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(ABSTRACT)

This research addresses sourcing decisions and how those decisions can affect the management

of a company’s assets. The study begins with a single-plant problem, in which one facility

chooses, from a list of parts, which parts to bring in-house. The selection is based on

maximizing the value of the selected parts, while remaining within the plant’s capacity. This

problem is defined as the insourcing problem and modeled as a multidimensional knapsack

problem (MKP). The insourcing model is extended to address outsourcing and multiple

plants. This multi-plant model, also modeled as an MKP, enables the movement of parts from

one plant to another and consideration of a company-wide objective function (as opposed to

a single-plant objective function as in the insourcing model).

The sourcing problem possesses characteristics that distinguish it from the standard MKP.

One such characteristic is what we define as multiple attributes. To understand the multiple

attribute characteristic, we compare the various dimensions in the multidimensional knapsack

problem. A classification is given for an MKP as either having a single attribute (SA) or

multiple attributes (MA). Mathematically, the problems of each attribute classification

can be modeled in the same way with simply a different interpretation of the knapsack

constraints. However, experimentation indicates that the MA-MKP is more difficult to solve

than the SA-MKP. For small problems, with 100 variables and 5 constraints, the CPU time

required to find the optimal solution for MA-MKP to SA-MKP problems has a ratio of 32:1.

To determine effective methods for addressing the MA-MKP, standard mixed integer pro-

gramming techniques are tested. The results of this testing are that the exact approaches



are not successful in dramatically reducing the solution time to the level of the SA problems.

However, a simple heuristic that performs very well on the MA-MKP is presented. The

heuristic utilizes variations on the benefit-to-cost ratio and strongest surrogate constraints.

The results from experimentation for MA-MKP problem sets, generated using the methods

for standard MKP test data sets in the literature, are presented and indicate that the heuris-

tic performs well and improves with larger problems. The average gap between the heuristic

solution and the optimal solution is 1.39% for 200-part problems and is reduced to 0.69%

when the size of the problem is increased to 298 parts.

Although the MA characteristic reflects the sourcing problem, the actual data used in the

experimentation is generated with techniques presented in the literature for standard MKP

test problems. Therefore, to more accurately represent the sourcing problem, industry data

from a manufacturing facility is studied to identify further sourcing problem characteristics.

As a result, industry-motivated data sets are generated that reflect the characteristics of

industry data, yet maintain the structure of literature data sets to allow for easy comparison.

It is found that both industry and industry-motivated data sets, although possessing the MA

characteristic, are much easier to solve than SA problems. Indicators of difficulty appear

to be the constraint tightness and a measure of the matrix sparsity. The sparsity is a

significant factor because industry data tends to be very sparse, while data sets generated in

the literature are completely dense. Another interesting result from the industry-motivated

data sets with the single-plant problem is the tendency for a facility to prefer currently

produced parts over insourcing new parts from outside the facility.

It is not uncommon for a company to have more than one facility with a particular capability.

Therefore, the sourcing model is extended to include multiple facilities. With multiple-

facilities, effectively all the parts are removed to form one list, and then each part is assigned

to one of the facilities or outsourced externally. The multi-facility model is similar to the

single-facility model with the addition of assignment constraints enforcing that each part

can be assigned to only one facility. Experimentation is performed for the two-, three-, and

four-facility models. The problem gets easier to solve as the number of facilities increases.

iii



With a greater number of facilities, it is likely that for each part one of facilities will dominate

as the best option. Therefore, other solutions can quickly be eliminated and the problem

solved more quickly. The two-facility problem is the most difficult; however, the heuristic

performs well with an average gap of 0.06% between the heuristic and optimal solutions.

We conclude with a summary on experiences with modeling and solving the sourcing problem

for a sheet metal fabrication facility. The model solved for this problem had over 1857 parts

with 19 machines, which translates to over 70,000 variables and 38 constraints. Although

extremely large compared to problems solved in the literature, this problem was solvable

because of the unique structure of industry data. Our work with the facility saved the

parent organization up to $4.16M per year and provided a tool that encourages a systematic

and quantitative process for evaluating decisions related to sheet metal fabrication capacity.

This work received support from the Center for High Performance Manufacturing and

Ingersoll-Rand (Hussmann).
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Chapter 1

Introduction

The effective utilization of a company’s assets is one of the key challenges facing company

executives today. Asset utilization can be thought of as production of the asset divided by

the asset’s capacity. Assuming that an asset’s capacity is fixed and production varies over

time, managing the production is a critical component to addressing this challenge.

The problem addressed in this dissertation examines how sourcing decisions manage the

utilization of a company’s assets through varying the production at the asset. Section 1.1

discusses the motivation for this dissertation topic, a company that used insourcing as a

means for managing its assets. Section 1.2 examines sourcing in general, and insourcing

in particular. Finally, Section 1.3 presents how the sourcing problem is modeled using the

classical knapsack problem.

1.1 Motivation

This research is motivated by work with a sheet metal manufacturing facility that currently

has excess capacity. This highly automated manufacturing facility has invested a significant

amount of capital in equipment that is under-utilized.
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Besides the primary sheet metal facility, other divisions that are part of the parent orga-

nization require sheet metal parts. Additionally, some of these divisions outsource sheet

metal parts since they do not have either the capability or capacity to produce the parts

themselves. An opportunity exists to move currently outsourced sheet metal work from the

other divisions to the primary facility.

To address this opportunity, the decision to source these parts (to either the primary facility

or the current supplier) and the effects of these decisions on the primary facility and the

parent organization, are mathematically modeled.

1.2 Sourcing

Sourcing is the process of determining where a part is manufactured; it has two forms: out-

sourcing and insourcing. Momme [30] defines outsourcing as “the process of entering into a

contractual agreement with a supplier concerning manufacturing that so far has been pro-

vided in-house” and insourcing as “the ‘reverse’ process of outsourcing.” Insourcing would

then be defined as the process of entering into a contractual agreement with a buyer con-

cerning the manufacturing to be brought in-house. This study focuses not on the contractual

agreement, but rather on the decision of whether or not to bring the manufacturing of a part

in-house.

Outsourcing decisions are often referred to or included within the make-or-buy environment.

The make-or-buy decision is the decision of whether to manufacture an item internally or to

purchase it externally. Current make-or-buy research recognizes that outsourcing decisions

should be linked to manufacturing strategy, operations, and development.

Sourcing decisions need to be made in a systematic manner; hence, frameworks have been

developed to guide the decisions. A generic overview of these frameworks includes the fol-

lowing five common elements (some specific frameworks are addressed in Chapter 2). At

each step of the framework, a multidisciplinary team should be employed to maintain the
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strategic overview perspective at each step.

1. Define and exploit strategic competencies, where strategic competencies are those func-

tions that are a key source of competitive advantage.

2. Consider outsourcing non-strategic (or core) competencies.

3. Compare supplier capabilities to in-house production, both in terms of cost and per-

formance, using well defined measures.

4. Strategically manage relationships with suppliers.

5. Re-evaluate as environments change.

These types of frameworks are created from the point of view of a company as a buyer in

the sourcing relationship; that is, they provide guidance for the decision of whether or not

to outsource. However, the decision to be made by a company like the primary sheet metal

facility is from the point of view of the supplier in a sourcing relationship. This insourcing

decision, being the reverse of the outsourcing decision, can follow a similar framework. As-

suming that it follows the generic framework, our work is focused within Step 3. That is,

to compare the supplier versus in-house options using well-defined measures for both cost

and performance. In the sheet metal example, this translates to comparing the in-house cost

(at the primary facility) to the current outsourcing costs. The performance aspect of Step 3

cannot yet be compared because the primary facility does not yet have experience acting as

a supplier. This issue is being handled separately by the company.

At Step 3 in the framework, it is assumed that the sheet metal facility has the capabil-

ity to build a part, or it is not considered for insourcing. For the sheet metal facility, the

multidisciplinary view includes the goals of utilizing capacity and capabilities within the

various divisions of the parent organization. Therefore, the performance measures and con-

straints used in modeling the decisions are based on both available capacity and the costs of

operations in-house versus the current outsourcing costs.
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1.3 Multidimensional Knapsack Approach to Sourcing

This section discusses the method used to model sourcing decisions as a multidimensional

knapsack problem (MKP). This model will help answer the question that the sheet metal

facility needs to answer: “If given a list of potential parts from the other divisions, which ones

should be insourced? And, given the current parts produced in-house, which ones should be

outsourced?” The classic knapsack problem is explained first, and then it is extended to the

MKP.

The knapsack problem is a classic operations research problem concerned with filling a

knapsack with a subset of available items. The knapsack in this problem has a weight

capacity and each item has an associated weight and value. Assuming that all the items will

not fit in the knapsack, the objective is to select the items that will maximize the total value

while not exceeding the weight limit of the knapsack.

The knapsack problem represents the sourcing problem in the following way: The knapsack is

analogous to the facility that has a capacity on its machine time, and the items are analogous

to the parts considered for insourcing. Each part has a value to the plant and uses a specific

amount of machine time. The objective is to select the parts that will maximize the total

value to the plant while not exceeding the machine time capacity. Additionally, parts can

be removed from the facility, which effectively increases the machine time capacity, and thus

allows for more parts to be insourced.

The classic knapsack problem has a single constraint, the weight capacity of the knapsack.

The multidimensional knapsack problem considers more than one constraint on the knapsack.

An example of another knapsack constraint is a constraint that limits the total volume, in

addition to the total weight, of the items included in the knapsack. In the sourcing problem,

this corresponds to limiting both the labor time and the machine time that can be added to

the plant. In addition, since each machine in the facility has a different capacity and parts are

routed through more than one machine, capacity constraints are needed for each machine.
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Thus, the sourcing problem is multidimensional with respect to the existence of more than

one knapsack constraint. Additionally, some of the knapsack constraints represent different

attributes. Therefore, the insourcing problem would be classified as a multiple-attribute

MKP. These multidimensional classifications will be covered more fully in Chapter 3.

1.4 Dissertation Outline

In Chapter 2 current literature is reviewed for both sourcing decisions and the multidi-

mensional knapsack problem (MKP). In Chapter 3 we model the sourcing problem as a

multidimensional knapsack problem. Next, the multiple-attribute structure, present in the

sourcing problem, is compared to the standard single-attribute structure of the multidimen-

sional knapsack problem in Chapter 4. Because the multiple-attribute problems are difficult,

in Chapter 5 we present a simple, yet effective heuristic. With an industry problem as the

motivation for this research, in Chapter 6 we explore the characteristics of industry sourcing

data and generate industry-motivated data sets. In Chapter 7 we extend the model to multi-

ple facilities and present experimental results. This research is not only industry motivated,

but has also been applied to a sheet metal facility; therefore, experiences with the sheet

metal application are reported in Chapter 8. Finally, conclusions and future research are

presented in Chapter 9.



Chapter 2

Literature Review

This chapter reviews the literature, first for the insourcing and outsourcing decisions, and

then for the MKP. The closest fit to the sourcing decisions as described above is in the

make-or-buy research, covered in Section 2.1. Since the sourcing decisions will be modeled

as a MKP, and the MKP is an NP-hard problem, Section 2.2 focuses on efficient solution

procedures for the MKP. Section 2.3 summarizes how this research relates to the current

literature.

2.1 Sourcing

In the area of sourcing, the two main streams of research are the make-or-buy decisions

and the operations of outsourcing. Our research does not directly fall into either area, but,

as discussed in Chapter 1, it is a subset of the make-or-buy decision. Recent literature

reveals that make-or-buy decisions must be made in a strategic and methodical manner.

A variety of frameworks have been created that provide a sequence of steps to aid in the

sourcing decisions of what, why, and how to source. Each framework has a slightly different

focus and/or motivation. This study addresses some of these frameworks to understand the

6
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position of the sourcing problem within them.

Venkatesan [38] presents an approach called the strategic sourcing process that is modeled

after a strategy for highly engineered products. It is composed of three main elements: focus

on the strategic components, outsource when suppliers have the advantage, and outsource to

narrow the focus for in-house manufacturing processes. Each subsystem, or component, is

examined at its multiple stages throughout the process. A subsystem is considered strategic

if it is critical for long run competitive advantages, or additionally, if it requires specialized

assets or unique manufacturing design and skills. To decide if suppliers have the advantage,

subsystems (strategic and non-strategic) are compared to suppliers’ capabilities. For strate-

gic subsystems, the resources required to upgrade in-house capabilities to the level of the

supplier are considered. To manage the outsourcing, a supplier grading system based on

performance and cost is used. The final element is to re-evaluate often.

As in Venkatesan [38], Jennings [21] also gives a broad strategic perspective. He studied

several UK building societies (institutions similar to credit unions) in a time of change and

determined they underestimated their use of outside supply. To develop the building soci-

eties’ competitive strategies, Jennings suggests a policy with three main elements: identify

and enhance strategic competencies, such as information processing and product innovation;

exploit the strategic competencies through sourcing arrangements, for example, by freeing

resources to be focused in strategic areas; and continually review sourcing decisions as the

product and supply market changes.

Cánez et al. [4] attempt to narrow the previously presented broad frameworks by defining

the relevant factors and providing a framework in which to evaluate these factors. The

framework should possess the following characteristics: ease of understandability and use, a

method of cost comparison, a definition of control in sourcing relationships, a definition of

strategic capabilities, recognition of future market projections, a multi-disciplinary decision

team, a generic perspective to cover a variety of industries, and the ability to be changed

and updated.
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Insinga and Werle [20], like Cánez et al. [4], also focus less on the overall picture than on

how the higher level strategy affect operations. Their claim is that strategies are lost in the

day-to-day operations of outsourcing. To guard against this, Insinga and Werle suggest a

two-dimensional methodology. The first dimension, to define metrics that measure the value

of an activity, is presented as a scale to determine the potential for competitive advantage.

Beginning with the level least likely to yield a competitive advantage, the four levels of the

scale are as follows: first, a readily available commodity activity; second, a basic activity

needed in the business; third, an emerging activity with the potential to be a competitive

differentiator; and fourth, a key activity that is currently a competitive differentiator. The

second dimension is a metric to measure the performance capability of an activity in-house

compared with competitors. The scale for this metric has three levels: weak, moderate, or

strong. Thus, each activity has a position on a grid, and each grid provides direction on the

sourcing decision.

Dekkers [8] also focuses on bridging the strategic and operational levels. The strategy is

two-fold, maximizing the competitive advantage, along with the resource acquisition and

utilization required for the competitive advantage. This strategy is intended to be im-

plemented in close conjuction with manufacturing management during the early stages of

product development. In contrast to Cánez et al. [4] and Insinga and Werle [20], Dekkers’

strategy [8] is a continual process not triggered by an external influence. Since manufac-

turing strategy affects many process stages such as product development, manufacturing

technologies, and performance requirement, continuous evaluation of requirements at each

stage drives sourcing decisions.

This study assumes that the competitive strategies have already been defined, and that the

capability exists to produce the parts considered for insourcing. The focus is to develop a

method of comparison for in-house versus supplier production at the tactical level as oppossed

to the strategic level. Therefore, the following research is a subset of the above make-or-buy

frameworks and contributes toward the decisions to be made at one step of the framework.
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2.2 Multidimensional Knapsack Problem

The MKP is useful for representing many problems. The traditional application is the

capital budgeting problem introduced by Lorie and Savage [24]. In the capital budgeting

problem projects are selected to maximize profit while not exceeding any one of the resource

constraints. Gavish and Pirkul [15] modeled the allocation of processors and databases in

distributed systems. MKPs have also been used to model project allocation [41], and cargo

loading problems [35].

2.2.1 Exact Approaches

Exact approaches for the MKP have been developed predominantly using branch and bound,

with a few approaches based on dynamic programming. Primarily the method of bound

generation distinguishes each algorithm.

Balas [1] was among the first to develop an exact approach for the MKP. He presents a

branch and bound approach in which all the variables start at zero and increase to one

based on a systematic pseudo-dual algorithm. At each step, the algorithm identifies which

branches lead to infeasible problems. The efficiency of the algorithm is dependent on the

number of branches that can be eliminated. Another aspect of the algorithm’s efficiency is

that it does not require solving the continuous linear programming relaxation. Rather, at

each step of the algorithm, only additions and subtractions are performed. This algorithm

was applied to a problem with 40 variables and 22 constraints.

Soyster and Slivka [36] provide an algorithm that performs iterations of the Balas algo-

rithm [1]. Their procedure forms subproblems using the linear programming relaxation solu-

tion, and then solves each subproblem using Balas’ algorithm. The size of the subproblems

is dependent on the number of constraints; hence, this algorithm performs well on problems

with few constraints. They solved problems with up to 400 variables and 10 constraints.
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Shih [35] presents a branch and bound procedure in which an upper bound is found by

considering each of the knapsack problems independently, and then solving the relaxed linear

program for each knapsack. The minimum of these knapsack bounds is the upper bound for

the node in question. On problems with up to 90 variables and 5 constraints, the method

was shown to outperform Balas’ algorithm [1] with respect to both solution time and number

of iterations.

Gavish and Pirkul [15] develop and compare the bounds obtained by relaxations of the

MKP. They develop Lagrangean, surrogate (aggregation of all knapsack constraints into

one), and composite (combination of surrogate and Lagrangean) relaxations. In problems

with up to 300 variables and 5 constraints, or 500 variables and 3 constraints, their branch

and bound procedure outperforms Shih’s algorithm [35] in both CPU time and the size of

solvable problems.

Gabrel and Minoux [13] present a scheme to identify the most violated extended covers

inequalities. The violated inequalities are those that are valid to the MKP, yet violated by

the linear relaxation solution. They use a ratio between the left- and right-hand sides to

measure constraint violation and to generate minimal covers (a necessary condition for the

inequality to be a facet). They show a reduction in CPU time as compared to the standard

CPLEX MIP solver on problems with up to 180 variables and 60 constraints.

Gilmore and Gomory [16] present a modified dynamic programming (DP) algorithm using

single dimensional knapsack problem characteristics. They derive a divide-in-two inequality

from the single dimensional cutting stock problem: F (x1 + x2) ≥ F (x1) + F (x2), where x1

and x2 are the length of each item, and F (x) is the knapsack objective function value. This

divide-in-two inequality extended to the two dimensional problem is used in the dynamic

programming fundamental forward recursion equation.

Weingartner and Ness [42] develop a DP approach for the basic capital allocation problem

that includes various ordering schemes, use of the complement problem, and upper bounds

found by solving the relaxed linear program. They employ a simple scheme that is use-
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ful when the constraints are loose. At each stage of the scheme, the remaining items are

checked for addition into the knapsack without violating a constraint. If feasible, the solu-

tion obtained is also a lower bound. They solve problems with 2 constraints and up to 105

variables.

Nemhauser and Ullmann [31] extend the work of Weingartner and Ness [42] on a DP approach

to the capital allocation problem. The extensions include multi-level projects or projects

accepted at varying levels of investment and return; reinvesting returns, potentially creating

negative coefficients on the constraints; borrowing; deferral of capital until later periods; and

most notably, incorporating dependent or interacting projects, where the acceptance of one

project is dependent on the returns of another project or projects share equipment. With

interacting projects, the objective function becomes non-linear, and the new algorithm is

based on DP for non-serial systems.

The MKP is well known to be NP-complete [14], and thus the size of problems that can

be solved optimally is limited. In the above research, problems are solved optimally up to

about 400 variables and 10 constraints. Discussed in Chapter 3, the Hussmann sheet metal

insourcing problem requires up to 12,000 variables and 36 constraints. Therefore, heuristics

that can solve larger problems are of particular interest.

2.2.2 Heuristic Approaches

Primal heuristics have been used to solve problems with up to about 1,000 variables and 20

constraints. Most primal heuristics either begin with a solution where no items are included

in the knapsack, and items are added one at a time, based on a given rule, while maintaining

feasibility, or they begin with all items included and then removed one at a time until the

solution is feasible.

Toyoda’s approach [37] begins with a feasible solution and all variables equal to zero, and then

adds items one at a time based on a preferability ranking of the variables. The preferability
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measure is calculated using an effective gradient with a penalty factor. The penalty vector

is formed by the penalties associated with each resource constraint, where an individual

constraint penalty is relative to the total amount that all the items require of each respective

resource. Additionally, each item has a necessary resource vector containing the amount of

each resource that the item requires. The length of the necessary resource vector, when

projected on the penalty vector, is an element of the preferability measure. The preferability

measure is a ratio of the value of an item over the projected length of the necessary resource

vector. Problems are solved with up to 1000 variables and 1000 constraints.

Loulou and Michaelides [25] use a similar idea by choosing the item to enter next with the

maximum pseudo-utility factor. As with the preferability measure by Toyoda [37], an item’s

pseudo-utility factor depends on its profit and resource consumption. The penalty factor for

each item (different from Toyoda’s [37]) is a function of the total resource consumption of the

item, the remaining resources after the item is selected, and the potential demand for each

resource after the item is selected. The pseudo-utility factor, used to choose the entering

item, is then the profit of an item divided by the penalty factor. This heuristic performed

slightly better than Toyoda’s method [37] with respect to solution quality.

The next type of heuristic focuses on bound calculations to drive the heuristics. Heuristics

in this category have solved problems in the literature with up to about 1,000 variables and

20 constraints, or 20 variables and 1,000 constraints.

Balas and Martin [2] were among the first to use bound calculations to drive their heuristic,

called Pivot and Complement. In the first stage, Pivot and Complement uses linear pro-

gramming to calculate an upper bound and then heuristically sets the non-integer solution

to integer. A series of pivots moves slack variables into the basis. The second stage is an im-

provement procedure that complements variables while maintaining primal feasibility. They

solved problems with up to 900 variables and 200 constraints. This heuristic outperformed

Toyoda’s method [37] with respect to solution quality, but at the cost of about twice the

CPU time.
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Magazine and Oguz [27] developed an algorithm, Multi-Knap, that combines the dual heuris-

tic method of Senju and Toyoda [34] with Everett’s Generalized Lagrange Multipliers (GLMs)

approach [10]. As in Senju and Toyoda [34], Multi-Knap begins with the relaxed solution

with all variables equal to one and all GLMs at zero. The GLMs are adjusted one variable at

a time until the solution is primal feasible. Magazine and Oguz solved problems with up to

1000 variables with 20 constraints and up to 20 variables with 1000 constraints. Multi-Knap

performs similarly to the Senju and Toyoda heuristic in terms of CPU time, but has slightly

improved solution quality. The complexity of Multi-Knap is shown to be O(mn2), where n

is the number of variables, and m the number of constraints.

