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ABSTRACT 

 
Thermoacoustic instabilities in gas turbine operation arise due to unsteady fluctuations in 

heat release coupled with acoustic oscillations, often caused by varying equivalence ratio 

perturbations within the flame field. These instabilities can cause irreparable damage to critical 

turbine components, requiring an understanding of the spatial/temporal variations in equivalence 

ratio values to predict flame response. The technique of computed tomography for flame 

chemiluminescence emissions allows for 3D spatially resolved flame measurements to be 

acquired using a series of integral projections (camera images). High resolution tomography 

reconstructions require a selection of projection angles around the flame, while captured 

chemiluminescence of radical species intensity fields can be used to determine local fuel-air 

ratios. 

In this work, a tomographic reconstruction algorithm program was developed and utilized 

to reconstruct the intensity fields of CH* and OH*, and these reconstructions were used to 

quantify local equivalence ratios in an acoustically forced flame. A known phantom function was 

used to verify and validate the tomography algorithm, while convergence was determined by 

subsequent monitoring of selected iterative criteria. A documented method of camera calibration 

was also reproduced and presented here, with suggestions provided for future calibration 

improvement. Results are shown to highlight fluctuating equivalence ratio trends while 

illustrating the effectiveness of the developed tomography technique, providing a firm 

foundation for future study regarding heat release phenomena. 
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GENERAL AUDIENCE ABSTRACT 

 
Acoustic sound amplification occurs in the combustion chamber of a gas turbine due to 

the machine ramping up in operation. These loud sound oscillations continue to grow larger and 

can damage the turbine machinery and even threaten the safety of the operator. Because of this, 

many researchers have attempted to understand and predict this behavior in hopes of ending 

them altogether. One method of studying these sound amplifications is looking at behaviors in 

the turbine combustion flame so as to potentially shed light on how these large disturbances form 

and accumulate. Both heat release rate (the steady release of energy in the form of heat from a 

combustion flame) and equivalence ratio (the mass ratio of fuel to air burned in a combustion 

process) have proven viable in illustrating oscillatory flame behavior, and can be visualized 

using chemiluminescence imaging paired with computed tomography. 

Chemiluminescence imaging is used to obtain intensity fields of species from high 

resolution camera imaging, while computed tomography techniques are capable of 

reconstructing these images into a three-dimensional volume to represent and visualize the 

combustion flame. These techniques have been shown to function effectively in previous 

literature and were further implemented in this work. A known calibration technique from 

previous work was carried out along with reconstructing a defined phantom function to show the 

functionality of the developed tomography algorithm. Results illustrate the effectiveness of the 

tomographic reconstruction technique and highlight the amplified acoustic behavior of a 

combustion flame in a high noise environment.
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Chapter 1: Introduction 

 The presence of thermoacoustic instabilities in combustion engines has been a major 

issue of importance for much of the past century [1]. In gas turbine engines, these instabilities 

consist of successive flow perturbation from pressure oscillations coupled with increased flame 

heat release, proving capable of significant acoustic growth within the combustion system. These 

fluctuations of pressure exponentially increase until saturation at which point they reach a limit 

cycle due to non-linearities within the system. The oscillations have devastating effects, 

particularly on overall engine performance and efficiency, and have prompted numerous 

investigations into developing methods for studying and monitoring thermo-acoustic stability [2-

4]. This work aims to develop a methodology for measuring phase-averaged, spatially resolved 

equivalence ratios using a developed 3D tomography technique with application to 

thermoacoustic investigations. Correlations between equivalence ratio and pressure fluctuations 

originating from the forced acoustic excitation are explored to demonstrate the effectiveness of 

this method for investigating thermo-acoustic oscillatory behavior. Further discussion is 

provided in following chapters regarding development and utilization of the data reconstruction 

method used in this work. 

1.1 Thermoacoustic Instabilities Overview 

The study of vibrational effects due to turbulent flame interactions can be traced back to 

the work of Lord Rayleigh [5]. He noticed that upon introducing an open Bunsen burner flame to 

the end of a long vertical tube, an oscillatory resonance was produced. This was due to the 

continued unsteady heat release of the flame, causing a periodic pressure fluctuation along the air 

column at a sustained natural frequency. When the pressure oscillation amplitude matched in 
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phase with that of the heat release oscillation amplitude, a combustion instability was produced. 

This would later be outlined as the Rayleigh Criterion, which states that a thermoacoustic 

combustion instability will occur if the energy added to the system due to the in phase 

relationship of heat-release and acoustic pressure fluctuations is greater than the energy due to 

acoustic dissipation [6]. The initial study conducted by Rayleigh primarily focused on the system 

resonant frequency and tube length, rather than the characteristics of the flame. In his work, 

Rayleigh determined there to be a time lag between heat release of the flame and the acoustic 

pressure observed, leading to the conclusion that the greatest chance for this phenomena to occur 

is at the moment of greatest compression located upstream of the flame front [3]. 

Traditionally, unstable thermo-acoustic phenomena occur in reacting fluid flow involving 

a combustion flame and can cause pressure fluctuations resulting in undesirable flame 

perturbations. These perturbations grow increasingly in size with time and pose significant 

operational and safety risk for mechanical systems, particularly in the use of gas turbines. Today, 

modern gas turbines are given strict design parameters to operate under lean-premixed 

combustion conditions, set on reaching high turbine inlet temperatures while releasing the least 

amount of nitric oxide emissions. These conditions can allow for significant sound amplification, 

resulting in amplified resonant frequencies that generate thermoacoustic instabilities. Significant 

damage to turbine components and machinery can occur, along with flame blow off which can 

prove detrimental for operational costs and even life-threatening for pilots operating turbine-

powered aircraft [7]. Such risk has prompted extensive research into the causes and behavior of 

thermoacoustic instabilities in turbine engines and has inspired research to seek methods of 

decreasing oscillation occurrences and to one day eliminate them all together. The research of 

instantaneous heat release rate and equivalence ratio within pressure oscillations in particular has 
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seen a number of studies conducted showing effective use of spatially integrated 

chemiluminescence measurements [8-13]. Fuel-air ratio oscillations are driven by pressure and 

velocity fluctuations in lean premixed combustors, while spatio-temporal fluctuations in 

equivalence ratio directly perturb heat release via fluctuations in reactant density, flame speed, 

heat of reaction, and flame surface area [14]. Due to this direct correlation, chemiluminescence 

studies can investigate heat release rate using the collection of time-resolved velocity 

measurements simultaneous to chemiluminescence intensity measurement [15]. The spatial and 

temporal nature of fuel-air mixture ratios allows for detection and capture of intensities for 

chemiluminescence and was implemented in this study using tomographic reconstruction for 

equivalence ratio measurements, with the goal of utilizing temporal velocity measurements to 

detect heat release in future studies. This integrated technique provides ample means to resolve 

3D spatial intensity data for varying excited species, and has historically proven effective 

coupled with chemiluminescence imaging analysis as highlighted in previous studies [9, 16-18]. 

1.2 Tomographic Reconstruction Overview 

 The method of tomographic reconstruction is an attempt to reconstruct an estimated 

representation of a system based off of an input finite number of projections. With the primary 

mathematical foundation being set by the work of Johann Radon in 1917, the technique has been 

outfitted for use in a number of different fields. Most notably in the field of medicine, X-Ray 

Computed Tomography (CT) has been developed as a non-invasive method of imaging the 

human body. While there are a number of methods used as derivations of reconstructed 

tomography, the general concept of developing three-dimensional object reconstructions from 

provided projections remains constant throughout all reconstruction algorithms. These 

algorithms are primarily developed from the work and knowledge provided by Radon, as well as 
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the geometric data of the object and statistical information of the data acquisition. This work will 

primarily focus on the development of a Multiplicative Algebraic Reconstruction Algorithm for 

use when reconstructing an acoustically forced flame. 

 The Algebraic Reconstructive Technique (ART) spawned from the work of Polish 

mathematician Stefan Kaczmarz, who introduced the Kaczmarz method. This algorithm 

effectively introduced a method of iteratively solving systems of linear equations of the form 

𝐴	𝑥 = 𝑏. Many years later, this work was later built upon by Richard Gordon and colleagues [19] 

as Gordon developed a reconstruction algorithm that harnessed the mathematical prowess of the 

Kaczmarz method to produce computed tomographic reconstructions. The technique maintains 

the same linear format as the Kaczmarz method: 𝐴 is a sparse 𝑚	𝑥	𝑛 matrix containing the 

relative contribution of each pixel to the different points on the projections; 𝑥 is the output image 

represented in pixels, and 𝑏 represents the angular projections all in vector notation. The 

Algebraic Reconstruction Technique is iterative, allowing for images at a series of angular 

projections to be reconstructed. Additionally, it can be configured so as to include a relaxation 

parameter of range 0 < 𝛽 ≤ 1 for use to change the speed and stability of convergence for the 

equation system. This relaxation factor effectively is able to improve the amount of noise present 

in the output, however at the cost of increased computation time. 

1.3 Chemiluminescence Imaging Overview 

 Validated methods of chemiluminescence imaging have previously been utilized for heat 

release determination as well as equivalence ratio consideration [8, 20]. When excited radical 

chemical species are present, they emit photons within a narrow wavelength band. These photons 

can be measured using advanced imaging equipment and narrow band optical filters through a 

process known as chemiluminescence imaging. Spatially integrated chemiluminescence 
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measurements, specifically the ratio of OH*/CH* fields [12], can be comparatively analyzed to 

examine local equivalence ratio in combustion flames. In this work, a phase-averaged image 

reconstruction for both CH* and OH* radical species is conducted utilizing Computed 

Tomography of Chemiluminescence (CTC), and the ratios of OH*/CH* are used to determine 

phase-averaged, spatially varying equivalence ratios.  
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Chapter 2: Literature Review 

Thermally induced acoustic phenomena have presented widespread challenges for gas 

turbine operators ever since the machinery’s inception. The rapid succession of growing pressure 

oscillations within the combustion chamber can prove detrimental to turbine operation efficiency 

as well as overall emission levels and integrity of machine components [1, 4]. In order to further 

investigate this reoccurring phenomenon, researchers have developed methods of camera 

projection-based visualization to analyze spatial properties of the combustion flame [9, 17, 18]. 

The use of computer-aided tomography and chemiluminescence imaging have seen prior use and 

development in the reconstruction and imaging of turbulent combustion flames for capturing and 

studying flame behaviors [16, 21, 22]. The technique allows for visualization of flame activity 

within the combustion zone, and can relate radical species intensity field ratios to spatial 

equivalence ratio behavior [12]. Recent studies have looked into calculating thermoacoustic 

energy transfer fields of the Rayleigh Index using chemiluminescence tomography [16, 22], with 

others focusing on the ability to acquire equivalence ratios from intensity measurements in 

technically premixed systems [12]. The application of tomographic reconstruction can be traced 

to its mathematical inception in the developments of Gordon, Bender, and Herman [19] who first 

published on the method of multi-purpose 3D reconstruction. 

2.1 Algebraic Reconstruction Technique 

 In 1970, Richard Gordon and colleagues proposed a mathematical technique to 

directly reconstruct three-dimensional objects using two dimensional projections of the objects. 

The goal and target audience of the paper was focused on the biological field with emphasis on 

cell and micro-organism structure analysis. Previous work by DeRosier & Klug [23] provided 
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early attempts at electron micrograph reconstruction, though this method proved unreliable for 

non-symmetric bodies. Gordon et al. proposed the so-called Algebraic Reconstruction Technique 

(ART), which was revolutionary in allowing reconstruction of asymmetric objects and requiring 

significantly less computation time than its predecessors at the time. The technique consists of a 

stage upon which the object is rotated, a theoretical voxel square encompassing the object, with 

projections (views of the object) taken at discrete angle q locations around the object. Each plane 

perpendicular to the axis projects a line defined as ray, with some of that ray intersecting with the 

object. The optical density at each voxel point within the square determines the contribution of 

each pixel, and the number of rays and number of projections dictate the system of algebraic 

linear equations to acquire the solution. This technique was instrumental in introducing the 

method of inversion of a discrete number of integral measurements at different angles through 

the object field, or in other words, the reconstruction of an object from its 2D projections. This 

opened the door for numerous scientists to build upon the method and adapt the reconstruction 

technique to prove nimbler and less computationally costly. Such techniques as the 

Multiplicative Algebraic Reconstruction Technique (MART) have improved upon the 

foundational building blocks of ART and have been altered for more streamlined computation. 

Adapted versions of different algorithms have been presented by Verhoeven and compared with 

chosen simulated conditions of typical tomography application environments [24]. In his studies, 

Verhoeven found that the Multiplicative Algebraic Reconstruction Technique resulted in the best 

output out of all the tested algorithms, noting particular strength when dealing with smooth 

objects or particularly noisy data. He also states that among the algorithms tested, MART was 

the significantly preferred technique for objects with steep gradients, and its robust nature 

allowed it to practically reconstruct data from almost any geometry. Verhoeven concluded that of 
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the algorithms tested MART created the best visual reconstructions while minimizing error, and 

had the fastest run time with significantly less computational load [24]. 

