncertainty. 

This approach is called sequential decision analysis using the Maximum 

Expected Utility (MEU) principle. The decision criterion used in the approach is 

maximization of expected utility. 
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5.5.1 The Maximum Expected Utility principle 

In the process of design evaluation, the selection of a design alternative is 

influenced by various uncertainties. Due to these uncertainties, the selection of 

a design decision may result in many possible consequences. Based upon 

utility theory, the DM's preferences for the various consequences of a design 

decision can be described in terms of utilities. Thus, the design alternatives can 

be compared based upon their expected utilities. 

Principle of Maximum Expected Utility (MEU): There are a set of 

mutually exclusive design alternatives, a,, a,, ....a,. The set of states of nature 

for the problem are identified as s,, s,, ..., s,. If the probability that s, occurs, aeg n° 

Ds,), is known, the expected utility of Alternative a, is given by 

7, = >" p,(s,)xu(a,,5,). (5.3) 

The alternative with the maximum expected utility is preferred. 

If a single attribute, E, is sufficient to represent the consequences of the 

design alternatives, the expected utility for Alternative a, is equal to 

u, = > Pe (€,) xu(e,), (5.4) 
k=] 

where PX€y) = the probability mass function of 

€, = the value of E for Alternative 7 when s, occurs 

5.5.2 Procedures of sequential decision analysis 

As discussed in Section 4.2, design decision problems in the face of 

uncertainty are made up of decisions and uncertain events. The problem is to 

select an alternative from a set of mutually exclusive alternatives, not knowing 

which member of the uncertain event set will be true. Such a problem can be 

resolved by using the sequential analysis approach along with the MEU 

principle. 
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The paradigm of sequential design decision analysis includes structural 

analysis, uncertainty analysis, and utility analysis. According to Lindley (1985), 

three basic principles should be followed in the decision process: assigning 

probabilities to uncertain events; assigning utilities to possible consequences; 

and choosing the decision that maximizes expected utility. For evaluating 

design alternatives, the approach proceeds in seven steps below: 

Step 1. Identify all design alternatives (a,, a,, ..., a,,). 

Step 2. List the uncertain events (S), Sy, ...5 Sp): 

Step 3. Construct a decision tree to link the decision nodes and the chance 

nodes. The decision tree is written out in chronological order, the decisions and 

uncertain events being described by branches in the order in which they occur. 

Step 4. Assign probabilities to the uncertain events. Probabilities are 

attached to the branches emanating from random nodes in any coherent and 

consistent way. 

Step 5. Determine the value of the evaluation attribute for each alternative 

i under each possible uncertain event, that is, e,. 

Step 6. Assign utilities to the values of the evaluation attribute. Utility u(e,) 

is attached to e, for each possible outcome. 

Step 7. Choose that alternative of maximum expected utility. Proceeding 

back from the terminals to the base, (1) at a random node, take an expectation 

of the utilities; (2) at a decision node, choose among alternatives at this node 

which has a maximum expected utility; and (3) eliminate the decision node by 

crossing out all but the preferred alternative. Keep moving backward by taking 

expectations at random nodes and maximization at decision nodes. The best 

decisions and their expected utilities are then determined. 
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§.5.3 Justification of the use of the MEU principle 

By adapting decision theory and utility theory for design decision making, 

the expected utility of the evaluation attribute is recommended as the objective 

function for design evaluation. For each evaluation attribute E, three measures 

are incorporated into the function: the value of E, the probability distribution of £, 

and the utility of the various levels of E. The uncertainty associated with an 

attribute is characterized by its probability distribution. The relative worth of a 

design alternative is reflected by the utilities. By converting the values of the 

evaluation attribute into utilities, the contribution of different levels of the 

evaluation attribute to the desirability of a design is determined. Embedded in 

the utility function are the designer's value judgments and attitudes toward risk. 

Probabilistic utility analysis is employed to determine the effect of 

uncertainty in the level of the evaluation attribute on the ultimate desirability and 

ordinary ranking of alternatives. The resulting expected utility over a range of 

possible ultimate levels of the evaluation attribute reflects the negative impact 

that uncertainty has on the desirability of a design alternative. The magnitude of 

the impact is determined by the degree of risk aversion exhibited by the DM and 

the extent of the uncertainty in the attribute level. The uncertainty of the 

outcome with respect to various states of nature and preferences for various 

levels of the evaluation attribute are processed in the computation of expected 

utility. Since the outcomes are the realization of random quantities, 

mathematical expectation is taken for the utilities. 

Thus, expected utility combines information concerning the utility of 

outcomes and the probability of outcomes into an estimate of expected utility. 

The overall objective is to maximize the expected utility for the evaluation 

attribute by choosing elements of the design variable vector. This principle is in 

keeping with Taguchi's dictum that good quality is that which minimizes the total 

loss to society. However, the utility function is more general and complete than 

represented by Taguchi's loss function. It is capable of considering various 

attributes of concern, including system life-cycle costs and the cost of selecting a 

particular alternative. 
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5.6 Outcome Dominance and Stochastic Dominance 

With the help of utility theory, stochastic dominance rules can be developed 

for design evaluation under uncertainty. These rules incorporate the DM's 

preferences and the probability distributions of the evaluation attribute. 

5.6.1 Outcome dominance 

The most basic method of choosing two design alternatives is to compare 

them directly and, using some intuitive process, select one over the other. In 

some cases designers may find this method adequate. However, as the 

complexity of a problem increases, it is hard to resolve the problem directly. 

There are two ways that outcome dominance can arise. The first is when 

the worst outcome for Alternative A is at least as good as the best outcome for 

Alternative B. In this case, A dominates B. Another type of outcome dominance 

may exist when two alternatives are followed by the same uncertain event, say 

the same set of design-independent parameters. That is, the alternatives differ 

only in the consequences associated with the outcomes. in this case, the 

following rule applies: 

Outcome Dominance Rule: lf Alternative A is at least as preferred as 

Alternative B for each outcome, and if A is strictly preferred to B for one 

outcome, then A dominates B. 

An example of outcome dominance is given in Table 5.1. There are two 

design alternatives. The life-cycle costs for each alternative are given with 

respect to different states of nature. According to the Outcome Dominance 

Rule, Alternative B dominates Alternative A. 
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Table 5.1. An Example of Outcome Dominance 

  

Outcome (life-cycle cost) 
State of Nature | 
  

  

Alternative A Alternative B 

1 $2,500,000 $2,500,000 

2 $2,800,000 $2,700,000 

3 $3,000,000 $2,900,000 

  

5.6.2 Stochastic dominance 

If the outcome dominance rule is not sufficient to resolve a design decision 

problem, stochastic dominance can be applied. The most general form of 

stochastic dominance makes no assumption about the form of the probability 

distribution of the evaluation attribute. Furthermore, the user does not have to 

assume the specific form of the DM's utility functions. There are three 

progressively stronger assumptions about the DM's behavior that are used in 

stochastic dominance literature (Elton and Gruber, 1981). They lead to first-, 

second-, and third-order stochastic dominance. 

Definition of Stochastic Dominance (Hanoch and Levy, 1969): Given two 

random variables X and Y with cumulative probability distribution function F(X) 

and G/(Y), we say that X dominates Y if 

E[u(x)] = E[u(y)] 

for every utility function in the class of functions, and if the inequality holds 

strictly for at least one function in the class. 
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First-Order Stochastic Dominance Theorem (Hanoch and Levy, 1969): 

Let F(X) and G(Y) be cumulative distributions for random variables XY and Y. Let 

u be any nondecreasing function with finite values for any finite x. A necessary 

and sufficient condition for X to dominate Y is that 

F(x)< G(x) for every x 

and F(x,)<G(x,) for some x,. 

The theorem states that the cumulative distribution function (CDF) of X must 

lie below that of Y for at least one value and must lie nowhere above it. This 

theorem is equally valid for continuous and discrete probability distributions. 

Applying the theorem to evaluate two design alternatives, we have the following 

decision rule: 

First-Order Stochastic Dominance Rule: _\f the designer prefers more of 

the evaluation attribute to less, and if the cumulative probability of the evaluation 

attribute for Alternative A is never greater than the cumulative probability for 

Alternative B and sometimes less, then A is preferred to B. 

Obviously, outcome dominance is contained in the First-Order Stochastic 

rule. If Alternative A dominates Alternative B by outcome dominance, A 

dominates B by first-order stochastic dominance. However, the reverse may not 

be true. That is, if A dominates B by first-order stochastic dominance, A may not 

dominate B by outcome dominance. A stochastically dominated alternative can 

have an actual outcome that is better than the actual outcome from the 

alternative dominated it. But the dominating alternative has higher chance of 

obtaining a favorable outcome. 

Second-Order Stochastic Dominance Theorem (Hanoch and Levy, 

1969): Let F(X) and G(Y) be cumulative distributions for random variables 

and Y. Let « be any nondecreasing, concave utility function. A necessary and 

sufficient condition for X to dominate Y is that 
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[F@ats [ G@at_ for every x 

and strict inequality hods at some x, 

This theorem states that the integral of the CDF of X must lie below that of Y 

for at least one value and must lie nowhere above it. By interpreting the theorem 

in non-mathematical terms, the decision rule is: 

Second-Order Stochastic Dominance Rule: _ lf (1) the decision maker 

prefers more of the evaluation attribute to less, and (2) the decision maker is 

risk-averse, and (3) the sum of the cumulative probabilities for the evaluation 

attribute is never more with A than B and sometimes less, then 4 dominates B by 

second-order stochastic dominance. 

Third-Order Stochastic Dominance Theorem (Whitmore, 1970): Let FY) 

and G(Y) be cumulative distributions for random variables XY and Y. Let u be any 

nondecreasing, concave utility function with nonnegative third derivative. A 

necessary and sufficient condition for X¥ to dominate Y is that 

LE F(t)dtdw < EL G(t)dtdw for every x 

and strict inequality hods at some x, and E(X) > E(¥). 

Thus, another stochastic dominance rule for design evaluation is: 

Third-Order Stochastic Dominance Rule: Alternative A dominates 

Alternative B if: (1) the DM prefers more of the evaluation attribute to less of the 

attribute, and (2) the DM is risk averse with decreasing absolute risk aversion, 

and (3) the mean of the evaluation attribute for A is greater than that for B, and 

(4) the sum of the sum of the cumulative probability distribution for all values of 

the evaluation attribute are never more with A than B and sometimes less. 
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Since the assumptions underlying the three rules are progressively stronger, 

if Alternative A dominates Alternative B by first-order stochastic dominance, A 

also dominates B by second- and third-order stochastic dominance. Similarly, if 

A dominates B by second-order dominance, it is certain that A dominates B by 

third-order dominance. Thus, if a design decision problem can be resolved 

using a lower order rule, a higher order rule does not need to be used. 

In order to implement any of the three stochastic dominance tests, we need 

detailed information about the probability distributions of the performance 

measure. The analysis may become complicated and tedious for a large number 

of alternatives. 

5.7 Mean-Variance Analysis 

According to the philosophy of Taguchi's robust design, two objectives need 

to be achieved in order to develop a best design: (1) make the mean as close to 

the target, and (2) make the variance as small as possible. If the DM's 

preferences for gains and losses can be fully represented by the mean and 

variance of the system's evaluation attribute, a natural way to evaluate design 

alternatives is to compare their means and variances. This approach is named 

Mean-Variance analysis. The term originated from Markowitz's outstanding 

book on portfolio selection (1959). 

5.7.1 Mean-Variance (E-V) rules 

If a DM is risk averse, less risk is preferred to more risk. The notion of risk 

involves both uncertainty and the magnitude of the evaluation attribute. But 

there is not a precise definition of risk that can be used to calculate a value of 

risk. An often-used surrogate for risk is the variance (or standard deviation) of 

the probability distribution for the evaluation attribute. Since the variance is a 

measure of dispersion, it can be thought of as describing the amount of 

uncertainty, and consequently, it captures an important part of the notion of risk. 

Following this line of reasoning, a risk-averse DM would want to minimize 

the variance, everything else being equal. Thus, if a DM prefers more of the 
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evaluation attribute and is risk averse, the following rules of thumb result for 

choosing between two alternatives: 

E-V Rule 1: Alternative 1 is preferred to Alternative 2 if 

pw? =p and [o2]” <[o2]”. 

E-V Rule 2: Alternative 1 is preferred to Alternative 2 if 

o < o,, and E(e,) > E(e,), 

where yp” and [o?]” denote the mean and variance of E for Alternative 1, and 

p® and [o2]” represent the mean and variance of E for Alternative 2. 

In other words, the DM prefers to maximize the expected value and minimize the 

variance. Thus, for two alternatives with "well-behaved" symmetrical probability 

distributions for the evaluation measure, a risk-averse designer will prefer: 

1) The alternative with the lower variance if the expected values are equal, 

or if the alternative with the lower variance has a higher expected value. 

2) The alternative with the higher expected value if the variances are equal, 

or if the alternative with the higher expected value has a lower variance. 

To compare various alternatives, we plot each pair (4,,07) on an E-V chart. 

The horizontal axis of the E-V chart represents the variance of the evaluation 

attribute, while the vertical axis denotes the mean of the attribute. Figure 5.5 is 

an example of the E-V chart. 
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Mean , ; 
Efficient frontier Cc 

N\ 

  > 
  

Variance 

Figure 5.5. Efficient frontier 

On an E-V chart, a possible point (4,07) is called efficient if no other 

possible point (4,,07) has 

H,2H, and 0; say. 

The efficient points form the highest left boundary of the set of possible points. 

The boundary is called efficient frontier and the set of efficient points is called 
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efficient set. In Figure 5.5, the efficient frontier dc is a curve drawn through the 

points representing alternatives that are not dominated by some other 

alternatives. Any point below and to the right of the efficient frontier represents 

an alternative dominated by one on the frontier. For any obtainable E-V 

combination except on arc dc it is possible to find a feasible combination with at 

least as much mean and less variance; or to find one with less variance and no 

less mean, or both. Any such combination is considered inefficient. For 

example, from point 2, we can move to i obtaining less variance and no less 

mean; we can move to & to obtain more mean and no more variance; or we can 

move diagonally from h to j obtaining both more mean and less variance. These 

points are considered inefficient. We cannot move upward from an E-V 

combination on the arc dc, except for d. 

The application of the E-V rules can be illustrated with an example. 

Suppose we want to evaluate five design alternatives with the evaluation 

attribute for this case being reliability. The mean and variance of the reliability 

for each alternative are given in Table 5.2. Plotting each pair of mean and 

variance on Figure 5.6, we find that Alternative 1 is not efficient, since 

Alternative 2 has an equal mean and less variance. Similarly, Alternatives 3 and 

4 are not efficient. The efficient set consist of Alternatives 2 and 5. 

Table 5.2. Means and Variances for Five Alternatives 

  

  

ALT 1 ALT 2 ALT 3 ALT 4 ALT 5 

E(R) 0.90 0.90 0.85 0.80 0.80 

Var(R) 5.00 3.00 3.50 4.00 2.50 
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§.7.2 Utility indifference curves 

As discussed above, to develop a best design, we must make the evaluation 

attribute meet a target value. The target value can be a specific number, or a 

value as large as possible, or a value as small as possible. If there is more than 

one alternative which meets the target value, the decision is easy. That is, 

according to the E-V rules, pick the alternative which has the minimum variance. 

However, the problem of design evaluation in the face of uncertainty is often 

more complicated in practice. In some cases, the mean and variance of the 

evaluation attribute for a design may be dependent. As a result, more than one 

efficient alternative can be identified in the E-V analysis. This makes it 

impossible to achieve the optimum for both the mean and variance jointly. 

Since the E-V rules cannot help us choose between the alternatives in the 

efficient set, we must resort other information to make a choice. The ultimate 

choice between the elements in the efficient set depends upon the DM's trade- 

off between the mean and variance, that is, the trade-off between the bias and 

variance. Thus, the DM must make a trade-off between attainment of a target 

value and the variability at the target value. Utility theory can be used to 

represent the DM's willingness to make such trade-offs. 

For a rational decision maker, he can be assumed to be indifferent to sets of 

(u,,07). That is, an indifference curve of mean and variance exists. The DM is 

indifferent to any point on the indifference curve. So, for the same level of utility, 

such an indifference curve can be defined: 

U =u(u,,0;). (9.5) 

Operationally, the utility indifference curve that relates the mean and variance of 

the evaluation attribute provides a foundation for Mean-Variance analysis. 

Thus, the decision problem can be solved if we can determine which point of 

(u,,02) on the E-V chart is on a higher utility curve (Figure 5.7). 