Volgenant and Zoon [40] improve on Magazine and Oguz’s Multi-Knap [27] by computing

the GLMs simultaneously as opposed to stepwise in Multi-Knap. Volgenant and Zoon also

present an upper bound improvement at the end of the heuristic by changing some multiplier

values. With the new bound, the complexity of this heuristic is O(n(n + m)). The heuristic

was tested on randomly generated problems with up to 200 variables and 200 constraints

with varying constraint slackness. The heuristic was also tested on the problems from Senju

and Toyoda [34]. On average, Volgenant and Zoon’s algorithm was better than Multi-Knap

with respect to solution quality, but worse with respect to CPU time.

The heuristic by Lee and Guignard [23] uses a modification of Toyoda’s method [37]. In their

approach, Lee and Guignard set more than one variable at a time to find a feasible solution

in the first phase. The second phase then improves the solution with a modification of the

complementing procedure used by Balas and Martin [2]. The second phase also identifies the

number of variables to be complemented by problem instance characteristics. This algorithm

was tested on problems with up to 500 variables and 30 constraints. The problems were

both randomly generated and taken from the literature (Senju and Toyoda [34], Jeroslow

and Smith [22], and Balas and Martin [2]). Compared to the Balas and Martin approach, on

average, Lee and Guignard’s approach is much better with respect to CPU time, but worse

with respect to solution quality.
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Bertsimas and Demir [3] use an approximate dynamic programming approach. They approx-

imate the value function using a base-heuristic approach and an adaptive fixing heuristic.

The base-heuristic approach estimates the optimal value function by constructing a sub-

optimal solution to a subproblem. Some of the variables in each subproblem are assigned

values based on reduced costs, and the other variables are iteratively assigned using dynamic

programming techniques with an approximate value function. The adaptive fixing heuristic

solves linear programming relaxations iteratively and uses those solutions to fix variables.

Bertsimas and Demir solved problems with up to 1000 variables and 100 constraints. Com-

pared to the commercial package CPLEX 6.0 [6], on average, the algorithm competes with,

and often out-performs CPLEX in terms of CPU time.

More recently, metaheuristics (a general structure for heuristics to solve hard problems using

a global search) have been developed to solve the MKP on problems of similar size to the

bound-based heuristics, but with improved solution quality. The specific heuristic developed

requires the definition of parameters and decision variable representation. Tabu search,

genetic algorithms, and simulated annealing are some of the most common metaheuristics.

Tabu search is based on adaptive memory structures and a responsive exploration of the

solution space. The memory structures maintain and update a list of visited solutions and

features of those solutions. Solutions on the tabu list are to be avoided. The responsive

exploration allows the good solution features to be exploited. Some tabu search development

issues are identifying which attribute to trace, defining the tabu duration, and defining the

aspiration criteria that allows the overriding of the tabu list.

A genetic algorithm is inspired by the field of genetics and the development of a popula-

tion. A solution is represented by a member of the population and the search is driven by

reproduction, mutation, and crossover evolution of a population.

Simulated annealing is inspired by the process of annealing metal in which a metal is slowly

cooled until reaching a minimum energy state. The heuristic allows the search to move to a

non-improving solution with a probability that decreases with time, according to a cooling
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schedule.

Many of these metaheuristics use a pseudo-utility function to drive the search. This function

corresponds to the value to weight ratio in the single constraint 0-1 KP. Most of the meta-

heuristics are tested on 57 standard literature problems used in Freville and Plateau [12]

(made available by Chu and Beasley [5] in the OR-library [32]) with 6 to 105 variables and 2

to 30 constraints, and on 24 benchmark problems presented by Glover and Kochenberger [17],

with 100 to 500 variables and 15 to 25 constraints, that are known to be difficult to solve

for branch and bound algorithms.

Dammeyer and Voß [7] present a tabu search with a dynamic tabu list (tabu duration is not

constant) where the tabu duration is determined according to the solution attributes using

the reverse elimination method. This method allows a solution only to be re-visited in the

next iteration if it is a neighbor of the solution at the current iteration. A move to a new

solution is made by dropping one variable, or assigning it to zero, and adding one or more

variables, or increasing them to one, while maintaining feasibility. This method is tested

on the 57 problems in Freville and Plateau [12]. This tabu search outperformed Drexl’s [9]

simulated annealing with respect to the number of problems solved to optimality, the average

deviation from the optimal solution, average CPU time, and the average number of moves.

Hanafi and Freville [18] employ a tabu search in which they oscillate between feasible and

infeasible solutions, as opposed to Dammeyer and Voß [7] where feasibility is maintained. The

oscillation strategy is defined by the surrogate constraints; i.e., constraints in which multiple

constraints are joined into one. Hanafi and Freville use a greedy search to intensify the

search within a promising zone, and, to diversify, the search moves away from the promising

zone into either feasible or infeasible solutions. The optimal solution was found in all the

standard problem instances from Freville and Plateau [12] and Glover and Kochenberger [17].

Additionally, the method outperforms Glover and Kochenberger [17] with respect to CPU

time.

Vasquez and Hao [39] present a hybrid approach with tabu search and linear programming
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(LP). They use the LP relaxation to define the search area and then tabu search to intensify

the search. This heuristic also finds the optimal solution to the standard test problems

mentioned above. Compared to another set of problems in the literature, from the OR-library

proposed by Chu and Beasley [5], this heuristic improves on the pervious performances

in each measure. Finally, it also gives an improved solution for 9 of the 11 instances of

more recent standard problems presented by Glover and Kochenberger [17], with up to 2500

variables and 100 constraints.

Chu and Beasley [5] present a genetic algorithm that considers MKP specific knowledge

and maintains solution feasibility using a greedy repair heuristic. Parents are selected by

choosing the most fit parent from each of two randomly formed pools. For crossover and

mutation, a simple uniform crossover is implemented, where a bit is chosen randomly from

one of the parents and a few bits are mutated after the crossover. This approach found

the optimal solution to each of the OR-library problems and outperformed Magazine and

Oguz [27] and Volgenant and Zoon [40] in terms of solution quality.

2.2.3 Multidimensional Knapsack Problem Summary

Although there are other algorithms and heuristics for the MKP, the above approaches

summarize the literature in terms of breadth and performance. For further details on the

status of the MKP, see the recent survey by Fréville [11].

Two characteristics to make note of in the above literature are the constraint generation and

the size of the problems solved. The first characteristic present in all of the experimental

problems solved in the literature is that, for each problem, the constraints all represent the

same attribute, and the problems can be classified as single-attribute MKPs. As will be

described in Chapter 3, the sourcing problem is formulated with multiple attributes across

the constraints. Second, the size of the problems solved in the literature is much smaller

than the Hussmann sourcing problem size, with up to 12,000 variables and 36 constraints.

Table 2.1 provides a summary of various approaches, and the size of the problems solved by
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each method.

Table 2.1: Size of MKP Problems Solved

Variable Range Constraint Range
Authors Min Max Min Max

Exact Approaches
Gilmore and Gomory [16] 20 2
Balas [1] 40 22
Shih [35] 30 90 5
Weingartner and Ness [42] 105 2
Gabel and Minoux [13] 180 60
Soyster and Slivka [36] 50 400 5 10
Gavish and Pirkul [15] 20 500 3 5

Heuristic Approaches
Senju and Toyoda [34] 60 30
Bertsimas and Demir [3] 20 105 2 30
Dammeyer and Voss [7] 20 105 2 30
LouLou and Michaelides [25] 20 105 10 330
Volgenant and Zoon [40] 25 200 25 200
Hanafi and Fréville [18] 20 500 2 30
Chu and Beasley [5] 20 500 2 30
Lee and Guignard [23] 60 500 5 30
Balas and Martin [2] 20 900 5 200
Magazine and Oguz [27] 20 1000 20 1000
Toyoda [37] 50 1000 50 1000
Vasquez and Hao [39] 20 2500 2 100

2.3 Summary

A distinguishing characteristic of the sourcing frameworks in the literature is that the com-

pany is viewed as the buyer in the sourcing relationships; that is, they decide whether or

not to outsource. This study focuses more on the decision of whether or not to insource

(with outsourcing viewed as a way to free capacity for further insourcing). Additionally, this
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research assumes that the strategic and core competencies are defined and that eligible parts

for outsourcing or insourcing are known. Current sourcing literature focuses on the strategic

level decisions and how they interact with tactical decisions. Therefore, the decisions that

will be modeled are a subset of the current make-or-buy decision environment in that the

focus is on the tactical level decisions. The question we want to answer is, given a list of parts

that can potentially be insourced, which parts should be selected based on the production

costs and capacities. No framework currently exists to address this insourcing problem as

defined by the Hussmann example.

Presented in Chapter 3, this sourcing problem can be modeled as a MKP with the character-

istic that each knapsack constraint represents a different physical constraint (e.g., machine

time, labor time, multiple machines, etc). Current literature solves the MKP optimally for

up to 400 variables and 10 constraints. However, the Hussmann sourcing problem can be up

to three times that size. Furthermore, the current multidimensional knapsack research ex-

periments with standard data sets that do not reflect the sourcing problem. Literature data

sets assume that each knapsack constraint represents the same attribute (or each knapsack

constraint is sampled from the same distribution). However, with this sourcing problem,

each knapsack constraint is potentially modeled with respect to a different attribute. There-

fore, Chapter 4 focuses on the effect of multiple attributes when solving multidimensional

knapsack problems. Other characteristics of industry data not present in the literature data

sets are identified and addressed in Chapter 6.



Chapter 3

Problem Statement

This chapter describes the relationship of the sourcing problem to the Multidimensional

Knapsack Problem (MKP). Section 3.1 defines the MKP in terms of the Knapsack Problem

(KP) and the ways it can be extended into the MKP. Additionally, the different types

of knapsack constraints are compared in both structure and interpretation. In Section 3.2

the general insourcing problem is modeled as an MKP. Then, variations of the insourcing

problem are presented in Section 3.3. These variations include the addition of outsourcing

(or the sourcing problem), consideration of time periods, and a specific model for the sheet

metal example.

3.1 Multidimensional Knapsack Problem

3.1.1 Knapsack Problem

The 0-1 MKP is a generalization of the 0-1 KP; therefore, discussion begins with the KP and

ways to extend into an MKP. In the KP, there exist n items and one knapsack of capacity b.

Each item, i, has a weight, wi, and value (or profit), pi. The decisions are whether or not to

include each item in the knapsack. These decisions are represented in the KP by the binary

19
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variables x, where xi is equal to one if item i is included in the knapsack, and zero otherwise.

The objective is to fill the knapsack with the items that maximize the value of the selected

items while remaining within the knapsack’s capacity. The KP formulation follows:

Maximize
n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤ b

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

3.1.2 Multiple Attributes

To extend the KP to include multiple dimensions, the first step is to add an additional

attribute, such as volume, to the above one-dimensional problem. This problem will be

referred to as the two-dimensional knapsack problem (KP-2D). The knapsack has both a

weight capacity, bw, and a volume capacity, bv. Letting vi be the volume of item i, the

formulation follows:

Maximize
n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤ bw

n∑
i=1

vixi ≤ bv

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

Looking at the previous two formulations, the difference between the KP-2D and the KP

is simply one additional constraint, referred to as a knapsack constraint. The existence of

more than one knapsack constraint implies a multidimensional knapsack problem (MKP).
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3.1.3 Multiple Knapsacks

The KP-2D problem above represents one type of MKP in that the knapsack constraints

represent two attributes, volume and weight. A different type of MKP could be (starting with

the KP) to add an additional knapsack with the requirement that if an item is included in

one knapsack, it must also be in the other. However, each item’s weight can differ depending

on the knapsack. This can be thought of as two subparts of an item that in general have

different weights and must be kept in separate knapsacks. If either subpart of an item is

included, the other must also be included in the other knapsack. This problem is a knapsack

problem with one attribute and two knapsacks (2KP). The formulation follows, where wi1

and wi2 are the weight of item i in knapsack one and two, respectively, and bw
j is the weight

capacity of knapsack j, j = 1, 2.

Maximize
n∑

i=1

pixi

subject to
n∑

i=1

wi1xi ≤ bw
1

n∑
i=1

wi2xi ≤ bw
2

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

Comparing the two previous problem formulations, KP-2D and 2KP, the two problems have

different interpretations, but both formulations represent a knapsack problem with one ad-

ditional knapsack constraint. Mathematically, problems KP-2D and 2KP are equivalent.

These problems are both generally referred to as a bi-dimensional knapsack problem, re-

gardless of the number of attributes the constraints represent. It is possible that, although

the formulations are mathematically equivalent, problem characteristics may exist for each

type of formulation that can be utilized in a solution procedure, or that may influence the

computational complexity. Therefore, this research differentiates between the two types

of multidimensional knapsack interpretations, single-attribute MKP and multiple-attribute
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MKP.

3.1.4 Multidimensional Knapsacks

In the most general case, the MKP has m knapsacks (or m-dimensions), each of capacity

bj, n items, and the weight (or coefficient) of each item can be different in each knapsack.

Similar to the KP, the objective is to find the items that maximize the value of the knapsacks

while not exceeding the capacity of any one knapsack. The MKP mathematical formulation

follows, where wij is the weight of item i in knapsack j, and bj is the capacity of knapsack j.

Maximize
n∑

i=1

pixi

subject to
n∑

i=1

wijxi ≤ bj ∀j = 1, 2, . . . , m (3.1)

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

This problem is m-dimensional, and, therefore, multidimensional because m knapsack con-

straints are represented by (3.1). Because the knapsack constraints can be modeled similarly

regardless of the number of attributes represented, the MKP can be used to model a variety

of problem aspects. For example, Mansini and Speranza [28] build an MKP for asset-backed

securitization where multiple knapsacks are used to model discretized time. The objective

is to select a set of assets to minimize the gap between the outstanding principal of the loan

and the sum of the assets in each time period. In contrast to the previous examples where

the constraints represent the attributes of volume or weight, in this problem, the constraints

represent time periods.

The next section describes the application of the MKP to an insourcing model in which

both classifications of the MKP are utilized (i.e., single- and multiple-attribute MKPs).

Using multiple knapsacks to represent time, as shown in [28], can also be used to model

seasonality, with a set of multiple knapsacks, each with multiple attributes, for each time
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period (e.g., season, month, etc.).

3.2 Insourcing Model

In the sheet metal problem as described in Chapter 1, the primary facility has excess ca-

pacity, while other divisions of the company are currently outsourcing parts that could be

manufactured in this plant. The insourcing problem is defined as, which, if any, of these

parts should be insourced into the primary facility, given the available capacity, in order to

maximize the value of the selected parts. The value of a part is a combination of savings to

the other divisions and profit for the under-utilized plant.

Consider a part to be processed on a single machine. Two attributes, machine time and labor

time, represent “weights,” with the machine being constrained by both types of weights.

Therefore, multiple attributes, such as those in formulation KP-2D, are used to model both

the machine and labor time that a part adds to the machine. Next, assume the part requires

processing on multiple machines. Multiple knapsacks are used, such as in formulation 2KP,

to represent the multiple machines (or departments). A part is analogous to an item, where

a part is defined by its routing through the facility. A part takes up time (both machine and

labor, which can be different) at each machine and has a certain amount of value if insourced.

Value is defined as the difference between the in-house production costs and the current cost

of outsourcing the part, and has both a savings component and a profit component. For

example, assume that a part is currently outsourced for $30, but can be produced for $10

by the insourcing plant, which then sets the selling price at $15. In this scenario, the profit

is $5 and the savings is $15, which determines the value as $20. This value is what defines

pi in the formulation below; therefore, in this case, pi would equal $20. A more thorough

discussion of “value” will be discussed later in Chapter 8 with the presentation of the results

from of our work in industry.

The machine time capacity is defined as the time available on each machine after the current



Natalie S. Cherbaka Chapter 3. Problem Statement 24

plant load is processed. Similarly, the labor time capacity is defined as the labor time

available at each machine after the current plant load is processed. The decision is, then,

which of the n parts to choose to maximize the value of the selected parts and remain within

the available capacity of the m machines in the facility. The mathematical formulation

follows, where tmij is the machine time part i uses on machine j, t`ij is the labor time part i

uses on machine j, bm
j is the machine time capacity on machine j, and b`

j is the labor time

capacity on machine j.

Maximize
n∑

i=1

pixi

subject to
n∑

i=1

tmij xi ≤ bm
j ∀j = 1, 2, . . . , m (3.2)

n∑
i=1

t`ijxi ≤ b`
j ∀j = 1, 2, . . . , m (3.3)

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

The above knapsack formulation has a dimension of 2m as there are m knapsacks for each of

the two attributes, machine time and labor time. Each of the first m knapsack constraints,

(3.2), limits the parts selected for insource on each machine by its available machine time;

and the second set of m knapsack constraints, (3.3), limits the parts selected for insource

on each machine by its available labor time. Since more than one attribute is represented in

this problem, it is considered a multiple-attribute MKP.

Labor time and machine time need to be separate constraints for two reasons. First, labor

time may be restricted by the number of shifts staffed, where some machines are available

even when they are not staffed. In this scenario, a facility might be interested in adding

additional labor beyond the current schedule. Second, machine time and labor time are not

always the same for a part because processing of some parts may require more than one

laborer, or labor supervision on only an occasional basis, depending on the complexity of

the machine or the part. Extensions such as these are discussed next.
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3.3 Extensions to the Insourcing Model

In this section two extensions to the insourcing model presented in Section 3.2 are discussed.

Section 3.3.1 extends the insourcing model to consider time periods. Section 3.3.2 extends

the insourcing model to consider a relaxation of the labor constraint.

3.3.1 Insourcing Model with Time Periods

As suggested earlier, multiple sets of knapsacks can be used to model a time attribute. This

section extends the insourcing formulation to include time periods, enabling the modeling of

seasonality effects. For example, although the capacity of machines is often greater during

peak time periods when extra shifts and/or overtime are used, the available capacity at

a machine is, in general, much smaller because the machines are heavily utilized by the

current plant load. In this case, the bm
j and b`

j values vary by time period and, thus, in

the formulation noted as bm
js and b`

js; the machine and labor time capacity, respectively, for

machine j in season s, where s = 1, 2, . . . , S, and S is the number of seasons (or time periods)

considered. The time a part takes at specific machines can also vary depending on the load

of the facility. Therefore, in this formulation, tmijs and t`ijs are the machine and labor time,

respectively, required to process the entire quantity of part i on machine j in time period s.

The formulation follows:

Maximize
n∑

i=1

pixi

subject to
n∑

i=1

tmijsxi ≤ bm
js ∀j = 1, 2, . . . , m, ∀s = 1, 2, . . . , S

n∑
i=1

t`ijsxi ≤ b`
js ∀j = 1, 2, . . . , m, ∀s = 1, 2, . . . , S

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

In this case the dimension of the model increases to 2mS since each machine during each
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season requires a knapsack constraint for both machine and labor time.

The above formulation assumes that if a part is chosen, then it is added to the plant load

in every time period. This is often the case as a part will be insourced only if it can be

produced to meet demand in every season. A possible relaxation is to allow a part to be

chosen in each time period independently of the other time periods; that is, relax xi to xis,

where xis is a binary decision variable to add part i in time period s. This new problem can

then be separated into multiple problems by period.

3.3.2 Sheet Metal Insourcing Model

The next formulation is an application of the insourcing model (without time periods). In

this formulation, the labor time capacity is no longer treated as a hard constraint. It is

assumed that additional labor, above what is available, can be purchased at a known labor

rate. The labor time capacity is represented by fj, defined as the amount of “free” labor

available on machine j. This refers to the labor time already allocated and paid for at

each machine. It is assumed that only labor hours used beyond fj, denoted by the decision

variable hj, are charged at the labor rate. Additionally, labor time is continuous; that is,

any portion of hours or workers can be added. The notation for the decision variables and

parameters follows:

Decision variables:

• xi = 1 if part i is chosen, 0 otherwise, ∀i = 1, 2, . . . , n

• hj = charged labor time, time used above the available (free) labor time, ∀j =

1, 2, . . . , m

Parameters:

• pi = value/profit for insourcing part i, ∀i
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• L = labor rate (assumed to be positive; i.e. L > 0)

• tmij = machine time used by part i on machine j, ∀i, j

• t`ij = labor time used by part i on machine j, ∀i, j

• bm
j = available machine time on machine j, ∀j

• b`
j = maximum available labor time on machine j, ∀j

• fj = free labor time available at machine j, ∀j

Using the above notation, the sheet metal insourcing model is presented as follows:

(Psm) Maximize
n∑

i=1

pixi − L
m∑

j=1

hj

subject to
n∑

i=1

tmij xi ≤ bm
j ∀j = 1, 2, . . . ,m (3.4)

hj ≥
n∑

i=1

t`ijxi − fj ∀j = 1, 2, . . . ,m (3.5)

0 ≤ hj ≤ b`
j − fj ∀j = 1, 2, . . . ,m. (3.6)

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

In this model, the objective is to maximize value minus additional labor costs. As stated

above, labor costs are charged only for the time used above the free labor hours. The next

remark shows that the above formulation correctly models this relationship.

Remark 1 At optimality in Problem 3.4, hj = max{
n∑

i=1

t`ijxi − fj, 0}.

Proof: Given hj ≥
n∑

i=1

t`ijxi−fj and hj ≥ 0, ⇒ hj ≥ max{
n∑

i=1

t`ijxi−fj, 0}. Given L > 0 and

the objective is to maximize
n∑

i=1

pixi−L
m∑

j=1

hj, ⇒ the model will minimize each value of

hj. Minimizing each hj and hj ≥ max{
n∑

i=1

t`ijxi−fj, 0} ⇒ hj = max{
n∑

i=1

t`ijxi−fj, 0}.
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As shown above, all available free labor is consumed before adding labor to produce the

insourced parts. Similar to the other formulations, machine time used for the added parts

cannot exceed the available machine time as stated in (3.4). Although labor hours can be

added at a cost, the amount that can be added before the machine becomes the bottleneck

is limited. This maximum on the total labor at a machine is specified by constraints (3.5)

and (3.6), where the sum of the free labor time and charged labor time cannot exceed the

available labor time.