MART has seen continued significant modification and improvement in recent decades, 

with particular emphasis on iteration entropy and noise reduction [25]. As given from its name, 

the technique utilizes multiplication to apply the corrective iteration instead of the common 

additive property, and has been found to return the maximum entropy solution as opposed to the 

normal entropy solution found with the additive technique [24] (entropy in this context is in 

reference to information theory, not the common use in thermodynamics). Because of its 

multiplicative nature, MART is found to be rather adaptable in scope. Work by Mishra et al. has 

shown adaptability in MART for use with interferometric projections [26], while others have 

developed methods involving different basis functions. Several studies have included 

specializations in efforts to better improve reconstruction results, such as the Karhunen-Loeve 

Basis (TRKB) [27], blobs [28], and cubic splines [29], all of which act as basis functions for the 

reconstruction algorithm. Not all basis functions are best suited for chemiluminescence 

measurements, however, as CTC geometries often result in steep gradients in various 

configurations. For this work, the MART algorithm was used for the tomographic reconstruction 

of the flame images, utilizing the most common pixel/voxel basis for reconstruction due to its 

ease of use and broad applicability to multiple measurement approaches. 

 Other algorithms have indeed been developed with varying advantages and drawbacks 

compared to ART depending on the situation. The Simultaneous Iterative Reconstruction 

Technique (SIRT) is commonly used as an alternative to overcome issues that arise with ART, 

specifically problems with inversion. This technique approximates the solution using a 

simultaneous least squares estimation and is used to cut down drastically the computational 



 9 

requirements for large data sets inherent for extremely precise instruments such as a megapixel 

camera. Many online open-source toolboxes allow streamlined computations using SIRT, the 

most popular being the ASTRA tomography toolbox developed at the University of Antwerp 

[30]; the ASTRA toolbox however was not chosen for this work due to its structured design 

around electron tomography for use in biological imaging applications, and was found rather 

difficult to adapt for chemiluminescence imaging. 

2.2 Camera Calibration 

 An important measure of collecting imaging data involves calibrating digital and imaging 

systems for accurate use and output. In this work, the discussion of camera calibration refers to 

the relation of datum coordinate systems from the camera sensor to the three-dimensional world 

environment and involves the orientation and translation of coordinates between multiple 

coordinate systems. Today, there are a number of calibration techniques for imaging systems 

ranging from off the shelf consumer cameras to high speed advanced cameras. In 1987, Roger 

Tsai introduced a new method for calibrating cameras for machine vision metrology [31]. In his 

work, Tsai discusses a two-step technique that focuses on obtaining lens and camera location 

parameters, as well as camera orientation and radial lens distortion. The method proved 

particularly effective and versatile for a multitude of camera types and layouts, and continued 

advancement of this technique has taken place as other researchers have found Tsai’s work to be 

a solid foundation for all-purpose camera calibration. Zhengyou Zhang [32] proposed a new 

calibration technique that proved versatile in being able to orient the camera based on two or 

more varying orientations to calibrate. The method used a planar grid pattern (a checkerboard) 

similar to most calibration techniques, however the new technique allowed either the camera or 

calibration model plane to be moved and it would still prove effective. Upon taking images of 
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the model plane, a closed-form solution was implemented using a non-linear optimization 

technique based on a maximum-likelihood criterion, with radial distortion later taken into 

account as well. The method proved most effective for alternative model plane angle calibration 

and was successful in calibrating when either the camera, planar pattern, or both were moved. 

The work by Zhang proved insightful and led to further studies developing methods of 

calibration involving camera movement. Work by Remondino and Fraser [33] aimed to bridge 

the gap between camera calibration and the implemented computer algorithms for close-range 

photogrammetry, while also touching on concerns regarding radial distortion still present in 

calibration of consumer-grade digital cameras. Floyd [17] studied the effects of ray tracing on 

the effects of depth of field, and conducted an optical analysis to determine a projection 

geometry that takes these effects into consideration. While results of his study are worth noting, 

his work on camera calibration was ultimately not applied here due to computational cost and 

complexity. Work done by Lin Ma and colleagues focused on the use of point spread functions 

as a way to interpret the optical density analysis of the reconstruction data, and utilized the 

Monte Carlo method for means of calculating the function [34, 35]. While this work proved 

insightful as well, the Monte Carlo method was not used for the 3D reconstruction process 

attempted in this study due to its computational complexity. The work of Wang et al [36], 

however, proved the most efficient in application for this particular study, as it proposed a robust 

method of calibration for a similar camera system setup involving 12 cameras that were rotated 

about the object of interest. A set of calibration images were taken for each position, and a 

minimum of 6 non-coplanar points were addressed so as to obtain a fully determined system of 

equations to solve for each unknown parameter. This method proved most effective allowing for 

the intrinsic camera parameters and the exact spatial locations to be determined through the lens 
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imaging theory, accounting for out of focus effects while following the pinhole camera model. 

This method also included common variables and nomenclature to allow for seamless integration 

with known reconstruction techniques, specifically MART, proving most efficient when 

reconstructing the images. 

2.3 Thermoacoustic Instabilities 

Investigations of thermoacoustic instabilities in engines did not take shape until the 

beginning of World War II with investigations by Lettau [7]. A number of researchers followed 

suit and began working extensively on sources of acoustic vibrations and oscillatory behavior in 

aircraft and rocket engines. Most notably in 1956 Crocco and Cheng [1] published a holistic and 

extensive investigation on combustion instabilities in rocket motors, considered by many to be 

the first and foremost resource on nonlinear thermoacoustic behavior in rocket motors. Not long 

afterwards, Mitchell and Sirignano [4] built upon the sensitive time lag model previously 

proposed by Crocco, going into mathematical and descriptive detail discussing analysis and 

possible treatment methods for gas dynamic problems that may arise in motor operation. He 

focused particularly on the employed expansion techniques, discussing shock wave longitudinal 

oscillation characteristics and later discussing axial mode instabilities with and without the time 

lag model, respectively. Mugridge [3] focused primarily on the analysis of both the acoustic 

impedance on both sides of the combustion zone as well as a flame transfer function that models 

the flame response to sound wave disturbances. The transfer function was modelled using plane 

wave theory, with Mugridge deriving both the energy flow and flame transfer function equations 

in considerable depth. Significant attention and emphasis were placed on the flame transfer 

function, with the value of the function depending on the fuel used, the resulting flame shape, 

and the method of dynamic stabilization. An increased interest in theories investigating acoustic 
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oscillations in flow cavities emerged, and further work by Keller [7, 37-39] developed a 

scientific understanding of forced and self-excited thermoacoustic oscillations within cavities. 

Forced excitation applies when the pressure oscillation is imposed by some external mechanism 

independent of the system, while self-excitation involves acoustic radiation and dissipation that 

becomes proportional to the amplitude and thus oscillates at the resonant frequency of the 

oscillatory system. Keller was able to develop and demonstrate wave equations that governed 

nonlinear, resonant acoustic wavefields in rectangular cavities, proving capable of being applied 

to both self-excited and forced oscillations for practically any arbitrary boundary conditions [38]. 

He also went on to investigate and develop second order wave equations for covered cavities 

excited by a wall-bounded jet, finding that upon strong disturbance along the free edge of the jet 

there was a significant reduction in oscillation amplitudes within the cavity [37]. 

Up until this point the majority of research conducted had been centered around 

thermoacoustic oscillations in rocket motors; in 1995, Keller introduced one of the first 

investigations on thermoacoustic oscillations in gas turbine combustion research [7]. Combustor 

designs allowed a significant portion of air to enter the turbine through the burners, resulting in 

surprisingly powerful sound amplification downstream of the combustion zone [7]. This coupled 

with low-NOx combustor characteristics resulted in flow instabilities that produced reaction rate 

fluctuations, causing acoustic oscillations. Keller’s work served as an in-depth general overview 

of forced and self-excited oscillations in gas turbine combustion chambers, focusing on stability 

and amplitude limitation. Future work would go on to investigate this topic in more detail and 

depth, introducing numerical models for predicting oscillations [2] and even providing 

operational range stability charts for turbine performance in the presence of thermoacoustic 

instabilities [40]. One review written by O’Connor and colleagues [41] delved into the effects of 



 13 

transverse acoustic instabilities, describing in particular detail the direct and indirect effect of 

transverse wave motions. Concluding remarks discuss how the boundary conditions of the 

system have a significant impact on the resulting transverse acoustic modes, and while the 

transverse modes control the frequency and modal structure of the disturbance field, axial 

acoustic disturbances in the nozzle often control the flame response. The spatially integrated heat 

release of the flame is nearly unaffected by direct transverse flow disturbances, however 

comparatively axial disturbances and axisymmetric hydrodynamic disturbances have quite an 

effect on the heat release of the flame. 

A dynamic feedback loop created by the interaction of heat release and the acoustic 

characteristics of a combustion system are the driving factors in creating thermo-acoustic 

instabilities. These interactions are often random and can be difficult to predict, proving 

challenging for researchers when trying to model instability oscillatory behavior. Considerable 

efforts have been made towards methods of numerical modeling to predict limit cycle amplitudes 

and frequencies [42], while the coupling between unsteady heat release rates and equivalence 

ratio fluctuations has been found to play a key role in driving thermo-acoustic oscillations [43]. 

Hoeijmakers et al. [44] and Emmert et al. [45] were central in studying the Intrinsic 

Thermoacoustic (ITA) feedback loop, consisting of an upstream velocity disturbance that 

induces variations in the heat release rate, generating an upstream acoustic wave traveling and 

impeding on the acoustic velocity thereby closing the loop. Velocity fluctuations are measured to 

describe the responsive heat release of the flame [43], with spatial location measurements 

required to determine the fluctuations present throughout the flame domain. The need for 

spatially temporal measurements has motivated instability research towards developing methods 
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of reconstructive tomography to study everything from heat release rate, flame surface density, 

to even transient phenomena [18]. 

Looking at the work of Geraedts and colleagues [16], a notable attempt to 

tomographically reconstruct thermoacoustic instabilities came as an investigation to analyze 

swirl-stabilized flames using OH* chemiluminescence. The study utilized the Rayleigh Index 

Criteria to calculate the energy transfer fields and tested an assortment of perfectly premixed 

methane-air flames, each containing a helical velocity disturbance coupled with a precessing 

vortex core (PVC). The tomographic method involved phase-averaging the mean 

chemiluminescence fields of OH* from a single camera location and proved effective in 

determining regions of interest within the combustor where thermoacoustic oscillations were 

prone to occur. The angle position of the PVC and the helical disturbance relative to the camera 

viewing angle were modeled by tracking the chemiluminescence centroid position [16], contrary 

to the method in this work utilizing multiple camera angles. These reconstructed 3D tomography 

models allowed researchers to chart changes in the heat release rate over the thermoacoustic 

cycle, and ultimately showed the total energy transfer increased with the acoustic pressure 

oscillation amplitude. The technique provided by Geraedts et al. proved most efficient in 

supplying accurate energy measurements and served as an effective alternative to more 

expensive laser-based diagnostic methods. 

A goal of this work was to prepare methods of collecting equivalence ratio measurements 

for the eventual use in monitoring instantaneous three-dimensional flame heat release rate. Work 

done by Hardalupas [12, 13] and Shreekrishna [14] provided foundational groundwork in 

understanding the need for spatially resolved equivalence ratios for future use in collecting heat 

release measurements. Combustion instabilities are known to be caused by unsteady heat release 
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processes in the system coupled with one or more acoustic modes, causing pressure and flow 

oscillations ultimately resulting in a feedback loop. Given that fuel-air ratio oscillations are 

driven by pressure and velocity fluctuations in lean premixed combustors especially near the fuel 

injection, a number of studies have explored the important relationship between equivalence 

ratio and heat release measurements in chemiluminescence [12, 14, 15, 42, 43, 46]. At a fixed 

equivalence ratio, the quasi-steady chemiluminescence emission intensity from the flame 

exhibits a linear dependence on the reactant flow rate [14, 20], confirming the effectiveness of 

chemiluminescence for unsteady heat release measurements for flames responding to low 

frequency flow velocity oscillations [14]. With this understanding, further work will seek to 

build upon equivalence ratio measurements by simultaneously analyzing time-resolved velocity 

measurements to explore the perturbations in heat release rate. 

2.4 Chemiluminescence Imaging 

 By definition, chemiluminescence is the emission of light as a result of a chemical 

reaction process taking place. When applied to flame measurement diagnostics, 

chemiluminescence can be used to isolate particular radical species in the flame reaction zone 

and in conjunction with computed tomography produce a reconstruction of the flame structure. 

The intensity of the species-filtered images can be used to measure a number of flame 

phenomena, for example acquiring equivalence ratio from the ratio of OH*/CH* fields [12], 

allowing for in depth analysis and study of flame characteristics. The application of computed 

tomography was first introduced to chemiluminescence emission measurements by Hertz and 

Faris [47]. Further investigations like the work of Bohm et al. [48] helped develop methods of 

incorporating CMOS camera imaging with Computed Tomography of Chemiluminescence, 

allowing for 3D time resolved spatial information measurements and concentrated profiles of 
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excited state species. This method of chemiluminescence served as an excellent supplement to 

known laser-based diagnostics and opened the door for further advancement in the field of high-

speed camera chemiluminescence imaging. Further chemiluminescence work helped develop 

studies into collecting local equivalence ratios from various excited species [10-13, 49, 50] as 

well as collecting heat release rates for premixed flames [12, 46]. Detecting flame flashback [48] 

and auto-ignition within the combustion zone [51] have also proven substantial points of analysis 

for chemiluminescence testing, with investigators taking interest in modelling different reaction 

mechanisms [13, 20, 46, 52] to better understand excited species behavior. While various other 

line-of-sight measurements exist for computed tomography, such as Schlieren Photography [53], 

chemiluminescence imaging is considerably more simplistic and efficient as it naturally occurs in 

the flame, requiring no need for external light sources in the setup. For this reason, the use of 

Chemiluminescence Imaging coupled with Computed Tomography was decided upon for this 

study for its relatively simplistic approach and historical accuracy. Future work will build upon 

the chemiluminescence imaging outlined here and will eventually include simultaneous velocity 

measurements, with the goal of obtaining quantitative heat release measurements for further 

analysis and study (discussed further in Conclusions chapter). 
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Chapter 3: Mathematical Background 

3.1 The Radon Transform 

While it was Cormack and Hounsfield who introduced the first Computer Assisted 

Tomography device for medical imaging in 1979, the initial mathematical work that served as 

the foundation for Computed Tomography was first introduced in 1917 by Johann Radon, an 

Austrian mathematician who made several lasting contributions in the area of integral geometry. 