Thus, to compare design alternatives in an efficient set, we must define a 

utility function to accurately reflect the DM's preference and willingness to make 

trade-offs over the mean and variance. In general, the utility function of mean 

and variance has the following characteristics (see Figure 5.7): 
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1) It is an increasing function of the evaluation attribute (for the larger the 

better case). 

2) It is a decreasing function of variance. The curve is convex on the E-V 

chart. 

3) The intersection point of a curve with the vertical axis (4,) represents the 

certainty equivalent for all points on that curve. Since variance is zero at 

this point, the outcome is certain. 

There are no easy guidelines currently available for assessing such a 

general multiattribute utility function. However, in many circumstances, certain 

conditions can be satisfied in order to decompose the joint utility function (5.5) 

into a function of single attribute utility functions, that is, 

u(,,02)= f[u,(14, ),42(07)}, (5.6) 

According to the multiattribute utility theory (Keeney and Raiffa, 1976), if the 

mean and variance are mutually utility independent, the utility function can be 

decomposed into a multiplicative model: 

u(u,,0,)= k,[m (4,)]+ be[m(o2)] +1, ~ ke mus, I, (02)] (5.7) 

where k, = scaling constant for the mean 

k, = scaling constant for the variance 

u,(u,) = utility function for the mean 

u,(o7) = utility function for the variance 

If the mean and the variance are additively independent, utility function (5.6) 

is then reduced to the additive form: 

u(ss,,07) = k,[m (12, )] + ky[u,(02)], (5.8) 

Since the random nature of the decision problem is reflected by the 

variance, no expectation is needed. Thus, the utility function is simply a value 

model to help decision makers make a trade-off between mean and variance. 
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5.7.3 Relationships between E-V analysis and the MEU principle 

As presented above, E-V analysis is based on utility theory. The 

relationship between the E-V analysis and the MEU principle was discussed by 

Markowitz (1987). Allen (1953) provided a simple mathematical derivation to 

illustrate the relationship: 

For evaluation attribute Z, take a Taylor series expansion of its utility 

function with respect to a constant c, 

ow), a, 3 d°u(c) + ] 1 E~<) Jg_ ey THO), 2 

3E- YE "31 de> 4! dE* 
u(E) = u(c)+ (E —-c)——— 

Letting c= y,, the expected value of the evaluation attribute, then 

d i a 1 ,Pu(p,y) 1 d! u(E) = wi) + (Ey) EE? 4 > (E - ny)’ ARO 4 (E— p,)  4 E yyf A,,, 

Taking mathematical expectation of each side of the equation, we obtain the 

expected utility of selecting a design alternative: 

iE) = W(ug) +2 0% a ss oe) . (5.9) 

where s= E(E-,)°, the skewness of the probability distribution of E 

k= E(E- ,)*, the kurtosis of the probability distribution of E 

Equation (5.9) represents the expected utility of E in terms of (1) the 

moments of the PDF of £, that is, the mean, variance, skewness, and kurtosis: 

and (2) the first four derivatives of the utility function of E. Thus, the number of 

terms used to calculate the expected utility for a design alternative depends 

upon: (1) the number of moments that describe the distribution of E, and (2) the 

number of derivatives that can be taken from the utility function. 
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In order to represent the expected utility as a function of only the first two 

moments, mean and variance, either of the conditions must be satisfied: (1) the 

third and higher derivatives of the utility function are equal to zero, or (2) the 

probability distribution of £ has only the first two moments. 

Thus, the MEU principle is a general decision rule. E-V analysis is just a 

special case of the MEU principle. Under either of the following two conditions, 

using E-V analysis and the MEU principle will generate the same optimum: 

1) If the utility function is a quadratic equation, then only the first two 

derivatives are non-zero, and the expected utility is derived using only the 

first two terms. 

2) ‘If the probability distribution of EZ is normal, which has only two moments, 

the mean and variance, the expected utility becomes a function of the first 

two moments. 

Therefore, the E-V analysis approach holds exactly when the decision 

maker is an expected utility maximizer, prefers more to less, is risk averse, and 

either (1) the values of the evaluation attribute are normally distributed, or (2) 

the utility function of the evaluation attribute is quadratic. Furthermore, the 

analysis is robust in that, as Markowitz (1976) has shown, it frequently holds 

approximately even when assumptions (1) or (2) are violated. For example, 

quadratic approximations are almost always good local approximations to 

nonquadratic utility functions (Elton and Gruber, 1981). 

In design evaluation, using E-V analysis has some advantages. First, the 

concept is straightforward and easy to understand. In the community of 

engineering design, mean and variance are more familiar terms than utility. In 

practice the mean and variance of a system's evaluation attribute are easy to 

estimate. Another advantage of working with the mean and variance is that a 

utility function is not needed in some cases. The problem may be solved by just 

using the E-V rules. However, the user must keep in mind the assumption 

underlying E-V analysis. The underlying assumption is that the DM's 

preferences for a design can be represented by a function of the mean and 

variance of the evaluation attribute. 
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5.8 Assumptions Underlying Common Objective Functions 

There are a variety of objective functions (or decision rules) used to resolve 

problems of design evaluation under uncertainty. In this section, five commonly 

used functions are identified (Table 5.3). Based upon decision theory and utility 

theory introduced above, the decision analysis foundations underlying these 

rules are examined. Compared with the MEU principle, their limitations and 

advantages are obvious. Underlying all these rules are assumptions regarding 

the decision maker's preference or utility function. 

Table 5.3. Some Decision Rules for Design Evaluation 

in the Face of Uncertainty 

  

Maximizing expected value 

Probability of loss 

Linear function of mean and variance 

Taguchi's loss function 

Taguchi's Signal-to-Noise ratios 

  

5.8.1 Maximizing expected value 

In design optimization, a commonly used objective function is maximization 

(or minimization) of the mean of an evaluation attribute E, u,. The underlying 

assumption for the use of this objective function can be identified based on utility 

theory. 

For an evaluation measure £, suppose its probability density function is fe) 

and its utility function is u(e). The expected utility of E is given by 

Elu(e)] = [7 ule) f (ede 
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If u(e) = be + c, where 5 and c are constants, then we have 

E[u(e)]= [" (be +e) f(e)de = bu, +¢ 

Since 4 and c are constants, maximizing the expected utility is equivalent to 

maximizing ,, the mean of E. Thus, if the objective function is to maximize the 

mean of an evaluation attribute, a linear utility function is implied. According to 

utility theory, a linear utility function implies that the DM is risk neutral. Since the 

expected value of an evaluation attribute is the certainty equivalent for the case 

of risk neutrality, choices of design alternatives can be made by comparing the 

expected values directly. 

5.8.2 Probability of loss 

The probability of loss criterion has been used as a measure of the 

desirability of a system design. The measure treats only the values of the 

evaluation attribute below a certain value as unfavorable (more is preferable) as 

in Figure 3.3. In applying the probability of loss rule for design evaluation, three 

decision rules can be employed (Elton and Gruber, 1981): 

Rule 1: Minimize the probability of the evaluation measure E below a 

critical level e,, that is, 

Minimize P(E < e,). 

Rule 2: Maximize the aspiration level e, subject to the constraint that the 

probability of the evaluation attribute E less than, or equal to, the aspiration level 

is not greater than some predetermined valuea. In symbols, the decision model 

is: 

Minimize e,, 

subject to P(E <e,)<a. 
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Rule 3: Maximize the expected value of the evaluation attribute, subject to 

the constraint that the probability of the evaluation attribute less than, or equal 

to, the aspiration level is not greater than some predetermined number. The 

decision model is formulated as: 

Maximize 4,, 

subject to P(E <e,)< a. 

Among these rules, the first is the most widely used. These models have 

been used as an objective function for design optimization. To apply the rules, 

however, we must keep in mind that a strong assumption about the DM's 

behavior is underlain in these rules. 

In applying the probability of loss criterion, the concern is on the probability 

of the evaluation attribute below a critical level. This rule is often used without 

specifying the DM's behavior. However, since probability and utility are both 

elements of decision making, treating only probability explicitly in the objective 

function does not cause utility to disappear. An objective function which 

contains only probabilities implies strong value judgments. The assumptions 

about utility implied in the use of the rule are discussed below. 

For an evaluation attribute E with PDF f,(e), the reliability of the system, 

denoted by R, is 

R= P(E <e,)= | fg(e)de. 

If the utility of £ is u(e), the expected utility of E is given by 

E[u(e)]= |" ule) f_(e)de 

=f” u(e) f,(e)de + [ue fe (e)de. 

Since the values of E below e, are unfavorable, and amounts over e, are 

treated as favorable and give the same contribution to the success of the 
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system, the utility function of Z must be as shown in Figure 5.8. The expected 

utility of E is equal to 

Elu(e)]= [0 fee) de+ ["WFa(€) de 

=| fale) de=R. 

Thus, when the probability of loss criterion is used in design evaluation, a 

utility function such as given in Figure 5.8 is implied. The underlying assumption 

is that there is an aspiration level that is important to the DM. Amounts below 

the aspiration level are of little or no importance. Amounts above the level give 

the same contribution. 

5.8.3 Linear function of mean and variance 

A linear function of the mean and variance for an evaluation attribute has 

been used as the objective function for design optimization in some literature. 

For evaluation attribute E, the objective function used is 

Maximize w,u, + w,0% (5.10) 

where w, and w, are constants, representing the weights given to the mean and 

variance of E, respectively. if the objective is to maximize the evaluation 

attribute Z, w, should be positive, while w, must be negative. 

The underlying foundation for model (5.10) can be identified by comparing 

this model with the additive utility model given by Equation (5.8). There are 

three assumptions underlying the model: 

1) The DM's preferences for a design can be measured by the mean and 

variance of the evaluation attribute for the design. 

2) The utility functions for both the mean and the variance are linear. 

3) The mean and the variance are additively independent. 
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Figure 5.8. Utility function for the probability of loss criterion 
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5.8.4 Taguchi's loss function 

As indicated in Section 4.2, in the process of design evaluation by decision 

theory, there is the need to know the possible consequences of any design 

decision. Often the knowledge can be quantified by determining the gain or the 

loss that would be incurred for each possible decision for the various states of 

nature. So far the problem of design evaluation have been discussed in terms of 

gains — utility. In Taguchi's approach, this problem is discussed from the 

perspective of loss. Since a loss is just a negative of a gain, the loss function 

can be defined from the utility function. 

If the state of nature can be represented by a vector s, a represents an 

action to select a design alternative, the loss function is defined for all possible 

(s,a), that is, Z(s,a). In making a decision, the loss function should, ideally, be 

developed according to the utility function (Berg, 1985), that is 

L(s,a) = - u(s,a). 

Since decisions are made in the presence of uncertainty, the incurred actual 

loss, L(s,a), will never be known with certainty at the time of decision making. A 

natural method of proceeding in the face of this uncertainty is to consider the 

“expected loss" of selecting an alternative and then choose an "optimal" 

alternative with respect to this expected loss. In this way, instead of trying to 

estimate the actual loss, we can measure the amount "lost" by not having the 

most favorable possibility occur; that is, measure the regret we have for not 

using the best action. This measure is called regret /oss in statistical decision 

theory. 

One of the standard loss functions used in statistical decision analysis is the 

squared-error loss. As given in Section 3.5.5, Taguchi's loss function takes this 

form: 

L=k(E-e,y 

where e, is the target value of the evaluation attribute Z, and & is a constant. 

The function is used to measure the loss in value as a part deviates from its 

target value. 
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It is understandable that some researchers have questioned the automatic 

use of a squared-error loss function. Squared-error loss functions are just one 

of the standard loss functions used in decision analysis. There are some 

criticisms of the function. For example, the function is not bounded. Depending 

on the DM's attitudes toward risk and preferences for the evaluation attribute, 

other forms of loss function may be used. 

5.8.5 Taguchi's signal-to-noise ratios 

In the evaluation of various design alternatives, Taguchi does not use the 

loss function directly as the decision criterion. Instead, he defines a number of 

simple decision rules to operationalize the concept of loss. These decision rules 

are called signal-to-noise ratios. Taguchi classifies various design decision 

problems into three categories. The signal-to-noise ratio for each category is 

given in Section 3.5.6. 

The automatic use of the S/N ratios has generated a lot of controversy 

among statisticians (Box et. al, 1988; Box, 1985; Easterling, 1985; Freund, 1985; 

Fung, 1986; Hunter, 1985; Leon et. al, 1987; Kackar, 1985). There is also some 

confusion regarding the relationship between Taguchi's squared loss function 

and S/N ratios (Leon et al., 1987). Some have incorrectly interpreted that 

Taguchi may be steering away from his notion of the squared error loss when he 

advocates the use of the S/N ratios. 

The foundation of Taguchi's S/N ratios lies in utility theory. If these S/N 

ratios are considered under the context of decision theory, the performance 

measures for the smaller-the-better case and the larger-the-better case are just 

applications of the maximum expected utility principle. Since, these measures 

are directly derived from Taguchi's squared-error loss function, minimizing 

expected loss means maximizing expected utility. 

The performance measure for the case of Nominal the Better can be 

regarded as an application of E-V analysis. The S/N ratio can be considered a 

multiattribute utility function representing the DM's preferences for mean and 

variance. Thus, the use of both the squared-error loss function and the S/N ratio 

is not contradictory if one understands the relationship between the MEU 

principle and E-V analysis (see Section 5.7.3). The foundation of the NTB S/N 
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ratio is in E-V analysis, while the foundation for the loss function is the principle 

of minimizing expected loss. For a quadratic utility function, the expected utility 

can be represented as a function of the mean and variance. 

Observations have indicated that using S/N ratios cannot guarantee 

generation of a best design. Wilde (1991) gives a counter-example to the use of 

the NTB S/N ratio as a criterion for design optimization. This situation is easy to 

explain if we consider the NTB S/N ratio as a special utility function for the mean 

and variance. Under some situations, this function may not accurately represent 

the DM's preferences and risk attitude. Thus, using it as a general utility 

function does not guarantee generation of best design. Depending on the 

nature of the design decision problem and the DM's preferences and risk 

attitude, other forms of utility function may be more appropriate. Different 

engineering designs can lead to different functions. In fact, Taguchi has defined 

more than 60 different signal-to-noise ratios in conducting his parameter designs 

(Kackar, 1985). Kackar also indicates that the function, in general, is unknown 

and must be estimated. This point of view agrees with utility theory. 

It should be noted that the NTB S/N ratio does not directly optimize the 

evaluation attribute. In practice Taguchi employs a two-phase approach to 

derive a robust design. At the first phase, the settings of design variables are 

identified to maximize the S/N ratio, that is, minimize the coefficient of variation 

o,/pu,. At the second step, the mean is moved toward a target value by 

changing the setting of some adjusting parameters. The adjustment parameters 

are special design variables that have a large effect on the mean, but almost no 

effect on the variance. However, in many cases, such a variable may not be 

available. In this case, design evaluation must be carried out by using the 

decision analysis approaches presented in Sections 5.5, 5.6, and 5.7. 
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VI. AN INTEGRATED APPROACH FOR DESIGN 

EVALUATION IN THE FACE OF UNCERTAINTY 

  

6.1 Introduction 

6.2 A Conceptual Model for Preliminary System Design 

6.3 A Structured Model for Design Analysis 

6.4 Design Evaluation for Discrete Decisions 

6.5 Design Evaluation for Continuous Decisions 

  

6.1 Introduction 

Decision analysis foundations have been identified in Chapters IV and V for 

design evaluation in the face of uncertainty. The decision rules, decision 

diagrams, and decision analysis approaches form the basis under which 

alternative designs can be compared. In this chapter, these approaches are 

integrated into a structured, systematic approach for resolving different design 

decision problems. 

6.2. A Conceptual Model for Preliminary System Design 

A conceptual model was presented in Chapter II for representing the design 

decision process in the preliminary design stage (Figure 6.1). This model 

divides the design decision process into four basic steps: synthesis of design 

alternatives, design analysis, design evaluation, and design optimization. 

At the first step in Figure 6.1, based upon the information available, such as 

the need, users requirements, and designer's experiences, various design 

alternatives are generated and synthesized. This task is accomplished by 

selecting, estimating, or predicting the levels of design-dependent parameters. 