Two possible extensions to this model are relaxing the binary constraint on the xi values

and adding seasonality. Relaxing the binary constraint on the xi values implies allowing xi

to take on values in the range between zero and one. Then, the problem parameters account

for processing the full required quantity of a part. In previous formulations, either the entire

quantity would be selected or nothing. With the binary relaxation, the xi value represents

the portion of the full quantity to be selected. Adding seasonality can be handled with the

method discussed in Section 3.3.1 for time periods. The resulting formulation for the sheet

metal insourcing model with time periods and partial quantities follows:

Maximize
n∑

i=1

S∑
s=1

pisxi − L
m∑

j=1

S∑
s=1

hjs

subject to
n∑

i=1

tmijsxi ≤ bm
js ∀j = 1, 2, . . . ,m, ∀s = 1, 2, . . . , S

hjs ≥
n∑

i=1

t`ijsxis − fjs ∀j = 1, 2, . . . ,m, ∀s = 1, 2, . . . , S

0 ≤ hjs ≤ b`
js − fjs ∀j = 1, 2, . . . ,m, ∀s = 1, 2, . . . , S

0 ≤ xi ≤ 1 ∀i = 1, 2, . . . , n, ∀s = 1, 2, . . . , S

3.3.3 Sourcing Model

Similar to the addition of labor, the addition of an outsourcing option effectively provides

an opportunity to increase the capacity of the knapsack, or rather free up machine and

labor capacity that is currently consumed. In the insourcing model, the right-hand-side
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value represents the available capacity after the current plant load is processed. Adding

outsourcing to the model is an attempt to capture the situation in which parts are considered

for outsourcing in order to free capacity for more profitable parts to be insourced. In the

following formulation, the insourcing decision variable, xi, is the same as in the insourcing

models, that is, it is equal to one if item i is selected for insourcing, and zero otherwise. The

outsourcing decision variable, yh, is equal to one if item h is selected for outsourcing, where

h = 1, . . . , k and k is the number of parts that can be outsourced. The value of a part is pi

for insourced part i and ph for outsourced part h. The resulting formulation follows:

Maximize
n∑

i=1

pixi +
k∑

h=1

phyh

subject to
n∑

i=1

tmij xi −
k∑

h=1

tmhjyh ≤ bm
j ∀j = 1, . . . , m (3.7)

n∑
i=1

t`ijxi −
k∑

h=1

t`hjyh ≤ b`
j ∀j = 1, . . . , m (3.8)

xi ∈ {0, 1} ∀i = 1, . . . , n

yh ∈ {0, 1} ∀h = 1, . . . , k

Constraint sets (3.7) and (3.8) represent that the amount of time used by the parts selected

for insourcing, minus the time freed by parts selected for outsourcing, must remain less than

the available capacity. This problem effectively chooses the parts to outsource when either it

is profitable to outsource, or when it is more profitable to use the capacity on an insourced

part. However, note that the constraint coefficients associated with the outsourcing variables,

tmhj and t`hj, are all negative. The next remark addresses this issue.

Remark 2 The outsourcing formulation can be transformed so that all the coefficients are

positive.

Proof: Case 1: When ph > 0, if yh = 1 the objective function will increase and extra capacity

will be available in the knapsack constraints. Therefore, if ph ≥ 0, yh will always equal

one and those variables can be removed from the problem.
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Case 2: When ph < 0, since tmhj < 0 and t`hj < 0 for all j, substituting 1− y′h = yh will allow

all the coefficients to be positive.

The resulting formulation follows:

Maximize
n∑

i=1

pixi +
k∑

h=1

ph (1− y′h)

subject to
n∑

i=1

tmij xi +
k∑

h=1

tmhjy
′
h ≤ bm

j +
k∑

h=1

tmhj ∀j = 1, . . . ,m

n∑
i=1

t`ijxi +
k∑

h=1

t`hjy
′
h ≤ b`

j +
k∑

h=1

t`hj ∀j = 1, . . . ,m

xi ∈ {0, 1} ∀i = 1, . . . , n

y′h ∈ {0, 1} ∀h = 1, . . . , k

Previous models assumed that the current plant load was constant and the only decision was

whether or not to bring each part on the list of potential parts that can be insourced. In

this model, with the outsourcing of each current plant load part as an additional decision,

effectively the current plant load is emptied and each part is added to the list of potential

parts that can be insourced. Then, the decision becomes whether or not to insource the

parts from a list containing both the original parts considered for insourcing and the parts

considered for outsourcing. Finally, a part from the plant load is outsourced if it is not

selected to be brought back in-house via insourcing.

This model with both insourcing and outsourcing decisions represented will be referred to as

the sourcing model. Note that both the sourcing and insourcing models are standard MKPs.

Therefore, the standard MKP data sets used in the experimentation can be interpreted as

either insourcing-only or sourcing data sets. This distinction will be addressed more fully in

Chapter 6. But first, in Chapter 4 we explore the differences in solution difficutly between

MKPs with the multiple-attribute structure present in sourcing problems and the standard

single-attribute structure.



Chapter 4

Multiple-Attributes of the MKP

In this chapter we are concerned with the multiple-attribute MKP in general, and specifically,

the way that the multiple-attribute structure affects the MKP formulation for the sourcing

problem. A multiple-attribute MKP (MA-MKP) for this research is defined to be a MKP in

which at least some of the constraints are sampled from different distributions prior to any

scaling. Similarly, a single-attribute MKP (1A-MKP) is a MKP in which all the constraints

have the same scale, or they are generated from the same distribution.

4.1 Multiple-Attributes Versus Single-Attributes

The difference between a MA-MKP and a 1A-MKP is best explained by recalling Sec-

tions 3.1.2 and 3.1.3 in which we discuss the difference between multiple attributes and

multiple knapsacks. In Section 3.1.2 the multiple-attribute MKP model (volume and weight

constraints) is presented, and in Section 3.1.3 is the 1A-MKP multiple knapsacks model (two

weight constraints).

The MA-MKP version of the problem is of particular interest since the constraints in the

sourcing problem represent multiple attributes. The constraints in the sourcing problem at

31
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a minimum are associated with different problem features, machine time and labor time for

each of the different machines. Additionally, each part is likely to require a variation of pro-

cessing times across the machines on the part’s routing. Therefore, because the coefficients

associated with each constraint can look very different, the sourcing problem is labeled as

an MA-MKP.

The literature does not consider the differences between the knapsack constraints of the

MKP. All of the problems used to test the various algorithms are 1A-MKP type problems.

That is, all the constraints are sampled from the same distribution. We conjecture that it is

more difficult to solve a MA-MKP than a 1A-MKP. If the MA-MKP is more difficult, then

there are research issues involved with identifying problem characteristics that will lead to

algorithms specifically designed for a MA-MKP.

We want to answer the question of whether it is more difficult to solve a MA-MKP than

a 1A-MKP. Since the two types of problems are mathematically equivalent (as shown in

Section 3.1.3), the comparison between the two types of problems will be examined empiri-

cally. Problems can be generated that are the same size in terms of the number of variables

and constraints, but differ in terms of the number of attributes represented by the knapsack

constraints. That is, the problems differ in that one is a MA-MKP and one is a 1A-MKP.

Testing has been performed using the CPLEX MIP solver [6].

We conjecture that the MA-MKP is more difficult to solve than the 1A-MKP. Problems

are generated using the method presented in Freville and Plateau [12]. In this method,

the constraint coefficients (A) and objective function coefficients (p) are correlated to the

constraint coefficient distribution. The constraint coefficients (A) are generated from a

uniform distribution with ranges of 1 to 100, 1 to 1000, and 1 to 10000. The correlation of

each a and p are as follows, where A (≥ 0) is uniformly distributed over the interval (1, β),

and rj, τ ∈ U(0, 1).

pj =

(
m∑

i=1

Aij

)
/m + 0.5 β rj ∀j = 1, 2, . . . , m
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bi = τ

n∑
i=1

Aij ∀i = 1, 2, . . . , n

Table 4.1 shows the results from this experiment. The problems are all the same size, with

100 variables and 5 constraints. Each problem set is made up of 10 problems, in which the

9 problem sets represent variations in the constraint tightness factor, τ , as defined above,

and in the A distribution. The difference between the MA-MKP problems and the 1A-MKP

problems is the range of A. In the 1A-MKP problems, the range of A is shown in the first

row of the table. For the MA-MKP problems, the range of A changes for each of the 5

constraints. The ranges of A are set such that the resulting coefficient of variation (CV) of

p is similar for both the 1A-MKP and MA-MKP problems within a set.

Table 4.1: MKP Comparison — Multiple vs. Single Attributes

1D A dist U(1,100) U(1,1000) U(1,10000)
τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Problem Set 1 2 3 4 5 6 7 8 9 Avg.

MA Averages
CPU Time 15.53 36.26 28.04 575.79 447.05 173.41 241.90 172.03 164.05 206.01

MIP Iterations 184224 239915 188627 7198247 5824636 2758905 3264336 1369109 1223134 2472348
B & B Nodes 91567 116103 94036 3493617 2688241 1260152 1572333 629221 574470 1168860

CV of p 7 8 7 45 46 46 474 488 484 178

1A Averages
CPU Time 5.40 8.35 5.84 4.39 7.79 2.04 10.21 8.40 5.59 6.44

MIP Iterations 72039 57152 39351 61502 116806 30682 141751 122459 38451 75577
B & B Nodes 35734 27795 19730 29789 58035 15148 71958 60492 19419 37567

CV of p 5 5 5 47 47 48 501 514 508 187

% MA > 1A
CPU Time 188% 334% 380% 13011% 5641% 8419% 2269% 1947% 2837% 3892%

MIP Iterations 156% 320% 379% 11604% 4887% 8892% 2203% 1018% 3081% 3171%
B & B Nodes 156% 318% 377% 11628% 4532% 8219% 2085% 940% 2858% 3011%

For each type of problem, Table 4.1 shows the averages over 10 problems for CPU time, the

number of MIP Simplex iterations, the number of branch and bound (B & B) nodes visited,

and the CV for p. The last three rows of Table 4.1 show the average percentage that the
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Table 4.2: MKP with Multiple Attributes Comparison — Scaled (MAS) versus No Scal-
ing (MA)

1D A dist U(1,100) U(1,1000) U(1,10000)
τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Problem Set 1 2 3 4 5 6 7 8 9 Avg.

MAS Avg
CPU Time 17.3185 20.0514 13.9778 626.867 507.0962 220.109 291.8927 98.8918 98.0214 210.47

MIP Iterations 203780 272947 189163 7511222 6467788 3493973 3825131 1503139 1439241 2767376
B & B Nodes 100814 133751 94966 3691900 2904949 1607691 1808744 689314 666691 1299869

% MAS>MA
CPU Time 12% -45% -50% 9% 13% 27% 21% -43% -40% -11%

MIP Iterations 11% 14% 0% 4% 11% 27% 17% 10% -18% 12%
B & B Nodes 10% 15% 1% 6% 8% 28% 15% 10% 16% 11%

% MAS>1A
CPU Time 221% 140% 139% 14174% 6413% 10714% 2759% 1077% 1655% 4143%

MIP Iterations 183% 378% 381% 12113% 5437% 11288% 2598% 1127% 3643% 4128%
B & B Nodes 182% 381% 381% 12293% 4906% 10513% 2414% 1040% 3333% 3938%

MA-MKP exceeds the 1A-MKP in each of the categories. It is clear that these experiments

support the conjecture that the MA-MKP is more difficult to solve than the 1A-MKP.

A second round of testing was performed on these same problems in which the constraints

are scaled. The coefficients in each constraint are divided by the constraint’s right-hand side

value so that the scaled right-hand side is equal to one and the scaled constraint coefficients

are between zero and one. Each Aij then represents the percentage of that knapsack that the

variable would consume if selected. Table 4.2 presents the results of this scaled comparison.

Table 4.2 shows that scaling does not make the problems easier for CPLEX to solve (this

may be caused by the fact that CPLEX includes some scaling procedures that are probably

used even on our “unscaled problems”). For the scaled problems, the CPU time, number

of MIP iterations, and the number of branch and bound nodes visited remains close to the

same as when the problem is not scaled. As shown in the final three rows of Table 4.2,

on average, the MA-MKP still requires significantly more CPU time, MIP iterations, and
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branch and bound nodes than is required for the 1A-MKP. Therefore, these results support

the conjecture that the MA-MKP is more difficult to solve than the 1A-MKP, and that

scaling does not alleviate this difficulty.

In summary, although the MA-MKP and 1A-MKP are mathematically equivalent, the ex-

perimentation indicates that the MA-MKP is more difficult to solve than the 1A-MKP. The

next step is to identify which, if any, MIP solution methods work better than others for

problems with the MA-MKP structure.

4.2 Multiple-Attribute Experimentation

This section measures the impact of solution techniques on the solution time of the sourcing

problem. As previously shown, the sourcing problem has characteristics that make it more

difficult to solve than the standard MKP addressed in the literature. Solution techniques that

are effective for the standard MKP may not be useful for the sourcing problem. Therefore, it

is necessary to evaluate various techniques and their effectiveness on the sourcing problem.

Three sets of problems are used for calculating the results in this section: single-plant in-

sourcing only (as described in Chapter 3) with 100 parts and 5 constraints; single-plant

sourcing (insourcing and outsourcing) with 200 parts and 5 constraints; and single-plant

sourcing with 298 parts and 5 constraints. As in previous result presentations, in all of the

tables in this section, each entry is an average of 10 problems, and each table covers 90

problems.

4.2.1 Insourcing versus Sourcing

The experimentation in this section uses problems in the form of both the single-plant

insourcing problem and the single-plant sourcing problem (SPSP) as defined in Section 3.3.3.

The model of the SPSP includes both insourcing and outsourcing, and is reviewed here with
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xi = 1 when part i is insourced and y′h = 1 when currently loaded part h remains in-house.

Maximize
n∑

i=1

pixi −
k∑

h=1

ch (1− y′h)

subject to
n∑

i=1

tmij xi +
k∑

h=1

tmhjy
′
h ≤ bm

j +
k∑

h=1

tmhj ∀j = 1, 2, . . . , m

n∑
i=1

t`ijxi +
k∑

h=1

t`hjy
′
h ≤ b`

j +
k∑

h=1

t`hj ∀j = 1, 2, . . . , m

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

y′h ∈ {0, 1} ∀h = 1, 2, . . . , k

The first issue to address is if the addition of outsourcing adds difficulty to the model. To

examine this, a comparison is made between a strictly insourcing problem set and an SPSP

set that includes outsourcing. The coefficients for the insourced parts (xi) in the SPSP are

the exact same coefficients as in the insourcing problems. For the outsourced parts, (yh),

the coefficients are randomly generated using the same method and parameters as for the

insourcing coefficients. Effectively, both the insourcing problem and the SPSP are of the

MA-MKP type, with the only difference being that the SPSP has twice as many parts.

In the experimental problems, the insourcing problems have 100 parts and 5 constraints,

while the SPSP has 200 parts and 5 constraints. These two problem sets are both solved to

optimality using CPLEX under the default settings, and the results from these experiments

are shown in Table 4.3. The table entries represent the average CPU time (of ten problems)

required to solve the problems optimally.

Comparing the CPU time for the two types of problems, on average, the SPSP requires 1.5

times the CPU time, but it is also twice as large. In some cases, for problem sets 3, 8, and 9,

the CPU time is actually less for the sourcing problem. Therefore, we can conclude that the

addition of outsourced parts, although increasing the size of the problem, does not imply a

correlated increase in the time required to solve the problem. Hence, both types of problems

will be used to test the various solution techniques in this section.
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Table 4.3: Insourcing Problem CPU Solution Times

1D A dist U(1,100) U(1,1000) U(1,10000)
Tau 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
Problem Set 1 2 3 4 5 6 7 8 9 Average
Insourcing 15.5 36.3 28.0 575.8 447.1 173.4 241.9 172.0 164.1 206.01
SPSP 33.8 86.7 25.0 788.0 857.9 355.3 296.8 144.9 115.3 300.39

4.2.2 Parameter Control

In this section the specific problem parameters are addressed with respect to their impact

on solution time and sensitivity. First, the problems are scaled so that all the constraint

coefficients are on the same scale. Next, the problem parameters are rounded to test the

effects of data accuracy.

Scaling

In Section 4.1 it is demonstrated that the MA-MKP is more difficult to solve than the 1A-

MKP. This continues to hold true when the problems are scaled so that the coefficients are

between zero and one. However, this comparison between the scaled and unscaled problems

may be inaccurate because included in the default CPLEX settings is a coefficient prepro-

cessing function. It is possible that a coefficient reduction that is similar to scaling in the

previous experiment is completed during the default preprocessing function. Therefore, an

experiment is conducted with the scaled MKP problems and the default coefficient prepro-

cessing disabled. The results are presented in the No Preprocessing section of Table 4.4

(along with the results from the original scaled versus unscaled experiments). With pre-

processing disabled, there is still no significant difference between the scaled and unscaled

solution times.

In both scenarios, with and without preprocessing, the scaled problems on average require

slightly more CPU time, but the difference is very small and only on average, not across all

the problems. Therefore, the MA-MKP remains difficult to solve even when scaled to look
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Table 4.4: Scaled and Unscaled CPU Solution Times

Problem Set 1 2 3 4 5 6 7 8 9 Average
CPLEX Default
Unscaled MA-MKP 15.5 36.3 28.0 575.8 447.1 173.4 241.9 172.0 164.1 206.0
Scaled MA-MKP 17.3 20.1 14.0 626.9 507.1 220.1 291.9 98.9 98.0 210.5
1A-MKP 5.4 8.4 5.8 4.4 7.8 2.0 10.2 8.4 5.6 6.4

No Preprocessing
Unscaled 13.4 16.7 13.4 609.8 529.4 174.0 232.7 97.1 73.5 195.6
Scaled 13.9 18.2 12.5 596.8 484.9 216.0 349.9 96.2 93.1 209.1

like a 1A-MKP.

The scaling process may require coefficients to be truncated or rounded. Since on average, the

scaled problems are slightly more difficult to solve, this brings rise to the next consideration

of whether rounding and truncation adds difficulty to the problem.

Rounding

The rounding that occurs from scaling is small enough that the solution obtained is the same

as the solution from the original problem. This section looks at more significant rounding to

test the impact on the solution procedure. The experimentation addresses two issues: first,

does rounding increase the difficulty in solving the problem, as mentioned in the previous

section? And second, how sensitive is the solution procedure and the solution accuracy to

slight changes in the problem parameters? This latter issue would arise when the problem

parameters are estimates, which is likely to occur when using industry data.

To test these issues, two types of problems are compared. The insourcing problem set, solved

with CPLEX under the default settings, is again used as the baseline for comparison. These

same problems are then rounded, to the nearest ten, to form the second problem set that is

also solved with CPLEX under the default settings.

The results are shown in Table 4.5. The first row, labeled % CPU Reduction, is the percent
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Table 4.5: Rounded Solutions

Problem Set 1 2 3 4 5 6 7 8 9 Average
% CPU Reduction 93.3 98.8 97.3 27.7 -14.7 38.8 -11.5 35.7 51.9 46.4%
# Vars same 89.1 89.9 88.7 95.5 91.6 91.2 100.0 98.0 100.0 93.8
Soln Gap (%rd>reg) 0.18 -0.03 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.04%

reduction in CPU time when solving the rounded problem versus solving the regular problem

with default CPLEX settings. On average over the nine problem sets, solving the rounded

problem reduces the run time by 46.4%. Therefore, the initial conjecture that the problem

becomes more difficult with rounding is shown to be false. However, this makes sense because

rounding is like replacing constraints with Chvatal-Gomory cuts of them, which can be

expected to give a tighter representation.

The reduction in time to solve a rounded problem leads to the possibility that a problem

can be estimated and solved more quickly. However, before doing this, it would be helpful

to know how sensitive the final solution is to changes in the parameters. Therefore, the

solution from the rounded problem is compared to the original solution and the results are

summarized in the remainder of Table 4.5. The second row shows the average number of

parts (out of 100 total parts) that are assigned to the same value in both the regular problem

and the rounded problem solutions. As the range on the coefficients increases, more parts

are assigned the same value. This makes sense since the rounding to the nearest ten affects

the larger coefficients less than the smaller coefficients. However, even when up to 11% of

the parts are assigned different values, the difference between the objective function values

is quite small. The final row of Table 4.5 shows the percent change in the solution value

from the regular problem solution to the rounded problem solution. (A negative value, as

in Problem Set 2, can occur because when the coefficients are rounded, both the capacity of

the knapsacks and the amount of capacity a part consumes changes, and solutions that are

infeasible to the original problem may now be feasible to the rounded problem.) Therefore,

the rounded solution is a good estimate of the original solution, particularly when the range

of the coefficients increases.
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4.2.3 Algorithm Control

This section addresses control of the branch-and-bound algorithm. Various strategies are

employed, each dealing with the order in which the branch-and-bound tree is developed.

First, traditional depth- and breadth-first search methods are compared. Next, the order

in which the variables are branched on is prioritized based on a ranking. A few different

ranking strategies are tested.

Depth versus Breadth

In the previous section on rounding, multiple solutions were found that had similar values. If

a good solution can be found quickly, it can help to eliminate poor solutions quickly. In light

of this, it is worth investigating the order in which solutions are generated and evaluated in

the solution procedure.

In this section, control of the branch-and-bound algorithm is evaluated with respect to

branching order, or how the tree is developed. In a depth-first search, at each node, if

possible, the next node considered is a child of the current node. It is likely that feasible

solutions will be found deep in the tree; therefore, this method is likely to find a feasible

solution quickly. Another method is a breadth-first search in which all the nodes at one level

of the tree are evaluated before the children of that level are considered.

On the same set of multiple-attribute problems as in the previous experiments, depth-first

and breadth-first searches are compared. This is done by solving the problems using both

a pure depth-first search and a pure breadth-first search. Table 4.6 shows the results from

the two techniques compared with results from default CPLEX, which uses a combination of

depth- and breadth-first. The values in the table are the percent reduction in CPU solution

time when using the pure depth- or breadth-first compared to the default CPLEX.