In his work, the Radon Transform is defined as a series of line integrals that pass through a 

particular function f at different projection angles in two-dimensional space. 

 

Figure 1. Example Radon Transform for projections based on line integrals. 

The Radon Transform is mathematically defined as, 
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for a function 𝑓(𝑡, 𝜃) for all space on ℝC with 𝑡 ∈ ℝ and 𝜃 ∈ (0, 2𝜋), able to be defined for any 

straight line within n-dimensional Euclidean Space 𝑅G. In three dimensions, the function f can be 

defined as an object density, with the Radon Transform representing the 2D projection data, or 

sinogram, for the object around specified angles. The Radon Transform allows one to determine 

the total density of a certain function along any specified line 𝑙 by means of the angle 𝜃 and 

distance 𝑡 from the origin. A more versatile version of the transform can be rewritten using a 

delta function in terms of x and y, 

 
𝑅𝑓(𝑡, 𝜃) = < 𝑓=𝑥(𝑠), 𝑦(𝑠)>𝑑𝑠
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(2) 

with p representing the projection or line integrals, and q representing the angle or view of the 

object. The Radon transform above is then utilized in finding the inverse Radon Transform of the 

measured function, the definitive crux of the mathematical backing in computed tomography. 

3.2 The Fourier Transform 

By using the Fourier Transform Method, the inverse of the Radon Transform can be 

calculated and ultimately used to reconstruct the original defined density function, serving as a 

fundamental building block for later developed tomographic reconstruction methods. For any 

given absolutely integrable function f on Euclidean space ℝ, the Fourier Transform of 𝑓 in terms 

of angular frequency 𝜔 is defined as 

 
ℱ𝑓(𝜔) = < 𝑓(𝑥)𝑒ATUV𝑑𝑥

@

A@
, (3) 

applying to all infinitely differentiable functions in what is known as the Schwartz Space, 

denoted as 𝒮(ℝG). The Schwartz Space maintains several beneficial properties for the process of 

transform inversion, including the existence of a bijective relationship between the Fourier 
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Transform of a function and its inverse. This relationship allows that for any location in 

Schwartz Space (𝑓 ∈ 𝒮), the Fourier Transform of a Schwartz function remains a Schwartz 

function and allows one to change the order of integration. It can then be seen that, for an 

absolutely integrable function f, the inverse Fourier Transform can be defined as, 

 
ℱAX𝑓(𝑥) =

1
2𝜋< 𝑓(𝜔)𝑒TVU𝑑𝜔

@

A@
, (4) 

Which leads to the determination that for 𝑓 ∈ 𝒮, the Fourier Inversion Theorem for all x is  

 ℱAX(ℱ𝑓)(𝑥) = 𝑓(𝑥). (5) 

Applying this theorem to two dimensions yields 

 
ℱCAX𝑔(𝑥, 𝑦) =

1
4𝜋C < < 𝑔(𝑋, 𝑌)𝑒T(U]^_`)𝑑𝑥𝑑𝑦

@

A@

@

A@
, (6) 

and can be further applied to higher dimensions following the same formulation.  

3.3 The Central Slice Theorem 

The central slice theorem, also known as the Fourier slice theorem, is able to successfully relate 

the one-dimensional Fourier transform of the Radon transform with the two-dimensional Fourier 

transform of a projected function. The theorem definition states that the Radon transform is 

given by the values along the slice of the two-dimensional Fourier transform of the original 

image, with the line going through the origin parallel to the line the function was originally 

projected on. More simply put, a slice of the solved 2D Fourier transform of an object 𝐺(𝜔) is 

proven to be equal to the 1D Fourier transform of any infinite number of views at any angle 𝜃 

within 180c. As illustrated in Figure 2 [54], the 1D Fourier Transformation of the original object 

projection, denoted by 𝑝e(𝑣), is identical to the sliced cross-section of the 2D Fourier 

Transformation of the object perpendicular to the direction of the projection, denoted by 

𝐹(𝑣U, 𝑣_). 
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Figure 2. Illustration of the Central Slice Theorem [54]. 

 The central slice theorem serves as a mathematical building block for many fundamental 

tomographic reonstructive algorithms due to its ability to extract 2D cross-section data from the 

line integral path of the 1D Fourier transform [55]. 

3.4 Reconstruction Algorithms 

When dealing with projection measurement, there exist two methods of measurement 

through either emission or absorption. Absorption involves the measurement of an external 

source with a known location and emission spectra, with the absorption of the emitted source 

being quantified and measured by a detector. Common examples of this method include electron 

tomography and laser beam diagnostics, often found employed in medical imaging. Emission 
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obtains the intensity from an internal source (typically naturally occurring though possible to be 

artificial as in Positron Emission Tomography) and is often collected via camera imaging 

techniques and practices. In this work, the use of chemiluminescence as a method of emission 

will be the major topic of analysis. 

Algorithms are classified into two distinct types: analytical and iterative algorithms. 

Analytical algorithms are typically faster and more computationally lenient, while iterative 

algorithms maintain a more robust approach to noise presence. Most analytical algorithms are 

based on the concept of back projection, in which the line integrals of each measured view are 

successively “smeared” back onto the discrete domain. In essence, the projections are 

redistributed to their previous locations based on the spatial information of the original object 

field. By default, this method of back projection has an inherent weakness to noise; to best 

combat this, the method of back projection is captured in the functionality of the Filtered Back 

Projection (FBP) Algorithm. During the algorithm’s reconstruction process, each view is filtered 

before every back-projection step, aiding in the overall attenuation and filtering of excessive 

noise. The FBP algorithm is derived from the previously discussed central slice theorem by 

taking the inverse Fourier transform previously solved for in equation 6 and converting into polar 

coordinates and altering the limits of integration. 

While analytical algorithms such as the Filtered Back Projection technique are used 

primarily in medical fields for enhanced, non-invasive imaging, iterative algorithm techniques 

have seen primary use in the field of physical sciences for their robustness and computational 

durability. These iterative algorithms are primarily centered around the introduction of a system 

of linear equations in modelling the reconstruction problem of interest. The system of equations 

is introduced by forming a discretization of the projection line integral case and dividing the 
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object domain into a set numbered of voxels. The general case of the projection operator is 

defined as 

 
𝐼LM =h𝑤jLM𝑓j

kl

jmX

 (7) 

representing the 𝑣𝑡ℎ voxel, the 𝑝𝑡ℎ projection, and the 𝑞𝑡ℎ view, all under the total number of 

voxels of 𝑁j. In this work, a voxel is defined as a uniform element of three-dimensional space 

that represents a single entity of an equally divided three-dimensional object volume (it is worth 

noting, the general terminology for view and projection in this section will eventually be 

replaced with camera location and pixel, respectively, for ease of understanding in following 

chapters on methods of algorithm development). The 𝑤LMj term represents the contribution of 

each voxel to the overall object reconstruction, specifically utilizing strip integrals as the 

intersection area (or volume in 3D) of the strip with voxel 𝑣 (see Figure 3 below). 

 

Figure 3. Discrete object domain depicting optical contribution of weight factors across each 
voxel [17]. 
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This attributes the “weighted” density of the object for each discrete voxel location, allowing for 

the distributed allocation of the object density to be quantified. With a firm understanding of 

mathematical rules and manipulation, it can be determined that the system shown in equation 7 

can be similarly modelled as a system of linear equations in matrix form, 

 𝑰 = 𝑊𝒇. (8) 

The projection matrix 𝑊 maintains the dimensions of 𝑁j × 𝑁L × 𝑁M	for all voxels, projections, 

and views, while 𝒇 represents the object function valued at each individual voxel. While the 

variable projection matrix can seemingly grow rather large relatively quickly, it is found that the 

majority of values inside the matrix are in fact sparse, proving most useful in large computation 

situations. While the above matrix form implies that the vector 𝒇 can be determined by the 

inverse 𝑊AX, this is often found to not be feasible as limited number of views and projection 

noise limit the size of the matrix to be non-square disallowing direct inversion. With limited 

number of views, the system of equations is found to be under-determined with the number of 

voxels exceeding the number of projection values. From this, a multitude of iterative algorithms 

have been introduced and implemented to optimally solve the set system of equations. 

 The process for almost all of the iterative algorithms is conceptually similar, following a 

specific process to best converge to the closest possible approximation. Most iterative algorithms 

start with an initial guess value 𝑓t, which is then passed through the algorithm and a current 

estimate 𝑓u is compared with the measured projections 𝐼 to produce an error value associated 

with that iteration ℎ. The error value is then used to correct the current estimate to the next 

iteration estimate 𝑓u^X, effectively guiding the algorithm to a converged solution until a defined 

criterion of convergence is reached. Most iterative algorithms differ in their application of this 

corrective technique, applying corrective measures in various arrangements for varying degrees 
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of effects. The most common algorithm is the Algebraic Reconstruction Technique (ART); first 

introduced by Gordon et al. in 1970 [19], the ART paved the way for the development of a 

family of modified iterative algorithms. The Additive Reconstruction Technique [24] applies the 

iteration correction through means of adding the step-adjusted value to the current guess value 

𝑓u, 

 
𝒇u^X = 𝒇𝒉 + 𝜷𝒘𝒑𝒒

=𝑰𝒑𝒒 − 𝒘𝒑𝒒 ∙ 𝒇𝒉>
𝒘𝒑𝒒 ∙ 𝒘𝒑𝒒

 (9) 

While suitable for most applications in reconstruction, a more robust and smoother technique can 

be found in the Multiplicative Algebraic Reconstruction Technique (MART) which applies its 

correction multiplicatively. This allows for better reconstructions of objects with higher 

gradients, providing favorable performance in configurations with a limited number of views. It 

also allows for any object value that must converge to zero, once the value reaches zero it will 

remain so due to the multiplicative nature of the algorithm. This, however, requires that the 

initial guess estimate 𝑓t cannot be assumed zero, and a mean value must be derived from the 

projections. The MART algorithm used in this work is taken from the work of Verhoeven [24], 

 
𝒇u^X = 𝒇𝒉 ×

𝜷𝒘𝒑𝒒

𝒘𝒑𝒒 ∙ 𝒘𝒑𝒒
{𝟏 −

𝑰𝒑𝒒
𝒘𝒑𝒒 ∙ 𝒇𝒉

} (10) 

and incorporates an added relaxation factor 𝜷 to reduce reconstruction noise during iterations. 

Further discussion on the choice of relaxation parameters and the application of the algorithm 

can be found in the methods section of this work. 

 As is the case for any iterative mechanism, a criterion of convergence was needed to 

encapsulate the iterative scheme and to determine the stopping point of the function. While 

previous literature has defined various types of convergence [24, 26, 56], most take a similar 

shape of the difference between criteria from one iteration to the next being less than some 
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convergence value Δ𝑐 (in mathematical terms, 𝑋u^X − 𝑋u < Δ𝑐). In the work of Mishra et al., 

criteria takes the form of a maximum absolute difference between consecutive iterations, while 

Gordon et al. [19, 57] can be seen utilizing the nonuniformity or variance of the measurements, a 

common and more useful convergence parameter for strictly ART algorithms [24]. In this work, 

three different errors [26] and one convergence criterion [58] were considered for monitoring 

iterative performance.  

 𝐸X = max	 |	𝑓u^X − 𝑓u| 
(11) 

 
𝐸C = �

∑ (𝑓u^X − 𝑓u)Ck

𝑁 	�
X/C

 (12) 

 𝐸� =
𝐸C

	max	(𝑓u^X) − min	(𝑓u^X) ∗ 100 (13) 

A continuation of the convergence criteria presented by Mishra [58] was ultimately chosen for 

reconstructing the phantom flame images due to its historical accuracy of demonstrating 

convergence [26, 36, 58]. 

 
�
𝑓u^X − 𝑓u

𝑓u^X � ∗ 100 ≤ 𝑐 (14) 
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Chapter 4: Theory & Methods 

To understand the direction of developing a reconstructive algorithm for computed 

tomography, a firm understanding of the theory was first required to develop the program. First 

off, the procedure of reconstructing chemiluminescence fields in the spatial domain requires 

conversion between different sets of coordinates, and to do so requires a firm grasp on linear 

algebra as well as in depth calculus and algebra manipulation techniques. The spatial domain of 

interest where the object for desired reconstruction resides, in this case a combustion flame, is 

known as the world coordinate system (𝑥�, 𝑦�, 𝑧�). This space is represented in three 

dimensions with an origin at the base center of the dump plane. Following this is a three 

dimension coordinate system with an origin at the center of the camera lens, defined as the lens 

coordinate system (𝑥, 𝑦, 𝑧), followed by an image coordinate system centered at the origin of the 

CCD imaging sensor (𝑥�, 𝑦�). 

 

Figure 4. Coordinate domain for world, lens, and image coordinate systems. 

The fundamental objective behind Computed Tomography of Chemiluminescence (CTC) is the 

conversion of an object in world coordinates to an image on the sensor in image coordinates. To 

accomplish this, the position and orientation of any camera can be uniquely defined by a set of 
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rotation Euler angles (𝜓, 𝜃, 𝜙) that determine the “pitch”, “yaw”, and “roll” of each coordinate 

vector, and a translation vector containing translations in each of the x, y, and z directions. 

