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Abstract

In this study, we assess the robustness of four distinct control approaches: pole
placement; the command generator tracker (CGT) approach to modei reference control,
model reference adaptive control (MRAC); and MRAC using a fixed feedback gain. We
use a second order, single-input single-output (SISO) plant to examine the performance
and stability of each method. This evaluation spans a broad range of design goals and
uncertainty in models of the plant.

Pole placement and CGT designs are linear and relatively easy to implement, but require
explicit knowledge of the plant. Although MRAC schemes require little knowledge of the
plant's dynamic characteristics, such algorithms are non-linear and involve design variables
whose effects are not readily apparent. Currently, there are no general design procedures
for MRAC. In this study, we propose a method for designing an MRAC controller

applied to a second order SISO plant. This method does not require the controller to be
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tuned for different closed-loop performance goals. This procedure also creates a

consistent basis for comparing the robustness of all four algorithms.

Pole placement and the CGT control perform as designed if the plant is modeled correctly.
Under this circumstance, the adaptive controllers also perform at levels equivalent to the
linear algorithms. However, conditions with plant modeling error highlight enormous
differences among the four algorithms. Pole placement suffers the largest response error
and for extreme testing conditions, instability. The CGT controller exhibits better
performance than pole placement and remains stable over all testing variables. MRAC
maintains a high performance level under severe testing conditions. ~MRAC requires

minimal plant knowledge to guarantee stability and good performance.
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Chapter 1

Introduction

1.1 Background

The introduction of state space descriptions into control law design prompted the
era of "modern control". This occurred in the late 1950's. Describing differential
equations with state space matrices allowed a new perspective that was particularly
conducive to computer calculation (Franklin ef al., 1991). The advantages of state space
methods include an easier treatment of multi-input, multi-output systems and a simple
approach to specify the closed-loop eigenvalues of the plant using pole placement.

During the 1950's, a new method of control grew into prominence. The academic
nature of pole placement did not lend itself well to real world applications. The world,
being a basically non-linear place, made plant identification a difficult endeavor for
complex systems. For a method such as pole placement to effectively control a system,
explicit knowledge of plant dynamics is required. The concept of adaptive control
lessened the emphasis on a priori knowledge. Tsypkin (1966) described the adaptive
process as "changing the parameters structure and possibly the controls of a system on the
basis of information obtained during the control period so as to optimize (from one point
of view or another) the state of a system when the operating conditions are either

incompletely defined initially or changed".



Two fundamental types of adaptive control are explicit adaptive control and
implicit adaptive control. The former uses a recursive plant identification algorithm and
generates a control based upon the plant parameter estimates. Implicit adaptive control
does not identify the plant. Instead, this approach specifies desirable closed-loop
performance characteristics in a reference model. Using trajectory errors between the
plant and reference model, and the state trajectories of the reference model, the control
gains evolve into values forcing the plant’s behavior to emulate that of the reference
model. In this study, we are concerned with implicit (also known as direct) model
reference adaptive control (MRAC).

Whitaker (1958) originated implicit adaptive control with his well known "M.LT.

"

rule". This simple algorithm relied on the error trajectories between the plant and
reference model, and the sensitivity of error with respect to the adaptive gains. Its ease of
implementation made the M.L.T. rule an attractive approach, however, stability could not

be analytically guaranteed.

In 1961, LaSalle published Stability by Lyapunov's Direct Method. This treatment

of non-linear differential equations provided a new means to assess adaptive control
stability. Using Lyapunov's direct method, the designer analytically determines that a
control scheme is stable by satisfying the constraints placed upon selected Lyapunov
functions. Often, these functions represent some kind of energy that prove to be

dissipative for a sufficient guarantee of stability.



Adaptive control grew rapidly over the next two decades. Until 1980, adaptive
control designers faced two harsh constraints on the plant. Although stability conditions
- could be met, fulfilling Lyapunov constraints often required that the entire plant state
vector be available (Erzberger, 1963) and that the open-loop plant be strictly positive real
(Mabius and Kaufman, 1976). To illustrate the severity of such constraints, a single
degree of freedom, spring-mass-damper system with velocity output could not be
subjected to MRAC with guaranteed stability.

In his Ph.D. thesis, Sobel (1980) devised an implicit MRAC scheme that relaxed
many of the conditions placed on the plant. The plant no longer needed to be strictly
positive real, and output, instead of the state vector, became sufficient to promise stability.
Sobel accomplished this by using an approach developed by O'Brien and Broussard
(1979). Their work provided a basis for model reference linear control with the same
relaxed plant constraints. Broussard's contribution is known as the command generator
tracker (CGT) concept. Not only did the CGT design negate the need to use the plant
state vector, the reference model could be of lower order than the plant. This eliminated
the effect of the unmodeled dynamics of the plant on stability. The linear command
generator tracker control became the foundation for Sobel's innovative MRAC algorithm.

Since 1980, stability concerns have been underscored by a growing interest in
applications. However, most literature fails to include or address any sort of systematic
design procedure. Model reference adaptive control involves weighting matrices, much

akin to the "Q" and "R" weighting matrices in linear quadratic regulators. The "black box"



nature of MRAC makes design a more amorphous process than in linear quadratic
regulation (LQR). Whereas stability may be ensured by meeting the sufficient conditions
of Lyapunov, we gain little insight into performance from the Lyapunov functions.
Kaufman ef al. (1994) prescribe some guidelines for selecting weighting matrices. Their
suggestions are rather vague and fail to address control law design for poor knowledge of
plant dynamics.

In addition to the lack of published design procedures, let alone a hesitation to
include weighting matrix values, there is surprisingly little documentation on discrete
model reference adaptive control. Ionescu and Monopoli (1977) proposed the first
discrete MRAC system. Sobel (1980) addresses discrete MRAC in great detail but to our
knowledge, this has remained the most substantial contribution to date.

1.2 Objectives

In this work, we compare the robustness of four digital controllers: pole
placement; the command generator tracker approach to model reference control; model
reference adaptive control; and model reference adaptive control using one fixed gain.
The term robustness implies the ability to achieve "reasonable" performance over a variety
of uncertain conditions. In our study, these uncertain conditions are limited to an
established range of plant modeling error. The performance goals consist of changing the
closed-loop values for natural frequency and damping ratio of a second order plant.

Our inability to locate a derivation of a discrete model reference control algorithm

leads us to propose and test a discrete CGT controller. Additionally, we must develop a



robust design procedure for this control approach.

Comparing the three algorithms in a consistent fashion precludes the possibility of
fine tuning the MRAC algorithm for each set of testing conditions. For the range of
design goals and plant modeling uncertainty, we seek a design procedure that minimizes
error but does not require user-controller interaction.

1.3 Contribution

Comparing robustness demonstrates the conditions for which each controller is
best suited. The results may serve as basis for designers wishing to weigh algorithm
complexity and computation time against performance and stability.

Our development of the discrete time model reference controller provides an
alternative perspective than that presented by Sobel (1980). Sobel's approach is complex
and somewhat counterintuitive. In this study, we contrast his findings with ours

Our discrete MRAC design procedure, though applied to a simple system, is
unique. Our insights and design methods may serve others wishing to work with more
complex systems.

1.4 Outline

In Chapter 2, we define the control problem and formulate continuous and discrete
versions of pole placement, model reference control, and model reference adaptive
control. In Chapters 3 and 4, we derive stability conditions for the linear algorithms and

non-linear algorithms, respectively.



We develop our discrete design procedures in Chapter 5 followed by simulating
and comparing each control law in Chapter 6. These two chapters contain the most
important contributions of this study.

In chapter 7, we draw our conclusions and suggest possibilities for future research.



Chapter 2

Formulating Control Algorithms

The control algorithms presented in this chapter consist of a pole placement (full
state feedback) design applied to a single input, single output (SISO) system, the
command generator tracker approach to model reference control, and three model
reference adaptive control designs, each with a fixed gain option. Whereas we provide
continuous and discrete algorithms, control laws are typically implemented on digital
signal processors. Consequently, our simulations only involve the discrete algorithms. We
formulate the continuous algorithms to lead the reader through this material with greater
ease.

2.1 The Basis for Control

Controliers are used to change the dynamic behavior of a process or plant. The
particular objectives of a controller may include specifying the closed-loop dynamics,
rejecting disturbances, or tracking reference inputs. In this thesis, we assess the
robustness of a variety of control laws applied to shaping the response of a process to a
command. In essence, each of our control laws attempts to specify the eigenvalues of the
closed-loop system while maintaining stability over a range of uncertain conditions.

2.1.1 Plant
The term plant refers to the process that is subject to control. We represent the

dynamics of the plant in the state-space form. All analog control algorithms are based



upon the linear, time-invariant (LTI) state equations in the continuous time domain,
X, ()= A x,(t)+B,u,(t) 2.1-1)
and
y, () =C,x,(1). L (212)
We formulate the digital control algorithms for the LTI state equations in the discrete time
domain,
x,(k+1)=® x (k)+T,u (k) (2.1-3)
and
yo(k)=C x (k). (2.1-4)
Let the trajectories, for both the continuous and the discrete cases, be defined such that
xp(+) (n x 1) is the plant state vector, up(-) (m x 1) is the plant control vector, and ys(-) (q
x 1) is the plant output vector. The term C, (q x n) represents the plant output matrix.
The control designer specifies this matrix. We assume that C, does not deviate from its
established values.
In this study, we use four assumptions regarding the plant.

(1) The plant parameters exist within a specified range of uncertainty and variation.

e 3g;<a;<q; fori=12,..n j=12,..n
e by<b,<b; fori=12,..n j=12,.m
. Qij <¢,<¢, fori=12,..n;j=12,.n

* T <Y S?ij fori=12,.,n j=12,.m



Note that a; represents the element of A, corresponding to the i row and the j*
column, for example. The term a; represents the minimum possible value of a; and
a; denotes its maximum possible value.

(2) Within the bounds specified by assumption (1), all possible pairs (A;, B,) and (®;, ')
are controllable.

(3) Within the bounds specified by assumption (1), all possible pairs (A;, Cp) and (®,, C;)
are observable.

Statements (2) and (3) are sufficient to claim that the sets {AP,BP, Cp} and

{(DP,I'p, Cp} are minimal realizations of the continuous and discrete plant,

respectively (Vidyasagar, 1993). Appendix A contains definitions of controllability
and observability.

(4) The plant input matrices B, and I'; have maximum rank. This requirem:ent implies that
the control inputs are linearly independent. Such a concern does not, however, apply
to a single input system.

As we cover the various control algorithms, we constrain the plant further. The
reader may noté that the following claims are not yet made.

(1) The open-loop plant is Hurwitz (all poles in the left-hand side of the complex plane).

(2) The open-loop plant is minimum phase (all zeros in the left-hand side of the complex

plane).



(3) The open-loop plant is proper or strictly proper (for the single input, single output
(SISO) case, this means that the open-loop plant has a relative degree of 0 or 1,
respectively).

2.1.2 Closed-Loop Performance

To evaluate the controlled plant’s performance, we consider how closely the
response emulates some ideal trajectory. The ideal trajectory is the designer's conception
of the plant output during control. We discuss two basic approaches to controlling the
response of the plant. In the first approach, pole placement (full state feedback), a
compensator in the feedback loop accesses the plant’s internal dynamic states and
generates an input signal to define the closed-loop characteristic equation. The resulting
characteristic equation is designed to have dynamic properties corresponding to the ideal
trajectory. Thus, the output of the plant should match the ideal trajectory.

The model reference approach is an alternative to full state feedback. In this
approach, the ideal trajectory is physically generated by another dynamic system: the
reference model (or simply, “model”). This control law is designed so that the plant’s
output asymptotically tracks that of the model.

The state dynamics of the model define the characteristics of the ideal output. The
designer specifies desirable performance characteristics of the plant through shaping the
response of the model to a command input. The continuous LTI state equations that
describe the reference model are

% ()=A_x,(t)+B,u_(t) (2.1-5)

10



and
y.()=C_x_(1). (2.1-6)
The LTI .state equations representing the discrete time reference model are
x (k+1)=®_x_(k)+T_u_(k) ' (2.1-7)
and
Y. (K)=C_x_(k). : (2.1-8)
The trajectories, for continuous and discrete cases, are such that x_(-) (nm x 1) is the

model state vector; u_(-) (mmx 1) is the model input vector; and y_(-) (q x 1) is the

model output vector. The matrix terms A, and ®,, (n, X ny) are the model state dynamics
matrices, Bn and I', (n X my,) denote the model input matrices, and C,, (q X ny) represents
the model output matrix.

We use three assumptions about the model:
(1) The reference model is bounded input, bounded output (BIBO) stable.
(2) The order of the model may be less than the order of the process.
(3) The plant and model have the same canonical forms.
2.2 Method I: Pole Placement

In this section, we provide a review of pole placement theory, discuss our
assumptions, and define the gains used in simulation. The reader may find most of this
information in Friedland (1986) and Franklin ez al. (1991) for the continuous case. Our

presentation of discrete pole placement theory comes predominantly from Franklin ef al.

11



(1990). This section contains no original theory but is pertinent to later discussion and

simulations.

Pole placement designs use the internal dynamic states of the plant to place the
eigenvalues of the closed-loop system. The internal dynamic states may be directly
measured, or, if the system is observable, estimated.

In this study, we use six assumptions regarding pole placement.

(1) The internal dynamic states are not all available through the output.

(2) The output, alone, is not sufficient to assign closed-loop eigenvalues.

(3) The plant’s output signal is uncorrupted by noise.

(4) The parameters defining the plant's state equations are explicitly known. The reader
may infer that this statement contradicts assumption (1) of section 2.1.1. As chapter 6
will demonstrate, pole placement control performs at an optimum if the plant is
modeled perfectly. Performance declines, however, with increasing modeling error.
Pole placement theory does not consider real world application as it assumes that the
designer has explicit knowledge of the plant; a major shortcoming of this approach.

(5) This algorithm is restricted to the SISO case: m=q=1.

(6) The number of distinct eigenvalues that describe the ideal output trajectory must be
equal to the order of the plant.

In our problem formulation, we present a reduced order observer (ROO) to

estimate the unmeasured states. A reduced order observer is not the only method of state

12



estimation but tends to perform better than a full order observer in the presence of plant
modeling error.
2.2.1 Continuous Case

We assume full state availability for the initial presentation of the pole placement
formulation. In this scenario, the compensator extracts each dynamic state without

measurement. The state vectors feed through a gain matrix to form an input signal. The

__DN

Figure 2-1
Block Diagram of a Continuous Pole Placement Control System with Full State
Availability

control incorporates state feedback and a command input, cy(t). In Fig. 2-1, we illustrate

this control method.

u,(t)=c,(t)-Kx,(t) (2.2-1)
In the gain matrix K (m x n), we select values that produce the desired closed-loop

characteristic equation,

13



sI-A, +B,K|=0, (2.2-2)

thus shaping the plant’s dynamic response. Note that 's' denotes the Laplace operator.

The designer calculates the determinant of Eq. (2.2-2), symbolically in terms of K,
and equates the expression to the selected characteristic equation (the design goal). In the
SISO case, this matrix is uniquely defined for a given set of closed-loop pole locations.
By selecting K, the resulting closed-loop plant exhibits dynamics identical to the ideal
trajectory. This method of eigenvalue assignment, however, requires explicit knowledge
of A, and B,. Without this knowledge, the closed-loop plant will not behave as expected
and may even become unstable.

For a system whose plant output matrix provides insufficient state information, we
implement a reduced order observer. We review this approach, using the work of
Friedland (1986). Figure 2-2 illustrates pole placement control with state observation.

The state equations describing the plant’s dynamics are partitioned into
submatrices corresponding to the states that are available through the output and to those

which are not. The vector x,(t) (nox 1) denotes the n, measured states and x,(t) (ncx
1) represents the n. unmeasured states.
x,(t A A X, (t B
‘ pl( ) — pll pl2 pl( ) + pl up(t) (22-3)
Xp2 ) Apzl Apzz X2 (t) sz

Xpl (t)j!

y,®=[C,, o][x P (2.2-4)

14



The submatrices in these equations, Eq. (2.2-3) and Eq. (2.2-4), are Ay1; (o X 1), Apiz (o
X Ne), Apar (NeX 1), Apzz (NeX ne), By (nox m), By (nex m), and Cp; (q X no).

The reduced order observer does not estimate the states in x;(t) because those
states are directly measured through the output. However, we must create an estimate of

the vector, x;2(t). The estimate of xy(t) is denoted X,,(t), and we assume it has the form,

»1

p2

N
%

Figure 2-2
Block Diagram of a Continuous Pole Placement Control System with a
Reduced Order Observer
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X, (1) =Ly, (t)+z(1). (2.2-5)
We design the estimate of the unmeasured state vector to converge to the state vector’s
true value. Before this convergence occurs, error exists and performance suffers. The
vector z(t) serves as an intermediate state trajectory aiding in the analysis of error
transients. The dynamics of z(t) are governed by,
2(t) = Fz(t) + Gy, (t) + Hu,(1). . (2.2-6)
The elements in this equation have the dimensions L (n.x q), F (n.x n.), G (n.x q), H (n. x
m), and z (n.x 1).
We examine the estimation error dynamics to specify L, F, G, and H. First, let's
define the error as the difference between the true state and the estimated state,
e:(t) = X, (1)~ X, (1). (22-7)
By differentiating the error equation, we can examine its transient behavior.

&,(t) = %, (t) = X,,(1)

For x_,, we substitute Eq. (2.2-3) and differentiate Eq. (2.2-5) to substitute for ipz(t) )

p2>
&,(1) = A%, (1) + A %, (1) + B ,u (1) - Ly (1) - z(1)

Differentiating the plant output equation of Eq. (2.2-4) produces,

Yo (t)=Cixn (1),

which we then expand using Eq. (2.2-3), the definition of x,(t),

9, ()= Cpu( A% (®) + A X, () +Bu, (1),

16



We substitute this result into the error equation, yielding,

ez(t) = Ap2]xpl (t) + Ap22xp2 (t) + szup(t)
= LC,y (A%, (1) + ALX,, (8) + B,u, (1) - @29

- Fz(t) - GC, x,,(t) - Hu, ()

Using equations (2.2-4), (2.2-5) and (2.2-7), we express z(t) as,

z(t) = Xp2(t) — e, (1) -LCx,,(t). (2.2-9)
Substituting this new expression for z(t) into the error equation produces,

é,(t) =Fe,(t) + (A, —LC,A,,, +FLC,, — GC,, )x,,(t)

pll
+ (Ap22 -LCLA,, - F)xp2 (t) (2.2-10)

+(B,, - LC,,B,, - H)u,(t)

p2
To ensure that the error is controllable and asymptotically approaches zero, the
coefficients of the state and input trajectories in Eq. (2.2-10) are equated to zero. Error
becomes a mathematical function of itself, such that
e,(t) = Fe, (1), (2.2-11)
where the eigenstructure of the F matrix dictates the rate at which observation error
decays. After choosing the F matrix, we solve the next three equations to specify L, G,
and H.

F=A,-LC,A,, (2.2-12a)

pl
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H=B,,-LC B (2.2-12b)

pt*pl

GC, = A,, -LC,A

P

+FLC,, (2.2-12¢)

pil
We can now combine the pole placement design with the reduced order observer
design and evaluate the dynamics of the entire closed-loop system. Let the matrix of
feedback gains, K, be partitioned such that K, (m x n,) corresponds to the measured state
vector and K; (m x n.) corresponds to the estimated state vector.
K = [K, K,] (2.2-13)
Rewriting the plant’s input signal in Eq. (2.2-1) to include the estimated state vector,

u, (1) = ¢, (1) = (K,x,, (1) + K, %, (1)
=, (1) - (Kx,, () + K x,, (1) - K, e, (1)). (2.2-14)

=c, (1) - Kx, () +K,e,(1)

The state space representation of the closed-loop design is augmented by the states

describing estimation error, and is given as,

x,()]|_[A,-BK BK,Tx,(0] [B, 2.2-15
oS e T ] CRCES

The characteristic equation derived from this matrix expression demonstrates that
the dynamics of a pole placement design and of the estimator’s error may be specified
independently (the separation principle). We choose closed-loop eigenvalues by assigning

values to K and F in the characteristic equation,

sT- A, +B,K|sI-F|=0. (2.2-16)

18



Although the closed-loop dynamics are specified independently from the dynamics
of state estimation error, the presence of error affects the response of the controlled plant.
The matrix F must be selected such that the real components of its eigenvalues are
significantly larger in magnitude than those of the closed-loop plant design. The poles that
dominate the system’s response should be associated with the closed-loop plant and not
with the observation error. There is no absolute method of selecting the eigenstructure of
F. In this study, we not only require sufficiently "quick" dynamics, but margins of stability
as well. The observer gain must not induce instability. We address these issues in
Chapters 3 and 5.

2.2.2 Discrete Case

The six assumptions pertaining to the continuous case remain valid for the discrete
approach. In a manner analogous to the continuous pole placement design, the state
trajectories of the discretized plant feed through a gain matrix, and with a command input,
form the control signal. The control is defined as

u, (k) =c,(k)-Kx,(k), (2.2-17)
where c,(k) (m x 1) is the command input and K (1 x n) is the matrix of feedback gains.
The gain matrix is solved for the selected closed-loop characteristic equation,

-, +T,K|=0. (2.2-18)
We assume this system has insufficient state information. Thus, directly

implementing the control law in Eq. (2.2-17) is not possible. A reduced order observer

provides estimates of states not measured. Let x, (k) (no x 1) denote the ny measured
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states and x,2(k) (n. x 1) represent the n. unmeasured states. The plant’s state equations

can then be written as,
xpl (k+l) - <I)pll d)pl2 xpi (k) + rpl Up(k). (22_19)
xp’.’ (k + l) (Dp2l q)p22 xpz (k) rp2

The plant output vector assumes the state space description,

1 Xn (k)
e o8]

The submatrices in these matrix expressions are @11 (o X n,), Dpi2 (Mo x ne), Pp21 (e x N,),

(2.2-20)

D2 (nex ne), Ipi (nox m), Iz (nex m), and Cp; (q x o). -

The inherent differences, between the continuous and discrete domains, result in
dissimilar approaches to observer formulation. Franklin er al. (1990) provide the
formulation of the discrete reduced order observer.

We arrange the terms in Eq. (2.2-19) to separate measurable quantities from
unmeasurable quantities. Consider the first term,

Xpk+1) =@ x (k) + P ,x,, (k) + T u (k). (2.2-21)

The product @ ,,x,,(k) is not measurable. We can reorder Eq. (2.2-21) so that all right

hand terms are available through measurement’,

@, %, (k) =%, (k+1)~ @, x,, (k)= T, u, (k). (2.2-22)

If we define the right hand side as,

! Although x,1 (k+1) is not available at time step k, please grant us a “leap of faith”. This will prove not to
be an article of concern. .

20



yk)=x,(k+1)-@,x,(k)-T,u,(k), (2.2-23)
then Eq. (2.2-22) becomes,
D . x,, (k) =¥(k). (2.2-24)
Note that this equation parallels the form of the plant output equation,
C.x,(k)=y,(k). (2.1-4)
Let’s examine the second term of Eq. (2.2-19),
Xp(k+1) =@, x (k) + D ,x , (k) +T,u, (k).
If we define the measurable part of the right hand side as,
u,(k)=®,,x,(k)+T,u,(k), (2.2-25)
then
Xpa(k+1) =@ ,x , (k) +1u, (k). (2.2-26)
The form of Eq. (2.2-26) parallels the form of the plant’s state equation,
X,(k+1)=® x (k) +T,u,(k). (2.1-3)
From Franklin et al. (1990), the general equation for a prediction estimator is
X(k +1) = ®X(k) + Tu(k) + L(y(k) - Cx(k)). (2.2-27)
Using equations (2.2-23) through (2.2-26), we establish equivalencies to be substituted

into the general estimator equation.

X(k+1) =%, (k+1) (2.2-282)
DX(K) = @,,,%, (k) (2.2-28b)
Tu(k) = ®,,,x,, (k) + T,u, (k) (2.2-28¢)
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y(k)=x,(k+1) -, x,,(k)-T,u,(k) (2.2-28d)
Cx(k) = @,,%,, (k) (2.2-28e)
We apply these equivalencies to the general estimator equation, producing the reduced

order version of Eq. (2.2-27),

ipZ(k +1)= ¢p22§p2 (k)+ q)p2)xpl(k) + rp2up (k)
(2.2-29)
+ L3, (k +1) = @, (k) = Tu, (k) - ©,,,%,,(k))

We examine the dynamics of the error trajectory to design the matrix L. Defining
the observation error as,
e, (k) = x,, (k) - X, (k), (2.2-30)
we then take a time step advance to produce
ex(k + 1) = @ (x5 (k) = %, (K) = LD, (x,, (k) — F,,(K)).
By definition of e,(k), this reduces to
ey(k + 1) = (D, - LD, )e, (k). (2.2-31)
For simplicity, let's define a new matrix F as,
F=0_,,-1L0,,. (2.2-32)
Equation (2.2-31) can then be described as,
e,(k+1)=Fe,(k), (2.2-33)
where the eigenstructure of the F matrix governs the decay of state estimation error.