Although, the breadth-first search is on average not as efficient as the default CPLEX, it is

significantly faster than depth-first. Additionally, breadth-first is significantly better than
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Table 4.6: % Reduction in CPU Solution Times with Depth- and Breadth-First

Problem Set 1 2 3 4 5 6 7 8 9 Average
Depth-first -273 -49 18 -199 -304 -215 -110 -184 -35 -150%
Breadth-first 5 47 46 -79 -52 -4 -61 53 49 0.3%

the default CPLEX for 5 of the 9 problem sets and for 66 of the 90 problems. The poor

performance of the depth-first search indicates that one difficulty in solving MA-MKP may

be in quickly eliminating poor solutions. This is consistent with the rounding results section

where multiple solutions provide similar objective function values. When multiple good

solutions exist, partial solutions appear good until deep in the tree.

Branching Priorities

As in the previous section, the control of the branch-and-bound algorithm is addressed here.

A list is created that sets the priority of the parts with respect to the branching order.

That is, of the possible parts that can be branched on, the part with the highest priority is

selected.

Three different methods of ranking the parts are defined and tested. All three methods are

based on maximizing the composite profit to cost ratio, where a part’s profit and cost are

respectively pi and tij for insourced parts, and ch and thj for outsourced parts. For simplicity

in defining the rankings, the outsourcing profits will also be represented as pi, and costs as

tij, where i is indexed from 1 to n+k, representing both the insourced and outsourced parts.

Ranking of parts by the maximum profit to cost ratio is simple with only one constraint. In

that scenario, each part has one profit value and only one cost value. However, with more

than one constraint, the composite cost factor is not easily defined, since for each part, each

constraint has a different cost.

The three rankings differ by how the composite cost factor, Vi (the denominator in the

profit to cost ratio), is calculated. The first ranking defines Vi as the sum of the costs
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across all constraints. The second ranking uses only the cost of the constraint with the most

expensive coefficient, effectively selecting the best worst case. The third ranking is based on

the heuristic to solve the MKP by LouLou and Michaelides [25].

In the third ranking, parts are selected one at a time, based on a criterion, and added into

the knapsack. The order in which they are selected is then used as the priority ranking with

the first selected being on the top of the list. This is different from the above rankings in

that once a part is selected, the criterion changes and is recalculated for the remaining parts.

A few items need to be defined to understand the selection criterion. DAj is the percent of

capacity consumed on machine j thus far. As parts are selected this value increases. SC is

the list of remaining candidate parts, and the percent of each knapsack a part consumes is

aij = tij/bj.

For all the parts in SC, the heuristic calculates the criterion, and the part with the largest

value is selected and removed from the set SC. Like the previous rankings the criterion

is a profit to cost ratio; however, it is different in that the cost factor, Vi, changes after

each selection and it is made up of three factors. The first factor, DAj + aij, is the total

consumption of machine j capacity by all the parts selected so far plus part i. When this

consumption of a machine is high, this factor increases Vi, ultimately decreasing the profit

to cost ratio for part i in this iteration. The second factor,
∑

kεSC akj − aij, is the potential

future demand on machine j (from the remaining parts in SC) after part i is selected. When

this projected future demand is large, Vi is large to lower the priority of parts that use of

this machine. The third factor, 1−DAi − aij, is the remaining capacity on machine j after

part i is selected. If the machine is close to capacity, this quantity is small and Vi is large to

discourage use of the machine.

Ranking Criteria

arg max
i

{
pi

Vi

}
, where

1. V 1
i = tij
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2. V 2
i = max

j
{tij}

3. V 3
i = max

j





(DAj + aij)
(

∑
kεSC

akj − aij

)

(1−DAi − aij)





To compare the value of these branching priorities versus each other and CPLEX default

branching, problems are solved in CPLEX using each of the three rankings as inputs. For

each problem, each ranking strategy has a corresponding list that controls the order in which

parts are branched on. For these experiments, the problem sets used are the same as those in

Section 4.2.1 for the SPSP with 100 insourced parts, 100 outsourced parts, and 5 constraints.

Table 4.7 shows the results from the three ranking strategies used as branching priorities.

The first rule shows some benefit for the problems with the smaller coefficient range (sets 1-3),

but otherwise, default CPLEX significantly outperforms CPLEX with the above branching

priorities. Although the priorities are not effective in this scenario, these ranking strategies

will be used with some success in Chapter 5 as part of a heuristic approach.

Table 4.7: % Reduction in CPU Solution Time with Branching Priorities

Problem Set 1 2 3 4 5 6 7 8 9 Average
Rank Rule 1 64 55 29 -456 -278 -397 -529 -654 -367 - 281%
Rank Rule 2 -24 -50 -61 -796 -187 -498 -375 -1218 -648 -429%
L&M rank -69 -93 -73 -706 -384 -892 -961 -703 -413 -477%

4.2.4 Solution Space Control

This section deals with approaches that attempt to eliminate solutions of either the entire

problem or for subproblems. These approaches includes a Lagrangean bound, covers, and

cuts.
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Table 4.8: % Reductions in CPU Solution Time with a Lagrangean Bound

Problem Set 1 2 3 4 5 6 7 8 9 Average
Root Node Only 14 46 52 -2 -1 -2 0 41 53 22%
Every Node -50477 -24243 -144176 -14604 -19602 -50620%

Lagrangean Bound

A Lagrangean bound is implemented in two ways. First, the bound is generated for just

the root node. This bound is input into CPLEX with the problem and solved using the

default settings. Under the second method, the algorithm is stopped at each node, a bound

is generated for the subproblem, and submitted back to the subproblem to continue until the

problem is solved to optimality. The Lagrangean bound is calculated using the subgradient

optimization method, and the multipliers and step size are determined as in Gavish and

Pirkul [15].

To calculate the Lagrangean bound, one constraint remains active, while the others are

added to the objective function and weighted by multipliers. The remaining 0-1 knapsack

problem (single-dimensional) is solved to optimality. This procedure is repeated with each

of the constraints remaining active, and the best solution is used as the bound.

The results from testing these two bounding methods are shown in Table 4.8. The values in

the table are the average percent reduction in CPU time, when the Lagrangean bound is used

instead of the default CPLEX, to solve the problem to optimality. On average, calculating

the Lagrangean bound at the root node decreases the solution time by 22%. However, solving

the bound at every node clearly takes much longer. This bound is expensive (with respect

to time) because a knapsack problem is solved for each constraint.

A possible alternative is to solve the knapsack problems partially instead of to optimality,

reducing the time required to calculate the bound. For each node, instead of solving the

relaxed problem optimally a greedy heuristic is used. Since the relaxed problem has only one

constraint, the variables are ranked by the benefit to cost ratio. Following the ranking order,
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variables are added when capacity is available. However, this experiment very little increase

in run time is observed over solving the relaxed problem. When analyzed further, the long

run time can be attributed to the stopping and starting of CPLEX at every node. However,

the moderate success of the root node Lagrangean bound indicates that further bounding

methods could potentially reduce the CPU time further. In the next section, additional

constraints and cuts are generated in an effort to reduce the solution space.

Extended Cover

In this section an extended cover inequality is generated and added to the root problem.

With the extra constraint, the problem is input into CPLEX to again compare the CPU

times to examine the effect of the more tightly constrained problem.

The solution procedure, developed by Gabrel and Minoux [13], generates the most violated

extended cover inequalities with an exact solution approach to solve the separation problem.

The solution to the separation problem defines a minimal-dependent set used to generate

the extended cover inequality.

Gabrel and Minoux [13] show that the use of extended cover inequalities is in general more

effective than the default CPLEX cover inequality generation. However, the problems used in

testing, as in other MKP literature, are single-attribute problems in which all the constraint

coefficients are generated from the same distribution. This extended cover method was

tested on the multiple-attribute problems for the insourcing problem with 100 parts and

5 constraints. The results in Table 4.9 show that there is a moderate improvement (on

average 17%) in the CPU time required to solve the problem to optimality when the cover is

included. It is most effective on the problems with both small and large coefficient ranges,

but is worse in the middle range. The time reduction reported in the table includes only the

time to solve the MKP with the additional constraints. The time to generate the ECI is not

included. However, as with the Lagrangean bound, this procedure requires solving multiple

0-1 knapsack problems and it is expensive with respect to the time required to generate these
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Table 4.9: % Reduction in CPU Solution Time with Extended Cover Inequalities

Problem Set 1 2 3 4 5 6 7 8 9 Average
% Reduction w/ECI -2 46 48 -15 4 -13 7 41 49 17%

inequalities.

Cuts

The final set of experiments that test methods constraining the problem are executed using

the various cut options for 0-1 integer programs available in CPLEX: GUB, Gomory, Cover,

and Disjunctive. The tests are executed on the SPSP with two problem sizes, 200 parts

with 5 constraints, and 298 parts with 5 constraints. The results from these experiments are

shown in Table 4.10.

For a set of binary variables, the GUB (generalized upper bound) constraints take a form

such that the sum of the variables is less than or equal to one. This is based on the idea

of splitting the feasible region into two sections instead of branching on an individual part.

However, with respect to CPU time, using only the GUB cut option is dominated by the

default CPLEX cuts for both problem sizes.

Gomory cuts are generated by applying integer rounding to a basic variable row in the

optimal linear programming (LP) tableau in which the variable is fractional. On average,

with only the Gomory cut option selected, slightly less CPU time is required than with the

CPLEX default.

The cover cut option generates minimal cover inequalities. This is a similar cut to the

extended cover inequalities in Section 4.2.4; however, with this CPLEX option there is no

guarantee that the generated constraint yields a facet of the convex hull. This cut option

performs well as compared to the default CPLEX and is comparable to the Gomory cut

option.
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Table 4.10: % Reduction in CPU Solution Time with Cuts

Problem Set 1 2 3 4 5 6 7 8 9 Average
100-100-5
GUB cuts -146 -150 -148 -119 -108 -115 -150 -173 -172 -142%
Gomory Cuts -36 -4 -49 5 12 27 19 7 9 -1%
Cover Cuts 7 9 7 15 20 21 7 0 1 10%
Disjunctive Cuts 26 0 9 10 25 13 17 -65 -162 -14%
149-149-5
GUB cuts -129 -213 -150 -250 -222 -278 -179 -229 -218 -208%
Gomory Cuts 4 -7 22 5 5 13 -6 2 20 7%
Cover Cuts 7 4 5 6 7 6 2 -1 -2 4%
Disjunctive Cuts -136 -214 -151 -246 -212 -271 -171 -225 -214 -204%

Finally, the disjunctive cut option uses the knowledge that each variable is either less than

or equal to zero or is greater than or equal to one. Disjunctive cuts are generated on the

subproblems that are valid for the LP feasible region, but not for the root problem. This

method performs poorly compared to the the other cuts and the default CPLEX options.

In summary, of the various cut options, Gomory and cover cuts perform similarly, and with

respect to CPU time, perform on average better than the default CPLEX and the other

cuts. For each problem set, either the Gomory or cover option requires less CPU time than

the default CPLEX. Generating the Gomory cuts involves rounding; therefore, given earlier

results with rounding, it is not surprising that the Gomory cuts perform well.

4.2.5 Summary

As shown in the Chapter 4, with respect to CPU solution time the multiple attribute multi-

dimensional knapsack problems (MA-MKP) are more difficult to solve than the single dimen-

sional problems. Since the sourcing problems are modeled as an MA-MKP, we are interested

in identifying solution techniques that work well on this type of problem.

This chapter summarizes the results from experimentation on both preprocessing and algo-

rithmic control techniques to solve the MA-MKP. Some of the techniques are more effective
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than others and provide some insight into the difficulty in solving MA-MKPs.

First, when the coefficients are rounded, the problem on average requires 46% less CPU time

than solving the original problem with default CPLEX. In addition, the solution obtained

from the rounded problem is on average within 0.04% of the optimal solution. As the

coefficient range increases, the solutions are identical in most cases. This combined with

the dominance of a breadth-first search over a depth-first search indicates that a potential

difficulty in solving the MA-MKP is that since multiple good solutions can exist (shown by

the close solutions found when rounding) it may be difficult to eliminate partial solutions

until deep in the tree.

Second, the Lagrangean relaxation on average reduced the required CPU time by 22%, even

though a bound was generated for only the root node. It is expensive to generate the bound

because a regular knapsack problem is solved for each constraint. Therefore, to generate

a bound for every node, the solution to the Lagrangean problem needs to be estimated.

However, given the success of the root node bound, it is likely to reduce even further the

CPU time required to solve the multiple-attribute problems to optimality.

Finally, the cover and Gomory cuts outperformed the CPLEX default settings as well as

the other cuts. Although, these methods made significant reductions in the solution time,

none reduced the solution time to the scale of the single-attribute problems. Even with the

most effective techniques, the multiple-attribute problem still requires about 25 times the

CPU time to find the optimal solution. For this reason (in addition to the size of industry

problems) heuristics will be discussed in the next chapter.



Chapter 5

Heuristic

In the previously discussed techniques, an improvement in the solution time is seen with a

few of the MIP exact approach methods, yet all are expensive with respect to CPU time.

Since industry problems are considerably larger than the experimental problems, it is worth

exploring heuristic solution techniques. The linear programming (LP) relaxation of the

problem and simple heuristics that start with the LP-relaxed solution are addressed in this

chapter.

5.1 LP Relaxation

Before using the LP relaxation, it is important to know how the LP solution compares to the

optimal solution. The results from this comparison are shown in Table 5.1 for the problems

with 100 insourced parts and 100 outsourced parts. The first two rows clearly show, as

expected, that the CPU time required to solve the LP is negligible compared to the time

required to solve the IP to optimality. The next row is the average number of fractional

variables (related to part selection) in the LP solutions. Soyster, Lev, and Slivka [36] show

that for multi-dimensional knapsack problems at most m part selection variables will be

49
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Table 5.1: Single Plant Sourcing Problem LP Relaxation

Problem Set 1 2 3 4 5 6 7 8 9 Average
CPU-CPLEX default 34 87 25 788 858 355 297 145 115 300
CPU-LP relaxation 0.06 0.03 0.03 0.06 0.03 0.04 0.04 0.03 0.05 0.04
# Fractional in LP 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.9 5.0
% Gap

LP relax - IP 0.41 0.28 0.18 0.24 0.12 0.08 0.29 0.12 0.07 0.20%
IP - LP rd down 8.86 4.25 3.29 11.47 4.24 3.16 11.22 4.88 3.65 6.11%

fractional, where m is the number of constraints. Since the test problems have 5 constraints,

all of the problems have a maximum of 5 fractional parts in the LP relaxation solution.

The next two rows display the percent gap between solutions. The row labeled LP relax -

IP, is the gap between the objective function value of the IP optimal solution and the

LP (fractional) solution. The IP - LP rd down row is the gap between the objective function

value of the IP optimal solution and the LP feasible solution (fractional parts rounded down).

Note that the gap is still small when comparing the IP to the LP feasible solution (6.11%);

however, there is still room for improvement.

5.2 LP-Based Heuristic

Discussed next is a simple heuristic that capitalizes on the knowledge that the number of

fractional parts in the LP solution is at most equal to the number of knapsack constraints

and the assumed small gap between the feasible LP solution and the IP solution. The idea

behind the heuristic is to start with the LP feasible solution determined from rounding down

the fractional parts in the LP solution, then if possible, add any extra parts into the knapsack

(changing the variables currently set to zero to one). However, this requires a method to

evaluate which parts should be added to the knapsacks.

Assume there exists a feasible solution and a list of candidate parts (variables currently set

to zero) to be added to the knapsacks. A simple greedy method is to rank the candidate
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parts, based on some criterion, and then add as many as possible, in order of the ranking,

while maintaining feasibility.

Four different rules are used to rank the candidate parts. Each one is based on the idea of

ranking the parts by a composite benefit to cost ratio, or the “bang for buck.” However, as

discussed before in the branching priorities section, Section 4.2.3, the cost factor is difficult

to calculate because of the multiple constraints. Therefore, each rule has a slightly different

approach to calculating the cost factor. The first two ranking rules are the same as rules 1

and 2 in the branching priorities section. The first rule takes the cost factor to be the sum

of a part’s coefficients across the constraints. The second and third rules are similar to each

other; however, where the second rule creates a worst case ratio, the third rule generates the

best case ratio.

The fourth rule is also based on a composite benefit to cost ratio. In this case, the structure

is similar to rule 1, but with surrogate multipliers as weights on the coefficients. These mul-

tipliers come from the strongest surrogate constraint, defined as (µ∗)t Ax ≤ (µ∗)t b, such that

s (µ∗) = min
µ
{S (µ)}, where S (µ) = max {cx |µ (Ax− b) ≤ 0, x ∈ {0, 1}}, and µ is a positive

vector of size m. To get the strongest surrogate constraint, solve for the set of multipliers, µ,

as defined in problem S(µ). Of these solutions, the multipliers that generate the minimum

solution, µ∗, are used to generate the strongest surrogate constraint. The problem S (µ) is

known as the surrogate relaxation. In this relaxation, the original constraints are replaced

by the single strongest surrogate constraint. This effectively creates a 0-1 knapsack problem,

and the benefit to cost ratio can be calculated as in the 0-1 knapsack problem. Therefore,

for the surrogate ranking rule, the coefficients in the surrogate relaxation,
∑n+k

j=1 µjtij are

used as the cost factors.

This surrogate ranking procedure is similar to that developed by Pirkul [33]. The difference is

that Pirkul started with all variables set to zero and used the surrogate ranking to determine

the order in which the variables would be added. This procedure starts with the feasible LP

solution and ranks only the remaining variables as possibilities to add into the knapsacks.
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Surrogate relaxations are often overlooked as an effective bounding procedure because the

feasible region for optimal multipliers is non-convex [26]. In this heuristic, the method of

Gavish and Pirkul [15] is used to find the multipliers. They take the optimal dual variables

of the LP problem as the surrogate multipliers, and show that the bound produced by the

surrogate relaxation problem (using the LP dual variables as multipliers) is at least as good

as the LP bound. Therefore, in this heuristic, the LP dual multipliers are used as the

surrogate multipliers.

Ranking Rules

1. R1
i = max

i

{
pi

∑n+k
j=1 tij

}

2. R2
i = max

i





pi

max
j
{tij}





3. R3
i = max

i





pi

min
j
{tij}





4. R4
i = max

i

{
pi

∑n+k
j=1 µjtij

}

In each of the k rules, k = 1, 2, 3, 4, the candidate variables are ranked on Rk
i . The variable

with the largest Rk
i is checked first to see if it is feasible to add that variable to the knapsacks

(change the value from zero to one).

Table 5.2 displays the results from using each rule, as well as the best of the four, to rank

the candidate variables. Although rank rule 1 appears to be the best on average, no one rule

comes close to dominating for all problem types. The top of the table is for problems with

100 outsourced parts, 100 insourced parts, and 5 constraints. The bottom section shows the

results for larger problems with 149 outsourced parts, 149 insourced parts, and 5 constraints.

The first column of Table 5.2 is the same calculation as the row in Table 5.1 labeled IP -
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LP rd down. This is the gap between the rounded down feasible LP solution and the optimal

IP solution and will be used as the baseline reference for comparing the ranking rules. Notice

that as the number of parts increases from 200 to 298, this gap decreases from 6.11% to 3.65%.

Under each ranking rule, the two columns represent the number of parts changed from zero

to one, and then the size of the gap after the extra parts are added. The min gap column

is the average gap when the best rule is selected for each problem. Each row represents 10

problems, so the value shown in the table is the average over the 10 problems when the best

rule is selected for each problem. This min gap will always be less than or equal to any one

rule. If it is equal to any one rule, then that rule dominates the others for all 10 problems.

However, no one rule dominates the others over all the problems, although they all perform

quite well. Comparing the results based on problem size, as the problem gets larger, the

gap decreases. Since the test problems are small compared to actual industry problems, the

results indicate that these simple greedy heuristics are very promising for larger problems.

Although for the small test problems this heuristic performs well, these solutions can also

be used for solving the problems to optimality. The next set of results is from an experi-

ment using the solution from each ranking rule as an initial bound to solve the problem to

optimality. The results are shown in Table 5.3 for the problems with 149 outsourced parts,

149 insourced parts, and 5 constraints. Compared to the default CPLEX settings, using

the heuristic solution as an initial solution decreased the CPU time required to solve the

problem to optimality. On average over the 90 problems, using the best heuristic solution

as the initial bound, the ranking rules decrease the CPU solution time by 6.5%.