 
�
𝑥
𝑦
𝑧
� 	= 	 �

𝑟X 𝑟C 𝑟�
𝑟� 𝑟� 𝑟�
𝑟� 𝑟� 𝑟�

�	�
𝑥�
𝑦�
𝑧�
� 	+	�

𝑇U
𝑇_
𝑇�
� (15) 

The Euler angles are defined by Euler’s Rotation Theorem, in which any rotation about a certain 

axis in 3D space can be described by three distinct angles. These angles are then used to 

determine the rotation coefficients about each axis, and when combined in the order of axis 

rotation via matrix multiplication (in equation 19, the order of rotation is the z, y, and then x 

axis) depict the generalized rotation matrix used to rotate any object in 3D space. 

 

Figure 5. Euler angle rotation around the z, x, and y axes respectively [59]. 

 
𝑅U(𝜓) = �

1 0 0
0 𝑐𝑜𝑠	𝜓 −𝑠𝑖𝑛	𝜓
0 𝑠𝑖𝑛	𝜓 𝑐𝑜𝑠	𝜓

� (16) 

 
𝑅_(𝜃) = �

𝑐𝑜𝑠	𝜃 0 𝑠𝑖𝑛	𝜃
0 1 0

−𝑠𝑖𝑛	𝜃 0 𝑐𝑜𝑠	𝜃
� (17) 

 
𝑅�(𝜙) = �

𝑐𝑜𝑠	𝜙 −𝑠𝑖𝑛	𝜙 0
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𝑅 = 𝑅� ∗ 𝑅_ ∗ 𝑅U	

		= �
𝑐𝑜𝑠	𝜃	𝑐𝑜𝑠	𝜙 sin𝜓 sin 𝜃	𝑐𝑜𝑠	𝜙 − cos𝜓 sin𝜙 cos𝜓 sin 𝜃 cos𝜙 + sin𝜓 sin𝜙
𝑐𝑜𝑠	𝜃	𝑠𝑖𝑛	𝜙 sin𝜓 sin 𝜃	𝑠𝑖𝑛	𝜙 + cos𝜓 cos𝜙 cos𝜓 sin 𝜃 sin𝜙 − sin𝜓 cos𝜙
− sin 𝜃 𝑠𝑖𝑛	𝜓 cos 𝜃 𝑐𝑜𝑠	𝜓 cos 𝜃

� 

		= �
𝑟X 𝑟C 𝑟�
𝑟� 𝑟� 𝑟�
𝑟� 𝑟� 𝑟�

� 

(19) 
 
 

(20) 
 
 

(21) 

After acquiring lens coordinates, the coordinates are then converted to the image coordinate 

system using simple geometric proportionality, 

 𝑥� = 𝑍t
𝑥
𝑧 									𝑦

� = 𝑍t
𝑦
𝑧	, (22) 

With 𝒁𝟎 representing the distance between the object and image plane (image distance) when the 

camera is in focus. This model neglects lens distortion with each object point and its 

corresponding image coordinates satisfying the pinhole camera model, even when the lens is out 

of focus. 

4.1 Camera Calibration Method 

Once an underlying understanding of the system was developed, the camera system could 

then be calibrated using the method outlined in Wang et al. [36] so as to determine the rotation 

and translation parameters for each known camera location. Building from knowledge of known 

matrix manipulation, a system of equations can be obtained based on equations 15 and 22 using 

the matrix form 

𝐵Ck×XX	𝑦XX×X = 𝑏Ck×X 

where substituting and rearranging equations 15 and 22 gets 

 𝑍t(𝑟X𝑥� + 𝑟C𝑦� + 𝑟�𝑧� + 𝑇U) = 𝑥′(𝑟�𝑥� + 𝑟�𝑦� + 𝑟�𝑧� + 𝑇�) 

𝑍t=𝑟�𝑥� + 𝑟�𝑦� + 𝑟�𝑧� + 𝑇_> = 𝑦′(𝑟�𝑥� + 𝑟�𝑦� + 𝑟�𝑧� + 𝑇�) 

 
(23) 

Rearranging these equations to obtain known values separated from the unknown values, 
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𝑇�

𝑥� +
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𝑦�𝑧� = 𝑦′ 

(24) 

These equations can then be modelled as a linear set of equations in matrix form: 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡𝑥�X 𝑦�X 𝑧�X 1 0 0 0 0 −𝑥X�𝑥�X −𝑥X�𝑦�X −𝑥X�𝑧�X
0 0 0 0 𝑥�X 𝑦�X 𝑧�X 1 −𝑦X�𝑥�X −𝑦X�𝑦�X −𝑦X�𝑧�X

⋮
⋮

𝑥�k 𝑦�k 𝑧�k 1 0 0 0 0 −𝑥k� 𝑥�k −𝑥k� 𝑦�k −𝑥k� 𝑧�k
0 0 0 0 𝑥�k 𝑦�k 𝑧�k 1 −𝑦k� 𝑥�k −𝑦k� 𝑦�k −𝑦k� 𝑧�k⎦

⎥
⎥
⎥
⎥
⎤
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(26) 

𝑏 = [𝑥X′ 𝑦X′ ⋯ ⋯ 𝑥k′ 𝑦k′]¯ (27) 

where the entirety of y is unknown. In order to form an adequate numbered system of equations, 

there must be at least 𝑁 = 6 noncoplanar feature points included to obtain a fully determined 

system. To reduce errors in the system, a total of more than 6 points are taken to form an over-

determined system of equations, which is then solved using a least squares method to best fit the 

solution. The greater the number of feature points available for use, the greater the accuracy of 

the least squares solution. 

Once a solution for y is established, each individual variable is found using isolated 

systems of equations aided by select relation equations that serve to allow fully determined 

systems. The next step takes a newly defined variable 𝑎 = µ̄
¶·

, and using the known solutions for 

𝑦(1), 𝑦(2), 𝑦(5),	and 𝑦(6), alongside the rotation matrix parameters satisfying 

 ¸(𝑟X + 𝑟�)C + (𝑟C − 𝑟�)C + ¸(𝑟X − 𝑟�)C + (𝑟C + 𝑟�)C = 2 (28) 
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The coefficient 𝑎 can be computed: 

𝑎 =
𝑇�
𝑍t
=

2
¸[𝑦(1) + 𝑦(6)]C + [𝑦(2) − 𝑦(5)]C + ¸[𝑦(1) − 𝑦(6)]C + [𝑦(2) + 𝑦(5)]C

.  
(29) 

From this parameters 𝑟X − 𝑟�, 𝑇U, 𝑇_ can be computed and using the known orthonormal and right 

handed properties of the rotation matrix, 𝑟� − 𝑟� can be determined, 

 𝑟� = 𝑟C𝑟� − 𝑟�𝑟�	, 𝑟� = 𝑟�𝑟� − 𝑟X𝑟�	, 𝑟� = 𝑟X𝑟� − 𝑟C𝑟�. (30) 

The remaining parameters can be systematically solved utilizing geometric optics concepts in the 

Gaussian lens equation and geometric proportionality, 

 1
𝑧 +

1
𝑧T¹º

=
1

𝑓»¼G½
	 ,

𝑥T¹º
𝑥 =

𝑦T¹º
𝑦 =

𝑧T¹º
𝑧  (31) 

where the image position (𝑥T¹º, 𝑦T¹º, 𝑧T¹º) is any position considered out of focus. These 

relations can then be substituted with values of a chosen focus point (𝑥¾, 𝑦¾, 𝑧¾) to allow ample 

equations to converge on a determined solution, 

 1
𝑧¾
+
1
𝑍t
=

1
𝑓»¼G½

	 ,
𝑥¾′
𝑥¾

=
𝑦¾′
𝑦¾

=
𝑍t
𝑧¾
. (32) 

 Calibration for each camera location incorporated the discussed solution method above 

and was conducted utilizing a unique cylindrical calibration piece (Figure 6). 
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Figure 6. Calibration cylinder used to depict 39 non-coplanar points in flame spatial domain. 
The calibration cylinder consisted of 39 individual feature points spread across separate three-

dimensional planes at different orientations. All point locations in the world coordinate system 

were known, while calibration images were taken at each of the 11 camera locations so as to 

obtain image pixel coordinates for the viewed feature points. The maximum number of points 

viewable at each location were taken from the images and using the developed calibration code 

(Appendix C), the camera rotation and translation parameters were acquired for all 11 camera 

locations. The results of the camera calibration are given in Table 1, 
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Table 1. Calibration results. 

It is worth noting that both the pitch and roll angles are near zero, which agrees with the fact that 

the cameras are perpendicular to the horizontal plane, and the yaw angles are roughly 15° 

separated apart illustrating each evenly spaced camera view. These preliminary calibration 

results prove the accuracy of the camera calibration technique, providing evidence that the 

rotation and translation parameters for each location were correctly calibrated. 

4.2 Iterative Algorithm Development & Phantom Case 

In order to determine the functionality and sufficiency of an iterative algorithmic solver 

for chemiluminescence fields, a phantom image study was conducted first as an attempt to 

reconstruct a known function. The phantom function used in this study was obtained from 

Geraedts et al. [22], 

 𝑓(𝑟, 𝜃, 𝑧) = À𝑃(𝑟, 𝜓, 𝑧) = sin(2𝜋𝑟) 	 ∙ cos(𝜓 + 𝑧 ∙ 2𝜋) ∙ (sin(𝑧 ∙ 𝜋))C						𝑟 ≤ 𝑅
0																																																																																																									𝑟 ≥ 𝑅

 (33) 

modeled as a single helical mode structure to best represent a flame. Due to the phantom 

function inherently containing both negative and positive values in its solution, the 

reconstruction phantom was artificially shifted by a constant value. This was done to prevent the 

erratic convergence issues brought on by negative phantom function values due to the 

Camera # 1 2 3 4 5 6 7 8 9 10 11

Yaw (deg) -73.84 -61.85 -47.21 -33.07 -16.15 -2.64 12.20 31.47 44.96 65.80 71.30

Pitch (deg) 2.04 -1.10 -0.06 -0.20 0.28 0.41 0.03 0.89 1.12 5.21 9.73

Roll (deg) 2.78 -0.81 -0.36 -1.03 -0.53 -0.94 -0.40 0.07 0.38 -3.51 -8.68

!" (mm) 10.44 6.76 10.28 9.90 10.60 4.04 8.62 8.37 13.75 11.53 12.17

!# (mm) -111.36 -106.07 -106.71 -105.89 -105.42 -105.10 -106.44 -110.87 -110.92 -107.86 -109.32

!$ (mm) 1126.37 1117.65 1117.48 1108.36 1107.08 1114.35 1105.05 1109.99 1107.69 1107.05 1107.12

%& (mm) 115.78 115.89 115.88 115.99 115.99 115.91 116.02 115.95 115.98 115.97 115.95
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multiplicative nature of the reconstruction algorithm. The end reconstruction was then shifted 

back to its original location once convergence was ultimately reached. The phantom flame data 

was modeled over a 100	𝑚𝑚� voxel cube space for reconstruction across 𝑁j = 64� number of 

voxels and is represented in a single row vector 𝑓(𝑥�G, 𝑦�G, 𝑧�G). The image intensity for each 

pixel at each projection view can be formulated as, 

 
𝐼(𝑝, 𝑞) = h𝑓(𝑥�G, 𝑦�G, 𝑧�G) ∙ 𝑤(𝑥�G, 𝑦�G, 𝑧�G; 𝑝, 𝑞)

kl

GmX

 (34) 

corresponding to the previously discussed projection operator in chapter 3 (equation 7). In this 

equation, 𝑝 denotes the index of the pixel, while 𝑞 represents the index of the camera location. 

The weight ratio values are denoted by 𝑤(𝑥�G, 𝑦�G, 𝑧�G; 𝑝, 𝑞) and represent the optical density 

contribution for the 𝑛th voxel located at (𝑥�G, 𝑦�G, 𝑧�G) for the pixel 𝑝 and camera location 𝑞. 

When conducting Flame Chemiluminescence Tomography, the image intensities are directly 

captured by the camera imaging system; this means that in order to successfully reconstruct the 

object 𝑓, the weight factors 𝑤 must first be determined. 

 

Figure 7. Coordinate system conversion with example blurry circle projected onto sensor [36]. 
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Noting the projection process illustrated in Figure 7, a voxel located at (𝑥�, 𝑦�, 𝑧�) in the flame 

domain is first converted to lens coordinates (𝑥, 𝑦, 𝑧) using equation 15, followed by a 

conversion to image coordinates (𝑥T¹º, 𝑦T¹º, 𝑧T¹º) using equation 22. Next it follows since the 

focal image distance of the camera 𝑍t is fixed, all points falling before and after the focal image 

plane appear as blurry circles on the sensor. It is then necessary to calculate the center 

coordinates (𝑋Ä, 𝑌Ä) and radius 𝑟 of each blurry circle found on the camera sensor, 

 
𝑟 =

Å𝑧T¹º − 𝑍tÅ
2𝑧T¹º

𝐷;						𝑋Ä = 𝑥T¹º
𝑍t
𝑧T¹º

;						𝑌Ä = 𝑦T¹º
𝑍t
𝑧T¹º

, (35) 

With 𝐷 representing the aperture of the camera. The blurry circles are so numbered on the CCD 

sensor plane that they overlap and intersect; this intersection area is then calculated to determine 

the contributions across each pixel of specified constant area on the sensor. From this analysis 

two distinct scenarios emerge: first (1) the diameter of the blurry circle is greater than the pixel 

size, or second (2) the diameter of the blurry circle is smaller. To simplify the analysis, it is 

assumed that the pixels located on the outside edge of the blurry circle are themselves circles 

with the intersection area varying linearly with the separation 𝑙 of the two blurry circle centers. 