Each set of design-dependent parameter values determines a unique design 
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alternative. The next step is design analysis. Design analysis is conducted to 

structure the decision problem and assess outcomes for each decision. After 

the design analysis is completed, design evaluation starts. The objective of 

design evaluation is to identify the best design strategy. When an optimal 

strategy is identified, the design is examined with respect to the user's needs 

and requirements defined. If the design is adequate, it is recommended for 

detail design. If the design is unsatisfactory, an iterative resign process is 

conducted. The information obtained is used to identify better designs. 

6.3 A structured model for design analysis 

The objective of design analysis is to structure the decision problem and 

assess various possible outcomes for each design strategy. The process of 

design analysis is illustrated by Figure 6.2. This process is divided into four 

steps: preanalysis, structural analysis, outcome analysis, and uncertainty 

analysis. These steps are interrelated and concurrent. 

Preanalysis. The decision probiem is identified and defined. This includes 

identification of all mutually exclusive decisions for each design alternative, 

identification of all possible uncertain events, and specification of objectives. 

Appropriate evaluation attributes are identified to represent the objectives. Also, 

general information about the DM's preferences and risk attitudes toward the 

evaluation attributes should be collected and processed. 

Structural analysis. The qualitative anatomy of the decision problem is 

structured by decision trees. Depending upon the characteristics of the 

decisions and events, the problem is modeled by one of the four models in Table 

4.1. The construction of the decision tree follows the procedures of sequential 

decision analysis. At the leftmost decision node, each design alternative 

generated is represented by a branch. A decision node is attached for each 

alternative. Various decisions for each alternative are then attached to the 

decision node. Uncertain events are identified and represented by chance 

nodes. 
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SYNTHESIS OF DESIGN ALTERNATIVES 
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DESIGN ANALYSIS 

Output: Assessment of outcomes 

  

    

v     
DESIGN EVALUATION 
  

  Output: Identification of an optimal design     

   
DECISION 

  

    

     Adequate ? 

To detail design activities 
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Figure 6.1. A conceptual model for preliminary system design



Uncertainty analysis. Tne DM assigns probabilities to the branches 

emanating from the chance nodes. According to Keeney and Raiffa (1976), 

these assignments are made by actually mixing various techniques and 

procedures based on past empirical data, on assumptions fed into and results 

taken from various stochastic, dynamic models, on expert testimony, and on the 

subjective judgment of the DM. The assignments should be checked for internal 

inconsistencies. 

Outcome analysis. Design evaluation functions are determined to 

quantitatively describe the relationships between the evaluation attributes, 

design variables, design-dependent parameters, and design-independent 

parameters. Based on the evaluation functions, all outcomes for each decision 

within each design alternative are determined with respect to each uncertain 

event. Then a probability distribution for each outcome — the probability 

distribution over the set of evaluation attributes for each decision - is estimated. 

Evaluation of the probability distributions of the evaluation attributes 

depends on the assumptions made, the amount of statistical data available, the 

complexity of the functional relationship, and the complexity of the analytical 

functions chosen to represent the probability distributions. When the probability 

distributions of the design-independent parameters are known, four techniques 

can be used (Sidall, 1982; Hahn and Shapiro, 1967): transformation of variables, 

independent cell method, moment transfer, and simulation. 

After the four-step design analysis process is completed, the outputs are 

evaluated against the needs of design evaluation. If the outputs are adequate, 

go to the next stage in Figure 6.1; that is, design evaluation. Otherwise, the 

analysis process is repeated. 
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From synthesis of design alternatives 

  

    
PREANALYSIS 

  
  

Identification of the decision problem       
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Figure 6.2. A structured model for design analysis 
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6.4 Design Evaluation for Discrete Decisions 

The objective of design evaluation is to select a decision strategy which 

gives the maximum expected utility for the DM. In practice, the approach used to 

identify such a strategy depends upon the outcome space of the decision 

problem. Some of the decision approaches identified in Chapter IV can be 

applied to both the problems of continuous outcome space and the problems of 

discrete outcome space. However, in general, the problem of discrete decisions 

and the problem of continuous decisions need to be resolved through different 

evaluation approaches. In this section, the decision analysis approaches which 

apply to the category of discrete decisions are identified. These approaches are 

then integrated into a structured design evaluation framework. 

6.4.1 A structured model for design evaluation 

For a problem of discrete decisions, the outcome space is discrete if the 

events are discrete. For this category of problems (Category 1), the dominance 

rules, the Mean-Variance rules, and the Maximum Expected Utility principle 

presented in Chapter V can be directly applied for design evaluation. A 

structured framework is presented to help apply these approaches (Figure 6.3). 

The framework is developed based on a consideration that the approaches 

which require fewer assumptions about the DM's behavior should be used first in 

evaluating design decisions. Four decision approaches are identified in the 

framework. The order of applying the approaches are determined according to 

their underlying assumptions. Outcome dominance is used first since it is an 

objective criterion. If all outcomes of Decision A dominate the corresponding 

outcomes of Decision B, Decision A is preferable. The only assumption made is 

that the DM prefers more (or less) of an evaluation attribute. if the decision 

problem is resolved by the application of the Outcome Dominance rule, other 

approaches are not needed. Then an optimal design strategy is recommended 

for examination by the decision makers. 

The outcome dominance rule is helpful for eliminating some of the poor 

decisions. If it is not adequate to resolve the decision problem, a stronger 

approach should be used. If the DM is risk neutral, the decision problem can 

104



From design analysis 

: 
OUTCOME DOMINANCE 

MEAN-VARIANCE RULES 

  

      
Adequate 

? 

No 

Adequate 

? 

No 

Adequate 

? 

No 

Adequate 

? 

No 

                

  

  

      

  

  
  

STOCHASTIC DOMINANCE | 

MAX. EXPECTED UTILITY 

      

  

  

      

  
    
  

    
RECOMMENDATION 

OF AN OPTIMAL DESIGN 

| 
To decision 

    
  

Figure 6.3. A structured evaluation model for problems of discrete decisions 
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be resolved by comparing the expected outcome for each decision. If the DM 

prefers more to less of the evaluation attribute, the optimal strategy is the one 

which has the maximum expected value. 

If the DM is not risk neutral, design evaluation cannot be conducted by 

simply comparing the expected outcomes. Variance provides another dimension 

for comparison. Thus, the mean variance rules (E-V rules) may be used. If the 

DM prefers more (or less) of the evaluation attribute and also wants to minimize 

the attribute's variance, E-V diagrams can be developed to identify the efficient 

decisions. The inefficient decisions will be eliminated. If there is only one 

efficient decision, the problem is resolved. Thus, the efficient decision is the 

optimal decision. 

If there exists more than one efficient decision, stochastic dominance may 

be used to compare the members of the efficient set. There are three stochastic 

dominance rules, which are based on progressively stronger assumptions. First, 

the First-Order Stochastic Dominance rule is used. If one decision is found to 

dominate other decisions, this decision is the optimal decision. The dominated 

decisions are eliminated. If some of the decisions do not dominate each other, 

the Second-Order Stochastic Dominance rule may be applied. A stronger 

assumption is made in the application of Second-Order Stochastic dominance; 

that is, the DM is risk averse. If the problem cannot be resolved by Second- 

Order Stochastic Dominance, Third-Order Stochastic Dominance may be used 

when the DM is risk averse with decreasing absolute risk aversion. In applying 

these rules, their underlying assumptions must be examined carefully. If any 

assumption is not true for a dominance rule, the rule itself and the higher-order 

rule cannot be used. Instead, the next approach in the framework, the MEU 

principle should be employed. 

The MEU principle can be used as a general criterion for evaluating design 

decisions. The behavior assumptions underlying the principle are the six axioms 

for choice. The DM can be risk averse, risk neutral, or risk seeking. The 

application of the MEU principle follows the sequential decision analysis 

procedures in Section 5.5. After the utility function is assessed, the strategy 

which has the maximum expected utility is optimal. The consistency of utility 

analysis should be checked. If the assessment is not consistent, the process 
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should start again. After design evaluation, the optimal design is recommended 

to the DM for review. 

If the events must be represented by continuous models, the structured 

evaluation framework presented above can still be used. There are no technical 

difficulties for application of the approaches. However, if the continuous 

probability distribution of the events can be approximated by a discrete 

distribution, the computation will be simplified. All the calculation procedures 

developed for discrete random variables can be used. 

6.4.2 Utility analysis of problems of continuous events 

When the events are continuous, utility analysis for continuous outcome 

should be used. The application of utility analysis for problems of continuous 

events is explained below. 

Since the outcome space is continuous due to continuous events, the 

expected utility for each decision must be defined by using a continuous model. 

The procedures for obtaining the expected utility for a given decision are 

illustrated in Figure 6.4. 

In Figure 6.4a, the probability distribution of the events, g(s), is identified. 

For each decision, the values of the evaluation attribute, E, are determined as a 

function of the event variable. Figure 6.4b shows the evaluation attribute of a 

selected decision for any event represented by a continuous variable, S. The 

values of the evaluation attribute are bounded by A and B. The probability 

distribution of the evaluation attribute for each decision, f(e), is obtained based 

upon a design evaluation function (Figure 6.4c). In this figure, the expected 

value of the evaluation attribute is given by w,. For each value of £, its 

corresponding utility, ue), is obtained according to the DM's utility function 

(Figure 6.4d). The probability distribution of the utilities is illustrated in Figure 

6.4e. The expected utility for each decision is given by 

E[u,(e)]= F ule) s,(e)ae. (6.1) 

where fe) is the probability density function of E for alternative i. 
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6.5 Design Evaluation for Continuous Decisions 

In the case of continuous decisions, it is impossible to compare individual 

decisions. For each design alternative, the evaluation attribute is a function of 

both the design variables and design-independent parameters. The objective is 

to determine a set of values for the design variables so that the system's 

expected utility is maximized. An evaluation process is presented for this type of 

problem (Figure 6.5). 

The first step is to determine an objective function for design optimization. 

The function is actually the expected utility for the evaluation attribute. For a 

given utility function u(e), the expected utility is 

Bfu(e)|= | ule) f(e)de (6.2) 

where fe) is the probability density function of EZ. For each alternative, the 

decision problem becomes one of determining the design variable settings which 

maximize E[u(e)]= [_ u(e)f(e)de. 

After an objective function is determined, the next step is to select an 

approach to solve this problem. An effective approach to the solution of the 

problem is to use optimization techniques. In practice, the problem may be 

formulated as a nonlinear optimization problem or as a stochastic optimization 

problem. If analytical models cannot be formulated, the problem may be 

formulated as a Monte-Carlo simulation model. Taguchi's parameter design may 

be used to convert a continuous problem into a discrete problem. 

The optimization problem is to determine optimal settings of the design 

variables for each alternative. Then the expected utilities achieved by the 

optimal decision for each alternative are compared. The design which has the 

maximum expected utility is the optimal design. 
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Figure 6.5. A structured evaluation model for problems of continuous decisions 
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In applying this approach, determination of the objective function should 

follow the procedures for the assessment of utility functions given in Section 

5.4.6. In the literature on design optimization, a special function of mean and/or 

variance was often used as the objective function without giving the underlying 

decision analysis foundations. For example, a common problem formulation is 

a nonlinear optimization problem in which the variance of the evaluation attribute 

is minimized while the evaluation attribute is constrained to a target value 

(Ramakrishnan and Rao, 1991; d'Entremont and Ragsdell, 1988). In the 

formulation of stochastic optimization problems, a linear function of mean and 

variance was often assumed as the objective function (Eggert and Mayne, 1990; 

Rao and Reddy, 1979; Sundaresan et al., 1991). Though these formulations 

may be more appropriate to consider risks in design than the traditional problem 

formulation in which a mean is optimized, one must keep in mind their underlying 

assumptions as discussed in Section 5.8. The assumptions for each objective 

function should be examined to enable the objective function to accurately 

reflect the DM's preferences and risk attitudes. As indicated in Section 5.5.3, 

the objective function should combine information concerning the utility of 

outcomes and the probability of outcomes into an estimate of expected utility. 
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Vil. AN EXAMPLE OF BRIDGE DESIGN 

  

7.1 Introduction 

7.2 Description of the Problem 

7.3 Determination of Design Evaluation Function 

7.4 Problem Solution under Certainty 

7.5 The Uncertainty Problem 

7.6 Design Evaluation in the Face of Uncertainty 

  

7.1 Introduction 

A hypothetical example is presented in this chapter to illustrate the 

application of the framework presented in Chapter VI. The example originates 

from the bridge design evaluation model given in Chapter 10 of Fabrycky and 

Blanchard's Life-Cycle Cost and Economic Analysis (1991). 

7.2 Description of the Problem 

The classical situation of bridge design was studied by Fabrycky and 

Blanchard (1991) to illustrate design optimization. An evaluation model was 

developed to help decision makers optimally allocate the anticipated capital 

investment to superstructure and to piers in the preliminary design stage. It 

assumes that there exists an inverse relationship between the cost of the 

superstructure and the number of piers. As the number of piers increases, the 

cost of the superstructure decreases. Conversely, the cost of the superstructure 

increases as the number of piers decreases. Pier cost is directly related to the 

number specified. Two bridge superstructure design alternatives were 

compared in their study (Figure 7.1). The objective is to select an alternative 

with the minimum total first cost. 
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Figure 7.1. Two bridge superstructure design alternatives 

(Fabrycky and Blanchard, 1991) 
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7.3 Determination of Design Evaluation Function 

All variables, parameters, and performance measures in the problem are 

classified into four groups: design variables, design-dependent parameters, 

design-independent parameters, and evaluation attributes (Table 7.1). The 

notation used in the example is: 

L = bridge length (feet) 

W = superstructure weight (pounds per foot) 

S = span between piers (feet) 

C, = erected cost of superstructure (dollars per pound) 

C, = installed cost of piers (dollars per pier) 

TFC = total first cost 

Table 7.1. List of Design Variables, Parameters, and Evaluation Attribute 

  

Design Variable S 

Design-Dependent Parameters A,B 

Design-Independent Parameters C, CL 

Evaluation Attributes IFC 

  

Assume that the weight of the superstructure is a linear function of the span 

between piers. That is, 

W= AS +B, 

where A and B are constants established by statistical estimation for the design 

alternative under consideration. 

The total first cost of the bridge, ZFC, is the sum of the superstructure cost, 

SC, and the total cost of piers, PC. 7FC can be expressed as 

TFC = SC + PC. (7.1) 

114



The superstructure cost, SC, is given by 

SC =WxLxC, 
(7.2) 

=(AS + B)LxC, 

The total cost of piers, PC, is the product of the number of piers and the 

installed cost for each pier. If the two abutments are considered as piers, the 

total cost of piers is equal to 

L 
PC= (= + i\c, (7.3) 

Thus, the total first cost is expressed as 

TFC =(AS + B)LxC, +(S+iJc,. (7.4) 

This is the design evaluation function for the bridge design problem, which 

represents the evaluation attribute, 7*C, as a function of design variables, 

design-dependent parameters, and design-independent parameters. The 

decision problem is to select an alternative which has the minimum ZFC. 

7.4 Problem Solution under Certainty 

Two design alternatives are compared in this example. The basic 

evaluation process will follow the steps of the Design Dependent Parameter 

Approach. First, the decisions within each alternative, i.e., selecting span 

between piers, are compared separately to obtain an optimal solution. Then the 

optimal decision for Alternative 1 is compared with that of Alternative 2. The 

alternative with the lowest total first cost is selected as the best solution for the 

overall problem. 

To find the optimum span between piers for each alternative, differentiate 

Equation (7.4) with respect to S and equate the result to zero, giving 
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LxC, 

7° 

. fe 
S = |S (7.5) 

2 2LxC frm -efane 

  

d 
—(TFC)=AxLxC,- 

  

Since 

  

the minimum ZFC is obtained by selecting S = S*, giving 

IFC’ =2JAxC, xP xC, +BxLxC,+C,. (7.6) 

Thus, if a superstructure design is selected and the settings of all of the 

design-dependent parameters and design-independent parameters are 

determined, the optimal pier spacing can be found by using Equation (7.5). 

7.4.1 Data inputs 

The values of various input parameters are given in Table 7.2, which are the 

same as given by Fabrycky and Blanchard (1991). In the following study, the 

unit pier cost will also be used as the estimated cost for each abutment. 

Table 7.2. Data Inputs for the Bridge Design Example 

  

Bridge length, Z 1,000 feet 

Erected cost of superstructure, C, $0.65 per pound 

Installed cost of piers, C, $80,000 per pier 

Weight of superstructure, W 

Alternative 1 W=16S5+600 pounds per foot 

Alternative 2 W=225+0 pounds per foot 

  

116



7.4.2 Alternative 1 

For Alternative 1, based on Equation (7.5), the optimum span between piers 

is equal to 

S*= | 80000 _ 87.7 (feet) 
16x 0.65 

The number of piers is then given by 

  

<1 412124. 
5 87.7 
  

This result must be adjusted to obtain an integer number of piers. The number 

can be found by calculating the 7F7C with respect to various numbers of piers 

around 12.4. 