Since no one rule performs the best in all situations, how do we compare and select the

appropriate rule? All four ranking rules perform well with respect to generating a solution

close to the optimal, and no one rule dominates the others. However, they are fast enough

that all four rules can be run to generate very good solutions, such as those found in the far

right column of Table 5.2, labeled min avg. Using the heuristics solutions as initial bounds to

solving the problem optimally produces a larger discrepancy between the rules. On average

across each problem set, rank rule 3 and the surrogate ranking dominate rules 1 and 2.
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Table 5.2: Comparison of LP Relaxation + Extra Parts

Rank Rule 1 Rank Rule 2 Rank Rule 3 Surrogate
Prob. % # % # % # % # % Min
Set Gap added Gap added Gap added Gap added Gap Gap
100-100-5
1 8.86 2.1 3.32 2.3 4.00 2.2 2.74 2.3 3.48 2.45
2 4.25 1.8 1.40 1.9 1.98 1.5 1.53 1.9 1.37 0.98
3 3.29 2.2 0.89 2.7 0.98 2.2 0.90 2.1 1.14 0.66
4 11.47 2.1 3.82 2.4 2.87 2.2 4.01 1.8 4.51 2.22
5 4.24 1.5 1.44 1.5 1.49 1.6 1.39 1.4 1.59 1.05
6 3.16 1.7 1.01 1.8 0.90 1.9 0.99 1.6 1.12 0.68
7 11.22 2.2 3.27 2.1 3.51 2.0 4.23 2.1 3.01 2.39
8 4.88 1.8 1.49 1.8 1.62 1.7 1.91 1.6 1.89 1.45
9 3.65 2.2 0.79 2.1 1.02 2.2 1.03 1.9 1.28 0.65
Avg. 6.11% 2.0 1.93% 2.1 2.04% 1.9 2.08% 1.9 2.16% 1.39%
149-149-5
1 5.38 2.3 1.26 2.4 1.41 2.0 2.00 2.3 1.20 1.03
2 2.98 2.1 0.77 2.3 0.81 2.2 0.83 2.2 0.70 0.59
3 1.83 1.9 0.46 1.8 0.64 1.6 0.71 1.8 0.56 0.39
4 6.68 2.3 1.18 2.4 1.06 2.2 1.76 2.2 1.50 0.92
5 3.28 1.9 0.90 1.9 0.88 1.7 1.30 1.9 0.94 0.75
6 2.75 2.6 0.56 2.7 0.45 2.3 0.86 2.4 0.72 0.35
7 5.21 1.6 1.49 1.5 1.78 1.5 2.10 1.6 1.40 1.29
8 3.04 1.7 0.94 2.0 0.70 1.9 0.92 1.9 0.69 0.47
9 1.72 1.5 0.51 1.5 0.50 1.5 0.56 1.5 0.53 0.43
Avg. 3.65% 2.0 0.90% 2.1 0.91% 1.9 1.22% 1.98 0.92% 0.69%

Table 5.3: % Reduction in CPU Solution Time with Heuristic Solution as Initial Solution

298 parts - 5 cons.
Prob. Best as Rank Rank Rank Surrogate
Set Init Solu Rule 1 Rule 2 Rule 3 Rule
1 5.31 3.80 -1.94 9.07 8.17
2 4.99 3.93 -3.00 5.57 5.62
3 5.73 5.72 -2.08 7.59 7.24
4 6.89 6.24 3.10 7.09 6.51
5 6.21 5.71 1.93 7.81 6.27
6 7.25 6.17 5.91 7.59 7.82
7 7.08 -10.48 6.25 9.58 8.91
8 7.69 -5.87 5.87 8.49 7.34
9 7.52 -8.04 5.55 7.02 6.20
Average 6.52% 0.80% 2.40% 7.76% 7.12%
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Table 5.4: Rule Effectiveness

% Best % Min %
Value CPU Effective

Rule 1 30% 16% 7%
Rule 2 24% 6% 23%
Rule 3 12% 46% 36%
Surrogate 33% 33% 30%

An important point to notice is that the best heuristic solution does not imply that using

it as a bound will generate the optimal solution in the minimal time. Table 5.4 addresses

this issue by comparing the different rules based on their performance with respect to the

objective function value and the optimal CPU time (when the heuristic result is used as

an initial bound when solving for the optimal solution). The first column, % Best Value,

shows the percent of problems in which each rule generates the best solution. Here, the

surrogate ranking shows the best results. However, as previously mentioned, the heuristic

is fast enough that all four rules can be run to be ensured of the best heuristic solution

on every problem. The second column in Table 5.4, % Min CPU, shows the percent of

problems for which each rule’s solution as a bound produces the minimum CPU time for the

optimal solution. Here, rule 3 performs the best, despite its poorer heuristic solution values.

The final column, % effective, is a combination of the previous two. It represents a rule’s

effectiveness as the percent of problems in which a rule produces the best solution value,

and that value as a bound also produces the minimum CPU time to solve for the optimal

solution. From this, rule 3 is the most “effective” rule, with the surrogate also performing

well. This is interesting because rule 3 is a much simpler rule to calculate than the surrogate

rule.
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5.3 Summary

Solving the MA-MKP to optimality is expensive with respect to CPU time; therefore, it is

logical to venture into the area of heuristics. The simple heuristic discussed in Section 5.2

starts with the rounded (feasible) LP solution, then, parts currently not included are added

into the knapsacks one at a time based on a ranking rule. Although the solution is not

necessarily optimal, it is very close, and as the size of the problem increases, the gap with

respect to the optimal solution decreases. An additional benefit of this heuristic solution

is to use it as a bound. Using the heuristic to generate an initial solution yields a 6.5%

reduction in CPU solution time. The primary use of the heuristic is the ability to quickly

obtain very good solutions that improve as the size of the problem increases—which is when

a heuristic is needed the most.



Chapter 6

Industry Data Sets

The focus of the previous chapters is on the structure of the problem, in particular the

classification of multiple- or single-attribute. The multiple-attribute problems are of interest

primarily because industry problems fall into this category. However, the experimental

data sets used in Section 4.2 that possess the multiple-attribute structure are generated

using the procedure suggested by Freville and Plateau [12], and in general do not take into

account an industry point of view. Similarly, in current literature, standard test problems,

also generated by methods such as the Freville and Plateau procedure [12], are used to

compare the efficiency of solution approaches. However, the structure of industry data and

the capability of algorithms to solve these data sets varies greatly from the standard test

problems.

Since this research is industry motivated, it is important to consider the characteristics of

industry data when generating data sets for testing. In this chapter data sets are gener-

ated (and tested) that have the multiple-attribute structure; but, additionally, the actual

values and interactions between the data reflect industry data. We identify characteristics

of industry data that differ from standard literature data and illustrate the impact of these

characteristics on the performance of MIP methods to solve the MKP.
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6.1 Industry Data Versus Literature Data

Although standard data sets are useful and necessary for comparing solution procedures,

the data notably affect the solution time. This affect is evident in the results presented in

Chapter 4 that demonstrate the increase in solution time when changes are made to the

constraint coefficients forming the multiple-attribute problem. Industry data sets can be

very different than the standard sets, or those generated using methods from the literature.

Using the data collected from the sheet metal facilities (discussed in Chapters 1 and 3) as

motivation, this section characterizes industry data sets, compares them to literature data

sets, and provides guidelines for generating industry-motivated data sets for testing.

Standard literature data sets are defined predominately by three measurements: constraint

tightness (τ), the correlation between the coefficients of the objective function and con-

straints, and the correlation between the constraint coefficients. Additionally, as previously

presented in the Chapter 4 on multiple-attributes, the different ranges of coefficients con-

tributes to the difficulty of a problem instance.

A unique trait of industry data is the sparsity of the constraint coefficient matrix. For

example, in the manufacturing sourcing problem, this is the case because jobs are not usually

routed to every machine. Therefore, the machines where a job does not visit has a zero in the

coefficient matrix. This sparsity issue influences most of the data characteristics discussed

next.

The four measures of difficulty, constraint tightness, coefficient to objective function corre-

lation, coefficient correlation, multiple attributes, and sparsity are used to characterize the

industry data sets.
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6.1.1 Constraint Tightness

The constraint tightness ratio, τ , is defined by the equation, bj = τ
n∑

i=1

Aij, ∀j = 1, 2, . . . , m,

assuming Aij ≥ 0. In literature test problems, τ is used to define the right-hand-side values,

bj, or the knapsack capacities. Additionally, τ is assumed to be between 0 and 1, and

identical for all constraints. It is well documented that as the constraint tightness increases

(τ decreases), the problems become more difficult to solve [19, 33].

In literature sets, each constraint is defined by the identical value of τ . However, as evident

in the sheet metal data, the more realistic scenario is that the value of τ is different for

each constraint. Because each constraint represents capacity on a machine, machines vary

in available capacity, and the percentage of a machine’s capacity that the sum of the jobs

consumes will be different for each machine.

Often a machine has excess capacity and to calculate a value of τ using the actual data

would yield a value greater than 1. In this case, all the parts considered for insourcing

can be included without restriction from these machines. Until more potential parts are

considered, these constraints can effectively be removed. Because of this effect, the number

of constraints for the sheet metal data could be reduced from 38 to 10.

To generate industry-motivated data sets, it is assumed that 0 < τ < 1. This assumption

avoids the need to remove the extra redundant constraints. This also implies that these sets

can possess fewer constraints than actual machines in a facility and still be representative

of that facility. Additionally, this assumption aligns the industry-motivated data sets with

the literature data sets, and allows experimental results of both types to more easily be

compared.

6.1.2 Coefficient Correlation

The correlation between the constraint coefficients and the objective function coefficients is

considered to be a measure of problem difficulty for both the two- and multi-dimensional
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knapsack problems [29, 11]. Using the Freville and Plateau [12] method, a correlation factor,

K, is defined by the equation pj =

(
m∑

i=1

Aij

)
/m + Krj, where Aij ≥ 0 are the constraint

coefficients, pj are the objective function coefficients, and rj is a random number from U(0, 1).

However, no method to select or vary K has become standard for test sets. Rather, it is

assumed that some correlation should be built into the literature sets to maintain a minimal

level of difficulty.

In industry data, because the constraint coefficient matrix is sparse, strong correlation be-

tween the constraint coefficients and the objective function coefficients is not likely to exist.

Consider the coefficients associated with any one constraint. In the sheet metal data, the

average machine is visited by 10% of the parts. Therefore, on average, any one row of the

constraint matrix is populated predominately with zeros. These rows with zeros have in-

significant correlation to the objective function vector that is populated with positive values.

The exception occurs when one of the machines is visited by almost every part. In this case,

it is possible to see correlation between the constraint coefficients representing that machine

and the objective function coefficients. Hill and Reilly [19] explain that the correlation has

an impact on the difficulty when it is extremely negative (close to -1) or, on loose constraints,

when the correlation is extremely positive (close to 1). In the sheet metal data, the most

highly correlated constraint is -0.05.

Because the correlation in the sheet metal data is nearly zero in every case, and minimal

in the rare correlated cases, in generating industry-motivated data sets, the difficulty added

by the correlation between the constraint coefficients and the objective functions is not

considered as an important factor. As with the constraint tightness factor, this remains

consistent with the literature data sets, where no measure of objective function to constraint

correlation has emerged as the accepted standard.
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6.1.3 Constraint Correlation

The third measure is the correlation between each pair of constraint coefficients. In standard

literature data sets, correlation between constraints is not addressed. Hill and Reilly [19] note

that a correlation of zero between all pairs of constraint coefficients is common in generating

test problems, and that it represents the median case. Hill and Reilly also illustrate that large

negative correlation between constraints implies a more difficult problem. This is intuitive

in that even if a part contributes significantly to the objective function value and easily fits

in one knapsack constraint, if it also consumes the larger part of another knapsack, it is not

obvious if the part should be selected or not.

Similar to the correlation between constraints and objective function, in analyzing the sheet

metal data, large correlation between constraints is normally non-existent because of the

matrix sparsity. It may be the case that many parts have the same routing, and then it

would be possible to see a large correlation. However, the sheet metal data indicate that

the consumption of a part is proportionally similar for every machine on its routing. That

is, a part that is difficult to process on one machine, is difficult on every machine it visits;

likewise, a part that is easy to process on one machine, is easy on every machine. Therefore,

if correlation exists between constraint coefficients, it is generally positive.

In generating industry-motivated problems, correlation between constraints is not considered

a factor. This maintains consistency with literature data sets and with the sparse matrix.

However, to account for the possible positive correlation, the proportion of parts that have

the same routing is varied. This is defined as the maximum block size and is discussed in

more detail in Sections 6.2 and 6.3.
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6.2 Industry-Motivated Experimental Data Sets

This section goes into more detail on basic characteristics of industry data and how to gen-

erate data sets that reflect those in industry, yet are analogous to the standards generally

accepted for literature results. The focus is on the specifics of generating industry-motivated

data sets for experimentation. This is followed by the evaluation of the solutions in Sec-

tion 6.3.

The first characteristic needed to define a data set is the constraint tightness. As discussed

above, a constraint tightness factor, τ , is defined between 0 and 1, and is used to calculate

the right-hand side values, b. In the sheet metal data, a different value is generated for

each constraint. To generate the industry-motivated data sets, the range and gap between

τ values is set to be similar to the range of actual values of τ in the sheet metal data. Since

each τ value is different it is not straight-forward how to define tighter constraints (a reduced

τ). The approach taken is to reduce the τ for each constraint by the same percentage. As

will be seen later in the results, the industry-motivated data sets act similar to the literature

data sets in that as constraint tightness increases, the problem becomes more difficult.

The other characteristics defining problem difficulty are the correlation between objective

function and constraint coefficients, and between constraint coefficients. As addressed in Sec-

tions 6.1.3, these correlations are not prevalent in either literature data sets or industry sce-

narios; thus, these correlations are not applied as factors for defining the industry-motivated

sets.

Although the correlation between constraint coefficients and objective function coefficients

is not a determining factor for generating industry-motivated data sets, the constraint coeffi-

cients still drive the calculation of the objective function coefficients. Constraint coefficients

are generated such that the resulting objective function coefficients possess a coefficient of

variation (CV) that falls in one of three ranges. This is consistent with the method for the

MA-MKP experimental sets in previous chapters. Additionally, it provides a method for
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comparing the constraint coefficients.

Another measure evident in the sheet metal data sets is the presence of multiple attributes,

or the MA-MKP structure. This is applied to industry-motivated data sets by defining

different coefficient ranges for each constraint. It is an important characteristic to include

because parts consume a different amount of capacity on every machine. For example, a part

may take seconds on one machine, but hours on another. Additionally, it is theoretically

relevant because the range of coefficients impacts the problem difficulty. In generating the

industry-motivated data sets for experimentation, the constraint coefficients are generated

using the ranges gathered from the sheet metal data.

A characteristic that is not considered in literature data sets is the interaction between

insourcing and outsourcing parts. In the sourcing model, two types of variables exist: in-

sourcing variables that represent parts currently outsourced being considered for insourcing,

and the outsourcing variables that are currently in house and being considered for outsourc-

ing. The mathematical problem definition is in Chapter 4, but is repeated here for reference.

For the insourcing parts, xi = 1 when part i is insourced, and for the outsourcing parts,

y′h = 1 when currently loaded part h remains in-house.

Maximize
n∑

i=1

pixi −
k∑

h=1

ch (1− y′h)

subject to
n∑

i=1

tmij xi +
k∑

h=1

tmhjy
′
h ≤ bm

j +
k∑

h=1

tmhj ∀j = 1, 2, . . . , m

n∑
i=1

t`ijxi +
k∑

h=1

t`hjy
′
h ≤ b`

j +
k∑

h=1

t`hj ∀j = 1, 2, . . . , m

xi ∈ {0, 1} ∀i = 1, 2, . . . , n

y′h ∈ {0, 1} ∀h = 1, 2, . . . , k

To generate problems that possess interaction between the insourcing and outsourcing parts,

the constraint and objective function coefficients of these two types of parts must be con-

sidered. First, to prevent the solution where all parts are selected for insourcing, the sum
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of the insourcing coefficients for each constraint is set such that it exceeds the sum of the

outsourcing coefficients. Mathematically, the constraint
∑n

i=1 t
m(`)
ij ≥ ∑k

h=1 t
m(`)
hj is enforced

for both m and `. Second, coefficients within the same constraint are set to a value of similar

size. This prevents the effect of one (or a few) jobs consuming all the machine capacity and

simplifying the problem too much. Finally, the range of coefficients for insourcing variables

is defined such that it overlaps the range of outsourcing variable coefficients. If they do not

overlap, an extreme case will be generated where all in-house parts are outsourced and all

other parts are insourced, or the opposite, where no parts will be insourced, because parts

will never be outsourced to make room for new parts.

The final characteristic is the sparsity of the constraint coefficient matrix. Because a part

does not usually visit every machine, the matrix will have many zeros. To quantify this, a

maximum routing size is defined. Consider the routing that has the largest proportion of

the parts. This proportion of parts is defined as the maximum routing size. For example if

70% of the parts have the same routing, then the maximum routing size is 70. Of the 30%

that remain, they are evenly distributed across the other possible routings. The number of

machines that a part visits is proportional to the sheet metal data. In the sheet metal data,

parts visit approximately 3 of the 10 machines. Therefore, in the 5 machine test problems,

the parts each visit 2 machines.

Using these discussed techniques, problem sets that reflect industry data, and still possess

interesting characteristics comparable to literature sets, can be generated. The next section

looks at the solutions of problems generated using these techniques.

6.3 Solution Characteristics

The initial set of industry-motivated test data, generated using the above described tech-

niques, covers a complete block of problems with three levels of constraint tightness, three

coefficient ranges, two routing sizes, three total number of parts, and three ratios of insourc-
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Table 6.1: Testing Factors

Tightness Range of Coeffs Max Route Size Num Parts Ratio: #in : #out.
1, 2, 3 1, 2, 3 30, 80 2K, 5K, 8K 1:4, 1:1, 4:1

ing to outsourcing parts. The combination of these scenarios are tested and evaluated with

respect to CPU solution time.

Table 6.1 displays the ranges of coefficients for this initial data set. Ten problems are

run for each of the 162 scenarios, for a total of 1620 problems. For the test problems,

constraint tightness is measured at three levels: tight (1), medium (2), and loose (3). This is

consistent with literature sets that are measured with a tightness factor of 0.25, 0.50, or 0.75,

respectively. Coefficient ranges are varied across three levels: small (1), medium (2), and

large (3). This parallels the three levels of coefficient ranges tested in previous chapters with

literature data sets. The coefficient range refers to the range of one constraint, not between

different constraints. It is a basic assumption of all the test problems that each constraint

has a different range of coefficients, what is earlier defined as MA-MKP. The maximum

routing size is defined by the routing that is assigned the most parts. The percentage of

parts that have that routing is what is called the maximum routing size. The remaining parts

(those not on the routing associated with the maximum routing size) are evenly distributed

across the other potential routings. Therefore, in the industry-motivated data sets, two sizes

of routings are set: a small maximum routing size (30%), and a large maximum routing

size (80%). In the 80% routing size, one routing dominates. In the 30% routing size, all

the routings have approximately the same number of parts associated with them. The total

number of parts is varied across three values: 2000, 5000, and 8000. Finally, the ratio of

insourcing parts to outsourcing parts is tested at three levels: 1:4, 1:1, and 4:1.

The results from running the 162 scenarios defined in Table 6.1 are in Table A-2 in the

Appendix. The result under consideration is the time to solve the problem optimally using
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CPLEX. The most interesting result to notice is that these industry-motivated problems

take considerably less CPU time than the multiple-attribute problems generated in earlier

chapters. For example, the 1620 industry-motivated problems, with an average of 5000

parts each, require on average 9.2 CPU seconds for CPLEX to solve the problems optimally.

In comparison, problems with 298 parts generated using the standard literature procedure

suggested by Freville and Plateau [12] require an average of 1989 CPU seconds. Greater detail

on the parameters and solution times for these problems are displayed in Table A-3 in the

Appendix. Table 6.2 displays the CPU times for industry-motivated problems and MA-MKP

problems. The MA-MKP problems listed here differ from the results in Chapter 4 because

they include the outsourcing component. Sets are compared that have similar tightness and

range of coefficient states. It is obvious that the industry-motivated problems are easier for

CPLEX to solve. Note that the size of the problems are not comparable, as the industry-

motivated problems range from 2000 to 8000 parts and the MA-MKP are 298 part problems.

This extremely large difference in CPU solution time is likely to be attributed to the sparsity

of the coefficient matrix. Therefore, it is expected that the maximum routing size will be an

indicator of CPU solution time, and the results of the statistical analysis (discussed below)

confirm that this expectation holds.

A second factor to note is that in the solutions, the number of parts insourced is nearly always

larger than the number of parts outsourced. This is true regardless of the objective function

and constraint coefficients generated. For example, for the 1620 problems, on average 41% of

the parts are insourced, while only 5% of the parts currently in the plant load are outsourced,

or from the other perspective, 95% remain in-house. As a result, a valid question is, why does

the solution procedure select the in-house parts over the outsourced parts if their objective

function and constraint coefficients are similar? The driving issue is the capacity for the

parts currently in-house. Sufficient capacity exists such that the problem will always be

feasible with those parts included in house. Therefore, nothing needs to change and all

the constraints are satisfied with the current parts. However, to insource a part currently

outsourced requires enough space on each machine on the part’s routing, and possibly the
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Table 6.2: Solution Time Comparison: Industry-Motivated and MA-MKP Data Sets

Tight- Range of Ind-Motiv MA-MKP
ness Coeffs CPU secs CPU secs

1 1 5.5 537.1
2 22.2 1023.2
3 42.2 1204.8

2 1 1.7 1645.1
2 5.4 2993.3
3 2.1 4307.8

3 1 0.9 953.7
2 0.7 2172.7
3 2.2 3063.9

9.2 1989.1

outsourcing of a current in-house part. That is, a part can only be insourced if all of the

machines it requires have excess capacity, or currently loaded parts are removed to free up

the required capacities. It is easy to see how this eliminates many currently outsourced parts

from consideration for insourcing.

As an example of this, consider the following mathematical problem: let x represent the

binary decision of whether or not to insource a currently outsourced part, and let y represent

the binary decision of whether or not to outsource the part currently produced in house. In

this example, both parts visit all three of the machines, and hence are in each constraint.

Maximize 8x + 7y

subject to 10x + 10y ≤ (0.25)(10 + 10) + 10 = 15 (6.1)

3x + 1y ≤ (0.25)(3 + 1) + 1 = 2 (6.2)

11x + 13y ≤ (0.25)(11 + 13) + 13 = 18 (6.3)

x, y ∈ 0, 1

In the example, the available capacities are calculated with a τ value of 0.25. The extra
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value that is added to the available capacity on the right-hand-side in (6.1), (6.2), and (6.3)

is the sum of the outsourcing part coefficients, here the coefficients of y. Therefore, the

right-hand-side value represents the available capacity plus the capacity consumed by the

current load. Because part y is already being processed in-house, time must be available

on each machine for part y. In (6.1) and (6.3) for the currently outsourced part, part x,

to be brought in-house, the currently in-house part, part y, cannot be processed; therefore,

it effectively must be outsourced. However, in (6.2), even excluding part y does not create

enough capacity to handle part x. Even though part x contributes more to the objective

function, it is not feasible, because of just one machine constraint, and it cannot be included.

This infeasibility will never occur with an insourcing part (e.g., part y) because it is already

included in the plant load, which is expressed via the right-hand-side calculation. Therefore,

the insourcing parts will be selected more frequently than the outsourcing parts.

To more carefully evaluate the impact of the various factors on solution time, a statistical

analysis is applied to the 1620 problems. A complete block of test problems was formed

to test 14 different factors. To evaluate the significance of each factor, single- and two-

factor ANOVA tests were performed, and the results that possess a statistically significant

impact are displayed in the form of p-values in Table 6.3. The p-value is the probability that

the correlation seen in the data would have been seen by chance (if no relationship exists

between the variables). Therefore, a small p-value (usually below 0.05) implies a statistically

significant correlation. To get the p-value, an F-test was performed, and only the significant

correlations are presented in the table with their respective p-value. In each section of the

table, up to three p-values are shown: the factor in the left column headings, the factor in

the top row headings, and the interaction (Inter.) between the two factors.