After selecting F, we solve for L using Eq. (2.2-32). Combining the ROO states with the
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plant states, we examine the dynamic characteristics of the entire closed-loop system. The
matrix of feedback gains is partitioned such that K; corresponds to the measured state
vector and K, corresponds to the estimated state vector. Now, we can write the control

law as,

u, (k) = ¢, (k) - (K %, (k) - K, %, (k))
= ¢, (k) — (K x,, (k) + K x,,, (k) - K¢, (K)) . (2.2-34)

= ¢, (k) - Kx, (k) + K,e, (k)

Presenting the state equations for the complete system in an augmented matrix form,

x,(k +1) _ ¢, -T K TK, x, (k) T, . 99.35
[ez(k+l)}—[ 0 F Lz(k)]{o}cp( ). (2.2-35)

The characteristic equation for this system is
[21-®, +T,K|zI-F =0, _ (2.2-36)

where 'Z' represents the forward time step operator. The poles governing the observer’s

error dynamics must have transients that settle in sufficiently fewer time steps than those
of [zZI -®, +T K|=0.

For simplicity in our future discussion of this algorithm, we introduce the matrices
Hand G.

-LI

pl

(2.2-37)

p2

G

I

@, -LO,, (2.2-38)
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Block diagram of a Discrete Pole Placement Control System with a Reduced
Order Observer

Equation (2.2-27) is easier to implement if considered using the discrete time
operator, z (we can not use future time step values). This equation becomes

zX ,(z) = FX,(2) + Gx,,(2) + Hu,(2) + Lzx,(2) . (2.2-39)

Division of both sides by the discrete time operator renders the equation into a form that is

based upon past and current values instead of current and future values.
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X,2(2) = 27'FX ,(2) + z'Hu,(2) + 77'Gx,, () + Lx,,(2) (2.2-40)

We illustrate the implementation of this controller in Fig. 2-3.
2.2.3 Summary

We reviewed the formulations of continuous and discrete pole placexﬂent control
methods. We assumed the necessity of a reduced order observer and included its
formulation as well. By the separation principle, closed-loop performance objectives and
observer gain selection may be treated separately. However, the estimator gain must be
appropriately chosen to limit the negative effects of observation error. As a final
important note, closed-loop poles will not equal their design values unless the designer has
a perfect model of the plant. Furthermore, it is conceivable that the closed-loop system be
unstable if gains are calculated for an extremely poor plant model.
2.3 Method II: The Command Generator Tracker Approach to Model Reference

Control

OBrien and Broussard (1979) developed a feedforward control technique that
enables a plant output to track that of a reference model. This control is known as the
command generator tracker (CGT) law. We derive this control law to achieve the ideal

condition where the plant's output equals the reference model's output (perfect tracking),
Yo ()=¥n(). (2.3-1)
The perfect tracking condition, illustrated by this equation, implies that

C.x,()=Cx,(). (2.3-2)
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We introduce a new set of trajectories, the ideal trajectories, that always satisfy the perfect

tracking condition. These trajectories are denoted by a superscript asterisk.
Y )=¥,0 (23-3)
The ideal trajectories are generated by the response of the ideal plant to the ideal input.

For the continuous case,

x, ()= A x> (t) + B, u,(t) ‘ (2.3-4)
and
y, () =Cx, (1). (2.3-5)
For the discrete case,
x,(k+1)= @ x (k) +T,u; (k) (2.3-6)
and
y, (k)= Cx; (k). (2.3-7)
We constrain the ideal system realizations to be equal to the plant's system
realization,
{A;.B;.C;}={A,.B,.C,}, (2.3-8)
or for the discrete case,
{0,.1;.¢;}={®,.1,.C,}. (23-9)

Using these constraints, we determine an ideal input that causes perfect tracking when the

ideal trajectories satisfy the state equations of the actual plant. Conversely, "when perfect
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tracking occurs, the real plant trajectories become the ideal plant trajectory and the plant
output becomes the ideal plant output" (Kaufman et al., 1994).

Let's assume the ideal trajectories, x; () and u;('), to be linear combinations of

the model's state and input vectors. This assumption implies an open-loop control’

approach which can be advantageous for stability. Let

x;(') _ sn S12 xm(.)
[u;(-)}—[sﬂ Szj[um(.)}' (2.3-10)

The dimensions of the matrices in this equation are S;; (n X ny), S;2 (n X My), S21 (M X ng,),
and Sz (m x my,).

We also constrain the model input u_(-) to be a type 0 or type 1 command
(essentially, a time-invariant command). If the model input is time varying, its dynamics
must be incorporated into the state dynamics matrix of the model (Kaufman ez al., 1994).

In this study, we assume that the plant and the model have the same canonical
forms. We use the feedback (also called phase-variable) canonical form (see Appendix B),
but do not claim this as necessary.

As a final note, Sobel (1980) presents continuous and discrete versions of the CGT
law. OQur discrete version differs from his. He provides no derivation and his result

contains an extraneous term. As far as we know, our discrete CGT formulation can not

2 This control is based on the reference model trajectories. Since no feedback loop surrounds the plant, we
view the ideal control input as an open-loop approach.
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be found in any other literature. Although we demonstrate in Chapter 6 that our version
performs as expected, the reader may wish to examine our development closely.
2.3.1 Continuous Case

Equation (2.3-8) defines the ideal plant trajectories to satisfy the state dynamic
equations of the plant. We substitute these for the actual state trajectories and place the

state equations into matrix form.

X, (t) _[A, B]x@®
[y,',(t)} - [Cp o]{u;(t)} (2.3-11)
Substituting for [z"gﬂ using Eq. (2.3-10) yields,
0] [A, BJSu SuTxa®
[y;(t)}[cp 0}[52, Szz][um(t)] (2.3-12)

We differentiate the first term in Eq. (2.3-10) to produce,
x(t) = S, X, (1). (2.3-13)
The model dynamics, given by x_(t) = A_x,(t)+B_u,(t), substitute into the previous

equation.

X (1) = S, A%, (1) +5,Bu, (). (2.3-14)

Since y,(t) = C,,X,,(t), we establish,

’k;(t) _[SuAn SB[ xa(1)
[y;(t)H c, o L(t)]‘ @3-13)
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Considering equations (2.3-12) and (2.3-15), we have two linearly independent

.
xP

.. . |. Comparing these two equations,
¥, (D)

SllAm Slle = AP BP Sll Sll (2 3-16)
C 0 C, 0]S, S,| '

m P

solutions for l:

This matrix expression produces four matrix equations and four matrix unknowns.

ShAn =A,S,,+B.S,, (2.3-17a)
S,B, =A,S,+B,S,, (2.3-17b)
C.=CS, (2.3-17c¢)
0=C,S,, (2.3-17d)

B
“If the matrix \: P Op} is nonsingular, we may define a new matrix € such that

CP
A, BT' [Q, Q
Q=| 7" P:| =|: 11 12]. (2.3-18)
{Cp 0 Q, Q,
Equation (2.3-16) may be rewritten as

[Q] QIZ][SIIAm Slle:I - [sll 512}
QZ] QZZ Cm 0 szl S22 ’

where
S, =Q,5,A, +Q,C,, (2.3-19a)
Si; =,,5,B,, (2.3-19b)
Sy =Q,8,A, +Q,C, (2.3-19¢)
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and
S,,=Q,8S,B,.. (2.3-19d)
The designer may solve for the unknown gains using either Eq. (2.3-17) or Eq. (2.3-19) or
even a combination of both. The ease of solving may be a function of the plant's size and
structure. Unfortunately, we cannot determine a closed-form matrix solution. In Chapter
5, we provide our solution process.
After solving for the unknown matrices, S,; and Sz, we construct the ideal input
using Eq. (2.3-10),
u, (1) = S,x,, (1) + Spu, (1) (2.3-20)
When the ideal plant trajectories satisfy the plant's state equations this control results in
perfect tracking. If the plant's initial conditions differ from those of the model, then we
violate the perfect tracking condition before we even begin! If the actual plant trajectories
converge to the ideal trajectories then the ideal input can induce perfect tracking during
the remainder of the response. We modify our control law to promote asymptotic
tracking or equivalently, force the output error to asymptotically approach zero. We
define error as the difference between the ideal state trajectories and the actual state
trajectories of the plant,
e(t) = x, (1) — x,(1). (2.3-22)
Let's examine the error dynamics. Differentiating Eq. (2.3-22) yields,

&(t) = X,(1) - x,(1). (2.3-23)
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We substitute the state equations for the ideal plant and the model into this equation.
é(t) = Ax (1) + Bou () — A x () - B,u,(t) (2.3-24)
Using the definition of error from Eq. (2.3-23), we have,
é(t) = Ae(t) + B,(ul() - u,(1).  @23-25)
If the input to the plant assumes the form,
u, () =u; O +K, [y, -y, ®), (2.3-26)
where K. is the stabilizing output feedback gain, then the CGT control becomes
u, (1) = u, (1) + K Ce(t). (2.3-27)
We substitute this control signal into Eq. (2.3-25) such that,

&(t) = (A, - BK.C,)e(®), (2.3-28)
and see that the error asymptotically approaches zero provided that the K. creates stable
closed-loop error dynamics. The eigenstructure of Eq. (2.3-28) dictates the rate at which
the plant’s output converges to that of the model. Finally, we can write the CGT control
as,

u,(t)= S;x,(t)+Spu, +K .C e). (2.3-29)

In Fig. 2-4, we illustrate this model reference control scheme.

31



um
uP
Figure 2-4
Block Diagram of a Continuous Model Reference Control System Using the
CGT Approach

32



2.3.2 Discrete Case
Before we commence the discrete CGT formulation, we must mention to the
reader that we were unable to locate this information in any literature. In his Ph.D. thesis,

Sobel (1980) briefly addresses the issue. He only provides results analogous to Eq. (2.3-

19):
S, =9,5,(®, -1)+Q,,C,, (2.3-302)
Si, =98, I, (2.3-30b)
S, =€,,8,,(®, -1)+Q,C, (2.3-30c)

and
S,, =Q,S, T, (2.3-30d)

where
Q, Q & -1 .7

Q= [Q: Q;j:[ "Cp 0"] . (2.3-31)

We infer from these equations, by inspecting €, that

[Sn(‘bm'l) s,,rm]z[%-l rp]{s“ S”] (2.3-32)

C 0 C 0 S, S,

m P
Sobel does not explain why he includes the identity matrix. If we examine the term in the
first row, first column of this matrix equation,

$,®,-5,=®.S, -5, +T,S,, (2.3-33a)
we see that the effect of the identity matrix in Eq. (2.3-32) is trivial. The other possible

purpose for this matrix is in the calculation of,
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S\ I,=®,S,, -5, +I[,S,,. (2.3-33b)
Let's consider the term S,, as it applies to

0=C.S,,. (2.3-33¢)

P

If the plant output matrix is fully populated, then S,, must equal zero and there is no
purpose for the identity matrix in Eq. (2.3-32). If the plant output matrix is not fully
populated then S,, may be selected to solve Eq. (2.3-33b). It is possible that including
the identity matrix helps to prevent non-singularities during the solution process.
However, if its purpose is more significant than that, Sobel makes no indication. In our
treatment of the discrete CGT controller, we create our own formulation, following the
logical progression of the continuous CGT case.

Like the continuous CGT development, the ideal plant trajectories satisfy the state

equations specified by the definition from Eq. (2.3-9).

xk + D] [®, T,Txk)
[ y, (k) }_ [Cp o}[u;(k)} (2.3-34)
Substituting Eq. (2.3-10) into Eq. (2.3-34) yields,
x, (k+1) [P L[Sy Su]xak)
[y;(k) ]_[C, o][sz, Szj{um(k)] (2.3-35)

A forward time step advance of x;(k) in Eq. (2.3-2) produces,

X, (k+1) =8, x, (k+1)+S,,u,(k+1). (2.3-36)
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Note that the input to the model, un(k), is constant and may not be eliminated from this
expression as it was in the continuous case. However, the model input has the property,
u (k+1)=u_(k) Vk20. (2.3-37)
This property allows the ideal state equation to be described as
x;(k +1) = §;x,(k + 1) + Su, (k). (2.3-38)
We substitute the model’s state dynamics expression for xn(k+1) to produce
x,(k +1) = S, ®.x,.(k) + (ST, + Si2)un(k). (2.3-39)
We augment this equation with ideal discrete plant output equation, creating a form

similar to Eq. (2.3-35).

I:x'(k + 1)] [Sﬂd)m S + Sl!}[xm(k)jl
Pt - (2.3-40)
Yy, (k) C 0 u, (k)

Comparing this expression to Eq. (2.3-35) yields,

Slld)m Sllrm+812 = ¢P rP Sll SIZ (2 3_41)
C 0 C, 0]ls, S,! '

m P p4

From this equation, we can extract four matrix equations and four matrix unknowns:

$,®@, =®.,5,, +I,S,,; (2.3-42a)
S\ Ta+8S,=@.S8,+I,S,,; (2.3-42b)
C,=C,S; (2.3-42¢)
and
0=CJS,,. (2.3-42d)
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The reader may note that these equations are equivalent to those produced by Sobel
(1980) in Eq. (2.3-33). The difference is that we do not use the additional identity
matrix.

Equation (2.3-42) may be solved element by element, but if the matrix

® -1
Q= [ F p} exists, then we can also use the following equations.

C, ©
S, =Q,S,®, + Ql;cm (2.3-43a)
S,=9,S,T, +Q,S, (2.3-43b)
S, =Q,S,®, +Q,,C._ (2.3-43c)
S, =Q,8,T. +Q,8, (2.3-43d)

The solution of these unknowns provides the discrete CGT solution where the ideal plant

input is defined to be
u; (k) = S,x, (k) + Spu, (k). (2.3-44)
By examining the error dynamics we can determine a control signal to guarantee
asymptotic tracking of the model’s output. Defining error as,
e(k) = x; (k) — x,(k), (2.3-45)
we take a time step advance of this error equation to analyze its dynamics.
ek +1) = x;(k + 1) - x (k + 1) (2.3-46)
Substituting the ideal plant and actual plant state equations,

ek + 1) = ®,x)(k) + Tul(k) - @,x,(k) - T,u, (k). (2.3-47)
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By the definition of error in Eq. (2.3-45), this becomes
e(k +1)= @ e(k) + T, (u; (k) - u, (k). (2.3-48)
Selecting the control signal as,
u, (k) = u,(k) + K.C.e(k), (4.3-49)
where K, is the stabilizing output feedback gain, error dynamics can be written as,

e(k + 1) = (®, - T,K.C,)e(k). | (2.3-50)

P eTP
We then select K, to control the transients of error.

Substituting the definition of the ideal input into Eq. (4.3-49), produces the final
form of the control signal,

u, (k) = S,x,,(K)+S,u,, (k) + K, C e(k). (2.3-51)

2.3.3 Summary

Like pole placement, CGT design involves two types of gain selection. The first
corresponds to calculating gains for the control of dominant eigenvalue locations. These
are the “performance” gains. The second type of gain, the output feedback gain, is
associated with the decay of error.

The CGT controller is dependent on the accuracy of the plant model. If plant
modeling error occurs, the CGT controller does not perform as expected. In contrast to
pole placement, the CGT law is partially open-loop. Thus, stability concerns are lessened.

In Chapter 3, our stability analysis reveals this clearly.
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2.4 Method III: Model Reference Adaptive Control

Model reference control using the CGT approach requires full knowledge of the
plant’s dynamics. In many instances, a process (plant) may be incorrectly modeled, or it
may not be possible to quantify all high order dynamics. If either problem occurs, the
performance of the controller will suffer. However, if a CGT controller can adapt, it
becomes possible to achieve the design goals specified by the reference model. This is
made possible by replacing the fixed gains, S,, and S,,, with time varying gains; this is
the basis for Sobel's (1980) formulation of the model reference adaptive control
algorithms. In this section, we review Sobel's MRAC formulations for three different
cases, including one discrete case.

The first version (case I) of MRAC requires that the open-loop plant be strictly
positive real (refer to Appendix C). This rigid constraint is relaxed by the second version
of MRAC which compensates by using a feedthrough term. The discrete version (case
IIT) is based upon the continuous second version. There is no true discrete equivalent to
case L.

2.4.1 Continuous Case 1

Version I of the continuous MRAC algorithm uses the plant input form from Eq.
(2.3-29), the CGT control signal. We replace these constant gains with matrices of time-
varying or “adaptive” gains.

u, () =K, (t)x, )+ K, (tu, () + K (1)C e(t)) (2.4-1)

In Fig. 2-5, we provide a block diagram of this controller.
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The adaptive gains are concatenated into an m x n, matrix for convenience,
K, (1) = [K.(t) K1) K,(1)] (2.4-2)

Note that n, is the total number of elements in the output, the model state vector and the

model input. The corresponding trajectories are concatenated into an n, x 1 matrix,

C.e(t)
r(t)=| x,(1) |. (2.4-3)
u,(t)
The control signal is then expressed as,
u, () =K, (). (2.4-4)

The adaptive gain K(t) consists of integral and proportional components.

K,)=K_ (t)+K,() (2.4-5)

The proportional gain dominates the early transient response while the integral gain

grows, "learning” which gain values minimize error. We calculate these gains using,

K,(t)=v()rr ®T, (2.4-6)

K,()=v()rr®)T, (2.4-7)
and by designating an initial condition for the integral gain,

K,(0)=K,,. (2.4-8)

The n, x n, matrices T and T are diagonal “weighting” matrices. They place emphasis on

gains associated with each vector in r(t). We may express these weighting matrices as,
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Block Diagram of the Continuous Model Reference Adaptive Control System
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T 0 0
T=/0 T, © (2.4-9a)
0 0 T,
and
T, 0 0
T={0 T, 0] (2.4-9b)
0 0 T,

where T, and T, correspond to the output error, T and T, , correspond to the model’s
state vector, and T, and T, correspond to the model’s input.

As we mentioned previously, there are two different versions of the continuous
algorithm. The distinction lies in the definition of the vector v(t). In this first case, v(t) is
defined as the output error between the plant and the model.

v(t)=Ce() =y, (t) -y, (1) (2.4-10)
2.4.2 Continuous Case II

Version II of the continuous MRAC algorithm is identical to the first except for
the specification of v(t) in Eq. (2.4-10). In this second version, certain stability constraints
are relaxed (discussed in Chapter 4), however, the algorithm requires some knowledge of

the parameters that define the plant's dynamics. We define v(t) as,

v(t) = QC,e(t) + Gz(t), (2.4-11)

where

2(t)=u(t) - u, () +K,C e(t). (2.4-12)
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In the last case, v(t) was simply the output error. In case II, v(t) is the error
between the outputs, each of which involve a feedthrough term, Gz(t). The vector z(t)
represents the error between the CGT control signal and the actual control signal. The
need for a feedthrough term stems from a stability result to be covered in Chapter 4. The
size and importance of G is addressed further in Chapter 5, our design chapter.

Unlike version I of the continuous algorithm, gains from the CGT controller
appear in the definition of z(t). The CGT terms require explicit knowledge of the plant’s
parameters. Requiring such knowledge can undermine the purpose of an adaptive
controller. However, in Chapter 4, we demonstrate that only nominal and not exact
values are required.

The reader may note that u,(t) is a function of v(t) while simultaneously v(t) is a
function of u,(t). We may reconcile this dilemma by solving for u,(t) in closed form. To

accomplish this, we introduce a new vector, v,(t).
v,(t) = QC,e(t) + G{uj (1) + K .C,e(1)) (2.4-13)
Note that v,(t) consists of terms that are immediately available to the controller and are

not recursively defined. The trajectory v(t) is rewritten in terms of v(t).

v(t) = v,(t) - Gu, (1) (2.4-14)
Using v,(t), we express the control signal as,
u, ()= [(v] ()~ Gu, ()" ()T + K,(t)]r(t) . (2.4-15)

Solving for u,(t) in closed form,
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u, () = (v, ®Or T +K,(O)r(t) - Gu, (O ()Tr(t).
Grouping all u,(t) terms on the left yields,

I+ OTr®G)u, (1) = (v, O ®T + K, ())r(1)) .

By premultiplying both sides by (I + rT(t)Tr(t)G)—] , We arrive at

u, (1) = (I+ 1" OTI®G) (K, (©) + v, (O T)r(t). (2.4-16)
2.4.3 Discrete Case
The discrete control algorithm uses the same form as the second version of the
continuous MRAC algorithm,
u, (k) =K, (k)x, (k) + K, (K, (k) + K (k)C e(k). (2.4-17)
The adaptive gains, as well as the trajectories, are concatenated into m x n, and n, x 1

matrices, respectively.

K, (k) = [K.(k) K,(k) K,(k)] (2.4-18)
C,e(k)

r(k)=| x_(k) (2.4-19)
u, (k)

We assume that the time lag associated with machine computation is negligible compared
to the sampling period. The control input to the plant is simply expressed as

u, (k) =K, (K)r(k). (2.4-20)

We base gain calculation on the following set of equations.

K, (k)=K, (k) +K,(k) (2.4-21)
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K, (k) = v(k)r" (k)T (2.4-22)

K,(k+1)=K, (k) +v(k)r" (k)T (2.4-23)
K,(0) =K, (2.4-24)

v(k) = Fe(k) + Gz(k) (2.4-25)

z(k) = u)(k) - u,(k) + K.C,e(k) (2.4-26)

The terms of the gain calculation procedure are dimensioned asv(qx 1),z(mx 1), F (g x
n), G(qxm), T(n,xn)and T (n, x n). Note that the error term in Eq. (2.4-17) and Eq.
(2.4-18) is defined by Eq. (2.2-22a) where
e(k) = x;(k) - x, (k).

Whereas the error expression indicates that the plant state vector must be available, the F
matrix will prove to be populated identically to the plant output matrix. As a result, the
error that is actually used in the algorithm pertains to output based error rather than state
based error.

Note that z(k) is a function of uy(k) while simultaneously, uy(k) is a function of

z(k). We treat this issue by defining the (q x 1) vector, v,(k).

v,(k) = Fe(k) + G(u} (k) + K.C,e(k)) (2.4-27)

Now, we can rewrite v(k).

v(k) = v, (k) - Gu, (k) (2.4-28)

Expressing the control signal in terms of v;(k), we have,
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u (k)= [(v,(k) ~ Gu, (K)r" (k)T + Kl(k)]r(k) . (2.4-29)
This equation is then solved for uy(k) in closed form.
u, (k) = (I+ 17 (K)Tr(k)G)” (K, (k) + v, (k)" () T)r(k) - (2430)
2.5 Model Reference Adaptive Control with a Time-Invariant Output Feedback
Gain
Since the output error feedback gain is not calculated to influence the intended
positions of eigenvalues, it does not need to adapt like the performance gains. Recall that
the CGT control law only specifies that K. produce a stable transfer function. With only a
few minor changes in the fully adaptive MRAC algorithm, we can make the output
feedback gain constant.
2.5.1 Continuous Case 1

We modify the plant’s control signal so that,

(1) = K, (6%, (1) + K, (O, () + K C,e(t). O (@25e)

Again, for simplicity, the adaptive gains and trajectories are concatenated into the

following matrices:

K. = [K,(1) K1) (2.5-2)
and .
]
r(t) = I:Um (t)} . (2.5-3)

With the control signal expressed as
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u, () =K, (®)r(t) +K.C.e(t),

(2.5-4)

the calculation of gains corresponds to section 2.4.1 with appropriate dimensional changes

in the weighting matrices (e.g., omit T¢).

2.5.2 Continuous Case I

The plant’s control signal assumes the same form as version I where the adaptive

gains and trajectories are concatenated. In Eq. (2.4-11), the definition of z(t), K. replaces

K

2(t) = ul(t) - u, (1) - K.C,e(t)

(2.5-5)

We introduce a new term upi(t) (m x 1) to represent the adaptive portion of the plant’s

control signal such that

where

Equation (2.5-5) becomes

Recall that

such that if

then

u,(t)=u, () +K C e(t)

u, (1) =K, ()r(t).

z(t) =u, (1) —u, (t).

v(t) = QC,e(t) + Gz(t),

v,(t) = QC,e(t) + Gu, (k),
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(2.5-6)

(2.5-7)

(2.5-8)

(2.4-10)

(2.5-9)



v(t)=v,(t) - Gu,(1). (2.5-10)
The adaptive portion of the control signal may then be expressed using the vector, vi(t).
Uy () =[(v(®) - Gu,, ) (OT + K, 0]r(t) 2.5-11)
This expression is manipulated into a closed-form solution for the vector, u;(t).
u, (® =1+ " OTIG) (v(OrT OT + K, 1)r() (2.5-12)
Substituting Eq. (2.5-12) into Eq. (2.5-6) results in the final expression for the control
signal.
u,()=(I+ rT(t)rl‘_r(t)G)—l(v](t)rT T +K,(t))r(t) +K,.C,e(t) (2.5-13)
2.5.3 Discrete Case
This formulation parallels the previous section. The discrete equivalents to the
concatenations of Eq. (2.5-2) and Eq. (2.5-3) are established first. Next, the matrix f<’€ is
replaced by the fixed gain, K., in the expression for z(k),
z(k) = u (k) — u,(k) + K C,e(k). (2.5-14)
With the above changes, the control signal becomes
u,(k)=K (k)r(k)+K,C e(k). (2.5-15)

Introducing upi(k) to represent the adaptive portion of the plant’s control signal, we can
write the total control as,

u, (k) = u,, (k) +K,C,e(k) (2.5-16)

where
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u,, (k) =K, (K)r(k). | (2.5-17)

Equation (2.5-14) becomes

2(k)=u} (k) - u,, (k). (2.5-18)
Recall that
v(k) = Fe(k) + Gz(k) (2.4-25)
such that if
v,(k) = Fe(k) + Gu_ (k) (2.5-19)
then
v(k) = v,(k) - Gu,, (k). (2.5-20)

The adaptive portion of the control signal can be expressed using v;(k).
u, k)= [(vI (k) -Gu,, (k))rT (K)T +K, (k)]r(k) (2.5-21)
We then solve for u,(k) in closed form:
T T -1 T T
u, (k) = (I+ 7 TrK)G) (v, (k)" (k)T + K, (K))r(k). (2.5-22)
Substituting Eq. (2.5-22) into Eq. (2.5-16) results in the final expression for the control
signal,
u,(k)=(I+ T (K)Tr(k)G) (v, ()" ()T + K, (K)r(k) + K Coe(k).  (2.5-23)

2.6 Summary
In this chapter, we formulated four types of algorithms in both the continuous and

discrete domains: pole placement; model reference control using the CGT approach;
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model reference adaptive control; and MRAC using a fixed output feedback gain. Aside
from the discrete CGT controller, this chapter reviewed unoriginal work.