The total first costs for different number of piers are calculated by using the 

design evaluation function (7.4) and plotted along with the pier cost and the 

superstructure cost in Figure 7.2. The decision of 12 piers has the minimum 

TFC, which is equal to $2,295,455. 

7.4.3 Alternative 2 

Similarly, the pier cost, superstructure cost, and total cost for various 

numbers of piers are calculated and plotted in Figure 7.3. The optimal span 

between piers, S*, is found to be 

S = 1.80000 = 74.8 (feet). 
22 +0.65 

The lowest-cost integer number of piers is 14 piers, whose 7FC is $2,220,000. 
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7.4.4 Comparison 

The characteristics of the optimal solutions for Alternatives 1 and 2 are 

listed in Table 7.3. Alternative 2 has a lower total first cost. Thus, if the data 

inputs are as given in Table 7.2, Alternative 2 is preferable. The optima! number 

of piers is 14, with a total first cost of $2,220,000. 

Table 7.3. Optimal Solutions for Alternatives 1 and 2 

  

  

Alternative Optimal Pier Cost Superstructure —_ Total First 

Pier Number ($) Cost ($) Cost ($) 

1 12 960,000 1,300,000 2,260,000 

2 14 1,120,000 1,100,000 2,220,000 
  

7.5 The Uncertainty Decision Problem 

In the last section, the problem was solved by assuming that all design- 

independent parameter values in Table 7.2 are known constants. However, in 

practice, the settings of those parameters are not subjected to the designer's 

control. Their values may be difficult to estimate and are not known with 

certainty during the preliminary system design stage. This type of uncertainty 

causes difficulties in the evaluation of the design alternatives. 

7.5.1 Functional dependence 

There are three design-independent parameters in the example problem: C,, 

C,, and Z. Among these parameters, bridge length L is the easiest to determine 

and is usually known in the preliminary design stage. When a superstructure 

configuration is selected, its corresponding design-dependent parameters A and 
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B are determined. Thus, for each candidate design, the total first cost becomes 

a function of C,, C,, and design variable S. 

For a specific number of piers, according to Equation (7.4), 7FC can be 

represented as a linear function of C, and C,. That is, 

TFC = kC, +kCp (7.7) 

where k, =(AS+B)L andk, =(L/S+1). This equation represents the functional 

dependence of ZFC on two design-independent parameters. Since C, and C, 

are not subject to the DM's control, they can be treated as random variables. 

Thus, ZFC is a function of two random variables. If the probability distributions 

of C, and C, are known, the probability distribution of 7-C can be determined by 

Equation (7.7). 

Suppose that the mean and the variance of C, and C, are given as: 

E(C,)= 1, Var(C,)= oF; 

E(C,) =H, Var(C,) = 03. 

Taking expectation of both sides of Equation (7.7), we obtain the mean and the 

variance of TFC: 

E(TFC) = kyu, +k, 

Var (TFC) = k?0? + k202 + 2cov(C,,C,). 

lf C, and C, are not correlated, then 

Var (TFC) = k7 0% +kz 03. 
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7.5.2 Probability distribution of C, 

In this hypothetical example, the original problem of bridge design is 

modified to illustrate the approach for design evaluation under uncertainty. We 

assume that C, is a random variable with its probability distribution given in 

Figure 7.4, and let other parameters be the same as given in Table 7.2. As 

given in Figure 7.4, C, has a mean of 0.65, which is equal to the constant setting 

of C, given in the original problem (see Table 7.2). However, here C, is not a 

constant, rather a random variable with a variance of 0.0039. To reduce the 

amount of computation, we let C, be a constant. But the approach can be easily 

extended to consideration of C, and C, simultaneously. 

7.5.3 The effect of uncertainties on TFC 

As a random variable, C, can take any of the six settings in Figure 7.4. 

What is the effect of the uncertainty with C, on the evaluation of the design 

alternatives? For each setting of C,, the optimal span and the corresponding 

TFC are calculated using Equations (7.5) and (7.6). The results for Alternative 1 

are plotted in Figure 7.5. 

As indicated in Figure 7.5, both the optimal span (S*) and the minimum 7FC 

(7FC™*) vary greatly with the settings of C,. With the increase of C,, the optimal 

span between piers decreases, while the 7FC goes up. Not any single specific 

number of piers can achieve a minimum total first cost for all settings of C,,. 

These trends are also true for Alternative 2 (Figure 7.6). 

In this example, ZFC is a function of two independent variables, C, and the 

number of piers. Since C, is a random variable, 7FC is also a random variable. 

To measure a random variable, one needs to specify its probability distribution. 

Based upon the design evaluation function (7.4), the probability distributions, 

mean, and variance of the 7FC for each decision are obtained in Table 7.4 and 

Table 7.5. The variations of ZFC with respect to C, are illustrated in Figures 7.7 

and 7.8 for each alternative. 
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7.6 Design Evaluation in the Face of Uncertainty 

7.6.1 The evaluation approach 

In the certainty case, the values obtained for 7/C* are considered to be a 

constant. We compared the values of the 7FC for various number of piers and 

selected the decision that has the lowest 7FC. However, 7FC is a random 

variable under the uncertainty case. A selection cannot be made by simply 

comparing any particular values of 77/C, e.g., the mean, since the setting which 

C, will take is unknown. Because of uncertainties involved in C,, there exists a 

problem of decision making under uncertainty. The problem can be represented 

by a decision tree (Figure 7.9). 

In this design evaluation problem involving uncertainties, the different 

settings of C, actually represent different states of nature. Though C, can take 

any of the six settings in Figure 7.4, these settings are mutually exclusive. That 

is, only one particular setting of C, will occur in practice. However, which setting 

C, will actually take is unknown in the preliminary system design stage. Since 

the selections of the number of piers are mutually exclusive, the decision 

problem is which number of piers to select in the face of uncertainties in C,. 

As illustrated in the decision tree, a sequential decision analysis approach 

will be used to evaluate the various design decisions. Decision analyses begin 

with the right side of the tree and work backwards. For each decision, the 

evaluation attribute, ZFC, is estimated with respect to the different settings of C,. 

Then the values of 7FC from each decision are compared to identify an optimal 

decision for each alternative. Finally, the optimal decision from Alternative 1 is 

compared with that of Alternative 2 to identify the best decision for the overall 

problem. Within each step of the decision tree, the evaluation approach for 

discrete decisions presented in Chapter V is used to make a selection. 

7.6.2 Regret loss -- the cost of making a selection 

As indicated in Figure 7.7, the optimal number of piers for Alternative 1 

varies from 11 to 14, depending upon the setting of C, taken. Since the actual 

setting which C, will take is unknown during the preliminary design stage, making 
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a selection from any of the decisions may result in some opportunity cost. In the 

term of statistical decision theory, this cost is called regret loss. The regret loss 

represents the difference between the actual cost of the decision selected and 

the minimum cost that could be achieved with perfect knowledge. The regret 

losses for various decisions are calculated below with respect to each possible 

setting of C,. 

For Alternative 1, regret losses are calculated in the following way: subtract 

the minimum ZFC in each column of Table 7.4 from each value of ZFC in the 

same column. The results for selecting 11 through 14 piers are given in Table 

7.6. Several conclusions can be drawn from the calculations. The regret loss 

for each decision varies significantly with the level of C,. For each level of C,, if 

the decision is optimal, zero regret loss is incurred. However, not any single 

decision has zero regret loss for all levels of C,. It seems that the decision of 12 

piers is preferable because it has the lowest expected regret loss ($2,527). 

However, if the minimax regret criterion is used, 13 piers should be selected. 

Table 7.6. Regret Losses (RL) for Alternative 1 (dollars) 

  

  

  

No. of Cc, Mean Max. 

Piers 0.55 0.60 0.65 0.70 0.75 0.80 of RL RL 

11 0 7,273 14,545 26,667 40,000 55,385 17,436 55,385 

12 0 0 O 4,848 10,909 19,021 2,527 19,021 

13 13,333 7,273 1,212 0 0 2,051 3,436 13,333 

14 36,923 25,734 14545 8205 3,077 O 16,513 36,923 
  

Similarly, the regret losses for four decisions from Alternative 2 are 

calculated in Table 7.7. The decision of 14 piers has the lowest expected regret 

loss, while the decision of 15 piers has the smallest maximum regret loss. 
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Table 7.7. Regret Losses (RL) for Alternative 2 (dollars) 

  

  

  

No. of C. Mean Max. 

Piers 0.55 0.60 0.65 0.70 0.75 0.80 of RL RL 

13 O 4615 11,667 23,333 36,429 53,333 14,816 53,333 

14 2,436 0 O 4,615 10,659 20,513 2,797 20,513 

15 15,952 7,473 1,429 0 O 3,810 3,923 15,952 

16 38333 24615 13333 6667 1,429 O 15,566 38,333 
  

7.6.3 Assumptions about the DM's preferences and risk attitude 

The existence of non-zero regret losses for each decision represents the 

risk involved in the decision process. In order to identify the best alternative, we 

need to determine the decision maker's preferences for both gains and losses. 

The preferences of a decision maker can be described by a utility function. 

However, the selection of utility functions is subjective. There is not a single 

utility function which can fit all types of decision makers. The type of the utility 

function depends on the decision maker's behavior. 

In this example, two assumptions are made about the DM's preferences and 

risk attitudes: (1) the DM prefers less 7FC, and (2) the DM is risk averse. The 

first assumption means that the utility function is a decreasing function of ZFC. 

The second assumption implies that the utility function is a decreasing function 

of the variance of 7FC. 

7.6.4 Mean-Variance analysis 

In evaluating various decisions in the probiem, the first thought is to use the 

mean of the ZFC as the decision criterion and select the decision which has the 

minimum expected 7FC. However, as shown in Figures 7.10 and 7.11, each 

mean is associated with a variance. The variance measures the variability of the 

TFC for each decision. It reflects the risk involved in the decision process. Thus, 

as indicated in Chapter IV, if the DM is not risk neutral, the criterion of 

minimizing the expected 7FC is not valid. 
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One way to evaluate the decisions involving uncertainty is to apply Mean- 

Variance analysis. Instead of comparing only the means of the decisions, we 

can compare the means and variances of the 7FC together. As shown in 

Figures 7.10 and 7.11, both the mean and variance of 7FC vary significantly with 

the number of piers. For Alternative 1, the decision of 12 piers has the minimum 

expected 7FC, while the decision of 18 piers has the minimum variance for 7FC. 

To find an optimal decision, a trade-off must be made between the mean and 

variance of the 7FC. Given the two assumptions about the decision maker's 

behavior, the Mean-Variance analysis is now applied to resolve the trade-off 

problem. . 

In order to compare the decisions for each alternative, each pair of mean 

and variance of ZFC is plotted on an E-V chart (Figures 7.12 and 7.13). The 

horizontal axis of the E-V charts represents the variance of the ZFC, while the 

vertical axis denotes the mean of the 7FC. Each point in the chart represents a 

decision, that is, selecting a specific number of piers. Thus, for each design 

alternative, there are a total of 11 points on its E-V chart, representing the 

number of piers from 8 through 18. 

At the beginning of the section, it was assumed that the DM always prefers 

less value of ZFC and is risk averse. Thus, on an E-V chart, a possible point 

(0%, Hime) is called efficient if no other possible point (07... Mme) has 

Mire S Mire, AN Orme S Orpe- 

The efficient points form the lowest left boundary of the set of possible points on 

the E-V chart. The boundary is called the efficient frontier and the set of efficient 

points is called an efficient set. The efficient frontier is drawn through the points 

representing the decisions that are not dominated by some other decisions. Any 

point above and to the right of the efficient frontier represents a decision 

dominated by one on the frontier. For any obtainable E-V combination, except in 

the efficient set, it is possible to find a feasible combination with less mean and 

no more variance, or to find one with less variance and no more mean, or both. 

Any such combination is considered inefficient. 

136



| SANeWESY 
JO} WEYO 

A-3 
‘Z}"Z 

eunBi4 

(Ob+3) 
3S0D 

JSU1y 
[B30] 

JO 
BDUeLeA 

 
 

os'e 
00'¢ 

0s'z 
00°¢ 

os'| 
00°} 

0S°0 
00'0 

L 
L 

a
e
 

| 
L 

1 
i 

{ 
L 

1 
} 

{ 
l 

i 
1 

1 
—
 

i 
F
k
 

| 
_
 

{ 

siaid 
|} 

e 
@ 

{ 
a 

@ 
[ 

siaid 
OL 

e 
2 

+. 

@ 
. 

e 
+ 

sJoidg 
gs 

@ 
t 

said 
g 

T r r r 
  

  
 
 

000'0S2'z$ 

000'00¢€'2$ 

000'ose'z$ 

000'00%'z$ 

000'0S#'2z$ 

000'00S'z$ 

000'0ss‘2$ 

SOD 3SJl4 [BJO] pojaedxy 

137



c OANBWUISHY 
JOJ YEYO 

A-3 
“E42 

eunbiy 

(0}+3) 
3SOD 

JSU14 
[BJO] 

JO 
D
U
B
E
,
 

 
 

 
 

  
  

 
 

00'y 
ose 

00'¢ 
0s'z 

00'Z 
0S'} 

00°! 
0s‘0 

00°0 

siaid ¢1 
sioid Z} 

0 
© 

@y 
s 

© 
T 

suaid 
|} 

e 
a 

L 

sf 
| 

suaid 
O} 

a: 
J@S 

JUdIOIWO 
| L 

T
 

suid 
6 

r 

. 
L Tt 

siaid g 
t 

@ 

  
  

 
 

000'0S1'2$ 

000'0S2'2$ 

000'0S¢'z$ 

000'0S¥'z$ 

o00'0ss'2$ 

JSOD ISJIJ [BJO] payoedxy 

000‘0S9'2$ 

000'0SZ'2$ 

138



The efficient set for Alternative 1 consists of decisions of selecting 12, 13, 

14, 15, 16, 17, and 18 piers. None of the decisions dominates each other. The 

decisions of 8, 9, 10, and 11 piers are found to be inefficient, since we can 

always find a member from the efficient set which dominates them. Similarly, for 

Alternative 2, its efficient set consists of 14, 15, 16, 17, and 18 piers. The 

decisions of 8 through 13 piers are found to be inefficient. To resolve the 

decision problem, the E-V dominance rules introduced in Chapter IV are applied: 

E-V Rule 1: \f Decision A has a mean of 7FC the same as or lower than that 

of Decision B, and has a lower variance of 7FC than B, then Decision A is 

preferred. 

E-V Rule 2: _ if Decision A has a variance of ZFC the same as or lower 

than that of B, and has a lower mean of 7FC than B, then Decision A is preferred. 

By applying the E-V rules, those inefficient decisions are eliminated (Table 

7.8). For Alternative 1, four decisions are dropped and seven decisions remain. 

For Alternative 2, six decisions are eliminated and five decisions remain. Thus, 

the decision problem is reduced to the evaluation of the remaining decisions. To 

compare the members in an efficient set using the E-V analysis, we need to 

develop a two-attribute utility function which quantifies the DM's preferences for 

the mean and variance of ZFC. By plotting utility indifference curves on the E-V 

charts, the point on the efficient frontier which gives highest utility provides the 

optimal decision. 

Table 7.8. List of the Decisions Eliminated and the Decisions Remaining 

  

  

Alternative Decisions Eliminated Decisions Remaining 

1 8, 9, 10, 11 12, 13, 14, 15, 16, 17, 18 

2 8,9, 10, 11, 12, 13 14, 15, 16, 17, 18 
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7.6.5 Stochastic dominance 

As discussed in Chapter V, one consideration in applying the framework for 

design evaluation in the face of uncertainty is to use utility analysis as the last 

resort. It is recommended that the use of utility functions be deferred if other 

approaches which require less strict assumptions are valid. Stochastic 

dominance is applied below to evaluate the members of the efficient set 

identified by Mean-Variance analysis. As presented in Section 4.5, the 

stochastic dominance rules are based on several progressively stronger 

assumptions about the decision maker's behavior. 

First-Order Stochastic Dominance Rule: \f the DM prefers less 7FC to 

more ZFC, and if the cumulative probability of Decision A is never greater than 

the cumulative probability of Decision B and sometimes less, then B is preferred 

to A. 