Evaluating the results, constraint tightness (p=0.0089), maximum routing size (p=0.0086),

and the number of parts (p=0.0015) are statistically significant indicators of problem diffi-

culty, as defined as the CPU time required to solve the problem optimally. The influence of

constraint tightness is not surprising and is consistent with testing on literature test prob-

lems. Figure 6.1(a) displays the solution time for the three levels of constraint tightness.
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Table 6.3: Industry-Motivated Data ANOVA Test Results

Constraint Range of Max Route Num Ratio
Tightness Coeffs Size Parts Parts

Constraint p=0.0089 Tight p=0.0085 Tight p=0.0057 Tight p=0.0036 Tight p=0.0104
Tightness Range not sig. Route p=0.0057 #Parts p=0.0005 Ratio not sig.

Inter. p=0.0057 Inter. p=0.0004
Range of x not sig. Route p=0.0083 #Parts p=0.0014 not sig.
Coeffs Range not sig. Range not sig.
Max x x p=0.0086 Route p=0.0046 Route p=0.0094
Route #Parts p=0.0007 Ratio not sig.
Size Inter. p=0.0007
Num x x x p=0.0015 #Parts p=0.0018
Parts Ratio not sig.
Ratio x x x x Ratio not sig.
Parts

Confirming the p-value, this graph shows an obvious correlation between constraint tightness

and solution time.

Maximum routing size is noteworthy because it is an indicator of the coefficient matrix

sparsity. As can be seen in Figure 6.1(b), the maximum routing size of 30% appears to be

more difficult to solve than problems with a maximum routing size of 80%. Recall that a

maximum routing of 80% allows one routing to dominate the problem. However, with the

30% maximum routing, all the routings are similar in size. The graph indicates that the more

evenly distributed routing size (30%) is more difficult than the problems with one routing

dominating (80%). In literature problems, the constraint matrix contains very few zeros and

effectively the routes are all the same size (the size equals the number of parts). Therefore, it

is consistent that the industry-motivated problems with routes evenly sized (30%) are more

difficult to solve.

According to the single-factor ANOVA, the lower the number of parts (variables), the greater

the time to solve for the optimal solution. This is not intuitive, so it is investigated further by

graphing the results. The results from the two-factor ANOVA tests with constraint tightness

and maximum routing size are shown in Figures 6.1(c) and 6.1(d). From these graphs, it

is clear that the number of parts is not a valid indicator of solution time. Rather, what

appears as a correlation between number of parts and solution time is accounted for by the
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maximum routing size and the constraint tightness factors.

(a) Constraint Tightness (b) Maximum Routing Size

(c) Number of Parts and Max Routing Size (d) Number of Parts and Constraint Tightness

Figure 6.1: Statistically Significant Interactions

6.4 Conclusion

The focus of this chapter is a shift from the structure of the problem, to the structure of

the data. Data sets are generated and tested that reflect industry data, while maintaining

the defining characteristics of literature data sets. The impact of the various features in

the industry-motivated data sets are evaluated with respect to solution time. The factors

with significant impact on the solution time are the constraint tightness and the maximum

routing size.
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The critical idea identified in this chapter is that industry-motivated data sets are much

easier to solve than the theoretically generated data sets. This is likely to be attributed

to the sparse constraint coefficient matrix, and the results from testing the routing size are

consistent with that conjecture. Addtionally, sparsity can contribute to a situation where

optimal solutions appreciably dominate other solutions, and are therfore easy to identify.

This is often the case in industry problems where one must conisider only economically

feasible and implementable solutions.



Chapter 7

Multiple-Plant Sourcing Model

In this chapter we extend the sourcing model to include multiple facilities and perform

experimentation on problems with two, three, and four facilities. With the recent trend in

company acquisitions, it is often the case that a single company has multiple facilities with

some overlap in manufacturing capabilities. By shifting the production of parts to different

plants, capacity can be better utilized, and the overall cost to the company can be reduced.

The multi-plant sourcing problem (MPSP) must determine which parts to produce at each

of the plants (or facilities). It is assumed that prior to this point, each plant has made the

strategic level decision of which parts must be kept in-house; then, only the remaining parts

are considered in the model as eligible for outsourcing.

7.1 Mathematical Formulation

Much like the sourcing problem for a single-plant, the MPSP model effectively outsources

all the parts eligible for outsourcing from all the plants into one list. From this list, a part is

either selected to be insourced into a facility or outsourced externally. The decision variables,

parameters, and mathematical formulation for the MPSP are as follows:

72
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Decision variables:

• xif = 1 if part i is selected to be insourced into facility f , 0 otherwise

• y′if = 1 if part i remains in facility f , 0 if part i is outsourced from facility f

Parameters:

• E = set of all external parts, or those parts not currently produced at any facility f

• If = set of parts from facility f that can be outsourced

• I =
⋃
f

If = all possible parts that can be outsourced from the facilities

• Īf = I − If = all parts that can be outsourced from all facilities besides facility f

• pif = profit associated with insourcing part i into facility f , pif > 0

• cif = cost associated with outsourcing part i from facility f , cif > 0

• t`ijf = labor time consumed by part i on machine j in facility f

• tmijf = machine time consumed by part i on machine j in facility f

• b`
jf = labor time capacity on machine j at facility f

• bm
jf = machine time capacity on machine j at facility f

A preprocessing step is used to adhere to the standard MKP assumptions that pif > 0 and

cif > 0. As discussed in the outsourcing single-plant model, if it is profitable for a facility f

to outsource a part i, that is, if cif ≤ 0, then it is assumed that the part will be outsourced

and it is always true that 1− y′if = 1. Therefore, there is no outsourcing decision that needs

to be made, and the parts can be removed from the outsourcing portion of the problem,

leaving only parts with cif > 0 . Additionally, these removed parts, when cif ≤ 0, can be

added to the set of external parts, E, so that they are still eligible to be insourced into other
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facilities. Likewise, if pif ≤ 0, then there is no benefit to consuming the capacity required for

that part, and it will never be insourced. Therefore, all parts with pif ≤ 0 can be removed

from the insourcing portion of the problem leaving only the parts with pif > 0.

Maximize
∑
f

∑
i∈Īf ,E

pifxif −
∑
f

∑
i∈If

cif

(
1− y′if

)
(7.1)

subject to
∑

i∈Īf ,E

tmijfxif +
∑
i∈If

tmijfy
′
if ≤ bm

jf +
∑
i∈If

tmijf ∀j, f (7.2)

∑
i∈Īf ,E

t`ijfxif +
∑
i∈If

t`ijfy
′
if ≤ b`

jf +
∑
i∈If

t`ijf ∀j, f (7.3)

∑
f

xif ≤ 1 ∀i ∈ E (7.4)

∑
f ′|f ′ 6=f

xif ′ ≤
(
1− y′if

) ∀f, i ∈ If (7.5)

xif , y
′
if ∈ {0, 1} ∀i ∈ I

The objective function, (7.1), is made up of two parts, insourcing and outsourcing. The first

term, representing insourcing, is the summation over all possible parts that can be insourced

by facility f . These parts can be insourced either from another internal facility, i ∈ Īf , or

from an external company currently producing the part, i ∈ E. A profit, pif , is associated

with the selection of part i to be insourced into facility f . The second term in the objective

function represents the outsourcing activity. When 1 − y′if = 1, part i is outsourced from

facility f , and a cost, cif , is associated with that decision.

The first two constraints, (7.2) and (7.3), are similar to the constraints in the outsourcing

single-plant model. In the single-plant model a constraint of this type existed for all machines,

but in the MPSP, a constraint exists for all machines in all the facilities. This constraint

effectively outsources all the parts that are considered for outsourcing. From this outsourcing,

the freed capacity on machine j in facility f ,
∑
i∈If

tmijf , is added to the original capacity of

the machine, bm
jf . Then, the y′if variables represent the decision to insource those same parts

back into facility f , or rather to keep those parts produced in the facility where they are
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currently produced. Similarly, (7.3) refers to labor time at machine j in facility f .

The next constraint, (7.4), is an assignment type constraint for the external parts, where

each part can only be insourced into at most one facility. For the internal parts, (7.5) enforces

that a part must be outsourced before it can be insourced. When a part is outsourced, or

1 − y′if = 1, the constraint allows the option to either insource or not to insource the part

into any facility besides the facility from which it was outsourced. Simultaneously, in this

case the constraint allows only one facility to insource each part because when 1 − y′if = 1,

(7.5) takes on the same form as (7.4). However, if a part remains in its original facility,

1− y′if = 0, then the constraint does not allow the part to be insourced, or xif = 0,∀f . The

parts in the external set, E, are not considered in this constraint set because they do not

need to be outsourced prior to being insourced.

7.2 Experimentation

Experimentation is performed on the multiple-plant model for problems with two, three, and

four facilities with the industry-motivated data sets developed in Chapter 6. The two-facility

problems are related to the Chapter 6 data sets in the following way: the first single-plant

problem instance represents Facility 1, the second single-plant problem instance represents

Facility 2, and these two instances combine to form the first two-facility problem. For the

second problem, the third and fourth single-plant problems form the two-facility problem,

and so on for the remainder of the Chapter 6 industry-motivated data set. Therefore, the

size of the problem is doubled with respect to the number of variables considered, but it

remains the same size for each individual facility. The data sets for the three- and four-

facility problems are generated with the same parameters as the two-facility problems. For

each problem, all the facilities are ”identical” with respect to the parameters. The data

sets for the two-, three-, and four-facility problems each contain 270 problems. The only

difference is in the number of variables and constraints.
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Table 7.1: Multi-Plant Testing Factors

Tightness Range of Max Route Total No. Part Ratio
(CT) Coeffs. Size Parts #in : #out
1, 2, 3 1, 2, 3 30%, 80% 4K, 10K, 16K 1:1, 4:1

As in the single-plant industry-motivated data sets, we analyze the multi-plant problem

by solving instances that reflect each factor in Table 7.1. The experimentation includes

three levels of constraint tightness (CT), two routing sizes (a measure of sparsity), three

total number of parts, and two ratios of insourcing to outsourcing parts. The combinations

of these scenarios are tested and evaluated with respect to the CPU solution time. For

consistency with the single-plant problem, the total number of parts and the part ratio are

presented as separate factors. However, in the multi-plant data sets, the 1:1 part ratio is

simply the combination of the 4K and 16K data sets, and the 4:1 data set is the same as the

10K data set.

7.2.1 Two-Facility Results

The results from testing the 54 scenarios represented in Table 7.1 are presented in Table A-4

in the Appendix. (The quantity of scenarios is 54 as opposed to 108 because of the overlap

between the Total Number of Parts and the Part Ratio factors.) The result under consider-

ation is the time to solve the problem optimally using CPLEX. It is interesting to note that

these problems are much more difficult to solve than the single-plant problems with the same

data sets. For example, the single-plant problems took on average 9.2 CPU seconds for the

optimal CPLEX solution, where the two-facility problems require an average of 1310.8 CPU

seconds. However, this is still considerably faster than the much smaller MA-MKP problems

that require on average 1989.1 CPU seconds. Table 7.2 displays the time required to solve

the various types of problems. Note that for the values in Table 7.2, the MA-MKP liter-

ature problems have 298 variables with 5 constraints, the single-plant industry-motivated
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Table 7.2: Solution Time Comparison: Single-Plant Industry-Motivated, Two-Facility
Industry-Motivated, and MA-MKP Data Sets

Single-Plant Two-Facility
Tight- Range of Ind-Motiv Ind-Motiv MA-MKP
ness Coeffs CPU secs CPU secs CPU secs

1 1 5.5 2088.5 537.1
2 22.2 2365.1 1023.2
3 42.2 5189.0 1204.8

2 1 1.7 1506.7 1645.1
2 5.4 21.6 2993.3
3 2.1 165.1 4307.8

3 1 0.9 5.3 953.7
2 0.7 452.5 2172.7
3 2.2 3.6 3063.9

Average 9.2 1310.8 1989.1

problems range from 2000 variables to 8000 variables, and the two-facility problems double

the number of variables with a range of 4000 to 16000.

To assess the significance of each factor, single- and two-way ANOVA tests were performed,

and the factors with a statistically significant impact are displayed in the form of p-values

in Table 7.3. The p-value is the probability that the correlation seen in the data would have

been seen by chance (if no relationship exists between the variables). Therefore, a small

p-value (usually below 0.05) implies a statistically significant correlation. To compute the

p-value, an F-test was performed, and only the significant correlations are presented in the

table with their respective p-value. In each section of the table, up to three p-values are

shown: the factor in the left column headings, the factor in the top row headings, and the

interaction (Inter.) between the two factors.

In evaluating the results from the ANOVA test in Table 7.3, three of the five factors stand

out as significantly correlated to the solution time: constraint tightness (p = 0.000000), total

number of parts (p = 0.000000), and the part ratio (p = 0.000000). We further investigate
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Table 7.3: Two-Facility ANOVA Test Results

Constraint Range of Max Route Total No. Part
Tightness(CT) Coeffs Size Parts Ratio

Tightness CT p=0.000000 CT p=0.000000 CT p=0.000001 CT p=0.000000
No. Parts p=0.000000

Inter. p=0.028785 Inter. p=0.000000 Inter. p=0.048094
Range of x
Coeffs No. Parts p=0.000000 Ratio p=0.000158

Max Route x x
Size No. Parts p=0.000000 Ratio p=0.000000

Total No. x x x
Parts No. Parts p=0.000000

Part x x x x
Ratio Ratio p=0.000000

these potential correlations by graphing the optimal solution times with respect to the three

factors, as shown in Figure 7.1. In each graph, the factor value is expressed along the x-axis

value and CPU solution time denotes the y-axis.

Visually inspecting Figure 7.1, there appears to be a strong correlation between each of

the three factors and the optimal solution time. Note that in the constraint tightness and

total number of parts graphs, the data sets at each factor level contain the same number of

points. For the part ratio graph, the 1:1 ratio has twice as many data points as the 4:1 ratio.

Therefore, where it appears that fewer points exist, rather it is because they are overlapping

at a solution time of 0. Additionally, the scale for solution time is quite large, as even the first

line, 5000 CPU seconds, is quite a long time. Therefore, problems that require much more

than 0 CPU seconds are considered difficult as they cannot be solved quickly. Therefore, in

the constraint tightness graph, although level 1 has the largest range of values, it is clear

that a constraint tightness at level 1 corresponds to the problem difficulty. Most of the long

solution times anywhere on the graph are at level 1. Conversely, most of the data points at

level 1 have longer solution times than almost all the data points at the other two tightness

levels. This result is also evident in Table 7.2 where the long run times are clustered at the

constraint tightness level 1. In the part ratio graph, we see a correlation between the 4:1
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(a) Constraint Tightness

(b) Part Ratio

(c) Total Number of Parts

Figure 7.1: Two-Facility Statistically Significant Correlations
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ratio and problem difficulty. This result is broken down further in the total number of parts

graph. The data points with a 4:1 ratio are the same as the data points with 10K parts.

Both the 4:1 ratio and 10K parts appear to be correlated to the solution time. Since the

trend on the number of parts graph does not imply a preference for either a small or large

number of parts, it is likely that this correlation can be accounted for by either the part ratio

factor or another factor.

In the single-plant problem, the appearance of a correlation between the number of parts and

solution time was a result of the constraint tightness and the maximum route size. Therefore,

speculating that the same result will hold true for the two-facility problem, the number of

parts and part ratio factors will be evaluated further. In Figure 7.2 the impact of constraint

tightness interacting with both the number of parts and the part ratio is presented. From

these graphs it is clear that for both the number of parts and the part ratio, the apparent

correlation to solution time with the 10K number of parts and the 4:1 part ratio is a result

of a constraint tightness factor at level 1. This is not surprising given that in the two-way

ANOVA testing, significant interaction occurs between the constraint tightness and both

total number of parts and the part ratio.

In Table 7.3 the other two factors with significant interaction are the constraint tightness

and the range of coefficients. Additionally, in Table 7.2 at constraint tightness levels 2 and 3,

solution times appear to be grouped by the coefficient range. In Figure 7.2.1 the impact of

both factors on solution time is presented. The long solution times are distributed across the

three coefficient ranges, but with most of the large solution times associated with problems

at constraint tightness level 1.

Because the constraint tightness appears to be the significant factor, we take a closer look at

results grouped by this factor, and present the solution results and run times in Table 7.4.

Constraint tightness is defined at three levels (1, 2, and 3), with level 1 generating the tightest

constraints. The column representing the optimal solution time (labeled Opt CPU time),

combined with the previous analysis, clearly demonstrates that problems are more difficult
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(a) Number of Parts and Constraint Tightness

(b) Part Ratio and Constraint Tightness

Figure 7.2: Two-Facility Impact of Constraint Tightness
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Figure 7.3: Two-Facility Interaction of Constraint Tightness and Range of Coefficients

to solve when constraints are tight. Problems at the tightest constraint level (level 1) require

on average 2989 CPU seconds to solve the problem versus a still relatively slow 553 seconds

at level 2, and a much faster 7 seconds at level 3. This result that problems with tighter

constraints are more difficult is consistent with the ANOVA testing, the examination of the

graphs earlier in this section, as well as the MKP literature.

Table 7.4: Two-Facility Solution Results by Constraint Tightness Level

CT Opt % In- % Out- % In- % Out-
Level CPU sourced sourced sourced sourced

time Fac 1 Fac 1 Fac 2 Fac 2
1 2989 37% 38% 37% 38%
2 553 39% 38% 39% 37%
3 7 37% 35% 37% 35%

Besides solution time, note that the percentage of parts moving in and out of each facility is

roughly the same for each constraint tightness level. Approximately 35-38% of the current
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plant load is outsourced to the other facility or to an outside supplier, and 37-39% of the

potential parts are insourced into each facility. These results are different from the single-

plant model, where we observed a preference for the current load.

Because the two-facility problem is not easy to solve (compared to the single-plant problem)

the heuristic, presented in Chapter 5, is run to determine if it is a valuable solution procedure

for the industry-motivated problems. The results are displayed in Table 7.5. The heuristic

is fast, requiring on average 0.80 CPU seconds, and is accurate, with an average 0.06% gap

between the solution and the optimal solution. This gap is smaller than we saw with the

MA-MKP problems in Chapter 5 where the average gap was 1.39% and 0.69% for the two

data sets. The results from this experiment are consistent with the observed trend that as

the problem size increases, the gap decreases. The problems in Chapter 5 have respectively

200 and 298 parts, where the two-facility problems have between 4000 and 16000 parts.

The heuristic performs well despite that it is slightly biased. Because a part can only be

allocated to one facility, one of the two facilities has the priority. The heuristic is executed by

ranking the extra parts (those not included in the feasible LP solution) and then attempting

to add the parts in order of the ranking. For the the two-facility problem, one facility

attempts to add all the parts, followed by the second facility attempting to add all the parts.

If the part is already added in the first facility, it is no longer available for the second facility.

In summary, the multi-plant model is tested on two-facility problems using the industry-

motivated data sets from Chapter 6. The results are consistent with the single-plant problem

and MKP literature in that constraint tightness is an indicator of solution time. The tighter

the constraints, the more difficult the problem is to solve. Additionally, other apparent

correlations between the number of parts and part ratio can be accounted for by the con-

straint tightness. On average, the two-facility problem is much more difficult to solve (with

respect to solution time) than the single-plant problem. However, the heuristic presented in

Chapter 5 performs well with a gap of 0.06% between the optimal solution and the heuristic

solution. In the single-facility problem, the maximum routing size was a significant factor in
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Table 7.5: Two-Facility Heuristic Results

Coeff Tight- Heur. Optimal Soln
Range ness CPU CPU Gap

1 1 0.75 2088.50 0.10%
2 1 0.82 2365.10 0.07%
3 1 0.87 5189.00 0.11%
1 2 0.74 1506.70 0.07%
2 2 0.81 21.60 0.03%
3 2 0.85 165.10 0.05%
1 3 0.72 5.30 0.04%
2 3 0.79 452.50 0.01%
3 3 0.80 3.60 0.04%

Average 0.80 1310.8 0.06%

determining solution time; however, in the two-facility problem, the maximum routing size

does not appear to be correlated to the problem difficulty. Also, unlike the single-facility

problem, a similar quantity of parts are sourced in and out of each facility. This could be

a result of the data generation technique where the parts in both facilities look very similar

because they are generated with the same factors and distributions, or it could mean that

the phenomenon we observed in Chapter 6 is not present in multi-plant problems.

7.2.2 Three-Facility and Four-Facility Results

Experimentation similar to the two-facility problem is performed on problems with three

and four facilities. Problem instances that reflect the characteristics listed in Table 7.1, with

adjustments to the number of parts, are analyzed. Instead of the total number of parts at 4K,

10K, and 16K, the number of parts includes 9K, 12K, and 18K for the three-facility problem,

and 12K, 24K, and 32K for the four-facility problem. For the two-, three-, and four-facility

problems, the number of parts that can be outsourced from each facility is the same for each

scenario, but as the number of facilities increases, the number of parts that can be insourced

increases as more parts become available with the additional facilities. For example, in the

two-facility problem, if both plants outsource 1000 parts, then both plants can potentially
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insource the 1000 parts outsourced from the other facility, plus any external parts. In the

three-facility problem, if all three plants outsource 1000 parts, then the potential parts to

insource into each facility increases to 2000 plus the external parts.

The result under consideration is the time to solve the problem optimally using CPLEX.

Table 7.6 summarizes the results from testing the industry-motivated data sets with one,

two, three, and four facilities, as well as the MA-MKP data set discussed in Chapter 4.

The detailed results from testing the 54 scenarios are listed in Tables A-6 and A-7 in the

Appendix.

Table 7.6 displays a trend that with more than one facility, the solution time decreases as

the number of facilities increases. A possible explanation for this observation is that with

more facilities, the variance of the coefficients for the same part at different facilities is likely

to increase, and thus, the decision of how to allocate production will be easier based on a

facility dominating for each part in the set.