In subsequent chapters, we examine the stability of each algorithm to establish

constraints on design variables (e.g.: the weighting matrices T and T). Following the

stability analysis, we examine the implications of the design variables on performance.
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Chapter 3

Analyzing Linear Control Algorithm Stability

In this chapter, we discuss the stability of each linear control approach. Since the
pole placement and CGT controllers are linear and time-invariant, we can analyze these
controllers in the frequency domain. We develop sensitivity functions to contrast model
reference control with pole placement. Analyzing sensitivity provides insight into relative
stability. In Chapter 6, we will empirically examine the robustness of these two
controllers.

3.1 Evaluating Relative Stability

In this section, we review a common stability analysis technique. Most of this
information may be found in Wolovich (1994), Friedland (1986), and Anderson (1990).

The sehsitivity transfer function reflects a system’s ability to remain stable when
the plant is modeled incorrectly. Sensitivity is a function of loop gain. To evaluate
stability, we must first derive the loop gain. Before we explicitly discuss loop gain, it
helps to understand the return difference. The return difference is essentially the
denominator of a closed-loop transfer function. Let’s consider a simple example to

illustrate this concept. Given a plant’s input-output transfer function,

(s) -1
A S)=Cp[sI—Ap] B

p’

G,(s)= up -
P

and control using an output feedback compensator,
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H,(s) =K,
the control signal is given by,
u,(t)=c,()-Ky, (1),

where ¢, is a command input. We calculate the closed-loop transfer function as,

5,6 G,

Cn = 9 T TTR.66.®

By definition (Maciejowski, 1989), the return difference is

1+H,(5)G, ().

We then define the loop gain, L(s), as the return difference minus 1 or,

L(s)=H,(5)G,(s).

In our study, the loop gain is simply the product of all transfer functions in a loop. To

calculate the loop gain, we usually “break” the path of an input or output and then

calculate the product of all transfer functions and gains from the beginning of the break to

the end.

Using the loop gain, we can form the sensitivity transfer function which is the

inverse of the return difference. This function measures a controller’s sensitivity to a

plant’s incorrectly modeled dynamics. The less “sensitive” a controlled plant is, the

greater its relative stability will be. We relate sensitivity, S, to the loop gain by,

1
56) =171
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In a plot of L(jo) (a Nyquist plot), we can see that the magnitude of the return difference,

l+L(jo), equals the distance from the -1 point to L(jo). The minimum distance,

between the -1 point and L(jo), represents the margin of stability at a given frequency
point (Wolovich, 1994). This technique considers both phase and gain m-argins. The

stability margin may be determined using an identity developed from Eq. (3.1-1).

1+ L) =|SGo)” (3.1-2)
In this analysis, we seek a minimum value of |S(jo)|” or, equivalently, a maximum of
[SGw). The “infinity norm” of |[S(jw) represents the maximum sensitivity over all

frequencies,

I8l., = max|SGe) = S. (3.1-3)

We define the stability margin, SM, as

SM =S = minfl +L(jo). (3.1-4)

For the discrete controllers, the stability analysis follows the same procedure,

1% " where T, represents the sampling period.

except z=e¢
3.2 Pole Placement
The continuous pole placement control law differs considerably from its discrete

counterpart if state estimation is required. In this chapter, we only treat the cases

requiring state estimation.
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3.2.1 Continuous Case
The first step is to determine the loop gain, L(s). In Fig. 3-1, we “break” the loop

at the plant input, after the signal branches off to the observer.

X, "
Figure 3-1
Break Point Location for a Continuous Pole Placement Control System with a
Reduced Order Observer
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We formulate the loop gain by considering u'p the input, and u, the output associated

with the break point. Using this perspective, we can realize a system whose transfer
function is the loop gain. Let’s begin with the plant’s state equations,

X, ()= A,x, (1) +B,u, (1) (3.2-1)
and
y, (1) =C,x (). ' (2.1-2)
Now, we consider the dynamics of the trajectory z(t). Recall that,
z(t) = X,,(t) - Ly (1) (2.2-5)
and

z(t) = Fz(t) + Gy, (t) + Hu (1) . (2.2-6)
Defining the vector u_(t) (the “output” in this scenario) as,
u, () =-Kx,, (t)-K,X, (1)
=-K,C;,,C,x,(t) - Kz(z(t) + LC';xp(t)), - (3.2-2)
=—(K,C; +K,L)C,x,(t) - K, z(t)
we can write Eq. (2.2-6) as,
3(t) = (F- HK, )z(t) +[G -H(K,C;) + KZL)]CPXP ). (3.2-3)
We augment the x_(t) and z(t) trajectories to form a state space realization of the loop

gain:
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X, (t) _ Ap 0 x(t) Bp ,
[ z(t) } - [[GC;} ~H(K,C;, +K2L)]Cp F- HKJ[Z (t)]+[ 0 ]u,,(t) (3.2-4)
and

u, (1) = -[(K,c;; +K,L)C, KZ]KSH (3.2-5)

In the Laplace domain, loop gain is given by,

. _ SI-A o T's,
L) =-|(K.C;l +K,L)C, K] -loc;i -H(k,C;i +K.L)[c, sI-F+HK, [o]

(3.2-6)
3.2.2 Discrete Case
Developing L(z) differs from the continuous case because of an alternative

observer formulation. In Fig. (3-2), however, we break the control signal in a similar
fashion. Again, we formulate the loop gain by considering u, the input, and u, the
output associated with the break point. Using this perspective, we can realize a system
whose transfer function is the loop gain. Let’s begin with the plant’s state equations.
From equations (2.1-3) and (2.1-4),
zx,(2) = @,x,(2)+T,u,(2) (3.2-7)
and
y, (2 =C x,(2). (3.2-8)

Now, we consider the dynamics of the trajectory X,(z) . Recall that,
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Fz' —'

= Gz™'
g
— e L ke
K, - Break Point C:.]
§ ' paN
Y ... S
i
1
Xp :
rp C, — —
] Ye
|
_________________________________ l
- C, (&
X,s
Figure 3-2
Break Point Location for a Discrete Pole Placement Control System with a
Reduced Order Observer
zX,(2) = FX,(2) + Gx,,(2) + Hu (2) + Lzx,,(2) . (2.2-39)
Since
xpl(z) = C;:yP (Z) = C;:CPXP(Z) (32-9)
and
zx,,(z) = C;/C,zx,(2) = C,,C,®,x,(2) + C,,C,T,u,(2), (3.2-10)

we can write Eq. (2.2-39) as,
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2%,,(2) = FX,,(2) + (GC;IC, +LC;C,®, )x, (2) + Hu (2) + LC,IC, T, u, (2).
(3.2-11)
Now, we derive the expression for uy(z).

u,(2) = -Kx,,(2) - K,%,,(2) = -K,C;IC x, (2) - K,% ,(z)  (3.2-12)

Substituting this result into Eq. (3.2-11) yields,
2X,,(2) = (F - HK, )%,,(2) +(GC;\C, +LC;/C,®, - HK,C;IC, )x, (z) +LC;,C T, u (2)
(3.2-13)
We augment the x (z) and X,(z) trajectories to form a state space realization of

the loop gain. Note that the equations are converted to the time step description.

x,(k+1)] D, 0 x, (k)
%X,,(k+1) | | GC;,C, +LC;,C @, -HK,C;,C, F-HK, |%,(k)

= (3.2-14)
et 0
k
u,(0 = K,C;1C, Kzg"((kﬂ (3.2-15)

In the discrete domain, loop gain is given by,

L(2) =

zZI-® 0 B I
Jk.cilc. K : . i
[ 1~pl™~p 2 _GC;:CP_LC;]‘CPQ)P.q.I-H(ICPICP ZI—F+H:K2 LCP,Cprp

(3.2-16)
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3.2 Command Generator Tracker

In a manner similar to that of section 3.1, we calculate loop gain as the first step to
evaluate relative stability. Breaking the control signal in Fig. 2-4 produces the branches
shown in Fig. 3-3. Due to similarities between the continuous and discrete cases, we
calculate the loop gains in identical fashions.

The model’s dynamic states and input do not contribute to the return difference

equation because they are not in any feedback loop. In a stable system, a bounded input

‘D SZZ
D1 Sa
u Model +
—— [s-A.]'B, —NCal YK z
xm Ym -+ B
u +
P -1 N
—— ¢,[s1-4,] B, — L D
P - P

Plant
Figure 3-3
Broken Loop of the Continuous CGT Control (unsimplified form)
produces a bounded output. The contribution of the model is strictly open-loop. The
model’s input, state, and output trajectories are constrained to be stable (hence a bounded
input). Therefore, the choices of Sz; and S;; have no bearing on the stability of the closed-

loop system. We begin by eliminating all signal paths involving ym(-), Xm(), and un(:). The
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u - y u
— 4 ¢,[1-4,]'B, " NK, f—
Plant
Figure 3-4
Return Difference of Continuous Time CGT Control
(Simplified Form)

contribution from the reference model may be treated as a disturbance. This simplifies the
block diagram in Fig. 3-3.

The resulting loop gains for both the continuous and discrete time cases are based
on Fig. 3-4. As the following equations indicate, stability is only a function of the output
error feedback gain.

Continuous Case:

L(s)=KeCp[sI—AP]-lBP (3.2-1)
Discrete Case:

L@)=K.C,[d-,]'T, | (3.2-2)

Since the error feedback gain is not used in the specification of closed-loop
performance, the concern of robustness is minimal. Performance and absolute stability are
essentially separate issues wherein addressing one issue does not come at the expense of
the other.

3.3 Summary
In this chapter, we presented a method of evaluating the relative stability of the

linear controllers. From this treatment, we see that the stability of pole placement depends
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on its performance gains and its estimator gains. In contrast, the CGT control only has
one gain matrix associated with stability. More importantly, this CGT gain does not affect
the placement of dominant eigenvalues.

When we compare these algorithms in Chapter 6, we refer to this development to
explain trends in robustness. In the next chapter, we treat the stability of the non-linear

control algorithms which requires a very different approach.
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Chapter 4

Analyzing Stability of Model Reference Adaptive Control

The frequency domain approach to stability analysis applies only to LTI systems.
Model reference adaptive control requires a different approach because such algorithms
create nonlinear and time-variant closed-loop systems. Lyapunov’s direct method (also
called Lyapunov’s second method) provides a means to determine the absolute stability of
many systems (linear and nonlinear). The findings of the analysis provide design
guidelines and constraints on MRAC terms such as the weighting matrices.

Using Lyapunov’s direct method, we derive the conditions that are sufficient to
guarantee stability. If we violate one of these conditions, our system does not necessarily
become unstable. However, we adhere to the guidelines prescribed by the stability
analysis even though violating a stability constraint does not always lead to instability.

In addition to deriving conditions for absolute stability, we prove that the adaptive
integral gains are bounded. A control system is not practical if it requires infinite gains.

Our review of Lyapunov stability comes predominantly from Sobel (1980).
Related information is also documented by Sobel ef al. (1986) and Kaufman ef al. (1994).
Although the essence of this chapter is unoriginal, we have added many intermediate steps
and explanations not found in any of our references. Additionally, we discuss strictly
positive real systems which often pertain to the linear subsystems found in Lyapunov

equations.
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If the reader is unfamiliar with Lyapunov’s direct method we suggest Vidyasagar
(1993) and Slotine (1991) as excellent sources of information. Briefly and qualitatively,
we explain the general idea behind a Lyapunov stability analysis. We chose a Lyapunov
function, based upon trajectories of a system, to be positive definite. The minimum
possible value of this function represents the designer’s goal. Placing the trajectories into
quadratic forms is an easy way to make the function positive definite. Let’s assume that
our function happens to represent energy. If the first derivative of this Lyapunov function,
with respect to its trajectories, is negative definite, then the energy is dissip‘ative for the
continuous case. If our system is discrete, the time step difference of the Lyapunov
function must be negative definite. Satisfying these constraints, the energy function
approaches a minimum value. If the function is a quadratic of state variables, then the
system reaches a finite steady-state and is stable.

Sobel (1980) selects an error-based positive definite Lyapunov function, V. For
the continuous case, the first derivative of the Lyapunov function must be negative definite
to guarantee that output error is bounded. To accomplish this for a discrete case, the
quantity [V(k +1) - V(k)] must be negative definite. This examination of stability is
crucial for synthesizing each MRAC algorithm.

As a final note, we assume that the plant's dynamic parameters do not vary over
the time of response (the plant is autonomous). Although the vast majority of processes in
this world are indeed non-autonomous, we assume that any parameter changes occurring

within the plant are negligible.
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4.1 Continuous Case 1

In this section, we examine the stability of MRAC case I. We formulate the
Lyapunov function and its first derivative. Afterwards, we discuss how to satisfy the
constraints implied by the Lyapunov functions.

We preface this development with an explanation of terminology: V is the
Lyapunov function and V is the first time derivative of the Lyapunov function. Together,
we call them the “Lyapunov equations” that correspond to a particular system.

4.1.1 Formulating the Lyapunov Functions
First, we establish the Lyapunov function (Sobel, 1980), a quadratic function of

e(t) and K((t).
V(e(t),K; (1)) = " (t)Pe(t) + trace[s(KI(t) - IE)T-‘(K, (t)- f()T ST} (4.1-1)

The terms of this function are constrained such that T (n, x n,) is positive definite, P (n x
n) is positive definite, K (m x n;) is time invariant and arbitrarily chosen, and S (m x m) is
non-singular (invertible). We constrained P and T to be positive definite because they
are the only matrices that are not in a quadratic form. Note that we use the definition of
error given by,

e(t) =x, (1) —x,(t). (2.3-22)

The matrix K is termed the “dummy” gain matrix. Its value is constant, arbitrary,

and may be assigned for convenience. The dummy gain matrix serves a purely symbolic
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purpose in this mathematical development®. This matrix is partitioned in the same fashion

as Ki(t),
7]
The Lyapunov function in Eq. (4.1-1) is positive for all non-zero values of e(t) and

of the quantity, (K,(t) — K). The function V may attain the value of zero provided that
I

the error is zero and that Ki(t) reaches a bounded steady-state value equal to that of K. It

is possible, however, that the Lyapunov function achieves a non-zero steady state value -

when the error reaches zero, K|(t) may not equal K. Thisis not a problem because we

only need to prove that the adaptive integral gain is bounded.

To ensure that V(e,K;) approaches a minimum (implying minimal error and a

bounded gain), its first derivative must be negative definite. The first derivative of the

Lyapunov function with respect to time is,

V=&T(1)Pe(t) + &7 (1)Pe(t) + tracel:SKI OT(K, () - K)TST] +racefS(K, (1) - R)T'K, " (0]

which becomes
V = e T(t)Pe(t) + e ()Pe(t) + 2trace[s(1<, ®-K)T'K, (t)ST] L (4.1-2)

We proceed to develop the error derivative in this equation. Recall the definition

of error,

3 This statement may be difficult to accept. Admittedly, the dummy gain matrix appears useless at this
juncture. Selecting compatible Lyapunov functions is, however, a much more difficult endeavor than their
subsequent interpretation (which is all we are doing). We speculate that the dummy gain matrix simply
made finding compatible Lyapunov equations an easier task.
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é(t)= A,e(t)+B,(u () - u,(1)). (2.3-25)
We can expand the error equation by substituting for u; (t) and u,(t). Recall that,
u, (1) = S,,%, (1) +S5u, (1) (2.3-20)
and from equations (2.4-5) and (2.4-6),
u, (t) =K (O)r(t) + Cer " () Tr(t) .
Placing these definitions into Eq. (2.3-25) yields,
&(t) = A, e(t) + B, (S,,%,, (1) + Sp,u, () - K  ()r(t) - Cer"(HTr(1)).  (4.1-3)
The third term of V is simplified by the definition of K,
K,(t)=C,e(t)r" ()T, (2.4-7)
such that,
2trace[S(KI(t) - ﬁ)T"'K,T(t)ST] = 2trace[S(K, (t) - fé)r(t)eT(t)cgsT] .
The matrix products S(Kl(t)— K)r(t) and e"(t)C;S" are dimensioned (r;l x 1) and (1 x
m), respectively. Hence,
2trace[s(1<I () - K)r(t)e” (t)cgsT] = 2T ()CISTS(K (1) - K)r(t). (4.1-4)
Note that we eliminate the time functional notation (e.g., € => e(t)) for clarity in

presentation. Applying the results of equations (4.1-3) and (4.1-4) to Eq. (4.1-2), we

have
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V=¢"P(Ae-B,Cer™Tr-BKr+BS,x, +B Spu,)
+ (Ape -B,C,er' Tr-B K;r+B S, x, + Bpszzum)TPe

+ 2eTCpTSTS(KI - ﬁ)r
Regrouping terms in quadratic form, we can better assess the negative definite character
of V.

V = e’(PA, + A"P)e - ¢"(PB,C, + C,"B,"P)er"Tr
~ 2¢"PB Kr + 2¢"PB_(S,,x,, + Sp,u,,)
+2¢7C,S™S(K, - K)r
We then combine similar terms to produce,
V= eT(PA'J + APTP)e - eT(P‘BpCp + CPTBPTP)erTTr
+2¢"(C,™S"S - PB, JK,r - 2¢"C,"S"SKr (4.1-5)

+2e"PB,(S,X, + Syu,)

Since term three of V is not quadratic, we can not claim that it will be negative definite.

We equate this term to zero using by constraining the plant output matrix,

C,=(s'S)"B,™P. (4.1-6)

p=

This convenient constraint reduces Eq. (4.1-4) to
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V=¢"(PA, +A,"P)e—2¢"PB (S7S) B, Per"Tr
4.1-7)
-2¢"PB Kr+2¢"PB,(S,x,, +Sp,u,)

Let’s consider the third term of this equation. We see that by similarities in-the third and
fourth terms, we can define the dummy gain to simplify V further. Expanding

Kr produces,

= K,(C,x; - C,x,) + K.x,, + K,u, (4.1-8)
= IZ,CPe + ﬁxxm + I~(,,um
Substituting this matrix product into V , we arrive at,
7 AT T T T 'nr TpacTF
V=¢"(PA, +A,"P)e-2¢"PB,(S7S)” B, Per"Tr
-2¢"PB, (I~(eCpe +K x_+ I~(uum)
+2¢"PB,(S,,X,, +S,u,)
Combining the third and fourth terms results in,
V= eT[P(AP -B,R.C,) + (A, - Bpﬁecp)TP}e
~ 2¢PB,(S"S)” B, Per™Tr . 4.1-9)

+ 2eTPBP[(Sﬂ - R + (S0 - Ku)um]
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The final term is not a quadratic function of any trajectories. We can eliminate this term

by defining the dummy gains to be equal to the CGT gains:

K, =S, (4.1-10a)
and
K, =S, (4.1-10b)
These constraints eliminate the last term of Eq. (4.1-9) while all remaining terms are in
quadratic form.
V= eT(t)[P(AP -B,K.C,)+(A,-B,R.C,) P}e(t)
(4.1-11)
~2¢T(1)PB, (S7S) " B, Pe(t)r (1) Tr(1)
Since all trajectories are in quadratic forms, they can not affect whether or not a

term of V is negative definite. To constraint V to be negative definite, we restrict the

time-invariant matrices. Let’s begin with the first term of Eq. (4.1-11). If]

~ ~ T
P(a,-B,K.C,)+(A,-BK.C,) P<0. (4.1-12)
then the first term is negative definite. This expression contains no terms associated with
adaptation. From this term, we may infer a linear subsystem. This allows us to apply

positivity concepts (Anderson, 1967) in determining constraints necessary in proving V to

be negative definite.
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Let’s begin by demonstrating exactly how we infer a linear subsystem from term 1
of Eq. (4.1-11). Consider a plant, analogous to the plant in equations (2.1-1) and (2.1-2),

described by,

x(t) = Ax(t) + Bu(t)

and
y(t) = Cx(1).
Suppose the control law is such that
u(t) = —-KCx(t),
a standard output feedback controller. We then write the closed-loop state equation as
x(t) = (A - BKO)x(t) .
To examine the stability of this linear system, we select the Lyapunov funct.ion as,
V(x) = xT (t)Px(t),
where P is a positive definite matrix. Then, we calculate the first derivative.
V(x) = xT()Px(t) + xT ()Px(t).
Into this expression, we substitute the closed-loop state equation for x(t).
V(x) = xT(t)[(A —~BKC)"P+P(A - BKC)]x(t)

The form of this equation parallels that of Eq. (4.1-11). Thus, we may treat term 1 of Eq.
(4.1-11) as if it were a simple linear system, allowing us to apply positivity concepts.
Using the strict positive realness concept, we can restrict the open-loop plant so

that the controlled plant is stable for any negative output feedback gain. If the realization
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{(Ap - BPKCCP),BP,CP} is strictly positive real (SPR), then the first term of V must be

negative definite* . Since this realization involves a dummy gain, whose value we do not

know, we consider the realization to be almost strictly positive real (ASPR) if
{AP,BP,CP} is output stabilizable. The motivation for considering positivity concepts is
best described by Kaufman ef al. who say, “ASPR transfer functions remain stable for any

high [negative] definite feedback, be it fixed or nonlinear and nonstationary.”

In Appendix C, we derive the SPR requirements for this MRAC case. These

conditions are satisfied if, for a stabilizing feedback gain Ke , known to exist,
~ ~ T
P(A,-B,K.C,)+(A,-B,K.C,) P<0 (4.1-12)
and

c,=(s"s)"'B,"P. (4.1-6)

P —
Although we did not establish Eq. (4.1-6) with any notion of SPR conditions, it suffices to
say that MRAC case I requires the open-loop plant to be ASPR.

Let’s examine the second term of V in Eq. (4.1-11),
~2¢"(1)PB,(S"S) B, Pe(t)r ()Tx().

The only term that is not quadratic is T. We constrain this weighting matrix to be

positive semi-definite. Thus, this Lyapunov term becomes negative semi-definite. Since

4 The converse is not true. Not all systems that satisfy the negative definite Lyapunov criterion are SPR.
In essence, a stable system is not always SPR, but all SPR systems are stable.
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we already constrained the first Lyapunov term to be negative definite, the entire
expression will then be negative definite provided that the second term is non-positive.

4.1.2 Satisfying the Stability Constraints

To begin satisfying the ASPR conditions, we can select the matrix product, IZ,Cp ,
such that the eigenvalues of (Ap - BPIZCCP) lie strictly in the left-hand side of the

complex plane. This should produce a stable closed-loop equation for all possible plant
parameters. By doing this, we satisfy Eq. (4.1-6). If the plant output matrix C, satisfies
Eq. (4.1-6), then the plant is ASPR.

As an alternative, we can arbitrarily choose the plant output matrix C, (Sobel,
1980). Checking to see if this is a valid choice, we define a transfer function, Z(s), which
isolat‘es the plant output matrix for evaluation.

Z(s)=C,(s1-A, +B,K.C,) B,

For this transfer function to indicate an ASPR system, a frequency domain analysis can

demonstrate that
F@)=Z(jo)+Z"(-jo)>0 Va.
This inequality is one sufficient SPR condition that we provide in Appendix C.
The stability limits on K_ can be determined by knowing C, and the acceptable

range for the values of the matrix product ﬁ,Cp. This is of little concern unless the

designer wishes to implement a non-adaptive output feedback gain.
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The output error feedback gain does not need to be adaptive. As discussed in the
continuous CGT analysis, the output error feedback gain’s principle role is to compensate
for a difference in the initial conditions between the plant and the model as well as
stabilization (if the plant is not Hurwitz). This gain is not meant to directly influence
model output tracking.

4.1.3 Summary
Below, we provide a list of constraints sufficient to guarantee Lyapunov.
(1) T is a positive definite matrix

(2) T is a positive semidefinite matrix

() C,=(S"S)"B,’P

) P(a,-B,R.C,)+(A, -B,K.C,) P <0
Note that statements (3) and (4) are the ASPR conditions. If these equations can be
satisfied for all possible plant dynamic properties, then the frequency dor;-1ain analysis is
not necessary. If the designer does not want to calculate an output matrix because he or
she already has one, its validity is best checked using the frequency domain method.
4.2 Continuous Case I

In this section, we demonstrate that version II of the continuous MRAC algorithms
does not require the open-loop plant to be ASPR. The plant must be output stabilizable

but need not be minimum phase. This control method involves a feedthrough term which

may compensate for zeros that are positive or located on the imaginary axis.
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As a consequence (for the relaxed plant conditions), this approach requires some
knowiedge of the CGT gains. Our development first assumes explicit knowledge of the
CGT gains. Afterwards, we consider the effects of plant modeling error if our knowledge
of the CGT gains is nominal.