The area concentration ratios are determined by, 

 

𝐴T
𝐴Ç

=

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐴L
𝐴Ç

𝑙 ≤ 𝑟 −
𝑑L
2

𝑟 +
𝑑L
2 − 𝑙
𝑑L

∙
𝐴L
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(36b) 

where 𝐴T is the intersection area, 𝐴Ç is the blurry circle area, 𝐴L is the area of the pixel, and 𝑑L is 

the diameter (length) of the pixel. Because the intensity contributions of each voxel to the pixels 

are shown as 𝐼 = 	𝑓(𝑥�G, 𝑦�G, 𝑧�G) ∙
ÑÒ
ÑÓ

, it is concluded that the weight ratio values are given by 

𝑤 = ÑÒ
ÑÓ

. This process is repeated for every single voxel, for every single pixel, on every single 

camera, resulting in solved weight factors for the entire tomography system domain. 

 Once all weight factors for all known variables are acquired, the MART multiplicative 

algorithm (equation 10) can be implemented. All weight ratio values were concatenated and 

combined into a single large matrix 𝑤LM, while intensity values for all pixels at each camera 

location were combined into a single variable 𝐼LM. It is common to employ a relaxation factor 𝛽 

to reduce overall reconstruction noise and improve system convergence and stability. From 

previous work [26, 60] it can be shown that stronger relaxation factors (𝛽 << 1) must be used 

when there is significant error present typically found in non-exact projection geometries. 

Conversely, it is possible to use higher (i.e. weaker) relaxation factors for more exact projection 

geometries, proving most advantageous when dealing with strip integrals and unavoidable 

projection noise. In this study, a relaxation factor of .85 was chosen for the phantom 

reconstruction case, given the exactness of the phantom integral projections. 

 To establish a viable convergence stopping criterion for the iterative reconstruction, the 

reconstruction iterations were performed for an initial iteration count of 1.5 million iterations and 

the convergence criteria (equation 14) was monitored. The criteria 𝑐, a scaled representation of 
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the maximum absolute difference between each successive iteration, was plotted to visualize 

where the criteria began to converge to a single value (Figure 8). 

 

Figure 8: Convergence criteria plotted across iteration count for establishing stopping value. 
The convergence curve is shown to level out roughly at 1 × 10A�. 

Based upon this and evidence demonstrated in previous literature [26], a convergence criteria of 

𝑐 ≤ 10A� or . 001%	was used to end the reconstruction. This technique allowed for the best 

performance in reconstructing the original phantom from the altered function, and the results are 

shown in Figure 9. The initial value 𝑓t was an altered initial guess phantom and was used to 

show convergence from a dissimilar structure to the original desired function.  

1×10$%
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Figure 9. Comparison of the (a) initial guess, (b) desired original phantom function, and (c) final 
phantom flame reconstruction. 

 The phantom flame was also reconstructed at four different camera viewing angle counts 

of 11, 9, 7, and 5 to demonstrate the understanding of effective reconstruction accuracy as a 

function of number of viewing angles. Results in Figure 10 qualitatively show that by decreasing 

the respective number of camera viewing angles, the accuracy of the reconstruction decreases 

significantly. 

 

Figure 10. Reconstruction accuracy demonstrated with four different camera viewing angle 
counts. 

This was quantitatively explored using a standard error analysis to illustrate and confirm the 

varying levels of convergence accuracy based on the number of camera viewing angles used. As 

illustrated in Figure 11, the standard error between the reconstructed case and the original 

phantom flame function decreases dramatically with an increase in camera viewing locations. 

(a) (b) (c)

11 Viewing Angles 9 Viewing Angles 7 Viewing Angles 5 Viewing Angles
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The standard error depicted in this work consists of applying a unity-based normalization to the 

reconstruction and phantom data (equation 37), followed by the spatially averaged error across 

all voxel reconstruction values (equation 38). 

 𝑋� =
𝑋 − 𝑋¹TG

𝑋¹ÕU − 𝑋¹TG
 (37) 

 

𝜖 =
∑ ×𝑓Ø¼ÙcG½Ú − 𝑃𝑃 ×

𝑉�  
(38) 

This analysis confirms the choice of 11 camera viewing angles as sufficient given a relatively 

low standard error of .0096 or .96%, and is further supported by the standard error analysis 

performed by Geraedts et al. [22]. 

 

Figure 11. Standard error vs. number of viewing angles. 

Once the phantom flame case was shown to be successfully reconstructed, it was time to apply 

the iterative reconstruction technique to a real experimental scenario. 
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4.3 Experimental Setup 

 Data collection for the experimental flame imaging was conducted in the fundamental 

diagnostics test cell in the Advanced Propulsion and Power Lab at Virginia Tech. Experimental 

measurements were taken using an atmospheric combustor capable of producing lean, partially-

premixed swirl stabilized flames for analysis. A Photron FastCam SA5 Ultra High-Speed 

Camera was used in taking data measurements, attached to a SIL3-25HG50D Compact Image 

Intensifier with a 105 mm focal length lens attachment. The camera setup was configured on a 

two-piece mount system connected to a 60 in. piece of 80-20 Aluminum bar protruding from the 

combustor test section. The bar was attached to a free moving brace connected to the 

atmospheric combustor rig, which allowed the camera to be strategically maneuvered into each 

desired camera location. An angle marker was attached to the brace to properly align the camera 

setup to the desired angle. The camera was aimed directly at the base of the dump plane (Figure 

12) and was manually adjusted to capture the entirety of the flame within the quartz cylinder. 
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Figure 12. Atmospheric rig setup consisting of high-speed camera and intensifier attached to 
swivel arm, circling atmospheric combustor. 

The combustion system consisted of two speaker box housings connected to a central air 

plenum containing the air-fuel mixing tube running to the top of the dump plane. At the end of 

the tube, a flame swirler of 18 mm diameter served to mix the air and gas flows before entering 

the dump plane. Methane was used as fuel for the lean, partially-premixed turbulent flame, 

coupled with supplied oxygen through the air compressor in the lab to institute combustion. 

Once ready for testing, a torch ignitor was used to ignite the air-gas mixture at the top of the 

quartz, burning off any excess fuel in the quartz and supplying a constant turbulent flame at the 

base of the dump plane. 

Photron 
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SIL3 Compact 
Intensifier

ATM Combustor
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Figure 13. Schematic of scaled atmospheric combustor rig. 

Three microphones (PCB ¼′′ ICP microphone system, model number: 377C10) were 

attached to the vertical mixing tube, along with two dynamic pressure transducers (Kistler 

6025A) at the top of the steel combustion holder and at the base of the dump plane to provide 

ample pressure data capture. The microphones maintained a sensitivity of 2 mV/Pa, while the 

dynamic pressure transducers maintained a sensitivity of 103 pC/bar and could operate up to 

700° C with signals amplified by a charge amplifier with a 200 mV/pC gain. An inflow K-type 
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thermocouple was placed inside the air plenum to monitor the inlet air temperature, and all data 

apparatus connected to the rig were controlled and monitored using an integrated LabView 

dashboard user interface. The mass flow rate, temperature, and pressure transducers/microphones 

were respectively sampled at 1 Hz, 90 Hz, and 100 kHz for this study. 

 

Figure 14. Designated camera locations placed at 15°  increments around the flame. 

A total of 22 measurements were taken, a measurement for both CH* and OH* radicals at 

each of the 11 camera locations. Chemiluminescence intensities were captured using 

monochromatic filters of 430 nm with a FWHM of 10 nm for CH*, and 310 nm with a FWHM 

of 10 nm for OH* respectively. All measurements were taken at an acoustically forced excited 

state, whereby a set of Axxera Mid-Range Speakers attached to a Crown XLS Amplifier were 

powered to a 250 Hz sine wave. This allowed the capturing of the chemiluminescence fields at 

acoustically forced conditions. The camera specifications were adjusted to the parameters 
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outlined in Table 2 and maintained a maximum resolution of 1024 x 1024 pixels on the imaging 

sensor. 

 

Table 2. Camera specifications chart. 

Fluid flow characteristics through the atmospheric combustor were set using a LabView 

integrated data acquisition system, with all system connections going through a centralized DAQ 

terminal block chassis powered via an external power supply. A series of mass flow controllers 

(Alicat MCR-50SLPM-D-DB15/CM and MCR-500SLPM-D/CM) monitored the flow rates of 

both the incoming fuel and air, respectively, with air and fuel flow capabilities of 10.34 g/s and 

.546 g/s, and a measurement uncertainty of ±0.8% for both controllers correlating to 82.6 mg/s 

and 4.37 mg/s, respectively. Air flow was established at 150 standard L/min and a global 

equivalence ratio of .75 was instituted for the flow to provide ample conditions for peak acoustic 

excitement. This coupled with the introduction of a 250 Hz frequency sine wave created a 

sustained acoustic instability in the system, providing the desired forced excitation conditions for 

the intended study.  

Camera Specifications
Gain 10
Exposure Time 150 !s
Delay 55 ns
Framerate 5000 fps
Resolution 1024 x 1024
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Chapter 5: Results & Discussion 

5.1 Phase Average Image Processing 

 Upon the collection of adequate flame imaging data, a necessary method of phase 

averaging across the instability was introduced to acquire sufficient images for reconstruction. 

The technique of phase averaging involves acquiring the mean of a wave characteristic across 

one full cycle; this typically requires the wave be divided into interval sections, or phases, with 

the phases being respectively averaged across all cycles. 

The data recordings were stored as 1 second video files with the camera recording at 

5,000 fps, each data file thus containing a total of 5,000 frames. An arbitrary number of 100 

cycles was chosen for extraction from the recorded data, with each cycle representing a single 

wavelength or one period of the forced instability. When dividing into cycles, the max number of 

cycles is dependent on the camera frame rate and thus the number of images stored on the data 

recording file. Given the nature of the wave-like properties of the acoustic instability, it was not 

feasible to sync the recording start with the beginning of the instability wave. The pressure data 

therefore had to be plotted to determine the starting frame at which the instability peaked (Figure 

15). 
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Figure 15. Pressure from PT1 at dump plane plotted to determine the starting frame. In this 
example, the instability peaks roughly at 120 ∙ 10A�	𝑠, leading to a start at frame 6. 

The pressure transducer was set to collect data at 100,000 Hz, while the camera collected frame 

data at a frequency of 5,000 fps; it can be deduced that 20 pressure data points were present for 

every 1 frame. In order to acquire the starting frame value, the first occurring pressure peak value 

was subsequently divided by 20 in order to obtain the first frame showing the instability. 

At a 250 Hz instability, there maintained 20 frames per cycle, and with the gathered 

number of cycles, a total of 2,000 frames were extracted from each data recording sample. Figure 

17 shows the instability frequency spikes across a discrete frequency range for all data collecting 

apparatus, with clear instabilities arising at every 250 Hz mark. Each cycle was then split into 10 

phases, with each respective phase being averaged across all 100 instability cycles. 
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Figure 16. Acoustic instability wave visually shown in the flame across all 10 phases at 15° 
location. 

Low-level pixel intensity noise was filtered out to avoid added inadvertent noise in the 

reconstructions, and the final phase averaged intensities were normalized and compiled by phase 

for all 11 camera locations for both CH* and OH*, resulting in a total of 220 images for 

reconstruction.  

 

Figure 17. Instability frequencies shown for all pressure data collecting apparatus.  

1 2 43 765 8 9 10
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Figure 18. Phase 1 averaged intensity images for CH* at all 11 camera angle locations. 

Camera Location 1 Camera Location 2 Camera Location 3

Camera Location 4 Camera Location 5 Camera Location 6

Camera Location 7 Camera Location 8 Camera Location 9

Camera Location 10 Camera Location 11
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5.2 Inverted Abel Transform 

 When initializing the iterative reconstruction process, an initial volumetric guess value 

for the flame structure was used to instigate and commence the iterations towards a solution. In 

this study, the method of inverse Abel transformation was used to convert a 2D cross-sectional 

projection of the phase averaged images into a 3D volumetric object for initialization. The 

process consisted for each individual phase averaging all 11 camera location images into a single 

image to allow for an optimum 3D guess volume representation. The image was processed using 

the Basis Set Expansion (BASEX) Abel transform method developed by Dribinski et al. [61] 

creating a perfectly symmetric 2D cross section, then being revolved around its central axis to 

create a axisymmetric three-dimensional object. 

 

Figure 19. The inverse Abel transform mathematically obtains the 2D cross-section projection 
(right) and revolving it about the central symmetric axis obtains the 3D object (left). 

This symmetric object would serve to uniformly initialize the iterative processing of the flame 

volumetric data and proved acceptable as an initial guess input in the iterative reconstruction 

solver. 
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5.3 CH* & OH* Field Reconstructions 

Species chemiluminescence fields were reconstructed using the developed MART 

algorithm program shown in Appendix A, while the weight ratio values utilized in the 

reconstruction process were separately computed prior to the iterative algorithm submission 

using the code shown in Appendix B. Flame fields are shown in Figures 20-27 to illustrate the 

species field structure, while a cross-section planar view of the flame species gradient depicts the 

general U-shape formation of the flame interior. The flame wall is visibly outlined near -40 and 

40 mm, matching the location of the combustor quartz inner wall with values beyond this 

deemed exterior noise. Only values located inside the known quartz region were used in the 

spatial equivalence ratio analysis, with the presence of exterior noise surrounding the quartz 

region discussed further in section 5.4. The reconstructed flame shows an internal flame cavity 

down the central axis of the reconstruction similar to the initial inverse Abel guess function, 

suggesting the Abel transform method is an accurate initial estimation to start the iteration 

process. The maximum volumetric flame values can also be shown to fluctuate alongside the 

general height of the flame field with the progression of phase, as expected given the oscillatory 

nature of the imposed acoustic excitation. 
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Figure 20. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of CH* intensities for phases 1-3. 
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Figure 21. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of CH* intensities for phases 4-6. 
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Figure 22. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of CH* intensities for phases 7-9. 