The cumulative probabilities of ZFC for the members in the efficient set of 

Alternative 1 are plotted in Figure 7.14. In this figure, the horizontal axis and 

the vertical axis are exchanged so that all decisions can be compared 

simultaneously. For each level of cumulative probability, the value of ZFC at 

which the cumulative probability is achieved is reflected by the height of the bar 

chart. Thus, if the bar height for Decision A is always lower than that for 

Decision B under the same level of the cumulative probability, the cumulative 

probability of Decision A is greater than that of Decision B. For example, the 

decision of 18 piers has a higher value of 7FC than the decision of 17 piers for 

each level of cumulative probability. Thus, the decision of 17 piers dominates 

the decision of 18 piers by first-order stochastic dominance. Inspecting Figure 

7.14, we find that the decisions of 13 and 14 piers dominate the decisions of 15, 

16, 17, and 18 piers by first-order stochastic dominance. But for 12, 13, and 14 

piers, none of them dominates each other. The conclusions are obvious in 

Table 7.4. Under any level of C,, the decisions of 15 through 18 piers always 

have higher values of ZFC than decisions of 13 piers and 14 piers. Similarly, the 

cumulative probabilities for various decisions in Alternative 2 are compared in 

Figures 7.15. The results are summarized in Table 7.9. 
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Table 7.9. List of Decisions Dominated and Decisions Remaining 

  

  

Alternative Decisions Eliminated Decisions Remaining _ 

1 15, 16, 17, 18 12, 13, 14 

2 17, 18 14, 15, 16 
  

In applying the First-Order Stochastic Dominance Rule, the only assumption 

made about the DM's behavior is that he prefers less 7FC to more 7FC. Amore 

strict rule is needed in order to compare the decisions remaining in Table 7.9. 

Thus the Second-Order Stochastic Dominance Rule presented in Section 4.5 is 

applied to this problem. 

Second-Order Stochastic Dominance Rule: If (1) the DM prefers less 

TFC to more 7FC, and (2) the DM is nsk-averse, and (3) the sum of the 

cumulative probabilities for all 7FC’s are never more with A than B and sometime 

less, then B dominates A by second-order stochastic dominance. 

Now this rule is applied to compare the remaining decisions for each 

alternative in Table 7.9 one by one. First, this rule is used to compare the 

decisions of 12 piers and 13 piers of Alternative 1. The sums of cumulative 

probabilities for both decisions are plotted in Figure 7.16. For each possible 

level of 7FC, the sum of cumulative probabilities for 12 piers is always higher 

than that for 13 piers. This indicates that the decision of 12 piers dominates the 

decision of 13 piers by second-order stochastic dominance. This conclusion is 

further confirmed by inspecting the cumulative probabilities of both decisions in 

Figure 7.16. For the cumulative probability of 7FC less than or equal to 0.75, the 

decision of 12 piers has less 7FC than the decision of 13 piers. That is, the 

probability that selecting 12 piers will result in higher 7/C than selecting 13 piers 

is no more than 0.25. Thus, if the decision maker is risk averse, he will select 12 

piers. 
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Then the decisions of 12 piers and 14 piers of Alternative 1 are compared. 

The sums of their cumulative probabilities are plotted in Figure 7.17. Since the 

sum of cumulative probabilities of 12 piers is higher for each level of ZFC, the 

decision of 12 piers also dominates the decision of 14 piers by second-order 

stochastic dominance. Thus, the optimal decision for Alternative 1 is 12 piers. 

Similarly, for Alternative 2, the decision of 14 piers is found to dominate the 

decisions of 15 piers and 16 piers by second-order dominance (see Figures 7.18 

and 7.19). Thus, the optimal decision for Alternative 2 is 14 piers. 

7.6.6 Comparison of Alternative 1 and Alternative 2 

In the previous section, the optimal decision for each alternative has been 

identified. According to the decision tree in Figure 7.9, the next step is to 

compare the optimal decision from each alternative and select the better one. 

The probability distributions of ZC for the optimal decision from each alternative 

are given in Table 7.10. Both the Mean-Variance rules and the Stochastic 

Dominance rules are now used below to make a comparison. 

Mean-Variance analysis. The means and variances for both alternatives 

are plotted in Figure 7.20. Alternative 1 is inefficient since it has both a higher 

mean and a greater variance than Alternative 2. According to the E-V rules, 

Alternative 2 is preferable. 

Stochastic dominance. To further assure that Alternative 2 is preferred, 

we compare the optimal decisions for each alternative by employing the First- 

Order Stochastic Dominance rule. The cumulative probabilities of ZFC for both 

alternatives are plotted in Figure 7.21. For each level of ZFC, the cumulative 

probability of Alternative 2 is no more than that of Alternative 1. Thus, 

Alternative 2 dominates Alternative 1 by first-order stochastic dominance. This 

conclusion is obvious in Figure 7.22, where Alternative 2 always has less 7FC 

for any level of C,. Thus, the regret loss for selecting Alternative 2 is always 

zero. 
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7.6.7 Characteristics of the optimal decision 

The best decision for the bridge design problem involving uncertainty is 

Alternative 2 with 14 piers. The probability distribution of its ZFC is given in 

Figure 7.23. The mean and variance of the ZFC are $2,224,231 and 1.11x1010, 

respectively. Since the decision problem has been resolved by second-order 

stochastic dominance, there is no need to assess the DM's utility function 

quantitatively. 

Though the best decision is the same as that identified in the case of 

evaluation under certainty, this coincidence is an exception rather than a general 

conclusion. For this problem, the coincidence in the solutions is mainly due to 

the type of probability distribution specified for the erected cost of the 

superstructure (C,). In the certainty case, C, is a constant and equal to $0.65 

per pound. In the uncertainty case, C, is a random variable. As given in Figure 

7.4, the probability that C, is equal to 0.65 is 0.45. Compared to other settings of 

C,, this particular setting has a very large probability. As a result, it has a large 

effect on the final solution. 

It must be noted that the nature of the decision problem in the face of 

uncertainty is different from that under certainty. Under the certainty case, the 

evaluation attribute is a constant. Thus, the best decision identified dominates 

other decisions deterministically. However, under the uncertainty case, the 

evaluation attribute is a random variable. The best decision was identified 

based on some assumptions about the decision maker's preferences and risk 

attitudes. Depending upon the actual setting of C,, this best decision may not 

always dominate other decisions. 
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Vill. MULTIATTRIBUTE DESIGN EVALUATION 

IN THE FACE OF UNCERTAINTY 

  

8.1 Introduction 

8.2 Descriptive Procedures for Choices with Multiple Attributes 

8.3 The Need for a Systematic Approach to Deal with Multiple Attributes 

8.4 Multiattribute Utility Theory (MAUT) 

8.5 A Structured Approach for Multiattribute Design Evaluation 

in the Face of Uncertainty 

  

8.1 Introduction 

The problem of design evaluation in the face of uncertainty was analyzed 

and modeled in Chapters V and VI by considering only one evaluation attribute. 

If a single evaluation attribute is not adequate to describe the outcome of a 

decision, a multiple attribute problem exists. The set of attributes might include 

reliability, maintainability, manufacturing cost, life-cycle cost, weight, speed, 

capacity, etc. Because multiple attributes are involved, the outcomes for the 

design decisions are multidimensional. Thus, this type of decision problem 

becomes a problem of multiattribute design evaluation under uncertainty. 

Finding an optimal decision for a multiattribute design evaluation problem in 

the face of uncertainty is very difficult. Two major factors contributing to this 

difficulty are (1) the large uncertainties about what the impact of any alternative 

will eventually be and the difficulty in separating this from one's preferences 

concerning "possible" consequences, and (2) the multidimentional outcomes of 

the problem and the necessity to make value trade-offs among various levels of 

different attributes. 
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In Chapter Vi, an integrated approach was developed to deal with 

uncertainty in design evaluation involving a single attribute. In this chapter, the 

approach is extended to resolve design decision problems involving both 

uncertainties and multiple attributes. 

8.2 Descriptive Procedures for Choices with Multiple Attributes 

Holloway (1979) summarized four descriptive procedures for dealing with 

multiattribute decision problems. These procedures are simple and 

straightforward. They are: 

Dominance: Alternatives are compared attribute by attribute. If Alternative 

A is at least preferred as Alternative B on all attributes and strictly preferred on 

at least one attribute, A dominates B. 

Satisficing: Satisfactory levels are set for each separate attribute. Any 

alternative that meets the satisficing levels for every attribute is kept. Others are 

discarded. 

Lexicographic procedure: Attributes are ranked in order of importance. 

Then alternatives are compared one attribute at a time, starting with the highest- 

ranked attribute. Lower-ranked attributes are used until they are exhausted or 

until a unique choice is made. 

Combination procedure: The dominance, satisficing, and lexicographic 

procedures are used in combination. First, dominance is used to eliminate any 

dominated alternatives. Next, satisficing is used to eliminate alternatives that 

are not adequate on one or more of the attributes. Those alternatives that 

survive both the dominance and satisficing procedures are subjected to the 

lexicographic procedure. 

The dominance procedure works only in special cases. The satisficing 

procedure and the lexicographic procedure rely on strong assumptions 
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concerning the independence of the attributes. This is required because the 

attributes are treated separately. Holloway (1979) suggested that these 

procedures be used in combination. However, if decisions are complicated by 

both multiple attributes and uncertainty, the descriptive procedures are difficult 

to use, if possible, since the levels of the attributes are not known with certainty. 

8.3 The Need for a Systematic Approach to Deal with Multiple Attributes 

Multiattribute design evaluation in the face of uncertainty is complicated 

because uncertainties and multidimensional outcomes must be considered 

together. As indicated in Section 8.1, there is a fundamental difficulty involved in 

considering multidimensional outcomes. Evaluation and optimization of 

alternatives can be accomplished only with respect to a single attribute; since all 

members of the set of attributes, by definition, significantly influence the 

decision, no criterion for any single attribute can rationally be used as the only 

basis for the decision. 

During the early stages of system design, it is important to identify the most 

desirable combination of various attribute levels. Design analysis and 

evaluation must be based on a rigorously determined multiattribute objective 

function. The function must be defined to accurately reflect the DM's 

preferences and willingness to make trade-offs over multiple attributes. To be 

consistent, the multidimensional outcome must be transformed into a single 

figure of merit. A scale which measures relative contribution to success of the 

candidate design must be identified, and a means for measuring the 

multidimensional outcome on this scale must be formulated so that evaluation 

and optimization of alternatives can be accomplished. As identified in Chapter 

IV, the scale should be utility. Thus, the goal should not simply be to optimize 

any single attribute, such as performance variations claimed in Taguchi's 

philosophy. Instead, the goal should be to maximize the DM's utility. 

The transformation of the multidimensional outcome into utility is not always 

accomplished explicitly. It may be done subjectively, intuitively and implicitly — 

but it must be done (Lindley, 1984; Lifson, 1972). The identification of the 

criteria on which the decision is really based and recognition of the relationships 
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between such criteria and human values constitute the value problem present in 

all decision situations. In the next section, multiattribute utility theory is 

introduced to show how such a transformation can be accomplished. 

8.4 Multiattribute Utility Theory (MAUT) 

Suppose we have two attributes E, and E,. The consequence space is 

E=E,x£,. A specific consequence is designated by e or (e,,e,). We are 

interested in assessing a utility function over FE, denoted by u(e) or u(e,,e,). The 

preference structure and all of the trade-offs between attributes are specified 

once wu is known. 

In order to determine how the worth of a design as a function of the multiple 

attributes is calculated, the conditions under which various forms of the utility 

function, u(e), are appropriate should be determined. The utility function defined 

should accurately reflect the DM's preferences for each attribute and his risk 

attitude for various levels of the individual attribute. Three independence 

conditions which help in minimizing the level of effort required to determine such 

a utility function are described below. 

8.4.1 Three independence conditions 

Preferential Independence (Pl) (Keeney and Raiffa, 1976): Attribute E, is 

preferentially independent of its complement £, if the preference order of 

consequences involving only changes in the levels in E, does not depend on the 

levels at which attributes in E, are held fixed. 

Preferential independence implies that the conditional indifference curves 

over E, do not depend on attributes in E,. The concept concerns the DM's 

preferences for consequences where no uncertainty is involved. Symbolically, 
Ww oat E, is Pl if and only if for any consequences e’, e” 2", 

(c/,2") > (ea) => (€f,2,) > (ena) for allz,. 
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In design evaluation involving multiple attributes, P! means that the DM 

always prefers more of an attribute to less (or less to more, depending upon the 

attribute) regardless of the level of other attributes. It should be noted that P| 

does not refer to independence between different attributes, but rather to the 

worth a designer places on individual attribute levels. For example, the life-cycle 

cost of a system is related to the reliability of the system. But the relative worth 

to the designer over the range of acceptable levels of the life-cycle cost alone is 

independent of the level of reliability. 

Utility Independence (UI) (Keeney and Raiffa, 1976): Attribute £, is utility 

independent of its complement E, if the conditional preference order for /otteries 

involving only changes in the levels of attributes in E, does not depend on the 

levels at which the attributes in E, are held fixed. 

Utility independence concerns preferences for lotteries that involve 

uncertainty. For any lotteries é’,é”, and consequence @,, E, is Ul if and only if 

(&,a*) > (aa) => (&,a) > (&"4) for alla. 

Ul means that the general shape or degree of nonlinearity of the value 

function is not altered by changes in levels of the other attributes. By definition, 

it follows that if Z, is Ul, then Z, is Pl. But the converse is not necessarily true. 

The preferential independence can be stated in terms of the preference order for 

degenerate lotteries, those involving no uncertainty. Thus, UI is the stronger 

condition. 

Additive independence (Keeney and Raiffa, 1976; Fishburn, 1988): 

Attributes are additive independent if preferences over /otteries depend only on 

their marginal probability distributions and not on their joint probability 

distribution. 

In two dimensions, an equivalent condition for two attributes, E, and E,, to 

be additive independent is that lotteries 
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0.5 0.5 

0.5 
0.5 (e', 82) (e,, ,e,) 

must be equally preferable for all (e,,e,) given an arbitrarily chosen e; and e;. 

Note that in each of these two lotteries, there is a one-half probability of getting 

either e, or ef and a one-half probability of getting either e, or e}. The only 

difference is how the levels of Z, and E, are combined. 

Additive independence is a stronger condition than utility independence. If 

two attributes are additively independent, they must be mutually utility 

independent. But the converse is not true. Mutual utility independence does not 

imply that the attributes are additively independent. 

8.4.2 Utility models 

lf Pl and UI are satisfied, a general multiattribute utility function, 

u(€,,€,,°°°,€,), can be simplified and expressed as a function of single-attribute 

utility functions. The function can take either a multiplicative or an additive form. 

Multiplicative utility model. Let E=E,xE,x--E,. If any attribute £, is 

preferentially independent and utility independent of its complement £,, the 

utility u(e,,e,,---,e, ) can be represented as 

Menereea)= | [1k (e+1)-1} (8.1) 
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where k, = scaling constant for attribute e, 

u,(e,) = utility function for attribute e, 

K = a scaling constant for normalizing utility function u(e,,e,,---,e, ). 

K can be obtained by solving 

14K=] [(1+Kk,). 
t=] 

Additive utility model. _l|f the more restrictive additive independence 

condition is satisfied, the utility u(e,,e,,---,e,) can be represented as 

u(6,.€39°°"s0,) = kay) (8.2) 

where yk, =]. 
i=l 

8.4.3 Assessing multiattribute utility functions 

According to Keeney (1977), the assessment of multiattribute utility 

functions usually follows seven steps: 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Verification of Preferential Independence 

Verification of Utility Independence 

Ordering of the scaling constants 

Assessing the scaling constants 

Selecting an additive or multiplicative utility function 

Assessing single-attribute utility functions 

8.5 A Structured Approach for Multiattribute Design Evaluation in the Face 

of Uncertainty 

Based upon multiattribute utility theory, a structured approach can be 

presented to quantify uncertainties and value trade-offs in design evaluation. 
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This approach mathematically models the functional relationships between 

design decisions and the overall worth of a candidate design. It focuses on 

assessing and modeling uncertainties, not only on developing a value model to 

study multiple attributes. The approach is useful in the early stages of the 

design process. It can be used to (1) determine an objective function to be used 

in place of the arbitrary “loss function", and (2) determine the best combination 

of attribute levels available in the set of feasible design alternatives. 