4.2.1 Formulating the Lyapunov Functions for Known CGT Gains

We begin by using the same Lyapunov equations from the last section:
V(e(t), K (1)) = T (t)Pe(t) + trace[s(KI () - K)T“ (K, (1) - K)TST} (4.1-1)
and
V = eT(t)Pe(t) + T (1)Pe(t) + 2trace[S(KI (t) - K)T“KIT (t)sT]. (4.1-2)

The initial constraints and dimensions specified by section 4.1 remain valid.
Our development of V begins by considering the error transients. Recall that,
&(t) = A () + B,(up (1) - u, (1)), _ (2.3-25)
and
u, (1) =u () +K,.Ce(t) - z(t). (2.4-12)
We can rewrite the error equation as,
é(t)= A,e(t) +B,z(1), | (4.2-1)

where

A,=A,-BK.C,. (4.2-2)

We substitute the error equation from Eq. (4.2-1) and the definition,
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K,(t)= v(t)r"()T, (2.4-7)
into V. For convenience, we drop the functional notation,
V=¢'A,"Pe+2'B,"Pe + ¢'PA ¢ + ¢"PB,z + 2trace|S(K, - K)T"Trv's").

Let’s examine the first and third terms. The quadratic functions of e may be

factored so that
TXT T . _ T{xT —
e"A Pe+e'PA,e=e"(A]P+PA Je.
Next, we consider the non-quadratic second and fourth terms. Because the matrix

products in V are scalar,
z'B,"Pe=¢'PB,z.

Finally, we examine the trace term, 2trace[S(KI - IZ)WTST]. The matrix products
S(KI - IZ)r and v'ST are dimensioned m x 1 and 1 x m respectively. Hence, we may
apply the following identity,

2trace[s(K, - f()rstT] =2v7S"S(K, - K)r.
We substitute these three results into V producing,
V=e"(ATP+PA,)e+2¢"PB,z+2v'S"S(K, —K)r. (42-3)

We recognize a linear subsystem in the first term of V. From the previous
section, we recall that the linear subsystem should be ASPR. However, this algorithm

does not require the open-loop plant to be ASPR. If we add a feedthrough, then the plant
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need only be output stabilizable. Let’s examine a transfer function containing a

feedthrough term,
Z(s)=1+C,[sI-A,|'B,. (4.2-4)

This transfer function is SPR if

AP+PA =-LL"<0, (4.2-5a)
PB,=C; -LW, (4.2-5b)

and
WIW=J+]J". (4.2-5¢)

In Appendix C, we provide a derivation of Eq. (4.2-5). Although the feedthrough term J
is hypothetical, the Lyapunov stability analysis can demonstrate how this metaphysical
term relates to a physical MRAC gain.

We proceed to substitute the set of equations of (4.2-5) into V .
V=—e'LLTe+2e"(CT - LW)z + 2v"S™S(K, - K)r (4.2-6)
Placing the feedthrough term of Eq. (4.2-5c¢) into this equation as a zero matrix, we have

V=—e"LL"e-2e"LWz-2"(-J = J" + W'W)z+2¢"CJz+2v S™S(K, - K)r.

=0

Next, we distribute terms into a quadratic form so that,
V= —-(eTL +2"WT YL e+ Wz) +22'Jz+2e'Clz+ 2vTSTS(KI - ﬁ)r ,

and then apply a matrix transpose property to the first term.
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V=—(LTe+ Wz)' (e + Wz) +227J2+2¢"CTz+ 2v'S'S(K, - K)r  (4.2-7)

We expand the dummy gain as

and define z using Eq. (2.4-12):

We associate different terms in z,
z= (ﬁ—KI)r—vrTTr, (4.2-8)
to solve for the matrix product (KI - IZ)r .
(KI - Iz)r = —-(z + vrTTr) (4.2-9)
The expression for V then becomes
V= —(LTe + Wz)T(LTe + Wz) +2z'Jz+2e'Clz- 2vTSTS(z + vrTTr) .
Distributing through the fourth term produces,
V= —(LTe + Wz)T(LTe + Wz) +22"J2+2e"Clz-2v'S'Sz - 2v'S"Svr ' Tr.
(4.2-10)

By definition,

v=QC e+Gz, (2.4-11)

which we substitute into the fourth term of Eq. (4.2-10).
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V= -(LTe + Wz)T(LTe + Wz) +22"Jz+2e'C}z
(4.2-11)
- Z(eTCZQT + zTGT)STSz —2v'STSvr™Tr

If we restrict Q to be related to S by,
Q=(s"s)", (4.2-12)
then we can simplify Eq. (4.2-11) further.
V= —(LTe + Wz)T (LTe + Wz) - ZZT(GTSTS - J)z -2v'STSvr'Tr  (4.2-13)
Term 1 of Eq. (4.2-13) is a quadratic and is negative definite. With term 1 negative
definite, the remaining terms need only be negative semidefinite. This implies that
G'S'S>1J (4.2-13)
and that
T20. (4.2-14)
Note that in Eq. (4.2-13), we relate G to J. This is the physical manifestation of the
hypothetical feedthrough term, J.
4.2.2 Formulating the Lyapunov Functions for Nominal CGT Gains
The stability analysis up to this point assumed explicit knowledge of the CGT
solution. Let’s define the nominal values of the CGT gains. These values are
approximations of a CGT solution that could be used to control a plant "reasonably" well

over a range of plant parameter uncertainty. The vector G, represents the nominal ideal

control signal defined as,

77



& =S, %, (0 +S,u, (1) (4.2-15)

The matrices S,, and §22 are the nominal CGT gains. The ideal control signal is a

constituent of z(t) in Eq. (2.4-12). Thus, the trajectory z(t) must also have a nominal

value. Since

z(t) = u)(t) - u, (1) + K,C e(t), (2.4-12)
it follows that the nominal trajectory be defined as,

2(t) = 0)(t) - u, (t) + K,Ce(t). (4.2-16)
The vector v(t) remains a function of z(t) and its nominal value is defined according to Eq.
(2.4-11).

¥(t) = QC,e(t) + G&(t) (4.2-17)

We introduce a new term defined as the difference between the nominal CGT control and

the correct CGT control,
Au(t) =07 (t) —u (t). (4.2-18)
Expressing z(t) in terms of Au(t), we have,
2(t) = Au(t) +u) () —u, (1) + K,.C,e(t). (4.2-19)
We define a new vector q(t).
q(t) =u, (1) - u, () + K, C e(t) (4.2-20)

Although the definitions of q(t) and z(t) appear identical, the control signal u,(t) is not

calculated in the same way for both equations. Essentially, q(t) does not equal z(t),
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because q(t) does not assume explicit knowledge of the plants dynamics in u_(t) (and
mathematically, z(t) does). Now we can write v(t) in terms of q(t) and Au(t). Since,

2(t) = Au(t) +q(t), (4.2-21)

v(t) = QC e(t) + G(Au(t) + q(t)). (4.2-22)

With the original Lyapunov function and its first derivative remaining valid for this

treatment, we develop the error equation. Recall that
&(t) = A,e(t)+ B, (u; () - u, (1), (2.3-25)
which we can also describe by,
&(t) = Ape(t)+Bp(q(t) -IZeCpe(t)).
IfA,=A,-B,K.C, then
é(t)=A,e(t)+Bq(t). (4.2-23)
The similarities between this error equation and that of Eq. (4.2-1) (except that q is in

place of z) permit a stability analysis consistent with the previous section through Eq. (4.2-

6) Below, we present the nominal counterpart to Eq. (4.2-7).

V =—(L"e+Wq)'(Le + Wq) +2q7Jq +2¢"Clq + 20"S™S(K, - K)r  (4.2-24)

p

If we select

then

(K, -K)r=—(q+9rTr). (4.2-25)
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We substitute this result into the last term of V .
V= —(LTe + Wq)T(LTe + Wq) +2q'Jq+2e'C q - 2\7TSTS(q + \'rrTTr)
By distributing 2V7S"S over the last term,

V =—(L"e+Wq)' (L + Wq) +2q"Jq +2¢"Clq - 207S™Sq - 207S"Sur Tr.

p

We substitute for v in the fourth term of V :

V= -(LTe + Wq)T(LTe + Wq) +2q'Jq+2¢'C q

~2(e"C;Q" +Au"G" +q"G")S™Sq - 20"SSUr T
Assigning
Q=(s"s)",

allows us to eliminate two non-quadratic terms in V :

: T T(rT T(~TQT ATaTes, T TATQT

V=~(L"e+Wq) (L"e+ Wq) - 2q"(GS™S - I)q - 297S"Sor"Tr - 2Au"G"S"Sq.

(4.2-26)

This form of V is identical to that of Eq. (4.2-13) with exception to the final term. We

are unable to evaluate whether or not 2Au”G"S"Sq is positive definite. Sobel er al.

(1986) interpret a result from LaSalle (1961) that "outside some hypersurface where e(t)
and [q(t)] are sufficiently large, the Lyapunov derivative will be negative. Thus, ultimately
when the hypersurface is reached, a bound on the error is defined." It suffices to say that

we need not worry about stability, even for heinous plant modeling error. We propose

that the effect can be minimized by making the product, G'S’S, as small as possible.
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Physically, this means a relatively small feedthrough term, thus, less dependence on the
nominal CGT gains.
4.2.3 Satisfying the Stability Constraints

Satisfying the stability constraints is similar to the process for case I. We begin by
selecting a matrix product KCCP such that Kp is Hurwitz over the entire range of plant

uncertainty. Next, we select a non-singular matrix L and an output matrix C, to solve Eq.

(4.2-5b) for W.
W=L"(C] -PB,)

By constraining J to be a symmetric matrix we can solve Eq. (4.2-5¢) as,

leWTW.
2

If the reader prefers the frequency domain, we can prove that the transfer function,
— 1!
Z(s)=J+C,[sI-A,[ B,,
is SPR for a given gain K_. By defining
F(o)=Z(jo)+Z"(-jw),
we validate the choice of J by checking that F(o) is positive definite for all frequencies.

Note that J can compensate for non-minimum phase zeros.

4.2.4 Summary

We provide a brief review of the stability constraints derived for MRAC case 1II.

(1) T is a positive definite matrix
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(2) T is a positive semidefinite matrix
(3) AJP+PA =-LL" <0
(4) PB,=C; -LW
) Wiw=J+]"
6) Q=(s"s)"
(7) G'S™S =7
4.3 Discrete Case
Like case II of the continuous MRAC schemes, the plant does not need to be
ASPR. Although this control approach is similar to case II, analyzing stability reveals
some very different constraints.
4.3.1 Formulating the Lyapunov Functions for Known CGT Gains

In a manner analogous to case II of the continuous MRAC, we form a quadratic

Lyapunov function of the error and integral gains.
V(e(k), K,(k)) = e (k)Pe(k) + trace[S(K,(k) - R)T7(K,(K) - IN()TST} (4.3-1)
The terms of this function are such that, T" (n, x n,) is positive definite, P (n x n) is

positive definite, K (m x n;), and S (m x m) is non-singular. Recall that

K

c X

k. & R&]
which implies,

Kr(k)=K,C,e(k) + K x(k) + K, u, (k). (4.3-2)
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With the Lyapunov function, V(e(k),K,(k)), shown to be positive definite, AV

must prove to be negative definite to guarantee stability. We define AV as,
AV =V(k+1)-V(k). (4.3-3)
Taking a time step advance in V, the difference equation becomes,

AV = e"(k + 1)Pe(k + 1) - e"(k)Pe(k)

+ trace| S(K, (k + 1) - R)T(K,(k + 1) - K)TST} (4.3-4)

— trace S(K,(k) - IZ)T"(K,(k) - ﬁ)TST]

(.

Let’s simplify this expression by developing the error dynamics. We begin with
e(k +1) = ® e(k) +T, (u; (k) - u, (k). (2.3-48)
If we add the product T, (f{e - I~(e)CPe(k), which equals zero, we can describe the error
by,
ek+1)= 5‘, e(k) +T,z(k) (4.3-5)

where

3, = (@, - I,K.C,).

|
Placing this result into term 1 of AV, we have
e’ (k+1)Pe(k +1) = e” (k)® PP e(k)+2e" (k), PT,z(k)
(4.3-6)
+27 (k)[,"PT z(k)

Next, we define and develop the time step difference of the trace term, Ay
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S(K, (k) - R +vor" ()T) T (K, (k) - K + V(KT ()T) ST

A, =trace
-§(K, (k) - K)T (K, (k) - K) 87
By regrouping terms,
-S(Kl(k) ~R)T(K,(k)-K)'S” ]
#28v(r" (OTT (K, (k) - K)'
A, . =trace

trace

+Sv(K)rT(K)TT " Tr(k)v™ (k)ST

~§(K, (k) - K)T" (K, (k) -K)'s”
L J
It immediately follows that,

A, = tracel:Sv(k)rT(k)Tr(k)vT(k)ST +28v()r (KK, (K) - IZ)TST].

The dimensional characteristics of these matrix products allow us to commute S,

producing

A

trace

= trace[Sv(k)vT(k)STrT(k)Tr(k) + 2rT(k)(KI(k) - f()TsTswk)] .

Using identities similar to those in section 4.2.1, we arrive at the final expression for Ay,c..

A,.. =V (K)STSv(K)rT (k)Tr(k) + 2vT(k)sTs(K,(k) - IZ)T r(k) (4.3-7)

trace

We substitute equations (4.3-6) and (4.3-7) into AV.
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AV = €7 (k)(®,"PD, - P)e(k) +2¢" (k)®, PT,z(k) + 2" (), "PT, z(k)
(4.3-8)
+ VT (K)STSv(k)r" (K)Tr(k) + 2v" (k)S™S(K, (k) - K)r(k)
To derive the conditions for which AV is negative definite, we define the transfer

function,
S(2)=1+C,(d-8,) T,. (4.3-9)

We correlate this transfer function to the linear subsystem implied by the first term of AV.
If S(z) is ASPR then the first term of AV must be negative definite. Satisfaction of the
negative definite criterion is achieved if and only if there exists real matrices L. and W and

a real symmetric positive definite matrix P, such that the following identities hold.

®, PO -P=-LL" <0 (4.3-10a)
®,’PI,=C,-LW (4.3-10b)
W'W=J+J"-TPl, (4.3-10c)

In Appendix C, we provide a derivation of Eq. (4.3-10). Substituting this set of equations

into AV, we have

AV = —" (k)LL"e(k) + 2€” (k)(C, — LW )z(k) + 2" (k)(T + J7 = WTW)z(k)

+ VT (k)STSV(K)I (K)Tr(k) + 2v7 (k)STS(K (k) - f()r(k)
(4.3-11)

After we distribute terms,
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AV = —eT(k)LL e(k) — 2eT (K)LWz(k) - 2T (k)W Wz(k)
+2e7(k)C,2(k) + 227 (k)Jz(k)
+vT(K)STSv(K)rT (k) Tr(k) + 2v™ (k)ST S(K,(k) - K)r(k)

Next, we factor terms into quadratic form, producing

AV = ~(LTe(k) + Wz(k))' (L7e(k) + Wz(k))
+227(k)Jz(k) +2¢ (k)C, (k) | L (43-12)
+VT(K)STSV(K)r" (K)Tr(k) + 2v" (K)STS(K, (k) - K )r(k)
We assign the dummy gain matrix to be K =[féc S,, S,,| and develop z(k)

from Eq. (2.4-26).

z(k)= (I~( - KI(k))r(k) —v(k)rT (k)Tr(k) - (4.3-13)
Using this identity, we solve for the matrix product (K,(k) - I~()r(k) .
(K, (k) - K)r(k) = ~2(k) - v(k)r" (k) Tr(k) (4.3-14)

Substituting Eq. (4.3-14) into AV brings us to,

AV = —(L"e(k) + Wz(k))T (LTe(k) + Wz(k))
+227 (k)Jz(k) + 2¢" (k)C, "z(k) . (4.3-16)

- 2v7(k)S™Sz(k) - v* (K)S"Sv(k)r" (k)(2T - T)r(k)
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By cbnstraining,
2T-T=>0 (4.3-16)
term 5 of AV becomes negative semidefinite. @~ We advance this development by

substituting,
v(k) = Fe(k) + Gz(k), (2.4-25)

into the Lyapunov equation.

AV = —(L7e(k) + Wz(k))' (L e(k) + Wz(k))
— v (k)STSv(k)r" (k)(2T - T)r(k) - 2zT(k)(GTsTs - J)z(k) (4.3-17)

+2¢"(k)(C,” — F'S"S)z(k)
The requirement that AV be negative definite mandates, with respect to the third term,
that,
G'S'S>17.  (4.3-18)
The final term of AV is not a quadratic function of a single trajectory. Hence, we set this

term to zero by establishing the constraint of
F = (s"s)’C,. (4.3-19)

Eliminating this final term places AV into its final form.
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AV = ~(L7e(k) + Wz(k))' (L7e(k) + Wz(k))
= VT (k)STSv(k)r" (k2T - T)r(k) (4.3-20)

22" (k)Y(G"S™S - J)z(k)
4.3.2 Formulating the Lyapunov Functions for Nominal CGT Gains
As mentioned in Chapter 2, the discrete MRAC algorithm requires some
knowledge of the discrete CGT gains. Equation (2.4-26) defines z(k) to include the ideal

plant input, u;(k). With a nominal knowledge of the plant’s dynamics, we can generate
values of S;; and Sz, to form a “reasonable” control resu‘lting in bounded output error.
This nominal CGT control is calculated for the model of the plant. We denote the nominal
CGT ideal input by a "hat":
G (k) = $,,%, (k) + Spou,. (k). (4.3-21)
Directly using Eq. (2.4-25), which defines z(k), is no longer possible. Defining a nominal
z(k), we have
z(k)=1, (k) - u, (k) + Ichpe(k) + (up (k)-u, (k)) :

If we associate terms differently, this becomes

z(k) = (ﬁ;(k) -u, (k)) + (up (k)—u, (k) + Ichpe(k)) . (4.3-22)
We define two new terms, Au(k) and q(k). The difference between the nominal ideal
control and the correct ideal control defines Au(k).

Au(k) = (k) - u; (k) (4.3-23)
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The term q(k) uses the same form as z(k) in Eq. (2.4-26), although these two trajectories

are not identical: u,(k) differs in each case.
q(k) = u’ (k) - u, (k) +K,C,e(k) (4.3-24)
Substituting these two trajectories into Eq. (4.3-22) reveals
z2(k) = Au(k) + q(k). (4.3-25)
Using this expression, we can define the nominal value of v(k) as
(k) = Fe(k) + G2(k) (4.3-26)
or by Eq. (4.3-25),
¥(k) = Fe(k) + G(Au(k) + q(k)). (4.3-27)
We perform another Lyapunov stability analysis with the modified control law.
Beginning with
e(k +1)= (k) + T, (u} (k) - u, (k)), (2.3-48)
we define the control as
u, (k)= u’ (k) - q(k) + IZeCpe(k),v (4.3-28)
and place this into the error expression.

e(k +1)= @ e(k) + T, (qk) - K.C,e(k))
If ®, =@, -T,K.,C, then

e(k +1)= @ e(k) +T,q(k) (4.3-29)
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which permits a development consistent with equations (4.3-5) through (4.3-11). The

equivalent to Eq. (4.3-12) for nominal CGT values is

AV = ~(L7e(k) + Wq(k))T (LTe(k) + Wq(k))
+2q"(k)Jq(k) +2e"(k)C,q(k)

+ 97 (k)STSU(k)rT (k) Tr(k) + 2\‘/T(k)STS(KI (k)- ﬁ)r(k)
By defining the dummy gain matrix as
K=[K, s, S,
we can derive the identity,
(K, (k) - K)r(k) = ~(a(k) + 9()r" (k) Tr(k))..
We substitute for this matrix product in Eq. (4.3-30), so that AV becomes,

AV = ~(LTe(k) + Wq(k))' (L"e(k) + Wq(k))

+2q7 (k)Jq(k) +2¢7 (k)C, Tq(k) + ¥ (K)STSI(k)r T (k) Tr(k)

— 237 (k)SSV(K)rT (k) Tr(k) - 297 (k)S"Sq(k)

Using Eq. (4.3-27), we expand term 6 of AV.
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AV = —~(L"e(k) + Wq(k))T(LTe(k) +Wq(k))

+2q7 (k)Jq(k) + 2eT(k)Cqu(k) +VT(K)STSV(K)rT (k) Tr(k)
(4.3-33)
= 20T (K)STSV(k)rT (k)Tr(k) — 2" (k)FS™Sq(k)
- 2Au” (k)G'S™Sq(k) - 2q(k)" G (k)S"Sq(k)
We apply the same matrix constraints, used in the previous section, and evolve AV into its

final form.

AV = —(Le(k) + Wq(k))' (L"e(k) + Wq(k))
- 9T (k)STSU(K)r T (k)(2T - T)r(k) (4.3-34)

-2q" (k)(G™S"S - J)q(k) - 2Au” (k)G"SSq(k)
All terms in Eq. (4.3-34), except for the final term, are known to result in a negative
definite function. The last term is dependent upon the values of Au(k) and of z(k). The
term Au(k) is function of the model’s state and input trajectories, both of which are
assumed to be bounded in section 2.1.2. Sobel (1980) extends a result of LaSalle (1961)
such that there exists a value of k, after which e(k) and z(k) are bounded and stable. This
discrete algorithm, in a worst case scenario, guarantees that error is bounded but does not
necessarily converge to zero. Again, we conjecture that minimizing G'S’S reduces

MRAC sensitivity to errors in the plant model.

91



4.3.3 Satisfying the Stability Constraints

The procedure for selecting an appropriate matrix, J, stems from the solution of
Eq. (4.3-10). First, ﬁe is selected to stabilize the open-loop state dynamics matrix. If @,
is open-loop stable, then I’E, may equal the zero matrix. Next, we choose a non-singular

value of L and plant output matrix C, to solve Eq. (4.3-10a), demonstrating the existence

of P. Then using Eq. (4.3-10b), we determine W.
W =L"[C] - ®]PT, ]
Using Eq. (4.2-10c), we solve for J.
J= %(wfw +T,"Pr, )
The designer can also meet ASPR conditions by showing that, for a given K _,
S(2)=1+C,[2-8,]'T,
is a SPR transfer function. Defining the function,
Fe™") =S(e™™)+ST(e ")
where T, is the sampling period, F must be positive definite for all frequencies.
The value of J and the resulting transfer matrix S(z) depend upon nominal values

of the plant’s state dynamics and input matrices. If the nominal values deviate from the

true values to a great extent, then it is possible that the discrete MRAC algorithm may

perform poorly.
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4.3.4 Summary

We review the sufficient stability constraints for the discrete MRAC system.
(1) T is a positive definite matrix
(2 2T-T=20
(3) ®,"P®, -P=-LL" <0

———
(4) @, Pl =C,-LW
(5) W'W=J+J"-T,"PT,
(6) G'S'S>7J
-1

(1) F =(s"s)C,
4.4 MRAC with Time-Invariant Output Feedback Gain: Continuous Case I

A fixed feedback gain can simplify stability concerns in both the continuous and
the discrete time cases. The Lyapunov function used in Eq. (4.1-1) remains the same. We
truncate the dummy gain matrix to compensate for the fixed error feedback gain; the
algorithm does not generate this gain on-line.

R -[R R]
Developing the Lyapunov function’s first derivative requires us to consider error

dynamics. This development differs somewhat from the original case in that Eq. (4.1-3)

no longer holds. Instead,

&(t) = A,e(t) + B, (S,%,, (1) + S0, (1) - K (O)r(t) - Cer" ()Tr(t) - K. C,e(t)),
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which may be regrouped to produce

&(t) = (A, - B,K.C, Je(t) + B, (S, X, () + S,pu,, () - K, ()r(t) - C er" ()Tr()) .

| A
Defining,
A,=A -BK.C,
allows us to use a development identical to section 4.1.1. The error dynamics then
become,
&(t) = A, e(t) + B, (S,%,, (1) + S,pu, () K, ()r() - Cer " (OTr(1)),  (4.4-1)
which is concurrent with section 4.1.1.
The next alteration, in this development, occurs at Eq. (4.1-7): the dummy gain
expansion. The concatenated gain matrices are now of lower order, no longer including

the output feedback gain. We use the matrix product,

which leads to the next expression of V,

V=e' (PKP + KPTP)e -2¢'PB, (STS)—l B,"Per'Tr
(4.4-2)
- 2eTCpTSTS(IZ,(xm + Izuum) +2e"PB,(S,x,, + Spu,,)

Expanding A, reveals,
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v = ¢'[P(a, - BX.C,) + (4, - BXC,)'Ple

peTp pm e p
~ 2¢™PB,(S"S) ' B,™Per™Tr . (4.4-3)

+ 2eTPBP[(S21 - sz)xm + (S22 - Izu)um]
Equation (4.4-3) is identical to Eq. (4.1-8) except that the known feedback gain K.
replaces the unknown dummy gain ﬁe. Setting the dummy gain equal to the ideal CGT
control eliminates the final term in Eq. (4.4-3). This brings us to the final expression of
V.
V= eT(t)[P(Ap - BK.C) +(4, - BKC,) P]e(t)

(4.4-4)
~ 2¢"(1)PB,(SS)"'B,"Pe(t)r (1 Tr(t)

The first term of Eq. (4.4-4) must be negative definite. The values of P and K. are

chosen, along with a valid selection of C,, such that

P(A,-BK.C,)+(A, -BXK.C,) P <0. (4.4-5)
Since the values of both K. and C, are known, satisfying this equation ensures that the
closed-loop plant is SPR rather than ASPR. The remainder of the constraints are identical
to those enumerated in section 4.1.