Phase 7

Phase 8

Phase 9



 53 

 
Figure 23. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of CH* intensities for phase 10.  

Phase 10
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Figure 24. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of OH* intensities for phases 1-3. 
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Figure 25. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of OH* intensities for phases 4-6.  
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Figure 26. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of OH* intensities for phases 7-9.  
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Figure 27. 3D Isosurface of 40% max volumetric value (left) and XY planar contour slice (right) 

of OH* intensities for phase 10. 

The voxel count of 64� voxels is shown to provide sufficient resolution in the species 

reconstructions; a greater number of voxels would allow for higher resolution reconstructions 

and is recommended for further exploration in future work (Chapter 6). The intensity levels of 

the captured images were slightly lower than anticipated, possibly due to poor lighting in the test 

cell area; while not a significant issue in the reconstruction results thanks to intensity 

normalization, non-normalized low intensity measurements are capable of slightly affecting 

resolution of a reconstruction. The acoustically driven instability was forcefully excited at a 

frequency of 250 Hz and was shown to effectively oscillate the flame. The instability, while 

present, was not as strongly represented in the reconstructions as anticipated, and future work 

will investigate self-excited instabilities with peak pressure oscillations significantly higher than 

the forced instability case.  

Phase 10
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5.4 Addressing Reconstruction Noise 

Upon review of the reconstruction results, there was a noticeable presence of noise found 

surrounding the outside of the quartz cylinder in the reconstructions (Figure 28). 

 

Figure 28. Top-down view of CH* Phase 1 reconstruction, dotted line representing the inner 
quartz wall. Values lying outside of this region were considered noise in this work. 

To determine where this noise originated, an understanding of the relationship between 

the blurry circle center locations on the sensor and voxel locations in 3D space was first 

established. Because the camera is constrained to capturing a 3D spatial domain in 2D images, 

the blurry circles located on the sensor must account for the space in front of and behind the 

quartz region. 

Top-Down View (XZ Plane)
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Figure 29. Voxel location coordinates (𝑥j	, 𝑦j	, 𝑧j) to each corresponding blurry circle center 
location, where 𝑣 is voxel number 1-64. 

As seen in Figure 29, the camera accomplishes this by cataloguing each 3D voxel point 

using a unique stacking pattern; x and z coordinates are shown to progress going left to right and 

top to bottom, respectively, while each diagonal pattern contains a single unique y coordinate. 

This is repeated for every single voxel coordinate location, with the diagonal patterns 

incrementally shifted from each other in order to fit all of the points onto the sensor. If the 

calibration inputs were to somewhat differ from the physically accurate camera calibration 

parameters, the blurry circle patterns have the potential to overlap, causing blurry circles 

intended for the inner quartz region to be assigned to the outside of the quartz upon 

reconstruction. 

("#$%&'	, *#+	, ,#-)
("#/%&+	, *#+	, ,#')

("#0%##	, *#+	, ,#/)

("#$%&'	, */$	, ,#-)
("#/%&+	, */$	, ,#')

("#0%##	, */$	, ,#/)

("#$%&'	, *#0	, ,#-)
("#/%&+	, *#0	, ,#')

("#0%##	, *#0	, ,#/)



 60 

To confirm this, an attempt to map the locations of the blurry circles on the sensor plane 

was conducted using the calculated calibration parameters as inputs. The resulting blurry circles 

were plotted for both the areas inside and outside the quartz cylinder, and a magnified portion of 

the sensor’s central axis is shown in Figure 30 below. 

 

Figure 30. Sensor locations of blurry circle centers for voxels located inside and outside the 
quartz cylinder. 

As can be shown near sensor coordinates (−0.4, −5.2) and (0.1, −4.7), the blurry circles for 

voxels located outside the quartz were found to overtake blurry circles for voxels located inside 

the quartz. This means that due to a slight deviation in the calibration inputs, small pockets of 

blurry circles throughout the sensor began to super-impose upon each other. This overlap in 

blurry circle patterns ultimately resulted in some of the intensities inside the flame region to be 
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mistaken for values outside the flame region, and values inside the quartz were reconstructed as 

voxel values outside the intended flame region. Under this consideration, it was concluded that 

the volumetric noise seen in the flame reconstructions was due to small errors in the calculated 

rotation and translation matrix parameters, causing unintended volumetric values to be 

reconstructed outside the quartz. 

After conducting an extensive review of the reconstruction algorithm and calibration 

process, the source of these slight deviations was found to be due to three possible sources: 

inaccurate tolerances in the 3D printed calibration cylinder, an insufficient number of calibration 

points used in calculating the approximated calibration parameters, and the calibration images 

having been taken during a separate session in the lab prior to the actual data measurements (a 

potential for human error marking and relocating the camera). Future work will look to acquire 

calibration and experimental images together during the same session so as to avoid possible 

error. For the calibration process, a least squares method was used to determine the calibration 

parameters for the weighted ratio factors involved in the final tomographic reconstruction. When 

calculating a least squares solution, the more points that are utilized in calibrating the camera, the 

more precise the solution for the camera calibration will be. In this study, a total of 39 calibration 

points were designed and implemented using the custom-built calibration cylinder (Figure 6). 

Due to the nature of the calibration cylinder geometry, however, each camera viewing angle was 

only able to capture roughly 16 to 17 points from the calibration cylinder. This quantity was 

initially thought to be sufficient in solving for the calibration parameters; upon further analysis of 

the reconstruction results and the calibration technique used, it was determined that a greater 

number of calibration points would likely lower the presence of noise in the reconstructions 

along with a more accurately manufactured calibration cylinder geometry. Due to the 
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extenuating circumstances regarding the COVID-19 situation disallowing non-essential 

laboratory testing, it is the goal of future work to develop a more robust calibration plate 

manufactured with a greater number of calibration points and tighter tolerances. This will 

significantly decrease the level of noise in the resulting solution, allowing for a more accurate 

reconstruction to be obtained. 

5.5 Spatial Equivalence Ratio Measurements 

 Upon extracting data values inside the quartz region, spatial equivalence ratio 

measurements were obtained from the ratio of the OH*/CH* reconstructed volumetric values. 

The dependence of the OH*/CH* intensity ratio on equivalence ratio is approximated using the 

curve fit relationship defined in Hardalupas et al. [12], 

 𝑂𝐻∗

𝐶𝐻∗ = 0.497 + 2.107 ∗ 𝑒A
(áAt.�)
t.C�t 	 (39) 

with 𝜙 representing the equivalence ratio. According to the study, this relation corresponds to a 

specific calibration for strain rate associated with an area-averaged gas velocity at the jet exit of 

𝑉t = 3		𝑚/𝑠. For a given value of equivalence ratio of 𝜙 ≤ 1.0, the ratio of intensities for all 

flow conditions was found to have an uncertainty of 5% or .05 of the value given by equation 39, 

while equivalence ratios ranging 𝜙 > 1.0 had uncertainties of .2 up to 𝜙 ≤ 1.3 [12]. This 

relation was shown to be valid within the equivalence ratio range of 𝜙 > .7 and 𝜙 < 1.3 given 

the mixture composition approaching extinction limits at these values [12]. The technique was 

also shown to present smaller uncertainties for lean stoichiometric flames as opposed to rich 

flames [12]. In this work, collected chemiluminescence emissions for OH* and CH* provide 

spatial representation of the local flame fuel-air ratio, with the flame shape distinctly outlined in 

Figures 31-34 below. 
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Figure 31. Equivalence ratio heat maps for Phases 1-3.  

Phase 1

Phase 2

Phase 3
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Figure 32. Equivalence ratio heat maps for Phases 4-6. 

  

Phase 4

Phase 5

Phase 6
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Figure 33. Equivalence ratio heat maps for Phases 7-9. 

  

Phase 7

Phase 8

Phase 9
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Figure 34. Equivalence ratio heat map for Phase 10. 

For each phase, the mean equivalence ratio across all voxels in the bounds of the quartz 

cylinder and 𝑦� ≤ 80	𝑚𝑚 can be shown to outline the acoustic instability wave as illustrated in 

Figure 35. This shows the effective oscillatory behavior caused by the forced acoustic excitation, 

further demonstrating the fluctuations in equivalence ratio across the turbulent flame. Also 

shown in Figure 35, the fluctuating equivalence ratio is found to be very close to being in phase 

with the phase-averaged acoustic pressure data, positioned roughly 180 𝜇𝑠 out of phase given the 

location of the two wave troughs. While not perfectly in phase most likely due to pressure 

disturbances in the mixing tube causing fuel-air oscillations to affect the flame, the phase 

relationship can be clearly outlined in the oscillatory nature of both flame properties. 

 

Phase 10
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Figure 35. Acoustic instability wave shown in both spatially averaged equivalence ratio and 

phase-averaged pressure for phases 1-10. 

Chemiluminescence intensity measurements of particular radical species have been 

shown as acceptable indicators of flame heat release when coupled with simultaneous flame 

velocity measurements [12, 13, 41, 62], and it is the goal of future studies to conduct temporal 

velocity and intensity measurements to acquire spatially resolved heat release rates for an 

acoustically excited flame. 
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Chapter 6: Conclusions 

 Computed Tomography of Chemiluminescence has seen significant utilization for 

mapping spatially resolved flame measurements throughout a number of different studies [16, 

22, 26, 47, 53, 54, 58]. In this work, a tomographic reconstruction program was developed and 

tested using chemiluminescence emissions to predict and study equivalence ratio fluctuations in 

an acoustically excited flame. Utilizing a multiplicative algebraic algorithm along with high 

resolution camera images collected at various projection angles, reconstructed intensity fields 

were acquired for both CH* and OH* radical species and were used to map spatial equivalence 

ratios. Results for both equivalence ratio and pressure fluctuations were found to be very close to 

in phase with each other, signifying the coupled interconnection between acoustic pressure 

oscillations and equivalence ratio behavior in thermoacoustic phenomena. The camera 

positioning was calibrated using a developed method of calibration [36] and a custom built 

calibration cylinder to properly align and compute locations of the camera. Visible noise was 

noticed outside of the flame region, and it was determined that a greater number of calibration 

points and tighter manufacturing tolerances must be implemented to fully calibrate the camera 

and avoid propagating reconstruction noise outside of the flame region. 

 Future work will aim to improve upon the calibration cylinder design and increase the 

number of visible calibration points to improve overall reconstruction accuracy and eliminate 

unwanted noise. Further analysis will also be conducted on the presence and variation of heat 

release rate utilizing measurements in Particle Image Velocimetry (PIV) [63] to further expand 

combustion measurement capability. Further investigation might also prove insightful in 

increasing the number of camera angles used in acquiring projections and varying the number of 

voxels used in mapping the volumetric flame. 
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Appendix A: Reconstruction Algorithm 

%Final Flame Iterative Reconstruction Code 
%Created by: Joseph Giroux 
%Last Updated: 5/25/2020 
  
clear all 
clc 
close all 
  
tic 
  
%Shift Image/Volume by: 
shift=1; 
%Choose Image Phase to Reconstruct 
P=1; %of 10 
%Number of Voxels 
V=64; 
%Number of Pixels 
X=1024; 
%Relaxation Factor 
B=.85; 
%Size of Cube Reconstruction Area 
size_cube=100; %mm 
  
%Load Abel-Inversion Guess Data (Change CH or OH) 
m=matfile('AbelInversion_InitialGuess_CH_(AllPhases_V64).mat'); 
Abel_guess=m.Abel_Inversion_array(P,:).*(1e2); 
f_h=Abel_guess+shift; 
  
%Load in Big Weight Ratio File (Change variable based on Voxel count) 
load(['C:\Users\tjgiroux3\Desktop\Final Phases Reconstruction\Weight Ratio 
Files\Uncentered_100mm_FinalAttempt_WeightRatio_Big_(V',num2str(V),'_X1024_N1
1).mat']) 
W=W_Big_V64; 
clear W_Big_V64 
%Load in Intensity Array (Change CH or OH) 
load(['C:\Users\tjgiroux3\Desktop\Final Phases Reconstruction\CH Intensity 
Files\FINAL_Uncentered_Normalized&Cropped_PhaseAverage_Images_CH_(Phase',num2
str(P),').mat']) 
I=(I_PhaseAvg_centered)+sum(shift.*W,1); 
clear I_PhaseAvg_centered 
  
%Load in Big Relaxation Factor Term 
load(['C:\Users\tjgiroux3\Desktop\Final Phases Reconstruction\Relaxation Term 
Files\Uncentered_100mm_FinalAttempt_RelaxationTerm_initial_(V',num2str(V),'_X
1024_N11).mat']) 
Relax_Big_Array=B.*Relax_initial; 
clear Relax_initial 
  
%Initialize f_h1 Function Array 
f_h1=zeros(1,V^3); 
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%Iteration Marker 
x=1; 
  
while 1 
%% COMPARISON INTENSITY CALCULATION 
%Display Iteration Count 
disp(['Iteration: ',num2str(x)]) 
  
%Progress Marker 1 
disp('Beginning I_c Calculation)') 
%Intensity Comparison Calculation 
I_c=f_h*W; 
%Intensity Comparison 
C=I./I_c; 
%Replace NaN and Inf values with Real Values 
C(isnan(C))=1; 
%C(isinf(C))=0; 
  