The approach centers around the development of a multiattribute utility 

function which represents the DM's preferences for the attributes and his risk 

attitude for the levels of each attribute. With such a utility function, the 

evaluation framework presented in Chapter V can be extended to multiattribute 

design evaluation under uncertainty. The decision criterion is the maximization 

of expected utility. 

For a discrete outcome space, the procedures for multiattribute design 

evaluation are illustrated in Figure 8.1. After a design analysis is conducted to 

assess all possible outcomes and their probability distributions, an outcome 

dominance examination is made. Decisions or alternatives are compared 

attribute by attribute. The dominated decisions are eliminated. If there is only 

one decision remaining, the decision is optimal and is recommended. If there is 

more than one decision remaining after the outcome dominance test, a 

multiattribute utility function is defined and the utility for each possible outcome 

of each decision is estimated. The decision which has the highest expected 

utility is the optimal decision. If the decisions are continuous, a procedure 

similar to that given in Figure 6.5 should be used. However, instead of using a 

single-attribute utility function as the objective function, a multiattribute utility 

function needs to be employed. 

In applying the approach to resolving problems of multiattribute design 

evaluation, because of uncertainties, expectation of the utilities should be taken. 

Once a multiattribute utility function u(e) or u(e,,e,,---,e,) is determined, the 

expected utility E(u“) can be obtained as follows: 

If the utility function is additive, 

UC, ,€,°°°,€,) = > 4, (e, ); 
1 
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Figure 8.1. A structured approach for multiattribute design evaluation 

in the face of uncertainty 
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the expected utility is equal to 

E[u(e,,€),---,&,)] = > kElu,(e, )}. (8.3) 
i=] 

lf the utility function takes the multiplicative form, 

U(E,,€2,°°*,8,) = =| [1 akan 1) ~ | 
i=] 

the expected utility becomes 

E[ule,,€2,°--,,)] = ZT «eet (e,)]+1)- i} (8.4) 
=i 

In Equations (8.3) and (8.4), E[u,(e,)] represents the expected value of the 

single attribute utility function for Attribute e,. If the Attribute e. is a discrete 

variable, then 

Ely, (é, )) = x u;(€, )P,- (8.5) 
j=l 

lf Attribute e, is a continuous variable having probability distribution function 

F{e;), then 

Efu,(e,)] = [4 (ef (e,)ae, (8.6) 
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IX. REPAIRABLE EQUIPMENT POPULATION 

SYSTEM DESIGN 

  

9.1 Introduction 

9.2 Problem Description 

9.3 Determination of Design Evaluation Functions 

9.4 Decision Tree 

9.5 Experimentation 

9.6 Preliminary Findings 

9.7 Assessment of Utility Function 

9.8 Design Evaluation Using the Maximum Expected Utility Criterion 

  

9.1 Introduction 

In this chapter, an example is given to illustrate the framework presented in 

Chapter Vil for multiattribute design evaluation in the face of uncertainty. This 

example is a modified version of the Repairable Equipment Population System 

(REPS) model, which is found in Chapter 13 of Fabrycky and Blanchard's Life- 

Cycle Cost and Economic Analysis (1991). 

9.2 Problem Description 

A finite population of repairable equipment is to be procured and maintained 

in operation to meet a demand. As repairable equipment units fail, they will be 

repaired and returned to service. As they age, the older units will be removed 

from the system and replaced with new units. The system design problem is to 

determine the population size, the replacement age of units, and the number of 

repair channels so that design requirements will be met at a minimum life-cycle 

cost. This repairable equipment population system is illustrated in Figure 9.1. 
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Figure 9.1. Repairable equipment population system 

(Fabrycky and Blanchard, 1991) 
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The REPS model may be used to represent the operation of numerous 

systems. For example, both the airlines and the military operate and maintain 

aircraft with these system characteristics. In ground transit, vehicles such as 

rental automobiles, taxis, and commercial trucks constitute repairable equipment 

populations. Production equipment such as weaving looms, drill presses, and 

autoclaves are populations of equipment which fit the repairable classification. 

The repairable unit may also be an inventory of components for the larger 

entities mentioned. For example, aircraft hydraulic pumps, automobile starters 

and alternators, truck engines, and electric motors also constitute repairable 

equipment population systems. 

9.3 Determination of Design Evaluation Functions 

9.3.1 Design variables, parameters, and attributes 

Various factors which influence decision making for the design of the REPS 

are identified in Table 9.1. They are categorized into four groups: system design 

variables, design-independent parameters, design-dependent parameters, and 

evaluation attributes. There are three system design variables. These 

controllable variables are the number of units to deploy or population size, the 

number of repair channels, and the replacement age of units. Design- 

independent parameters are those parameters not subject to the decision 

maker's control. They include the interest rate, shortage penalty cost, the cost of 

providing repair facilities, and demand. Design-dependent parameters include 

MTBF, MTTR, design life, unit acquisition cost and operating cost, and the 

estimated salvage value of a unit. 

Two attributes are identified to measure the effectiveness of the REPS. One 

is the system's annual equivalent life-cycle cost. This attribute measures the 

cost-effectiveness of the REPS. Another attribute is the probability of no units 

short. This measure reflects the availability of the overall system in meeting the 

demand. It measures the performance effectiveness of the REPS. For a 

commercial system, a shortage of units results in loss of revenue and goodwill. 

For military systems, a shortage of units may be critical or even catastrophic. 
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Table 9.1. List of Design Variables, Parameters, and Attributes 

  

  

Category Notations Measures 

System design variables: 

population size N units 

number of repair channels M channels 

replacement age n years 

Design-independent parameters: 

interest rate ir % 

shortage penalty cost C, $ / unit short / year 

cost of repair channels C, dollars per channel 

demand D units 

Design-dependent parameters: 

mean time between failures MTBF years 

mean time to repair MITTR years 

design life L years 

first or acquisition cost P dollars 

unit operating cost Cy dollars per unit per year 

salvage value F dollars per unit 

Attributes: 

annual equivalent life-cycle cost 

probability of no units short 

AELCC 

PNUS 

dollars 
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9.3.2 Functional relationships 

In Fabrycky and Blanchard's example, the following assumptions were 

adopted in the development of the mathematical model for the REPS: 

1) The interarrival times are exponentially distributed. 

2) The repair times are exponentially distributed. 

3) The interarrival times are statistically independent of the repair times. 

4) The number of units in the population is small such that finite population 

queueing models must be used. 

5) The repair channels are parallel and each is capable of identical 

performance. 

6) The population size is always larger than or at least equal to the number of 

repair channels. 

7) Each repair channel performs service on one unit at a time. 

8) MTBF and MTTR values vary for each age group and represent the 

expected value of these variables for that age group. 

9) Repaired units return to operation with the same operational characteristics 

as their age group. 

10) Only steady-state modes of operation are considered in the formulation of 

the REPS model. 

Given these assumptions, design evaluation functions are developed below 

for each of the two attributes: (1) the annual equivalent life-cycle cost, and (2) 

the probability of no units short. 

Annual equivalent life-cycle cost 

The annual equivalent life-cycle cost for REPS, AELCC, is composed of four 

types of costs and can be expressed as 

AELCC = PC + OC + RC + SC (9.1) 

where PC = annual equivalent population cost (dollars) 
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OC = annual operating cost (dollars) 

RC = annual repair facility cost (dollars) 

SC = annual shortage penalty cost (dollars) 

Annual equivalent population cost (PC): 

The annual equivalent population cost of a deployed population of N units is 

PC=C,N 

where C, =(P-B)(6?"")+Bxir 

P = acquisition cost of a unit 

P-F 
  B=P-n 

F = estimated salvage value of a unit 

L = design life 

n = replacement age 

ir = annual interest rate 

Annual operating cost (OC): 

The annual cost of operating N units is given by 

OC=C,N 

where C, = annual cost of energy, labor, and preventive maintenance, 

and other operating costs 

Annual repair facility cost (RC): 

The annual cost of providing a repair facility to repair failed units is: 

RC=C.M 
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where C, = annual fixed and variable repair cost per repair channel 

M= number of repair channels 

Annual shortage penalty cost (SC): 

The annual shortage penalty cost is the product of the shortage cost per unit 

short per year and the expected number of units short. It can be expressed as 

SC =C,E(S) 

where C, = shortage cost per unit short per year 

E(S) = expected number of units short 

In a finite population repairable equipment system, if the number of units in 

operation is less than the demand due to random failures, a shortage is incurred. 

The expected number of units short, Z(S), can be found by using finite population 

queueing theory. The results are summarized below: 

For a population of N units and M repair channels, the probability that & 

units fail is 

P,=a,f 

where 

ea) 
P(N -blk a 

ifk =0, 1, 2, ..., M, 

if k = M+1, M+2, ..., N, 

  

7 N! ay 
* (N-k)yIMIME™ | on 
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where A = failure rate of a unit, 1/M/7TBF 

yt = repair rate of a unit, 1/M77R 

For a population size of N and a demand of D, if the number of failed units 

is greater than (N-D), a shortage of units is incurred. The expected number of 

units short is then given by 

D 

E(S)= J x Fw-pep. 
j=i 

Probability of no units short 

For a repairable equipment population system with a population size of NV 

and a demand of D, the probability of no units short is equal to 

N-D 

PNUS = > P, (9.2) 
&=0 

9.4 Decision Tree 

Design evaluation functions are determined above to represent two 

attributes, AELCC and PNUS, as functions of various design variables, design- 

dependent parameters, and design-independent parameters. The next step in 

design evaluation is to develop a decision tree which models the REPS decision 

problem as a sequential decision process. 

In developing a sequential decision model, several simplifications are made 

to the original REPS model of Fabrycky and Blanchard (1991) in order to reduce 

the amount of calculation. First, only two of the three system design variables 

are selected as the decision variables: the population size N and the number of 

repair channels M. The replacement age of each unit is held fixed at its design 

life, that is, 7 = Z. Thus, m becomes a design-dependent parameter. For each 

alternative, the M7BF and the M7TR represent the expected values of units 

within their design life. 
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Second, two of the design-independent parameters are considered as 

random variables. They are the annual interest rate and the shortage penalty 

cost. A discrete probability distribution will be specified for each of the variables. 

The values of other design-independent parameters are assumed to be constant 

and known. 
Given these two assumptions, the REPS decision problem can be 

represented by a decision-tree diagram in Figure 9.2. At the left side decision 

node, an alternative is selected. For each alternative, a population size is 

selected at the next decision node in the middle. Then the number of repair 

channels is determined at the right side decision nodes. Two types of chance 

nodes in the figure represent various settings of two design-independent 

parameters, the interest rate and the shortage penalty cost. 

This decision tree in Figure 9.2 can be decomposed into the diagram given 

in Figure 9.3. The decomposed decision tree combines the two types of chance 

nodes for the interest rate and the shortage penalty cost. Thus, each 

combination of the settings of the interest rate and the shortage penalty cost 

represents a state of nature for the problem. In Figure 9.3, the decision nodes 

for the population size and the decision nodes for the number of repair channels 

are also combined. Thus, for each alternative, each decision in the diagram 

represents a possible combination of the settings of two decision variables, N 

and M. 

The evaluation process begins with the right side of the tree in Figure 9.3 

and works backwards. The outcomes of each decision are estimated by 

calculating the values of two attributes for various possible states of nature. 

Then the utility for each decision is assessed. The decision which has the 

highest expected utility is identified for each alternative. Finally, the optimal 

decision for the problem is obtained by comparing the expected utility of the best 

decision for each alternative. 

9.5 Experimentation 

A computer model is developed to facilitate the computation of AELCC and 

PNUS. The flowchart of the model is illustrated in Figure 9.4. The model is 

programmed using C language (see Appendix A.2 for the program listing). 

173



WeIqoid 
S
q
a
y
 

eu) 
Jo 

U
O
N
B
U
e
S
e
J
d
e
l
 
SeN-UISIDEp 

Y 
‘ZG 

einBi4 

“N 
D
e
 

ee 
Z 
eAJOWOEYY 

—
 

 
 

 
 
 
 

  
 
 

   
 

 
 

 
 

  
  

  
 
 

 
 

   
 

 
 

  
  

 
 

 
 

 
 

  
  

 
 

 
 

 
 

  
  

 
 

e
e
e
  
 

 
 

 
 
 
 

  
  

  
  

 
 

 
 

| 
eAyOWELY 

 
 

 
 
 
 

XY 

  
  

 
 

174



° 
  

    
    

  

  

      

  

    

      

Attemative 1 NM), ~~ (r, spo), 
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Altemative z < : 

Figure 9.3. A simplified decision-tree representation of the REPS problem 
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START 

/ Read inputs frorn disk / 

/ Print inputs for verification / 

COUNT_N = O 

  

  

  

      
  

  

  

      

  

COUNT_N 

< size of N    

  

  

  

      
  

    

  

  

  
      

  

COUNT_M increase COUNT_N by 1] < size of M   

  

  

  

  

Calculate E(S) and PNUS 
  

  

  

  
        

Figure 9.4. Flowcharts for the REPS model 
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The experiments are conducted by using the input values from the examples 

given by Blanchard and Fabrycky (1990). Two candidate systems are identified 

in Table 9.2. The design life and salvage values are adjusted for the simplified 

model formulation. The demand is assumed to be 15 units. The repair channel 

cost is $45,000 per channel per year. The probability distributions of the interest 

rate and the shortage penalty cost are given in Tables 9.3a and 9.3b, 

respectively. 

Table 9.2. Design-Dependent Parameters for Candidate Systems 

  

  

Parameter Candidate System 1 Candidate System 2 

Unit acquisition cost, P $52,000 $43,000 

Unit design life, Z 4 years 4 years 

Unit salvage value, F $22,000 $17,667 

Unit operating cost, Cp $1,750 $2,300 

MTBF 0.2550 0.2225 

MTTR 0.0425 0.0450 
  

Table 9.3a. Probability Distribution of Annual Interest Rate 

  

Interest rate, ir 9% 10% 11% 

Probability 0.30 0.40 0.30 
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Table 9.3b. Probability Distribution of Shortage Penalty Cost 

  

Shortage penalty cost, C, (S/unit short/year) 68,000 73,000 78,000 

Probability 0.25 0.50 0.25 

  

The possible states of nature are determined by the combinations of the 

interest rate and the shortage penalty cost. There are a total of 9 (3x3) 

combinations, representing nine states of nature for the REPS problem. Since 

the interest rate and the shortage penalty cost are independent, the probability 

that a state occurs is equal to the product of the probabilities of the 

corresponding interest rate level and the shortage penalty cost level. The 

probabilities for the states of nature are plotted in Figure 9.5. 

Experiments are conducted by letting NV = 18, 19, 20, 21, 22 and M = 2, 3, 4, 

5. For each alternative, there are 20 decisions (5x4). The results for each 

alternative are listed in Table 9.4 and Table 9.5, respectively. 

9.6 Preliminary Findings 

9.6.1 Probability of no units short 

Tables 9.6a and 9.6b summarize the probabilities of no units short for 

Alternative 1 and Alternative 2 respectively. The value of PYUS depends upon 

both the settings of N and 4. Based upon the experimentation results, the 

following conclusions can be drawn: 

e For a constant population size, the PNUS increases with the number of 

repair channels. 

e For a constant number of repair channels, the PNUS increases with 

population size. 

e The decision of 22 units and 5 repair channels has the highest PNUS for 

both alternatives. 
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Table 9.6a. Probability of No Units Short (Alternative 1) 

  

  

  

N M 

2 3 4 5 

18 0.1872 0.5459 0.7007 0.7396 

19 0.2046 0.6222 0.8012 0.8594 

20 0.2151 0.6744 0.8617 0.9202 

21 0.2211 0.7107 0.8995 0.9525 

22 0.2244 0.7362 0.9241 0.9705 
  

Table 9.6b. Probability of No Units Short (Alternative 2) 

  

  

  

N M 

2 3 4 ° 

18 0.0688 0.3566 0.5563 0.6200 

19 0.0734 0.4113 0.6607 0.7601 

20 0.0757 0.4484 0.7296 0.8411 

21 0.0769 0.4734 0.7764 0.8900 

22 0.0774 0.4899 0.8088 0.9205 
  

As indicated in the experimentation, for a specified combination of N and M, 

the probability of no units short, PVUS, does not depend on the interest rate and 

the shortage penalty cost. If the population size and the number of repair 

channels are determined, the probability of no units short becomes a certainty. 

Thus, in comparing several decisions, if the values of AELCC are the same, the 

decisions which provides the highest PNUS is preferred. Based upon the three 

conclusions above, those inefficient decisions can be eliminated by comparing 

the AELCC's for the decisions. 
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9.6.2 Annual equivalent life-cycle cost 

As indicated in Section 9.3.2, the AEZCC is a function of N, M, ir, and C,. 