4.5 MRAC with Time-Invariant Output Feedback Gain: Continuous Case II

4.5.1 Known CGT Gains

The Lyapunov function and its first derivative (from section 4.2) remain valid. We
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begin by examining the error expression defined as,
&(t) = A e(t) + B, (u)(t) - u,(1)).

Using,

u, (t)=u, (t)+K . C_e(t),
we can expand the error dynamics further.
&(t) = A e(t) + B, (u; (1) - u,, () - K C,e(t))
Recall that
z(t) = u () —u,, (1).
We substitute this into the error expression, producing
é(t) = Aje(t) + B, z(1),
where

A,=A, -BK.C,.

(2.3-25)

(2.5-6)

(2.5-8)

(4.5-1)

(4.5-2)

Mathematically, the only differences between this development and that of section 4.2 are

that K_ has replaced K, and that the dimensions within the trace term differ. Using the

fixed gain, our stability analysis in section 4.2.1 is applicable through Eq. (4.2-6). It then

becomes necessary to examine z(t). By defining

~

K= [SZI Szz] >
the control signal error, z(t), becomes

2(t) = Kr(t) - (v(t)r" (1) + K, )r(t).
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The remainder of the development is consistent from Eq. (4.2-8) to the end of the section
42.1.
4.5.2 Nominal CGT Gains
We begin by examining z(t) defined with nominal CGT gains. We establish that,
z(t) = G, (1)~ u,, (1) (4.5-3)
which may also be written as,
2) =0, (1) —uy (1) +u, (1) —u,, (V).
Since the definition of Au(t) remains

Au(t) = G;(t) - u; (1),
we define

q(t) =u () - u, (1), (4.5-4)
such that

z(t) = Au(t) + q(t).
The remainder of the stability analysis presented in section 4.2.2 applies to the fixed gain
option. The designer must be certain, however, that the selected output feedback gain
results in a closed-loop matrix Xp that is Hurwitz for all possible parameters.
4.6 Discrete MRAC with Time-Invariant Output Feedback Gain
4.6.1 Known CGT Gains

This development is similar to that of section 4.3. The Lyapunov function of Eq.

(4.3-1) remains the same, however the dummy gain matrix no longer includes the output
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feedback gain.
R - [k, &.]
Equation (4.3-2) must be described accordingly. Expanding the matrix product
Kr(k) produces, |
Krk)=K x_(k)+K,u_(k).
The Lyapunov difference equation development is consistent with Eq. (4.3-3) and

Eq. (4.3-4). We define error differently, however. We begin by examining

e(k+1) = @,e(k) + T, (u; (k) - u, (k). (2.3-48)
Using the definition,
u, (k) =u, (k) +K.C ek), (2.5-16)
and recalling that,
z(k) = u, (k) = u,, (k), (2.5-18)
we can describe error as,
e(k +1) = @, e(k)+T,z(k) (4.6-1)
where
?, = (¢, -TKC,). (4.6-2)

Equations (4.3-6) through (4.3-12) apply to the fixed gain option. The definition of z(k)

changes, however.

2(k) = S, (K) + S50, (k) = (v(k)r" (k)T + K, (k))r(k) (4.63)
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If define the dummy gain by,
K =[S, Sil]
then
2(k) = —(Kl(k) - ﬁ)r(k) —v(&)rT (k) Tr(k), (4.6-4)
which is identical to Eq. (4.3-15). The stability analysis then parallels the remainder of
section 4.3.1.
4.6.2 Nominal CGT Gains
When only a nominal knowledge of the CGT gains is possible, the stability analysis
becomes somewhat different for a fixed output feedback gain. The nominal representation
of z(k) changes. From
z(k) = u (k) - u,, (k) (2.5-18)
we describe the nominal version as,
3(k) = 8 (k) - u, (k) + (u; (k) - u; (k)
(after adding a zero term). Changing the vector association, we write,
3(k) = (4} (k) - v (K)) + (u; (k) - u, (k).
If
q(k) = u, (k) - u,, (k)
then

z(k) = Au(k) + q(k).
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The remainder of the stability analysis from Eq. (4.3-20) to the end of section 4.3.2
applies to MRAC using a fixed output feedback gain.
4.7 Summary

In this chapter, we presented the stability analyses for each type of adaptive
controller used in this study. We provided the constraints on design variables and
discussed the mathematical manifestation of plant modeling error. In the next chapter, we
examine how design variables may be chosen to result in “good” controller performance

traits, completing our treatment of robustness.
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Chapter 5

Discrete Design Procedures

In this chapter, we propose design methods for each of the four discrete control
approaches: pole placement, CGT, MRAC, and MRAC using a fixed output feedback
gain. For pole placement, our only concern is selecting an appropriate observation gain.
Selecting the performance gains is a set process (adhering to guidelines in Chapter 2),
based on the nominal plant.

For the CGT controller, we present our method of selecting the output feedback
gain. Like pole placement, calculating performance gains relies on the accuracy of the
nominal plant.

Our philosophy on MRAC is relatively simple. We almost arbitrarily satisfy
Lyapunov stability requirements. We focus largely on selecting sample rate, weighting
matrices, and the relative sizes of the proportional and integral weighting matrices.

5.1 Preliminary Design Considerations

We apply each control to the LTI plant in the testing environment. Testing
conditions include plant modeling error and reference model selection (closed-loop
performance specification). It is important that the reader understand that control laws are
not developed for the characteristics of the actual plant. The control laws are designed for
a model of this plant which may or may not be accurate. This plant estimation is termed

the nominal plant or equivalently, the plant model.
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The nominal plant is second order, having a mass of 3.375 1b., 1% damping, and a

natural frequency of 6 Hz.
My, = 3.375 1b. (5.1-1)
om =0.0100 (5.1-2)
Opm =6 Hz=37.70 1/s (5.1-3)
30t
20+
10t
Imaginary o |
Axis 0 Q
-10¢
-201 Poles: X | 1
=30+ Zeros: O -
40 % ' - -
0.4 -0.3 -0.2 -0.1 0
Real Axis
Figure 5-1

Pole and Zero Locations of the Continuous Nominal Plant

In the state space form of x . (1) = A x () + B, u, (t) and y . (1) = C . x,.(1),

pm

-0.7540 -1421
|: il, (5.1-4)

1 0
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0.2963
Bpm{ . ] (5.1-5)

and
Com =[1 0]. (5.1-6)
In Fig. 5-1, we provide a plot of the complex plane containing the pole and zero locations
of the open-loop nominal plant.
5.1.1 Plant Modeling Error
We assume that the dynamic characteristics of the actual plant can differ from the
nominal plant by as much as 30% of its damping ratio and 30% of its natural frequency.
Plant damping ratio and natural frequency are denoted {, and w,, respectively. These
values exist within the ranges,
0.0070 < &, <0.0130 (5.1-7)
and
26401/s<w0,<49.01r/s. (5.1-8)
We illustrate the range of the actual plant's dynamic characteristics at the four
extreme points in Fig. 5-2. The linear control algorithms rely heavily upon the accuracy of
the nominal plant. Comparing these pole and zero locations to those of the nominal plant
demonstrates a considerable disparity. These differences can have a substantial impact on
the effectiveness of control gains.
5.1.2 Objectives

As we discussed in section 2.1.2, the object of control is to force a plant output to

103



50 > 50 ¢
Imaginary ~ | ... A oAl Imaginary
Axis 0 o 0 o Axis
-50 — -50—¢
-1 -0.5 0 0.4 -0.2 0
Real Axis Real Axis
Poles: X
Zeros: O
50 50
X X
Imaginary .| Imaginary
Imaginary S — pim
X X 1
-50 -50
-0.4 0.2 0 -0.2 -0.1 0
Real Axis Real Axis
Figure 5-2

Continuous Plant Pole and Zero Locations’

*Clockwise From Top Left: Maximum Frequency and Maximum Damping; Maximum
Frequency and Minimum Damping; Minimum Frequency and Minimum Damping; and
Minimum Frequency and Maximum Damping

emulate an ideal trajectory. We assign values of damping and natural frequency to the
ideal trajectory. Assuming that the ideal trajectory may be generated by a system of
equivalent mass and structure, we can define a desired characteristic equation or reference
model corresponding to this trajectory. The performance characteristics, defining the ideal

trajectory, translate into damping and frequency specifications. We select our damping

goal, Cn, to fall within the range

0.0100 < & < 1.000.
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The natural frequency objective, ®n, varies through a range of +/- 50% of the nominal
plant's natural frequency.

18.85 /s < wm < 56.55 1/s (5.1-10)
5.1.3 Discrete Time Domain

We design our controllers for digital implementation. Therefore, we must select a
sample rate that is suitable to implement all four controllers. Franklin et al. (1990) advise
sampling at frequencies between 6 and 40 times the closed-loop frequency (or
equivalently, 3 and 20 times the Nyquist frequency) of the plant. Increasing the sample
rate produces a better approximation of an analog signal. In general, high sampling
frequencies yield better control results than do low sampling frequencies. Also, we use a
zero order hold (ZOH) approximation for which “quick” sample rates improve accuracy.
However, there is usually a threshold after which the effects of quicker sampling become
negligible. Since we conduct computer simulations, sampling at excessively high rates is
costly in terms of computation time. We wish to minimize the sampling rate without
compromising significant performance.

First, we consider a basis for selecting the sample rate. Our philosophy is one of
overcompensation in that we consider the highest possible frequency between the actual
plant and the reference model. We describe this as overcompensation because we will not
necessarily need to sample as quickly as we do, but we will never sample at an insufficient

rate.

105



Let's consider the plant. We know the natural frequency of the nominal plant and
its value does not change. The actual plant, however, has a natural frequency that could
be as much as 30% greater than the frequency of the nominal plant. We deem this
maximum natural frequency to be a “critical point of consideration”, denoting it o | max.

©p| max = 49.01 1/s. (5.1-11)

The natural frequency of the ideal trajectory or reference model is another critical
point of consideration. This defines the closed-loop (or controlled) frequency of the plant,
provided that it is correctly modeled. We cannot realistically assume this. We do assume
that if the ideal trajectory contains a natural frequency lower than that of the nominal
plant, the plant’s frequency will not exceed ©p | max.

In the continuous domain, we assume that the control gain associated with

25
m-

changing the natural frequency is proportional to ©3,, —® If the ideal trajectory is

defined by a natural frequency greater than the nominal plant’s, the resulting linear control
will be excessive. The plant’s natural frequency will be much greater than expected. For

the worst case scenario, we assume the plant’s natural frequency to be ®plma. This

2
pm

. . . 2
conservative precaution predicts a closed-loop natural frequency of .Jo? +o p! -0
max

or Jol +980.6.

We select the closed-loop natural frequency to equal mp| max »

* We base this on pole placement calculations which are the most sensitive to plant modeling error.
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0, =0 (5.1-12a)

Plmax ’
if the natural frequency goal is lower than that of the open-loop nominal plant. If the ideal

trajectory calls for an increased natural frequency, we choose

mﬂ=\/&;+mp|:“—m;m (5.1-12b)

as our closed-loop natural frequency.

We finally consider the adaptation characteristic of the MRAC algorithms. To aid
the "learning" process of these algorithms, we want to ensure that the sample rate is fast
enough to enable accurate integration. Based on our conservative approach in selecting

®,, sampling at 10 times the Nyquist frequency will produce sufficient smoothness

cl>

without requiring excessive simulation time. The sampling frequency is

03;:20@01:.%, (5.1-13)

where T, is the sampling period.
5.2 Pole Placement

We will briefly discuss the pole placement design procedure. This is one of the
most academic control approaches and may be found in many digital control texts such as
Franklin ez al. (1990). There is no way to design for robustness when we pick closed-loop
pole locations. The only aspect of this section, that may interest the reader, is our
selection of the observer gain.
5.2.1 Performance Gain Selection

Since the order of the plant and reference model are identical, we can solve for a
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feedback gain matrix that equates their characteristic equations. We use MATLAB, a
dynamic simulations package, to calculate this matrix of feedback gains. This matrix, K,

creates the equality,
-, +T, K|=|d-®,|=0. (52

As a note to the reader, we also use MATLAB to convert all continuous state matrices to
the discrete domain. We specify a zero order hold for this transformation. Our particular
transformation maintains the physical significance of the states (e.g., the discrete states
remain defined by position and velocity). The resulting canonical form, however, is not
conducive to pole placement. For this reason, we find MATLAB particularly useful.
5.2.2 Observer Gain Selection

Let’s consider the dynamics of the pole placement controller. Recall the

characteristic equation,

A-®, +T, Kld-F=0, (2.2-36)

whose dynamic elements are specified separately. The observation error dynamics are
governed by the eigenstructure of F. Since we only estimate position, F is merely a time

constant. We choose F to be the least dominant eigenvalue of the entire system. For a

. We select F to be 5

second order system, 95% settling time is approximated as
)\ g Pp o
cl™* el

times this value in the continuous domain (Friedland, 1986). We then approximate the

discrete equivalent to F using the transformation, z = e’ . This transformation produces
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_( 107, ]
F=g ‘o (5.2-2)
In the continuous domain, the values of real closed-loop poles may be evaluated by

the formula,
( Pijc] =( m® m +Cpmp —Cpm(me).

This expression is maximized for the greatest possible value of @, or 0.6371.

(.0 p)jd = (G0, +06371-C,.0,,) (5.2-3)

5.3 Command Generator Tracker

The CGT approach to model reference control, like pole placement, involves two
separate gain selection procedures. The designer, in accordance with section 2.3.2,
calculates S;; and S,;. These are the feedforward gains: the gains directly responsible for
specifying the performance of the plant (we consider these "performance" gains). Section
2.3.2 also mentions an output feedback gain, K.. This gain causes error, between the
outputs of the plant and model, to converge at a specified rate. The output feedback gain
is necessary when initial conditions of the plant and model differ. It can also improve
performance when the plant is not accurately modeled.

The performance gains do not affect the stability of the controlled plant. Their
open-loop contribution to the control signal is bounded by the stability of the reference
model (which we constrain to be stable). The only possible source of instability is the
output feedback gain. Let's consider the discrete nominal plant and its root locus plot,

provided in Fig. 5-3. This plot shows that as the output feedback gain increases, closed-
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loop poles move from their open-loop positions, and converge to the real axis. After the
closed-loop poles reach the real axis, they diverge in opposite directions. One becomes
increasingly dominant as it approaches +1 on the unit circle. The other, after crossing the

origin,

0.5

Imaginary 0
Axis

Real Axis

Figure 5-3 '
Root Locus Plot of the Discrete Nominal Plant
becomes more dominant. This pole eventually moves into the region of instability, outside
the unit circle. Naturally, we do not want a closed-loop pole located in the unstable
region. This is simple enough to prevent. However, we also face the task of selecting an
operating point that produces "quick" error transients. We focus on the region where the

closed-loop poles converge to the real axis, maximizing error decay rate. Our goal is to
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prevent one pole from becoming more dominant than the other, and produce unnecessarily
"slow" transients.
5.3.1 Selecting Performance Gains

The designer does not consider stability when selecting the gains, S,; and S;;. One
can only hope for an accurate estimate of the plant's dynamic characteristics. Our solution
process is rather straightforward though we imagine it is not the only way to determine Sy
and Sx,.

Discretizing the state matrices can alter their canonical forms. This is almost
always (if not invariably) true when one wishes to maintain the physical significance of
trajectories over the two domains. After calculating the discrete representations of the
nominal plant and reference model, we convert the state matrices into the feedback
canonical form (see Appendix B), using the transformation matrices Tpm and Ty, for the
plant model and reference model, respectively. Let these transformed matrices be denoted

by a "hat" such that
{0,..T,n.Cpn} = {&)me,ém} (5.3-1)
and
{®....C.}={®..1,.C.} (5.3-2)

bl m?

As an illustration to the reader, we provide an example of actual matrices calculated in
equations (5.3-1) and (5.3-2). For a sample period of 0.0032 seconds, model frequency

10% greater than the plant, and a model damping ratio of 0.17,

111



. o~ oa 19830 -0.9976][1
{(me,I'Pm,CPm}z{{ 1 . ],[O}(10'3)[0.9462 —0.9462]} (5.3-3)

and

{ém,f‘m,ém}={[l'9?6 _0‘3531“(1)}(10-3)[0.9241 —0.9241]}. ' (5.3-9)

From Eq. (2.3-20),
B, Sienl o B0 8]
C. 0 C.. 0[S, S,
where S, §,,, §2, and §22 correspond to the feedback canonical form. We may
immediately notice that
C.. = C,uS\- (5.3-6)
In this expression, there are two equations and four unknowns. Without a loss of

generality, we constrain the §,, (2 x 2) to be diagonal and solve Eq. (5.3-6) element by

element.

From Eq. (5.3-5) we see that

0=C_§,. (5.3-7)

pm
This solution is trivial. We choose S,, to equal a 2 x 1 zero matrix.

Next, we define the matrix Q.

- A -l
o I Q, le}
Q = . pm pm = (53-8)
I:Cpm 0 } |:Q21 Q,
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Multiplying Q on both sides of Eq. (5.3-3) yields the set of equations,

~ ~

S, =0,85,®. +9,C_, (5.3-9)

§,=0,5,[,+Q.58,, (5.3-10)

5, =9,5,®_+Q,C,, (5.3-11)
and

§, =08 +a,8,. | (5.3-12)

Already knowing §,, and §,2 , we need not concern ourselves with equations (5.3-9) and
(5.3-10). The solutions to §21 and §22 are attained simply by using equations (5.3-11)
and (5.3-12).
The gains, S,, and §22 , must be converted from feedback canonical form into the
original coordinate frame. The form of the ideal input, from Eq. (2.3-2), is
ul (k) = §,,%,. (k) + S,u,, (k). (5.3-13)
From the transformation procedure provided in Appendix B, we infer that
X, (k) = T x,(k), (5.3-14)
which we substitute into the ideal input equation,
ul (k) = 8, T X, () + S,u, (k).
Since
S, =§,,T (5.3-15)

and
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Sy =S, (5.3-16)
we can convert the ideal input back to its original form given by Eq. (2.3-2).
5.3.2 Selecting the Output Feedback Gain

For the range of possible plant characteristics, we select a feedback gain K creating
closed-loop poles that do not touch the real axis in the discrete complex plane. Critical
damping is difficult enough to achieve, but exceeding it would be detrimental to
performance. We question which type of plant uncertainty requires the smallest gain, K,
for closed-loop poles to lie on the real axis. Let's examine the four extreme cases of
erroneous plant modeling.

In Fig. 5-4, we see that open-loop poles with relatively low natural frequencies
produce the most dominant closed-loop poles. These poles travel the smallest distances to
contact the real axis. Although it is difficult to discern from these plots, the plant having
the lowest natural frequency with the highest possible damping, converges.to the largest
value on the real axis. In Table 5-1, we provide the gains and pole positions associated
with real axis convergence.

We see from this table, however, that the most dominant intersection does not
correspond to the lowest possible crossing gain (the feedback gain at which convergence
occurs).

Let's consider the region of the z-plane in which the plant's roots lie. This entails
the right half of the unit circle. As we increase the sampling frequency, the open-loop

region condenses around +1 on the real axis. The trends in Table 5-1 are not affected by

114



1
Imaginary0 4, Imaginary
Axis Axis
-1
-1
Real Axis Real Axis
Poles: X
Zeros: O
1
Imaginary ! Imaginary
Axis R Axis
-1
-1

Real Axis

Figure 5-4°
Root Locus Plots of Discrete Plant

*Clockwise From Top Left: Maximum Frequency and Maximum Damping, Maximum
Frequency and Minimum Damping; Minimum Frequency and Minimum Damping; and
Minimum Frequency and Maximum Damping

an increased sampling frequency. In fact, we would not normally sample so slowly; we
chose T, only to produce clear root locus plots. Table 5-2 provides the same type of
information, but for a more realistic sample rate. For the increased sample rate, the

differences are less pronounced, but the trends in Table 5-1 are consistent with those of

Table 5-2.
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Table 5-1

Relation of the Plant's Dynamic Characteristics to Closed-Loop Pole Locations for T, =

0.02 seconds

Possible Plant Dynamic Point of Real Axis Associated Feedback

Characteristics Convergence Gain

Maximum Frequency 0.0645 195.8
Maximum Damping

Maximum Frequency 0.0618 197.0
Minimum Damping

Minimum Frequency 0.480 134.6
Maximum Damping

Minimum Frequency 0.479 135.4
Minimum Damping

Table 5-2

Relation of the Plant's Dynamic Characteristics to Closed-Loop Pole Locations for T, =

0.0032 seconds

Possible Plant Dynamic Point of Real Axis Associated Feedback
Characteristics Convergence Gain
Maximum Frequency 0.8433 301.2
Maximum Damping
Maximum Frequency 0.8431 303.7
Minimum Damping
Minimum Frequency 0.9155 168.5
Maximum Damping
Minimum Frequency 0.9154 169.6

Minimum Damping
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Consider two open-loop poles having identical natural frequencies and different
damping ratios. It may seem peculiar that a pole crossing the real axis, closer to +1 than
the other, corresponds to a higher feedback gain. There are two reasons for this
occurrence. First, open-loop poles with lower damping ratios are further from the origin
than those having higher damping ratios. This causes each "branch" (Hale, 1988) from the

open-loop pole locations to converge upon the real axis at a point defined as

D" poles— D zeros
o = . (5.3-17)
(number of poles) — (number of zeros)

We find cg simply by summing the real components of each open-loop pole and
subtracting 1.

The open-loop pole with greater damping is closer to the origin, and, closer to the
real axis. Having a shorter distance to travel, this pole requires a smaller feedback gain to
reach the real axis.

These trends cause a design dilemma. We do not want closed-loop poles
surpassing the point of intersection on the real axis. On the 6ther hand, we should avoid
needlessly "slow" poles by selecting conservative feedback gains. These alternatives are
not equally detrimental.

From experience we understand that poles are very sensitive in this critical region;
for a given change in feedback gain, poles diverge further along the real axis than the
change in location in their approach. If we select the lowest gain of 168.5 from Table 5-2,

the most dominant possible pole has a magnitude of 0.9160 and is complex. This
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corresponds to the minimum damping ratio and frequency. Selecting the slightly higher
gain, 169.6 from Table 5-2, leads to the most dominant possible pole, having a magnitude
of 0.9243. This pole is divergent along the real axis. This is a significant difference for
such a slight change in the choice of gains. We choose the gain corresponding to the plant
having the highest possible damping ratio and the lowest possible natural frequency.
5.4 Model Reference Adaptive Control

In this section, we examine the significance of the Lyapunov equations and their
relation to performance. We will then propose a method of selecting weighting matrices.
We point out which design variables are arbitrary and treat them as simply as possible.
Additionally, our methods consider the nonlinearity of MRAC and minimize its sensitivity
to initial conditions.
5.4.1 The Lyapunov Functions and ASPR Constraints

We begin by providing a short review of the Lyapunov equations. From Eq. (4.3-
1),

V(e(k), K, (k) = e (k)Pe(k) + trace[S(KI(k) - K)T7 (K, (k) - I'Z)T ST}

and from Eq. (4.3-34),

AV = ~(Le(k) + Wq(k)) (L e(k) + Wq(k))
— T (K)STSU(k)rT (k) 2T - T)r(k)

~2q" (k)G"S™S - T)q(k) - 24u” (k)G"S"Sq(k)
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Recall that

q(k) =u; (k) -u, (k) +K,C,e(k), (4.3-24)

5(k) = Au(k) + q(k), (4.3-25)

(k) = Fe(k) + G(Au(k) + q(k)) = Fe(k) + G2(k), (4.3-26,27)
Au(k) = G (k) - u; (k), (4.3-23)

and
0, (k) = 8,,%, (k) + S0, (k).
Our first step is to select Ke. In the feedthrough vector, z(k), we see that the

plant’s actuation is a function of the adaptive signal’s failure to converge to

u;(k) +KeCPe(k). The feedback matrix I~(c essentially penalizes the controller for not

converging to its feedthrough term contribution: KeCpe(k). Assuming this to be the

case, we would not want to encourage the adaptive feedback gain to converge to

detrimental values (or be penalized for not doing so). We select
K. =K., (5.4-1)
with the understanding that the output feedback gain designed for CGT optimizes

performance for the worst possible plant characteristics. It is possible to select this gain to

be zero without compromising stability. However, our plant is so lightly damped that

~

using a non-zero K_ improves performance, particularly when the reference model is

c

heavily damped.