Table 7.6: Solution Time Summary

Tight- Coeff. Single- Two- Three- Four-
ness Range Plant Facility Facility Facility MA-MKP
1 1 5.5 2088.5 7.7 10.2 537.1

2 22.2 2365.1 8.2 12.3 1023.2
3 42.2 5189.0 312.5 47.8 1204.8

2 1 1.7 1506.7 2.2 4.2 1645.1
2 5.4 21.6 1.0 1.5 2993.3
3 2.1 165.1 5.6 5.2 4307.8

3 1 0.9 5.3 2.7 7.5 953.7
2 0.7 452.5 47.5 22.0 2172.7
3 2.2 3.6 2.1 8.8 3063.9

9.2 1310.8 43.3 13.3 1989.1

In analyzing Table 7.6, two rows stand out as more difficult than the others. These are the

problems with a tightness level of 1 and a coefficient range of 3, and with a tightness level

of 3 and coefficient range of 2. These two problem sets are examined in more detail to see if

the cause of these difficult problems can be discovered.
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The two rows in Table 7.6 that appear to be most difficult are displayed in Table 7.7 in

greater detail with the additional maximum route size category. Looking at these four

problem sets for both the three- and four-facility problems, the first row, with a tightness

level at 1, coefficient range at 3, and a maximum route size of 30 is more difficult than

the other combinations. The results are consistent with literature and earlier findings. The

tightness level at 1, indicating the tightest constraints, is a notable indicator of difficulty

with literature MKP problems. Additionally, tightness is an indicator of difficulty in our

experimentation with the multiple-attribute MKPs in Chapter 4, as well as the single- and

two-facility problems. Second, the coefficient range of 3, the largest range of coefficients, is

an indicator of difficulty for standard single-dimensional knapsack problems. Finally, with

the single-facility problems in Chapter 6 we found a correlation between a maximum route

size of 30 and the difficult problems.

Table 7.7: Breakdown of Difficult Three- and Four-Facility Problems

Tight- Coefficient Max Avg Opt
ness Range Route CPU Time
Three-Facilities
1 3 30 590.2

80 34.9
3 2 30 9.5

80 85.6
Four-Facilities
1 3 30 63.5

80 32.0
3 2 30 18.1

80 25.8

To complete the multi-plant evaluation, a statistical analysis is performed for both the three-

and four-facility problems. As with the single-plant and two-facility problems, an one- and

two-way ANOVA tests are performed on the full block of parameters. The factors with a

statistically significant impact are displayed in the form of p-values in Tables 7.8 and 7.9.

The p-value is the probability that the correlation seen in the data would have been seen by

chance (if no relationship exists between the variables). In each section of the table, up to
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three p-values are shown: the factor in the left column headings, the factor in the top row

headings, and the interaction (Inter.) between the two factors.

Table 7.8: Three-Facility ANOVA Test Results

Constraint Range of Max Route Total No.
Tightness(CT) Coeffs Size Parts

Tightness CT p=0.002573 CT p=0.001124 CT p=0.000001 CT p=0.002041
(CT) Range p=0.001898 Route p=0.044817 No. Parts p=0.092791

Inter. p=0.000006 Inter. p=0.002449 Inter. p=0.021274
Range x Range p=0.004147 Range p=0.003135 Range p=0.003318
of Route p=0.044981
Coeffs Inter. p=0.001850 Inter. p=0.016121
Max Route x x
Size

Total No. x x x
Parts

Table 7.9: Four-Facility ANOVA Test Results

Constraint Range of Max Route Total No.
Tightness(CT) Coeffs Size Parts

Tightness CT p=0.000144 CT p=0.000057 CT p=0.000140 CT p=0.000124
(CT) Range p=0.010086

Inter. p=0.000055
Range x Range p=0.018218 Range p=0.018504 Range p=0.017668
of
Coeffs
Max Route x x
Size

Total No. x x x
Parts

Although both ANOVA tests display statistical significance between tightness and solution

difficulty and between the coefficient range and solution difficulty, when the individual and

interaction between two factors are graphed, no single level of any one factor appears to be

an indicator of solution difficulty.

Finally, in the single-plant experimentation, a preference for in-house parts was observed.

This did not occur for the two-facility problem and on average is not evident in the three- or

four-facility problems. However, looking at the movement of parts by the range of coefficients



Natalie S. Cherbaka Chapter 7. Multiple-Plant Sourcing Model 88

reveals that in the four-facility problem, as the range of coefficients decreases, there exists

an increasing preference for in-house parts. Table 7.10 displays the average movement in

and out of the facilities by coefficient range for the four-facility problem. At the smallest

coefficient range, range 1, a smaller percentage of possible parts are outsourced. This result

is intuitive because the tighter the range of coefficients for a constraint, the less likely that it

will be worth it to remove a part from the current load. That is, “boulder” parts, that free

up large amounts of capacity to allow more profitable parts to be insourced, are not available

at the tightest coefficient ranges because all the coefficients are within a small range.

Table 7.10: Four-Facility Part Movement

Coeff. % In % Out
Range
1 19% 8%
2 30% 49%
3 38% 78%

In summary, experimentation is performed on three- and four-facility problems with industry-

motivated data sets. In evaluating the multi-plant problem in general, as the number of

facilities increases, the problem becomes easier to solve. This indicates that with the increase

in facilities, and hence increased variation of coefficients, it is more likely that one solution will

dominate. Unlike the single-plant and two-facility problems, with the three- and four-facility

problems, no single factor stands alone as an indicator of problem difficulty. Additionally,

the preference for in-house parts found in the single-plant problem is only visible for the

four-facility problems with the smallest range of coefficients.



Chapter 8

Industry Experience

As part of a two-year project, we worked with personnel of a large U.S.-based manufacturer

of refrigerated display cases. Such a product is designed to use many sheet metal parts. The

company has five sheet metal facilities and is part of a parent organization that currently

manufacturers other products that utilize purchased sheet metal parts from outside the

organization. The primary objectives of the project were to more effectively utilize the sheet

metal processing capacity at all the sheet metal facilities and to provide sheet metal parts

at a lower cost within the company. To aid in this decision-making, we created decision-

support tools to evaluate insourcing opportunities at five sheet metal facilities. One of the

manufacturing facilities was a large, state-of-the-art sheet metal fabrication facility (possibly

the largest installation in the U.S.) and we focused on that plant first (henceforth referred

to as “SMFF,” for sheet metal fabrication facility).

After an initial analysis of possible opportunities, it was determined that insourcing parts

from two locations within the organization to SMFF should be comprehensively evaluated

(no outsourcing was considered). To that end, 1857 part types were analyzed and their

data provided for the insourcing decision-support tool. Data for this analysis included the

current price paid for the part types. Other data included manufactured parts specifics,

materials costs, processing times, transportation costs ($0.03/lb), etc. Also included were

89
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facility overhead costs and a 10% markup rate on the estimated manufactured cost (to cover

small errors in the data). The decision-support tool calculated the price SMFF would charge

the other companies within the organization for each part and would not insource any part

that could not be provided at a price lower than the current price.

The data collection phase of the project was particularly challenging due to the thousands

of parts that were ultimately classified into various part types based on the machines that

were visited. Also, throughout the plant, many discussions related to fixed costs, overhead,

opportunity costs and the like were spirited and forced many to reexamine SMFF’s cost

structure. In the end, all results had to be presented in the two ways we use below to

accommodate opposing views on SMFF’s cost structure.

Of the parts that could be provided at a price lower than the current price, the decision-

support tool implicitly evaluates all possible combinations of adding parts with the objective

of adding those parts that maximize profit. Profit is defined as the total revenue minus

the maximum costs incurred (material costs, transportation costs, overhead costs, full labor

costs, and markup). In reality, there is additional profit since there is labor and overhead

already being charged to SMFF that may be better utilized if additional parts are insourced.

The decision to add a part is constrained by the capacity of each machine type in the

system. Scenarios were run that included 15, 20, and 25 working days per month as well as

low, medium and high facility loads.

The final model had 70,566 variables (1857 part types multiplied by 38 constraints), 19

machines, and was implemented in Excel using the Premium Solver from Frontline Systems.

Visual Basic for Applications was used to program the graphical user interface. Since our

results from Section 6.3 indicate that industry-motivated data sets are significantly easier

to solve than problems attempted in the literature (which are on the order of 400 variables

in size), we hypothesized that a heuristic would not be necessary to solve these much larger

problems. In actuality, to reduce runtime, we solved these large problems by separating

the part types into two batches and then running a combined problem with the part types
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selected from each of the two batches.

In the final analysis, 1644 of the 1857 part types were recommended to be added to the load

at SMFF. The conservative final financial results are summarized below:

• Profit to SMFF (10% markup rate; no adjustment for labor and overhead): $16,299/month

• Savings to Customers: $261,977/month

– Total Savings to parent organization: $278,276/month (or $3.34M/year)

The final financial results including the impact of considering the underutilized machine

capacity and labor are summarized below:

• Profit to SMFF (10% markup rate; no adjustment for labor and overhead): $16,299/month

• Labor Costs previously charged and can now be utilized: $34,809/month

• Overhead Costs previously charged and can now be utilized: $33,397/month

• Savings to Customers: $261,977/month

– Total Savings to parent organization: $346,482/month (or $4.16M/year)

The benefits of the project were mani-fold. The primary benefit was in providing a systematic

and quantitative process for evaluating decisions related to sheet metal fabrication capacity.

The project also provided an analysis of the current machine utilizations, which initiated

quite a few “accelerated change programs” (the company’s name for Kaizan Events) in an

attempt to break bottlenecks. Multiple scenarios to be analyzed by the decision-support tool

were constructed to aid in focusing resources. The project lead naturally to a company-wide

reevaluation of sourcing decisions, which was conducted as part of the strategic planning

process. The final result is that SMFF will continue to be a focal point of sheet metal

fabrication within the organization and the facility is in a stronger competitive position.
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Our work with the SMFF and the parent organization motivated us to create an Excel-

based tool to solve the single-plant general sourcing problem. The development of this

tool was funded by the Center for High Performance Manufacturing (CHPM) at Virginia

Tech, a member-based research center to which the parent organization belongs. To en-

sure widespread usability of the tool, it incorporates a free open source LP and MIP solver,

LPsolve, created by Michel Berkelaar and maintained by Sam Buttrey. LPsolve can be down-

loaded from the yahoo group page at http://groups.yahoo.com/group/lp_solve/files/.

The Excel-based tool is proprietary software of the CHPM and its member companies. The

CHPM should be contacted for further information on this tool at http://chpm.ise.vt.edu/.



Chapter 9

Conclusions and Future Research

This dissertation covers research contributions in three main areas. First, the tactical level

sourcing decision was defined and modeled as a multidimensional knapsack problem (MKP).

Second, characteristics of the sourcing problem that differ from standard MKP literature

problems were identified and tested with respect to their effect on problem difficulty. This in-

cludes the multiple-attribute classification and generation techniques for industry-motivated

data sets. Finally, the model was extended to include multiple facilities allowing for move-

ment of parts between facilities.

The first research contribution covers modeling sourcing decisions as a multidimensional

knapsack problem (MKP). The sourcing decision was defined as, given the current machine

and labor capacity, selecting from a list of currently outsourced parts, which parts to insource,

and which parts from the current plant load should be outsourced. Extensions to the basic

model considered multiple time periods, the option of increasing the available labor, and the

multi-plant model.

Secondly, characteristics of the sourcing problem were identified and compared to standard

MKP test problems. The first characteristic noted was the multiple-attribute (MA) struc-

ture. Experimental results demonstrated that problems with the MA-MKP structure are
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significantly more difficult to solve than the standard literature problems with the single-

attribute structure. For small problems, with 100 variables and 5 constraints, the MA-MKP

required on average 206 CPU seconds to find the optimal solution, versus 6.4 for the SA-MKP

problems. Additionally, although experimentation with standard MIP solution techniques

was somewhat effective in reducing the time required to solve the problem to optimality,

none of the techniques brought the solution time close to the level of the SA-MKP solution

times. Therefore, a heuristic was developed to solve the MA-MKP. It is a simple heuristic

that begins with the LP solution and uses list processing rules to improve and maintain

feasibility. Although simple, the heuristic is effective and the solutions improved as the size

of the problem increased. For example, the average gap between the heuristic solution and

the optimal solution was 1.39% for the 200-part problem and was reduced to 0.69% when

the size of the problem increased to 298 parts.

Other characteristics of the sourcing problem that differ from standard literature MKP

problems were identified through evaluation of actual industry data. The major differences

between industry problems and MKP literature test problems are a result of the fact that

in most industry problems parts do not visit every machine. In the industry data, a part

routing contained roughly one-third of the machines. Therefore, two-thirds of the constraint

matrix contains zeros, compared to the completely dense constraint matrix considered in the

literature. Industry-motivated data sets were generated that reflect the industry data, yet

have a form similar to the literature data sets to allow for comparisons.

Testing the industry-motivated data sets illustrated which factors are significant with respect

to algorithm runtime (most notably, constraint tightness and maximum route size). The

testing also identified an interesting phenomenon that did not occur with standard data sets;

that is, the preference for parts currently in the plant load, or in other words, the tendency

to outsource very few parts from the current plant load. This phenomenon coincides with

our experiences in industry, which when originally observed, we speculated was due to the

decision-makers being conservative when it came to outsourcing from their plant. We now

see that it was due to how companies build a solution that is so highly constrained that it
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is difficult for parts from the outside to fit into it. This is a topic we plan to pursue in our

future research.

Finally, within the third research contribution, the sourcing model was extended to include

multiple facilities. In this model, the objective function takes into consideration more than

one facility at a time. The decisions in the multiple-facility model are how to allocate

parts across the various facilities. Experimentation was conducted on the two-facility model

and results pertaining to problem difficulty were consistent with the single-plant model in

that constraint tightness is an indicator of problem difficulty. However, compared to the

single-plant model, which required on average 9.2 CPU seconds to solve optimally, the two-

facility problem required on average 1310.8 CPU seconds. Additionally, the earlier noted

phenomenon where a facility has a preference for in-house parts, was not observed in the

two-facility model. This could be the result of the data generation technique or that the

phenomenon is not present in the multi-plant problem; however, we plan to pursue this topic

in future research.

Multi-plant experimentation on three- and four-facility problems revealed that as the number

of facilities increases, the problem is easier to solve. Compared to the 1310.8 CPU seconds

required to solve the two-facility problem, the three- and four-facility problems require 43.3

and 13.3 CPU seconds, respectively. A likely explanation for the decrease in difficulty is

that with additional facilities, one facility is more likely to be the obvious solution for each

part and sub-optimal solutions are quickly eliminated. Additionally, with the three- and

four-facility problems, no single factor emerged as an indicator of problem difficulty, and on

average, as with the two-facility problem, the preference for in-house parts does not exist.

Understanding why this phenomenon is present with the single-plant problem and not with

the multi-plant problems is a topic to be studied in future research.

Our experiences from a two-year project with a large U.S.-based manufacturer of refrigerated

display cases were reported. In addition to providing a foundation from which to study

this important tactical sourcing problem, results from the corresponding decision-support
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tool were used in formulating the company’s manufacturing strategy and saved the parent

organization up to $4.16M per year.

Future research will involve further extension of the MA-MKP application area beyond the

sourcing problem. There are many applications that could prove to be interesting areas of

research. For example, consider a company like Valassis. Valassis prints coupon inserts for

Sunday newspapers. Valassis has accounts setup with many companies in different market

segments (e.g., they have accounts with both Pampers and Huggies in the diaper segment,

Pizza Hut and Papa Johns in the take-out pizza segment, etc.). The coupon insert can be

considered a knapsack and Valassis will solve this problem over a planning horizon, which

means that there are multiple knapsacks to consider simultaneously. Each knapsack will have

a size constraint expressed by the square inches of insert area. There will also be constraints

associated with how often to run each coupon insert over the planning horizon, including

different account preferences (e.g., Pampers likes to be included in the coupon insert for the

first Sunday of each month). An additional constraint that will make the MKP interesting

for this application area is that Valassis is not permitted to run coupons from the same

market segment in the same week.

Other examples of application areas include a company (like Pizza Hut) that has to decide

which type of coupon to allow a company like Valassis to include based on what products,

services, or times they want customers to consume. A similar application is in the apparel

industry, where the decision of which sales to run is based on the need to free up store

capacity for new, more profitable products. Additional applications can be found in problems

dealing with the of allocation of people, products, or services. For example, in the health

care industry, lab technicians and other experts are allocated to hospitals not only to fulfill

demand, but in a way that maximizes profit. Similarly, the allocation of projects to teams

in a consulting firm could be modeled as an MKP. Such a problem begins to cross into the

realm of scheduling. Since industry problems can be solved quickly, it might be possible to

integrate this model within a scheduling algorithm for a problem such as scheduling jobs to

cells in a cellular manufacturing facility. It is our intent to explore new application areas for
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sourcing problems modeled as MKPs in our future research.
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[12] Fréville, A., and Plateau, G., “Hard 0-1 Multiknapsack Test Problems for Size Reduction

Methods,” Investigacion Operativa, 1, 251–270 (1990).

[13] Gabrel, V., and Minoux, M., “A Scheme for Exact Separation of Extended Cover

Inequalities and Application to Multidimensional Knapsack Problems,” Operations Re-

search Letters, 30, 252–264 (2002).

[14] Garey, M., and Johnson, D., Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, San Francisco (1979).

[15] Gavish, B., and Pirkul, H., “Efficient Algorithms for Solving Multiconstraint Zero-One

Knapsack Problems to Optimality,” Mathematical Programming, 31, 78–105 (1985).

[16] Gilmore, P., and Gomory, R., “The Theory and Computation of Knapsack Functions,”

Operations Research, 14, 1045–1075 (1966).

[17] Glover, F., and Kochenberger, G., “Critical Event Tabu Search for Multidimensional

Knapsack Problems,” Meta-Heuristics: Theory and Applications, pp. 407–427 (1996).
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Appendix

The parameters presented in Table A-1 are defined to generate the industry-motivated data

sets analyzed in the experimentation in Section 6.3. For each of the 162 data sets, 10

problems are generated, for a total of 1620 problem instances.

The total number of variables and constraints is normally used to define the problem size of

an MKP. We define the number of variables with respect to both the number of insourcing

variables and the number of outsourcing variables, labeled respectively, “# In Vars” and

“# Out Vars,” in Table A-1. Also, for each of the problems, 5 machines are considered. This

is because in the sheet metal data, of the 38 constraints (19 machines), only 10 constraints

(5 machines) were determined to be critical to the problem.

Constraint coefficients are generated from a uniform distribution over a defined range that is

different for each constraint. The next 10 columns, under the label “Maximum of Coefficient

Range,” represent the maximum value of the range for each constraint and each type of

variable (insourcing or outsourcing). The minimum of the range is assumed to be zero with

the exception of outsourcing variables on constraint 5 where a minimum of 0.39 on the

coefficient range is defined.

Next, tightness (τ) of each constraint is defined. In Table A-1 the τ values are defined for

each of the 5 machines. The same τ value is used for both the machine time and labor time

constraints associated with each machine.

The next 4 columns in Table A-1 define the objective function coefficients. The mean

and variance is defined for both the insourcing variable coefficients (p) and the outsourcing
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variable coefficients (c). This factor was held constant for all data sets

Finally, the columns labeled “Routing Sizes (%)” display the routing size for both the in-

sourcing and outsourcing variables. The maximum routing size is the maximum percent of

the parts with the same routing. It is defined in more detail in Section 6.2. The minimum

routing size sets a minimum percent of parts that must visit the remaining routes (after the

maximum route is defined). This effectively sets the the number of routings defined.
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Table A-2 displays the results from experimental runs with the parameters listed in Ta-

ble A-1. The results in each row represent the average of 10 problems generated using the

parameters listed in that row. Tightness, Range of Coefficients, Maximum Block Size, Num-

ber of Parts, and Part Ratio are as described above for Table A-1. The column labeled %

in-sourced is the percent of variables, out of the possible variables that can be insourced into

the facility, insourced in the solution. The column labeled % out-sourced is the percent of

variables in the current load that were outsourced in the solution. The row labeled Solution

Time is the average CPU seconds that CPLEX requires to solve the problem optimally.