For a specified combination of N and M, the value of the AELCC depends upon 

the settings of the interest rate and the shortage penalty cost. Since it is not 

clear which state of nature will occur, uncertainties will result for the value of 

AELCC. To compare the various decisions for each alternative, we apply an 

outcome dominance test first. 

For each decision, since the PNUS is constant and known, outcome 

dominance can be carried out by applying the following rule: 

lf Decision A's PNUS is equal to or higher than that of Decision B 

and A's AELCC is less than that of B under each state of nature, 

then A is preferred. 

By applying the outcome dominance test, a number of decisions are 

eliminated for each alternative (Table 9.7). The expected AELCC and the PNUS 

for the remaining decisions of each alternative are shown in Figures 9.6 and 9.7. 

In order to identify the best decision for each alternative, a multiattribute utility 

analysis is required. 

Table 9.7. List of Decisions Dominated and Decisions Remaining 

  

  

Alternative Decision Dominated Decision Remaining 

1 1,2, 3, 4, 5, 8, 9, 12, 13, 14, 17, 18 6, 7, 10, 11, 15, 16, 19, 20 

2 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 14, 17, 18 7, 11, 12, 15, 16, 19, 20 
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9.7 Assessment of Utility Function 

The REPS decision problem is complicated because of two factors. One is 

the multiple objective aspect of the problem and the necessity to make value 

trade-offs among various levels of different attributes. The other factor is the 

uncertainties about what the impact of any alternative will eventually be and the 

difficulty in separating this from one’s preferences concerning "possible" 

consequences. As indicated by Keeney (1977), no decision procedure can 

circumvent the fact that preferences are a critical aspect in such problems and 

further, that preferences are inherently subjective. A multiattribute utility function 

is needed in order to identify the best decision for each alternative. A utility 

function of this type is assessed below. 

9.7.1 Determination of the best value and the worst value for each attribute 

From Tables 9.3 and 9.4, the maximum and minimum values of AELCC and 

PNUS each alternative will possibly take are identified and listed in Table 9.8a. If 

everything else is the same, the DM will always prefer a lower value of AELCC 

and a higher value of PNUS. According to the these extreme values for each 

attribute, a best value and a worst value are determined for each attribute for the 

assessment of utility functions (Table 9.8b). The levels in the table are adjusted 

slightly to facilitate the assessment. Then a survey was conducted to assess the 

DM's preferences and risk attitudes. 

Table 9.8a. The Maximum and Minimum Values of AELCC and PNUS 

  

    

  

AELCC PNUS 

Alternative 

Maximum Minimum Maximum Minimum 

1 $661,041 $450,262 0.9705 0.1872 

2 $769,209 $458,188 0.9205 0.0688 
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Table 9.8b. Best Level and Worst Level of AELCC and PNUS 

  

  

Attribute Best Level Worst Level 

AELCC (1000 dollars) 400 800 

PNUS 1.00 0.05 

  

9.7.2 Verification of preferential independence 

In order to identify the form of the utility function for the REPS problem, 

preferential independence assumptions need to be examined. The PI 

assumption is verified through the survey below, where DA is the decision 

analyst and DM denotes the decision maker. 

DA: _ If everything else is the same, do you always prefer less AELCC to more 

AELCC? 

DM: Yes. 

DA: This means that you have a decreasing utility function for AELCC. 

Similarly, if everything else is the same, do you always prefer higher level 

of PNUS to lower level of PNUS? 

DM: Yes. 

DA: This means that your utility function for PNUS is increasing. Now we 

consider two attributes at once. Given the following consequences 

(AELCC = $500,000, PNUS = 0.7) and (AELCC = $550,000, PNUS = 0.7), 

which consequence do you prefer? 

DM: The first one. 

DA: O.K. If we change PNUS from 0.7 to 0.8, that is, we have these two 

consequences, 
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(AELCC = $500,000, PNUS = 0.8) and (AELCC = $550,000, PNUS = 0.8), 

do you still prefer the first one? 

DM: Yes. 

DA: This indicates that if the setting of PNUS is the same, you always prefer 

lower level of AELCC regardless what value PNUS is held fixed at, is that 

true? 

DM: Yes. 

DA: This implies that AELCC is preferentially independent of PNUS. 

9.7.3 Verification of utility independence 

The utility independence condition is examined below: 

DA: Suppose we have two lotteries for AELCC, 

0.5 
$460,000 

L 1 

0.5 
$600,000 

0.5 
$460,000 

Lo 

0.5 
$650,000 

For both lotteries, PNUS is held fixed at the same level. Which lottery do 

you prefer? 
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DM: The first one. 

DA: O.K. Do you always prefer the first lottery if the PNUS is held fixed at 

another level’? 

DM: Yes. 

DA: This implies that AELCC is utility independent of PNUS. 

According the MAUT theory introduced in Section 7.4, the preferential 

independence and utility independence assumptions imply that the DM's utility 

function must be either additive or multiplicative. That is, the utility function will 

take either of the forms: 

u( AELCC , PNUS) = k,u,(AELCC ) + k,u,(PNUS), or 

u( AELCC,, PNUS) = k,u,(AELCC ) + k,u, (PNUS) +(k, + ky —1)u,(AELCC )u,(PNUS) 

where k, = scaling constant for AELCC 

k,= scaling constant for PVUS 

u (AELCC) = utility function of AELCC 

u,(PNUS) = utility function of PNUS 

9.7.4 Assessing the scaling constants 

The scaling constants measure the relative importance of attributes as they 

progress from their worst to best states. The constants are assessed through a 

survey below: 

DA: Assuming that AELCC and PNUS are at their worst levels in Table 9.8b. 

If you have a choice to push one attribute at a time from its worst level to 

its best level, which attribute will you push first? 

DM: I'll push PNUS first. 

DA: This implies that 4, > &,. Now we compare a lottery to a certain 

consequence in order to assess the scaling constants. 
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Then a series questions were asked to assess the scaling constants 

(Figures 9.8 and 9.9). For the AELCC, the probability at which the DM is 

indifferent between the lottery and the sure thing is around 0.45. Thus, k, = 

0.45. For the PNUS, the probability p at which the DM is indifferent between the 

lottery and the sure thing is close to 0.55. This implies that &, = 0.55. 
Since k, + k, = 1.0, the utility function is additive. The additive 

independence assumption was further confirmed by asking the DM to compare 

two lotteries: 

0.5 
(LCC = $400,000, PNUS = 1.00) 

L, 

0.5 
(LCC = $800,000, PNUS = 0.05) 

0.5 

(LCC = $400,000, PNUS = 0.05) 

L, 

0.5 
(LCC = $800,000, PNUS = 1.00) 

Since the DM is indifferent to these two lotteries, the utility function must take the 

form 

u( AELCC , PNUS) = k,u,(AELCC) + kt, (PNUS). 
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Alternative A    
  

  
Figure 9.8. Assessment of scaling constant k, 
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Best system: 

(AELCC = $400,00, 

Worst system: 

(AELCC = $800,00, 

Certainty equivalent: 

(AELCC = $400,00, 

70% 

60% 

50% 

30% 

20% 

10% 

0% 

1.00) 

0.05) 

0.05)



    
Alternative A    
  

  
Figure 9.9. Assessment of scaling constant £> 
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Best system: 

(AELCC = $400,00, 

Worst system: 

(AELCC = $800,00, 

Certainty equivalent: 

(AELCC = $800,00, 

40% 

30% 

20% 

10% 

0% 

1.00) 

0.05) 

1.00)



9.7.5 Assessing single-attribute utility functions 

The last step is to assess the utility function for AEZCC and the utility 

function for PNUS. The 50-50 lottery approach introduced in Section 5.4.4 is 

used for this assessment. The certainty equivalent for the AELCC is found to be 

$675,000 (Figure 9.10). The certainty equivalent for the PNUS is found to be 

0.45 (Figure 9.11). 

Exponential functions are fit to the data. u,(AELCC) and u,PNUS) are 

plotted in Figure 9.12 and Figure 9.13, respectively. 

9.7.6 Summary of assessments 

The results of utility function assessment are summarized in Table 9.9. The 

overall utility function is 

u(AELCC, PNUS) = 0.45 [1.2342 - 0.0444 exp(0.0042 AELCC)] 
+ 0.55 [2.1100 - 2.1826 exp(-0.6761 PNUS)}. (9.3) 

Table 9.9. Utility Function and Scaling Constant for AELCC and PNUS 

  

  

Attribute Utility Function Scaling Constant 

AELCC 1.2342 - 0.0444 exp(0.0042 AELCC) 0.45 

PNUS 2.1100 - 2.1826 exp(-0.6761 PNUS) 0.55 
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0.5 Best system: 

AELCC = $400,000 

     

  

Alternative A 

Worst system: 

AELCC = $800,000 

Alternative B     
  Certainty equivalent 

$800,000 

$750,000 

$700,000 

$650,000 

$600,000 
CE = 

$550,000 

$500,000 

$450,000   $400,000 

Figure 9.10. Assessment of the utility function for AELCC 
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0.5 Best system: 

PNUS = 1.00     
Alternative A .     

Worst system: 

PNUS = 0.05 

    Alternative B 
Certainty equivalent   

1.00 

0.90 

0.80 

0.70 

0.60 

CE = 0.50 

0.40 

0.30 

0.20 

0.10   0.00 

Figure 9.11. Assessment of utility function for PNUS 
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9.8 Design Evaluation Using the Maximum Expected Utility Criterion 

The Maximum Expected Utility (MEU) criterion is applied to compare the 

remaining decisions for each alternative listed in Table 9.7. By using the single- 

attribute utility functions given in Table 9.9, the utilities for various levels of 

AELCC and PNUS of the decisions for each alternative are calculated in Tables 

9.10 and 9.11. 

Since AELCC is utility independent of PNUS, the expected overall utility for a 

decision is 

E|u( AELCC , PNUS)]| = k,E[u,(AELCC )]+k,E[u,(PNUS)]. (9.4) 

For each decision, PNUS is degenerated to a constant, thus, 

E|[u( AELCC, PNUS)| = k,E[u, (AELCC )] +k, [u, (PNUS)] ; (9.5) 

The expected overall utility for Alternatives 1 and 2 are calculated and 

plotted in Figures 9.14 and 9.15 respectively. According to the MEU criterion, 

the decision which has maximum utility is preferred. For Alternative 1, Decision 

19 has the maximum expected utility (0.9223). For Alternative 2, Decision 20 

provides the maximum expected utility (0.9108). 

After the best decision for each alternative is identified, Alternatives 1 and 2 

can be evaluated by comparing their best decisions. Since the utility of the best 

decision from Alternative 1 is higher than that of the utility of the best decision 

from Alternative 2, the optimal decision for the overall problem is Decision 19 of 

Alternative 1. The characteristics of the optimal decision are summarized in 

Table 9.12. The probability distribution of AELCC for the optimal decision is 

plotted in Figure 9.16. 
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Table 9.12. Characteristics of the Optimal Decision (Decision 19, Alt. 1) 

  

Population size 22 

Number of repair channels 4 

Unit acquisition cost $52,000 

Unit design life 4 years 

Unit salvage value $22,000 

Unit operating cost $1,750 

MTBF 0.2550 

MTTR 0.0425 

Probability of no units short 0.9241 
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X. SUMMARY, CONTRIBUTIONS, AND EXTENSIONS 

  

10.1 Summary 

10.2 Contributions 

10.3 Extensions 

  

10.1 Summary 

Many problems associated with unsatisfactory system performance and 

excessive life-cycle cost are the direct result of decisions made during the early 

phases of system design and advanced planning. To develop quality systems, 

both engineering and management require fundamental principles and 

methodologies to guide design decision making and advanced planning. In 

order to provide for the efficient resolution of complex design decisions involving 

uncertainty, human judgments, and multiple attributes, a systematic decision 

analysis framework is needed. 

The goal of this research is to develop a unified decision analysis framework 

to support the need and requirement for developing better system designs in the 

face of uncertainty. To accomplish this goal, the research is divided into seven 

parts: 

1) The process of system design and development is examined from the 

perspective of concurrent life-cycle engineering. Elements of the decision 

process are identified. The Design Dependent Parameter Approach, an 

important paradigm for design analysis and evaluation, is invoked. 
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2) Types of uncertainty involved in the process of engineered system design 

are identified. The concept of robust system design is then defined from the 

perspective of life-cycle engineering. Two operational definitions of 

robustness are given based on the Design Dependent Parameter Approach. 

Some common measures for assessing the robustness of candidate system 

designs are identified. After a brief review of the existing approaches to 

design analysis and evaluation, the focus of this research is defined. 

3) The problem of design evaluation in the face of uncertainty is studied within 

the context of decision theory. After classifying design decision problems 

into four categories, these problems are structured and modeled by 

decision trees. Then the concept of choices, preferences, and utility theory 

are discussed from the perspective of engineered system design. Based 

upon statistical decision theory, three decision analysis approaches are 

identified for design evaluation in the face of uncertainty. They are: (1) 

sequential decision analysis using the maximum expected utility principle, 

(2) stochastic dominance, and (3) mean-variance analysis. Under the 

context of statistical decision theory, the assumptions underlying some 

objective functions commonly used in design optimization are also clarified. 

4) The decision analysis approaches identified and other effective approaches 

are integrated into a structured, systematic approach for resolving design 

decision problems under uncertainty. Structured models are developed for 

design analysis and design evaluation. 

5) A hypothetical bridge design example is presented to demonstrate the 

concepts underlying the decision analysis framework. This example 

illustrates the application of the framework for a single evaluation attribute 

case for a simple static system. 

6) The problem of multiattribute design evaluation in the face of uncertainty is 

investigated. Descriptive approaches and Multiattribute utility analysis are 

integrated to resolve design decision problems involving both uncertainties 

and multiple attributes. 
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7) An example from repairable equipment population system design is 

presented to demonstrate the application of the framework for multiattribute 

design evaluation in the face of uncertainty. 

10.2 Contributions 

The major contribution of this research is the adaptation and integration of 

statistical decision theory, elements of the systems engineering process, and 

Taguchi's philosophy of robust design for design decision analysis in the face of 

uncertainty. As a result, a structured, systematic methodology is developed and 

presented for evaluating system design alternatives. 

The following findings were obtained from this research: 

1) By investigating the concept of robust design from the perspective of system 

life-cycle engineering, a general definition is presented for the robustness of 

system designs: 

In system design, robustness expresses the insensitivity of the 

system's performance to uncertainties in both the system 

acquisition phase and the system utilization phase. 

To facilitate the application of the concept of robust system design in design 

analysis and evaluation, two operational definitions are presented: (1) 

Robustness represents the insensitivity of the system's evaluation 

attribute(s) to the uncertainty in uncontrollable (design-independent) 

parameters, and (2) robustness represents the insensitivity of the system's 

evaluation attribute(s) to uncertainties in design-independent parameters as 

well as variations in design variables and design-dependent parameters. 

2) The foundations for design evaluation in the face of uncertainty are studied 

within the context of statistical decision theory. This research indicates that 

design evaluation in the face of uncertainty is actually a problem of decision 

making under uncertainty. This concept more accurately encompasses the 
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totality of Taguchi's ideas. Instead of focusing on certain parts of the design 

decision process, such as experimental design, the decision analysis 

approach emphasizes the overall design decision process. 

There are a variety of decision rules (or objective functions) used to resolve 

problems associated with design evaluation in the face of uncertainty, 

including the probability of loss criterion, maximization of expected value, 

Taguchi's loss functions and signal-to-noise ratios, etc. Before applying 

these rules in design evaluation, the assumptions underlying each rule must 

be examined carefully. From the perspectives of statistical decision theory, 

the foundations and assumptions are identified in this research for these 

commonly used decision criteria in design evaluation. Some confusion and 

controversy which surround Taguch's loss function and signal-to-noise ratios 

are Clarified. The results indicate that each of the these rules rely on some 

strong assumptions about the decision maker's preferences and risk 

attitudes. 

To identify a best system design in the face of various uncertainties, one 

must understand what the "best" solution is. Results of the research indicate 

that three factors of system design decision problems need to be considered 

in design evaluation: (1) performance variations, (2) risk attitudes, and (3) 

value trade-offs. 