119



Next, we satisfy the ASPR stability constraints. Beginning with Eq. (4.3-10a),
=y N T
d):mPCDPm -P=-LL <0 (5.4-2)
where
3,, =(®,, ~T,.K.C,n), (5.4-3)

pm

we can arbitrarily select a real, 2 x 2 matrix L (e.g., the identity matrix), and solve the

symmetric positive definite matrix, P. Recall from the root locus plots in Fig. 5-4, that the
selection of ﬁe places the poles well within the unit circle. Satisfying the ASPR

conditions is almost trivial but does affect the choice of one design variable, G. Let’s

define
Q=L"L, (5.4-4)
where
QZl:qH ‘hz] (5.4-5)
dz; Qa2
We also define
D, = P“ f‘z], (5.4-6)
by by
and
P= [p” p”]. (5.4-7)
P21 P2

We substitute these equations into Eq. (5.4-2).
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[ ¢flp1] +6,,0,,P2 +4,,95P); +¢§1p22 $nd12P1 + 0120202 + 01,0250 + ¢2'¢22P22J
61012P1 + 91,0250 +$1202,P1; + 65102502, ¢122p11 + 01,0502 +0120,P, + ¢§2p22

_[Pn pnil:’l:q” %2]
P21 P2 921 9z
We solve for the scalar components of P using the system of equations,

‘blzl -1 ¢,,9, 6,9, il P qn
¢n¢12 d’nd)zz -1 ¢12¢21 ¢21¢22 P2 G2

= . (5.4-8)
¢11¢12 ¢12¢21 ¢n¢2z -1 ¢21¢22 P2 92
¢122 ¢1,9,, $1,02 ¢§2 -1] P q2
Defining,
?1 -1 ¢n¢21 ¢n¢21 ¢§1
== ¢|1¢12 ¢n¢2z -1 ¢12¢21 ¢21¢22 , (5.4_9)
¢1|¢|2 ¢12¢21 ¢n¢22 -1 ¢2|¢22
¢122 d)]zd)zz ¢11¢22 ¢§2 -1
if Z is non-singular, then we can solve for the elements in P by,
P qn
Pl g (5.4-10)
P2 qxn
P22 q2;

We proceed to satisfy the next ASPR constraint by solving for W using Eq. (4.3-

10b),
w=L"[C], - O, P, (5.4-11)

The solution for J immediately follows using,
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J=05(W™W +T,,"PT,, ). (5.4-12)

To conclude this treatment of the ASPR constraints, we remind the reader that we make
only one choice: the value of L. Ultimately, the choice of L affects value of J, the
hypothetical feedthrough term. Regarding stability, the value of L does not m;atter as long
as a positive definite P matrix exists. However, the value of J does indeed affect
performance. Let’s consider the other variables involved in the Lyapunov stability
analysis.

Aside from the weighting matrices, two design scalars S and G, and the matrix F
must still be addressed. From Chapter 4, we know that S and G are constrained by,

G'S'™S>17J. (4.3-18)

The matrix F is a function of S and is determined by,

F = (s"s)"C,. (4.3-19)
We must develop a criterion for the selection of S and G. It is simple to satisfy the
stability requirement, but what should their relative sizes be and how much greater than J
should G'S™S be?
Let's examine the troublesome fourth term of AV,
AV, = -2Au’ (k)G'S"Sq(k). (5.4-13)
This term is linear with respect to q(k), meaning that we cannot readily assess its sign. To

examine AV, more closely, let's substitute Eq. (4.3-23) for Au(k) and Eq. (4.3-24) for

q(k).
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AV, = -2(i; (k) - §;(k))GS™S(u; (k) - u, (k) + K ,C,e(k)) (5.4-14)

If the ideal CGT control law is correct then this term equals zero. When the plant is
incorrectly modeled, however, the magnitude of this term correlates to the severity of the
erroneous CGT gains. In Chapter 4, we discussed the fact that this térm will not
compromise stability. It can, however, lead to a compromise in performance. As we
formulate various Lyapunov equations, we notice that terms are not always in a quadratic
form. When terms are not quadratic it is impossible to evaluate their sign. When faced
with such a predicament, the most common remedy is to constrain design variables such
that the particular term equals zero, regardless of the vectors involved. Unfortunately, we
can not use this method for our case. The matrix product G'S™S must be greater than or
equal to J (which is positive definite). Therefore, we are unable to set the term to zero.
At best, we minimize the effect of AV, by setting,
G'S’s=7. (5.4-15)
As mentioned previously, the choice of L leads to the solution for J. Using the solution.
steps from Eq. (5.4-1) through Eq. (5.4-12), we can iterate and find a minimum value of J.
We assume that L has the form,
L=vI (5.4-16)
Incrementing the value of v for each iteration, we select the lowest value of J. In the next

chapter, we will assess our assumption regarding the form of L.
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Let's compare the discrete MRAC algorithm to the case I continuous MRAC
algorithm. The fundamental difference lies in the definition of the vector, v(-). From Eq.
(2.4-9),

v(t)=C_e(t).
In contrast, the discrete algorithm defines this vector as
V(k) = Fe(k) + Gz(k).
Let's assume that by constraining

F=(s'S)"c, =C,, (5.4-17)
implying that
(s™)" =1, (5.4-18)

we isolate G as the major distinction between the two algorithms. Our choice of S will be
factored into the weighting matrix selection process and has no independent significance.
The relaxed constraints on the open-loop plant may now be traced exclusively to G (e.g.,
if G = 0 then the algorithms are the same except for their timeroperators). The scalar G is
defined simply as,

G'S'S=G'(1)=G =] (5.4-19)
We treat G as a measure of MRAC’s reliance on knowledge of the plant’s dynamics. The
lower G is, the less we need be concerned with poor modeling. By minimizing J, we

achieve this.
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5.4.2 Choosing Weighting Matrices

The weighting matrices are the most dominant factor in generating the adaptive
gains. Ideally, we want the sum of the proportional and integral gains to equal the correct
CGT gains at all times. Depending on the sampling frequency, such an achievement
would produce near perfect performance.

During a response, the proportional gain should dominate the transient stage while
the integral gain grows to "good" values before achieving steady-state. If we operated

under ideal conditions, for which u;(k) is correct, there would be no need for an integral

gain because our steady-state is zero. In reality, the integral gain does play an important
role in the transient response. When operating in the presence of plant modeling error, the
proportional gains become more oscillatory. This is because we design the proportional
gains to equal the nominal CGT gains. Since these CGT gains are often incorrect, the
proportional gains “jump” to different values, trying to find an acceptable operating
region. The integral gains, if sized appropriately, act to "remember" which proportional
gains best minimize output error. Thus the integral gains grow, becoming more dominant,
and should eventually obscure the effects of the proportional gains at the end of the
transient response.

Before delving into our procedure for selecting weighting matrices, we need to
address the issue of gain convergence. Whereas we design the MRAC control signal to
converge to a perfect CGT control signal, we can not claim that the MRAC gains

converge to the CGT gains. From Sobel (1980), the model's trajectories, um and X, must
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"contain a sufficient number of distinct frequencies" for this type of gain convergence to
occur.

We select the proportional weighting matrix to produce a control that
approximates the CGT control. Placing the proportional gain in the vicinity of the CGT
gain will promote adaptive convergence to that gain. If the CGT gain is not based on the
correct plant model, then the proportional adaptive gain will diverge. This is not a
problem, however. The key to this endeavor is selecting the relative sizes of values within
the proportional weighting matrix. We make the MRAC algorithm relatively insensitive to
the magnitude of initial conditions; this is important because MRAC is nonlinear. Setting
the weighting matrices in such a fashion, helps the gains to converge to values that
minimize error. To accomplish these tasks, we use the information at our disposal. We
pick representative values of the model trajectories and estimate a representative value of

the output error.

Kaufman et al. (1994) suggest selecting " T . . . such that K, for a representative

value of x_, of the model state vector at a representative error e, ,will be equal to the

CGT gain." This corresponds to the first continuous case of MRAC. Using their concept,
we approach the discrete case.

We must select "reasonable" trajectories to calculate the proportional weighting
matrix. These trajectory values correspond to the period of time for which the
proportional gains are most dominant. This occurs during the during early transients.

Most notably, the trajectories consist of position and velocity of the model. Since the
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model has no command input, we are not concerned with the input component of the
proportional weighting matrix. There are a number of possibilities for selecting
representative values of the model's position and velocity. We may consider their
averages, maximums, values at critical points, etc. The difficult part, however, is selecting
the representative output error.

We define the representative model trajectories at the time average between the
critical points of position and velocity that do not correspond to values of zero (Appendix
D provides the method of critical point calculation). As an example, let's consider the
reference model having an initial displacement. The initial position is a critical point and
the initial velocity, though equal to zero, is also a critical point. The next critical point of
velocity corresponds to the first non-boundary condition extreme. We establish the point
of trajectory evaluation at 1/2 of the time for velocity to reach its second critical point. At
this evaluation point, both velocity and position are 1/4 the way through their oscillatory
cycle (if the model is underdamped). If the model is critically damped, velocity has only
one critical point that is not a boundary condition. We define our representative model

trajectory x_, at the time of evaluation, t.. We convert t. to its discrete equivalent k. by

rounding

(5.4-20)

to the nearest integer.
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To predict a representative value for the output error eg, we examine the

trajectories of the nominal plant when responding to an initial displacement (identical to
the reference model). In doing so, we assume that the plant is uncontrolled. This permits

us to use the methods of Appendix D regarding free response. The representative plant
trajectories are then evaluated at t.. The output error at t. could define eg. This
assignment is very conservative because it assumes no control. Instead, we assume the
magnitude of representative error to be 0.1% of the representative model velocity’s
magnitude.
Next, we consider the uncontrolled plant output at t. and examine the sign of e,.
From this, we determine if the plant’s uncontrolled tendency is to lead or lag behind the
model’s response. Assuming that e, is not zero from the boundary condition to the critical
point (e.g., the reference model is not identical to the plant), we define
ey =0.001*sign(e, (t,))*C,x5,. ' (5.4-21)
We view the representative error as a sort of tolerance. If the true error equals the
representative value, we expect I~(c =K, (k). If error exceeds its representative value,
the adaptive gain correspondingly grows to improve tracking. By picking the
representative error, we are essentially defining our control expectation. However,

picking a very small e) will result in very high weighting matrix values, hence, high

computational gains.

128



As the reader shall see, es affects the overall magnitude of the weighting matrices.

It does not, however, impact the relative sizes of the weighting values associated with
performance.

After generating representative trajectory values, we calculate the .proportional
weighting matrix. The goal is to create a control signal equal to the correctly modeled
CGT input. Since we normally do not have the correct CGT gains at our disposal, we rely
on the nominal values. If the plant produces more error than we expect, the adaptive
gains can gradually generate a control corresponding to the correct CGT control signal.
Basing our calculations on the nominal CGT gains, we establish a reasonable starting
point.

We consider the nominal CGT gains as,

K= [Ke S2l] = [Kc Sav S21x] ’ (5.4-22)
where the performance gains, Sz, and S;i,, correspond to the model's velocity and

position, respectively. Since the model has no input, we need not consider any input

related gains (e.g., Sz). The elements of the proportional weighting matrix are defined as,

(5.4-23)

~]|

H
o o Al
o H o
H o o

where Te , T, and Tx correspond to output error, model velocity and model displacement,

0
ml

and x°

m2

respectively. We define the representative trajectories as, X which correspond
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to the model's velocity and position, respectively. These trajectories, along with e‘y’ define
the representative concatenated vector,

0

€y

r'={x% | (5.4-24)

0
m2

X

For the set of representative trajectories, we solve the proportional weighting
matrix for the condition that,
K. (k=K. (5.4-25)
From Eq. (2.4-28), the closed-form definition of uy(k) and Eq. (2.4-19) where
u, (k) =K, (k)r(k),
the overall gain can be written as
K, (k) = (1+ " (1) Tr(k)G) " (K, (k) + v, (k)r " (k)T). (5.4-26)
Substituting this equation into Eq. (5.4-25) yields,
(1+17()Tr(k)G) " (K, (k) + v, (k)" (K)T) =K .
After pre-multiplying both sides by (I +17( k):fr(k)G), we arrive at

K, (k) +v,(k)r" (k)T = K + 1" (k)Tr(k)GK . (5.4-27)
Now, we must consider K(k). At the point of evaluation, we assume that Ki(k) has

converged to a percentage of the nominal CGT gains, or mathematically, that
K,(k)=pK. (5.4-28)

Using this assumption we rewrite Eq. (5.4-27).
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v, (k)" (k)T = (1- p)K + 1" (k) Tr(k)GK (5.4-29)
Substituting the representative values for their time-varying counterparts and expanding

matrix products into vectors and scalars, we produce

V[T <L x%,T]=(-pK +[(eg)’i ()T, +(xfn2)2Tx]GK,
(5.4-30)
where

vi =(SS)"e + GKr®. (5.4-31)
We arrange the elements of T onto the left hand side of Eq. (5.4-30) and expand the CGT

gain matrices.

2—

V[T xa T xT]-[E) T+ (ch) T+ () TJGIK. Sav Sal
(5.4-32)
=(1—p)[Ke Szlv Szlx]

We construct Eq. (5.4-32) as a system of linear equations to solve for the elements of T in

vector form.
viet —(e2)'GK,  —(x%,) GK, (%) 6K, [T K.
()OS, Vi -(8)0S, ) GS, T |-(-p)s..
—(e‘y))2 GS,, (Xf,,,)z GS,,, vix, —(x‘,’nz)st2|x T, S,
(5.4-33)

By defining,
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viel —(e2)'GK,  —(x%,) GK, (x%,) GK,
n=| —(e2)'GS,  vixL-(x%)'GSyn  —(x%) GSy, . (5.4-34)
_(e{y))stzlx (x?nl)zGSZIx ViXps (x?nZ)ZGSﬂx
we solve for T using,
K, 0 0
T=m(1-p) 0 S, O |. (5.4-35)
0 0 Sle

We added the absolute value function value because T is constrained to be positive

definite. The relative sizes of terms within T are crucial to establish initial condition

insensitivity.  Although we use the absolute value function, which likely ruins the pure

mathematical solution to T, the sign of the response error compensates for this
discrepancy.
Now we must select the integral matrix T, and estimate its value at the evaluation
point to generate p. We constrain T to be proportional to T such that,
T=uT. (5.4-36)
We intend for the integral gain to be dominant (relative to the proportional gain) at the

end of the transient response. The weighting matrix ratio p is then inversely proportional

to the settling time of the plant, t¢ (finish time). Experimentally, we noticed that choosing

n=lo (5.4-37)
tf
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where t¢ is calculated as the 95% settling time, produces excellent adaptation. If this ratio
is excessive, the integral gain grows too rapidly and performance suffers. If the ratio is
too small, the effects of integral gain are negligible. This would defeat the purpose of
adaptive control because the controller should “learn” during the transient response.

As an approximation, we assume the integral gain grows linearly with time, during

the early transient response. We expect minimal contribution from this gain. We find that
assigning,

p= __c_, (54-38)

yields good results in the weighting matrices.
5.5 Model Reference Adaptive Control With Fixed Feedback Gain

The design procedure for MRAC using a fixed output feedback gain is very similar
to the fully adaptive MRAC design method. We make some simplifications, however,
satisfying the Lyapunov stability constraints are no different. The weighting matrix
selection is a reduced form of the previous case.
5.5.1 The Lyapunov Functions and ASPR Constraints

Our first step is to select the fixed output feedback gain. We choose K. as
calculated for the CGT controller. As we previously discussed, this gain optimizes

performance for the worst possible plant characteristics without compromising stability.

If we define,

?,, =(®,, ~T,K.C,), (5.5-1)

pm
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to replace Eq. (5.4-3), then this part of the MRAC design is identical to that of section

54.1.

5.5.2 Choosing Weighting Matrices

We use identical representative trajectories and the same point of evaluation as

presented for the fully adaptive MRAC algorithm. In a fashion similar to section 5.4.2, let

the nominal CGT gain be represented as,

~

K= [S2]v Szlx]-

We define the proportional weighting matrix as,

- |T, ©
T= _
l:o TX}

We then form the concatenated trajectory vector, given as,
0
0 _ ‘:xm ]
r= "
xm2

K, (k,)=K,

Using the design goal of

we rewrite the expression for the overall gain as a closed-form solution.
(T+1"(k)Tr(k,)G) (v, (k" (k)T +K,(k,)) =K
Pre-multiplying both sides by (I+1"(k.)Tr(k,)G) yields,

v (k)" (k)T +K, (k) = K(1+ 17 (k,)Tr(k,)G).
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We then subtract the integral gain from both sides and make the substitution of
K,(k,)=pK.

v, (k)r" (k)T = (1- p)K + 17 (k,)Tr(k,)GK (5.5-6)
We substitute the representative values for the vectors evaluated at k. and expand the

matrix products.
vioT xT]=0-pR+[() T (L) T]olS Su] 65

We reconstruct this expression as a system of linear equations.

l:v?x?nl _(xfm) GS,,., _(x?nZ) GS,., :“:TV:I =(1 _p)|:szlv] (5.5-8)

"(x?m)stzlx V?xgz "(x?nz)z GS,, LT Sax

We solve for T using,

= S, O
T =n(1 p){ 0 Sm] , (5.5-9)
where
.
v?x?nl "(V )stznv - x?nz)2 GS,.,
n= o \2 o 0 [ 0 \2 (5.5-10)
(xml) GS,. Mt _(xm?. GS,\

The selection of the integral weighting matrix T is identical to that of the fully
adaptive MRAC algorithm where

T=uT (5.4-36)

and
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T (5.4-37)

5.6 Summary

In this chapter, we presented our design methods for four different control
algorithms: pole placement; CGT; fully adaptive MRAC; and MRAC with a fixed output
feedback gain.

The pole placement design reveals little insight as this is a very common control
method. The 6nly decision regarding design pertains to the selection of the reduced order
estimator gain.

Selecting the performance gains for the CGT controller is a function of the
algorithm formulation in Chapter 2. In this chapter, solving for these gains involved a
canonical form transformation which may or may not be the only possible approach. We
choose our feedback gain to optimize the performance for the worst possible plant
modeling scenario.

For both of the MRAC algorithms we address every design step from satisfying
stability constraints to suggesting a method of weighting matrix selection. We justify
every decision, but in some cases our conclusions are based upon empirical knowledge
and not analysis. In Chapter 6, we will demonstrate the effectiveness of our design which
requires no user-controller interaction.

In Fig. 5-5, we provide our design paths for each type of algorithm. Using the

procedures in this chapter, we will emperically compare each control method in Chapter 6.
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Chapter 6

Results

In this chapter, we present example plant responses to illustrate the effectiveness
of our control strategies. We also address assumptions made in previous chapters,
pointing out their shortcomings and their assets.

In the latter half of this chapter, we compare the robustness of all four controllers
subjected to a broad range of testing conditions. We demonstrate that adaptive control
does not always perform better than linear control. We do not mean to imply, however,
that linear control is better in general. Linear control appears advantageous for some
circumstances. |
6.1 Overview

We begin by testing our discrete CGT design. Recall from Chapter 2 that our
formulation is original. Although we inferred our results to be identical to Sobel’s (1980),
our gain solution process in Chapter S differs from his approach. In spite of these subtle
differences, our discrete CGT controller performs as expected.

In the following section, we provide sample response plots of our two discrete
types of MRAC. We assume explicit plant knowledge for this presentation. We
demonstrate that our weighting matrix selection process (from Chapter 5) yields “good”
results. For each example, we declare our weighting matrix values, the ratio of the

proportional weighting matrix to the integral weighting matrix, and a quantitative measure

138



of performance. To measure performance we use a performance index (PI), defined as,

PI= %{—;Z:|Cpe(i)| | (6-1)

Physically, the performance index is a measure of the average absolute error between the
velocities of the plant and the reference model. We normalize PI by dividing the
summation result by the length of each simulation. Dividing by the simulation length, PI
does not penalize responses having relatively long settling times.

Recall from Chapter 5 that we base weighting matrix selection on a representative

value of the output error. We will assess the choice of
ey = 0.001*sign(e, (t,))*C,x%,. (5.4-21)

In this section, we also simulate MRAC responses using an alternative, though
common, weighting matrix selection process. For this scenario, the designer tunes the
weighting matrices to achieve desired effects. We demonstrate that our method yields
equivalent results without any tuning.

In section 6.4, we examine the four controllers using various design objectives in
the presence of plant modeling error. Afterwards, we assess our proposal to minimize the
non-quadratic Lyapunov term. This involves a minimization of the feedthrough term G.
We look at the changes in the performance index for varying values of G.

The final section includes mesh plots of performance index over the full range of
plant modeling error. We consider all four algorithms for several types of performance

objectives. This analysis reveals which algorithms are best suited for particular types of
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performance goals.
6.2 Discrete Model Reference Control Using the Command Generator Tracker
Approach
Let’s begin by assuming that the initial conditions between the plant and the model
differ. Setting the plant’s initial displacement and velocity to zero, the control must
actuate the plant from rest. The response then converges to the output of the reference
model. This demonstrates one role of the output error feedback gain, K.. In Fig. 6-1a and

Fig. 6-1b, we provide two different examples of CGT.

0.1k - T : T
Velocity :
(ft/sec) ’

-0.1 Plant (---)

Model (—)
_0.2 L L L. y
0 0.5 1 1.5 2 2.5
Time (sec)
Figure 6-1a
Discrete CGT Control for 0 ,, =050, and {, =017 with 0, =0 and
Cpm =€p

In each of these plots, we can see that the output feedback gain serves a role very
similar to a state estimator gain. The initial error is fed through K., causing actuation that
is additional to the open-loop contribution of the performance gain Sz;. Because the

feedback gain specifies stable dynamic properties, error decays and the plant eventually
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tracks the output of the reference model. In Fig. 6-1b, however, the contribution of the
feedback gain is not sufficient enough to create a “good” response. The settling time
specified in the reference model exceeds the ability of the feedback gain to actuate a
reasonable decay in tracking error. Although the dynamics of error are “quicker” than the
settling time of the model, we can see that the plant’s response is somewhat undesirable.
If we had explicit knowledge of the plant’s dynamics, we could push the feedback gain to
its absolute limit.

Let’s imagine a reference model that specifies critical damping. There exists no
velocity feedback gain capable of producing satisfactory error transients. Although we do
not demonstrate this, the reader may see in Fig. 6-1b how bad the response for a model
damping ratio of 0.61 is. Suffice it to say, setting the initial conditions of the plant and
model to be equal is a wise precaution.

For the remainder of this chapter, we only consider cases in which the reference
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Figure 6-1b

Discrete CGT Control for 0, =150, and {,, =061 with o, =0 and C  =C,
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model and the plant have identical initial conditions. This enables us to better judge a
controller by its performance gains rather than how effectively it rejects initial condition
error. In Fig. 6-2a, we illustrate a scenario equivalent to that of Fig. 6-1b except there is

no initial condition error.

As we can see in Fig. 6-2a through Fig. 6-2d, the CGT approach effectively
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Figure 6-2b
Discrete CGT Control for 0, =050, and { =061 with o , =0 and
Com =Cp
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controls the plant. This method is as effective as pole placement. Since the performance
gains contribute as an open-loop control, this approach has stability advantages over pole

placement. This claim will be further evidenced in subsequent sections.
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6.3 Model Reference Adaptive Control

In this section, we document example responses of the plant controlled by the two
types of discrete MRAC. We span a broad and representative range of the possible design
objectives.

We then look at MRAC responses to assess our choice of the representative error,
used in weighting matrix selection. Recall from Chapter 5, we assumed the representative
error to be 0.1% of the model’s velocity at the point of evaluation. We will demonstrate
that increasing this estimate, lowers the overall magnitude of the weighting matrices. By
the same token, a relatively low estimate of the representative error tends to produce a
relatively low performance index.

In Chapter 5, we based our weighting matrix calculations on predicted values of
the model state trajectories and the estimation of error. Using these values, we calculated
weighting matrices to generate gains equal to the CGT control. Sometimes this is not
mathematically possible (because the procedure can require negative elements in the
weighting matrices). However, the elements in these matrices are still sized appropriately.
Their overall magnitude is mostly a function of estimated output error, but this does not
interfere with relative sizing within the matrices.

In nearly every case that we reviewed, weighting matrix selection seemed to be a
trial and error process. Most of the weighting matrices are based on the identity matrix,
multiplied by an overall gain. Having no relative differences among the elements in these

weighting matrices, it is obvious that some elements can contribute to unnecessarily high
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computational gains. In our sterile testing environment, this is of no concern. In this
section, we will illustrate the effects of increasing the overall gain on an identity-based
weighting matrix. We then compare the resulting performance with our MRAC design.
6.3.1 Model Reference Adaptive Control for Explicit Knowledge of Plant Dynamics

For each set of design goals, we illustrate the fully adaptive MRAC system and
MRAC using the fixed output feedback gain. Our design goals cover maximum and
minimum possible reference model specifications. We also examine a moderately
demanding reference model. In these simulations, the model of the plant is perfect (the
nominal plant and actual plant are identical).

Along with each response, we provide the proportional weighting matrix, the ratio
between the proportional and integral weighting matrix, and the performance index.
Doing so, we can highlight differences between the fully adaptive MRAC system, MRAC
using a fixed gain, and the MRAC system designed with alternative weighting matrix
selection.

Let’s first examine the adaptive control cases involving a high positive change in
the plant’s natural frequency with no change in the plant’s damping. Figures 6-3a and 6-
3b illustrate the plant response associated with each of the two MRAC approaches. Note
that the demands of the reference model translate to a relatively high response settling
time. So that the reader may examine the response with clarity, we truncate the response

substantially. The performance indexes, however, represent the entire time of response.
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Figure 6-3a

Discrete MRAC for o, = 150, and §,, = 001 with 0, =o, and {,, =C,

By examining these two response, we see that MRAC achieves the performance
specifications of the reference model. The fully adaptive MRAC performs somewhat
better than the MRAC using the fixed gain. As we can see from the plots, this difference
is not significant. Note that the weighting matrix gains, associated with performance, are

identical in both cases. We expect our design procedure to produce this effect.