Table A-2: Results from Single-Facility Industry-Motivated Data Sets

Max Solution
Range of Block No. Part % in- % out- Time

Set Tightness Coefficients Size Parts Ratio sourced sourced (CPU)
(1,2,3) (1,2,3) (30,80) (2,5,8K) (0.25,1,4)

1 1 1 30 2 0.25 61% 4% 62.273
2 1 1 30 2 1 46% 4% 10.920
3 1 1 30 2 4 19% 2% 6.056
4 1 1 30 5 0.25 20% 2% 9.203
5 1 1 30 5 1 46% 4% 0.669
6 1 1 30 5 4 61% 4% 0.348
7 1 1 30 8 0.25 20% 2% 1.977
8 1 1 30 8 1 46% 4% 0.308
9 1 1 30 8 4 61% 4% 0.377
10 1 1 80 2 0.25 62% 4% 0.536
11 1 1 80 2 1 46% 3% 0.402
12 1 1 80 2 4 19% 1% 0.233
13 1 1 80 5 0.25 19% 1% 2.100
14 1 1 80 5 1 46% 3% 0.723
15 1 1 80 5 4 62% 4% 0.311
16 1 1 80 8 0.25 20% 1% 1.291
17 1 1 80 8 1 46% 3% 0.328
18 1 1 80 8 4 62% 4% 0.307
19 1 2 30 2 0.25 44% 9% 154.411
20 1 2 30 2 1 37% 13% 144.136
21 1 2 30 2 4 18% 7% 78.159
22 1 2 30 5 0.25 18% 7% 9.164
23 1 2 30 5 1 37% 13% 2.161
24 1 2 30 5 4 44% 9% 2.380
25 1 2 30 8 0.25 18% 8% 1.761

continued on next page
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Table A-2 continued from previous page
Max Solution

Range of Block No. Part % in- % out- Time
Set Tightness Coefficients Size Parts Ratio sourced sourced (CPU)
26 1 2 30 8 1 37% 13% 0.330
27 1 2 30 8 4 44% 9% 0.430
28 1 2 80 2 0.25 47% 7% 1.078
29 1 2 80 2 1 37% 11% 0.680
30 1 2 80 2 4 18% 6% 0.580
31 1 2 80 5 0.25 18% 6% 0.690
32 1 2 80 5 1 38% 11% 0.481
33 1 2 80 5 4 47% 8% 0.608
34 1 2 80 8 0.25 18% 6% 1.085
35 1 2 80 8 1 38% 11% 0.277
36 1 2 80 8 4 47% 7% 0.321
37 1 3 30 2 0.25 39% 10% 74.664
38 1 3 30 2 1 32% 17% 354.953
39 1 3 30 2 4 17% 13% 316.169
40 1 3 30 5 0.25 17% 13% 5.020
41 1 3 30 5 1 32% 18% 1.770
42 1 3 30 5 4 39% 10% 1.067
43 1 3 30 8 0.25 17% 13% 0.799
44 1 3 30 8 1 32% 18% 0.436
45 1 3 30 8 4 39% 10% 0.422
46 1 3 80 2 0.25 43% 9% 0.885
47 1 3 80 2 1 33% 15% 0.536
48 1 3 80 2 4 17% 11% 0.375
49 1 3 80 5 0.25 17% 11% 0.892
50 1 3 80 5 1 33% 15% 0.650
51 1 3 80 5 4 43% 9% 0.584
52 1 3 80 8 0.25 17% 11% 0.438
53 1 3 80 8 1 33% 15% 0.325
54 1 3 80 8 4 43% 9% 0.511
55 2 1 30 2 0.25 68% 3% 4.700
56 2 1 30 2 1 47% 2% 2.598
57 2 1 30 2 4 20% 1% 3.211
58 2 1 30 5 0.25 20% 1% 12.247
59 2 1 30 5 1 47% 2% 0.242
60 2 1 30 5 4 68% 3% 0.201
61 2 1 30 8 0.25 20% 1% 1.294
62 2 1 30 8 1 47% 2% 0.264
63 2 1 30 8 4 68% 3% 0.449
64 2 1 80 2 0.25 70% 2% 0.267
65 2 1 80 2 1 47% 2% 1.066
66 2 1 80 2 4 20% 1% 0.149
67 2 1 80 5 0.25 20% 1% 0.683
68 2 1 80 5 1 47% 2% 0.756
69 2 1 80 5 4 70% 2% 0.394
70 2 1 80 8 0.25 20% 1% 1.290

continued on next page



Natalie S. Cherbaka Appendix 110

Table A-2 continued from previous page
Max Solution

Range of Block No. Part % in- % out- Time
Set Tightness Coefficients Size Parts Ratio sourced sourced (CPU)
71 2 1 80 8 1 47% 2% 0.622
72 2 1 80 8 4 69% 2% 0.236
73 2 2 30 2 0.25 57% 5% 5.294
74 2 2 30 2 1 42% 8% 7.675
75 2 2 30 2 4 19% 4% 74.305
76 2 2 30 5 0.25 19% 5% 1.195
77 2 2 30 5 1 42% 8% 0.623
78 2 2 30 5 4 58% 5% 0.253
79 2 2 30 8 0.25 19% 5% 0.357
80 2 2 30 8 1 42% 8% 0.253
81 2 2 30 8 4 58% 5% 0.328
82 2 2 80 2 0.25 61% 4% 0.826
83 2 2 80 2 1 43% 6% 1.082
84 2 2 80 2 4 19% 3% 0.729
85 2 2 80 5 0.25 19% 4% 1.525
86 2 2 80 5 1 43% 6% 0.494
87 2 2 80 5 4 61% 4% 0.442
88 2 2 80 8 0.25 19% 4% 1.047
89 2 2 80 8 1 43% 6% 0.212
90 2 2 80 8 4 61% 4% 0.268
91 2 3 30 2 0.25 54% 6% 7.109
92 2 3 30 2 1 39% 11% 5.844
93 2 3 30 2 4 18% 8% 17.757
94 2 3 30 5 0.25 18% 8% 0.697
95 2 3 30 5 1 39% 11% 0.206
96 2 3 30 5 4 54% 6% 0.269
97 2 3 30 8 0.25 18% 8% 0.297
98 2 3 30 8 1 39% 11% 0.502
99 2 3 30 8 4 55% 6% 0.313
100 2 3 80 2 0.25 59% 5% 0.708
101 2 3 80 2 1 40% 8% 0.846
102 2 3 80 2 4 18% 6% 0.538
103 2 3 80 5 0.25 18% 6% 1.185
104 2 3 80 5 1 40% 8% 0.663
105 2 3 80 5 4 59% 5% 0.250
106 2 3 80 8 0.25 18% 6% 0.474
107 2 3 80 8 1 40% 8% 0.341
108 2 3 80 8 4 59% 5% 0.288
109 3 1 30 2 0.25 73% 2% 0.534
110 3 1 30 2 1 48% 1% 2.705
111 3 1 30 2 4 20% 1% 0.227
112 3 1 30 5 0.25 20% 1% 4.010
113 3 1 30 5 1 48% 2% 0.217
114 3 1 30 5 4 72% 2% 0.140
115 3 1 30 8 0.25 20% 1% 2.863

continued on next page
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Table A-2 continued from previous page
Max Solution

Range of Block No. Part % in- % out- Time
Set Tightness Coefficients Size Parts Ratio sourced sourced (CPU)
116 3 1 30 8 1 48% 2% 0.212
117 3 1 30 8 4 72% 2% 0.175
118 3 1 80 2 0.25 76% 0% 0.881
119 3 1 80 2 1 49% 0% 0.245
120 3 1 80 2 4 20% 0% 0.163
121 3 1 80 5 0.25 20% 0% 0.553
122 3 1 80 5 1 49% 0% 0.614
123 3 1 80 5 4 76% 0% 0.512
124 3 1 80 8 0.25 20% 0% 0.706
125 3 1 80 8 1 49% 0% 0.637
126 3 1 80 8 4 76% 0% 0.225
127 3 2 30 2 0.25 64% 3% 1.078
128 3 2 30 2 1 44% 5% 0.981
129 3 2 30 2 4 19% 3% 0.773
130 3 2 30 5 0.25 19% 3% 1.559
131 3 2 30 5 1 44% 5% 0.137
132 3 2 30 5 4 65% 4% 0.136
133 3 2 30 8 0.25 19% 3% 0.486
134 3 2 30 8 1 44% 5% 0.174
135 3 2 30 8 4 65% 4% 0.169
136 3 2 80 2 0.25 74% 1% 0.821
137 3 2 80 2 1 47% 1% 1.102
138 3 2 80 2 4 19% 1% 0.230
139 3 2 80 5 0.25 19% 1% 1.236
140 3 2 80 5 1 47% 1% 0.886
141 3 2 80 5 4 75% 1% 0.323
142 3 2 80 8 0.25 19% 1% 1.659
143 3 2 80 8 1 47% 1% 0.184
144 3 2 80 8 4 74% 1% 0.369
145 3 3 30 2 0.25 63% 4% 0.389
146 3 3 30 2 1 42% 7% 1.439
147 3 3 30 2 4 19% 5% 29.744
148 3 3 30 5 0.25 19% 5% 1.055
149 3 3 30 5 1 42% 7% 0.136
150 3 3 30 5 4 62% 4% 0.139
151 3 3 30 8 0.25 19% 5% 0.182
152 3 3 30 8 1 42% 7% 0.174
153 3 3 30 8 4 62% 4% 0.183
154 3 3 80 2 0.25 74% 1% 1.176
155 3 3 80 2 1 47% 2% 1.326
156 3 3 80 2 4 19% 1% 0.495
157 3 3 80 5 0.25 19% 1% 1.509
158 3 3 80 5 1 47% 2% 0.491
159 3 3 80 5 4 74% 1% 0.130
160 3 3 80 8 0.25 19% 1% 0.904

continued on next page
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Table A-2 continued from previous page
Max Solution

Range of Block No. Part % in- % out- Time
Set Tightness Coefficients Size Parts Ratio sourced sourced (CPU)
161 3 3 80 8 1 47% 2% 0.175
162 3 3 80 8 4 74% 1% 0.144

Average 41% 5% 9.205

The problems in Table A-3 are generated using the Freville and Plateau [12] method in

which pi =

(
m∑

j=1

Aij

)
/m+Kri, where Aij are the constraint coefficients, pi are the objective

function coefficients, and ri is a random number from U(0, 1). Additionally, bj = τ
n∑

i=1

Aij,

∀j = 1, . . . , m and the Aij values are generated from a uniform distribution on the defined

range for each constraint.

Table A-3: Results with Single-Facility Standard Literature Generation Methods

SolnCoefficient Ranges
Time % In- % Out-

Set τ K MC 1 2 3 4 5 (CPU) sourced sourced
1 0.25 1205 61 36
2 0.50 50

Min: 50 100 100 200 100
1023 73 23

3 0.75
Max: 100 150 200 250 250

537 87 12
4 0.25 4308 65 40
5 0.50 500

Min: 1 1000 3000 6000 10000
2993 74 24

6 0.75
Max: 1000 3000 6000 10000 17000

1645 87 12
7 0.25 3064 62 37
8 0.50 5000

Min: 1 10000 20000 50000 100000
2173 75 24

9 0.75
Max: 10000 20000 50000 100000 160000

954 87 12
Average 1989 75% 24%

In Table A-4, the results are presented from experimentation on the two-facility model with

the industry-motivated data sets. The 54 different scenarios are the same scenarios solved

for the single-plant problem with the exclusion of the unique part ratio parameter. With

greater than one facility, the part ratio and the number of parts cannot easily be separated.

In Table A-4 the average CPU seconds required to solve the problem optimally in CPLEX

is displayed for each scenario.
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Table A-4: Results from Two-Facility Experimentation

Max Total Solution
Contstraint Range of Route No. Part Time

Set Tightness Coefficients Size Parts Ratio (CPU)
(1,2,3) (1,2,3) (30,80) (4,10,16K) (1,4)

1 3 2 30 4000 1 0.22
2 2 2 30 4000 1 0.25
3 1 2 30 4000 1 0.31
4 3 1 30 4000 1 0.20
5 2 1 30 4000 1 0.23
6 1 1 30 4000 1 0.24
7 3 3 30 4000 1 1.52
8 2 3 30 4000 1 15.86
9 1 3 30 4000 1 3732.53
10 3 2 80 4000 1 2683.31
11 2 2 80 4000 1 0.52
12 1 2 80 4000 1 0.83
13 3 1 80 4000 1 0.34
14 2 1 80 4000 1 0.20
15 1 1 80 4000 1 0.22
16 3 3 80 4000 1 4.61
17 2 3 80 4000 1 78.72
18 1 3 80 4000 1 175.09
19 3 2 30 4000 1 6.10
20 2 2 30 16000 1 1.46
21 1 2 30 16000 1 1.65
22 3 1 30 16000 1 1.04
23 2 1 30 16000 1 1.11
24 1 1 30 16000 1 1.34
25 3 3 30 16000 1 2.01
26 2 3 30 16000 1 2.71
27 1 3 30 16000 1 209.94
28 3 2 80 16000 1 1.82
29 2 2 80 16000 1 1.34
30 1 2 80 16000 1 13.42
31 3 1 80 16000 1 6.69
32 2 1 80 16000 1 0.92
33 1 1 80 16000 1 1.16
34 3 3 80 16000 1 2.53
35 2 3 80 16000 1 16.13
36 1 3 80 16000 1 165.74
37 3 2 30 16000 1 17.01
38 2 2 30 10000 4 57.23
39 1 2 30 10000 4 8189.46
40 3 1 30 10000 4 4.95

continued on next page
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Table A-4 continued from previous page
Max Total Solution

Contstraint Range of Route No. Part Time
Set Tightness Coefficients Size Parts Ratio (CPU)
41 2 1 30 10000 4 254.69
42 1 1 30 10000 4 4835.30
43 3 3 30 10000 4 1.43
44 2 3 30 10000 4 50.55
45 1 3 30 10000 4 11243.26
46 3 2 80 10000 4 6.36
47 2 2 80 10000 4 68.73
48 1 2 80 10000 4 5984.84
49 3 1 80 10000 4 18.45
50 2 1 80 10000 4 8782.85
51 1 1 80 10000 4 7692.54
52 3 3 80 10000 4 9.59
53 2 3 80 10000 4 826.50
54 1 3 80 10000 4 15607.58

average: 1310.81

Table A-5 displays the results from solving the same set of problems as in Table A-4, but

with the heuristic presented in Chapter 5. The CPU seconds required for both the heuristic

solution and the optimal solution are displayed. The final column is the gap between the

optimal and heuristic solution values.

Table A-5: Results from Two-Facility Heuristic Experimentation

Coeff. Tight- Max Tot No. Part Heuristic Optimal Heuristic
Set Range ness Route Parts Ratio Solu Time Solu Time Solu Gap

(1,2,3) (1,2,3) (30,80) (4,10,16K) (1, 4) (CPU sec.) (CPU sec.)
1 2 3 30 4K 1 0.12 0.22 0.00%
2 2 2 30 4K 1 0.13 0.25 0.00%
3 2 1 30 4K 1 0.12 0.31 0.00%
4 1 3 30 4K 1 0.11 0.20 0.00%
5 1 2 30 4K 1 0.11 0.23 0.00%
6 1 1 30 4K 1 0.11 0.24 0.00%
7 3 3 30 4K 1 0.16 1.52 0.08%
8 3 2 30 4K 1 0.16 15.86 0.04%
9 3 1 30 4K 1 0.17 3732.53 0.22%
10 2 3 80 4K 1 0.12 2683.31 0.00%
11 2 2 80 4K 1 0.16 0.52 0.09%
12 2 1 80 4K 1 0.16 0.83 0.16%
13 1 3 80 4K 1 0.11 0.34 0.00%

continued on next page
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Table A-5 continued from previous page
Coeff. Tight- Max Tot No. Part Heuristic Optimal Heuristic

Set Range ness Route Parts Ratio Solu Time Solu Time Solu Gap
14 1 2 80 4K 1 0.11 0.20 0.00%
15 1 1 80 4K 1 0.11 0.22 0.00%
16 3 3 80 4K 1 0.16 4.61 0.07%
17 3 2 80 4K 1 0.16 78.72 0.10%
18 3 1 80 4K 1 0.16 175.09 0.15%
19 2 3 30 16K 1 1.23 7.09 0.00%
20 2 2 30 16K 1 1.48 1.45 0.00%
21 2 1 30 16K 1 1.48 1.70 0.00%
22 1 3 30 16K 1 1.40 1.06 0.00%
23 1 2 30 16K 1 1.41 1.11 0.00%
24 1 1 30 16K 1 1.32 1.34 0.00%
25 3 3 30 16K 1 1.58 2.01 0.00%
26 3 2 30 16K 1 1.58 2.71 0.01%
27 3 1 30 16K 1 1.62 209.94 0.05%
28 2 3 80 16K 1 1.61 1.82 0.00%
29 2 2 80 16K 1 1.69 1.34 0.01%
30 2 1 80 16K 1 1.68 13.42 0.05%
31 1 3 80 16K 1 1.28 6.69 0.00%
32 1 2 80 16K 1 1.31 0.92 0.00%
33 1 1 80 16K 1 1.31 1.16 0.00%
34 3 3 80 16K 1 1.64 2.53 0.01%
35 3 2 80 16K 1 1.89 16.13 0.02%
36 3 1 80 16K 1 1.64 165.74 0.05%
37 2 3 30 16K 1 0.99 17.01 0.02%
38 2 2 30 10K 4 0.71 57.23 0.05%
39 2 1 30 10K 4 0.78 8189.46 0.14%
40 1 3 30 10K 4 0.71 4.95 0.08%
41 1 2 30 10K 4 0.74 254.69 0.20%
42 1 1 30 10K 4 0.76 4835.30 0.34%
43 3 3 30 10K 4 0.65 1.43 0.02%
44 3 2 30 10K 4 0.68 50.55 0.08%
45 3 1 30 10K 4 0.88 11243.26 0.09%
46 2 3 80 10K 4 0.65 6.36 0.04%
47 2 2 80 10K 4 0.70 68.73 0.06%
48 2 1 80 10K 4 0.74 5984.84 0.10%
49 1 3 80 10K 4 0.71 18.45 0.15%
50 1 2 80 10K 4 0.74 8782.85 0.20%
51 1 1 80 10K 4 0.91 7692.54 0.26%
52 3 3 80 10K 4 0.63 9.59 0.03%
53 3 2 80 10K 4 0.66 826.50 0.08%
54 3 1 80 10K 4 0.79 15607.58 0.08%

Average 0.8 1310.8 0.06%

Table A-6 presents the results from experimentation with three facilities. Each of the three

facilities in a problem are generated with identical parameters. Additionally, the coefficients
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for each facility are generated with the same parameters as in the single-facility problems

in Tables A-4 and A-5. The number of parts that can be outsourced from each facility

remains the same; however, the number of parts that can be insourced increases because the

additional facility outsources parts, and thus brings additional parts that can be insourced

to the other two facilities. In Table A-6 the problem parameters and the CPU time required

to solve the problem optimally in CPLEX is displayed.

Table A-6: Results from Three-Facility Experimentation

Max Total Solution
Contstraint Range of Route No. Time

Set Tightness Coefficients Size Parts (CPU)
(1,2,3) (1,2,3) (30,80) (9,12,18K)

1 3 2 30 9K 0.44
2 2 2 30 9K 0.79
3 1 2 30 9K 2.07
4 3 1 30 9K 0.51
5 2 1 30 9K 1.56
6 1 1 30 9K 3.52
7 3 3 30 9K 0.68
8 2 3 30 9K 5.92
9 1 3 30 9K 1389.27
10 3 2 80 9K 53.16
11 2 2 80 9K 0.91
12 1 2 80 9K 4.90
13 3 1 80 9K 2.70
14 2 1 80 9K 0.94
15 1 1 80 9K 4.78
16 3 3 80 9K 3.36
17 2 3 80 9K 6.74
18 1 3 80 9K 32.44
19 3 2 30 12K 7.12
20 2 2 30 12K 0.96
21 1 2 30 12K 18.25
22 3 1 30 12K 6.61
23 2 1 30 12K 5.85
24 1 1 30 12K 10.16
25 3 3 30 12K 2.55
26 2 3 30 12K 15.47
27 1 3 30 12K 294.80
28 3 2 80 12K 55.50

continued on next page
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Table A-6 continued from previous page
Max Total Solution

Contstraint Range of Route No. Time
Set Tightness Coefficients Size Parts (CPU)
29 2 2 80 12K 0.78
30 1 2 80 12K 10.28
31 3 1 80 12K 3.17
32 2 1 80 12K 1.88
33 1 1 80 12K 20.21
34 3 3 80 12K 3.16
35 2 3 80 12K 1.53
36 1 3 80 12K 12.45
37 3 2 30 18K 20.95
38 2 2 30 18K 1.17
39 1 2 30 18K 2.23
40 3 1 30 18K 1.69
41 2 1 30 18K 1.14
42 1 1 30 18K 1.85
43 3 3 30 18K 2.11
44 2 3 30 18K 2.01
45 1 3 30 18K 86.50
46 3 2 80 18K 148.11
47 2 2 80 18K 1.13
48 1 2 80 18K 11.66
49 3 1 80 18K 1.38
50 2 1 80 18K 1.75
51 1 1 80 18K 5.69
52 3 3 80 18K 0.94
53 2 3 80 18K 2.01
54 1 3 80 18K 59.74

Average 43.29

Table A-7 displays the results from experimentation with four facilities. The four facilities

per problem are generated with identical parameters. Additionally, the coefficients for each

facility are generated with the same parameters as in the single-facility problems in Ta-

bles A-4, A-5, and A-6. As with three facilities, the number of parts that can be insourced

into each facility again increases with the addition of the fourth facility. In Table A-7 the

problem parameters and the CPU time required to solve the problem optimally in CPLEX

is shown.



Natalie S. Cherbaka Appendix 118

Table A-7: Results from Three-Facility Experimentation

Max Total Solution
Contstraint Range of Route No. Time

Set Tightness Coefficients Size Parts (CPU)
(1,2,3) (1,2,3) (30,80) (9,12,18K)

1 3 2 30 12K 0.78
2 2 2 30 12K 0.96
3 1 2 30 12K 18.98
4 3 1 30 12K 0.96
5 2 1 30 12K 3.90
6 1 1 30 12K 1.89
7 3 3 30 12K 0.83
8 2 3 30 12K 2.14
9 1 3 30 12K 109.86
10 3 2 80 12K 24.43
11 2 2 80 12K 1.74
12 1 2 80 12K 8.56
13 3 1 80 12K 5.90
14 2 1 80 12K 3.38
15 1 1 80 12K 4.42
16 3 3 80 12K 3.26
17 2 3 80 12K 19.90
18 1 3 80 12K 42.31
19 3 2 30 20K 8.95
20 2 2 30 20K 1.27
21 1 2 30 20K 12.47
22 3 1 30 20K 1.32
23 2 1 30 20K 1.49
24 1 1 30 20K 20.43
25 3 3 30 20K 10.40
26 2 3 30 20K 1.92
27 1 3 30 20K 48.93
28 3 2 80 20K 46.03
29 2 2 80 20K 1.39
30 1 2 80 20K 26.83
31 3 1 80 20K 31.29
32 2 1 80 20K 12.11
33 1 1 80 20K 28.70
34 3 3 80 20K 6.80
35 2 3 80 20K 1.59
36 1 3 80 20K 37.64
37 3 2 30 32K 44.67
38 2 2 30 32K 2.23
39 1 2 30 32K 4.01
40 3 1 30 32K 2.53

continued on next page
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Table A-7 continued from previous page
Max Total Solution

Contstraint Range of Route No. Time
Set Tightness Coefficients Size Parts (CPU)
41 2 1 30 32K 2.24
42 1 1 30 32K 3.13
43 3 3 30 32K 5.41
44 2 3 30 32K 3.15
45 1 3 30 32K 31.74
46 3 2 80 32K 7.06
47 2 2 80 32K 1.60
48 1 2 80 32K 3.05
49 3 1 80 32K 3.26
50 2 1 80 32K 1.82
51 1 1 80 32K 2.72
52 3 3 80 32K 26.12
53 2 3 80 32K 2.23
54 1 3 80 32K 16.03

Average 13.27
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