Experience indicates that, when uncertainty exists, use of the mean as the 

decision criterion for design evaluation may result in a poor design. Attempts 

to minimize the variation of the evaluation attribute have led to the 

philosophy of robust design. Taguchi's approaches focus on variance 

minimization. However, a design which generates a minimum variance for 

the evaluation attribute is not necessarily the best design. Variations 

represent the risks involved in the process of design evaluation. In 

comparing various candidate designs, different decision makers may not 

have identical risk attitudes. Instead of concentrating on performance 

variability alone, this subjective nature of the decision maker must be 

considered in order to select a best design. 
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Taguchi's robust design approach is often used by considering only a single 

attribute. In many cases, to identify the best design, designers have to 

consider more than one attribute. A design which is optimal for individual 

attributes of a system may not be best overall. Thus, if there exists more 

than one evaluation attribute, value trade-offs among these attributes must 

be considered. 

To resolve system design decision problems under uncertainty, one must 

consider performance variations, risk attitudes, and value trade-offs jointly. A 

best design is not only robust for an individual attribute, but also provides an 

optimal trade-off among various attributes of concern. In this sense, the 

"best" design is subjective. It depends upon the value preferences and risk 

attitudes of the decision maker. 

The research approach used herein placed emphasis on the need for 

visibility and quantification of uncertainty and the judgmental factors involved 

in major decisions within the design process. Following the concurrent life- 

cycle engineering design philosophy, a structured approach was taken to 

quantify uncertainties, value trade-offs, and expected gains and losses 

during the system life cycle. By making these factors visible and quantitative, 

design decisions can be improved, since this not only results in logical 

consistency in the treatment of decision elements, but also facilitates the 

communication and review of such factors as part of the total design decision 

process. Such a systematic approach to design analysis and evaluation can 

help the designer evaluate more alternatives in less time, and also provides 

more information about the performance of each of those alternatives. 

Based upon utility theory, this research indicates that a numerical scale 

exists to measure the desirability of system designs. Instead of 

concentrating on performance variability alone, the overall objective of 

design evaluation should be that of maximizing expected utility rather than 

just minimizing variation. Expected utility provides for three measures of 

each evaluation attribute: (1) the values of the evaluation attribute, (2) the 
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probability distribution of the evaluation attribute, and (3) the utility of the 

evaluation attribute. Thus, information concerning uncertainty (made explicit 

by probability measures) and relative worth (made explicit by utility functions) 

is combined into a rational and theoretically sound decision rule for design 

evaluation — maximizing expected utility. 

A utility function represents an objective function resulting from adapting 

decision and utility theory to the needs of decision making for system design. 

A utility function which incorporates value trade-offs and designer's 

preferences is more general and complete than Taguchi's loss function. 

Taguchi's loss function and signal-to-noise ratios are just special cases of 

utility functions. Utility functions may apply to any single evaluation attribute 

or set of evaluation attributes. During the early stages of system design, it is 

important to identify the decision rules for evaluating various design 

alternatives. With the help of an accurately defined utility function, the 

decision maker is able to consider system life-cycle costs and the cost of 

selecting a particular alternative. Optimization methods and Taguchi's 

parameter design approach can only be used after the utility function has 

been defined. 

In design evaluation, utility is simply a reflection of the resulting costs and 

rewards from each candidate design. In the process of design decision 

making, the importance for undertaking utility analysis is due to that the 

complexity arising from uncertainty associated with the alternatives being so 

great that the decision maker feels unsure of which choice to make. That is, 

the decision maker realizes that the choice revolves around his preferences 

as they relate to taking risks, that his feelings toward risk are not entirely 

clear in his own mind, and that he cannot informally apply his feelings using 

direct choice. Thus, utility analysis can help the decision maker clarify the 

difficulty. The potential benefit is that a decision can be made which is 

consistent with his attitude toward risk. 

A unified decision analysis framework is developed for making design 

decisions in the face of uncertainty. This framework integrates sequential 
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decision analysis, utility theory, elements of the system engineering process, 

and Taguchi's philosophy of robust design. Three effective approaches are 

identified in the framework: (1) maximization of expected utility, (2) stochastic 

dominance, and (3) mean-variance analysis. 

Design decision problems in the face of uncertainty are made up of decisions 

and uncertain events. The structure of a decision problem in terms of the 

sequence and causal relationships between various decisions and uncertain 

outcomes can be effectively represented by a decision tree. By integrating 

sequential decision analysis with utility theory and the Design Dependent 

Parameter Approach, the implementation of design analysis and evaluation 

becomes more structured and systematic. 

The decision analysis framework presented herein is useful for making 

design decisions during the early stages of system design and development, 

It is more systematic and complete than Taguchi's parameter design 

approach, since it is capable of dealing with design decision problems 

involving both uncertainty and multiple attributes. It applies to both discrete 

decisions and continuous decisions. The approach facilitates the integration 

of performance-related characteristics and logistic support requirements in 

system design. It may be applied at the macro level for the evaluation of 

candidate systems, or at the micro level for design iteration. 

This approach is offensive in that it does not remove uncertainty. The effect 

that uncertainty has on the relative desirability of design alternatives is 

incorporated into the design evaluation process. Among other benefits of 

this approach are increased objectivity, less risk of overlooking significant 

factors, and perhaps most importantly, the ability to reconstruct the selection 

process rather than invoking intuition in explaining the alternative selected. 

Because the results are quantitative, evaluators can conduct sensitivity and 

“what if' analyses at an early stage in system design to determine the 

robustness of the results and to identify key factors that can affect the 

results. 
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In summary, this research (1) lays down theoretical foundations for 

employing and developing more efficient techniques for system design 

evaluation, (2) integrates Taguchi's philosophy of robust design and traditional! 

design approaches, (3) streamlines system design evaluation efforts and 

resolves much confusion and controversy Surrounding Taguchi's approaches, 

and (4) helps develop strategies for dealing with a broader range of decision 

problems pertaining to system design and development. 

10.3 Extensions 

There are several opportunities for further research related to system design 

analysis and evaluation in the face of uncertainty. Additional work may be done 

by extending the work presented in this dissertation. Areas identified for 

additional study include the following: 

1) As indicated in this research, uncertainties are associated with both design- 

independent parameters and decision variables. The focus of the research 

is on the uncertainty involved in the design-independent parameters. The 

variations in the value of decision variables are not investigated. The effect 

of variations in the decision variables on system design are usually 

evaluated by sensitivity analysis. Further research needs to be done on 

how to integrate the methodology presented herein with sensitivity analysis 

approaches. 

2) To facilitate the application of the approach for design evaluation under 

uncertainty, a series of computer programs could be developed. Some 

examples include: (1) programs for assessing utility functions of various 

evaluation attributes of engineered systems, (2) programs for quantifying 

various uncertainties and assessing joint probability distributions of an 

evaluation attribute, (3) programs for automating the process of conducting 

stochastic dominance and mean-variance analysis for engineered systems, 

and (4) programs for documenting and presenting the results of analysis 

and evaluation involving various uncertainties. Integration of the evaluation 
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approach with CAE/CAD tools may increase design productivity, and 

provide technical capabilities needed to dramatically influence the decision 

process during system design evolution. 

If the utilities and/or the probabilities of the evaluation attribute(s) are known 

only approximately, they can be represented as fuzzy numbers (Whalen 

and Bronn, 1982). Fuzzy expected utilities can be calculated by the 

extension principle of fuzzy mathematics; this process reduces to ordinary 

arithmetic when the operands are crisp. Further research is needed to 

integrate the approaches presented herein with fuzzy utility analysis. 

In identifying and developing approaches for design evaluation in the face of 

uncertainty, the emphasis herein has been on discrete decisions. More 

research is needed for resolving problems of continuous decisions, 

including developing systematic procedures for the definition of objective 

functions, problem formulation, problem solution, and multiattribute 

sensitivity analysis. 

5) As indicated herein, there are many approaches available for design 

6) 

analysis and evaluation. In order to efficiently evaluate design alternatives 

in the face of uncertainty, there is a need to develop an expert system for 

selecting appropriate approaches for different types of design decision 

problems. Such an expert system may help designers find the most 

efficient and effective ways to resolve decision problems. 

Most decision models and approaches presented herein assume that a 

single decision maker exists. Further research is needed to adapt the 

approaches and models for group decision making situations. 
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APPENDICES 

A.1. Axioms of Utility Theory 

Comparability. ADMcan order (establish preference or indifference) any 

two outcomes. That is, either 4, > A,,A,>A,, OF A, A,. 

Transitivity. The ordering of outcomes is transitive. That is, if 

A,> A,,A,;> A,, then A, > A,. 

Reduction of compound uncertain events. The DM is indifferent 

between a compound uncertain event and the simple uncertain event 

determined by reduction according to the rules of the probability calculus. 

Continuity. For each outcome A, the DM is indifferent between the 

outcome and some uncertain event (lottery) involving only two basic outcomes -- 

A,, which is better than 4, and 4,, which is worse than A. 

This assumption suggests that the DM can always find p, the probability of 

obtaining A, in Figure A.1 such that he is indifferent between a, and a,. 

  

  

Figure A.1_ Illustration of the Continuity Axiom 
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Substitutability. |The DM is indifferent between any original uncertain 

event and one formed by substituting, for some outcome A, an uncertain event 

that the DM has judged to be equivalent to the outcome 4A. 

Montonicity. For the two uncertain events given in Figure A.2, event E, is 

preferred to E, if and only if p, > p,, where A, > A,. 

p 
Ay 

E, 

1-p 
Ay 

p A, 

E, 

1-p 
A» 

Figure A.2. Illustration of the Montonicity Axiom 
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A.2. Program Listing of repsmod.c 

/* reps.c */ 
/* Definitions 

Arrays: 

ir[] 
spe[] 
pi 
Co{] 

Variables: 

AELCC 
PNUS 
CP 
co 
CR 
CS 
FC 

kep 
kco 
ker 
life 
salv 
D 
N 
M 
ES 
NIR 
NCS 
LM 

*/ 
#include <stdio.h> 
#define SIZE_ir 3 
#define SIZE_spc 3 
#define N_min 18 
#define N_max 22 
#define M_min 2 
#define M_max 5 

/* get inputs */ 

interest rate 
shortage penalty cost per unit short per year 
probability of n failed units 
coefficient Cn 

annual equivalent life-cycle cost 
probability of no units short 
annual equivalent population cost 
annual operating cost 
annual repair facility cost 
annual shortage cost 
first cost of a unit (P) 
annual equivalent cost per unit (Ci) 
annual operating cost per unit 
annual repair cost per channel (Cr) 
life of the unit (life = replacement age, L, n) 
salvage value 
demand (D) 
population size 
number of repair channels 
expected number of units short (E(S)) 
number of elements of IR{} 
number of elements of kcs[] 
ratio of lambda and mu 

void getinput(int *, float *, int *, float *, float *, float *, float *, float *, float *); 

/* print inputs */ 
void prtinput(int, float, int, float, float, float, float, float *, float *); 

float getkcp(float, int, float, float); 
/* calculate prob and E(S) */ 

/* calculate kcp */ 

void getprob(int, int, int, float, float *, float *); 
FILE *fptro; 
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float ir[SIZE_ir], spc[SIZE_spc]; 

int N, M, D, life, count, j; 

float LM, CP, CO, CR, CS, kcp, kco, ker, ES, FC, saly, AELCC, PNUS; 

printf("\x1B[2J"); /* clear screen */ 
printf("\x1B[10; 10"); 
printf(*REPSMOD is running, be patient..."); 

/* input */ 
getinput(&D, &FC, &life, &salv, &kco, &kcr, &LM, ir, spc); /* get inputs from disk */ 

fptro=fopen("“output.dat","w"); /* open output file */ 
prtinput(D, FC, life, salv, kco, kcr, LM, ir, spc); /* print inputs to disk*/ 
fprintf(fptro, "SUMMARY OF RESULTS:\n\n"); 

fprintf(fptro," NM ir spc AELCC PNUS CP CO CR_ CS 
ES\n\n"); 

/* calculation process */ 
for (N=N_min; N<=N_max; N++) 

CO = kco*N; /* annual operation cost */ 

for (M=M_min; M<=M_max; M++) 

{ 
CR = ker*M; /* annual repair facility cost */ 

for (count=0; count<SIZE_ir; count++) 

{ 
/* find annual equiv. cost per unit */ 

kcp = getkcp(FC, life, salv, ir[count]), 
CP = kcp*N; /* annual population cost */ 

for G=0; j<SIZE_spc; j++) 

{ 
/* find E(S) and Prob of no units short */ 

getprob(N, M, D, LM, &ES, &PNUS), 
CS = spc[j]*ES; /* annual shortage cost */ 
AELCC = CO +CP+CR+CS; /* calculate total cost */ 
/* print outputs to the disk */ 
fprintf(fptro, "%5d %5d %7.0f %8.0f %10.0f %8.4f %8.0f 
%8.0f %8.0f %8.0f %8.4fin", N, M, ir[count], spc[j], 
AELCC, PNUS, CP, CO, CR, CS, ES); 

} 
} 

} 
} 
fprintf(fptro, "\n_ —-~--———-—- END OF RESULTS —————_------—-\n\n"); 
fclose (fptro); 

printf("\x1B[12;10£"); 
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printf("The modeling process has been completed successfully."), 
printf("\x1B[14;10f"); 

printf("Check file ‘output.dat' for results. \n\n\n\n"); 

} 

/* getinput() */ 
/* get inputs from the disk */ 
void getinput(int *pD, float *pFC, int *plife, float *psalv, float *pkco, float *pkcr, 

float *pLM, float *ptr1, float *ptr2) 

{ 
FILE *fptr, 
int size; 

if ( (fptr=fopen(“input.dat","r"))==NULL) 
{printf("Can't open file input.dat."); exitQ; } 

fscanf(fptr, "Yed %f Yad “af %f %f %f", pD, pFC, plife, psalv, pkco, pkcr, pLM); 
for (size=0; size<SIZE_ir, size+t+) 

fscanf(fptr, "%f", ptr1++); 

for (size=0; size<SIZE_spc; size++) 

fscanf(fptr, "“f", ptr2++); 
fclose(fptr); 

} 

/* prtinputQ */ 
/* print inputs for verification */ 

void prtinput(int D, float FC, int life, float salv, float kco, 
float kcr, float LM, float *ptr1, float *ptr2) 

{ 
int size; 

fprintf(fptro, "\nLIST OF INPUTS:\n\n"); 
fprintf(fptro, "Demand = “ed\nFirst cost = %0.2finDesign life = %d\n", D, FC, life); 
fprintf(fptro, “salvage value = %0.2f\inkco = %0.2finkcr = %0.2finLM = %.7fin\n", 

salv, kco, kcr, LM); 
for (size=0; size<SIZE_ir; size++) 

fprintf(fptro, “ir(%ed) = %8.1fit", size, *(ptr1+size)); 

fprintf(fptro, “\n"), 
for (size=0; size<SIZE_spc; size++) 

fprintf(fptro, “spce(%ed) = %8.1f\t", size, *(ptr2+size)); 

fprintf(fptro, “\n \n\n");   

} 

/* getkcpO */ 
/* calculate annual equivalent cost per unit */ 
float getkcp(float FC, int life, float salv, float irr) 

{ 
int n; 
float ip], AP; 

ipl = 1; 

irr = irr/100.0; 
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for (n=1; n<=life; n++) 

ip] = ipl * (1 + irr); 

AP = irr * ipl / (ipl - 1); /* calculate A/P factor */ 

return ( (FC-salv)*AP + salv*irr ); 

; 

/* getprobQ */ 
/* find expected number of units short and prob of no units short */ 
void getprob(int N, int M, int D, float LM, float *ptrn, float *ptrp) 

{ 
float C[30], p(30], sum; 

int count; 

C0] = 1.0; 

for (count=1; count<=M; count++) /* calculate Cn for n <= M */ 

C[count] = C[count-1] * LM * (N+1-count)/count; 

/* calculate Cn for n > M */ 

for (count=M+1; count<=N; count++) 

C[count] = C[count-1] * LM * (N+1-count)/M; 

/* calculate pO */ 
sum = 0.0; 

for (count=0; count<=N; count++) 

sum = sum + C[count]; 

p[0] = 1.0/sum; 

for (count=1; count<=N; count++) /* calculate pn */ 

p[count] = p[0} * C{count]; 

/* find prob of no units short */ 

*ptrp = 0; 
for (count=0; count<=N-D; count++) 

*ptrp = *ptrp + p[count]; 

/* find expected number of units short */ 

*ptrn = 0; 
for (count=1; count <=D; count++) 

*ptrn = *ptrn + count * p[N - D + count]; 
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