146



05 T T T T T T T

Velocity A
(ft/sec) on
Plant (---)
“ Model (—)
-0.5 | 1 L | I L 1 ) -
0 0.5 1 1.5 2 2.5 3 3.5 4
Time (sec)
T 1397(10)° 0
- 0 3.030(10)°
T=79595(10)*T
PI=4531(10)" ft/s
Figure 6-3b
Discrete MRAC Using a Fixed Gain for @, = 150, and {, =001 with 0 ,, =0, and
Cpm =Cp

One advantage of using a fixed gain MRAC lies in the lack of a potentially high
weighting gain associated with output error. The control signal resulting from this
computational term is a function of output error cubed. Using the fixed feedback gain, the
control signal is linear in output error. If noise is present in the output, the negative
effects are, first, propagated by the cubic function of error. Then, the high weighting gain
worsens this predicament. Using a fixed feedback gain, although it may not optimize

performance in the ideal case (no signal noise), may produce better results in a “real
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world” application.

In figures 6-4a and 6-4b, we can examine the effectiveness of MRAC applied to
the lowest possible design frequency with moderate damping. Again, we see that the fully
adaptive MRAC performs marginally better than its fixed gain counterpart. Both,
however, demonstrate further that our design procedure is effective in controlling the

plant over a wide range of performance objectives.
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Figure 6-4a
Discrete MRAC for @, =050, and {,, =067 with o =0 and (,, =C,
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Figure 6-4b
Discrete MRAC Using a Fixed Gain for o, = 05w, and { = 0.67 with
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We extend our survey to a reference model demanding the lowest settling time.
Frequency requirements are maximum and damping is critical. Figures 6-5a and 6-5b
demonstrate the control action. The weighting matrices in this case tend to be relatively
high. This makes sense because the corresponding CGT gains are also relatively high.

Note that the ratio between the weighting matrices is considerably larger than our
previous examples. We want our integral gains to achieve effective performance values

before the plant transients expire. It is difficult to comment on the integral gains at this
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Figure 6-5a
Discrete MRAC for 0 , =150, and {, =10 with o , =0, and {,, =C,

point. For a purely transient plant response (where the steady-state is zero) and no
modeling error, the integral gains effectively serve no purpose. Until we examine the
effects of plant modeling error, it is difficult to demonstrate their significance. In this
section our purpose was only to show that the sizing of the integral weighting matrices do

not produce adverse effects for this ideal case.

150



0 T T =T T — T
-0.05¢ -
Velocity
(fsec)y O T
-0.15} Plant (--') 4
Model (—)
-0.2 ) | - 1 - 1 i
0 0.02 0.04 0.06 0.08 0.1 012 014
Time (sec)
T 1259(10)7 0
0 2.745(10)°
T =0.08T
PI=2658(10)" ft/s
Figure 6-5b
Discrete MRAC Using a Fixed Gain for 0 , =150, and {,, =10 with 0 , =@, and
Cpm =C.tp

Next, we look at another critically damped case that requires the maximum
reduction in the plant’s natural frequency. This performance requirement is successfully
satisfied by the two MRAC algorithms depicted by figures 6-6a and 6-6b. Note that the
performance index of the fixed gain MRAC is slightly lower than the fully adaptive

version.
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When model frequencies are lower than the plant’s, we notice that the adaptive
proportional feedback gain is initially negative. This corresponds to negative output error
for which the plant’s output is greater than the model’s. As output error, the feedthrough

term, Gz(k), becomes dominant in defining the adaptive gains. In this feedthrough term

(recall from Chapter 5), we select Kc to be the intended adaptive feedback gain. Failure
to converge results in a “penalizing” actuation. Our choice of K, equals the value of the

positive CGT feedback gain. If the adaptive feedback gain enters a negative region to
minimize error, it will then grow to positive values when the sign of error becomes
positive.

Since the adaptive feedback gain remains in the negative region for some time, the
integral component grows negative as well. When the proportional gain changes to a
positive value, the total feedback gain remains negative for a brief period of time while the
integral component approaches a positive value. We speculate that this sudden shift in
value, results in an adaptive feedback gain that is mildly detrimental to performance for a
short while. We assume that our observations of gain behavior explain the differences
between the two MRAC systems. This drastic feedback gain shift does not occur when
the model “leads” the plant. When the model frequency is larger than the plant’s (the
model leading the plant), we note that the fully adaptive MRAC achieves better

performance than the fixed gain MRAC.
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Figure 6-6a
Discrete MRAC for v ,, =050 ,,, and {, =10 with 0 ,, =0, and (_, =C

P

Let’s consider the case of critical damping. The model specifies repeated poles on
the real axis of the z-plane. An output feedback gain can only specify the error’s rate of
decay by a finite amount. For reference models having low settling times, error dynamics
are sometimes “slower” than the dynamics of the model. In the case illustrated by Fig. 6-5
the decay rate of error is approximately twice as slow as the reference model. In the case
of Fig. 6-6, however, due to the lower natural frequency, error transients are about 1.5

times quicker than the transients of the reference model. Recall that the fully adaptive
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MRAC is designed to converge to the “neighborhood” of the CGT feedback gain, or
equivalently, the feedback gain used by the fixed gain MRAC. Let’s consider the first
case. The feedback gain, calculated conservatively for the worst possible plant, cannot
produce error transients quicker than the model. The fixed gain MRAC is condemned to
use this value. The fully adaptive MRAC, on the other hand, converges to gains that
minimize error. The adaptive feedback gain can exceed the conservative threshold
calculated for the CGT controller, thus producing a better response than the fixed gain
MRAC.

In the second case, the fixed gain MRAC performs slightly better than its
counterpart. Requiring the plant to have a lower natural frequency means that initially, the
reference model will lag behind the plant. Although the adaptive feedback gain converges
to the CGT gain region, the proportional element of the overall gain does not completely
nullify the adverse effects of the integral component. For a longer response time this
situation should be rectified. However, heavily damped performance requirements tend to
expose a weakness in adaptive control when only evaluating on the basis of plant
transients.

When comparing these two MRAC systems, we identify response time and

reference model frequency as two contributing factors to differences in performance.
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Figure 6-6b
Discrete MRAC Using a Fixed Gain for @, =050, and { =10 with 0, =0,
and ¢, =C,

In our final MRAC example, using the ideal plant modeling conditions, we show
the response of a plant with moderate performance demands. These responses are
provided in figures 6-7a and 6-7b. In this case, the fully adaptive MRAC outperforms the
fixed gain MRAC. This result is consistent with our suggestions made in the last example.

To conclude this subsection, we have shown that our MRAC weighting matrix
selection process works very well for the operating conditions involving explicit
knowledge of plant dynamics.. Also, the method with which we choose the ratio between

proportional and integral weighting matrices is effective. Although we encountered one
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Figure 6-7a

Discrete MRAC for 0, = 1170, and {, =017 with 0 ,, =0 and C_ =(

m P

instance where the integral error gain caused a mild decline in performance, the problem is
self-correcting over time. The role of output feedback (adaptive and fixed) diminishes
gradually over the course of the transient response. The other adaptive gains are most
responsible for model tracking. We do, however, attribute the slight performance
differences (between the two MRACs:) to the adaptive feedback gain. This is little more

than a tangent and is not a major concern or interest to this study.
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6.3.2 Examining the Choice of Representative Error

In Chapter 5, we based weighting matrix values on a predicted value of output
error. Our choice produces relatively high overall weighting matrix values, though it does
not affect the relative sizes of the internal performance related values (e.g. Tx). In this
section, we evaluate whether or not our estimation is excessively small. We shall see if

higher error estimates produce a better performance index. If they do not, we must ask,
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“does better performance warrant the use of such high computational gains?”.

Recall that we select the representative error to be 0.1% of the predicated
reference model velocity at the point of evaluation. We shall examine MRAC responses
for estimations increased by factors of 10, 100, and 1000. We test each of these values as
applied to the performance demands used in Fig. 6-7a. To establish a frame of reference,

the critical values from this response are,

2.148(10)° 0 0
T= 0 6.642(10)° 0
0 0 1157(10)°

and
PI=1587(10)" ft/s.
In Fig. 6-8a, we see that performance declines with an increase in estimated error.
Also, all the terms in the weighting matrix decrease, but not by the same amount. The T,

component decreases by an order of magnitude. The element associated with error,
however, decreases by two orders of magnitude. This makes sense because the
performance gains are a linear function of error while the feedback gain is a quadratic

function of error.
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Figure 6-8a
Discrete MRAC for 0, = 1170, and {,, =017 with @ ,, =0 and (  =C,
Assuming an Increased Error Estimate by a Factor of 10

In Fig. 6-8b, we increase the error estimate by a factor of 100. The weighting
matrix values continue to decrease in a fashion consistent with the previous example. By
the same token, performance also declines. In Fig 6-8c, these two trends continue. The
effectiveness of the controller becomes undesirable and not worth the advantages of low

computational gains.
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p

The rate at which the error weighting values decreases is much greater than the
weight values directly associated with performance. The responses shown in figures 6-8a
and 6-8b are quite reasonable. If we had motivation (the need to minimize disturbance
effects, for example), we could lower the overall weighting matrix gain without a large
compromise in performance. Since we currently have no need to do this, we shall table

such endeavors for a later date.
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6.3.3 Alternative Weighting Matrix Tuning
In many MRAC designs, weighting matrices use the form,
T=al, (6-2)
where o represents the overall weighting matrix gain. In this section, we demonstrate

that this can be an effective approach. However, the resulting weighting matrices are
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unnecessarily high, even though they only serve computational roles. Part of the problem
is a lack of relative sizing within the weighting matrix. In our examples, we note that the
elements within weighting matrices have very different relative sizes. Another problem
with the form of Eq. (6-2) is that there is no rational basis for selecting the overall gain.
Designers must often test the effectiveness, either on-line or in simulation, to establish
reasonable values.

In this subsection, we demonstrate that our method of weighting matrix selection
is equivalent, if not better than tuning a matrix of the form given by Eq. (6-2). We show
how the designer gradually converges to an appropriate selection. To do this, we select

the performance requirements of ® , = 150, and {_ = 0.67.

In figures 6-9a through 6-9¢, we demonstrate the gradual tuning process necessary
to achieve satisfactory performance. We make no claims regarding the number steps
taken to accomplish this task. However, it certainly takes more steps than our procedure

which requires no tuning at all.
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6.4 The Effects of Plant Modeling Error

Thus far, we have only considered the ideal case of correct plant modeling. To
- compare the four control methods in a more realistic fashion, we provide example
responses for a set of design goals and modeling error. In the next section, we present a
much more comprehensive examination of controller robustness. Here, we intend to
briefly and qualitatively demonstrate the shortcomings of controllers in the presence of
plant modeling error.

Let’s begin with pole placement, implemented over various conditions and
(illustrated in figures 6-10a through 6-10c. The output error associated with pole
placement is extremely pronounced. Although the reduced order observer offers marginal
insensitivity to plant modeling error, it is clear that the pole placement controller does not
come very close to its design objectives, except in Fig. 6-10b. In Fig. 6-10b, the plant’s

frequency is underestimated and the plant’s damping, overestimated. These estimation
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errors counteract each other in terms of the plant’s settling time. Since the reference
model specifies moderately high damping, this. control approach does not appear to be
entirely poor. However, the apparent success is due merely to circumstance (e.g., if
reference model damping were lower, the error would be much more pronounced).

Note that we do not display any pole placement cases resulting in instability. This
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Figure 6-10a ,
Discrete Pole Placement Control for @, =117, and { =017 with

0,=070,,and { =13C
is not to say that the closed-loop system never becomes unstable. In the next section, we
demonstrate several instances of pole placement instability. In this section, we wish to
illustrate that pole placement lacks a sufficient means to reduce the effects of plant
modeling error. The observer only acts to recreate the position state of the actual plant.
If the ROO successfully estimates position this does not change the fact that the

performance gains are incorrect.
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Figure 6-10c
Discrete Pole Placement Control for © ,, =050, and {, =017 with
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Figures 6-11a through 6-11c illustrate the CGT controller subjected to the same

set of design goals and plant modeling error.
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Discrete CGT Control for @ ,, =1170 ,, and {,, =017 with 0 , =0.700 ,, and

¢, =130¢,,

This linear control approach demonstrates superior performance to pole
placement. There are two major differences between these two methods. The CGT
performance gains contribute to the control signal in an open-loop fashion. As discussed
in Chapter 3, poor plant modeling can not result in instability with respect to the
performance gains. The only source of instability is the output feedback gain K.. Our
design procedure will not allow K. to create an unstable closed-loop system.

The output feedback gain asymptotically drives the error between the model and

the plant to zero. It’s effects are limited, however, by its conservative design.
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and ¢ =130¢,,

Next, we examine some MRAC response plots. Beginning with the fully adaptive
MRAC, we observe that this control actuates better plant performance than the linear
algorithms, except for the case having the lowest settling time. The response of Fig. 6-
12b yields a higher (worse) performance index than the CGT controller. It is likely that
the adaptive controller did not have sufficient information to integrate to error minimizing
gains during the early transients. If we examine Fig. 6-11b and Fig. 6-12 b closely, we see
that MRAC forces the plant response to converge to the model’s output at approximately
0.13 seconds. The CGT control accomplishes this at about 0.175 seconds.
Quantitatively, the CGT controller is better. Qualitatively, we must not dismiss MRAC as
being worse in this application. As we begin our comprehensive analysis, we must be
wary that the CGT controller has a decisive (and delusive) advantage for “quick”

responses.

170



0.1 . . .

Velocity 0 i
(ft/sec)
-0.1 -
0.2 Plant (---) N
. Model (—)
_0'3 - 1 1 1
0 0.05 0.1 0.15 0.2

Time (sec)

PI=0.01701ft/s

Figure 6-12b
Discrete MRAC for ,, =150, and { =067 with 0 , =130, and {,=07C,,

Let’s compare the two types of MRAC controllers. We examined them previously
for the case of perfect plant modeling. Now, we check to see if the trends observed in
section 6.3 apply to this more realistic case.

Across the board, the fully adaptive MRAC surpasses the fixed gain MRAC in
performance. Recall that earlier, we discussed a problem associated with the reference
model frequency being lower than the plant’s. This caused the plant response to lead that
of the model. The adaptive feedback gain reached negative values to “slow” the plant.
Because of the integral gain, the adaptive feedback gain was sluggish in leaving the
negative operating region. This effect allowed the fixed gain MRAC to perform better

than the fully adaptive version. We hypothesized that, given enough time, the fully
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adaptive MRAC would exceed the performance of its counterpart. Comparing Fig. 6-12 c

to Fig. 6-13c, we see that this hypothesis can be true.

0. 1 T T T T
Velocity
(f/sec) |
-0.1 Plant (---) )
Model (—)
_02 | - L L 1
0 0.5 1 1.5 2 2.5
Time (sec)
PI=0.006669 ft /s
Figure 6-12c
Discrete MRAC for o, =050, and {, =017 with 0, =13w ,, and
G, =13C,,
0.2 — —
Velocity 0 ]
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-0.2r%, Plant (---) ]
Model (—)
0.4 : - - —
0 0.2 0.4 0.6 0.8 1

Time (sec)
PI=0.008013 ft /s

Figure 6-13a
Discrete MRAC Control Using a Fixed Gain for 0 , =1170 ,, and { =017

with 0 , =0.70w ,, and (, =130C ,
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Figure 6-13b
Discrete MRAC Control Using a Fixed Gain for o, =150 ,, and { =067 with
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Figure 6-13c
Discrete MRAC Control Using a Fixed Gain for o, =050, and { =017 with

w,=130,,2and C,=13C_,
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6.5 Minimizing the Effects of Plant Modeling Error in Model Reference Adaptive
Control

In Chapter 4, we conjectured that selecting the lowest possible feedthrough term,

G, would minimize the dependence on erroneous CGT gains. In Chapter 5, we proposed

a method of selecting the minimal hypothetical feedthrough term J for an assumed form of

the matrix L. In our design procedure, we equate the feedthrough terms, G and J. Let’s

check the validity of our proposal by comparing the performance index of responses using

different feedthrough terms than those presented in section 6.3.

0.015 . - - . . . .
PI 0.01f "
0.005 X = Design Point -
0 L L 1 1 1 L 1
0O 005 01 015 02 025 03 035 04
G
Figure 6-14a

Gvs. PIfor o, =1170 , and {,, =017 with 0 , =0.70w ,, and {, =130

We generated responses and performance indexes that correspond to a range of
values for G. Note that increasing G does not affect stability. However, selecting G

below a certain threshold, as we can see from Fig. 6-14a and Fig. 6-14b, the system
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becomes unstable. This rapid system divergence occurs immediately before (in terms of
G) we achieve a minimum performance index. Increasing G to large magnitudes does not
appear to affect any significant change on performance, although performance does

gradually become worse. Our design places G in a fairly safe region, balancing stability

0,03 L L T L T ¥ L
0.02} -
PI

0.01 X = Design Point .

0 j 4 | I | S 1 ) I | Il

0 005 01 015 02 025 03 035 04
G
Figure 6-14a

Gvs. Plfor o, =150, and { =067 with 0, =130, and {, =07,

with performance.

There are two notable problems associated with our attempt to minimize the
effects of plant modeling error. The first is our assumed form of L from Eq. (5.4-13). We
minimized for a given L, but did not explore how to choose an appropriate matrix L. The
second problem essentially nullifies our first concern. Lyapunov stability results dictate
the sufficient conditions for stability, not the necessary conditions. Without any well
defined boundaries to work with, it is difficult to attempt minimization or optimization in

any absolute sense. Whereas our solution of G is not optimal, it does yield a notable
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insensitivity to plant modeling error. We conclude that our approach, though not
analytically justified, yields robust simulation results.
6.6 Analyzing Controller Robustness

In this section, we generate responses for all four algorithms for various design
goals. In each case, we determine the performance indexes over 49 points of possible
plant dynamic characteristics. For each design goal we provide a mesh plot relating the
performance index to modeling error and a table providing the same information
numerically.

In Fig. 6-15a through Fig. 6-15d, we simulate the controllers for the maximum
reference model frequency and critical damping. We predict the CGT controller to
surpass the performance of the two adaptive algorithms. We base this hypothesis on the
short settling time which is not conducive to complete adaptation.

Our results indicate that the CGT control is far superior, while pole placement,
MRAC, and the fixed gain MRAC all perform at about the same level. Increasing the size
of the weighting matrices and the sample rate could improve performance. However, our
design does demonstrate reasonable effectiveness for this very demanding case.

In our next group of figures and tables, we examine performance for the maximum
model frequency at a low damping ratio of 0.17. These specifications result in a longer
transient period, allowing the MRAC systems to adapt and reject the effects of plant
modeling error. The CGT controller should yield better results than pole placement, but

should result in a PI lower than the MRAC systems. Because the reference model initially
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leads the plant, the adaptive feedback gain should promote better error transients than the
fixed gain MRAC if the response time is sufficient for accurate integration.

Examining Fig. 6-1a through Fig. 6-1d, we find our predictions to be mostly
correct. Let’s consider figures 6-1c and 6-1d: the two MRAC systems. Our predicted
trends are true except for the row of values corresponding to maximum positive frequency
modeling error in Table 6-2c and 6-2d. We observe that as the plant’s natural frequency
approaches that of the reference model, the effects of adaptive feedback become less
pronounced. In this circumstance, there is less lag between the plant and reference model.
This implies less error to drive the adaptive feedback gain. Because the transient response
is relatively short, the adaptive gain has insufficient information to accurately integrate to a
performance level surpassing the fixed feedback gain.

Our next set of design objectives consist of a minimal reference model frequency
and critical damping. Because of the extended transient period, relative to that of Figs. 6-
15, we expect differences between the MRAC systems and the CGT control to be less
severe. However, the CGT controller probably yields a better performance index.

Examining Figs. 6-17 and Tables 6-3, we can conclude that our generalizations are
accurate. There are some trends, however, that we did not foresee.

In Fig 6-17a, the pole placement controller is unstable for certain values of plant
modeling error. Since the reference model requires a reduction in the plant’s frequency,
the feedback gains are calculated to move the poles away from the origin of the z-plane.

By overestimating the plant’s actual open-loop pole locations, this controller
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overcompensates for the design objective. The feedback gains are excessive, placing poles
in the unstable region of the z-plane.

As expected, the CGT controller performs best of the four algorithms. Since the
MRAC systems have more time to adapt, the difference are not as drastic as the critical
damping case.

Examining Table 6-3c and Table 6-3d, we see that the two MRAC systems bear
much similarity. We observe a new trend, however. Recall that the adaptive feedback
gain grows negatively, when the reference model lags behind the plant’s response. The
amount of lag is minimal for the lowest possible plant frequency. Although the integral
feedback gain grows negatively, the longer time of response allows the error gain to
continue adapting and gradually reach an optimal value.

For plants having greater natural frequencies, we see that the fixed gain MRAC
performs better than the fully adaptive version. In these tables, we witness a compromise
between adaptation time and frequency difference between the actual plant and the
reference model.®

Next, we specify the reference model to have the minimum possible frequency and
a low damping ratio of 0.17. This yields a relatively long transient response for which we
expect the adaptive controllers to exceed the performance of the linear controllers.

Let’s first consider pole placement, illustrated by Fig. 6-18a. Like the results from

Fig. 6-17a, where the reference model’s frequency is minimal, we see that this controller

¢ Damping is also a factor but its effects (regarding model error) are negligible compared to frequency.
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creates unstable closed-loop dynamics. Again, this is due to overestimating the plant’s
natural frequency, thus the feedback gains overcompensate

The adaptive algorithms, illustrated by Fig. 6-18c and Fig. 6-18d, are indeed
superior to the linear controllers. Let’s look at the difference between these two adaptive
approaches. Recall that the fixed gain MRAC tends to perform better for minimum plant
frequency and maximum plant damping. It takes the fully adaptive algorithm some time to
converge to the optimal feedback value. This is why the fixed gain version produces
marginally better performance in this row of Table 6-4d.

Our next design objectives entail a modest increase in the plant’s frequency and a
damping ratio of 0.33. We expect the CGT controller and the MRAC systems to have
similar performance, but cannot predict which is best for this moderate settling time. We
do, however, assume that the pole placement controller performs most poorly.

The CGT controller yields the lowest performance index. Its asymptotic tracking
ability exceeds that of the adaptive performance gains. Apparently, this transient response
is not lengthy enough to sufficiently expose the shortcomings of the CGT control method.
Recall from section 6.4, that although the CGT controller may have a lower PI, the
MRAC system tends to converge to the model output sooner during the transient
response. It is in the initial stage of transients, where MRAC begins to “learn”, that the
CGT control demonstrates a margin of superiority.

This particular response calls for a model frequency greater than the plant’s (the

model response leads the plant’s),and, the transients are long enough such that the fully
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adaptive MRAC exceeds the performance of the fixed gain MRAC for every possible
testing condition.

Finally, we present our best evidence for adaptive control. In Figs. 6-20 and
Tables 6-6, we define the reference model to have a maximum natural frequency and a
very low damping ratio of 0.01 (equal to the nominal plant). This produces a response
time much longer than any of our previous cases.

In Fig. 6-20a, we have another example of pole placement instability. This time,
the light damping ratio requires closed-loop poles located close to the edge of the unit
circle (in the z-plane). When the plant’s natural frequency is largely underestimated, the
feedback gains place poles at. unstable locations.

Regarding the CGT controller, the length of response exposes the fact that model
output tracking does not occur until the model output equals zero at steady-state. We
provide this information if Fig. 6-20b and Table 6-6b.