%% RECONSTRUCTION CALCULATION 
%Progress Marker 2 
disp('Beginning Reconstruction Calculation') 
%Difference Term for Intensity Comparison 
dif=1-C; 
f_h1=f_h.*(1-(Relax_Big_Array*dif'))'; 
  
%Save the Function Every nth Iteration 
% n=100; 
% if mod(x,n)==0 
% i=x/n; 
% Save_f_h{i}=[f_h1;f_h]; 
% end 
  
%% WHILE LOOP BREAK DETERMINANT 
  
%Convergence Criteria 
E_converge(x)=max((abs(f_h1-f_h)./f_h1)*100); 
E_converge(x) 
  
%Display Loop Error 
%Max Absolute Difference Error 
E1(x)=max(abs(f_h1-f_h)); 
%E1(x) 
%RMS Error 
E2(x)=(sum((f_h1-f_h).^2)./(V.^3)).^.5; 
%Normalized RMS Percent Error 
E3(x)=(E2(x)./(max(f_h1)-min(f_h1))).*100; 
%E3(x) 
  
%Assign new f_h value for next iteration 
f_h=f_h1; 
f_h1=zeros(1,V^3); 
  
%Iteration Convergence Criteria 
if E_converge(x)<(1e-5) 
    break 
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end 
%Assign Next Iteration 
x=x+1; 
%Max Iteration Break 
if x>1500000 
    break 
end 
  
end 
%Scale and Shift function back for ER Analysis 
n=matfile('Normalization_Scale_CH.mat'); 
norm_scale=n.max_norm(P,:); 
f_h1=norm_scale.*(f_h-shift); 
%Save Function with defined Filepath 
save(['Uncentered_Normalized_Shifted_Reconstructed_Function_CH_(Phase',num2st
r(P),'_V',num2str(V),')'],'f_h1','-v7.3') 
  
%Display Time Elapsed for Total Reconstruction 
t=toc; 
disp(['Time Elapsed For Reconstruction: ',num2str(t/3600),'hour(s)']) 
  
Save_Error=[E1;E2;E3;E_converge]; 
save(['Uncentered_Normalized_Shifted_Saved_Error_Phase',num2str(P)],'Save_Err
or','-v7.3') 
  
%Error Plots 
figure(1) 
plot(E_converge) 
xlabel('Iteration Number') 
ylabel('Error Value') 
title('Convergence Criteria c') 
%ylim([0,1e-5]); 
  
figure(2) 
plot(1:(size(E1,2)),E1) 
xlabel('Iteration Number') 
ylabel('Error Value') 
title('Plot 1: Max Absolute Difference Error') 
%ylim([0,1e-6]); 
  
figure(3) 
plot(1:(size(E2,2)),E2) 
xlabel('Iteration Number') 
ylabel('Error Value') 
title('Plot 2: RMS Error') 
%ylim([0,1e-1]); 
  
figure(4) 
plot(1:(size(E3,2)),E3) 
xlabel('Iteration Number') 
ylabel('Error Value') 
title('Plot 3: Normalized RMS Percent Error') 
%ylim([0,10e-3]); 
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%%%%%%%%%%%%%%%%%%%%%%%%% Flame Plots %%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Voxel Centerpoint Coordinates 
M=[-(V/2),0,-(V/2)]; 
for i=1:V 
x(i)=((size_cube/V).*[M(1,1)+(i-.5)]); 
y(i)=((size_cube/V).*[M(1,2)+(i-.5)]); 
z(i)=((size_cube/V).*[M(1,3)+(i-.5)]); 
end 
  
%%-----Abel-Inversion Volumetric Isosurface-----%% 
%Compiling of Abel-Inversion 3D Volumetric Data 
Abel_Inversion3D=reshape(Abel_guess,V,V,V); 
Abel_Inversion3D=permute(Abel_Inversion3D,[1,3,2]); 
figure(5) 
[X_w,Z_w,Y_w]=meshgrid(x,z,y); 
max_val_Abel=max(max(max(Abel_Inversion3D))); 
isosurface(X_w,Z_w,Y_w,Abel_Inversion3D,max_val_Abel*0.3) 
colormap(bone) 
colorbar 
%%----------Reconstruction Isosurface-----------%% 
%f_h1(isnan(f_h1))=0; 
V_fh1=reshape(f_h1,V,V,V); 
V_fh1=permute(V_fh1,[1,3,2]); 
figure(6) 
[X_w,Z_w,Y_w]=meshgrid(x,z,y); 
max_val_fh1=max(max(max(V_fh1))); 
isosurface(X_w,Z_w,Y_w,V_fh1,max_val_fh1.*.4) 
%axis([-50 50,0 100,-50 50]) 
colormap(bone) 
%caxis([0,.2]) 
colorbar 
%%-----Filtered Reconstruction Isosurface-------%% 
V_fh1_filt=imgaussfilt3(V_fh1); 
%V_fh1_filt(isnan(V_fh1_filt))=0; 
figure(7) 
[X_w,Z_w,Y_w]=meshgrid(x,z,y); 
max_val_fh1_filt=max(max(max(V_fh1_filt))); 
isosurface(X_w,Z_w,Y_w,V_fh1_filt,max_val_fh1_filt.*.4) 
axis([-50 50,-50 50,0 100]) 
colormap(bone) 
%caxis([0,.2]) 
colorbar 
  



 82 

Appendix B: Weight Ratio Calculation 

%ARC Grid Submission: Real Weight Ratio Calculator 
%Created by: Joseph Giroux 
%Last Updated: 2/19/2020 
  
clear all 
clc 
  
%Job Array 1 
  
k=int32(str2num(getenv('SLURM_ARRAY_TASK_ID'))); 
  
%Notes: 
%->N,V,and X values must be positive integers 
%->Change N based on which camera location is being calculated 
%->Change Filepath for file save as necessary 
%->Some parameters specialized for V=320, Specifically j value 
  
%->Desired length of cube to encapsulate reconstruction area 
size_cube=100; %mm 
  
%Voxel Cube Dimension (VxVxV Voxel Cube) 
V=64; 
%Camera Location 
N=1; 
  
%% ------Initiate Save-Loop Function (Set to run n number of times)-------- 
  
for j=4.*(k-1)+1:4.*k 
    w{j}=CombARCSaveLoopFunction(V,N,size_cube,j); 
    disp('iteration') 
    disp(j) 
end 
%% 
  
  
%Save Function with defined Filepath 
[filepath] = 
fileparts(['/work/cascades/tjgiroux3/Real_Flame_Reconstruction/',num2str(V),'
_Voxels/JobArray_',num2str(N),'/']); 
save(fullfile(filepath,sprintf('w_FinalAttempt_%d',k)),'w','-v7.3') 
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%ARC Grid Submission: Combined Save Cycle Function 
%Created by: Joseph Giroux 
%Last Updated: 2/19/2020 
  
function w=CombARCSaveLoopFunction(V,N,size_cube,j) 
%Increment Index for Desired Calculated Voxel Centerpoints 
Index_i=((V.^3)./32).*(j-1)+1; 
Index_o=((V.^3)./32).*j; 
%Load in matrix A of Voxel Centerpoint Coordinates (Converts to mm) 
A=(size_cube/V).*VoxBuild(V); 
A=A(Index_i:Index_o,:); %Indexes for desired Calc. Length 
  
%Focus Point Coordinates of 100mm x 100mm x 100mm Cube (Center of cube) 
F=[0,76.2,0]; 
%Focal Length (mm) 
f_lens=105; 
%Aperture of Camera (f/stop) 
D=4.5; 
%Sensor Pixel Dimension 
X=1024; 
%Square Pixel Length 
l_pixel=20e-3; %mm, 20 micrometers 
%Load in matrix S of Sensor Centerpoint Coordinates (converts to mm) 
S=l_pixel.*SensBuild(X); 
%Load in Rotation/Translation/Image Distance for all N camera locations 
m=matfile('FinalAttempt_Calibration_Parameters.mat','Writable',true); 
M=m.Cal_Parameters(4.*(N-1)+1:4.*N,:); 
R=M(1:3,1:3); 
T=M(4,1:3)'; 
Z=M(4,4); 
  
%% -----------------------Weight Ratio Calculation------------------------- 
%Parallel Loop 
%Number of Processors 
numprocessors=32; 
%Initialize Parallel Pool of N Processors 
parpool(numprocessors); 
%Initialize Weight Ratio Array 
W=zeros(256,X^2,numprocessors); 
parfor i=1:numprocessors 
    W(:,:,i)=WeightRatioParallelFun(X,f_lens,l_pixel,D,S,A(256.*(i-
1)+1:256.*i,:),R,T,Z); 
end 
  
%Shut down Parallel Pool 
delete(gcp('nocreate')) 
%Stack all 32 W Matrices into One [8192 x 1024^2] Sparse Matrix 
for i=1:numprocessors 
    w(256*(i-1)+1:256*i,:)=sparse(W(:,:,i)); 
end 
  
  
  
end 
%Voxel World Coordinate Matrix Builder Function (VoxBuild) 
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%Created by: Joseph Giroux 
%Last Updated:4/24/2020 
  
%Must set in your code V=Voxel Dimension to call function 
%(VxVxV Voxel Cube) 
  
function A=VoxBuild(V) 
  
%Iteration Origin 
M=[-(V/2),0,-(V/2)]; 
%All possible x,y,z centerpoint values 
for i=1:V 
x(i)=[M(1,1)+(i-.5)]; 
y(i)=[M(1,2)+(i-.5)]; 
z(i)=[M(1,3)+(i-.5)]; 
end 
  
%Finds all possible combinations of x,y,z values 
%Outputs Matrix A containing all VxVxV centerpoint coordinates 
A=combvec(x,y,z)'; 
end 
 
 
--------------------------------------------------------------------------------------------------------------------- 
 
 
 
%CMOS Sensor Centerpoint Coordinate Builder (SensBuild) 
%Created by: Joseph Giroux 
%Last Updated:11/12/18 
  
function S=SensBuild(X) 
%Iteration Origin 
O=[-X/2,-X/2]; 
%All possible x,y centerpoint values 
for i=1:X 
x(i)=[O(1,1)+(i-.5)]; 
y(i)=[O(1,2)+(i-.5)]; 
end 
  
%Finds all possible combinations of x,y values 
%Outputs Matrix S containing all 1024x1024 pixel centerpoint coordinates 
S=combvec(x,y)'; 
  
end 
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%ARC Grid Submission: Parallel Solver Function 
%Created by: Joseph Giroux 
%Last Updated: 5/6/19 
  
function w=WeightRatioParallelFun(X,f_lens,l_pixel,D,S,A,R,T,Z) 
%Initialize Weight Ratio Array 
w=zeros(size(A,1),X^2); 
for k=1:size(A,1) 
%---------------------Image Coordinate Calculations------------------------ 
    CamCoord(:,k)=R*A(k,:)'+T; 
    x_prime(k)=Z.*(CamCoord(1,k)./CamCoord(3,k)); 
    y_prime(k)=Z.*(CamCoord(2,k)./CamCoord(3,k)); 
%-------------------------x_img, y_img, z_img------------------------------ 
    z_img(k)=((1/f_lens)-(1./CamCoord(3,k))).^-1; 
    y_img(k)=CamCoord(2,k).*(z_img(k)./CamCoord(3,k)); 
    x_img(k)=CamCoord(1,k).*(z_img(k)./CamCoord(3,k)); 
%----------------------Blurry Circle Centerpoints-------------------------- 
    r(k)=(abs(z_img(k)-Z)./(2.*z_img(k))).*D; 
    X_c(k)=Z.*(x_img(k)./z_img(k)); 
    Y_c(k)=Z.*(y_img(k)./z_img(k)); 
end 
clear CamCoord x_prime y_prime z_img y_img x_img 
%----------------------Intersection Area Ratio----------------------------- 
%Area of Square Pixel 
A_p=l_pixel^2; %mm^2 
%Diameter of Assumed-Circular Pixel 
d_p=sqrt((4*A_p)/pi); %mm 
%Area of Blurriness 
A_b=pi.*r.^2; %mm^2 
for u=1:size(A,1) 
    for v=1:X^2 
%---------Distance between pixel and blurry circle center------------------ 
        l=sqrt(((S(v,1)-X_c(u)).^2)+((S(v,2)-Y_c(u)).^2)); 
%-------------------------------------------------------------------------- 
%Case a: Blurry Circle Dia. > Pixel Size 
if r(u)>=(d_p/2) 
    if l<=r(u)-(d_p/2) 
        w(u,v)=A_p./A_b(u); 
    elseif l>=r(u)+(d_p/2) 
        w(u,v)=0; 
    else 
        w(u,v)=((r(u)+(d_p./2)-l)/d_p).*(A_p./A_b(u)); 
    end 
%Case b: Blurry Circle Dia. < Pixel Size 
else 
    if l<=(d_p/2)-r(u) 
        w(u,v)=1; 
    elseif l>=r(u)+(d_p/2) 
        w(u,v)=0; 
    else 
        w(u,v)=((r(u)+(d_p./2)-l)/(2.*r(u))); 
    end 
end 
    end 
end 
end 
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Appendix C: Camera Calibration 

%Calibration System of Equations Analysis 
%Created by: Joseph Giroux 
%Last Updated: 3/3/2020 
  
clear all 
clc 
close all 
  
%%%%%%%%Choose Camera Location%%%%%%%% 
N=1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Number of Pixels 
X=1024; 
%Degree Locations 
D=15:15:165; 
%Square Pixel Size (Length) 
l_pixel=20e-3; %mm, 20 micrometers 
%Focus Point Coordinates of 100mm x 100mm x 100mm Cube (Center of cube) 
F=[0,76.2,0]; 
x_wf=F(1,1); 
y_wf=F(1,2); 
z_wf=F(1,3); 
%Focal Length of Rayfact Lens (EFL since Intensifier has 1:1 Relay) 
f_lens=105; %mm 
  
%Load in Calibration Cylinder TIF Image 
for n=1:size(D,2) 
Cal_Cylinder{n}=imread([num2str(D(n)),'_Degrees.tif']); 
end 
%%%%%% Image Tool %%%%%% 
% c=1; 
% imtool(Cal_Cylinder{c}) 
% filt=imcomplement(Cal_Cylinder{c}); 
% filt=imreducehaze(filt);%,'method','approx','ContrastEnhancement','boost'); 
% filt=imcomplement(filt); 
% filt=imreducehaze(filt,'method','approx','ContrastEnhancement','boost'); 
% filt=imcomplement(filt); 
% filt=imreducehaze(filt);%,'method','approx','ContrastEnhancement','boost'); 
% filt=imcomplement(filt); 
% imtool(filt); 
%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Input Image Pixel Coordinates for Cylinder Points 
  
%%%%%%%%%%%%%%%%%%%% INPUTS HERE %%%%%%%%%%%%%%%%%%%% 
%%%NOTE: Images have been rotated 180 degrees (inverted) 
%%%for ease of inputing point locations. The image is 
%%%reverted back to upside down later for sign convention accuracy. 
%%%inp variable are pixel coordinates gathered from Matlab 
%%% image viewer (Image Tool section above) 
%Cylinder Points of Choice (Inverted Image) 
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%Points_N=xlsread('Calibration Image Points Data.xlsx','Matlab Readout'); 
  
  
load(['Cylinder_Pixel_Save_',num2str(N),'.mat']) 
points=Points_N(:,1)'; 
inp=Points_N(:,2:3); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%% Determination if Points are NonCoplanar %%%%%% 
%Load Calibration Cylinder Coordinates 
load('CalibrationCylinder_Point_Coordinates.mat') 
x_w=Cyl_Coord(points,1); 
y_w=Cyl_Coord(points,2); 
z_w=Cyl_Coord(points,3); 
  
%Matrix Rank Comparison: 
for m=1:size(points,2)-1 
M_Coplane(:,m)=[x_w(m+1)-x_w(1),y_w(m+1)-y_w(1),z_w(m+1)-z_w(1)]; 
end 
  
Rank=rank(M_Coplane); 
if Rank<=2 
    disp("Points are Coplanar") 
    return 
else 
    disp("Points are NonCoplanar") 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Convert Image Pixel Coordinate System to Centerpoint Coordinate System 
x_i=(inp(:,1)-(X/2)); 
y_i=(inp(:,2)-(X/2)); 
%Coordinates are reverted back to initial sign convention (180 deg. rotation) 
x_i=-1.*(x_i); 
y_i=-1.*(y_i); 
  
for i=1:size(x_i,1) 
     
%x-coordinate if loop 
if x_i(i)>0 
    x_prime(i)=x_i(i)-.5; 
else 
    x_prime(i)=x_i(i)+.5; 
end 
  
%y-coordinate if loop 
if y_i(i)>0 
    y_prime(i)=y_i(i)-.5; 
else 
    y_prime(i)=y_i(i)+.5; 
end 
  
end 
%Apply Pixel Size Scaling 
x_prime=l_pixel.*x_prime; 
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y_prime=l_pixel.*y_prime; 
  
  
%% Matrix Linear Equation LinSolve Section 
for k=1:size(x_prime,2) 
syms r1 r2 r3 r4 r5 r6 r7 r8 r9 T_x T_y T_z Z_0 a 
  
vars=[r1 r2 r3 r4 r5 r6 r7 r8 r9 T_x T_y T_z Z_0 a]; 
  
B(2.*(k-1)+1:2*k,:)=[x_w(k),y_w(k),z_w(k),1,0,0,0,0,-x_prime(k).*x_w(k),-
x_prime(k).*y_w(k),-x_prime(k).*z_w(k);... 
    0,0,0,0,x_w(k),y_w(k),z_w(k),1,-y_prime(k).*x_w(k),-y_prime(k).*y_w(k),-
y_prime(k).*z_w(k)]; 
  
y=[(Z_0.*r1)./T_z,(Z_0.*r2)./T_z,(Z_0.*r3)./T_z,(Z_0.*T_x)./T_z,(Z_0.*r4)./T_
z,(Z_0.*r5)./T_z,(Z_0.*r6)./T_z,... 
    (Z_0.*T_y)./T_z,r7./T_z,r8./T_z,r9./T_z]'; 
  
b(:,2.*(k-1)+1:2*k)=[x_prime(k),y_prime(k)]; 
  
end 
b=b'; 
  
%% Least Squares Solution 
Y=(B'*B)\(B'*b); 
b_leastsquares=B*((B'*B)\(B'*b)); 
residuals=b-b_leastsquares; 
  
%% Solve r1-r6,T_x,T_y Section 
x0=[.5,.5,.5,.5,.5]; 
options=optimoptions('fsolve','MaxFunEvals',5000000,'MaxIter',5000000,'TolX',
1e-20,'TolFun',1e-15);  %,'Display','iter-detailed'); 
sol_1=fsolve(@(x0)fsolve_a(x0,Y),x0,options); 
a=sol_1(5); 
  
r1=sol_1(1); 
r2=sol_1(2); 
r3=Y(3)*a; 
r4=sol_1(3); 
r5=sol_1(4); 
r6=Y(7)*a; 
T_x=Y(4)*a; 
T_y=Y(8)*a; 
  
%% Solve r7,r8,r9 Section 
%Based on Orthonormal, Right-Handed Properties of Rotation Matrix 
  
r7=r2*r6-r3*r5; 
r8=r3*r4-r1*r6; 
r9=r1*r5-r2*r4; 
  
%% Image Distance Fsolve Section (x_primef,y_primef,z_f,Z_0) 
  
x_f=r1*x_wf+r2*y_wf+r3*z_wf+T_x; 
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y_f=r4*x_wf+r5*y_wf+r6*z_wf+T_y; 
  
x0=[1,5,1035,150]; 
sol_2=fsolve(@(x0)fsolve_Z0(x0,x_f,y_f,f_lens,a,x_wf,y_wf,z_wf,r7,r8,r9),x0,o
ptions); 
x_primef=sol_2(1); 
y_primef=sol_2(2); 
z_f=sol_2(3); 
Z_0=sol_2(4); 
  
T_z=a*Z_0; 
  
%% Orthogonality Test 
%%%The Rotation Matrix values should obey orthogonality/orthonormality. 
%%%This means that the Rotation matrix R follows (R')*R=I where R' 
%%%is the transpose of Rotation Matrix R, and I is the Identity Matrix. 
%%%In summary, m1,m5,m9 should equal 1 and m2,m3,m4,m6,m7,m8 should equal 0. 
m1=(r1^2)+(r4^2)+(r7^2); 
m2=(r2*r1)+(r5*r4)+(r8*r7); 
m3=(r1*r3)+(r4*r6)+(r7*r9); 
m4=(r2*r1)+(r5*r4)+(r8*r7); 
m5=(r2^2)+(r5^2)+(r8^2); 
m6=(r2*r3)+(r5*r6)+(r8*r9); 
m7=(r1*r3)+(r4*r6)+(r7*r9); 
m8=(r2*r3)+(r5*r6)+(r8*r9); 
m9=(r3^2)+(r6^2)+(r9^2); 
  
  
%% Save values for later concatenation 
% Calibration_Loadout=[r1,r2,r3,0;r4,r5,r6,0;r7,r8,r9,0;T_x,T_y,T_z,Z_0]; 
% save(['Calibration_Loadout_',num2str(N),''],'Calibration_Loadout') 
  
%% Euler Angle Calculation 
  
x0 = [0,0,30]; %Initial guess values 
dataset=[r1,r2,r3;r4,r5,r6;r7,r8,r9]; 
options = optimoptions('fsolve','algorithm','levenberg-marquardt','TolX',1e-
14,'TolFun',1e-6,'MaxFunEvals',1000); 
A=fsolve(@(A)EulerAngleSolve(A,dataset),x0,options); 
%Yaw = y-axis rotation (theta) 
theta=A(2); 
%Pitch = x-axis rotation (psi) 
psi=A(3); 
%Roll = z-axis rotation (phi) 
phi=A(1); 
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%Coefficient "a" Fsolve Function 
%Created by: Joseph Giroux 
%Last Updated: 12/19/19 
  
function F=fsolve_a(x0,Y) 
  
r1=x0(1); 
r2=x0(2); 
r4=x0(3); 
r5=x0(4); 
a=x0(5); 
  
  
F(1)=-Y(1)+(r1./a); 
F(2)=-Y(2)+(r2./a); 
F(3)=-Y(5)+(r4./a); 
F(4)=-Y(6)+(r5./a); 
F(5)=-2+sqrt(((r1+r5).^2)+((r2-r4).^2))+sqrt(((r1-r5).^2)+((r2+r4).^2)); 
  
  
End 
 
 
--------------------------------------------------------------------------------------------------------------------- 

 
%Coefficient "r7,r8,r9" Fsolve Function 
%Created by: Joseph Giroux 
%Last Updated: 12/19/19 
  
function F=fsolve_r789(x0,r1,r2,r3,r4,r5,r6) 
  
%Based on Orthonormal and Right Handed Properties of Rotation Matrix 
  
%Variables 
r7=x0(1); 
r8=x0(2); 
r9=x0(3); 
  
%Equations 
F(1)=-1+(r1.^2)+(r4.^2)+(r7.^2); 
F(2)=-1+(r2.^2)+(r5.^2)+(r8.^2); 
F(3)=-1+(r3.^2)+(r6.^2)+(r9.^2); 
  
  
end 
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%Coefficient "Z_0" Fsolve Function 
%Created by: Joseph Giroux 
%Last Updated: 1/29/2020 
  
function F=fsolve_Z0(x0,x_f,y_f,f_lens,a,x_wf,y_wf,z_wf,r7,r8,r9) 
  
x_primef=x0(1); 
y_primef=x0(2); 
z_f=x0(3); 
Z_0=x0(4); 
  
  
  
% F(1)=-x_primef+y_primef.*(x_f/y_f); 
% F(2)=-y_primef+Z_0.*(y_f/z_f); 
% F(3)=-x_primef+Z_0.*(x_f/z_f); 
% F(4)=(-1/f_lens)+(1/z_f)+(1/Z_0); 
  
F(1)=-x_primef+y_primef.*(x_f/y_f); 
F(2)=-y_primef+Z_0.*(y_f/z_f); 
F(3)=(1/f_lens)-(1/z_f)-(1/Z_0); 
F(4)=-z_f+r7*x_wf+r8*y_wf+r9*z_wf+a*Z_0; 
  
  
end 
 

--------------------------------------------------------------------------------------------------------------------- 

 
%Euler Angle fsolve Function 
%Created by: Joseph Giroux 
%Last Updated: 2/12/2020 
  
%Used in conjunction with Coordinate_Transformation_Solver.m 
%to determine euler angles given unit vectors of the axes 
  
function [F] = EulerAngleSolve(x0,V_2) 
  
% V_2 - 3x3 Matrix of axes unit vectors 
  
%Rx-Euler Rotation Matrix about the x-axis 
%Ry-Euler Rotation Matrix about the y-axis 
%Rz-Euler Rotation Matrix about the z-axis 
  
% R = [cos(psi)*cos(phi)-cos(theta)*sin(psi)*sin(phi),-sin(psi)*cos(phi)-
cos(theta)*sin(phi)*cos(psi), sin(theta)*sin(phi);... 
%      cos(psi)*sin(phi)+cos(theta)*cos(phi)*sin(psi),-
sin(phi)*sin(psi)+cos(theta)*cos(phi)*cos(psi),-sin(theta)*cos(phi);... 
%      sin(theta)*sin(psi), sin(theta)*cos(psi), cos(theta)]; 
phi = x0(1); 
theta = x0(2); 
psi = x0(3); 
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Rx = [1 0 0 ; 0 cosd(psi) -sind(psi); 0 sind(psi) cosd(psi)]; 
Ry = [cosd(theta) 0 sind(theta); 0 1 0; -sind(theta) 0 cosd(theta)]; 
Rz = [cosd(phi) -sind(phi) 0;sind(phi) cosd(phi) 0; 0 0 1]; 
R = Rz*Ry*Rx; 
  
%  xaxis = [V_2(1,1);V_2(1,2);V_2(1,3)]; 
%  yaxis = [V_2(2,1);V_2(2,2);V_2(2,3)]; 
%  zaxis = [V_2(3,1);V_2(3,2);V_2(3,3)]; 
%  unitX = [1;0;0]; 
%  unitY = [0;1;0]; 
%  unitZ = [0;0;1]; 
%   
%  F(1,:) = R*(xaxis)-unitX; 
%  F(2,:) = R*(yaxis)-unitY; 
%  F(3,:) = R*(zaxis)-unitZ; 
  
F(1)=R(1,1)-V_2(1,1); 
F(2)=R(1,2)-V_2(1,2); 
F(3)=R(1,3)-V_2(1,3); 
F(4)=R(2,1)-V_2(2,1); 
F(5)=R(2,2)-V_2(2,2); 
F(6)=R(2,3)-V_2(2,3); 
F(7)=R(3,1)-V_2(3,1); 
F(8)=R(3,2)-V_2(3,2); 
F(9)=R(3,3)-V_2(3,3); 
  
end 
 
 

 