The MRAC algorithms’ performance clearly exceeds that of the linear controllers.
The results between the two types of MRAC are equitable. There are some slight trends
evident in Tables 6-6¢c and 6-6d. We would expect, from trends thus far, that the fully
adaptive MRAC produce the lowest performance index. However, this appears to be true
only for cases involving overestimations of the actual plant’s frequency. Although, this
appears to be a new phenomenon, it is minor and underscored by the vast superiority of

MRAC over linear control.
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Pole Placement Performance vs. Modeling Error for 0, =150, and {,, =10

Table 6-1a
Pole Placement Performance Index (PI x 100) vs. Modeling Error for o , =150, and
¢, =10

Plant | -03¢,, | -0.2¢,. | -0.1¢,. No | +0.1¢,, | +0.2¢,, | +0.3C,.,

Model Error

Error
-030,, | 1.7967 1.7989 1.8012 1.8034 1.8057 1.8079 1.8102
-020,, | 12550 1.2578 1.2605 1.2633 1.2661 1.2688 1.2716
0.1o,, | 06422 | 0.6458 | 0.6494 | 0.6530 | 0.6567 | 0.6603 | 0.6639
No Error | 0.0318 0.0279 0.0248 0.0236 0.0230 0.0223 0.0217
+0.1o ,, | 0.7284 0.7231 0.7179 0.7127 0.7075 0.7023 0.6971
020, | 14579 1.4517 1.4455 1.4393 1.4331 1.4269 1.4208
+030,, | 2.1861 21793 | 21726 | 2.1659 | 2.1591 2.1524 | 2.1457
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Figure 6-15b

CGT Performance vs. Modeling Error for 0 , = 150, and =10

Table 6-1b

CGT Performance Index (PI x 1000) vs. Modeling Error for 0 , =150, and { =10

Plant -0.3 Cpm -O.ZCpm -0.1 Cpm No +0-1C,,m +O.2Cpm +0.3 Cpm

Model Error

Error _
03w pm 3.6384 3.6417 3.6449 3.6481 3.6513 3.6545 3.6577
—0.20),,“ 2.5957 2.6005 2.6053 2.6101 2.6148 2.6196 2.6243
-0.10 pm 1.3586 1.3655 1.3723 1.3790 1.3858 1.3926 1.3993
No Error | 0.0537 0.0446 0.0364 0.0304 0.0285 0.0269 0.0253
+0.1o , 1.5468 1.5345 1.5223 1.5101 1.4979 1.4858 1.4736
+020,, | 3.0683 3.0537 3.0392 3.0247 3.0102 2.9957 2.9813
030, 4.5402 4.5230 4.5058 4.4887 4.4716 4.4546 4.4376
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MRAC Performance vs. Modeling Error for © , =150, and {,, =10

Table 6-1c
MRAC Performance Index (PI x 100) vs. Modeling Error for 0 , =150, and {, =10

Plant -03C,. | -0.2¢,, -0.1C,,, No +0.1C,, | 10.2C,, | +0.3C,,
Model Error

Error

-03w,, | 19183 1.9207 1.9230 1.9254 1.9277 1.9301 1.9324

-020,, | 13644 1.3674 1.3705 1.3736 1.3767 1.3797 1.3828

-0.lo, | 07174 0.7213 0.7253 0.7293 0.7332 0.7371 0.7411

No Error | 0.0314 0.0296 0.0277 0.0258 0.0239 0.0220 0.0202

+0.1e,, | 0.8317 0.8253 0.8189 0.8126 0.8062 0.7999 0.7936

020, | 1.6932 1.6856 1.6781 1.6706 1.6631 1.6556 1.6481

030, | 2.5680 2.5591 2.5501 2.5412 2.5323 2.5234 2.5146
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Fixed Gain MRAC Performance vs. Modeling Error for 0, = 150, and { =10

Table 6-1d
Fixed Gain MRAC Performance Index (PI x 100) vs. Modeling Error for o, = 15,
and £, =10
Plant -03C,. | -0.2C,, | -0.1C,, No +0.1¢,, | +0.2¢,, | +0.3C,,
Model Error
Error
-030,, 1.9304 1.9328 1.9351 1.9375 1.9398 1.9422 1.9445
020, | 13746 13777 1.3808 1.3838 1.3869 1.3900 1.3930
0.lo,, | 07244 | 0.7284 | 0.7324 | 0.7364 | 0.7403 0.7443 0.7482
No Error | 0.0315 0.0299 0.0282 0.0266 0.0249 0.0233 0.0216
+0.1e,, | 0.8323 0.8259 0.8195 0.8131 0.8067 0.8003 0.7939
020, | 1.6971 1.6895 1.6819 1.6743 1.6668 1.6593 1.6518
+03w,, | 2.5742 | 2.5652 | 2.5562 | 25472 | 2.5383 2.5294 | 2.5204
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Table 6-2a
Pole Placment Performance Index (PI x 100) vs. Modeling Error for © , =150, and
¢, =017
Plant -0.3C,, | -0.2C,, | -0.1C,, No +0.1¢,, | t0.2C,, | 10.3C,,
Model Error
Error
-030,, | 2.8180 2.8142 2.8104 2.8068 2.8033 2.7999 2.7965
020, 2.1135 2.1102 2.1070 2.1038 2.1006 2.0977 2.0955
0.1e,, 1.1596 1.1598 1.1602 1.1607 1.1612 1.1618 1.1629
No Error | 0.0693 0.0511 0.0332 0.0154 | 0.0129 | 0.0264 0.0409
+0.10,, | 1.3262 1.3147 1.3033 1.2922 1.2819 1.2716 1.2617
+0.20,, | 2.6002 [ 2.5817 | 2.5640 | 2.5469 | 2.5303 2.5138 2.4979
+03w,, | 3.7070 3.6851 3.6636 3.6429 3.6224 3.6021 3.5822
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Figure 6-16b

CGT Performance vs. Modeling Error for 0 , = 150, and { , =0.17

Table 6-2b

CGT Performance Index (PI x 100) vs. Modeling Error for @ , =150 ,, and =017

Plant | 03¢, | -02¢,, [-01¢,., | No [+01C,, [+02C,, | +0.3C,.

Model Error

Error
03w pm 0.6728 0.6730 0.6733 0.6735 0.6738 0.6740 0.6743
020 om 0.4922 0.4928 0.4934 0.4940 0.4945 0.4951 0.4957
01w pm 0.2683 0.2690 0.2698 0.2706 0.2715 0.2726 0.2738
No Error | 0.0152 0.0108 0.0065 0.0032 0.0053 0.0080 0.0120
+0.10 om 0.3323 0.3302 0.3281 0.3260 0.3240 0.3220 0.3201
+0.20 pm 0.7156 0.7129 0.7102 0.7075 0.7049 0.7022 0.6996
+0.3(0pm 1.1501 1.1459 1.1416 1.1374 1.1332 1.1289 1.1247
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Table 6-2¢
MRAC Performance Index (PI x 1000) vs. Modeling Error for o, =150, and
¢, =017
Plant -0.3C,, | -0.2¢,, | -0.1¢,, No +0.1G,, | +0.2C,, | +0.3C,,
Model Error
Error
03w, | 6.7374 | 6.7398 | 6.7430 | 6.7461 6.7492 6.7524 | 6.7555
020, 48719 4.8766 4.8813 4.8864 48915 4.8967 49018
-0.10,, | 2.6652 | 2.6741 2.6830 | 2.6919 | 2.7008 27097 | 2.7185
No Error | 0.3451 0.3145 0.2856 0.2657 0.2583 0.2633 0.2864
+0.1o,, | 29330 | 2.9168 | 29006 | 2.8846 | 2.8687 | 2.8529 | 2.8386
020, 6.1782 6.1579 6.1377 6.1177 6.0977 6.0779 6.0582
+030,, | 9.8249 9.7970 9.7693 9.7451 9.7225 9.7000 9.6774
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Table 6-2d
Fixed Gain MRAC Performance Index (PI x 1000) vs. Modeling Error for 0 , = 15@ ,,
and £, =017

Plant -03C,. | -0.2¢,, | -0.1¢,, No +0.1¢,, | ¥0.2C,, | +0.3C,,

Model Error i

Error

-030,, | 7.098 | 7.0995 | 7.1005 7.1014 | 7.1024 | 7.1037 | 7.1054
-020,, | 52371 52404 | 5.2436 | 5.2469 | 5.2502 5.2535 5.2568
-0.lo,, | 3.0284 3.0347 3.0411 3.0474 3.0538 3.0601 3.0665
No Error | 0.6507 | 0.6147 | 0.5805 | 0.5551 0.5423 0.5417 | 0.5591
+0.10,, | 3.0861 3.0656 3.0456 3.0255 3.0055 2.9855 2.9658
+02w0,, | 6.2309 | 6.2081 6.1854 | 6.1627 | 6.1401 6.1175 | 6.0950
+030,, | 9.7935 | 9.7632 | 9.7329 | 9.7039 | 9.6783 9.6528 | 9.6274
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Pole Placement Performance vs. Modeling Error for 0 ,, =050, and { =10

Table 6-3a
Pole Placement Performance Index (PI x 10) vs. Modeling Error for o, =050, and
€.=10

Plant | -03(,, | -0.2(,, | -0.1C,., No | +0.1¢,, | +0.2¢,, | +0.3¢C,,

Model Error

Error
-030,, | 5.8160 5.7970 5.7781 5.7593 5.7405 5.7219 5.7034
020, 1.1234 1.1209 1.1184 1.1160 1.1135 1.1111 1.1087
-0.lo,, | 01790 | 0.1790 | 0.1790 | 0.1790 | 0.1790 | 0.1790 | 0.1791
No Error | 0.0009 0.0008 0.0008 0.0008 0.0010 0.0014 0.0018
+0.lo,, | 0.1471 0.1465 0.1460 0.1455 0.1450 0.1445 0.1439
+020,, | 02425 | 02420 | 0.2414 | 02408 | 0.2403 0.2397 | 0.2391
030, [ 03136 0.3130 0.3124 0.3118 0.3111 0.3105 0.3099
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CGT Performance vs. Modeling Error for o, =05 ,, and {_ =10

Table 6-3b

CGT Performance Index (PI x 1000) vs. Modeling Error for 0 , =050, and { =10
Plant -03C,. | -0.2C,. | -0.1C,, No [ +0.1C,, | +0.2C,, | +0.3C,,

Model Error

Error

030, | 98151 9.8134 9.8116 9.8098 9.8080 9.8062 9.8045
-020,, | 6.1277 | 6.1284 | 6.1291 6.1298 | 6.1305 6.1315 6.1327
-0.1o,, [ 28639 | 2.8669 | 2.8699 | 2.8729 | 2.8759 | 2.8789 | 2.8819
No Error | 0.0302 | 0.0303 0.0308 0.0334 | 0.0390 | 0.0448 | 0.0505
+0.1e,, | 2.4700 2.4633 2.4566 2.4500 2.4433 2.4367 2.4300
020, | 4.6415 4.6332 4.6249 4.6166 4.6083 4.6000 4.5918
+030,, | 6.5304 | 6.5205 6.5106 | 6.5008 | 6.4910 6.4811 6.4713
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MRAC Performance vs. Modeling Error for o , =050, and { =10

Table 6-3c
MRAC Performance Index (PI x 100) vs. Modeling Error for 0 , =050, and {, =10

Plant -0.3 Cpm -0.2@1[,m -0.1 Cpm No +0.1 Cpm +0-2C,,m +0.3 Cpm
Model Error :
Error

030, | 2.0544 2.0543 2.0542 2.0542 2.0541 2.0540 2.0539

020, | 13272 1.3277 1.3282 1.3286 1.3291 1.3295 1.3300

-0.1e,, | 0.6342 0.6350 0.6358 0.6366 0.6374 0.6383 0.6391

No Error | 0.0076 0.0079 0.0082 0.0088 0.0098 0.0110 0.0123

+0.10,, | 0.5619 0.5604 0.5589 0.5575 0.5560 0.5545 0.5530

+0.20,, | 1.0636 1.0618 1.0601 1.0583 1.0566 1.0548 1.0531

030, | 15113 1.5092 1.5072 1.5052 1.5032 1.5012 1.4992
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Fixed Gain MRAC Performance vs. Modeling Error for ® , =050, and {

Table 6-3d

=10

Fixed Gain MRAC Performance Index (PI x 100) vs. Modeling Error for 0 , = 050 ,,

and C, =10

Plant -0.3C,. | -0.2C,, | -0.1C,, No +0.1¢,, | +0.2¢,, | +0.3C,,

Model Error

Error
-030,, | 2.0618 2.0617 2.0616 2.0616 2.0615 2.0614 2.0613
-0.20)',m 1.3308 1.3313 1.3317 1.3322 1.3327 1.3331 1.3336
-0.10,, 0.6358 0.6366 0.6374 0.6383 0.6391 0.6399 0.6407
No Error | 0.0076 0.0078 0.0082 0.0088 0.0099 0.0111 | 0.0123
+0.10,, | 0.5614 0.5599 0.5584 0.5570 0.5555 0.5540 0.5525
+0.20,, 1.0632 1.0615 1.0597 1.0580 1.0562 1.0545 1.0527
+030,, | 1.5110 1.5090 1.5070 1.5049 1.5029 1.5009 1.4989

192




x 10

...........

0.2

Frequepcyo 0.2 0o 019 01
Modeling Damping
Error (%) I};dodel(n;g)
rror (%

Figure 6-18a

Pole Placement Performance vs. Modeling Error for o , =050 ,, and { =017

Table 6-4a
Pole Placement Performance Index (PI x 100) vs. Modeling Error for @, = 050, and
=017

Plant | -03¢,, | -0.2C,, | -0.1§,, No +0.1¢,, | +0.28,. | +0.38,,

Model Error

Error
030, | 7.6(10) [ 7.2(10)"* | 6.9(10)* | 6.5(10)"* | 6.3(10)"* | 6.0(10)"* | 5.7(10)"
020, | 2.0(10)* | 2.0(10)* | 1.9(10)* | 1.9(10)" | 1.8(10)* | 1.8(10)* | 1.8(10)"
0.1, | 46402 | 4.5519 | 44669 | 43848 | 43057 | 4.2287 | 4.1544
No Error | 0.0484 [ 0.0304 | 0.0140 | 0.0053 | 0.0222 | 0.0388 | 0.0550
+0.10,, | 1.8294 | 1.8153 | 1.8016 | 1.7884 | 1.7758 | 1.7634 | 1.7514
+0.20,, | 22242 | 2.2062 | 2.1891 | 21723 | 2.1560 | 2.1400 | 2.1244
+030,, | 24937 | 2.4703 | 24477 | 24261 | 24054 | 23853 | 2.3657
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CGT Performance vs. Modeling Error for o, =050, and =017

Table 6-4b

CGT Performance Index (PI x 100) vs. Modeling Error for o, =050, and { =017

Plant -0.3 Cpm -O.ZC‘,m -0.1 Cpm No +0.1¢ om +O.2Cpm +0.3 me

Model Error

Error
03w pm 2.4809 2.4793 24777 2.4761 2.4745 2.4729 2.4713
-0.201)1,m 1.6140 1.6133 1.6126 1.6119 1.6112 1.6106 1.6099
-0.10 pm 0.7641 0.7641 0.7642 0.7642 0.7642 0.7643 0.7643
No Error | 0.0093 0.0070 0.0050 0.0033 0.0064 0.0095 0.0125
+0.10 pm 0.6500 0.6488 0.6477 0.6466 0.6455 0.6445 0.6434
+0.20,, 1.1871 1.1858 1.1845 1.1832 1.1819 1.1806 1.1793
+0.3® pr 1.6318 1.6303 1.6289 1.6274 1.6259 1.6245 1.6230
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Table 6-4c
MRAC Performance Index (PI x 1000) vs. Modeling Error for o , =050 ,,, and
¢, =017
Plant -03¢,, | -0.2C,, | -0.1C,, No +0.1¢,,, | 10.2C,, | Y0.3C,,
Model Error
Error
030, | 82633 8.2599 8.2565 8.2532 8.2498 8.2465 8.2431
020, | 5.5649 5.5634 5.5621 5.5609 5.5597 5.5585 5.5572
-0.le,, | 27369 | 2.7374 2.7383 2.7392 | 2.7405 2.7418 2.7433
No Error | 0.0978 0.0912 0.0859 0.0812 0.0830 0.0898 0.0984
0.1, | 25542 2.5499 2.5456 2.5414 2.5372 2.5330 2.5288
+0.20 pm 47774 47719 4.7664 4.7608 4.7554 4.7499 4.7444
+03w0,, | 6.7052 6.6990 | 6.6928 6.6866 | 6.6804 6.6744 6.6685
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Figure 6-18d
Fixed Gain MRAC Performance vs. Modeling Error for o, =050, and {_ =0.17
Table 6-4d
Fixed Gain MRAC Performance Index (PI x 1000) vs. Modeling Error for @, = 05@ ,,
and {, =017
Plant -0.3C,, | -0.2C,, | -0.1C,, No +0.1C,, | +0.2¢,, | +0.3C,,
Model Error
Error
-03e0,, | 8.1842 | 8.1807 | 8.1772 | 8.1738 | 8.1703 8.1669 | 8.1634
-020,, | 54931 5.4914 5.4898 5.4883 5.4869 5.4854 5.4840
-0.lo,, | 26882 2.6883 2.6889 2.6894 2.6904 2.6914 2.6925
No Error | 0.1389 0.1307 0.1239 0.1177 0.1180 0.1234 0.1305
+0.10,, | 2.6049 2.6006 2.5963 2.5920 2.5878 2.5835 2.5793
020, | 4.8263 4.8208 48153 4.8098 4.8043 4.7989 4.7935
+03w,, | 6.7484 6.7422 6.7361 6.7299 6.7238 6.7179 6.7120
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Figure 6-19a
Pole Placement Performance vs. Modeling Error for o , =117, and {, = 033.
Table 6-5a
Pole Placement Performance Index (PI x 100) vs. Modeling Error for 0 , = 1170, and
£ =033
Plant -0.3C,., | -0.2C,, | -0.1C,,, No +0.1¢,, | H0.2¢,, | +0.3C
Model Error
Error
030 ,, | 2.2844 2.2839 2.2834 2.2829 2.2824 2.2819 2.2817
020, | 1.6870 1.6871 1.6872 1.6873 1.6879 1.6886 1.6893
-0.lo,, | 09085 | 0.9106 | 0.9128 09156 | 0.9183 0.9211 0.9239
No Error | 0.0341 0.0244 0.0146 0.0052 0.0071 0.0148 0.0239
+0.1o,, | 1.0175 1.0095 1.0015 0.9935 0.9856 0.9778 0.9700
+0.20,, | 2.0074 1.9962 1.9850 1.9739 1.9629 1.9520 1.9412
+03w,, | 2.8975 2.8838 2.8702 2.8567 2.8433 2.8300 2.8168
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CGT Performance vs. Modeling Error for @, =117, and { =033

Table 6-5b
CGT Performance Index (PI x 1000) vs. Modeling Error for 0 , = 1170, and

¢ =033

Plant | -03¢,, | -0.2§,, | -0.1¢,, | No | +0.1¢,, | +0.2C,, | +0.3C,,
Model Error
Error

-03w,, | 59019 5.9063 5.9106 5.9150 5.9194 5.9238 5.9282

020, | 43134 4.3185 4.3237 4.3289 4.3340 4.3392 4.3443

0lo,, | 23232 2.3319 2.3406 2.3492 2.3579 2.3673 2.3777

No Error | 0.0882 0.0624 0.0366 0.0134 0.0213 0.0432 0.0680

t0.lw,, | 2.7266 2.7074 2.6882 2.6691 2.6501 2.6311 2.6122

+02w,, | 5.6026 5.5767 5.5510 5.5253 5.4998 5.4744 5.4491

+030,, | 84709 | 84391 8.4073 8.3758 8.3443 8.3130 8.2818
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MRAC Performance vs. Modeling Error for 0, =1170 ,, and { =033
Table 6-5¢
MRAC Performance Index (PI x 100) vs. Modeling Error for © , =117, and
¢, =033
Plant -0.3C,. | -0.2C,, | -0.1C,, No +0.1¢,, | Y0.2¢,, | +0.3C,,
Model Error
Error
-030,, | 08768 0.8775 0.8782 0.8789 0.8796 0.8803 0.8810
-020,, | 0.6264 0.6275 0.6287 0.6299 0.6310 0.6322 0.6333
-0.1e,, | 03357 0.3368 0.3380 0.3392 0.3404 0.3416 0.3428
No Error | 0.0251 0.0221 0.0193 0.0168 | 0.0152 | 0.0163 0.0188
+0.lo,, | 0.3816 [ 0.3791 0.3766 | 0.3741 03716 | 0.3691 0.3666
+0.20,, | 0.7849 | 0.7818 | 0.7787 | 0.7756 | 0.7725 0.7694 | 0.7663
+030,, | 12116 1.2078 1.2040 1.2003 1.1965 1.1928 1.1891
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Fixed Gain MRAC Performance vs. Modeling Error for o , = 1170 ,, and {, =033

Table 6-5d
Fixed Gain MRAC Performance Index (PI x 100) vs. Modeling Error for o ,, = 117w ,,
and {_ =033
Plant -03C,, | -0.2C,. | -0.1C,, No +0.1¢C,, | +0.2C,, | +0.3C,,
Model Error
Error
030, | 08954 | 0.8960 | 0.8966 | 0.8972 | 0.8979 | 0.8985 | 0.8991
020, [ 06449 | 0.6459 | 0.6469 | 0.6480 | 0.6490 | 0.6500 | 0.6510
-0.10, | 0.3551 0.3561 0.3571 0.3580 0.3590 0.3600 0.3610
No Error | 0.0454 0.0419 0.0386 0.0355 0.0334 0.0339 0.0358
+0.1o,, | 03922 0.3895 0.3867 0.3839 0.3812 0.3784 0.3757
+0.20,, | 0.7945 0.7911 0.7877 0.7843 0.7810 0.7776 0.7743
+030,, | 12222 1.2183 1.2145 1.2106 1.2068 1.2029 1.1991
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Pole Placement Performance vs. Modeling Error for 0 , =150, and £ =001

Table 6-6a
Pole Placement Performance Index (PI x 10) vs. Modeling Error for ® ,, =150, and
¢, =001
Plant | -03¢,. | -02¢,. | -0.1¢,., No | +0.1C,, | +0.2¢,. | +0.3¢,.,
Model Error
Error
-030,, | 04358 | 04355 | 04353 | 04350 | 0.4348 | 04345 | 0.4343
020, | 04378 | 04372 | 04365 | 04359 | 04353 | 0.4348 | 0.4342
0.1, | 04389 | 04364 | 04340 | 04317 | 04295 | 04274 | 0.4254
NoError [ 0.1148 | 0.0714 | 0.0340 | 0.0015 | 0.0270 | 0.0521 | 0.0743
+0.10,, | 9.1059 | 6.6035 | 4.8889 | 3.7013 | 2.8668 | 22723 | 1.8420
+020,, | 1.9010)° | 1.2(10)° | 0.7(10)" | 0.4(10)* | 0.3(10)’ | 0.2(10)’ | 0.1(10)’
+0.30,, | 4.8(10)° | 2.8(10)° | 1.6(10)" | 0.9(10)° | 0.5(10)’ | 0.3(10)’ | 0.2(10)’
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CGT Performance vs. Modeling Error for o, = 150, and ¢, =001
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Table 6-6b
CGT Performance Index (PI x 10) vs. Modeling Error for @, =150, and _ =001
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Modeling
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Plant -0.3 C_,pm -O.ZCpm -0.1 Cpm No +0.1CPm +O.2Cpm +0.3 Cpm

Model Error

Error
030 o 1.0946 1.0938 1.0930 1.0922 1.0915 1.0908 1.0901
-0.20,, | 0.8010 0.8003 0.7996 0.7989 0.7983 0.7977 0.7971
-0.10,, 0.4400 0.4393 0.4388 0.4382 0.4378 0.4375 0.4373
No Error | 0.0219 0.0146 0.0074 0.0003 0.0072 0.0143 0.0214
+0.10 , 0.5271 0.5259 0.5249 0.5241 0.5233 0.5227 0.5222
+0.20,, | 1.1424 1.1402 1.1382 1.1362 1.1344 1.1326 1.1309
+030,, | 1.8383 1.8345 1.8308 1.8272 1.8236 1.8202 1.8169
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MRAC Performance vs. Modeling Error for o, =150, and ¢ = 0.01
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Table 6-6¢
MRAC Performance Index (PI x 1000) vs. Modeling Error for o ,, = 15@ ,, and

€., =001

Plant 03¢, | -0.2C,, | -0.1C,, No +0.1C,, | +0.2¢,, | +0.3C,,
Model Error
Error

-030,, | 64765 | 64728 | 6.4693 6.4661 6.4631 6.4600 | 6.4571
-020,, | 46767 | 4.6735 | 4.6705 | 4.6676 | 4.665] 4.6627 | 4.6604
01w, | 2.5709 | 2.5687 | 2.5669 | 2.5656 | 2.5648 | 2.5643 | 2.5643
No Error | 0.3041 0.2766 | 0.2524 | 0.2397 | 0.2491 0.2718 | 0.3002
+0.1o,,, | 2.7282 | 2.7250 | 27224 | 27205 | 2.7195 | 2.7192 | 2.7199
+0.20,, | 5.7961 57897 | 5.7837 | 5.7783 | 5.7736 | 5.7696 | 5.7659
+03w@,, | 92627 | 9.2532 | 9.2433 | 9.2343 | 9.2248 | 92172 | 9.2092
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Figure 6-20d

Fixed Gain MRAC Performance vs. Modeling Error for @, = 150, and {_ =001

Table 6-6d
Fixed Gain MRAC Performance Index (PI x 1000) vs. Modeling Error for o, = 150,
and C, =001
Plant -03C,, | -0.2C,, | -0.1C . No +0.1¢,, | Y0.2C,, | t0.3C,,
Model Error
Error
-030,, | 6.8551 6.8508 6.8467 6.8429 6.8392 6.8355 6.8319
-020,, | 5.0488 5.0447 5.0407 5.0370 5.0335 5.0301 5.0269
O0lo,, | 29223 29184 2.9152 29124 2.9100 2.9080 2.9064
No Error | 0.5279 0.4969 0.4692 0.4531 0.4590 0.4781 0.5025
+0.1e,, | 2.6898 | 2.6830 | 2.6769 | 26716 | 2.6671 2.6633 | 2.6606
+0.20,, | 5.6387 | 56296 | 5.6210 | 56126 | 5.6050 | 5.5981 5.5916
t03w0,, | 89993 8.9861 8.9731 8.9603 8.9481 8.9364 | 8.9251
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Chapter 7

Conclusions and Recommendations

Our model reference adaptive control design procedure yielded excellent
results in simulation. Considerations of representative model trajectories,
representative output error, sampling time, and_transient response time factored into
our weighting matrix selection. We used Lyapunov stability to results to determine a
feedthrough term, minimizing the effects of plant modeling error. In the presence of
plant modeling error, these design considerations were sufficient to produce responses
well correlated with the reference model’s. The model reference adaptive controller
performed particularly well over long transient periods, where the adaptive gains could
accurately converge to values minimizing output error.

A major benefit of our design procedure is the absence of user_-controller
interaction. This procedure only requires an approximate model of the plant and a
specified reference model. Although our study assumes a very simple system, where
the reference model and plant are both second order, this design method is innovative
and may be applied to a larger class of systems.

In the comparative analysis of robustness, we found that generally, adaptive
control exceeds the ability of linear controllers to track the response of the reference
model.  Although the linear model reference control method yielded lower

performance indexes periodically, the adaptive methods begin to track the model
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output in fewer time steps than the linear methods. This attribute of adaptive control
is advantageous, but not sufficiently recognized by our quantitative evaluation.

We raised two issues worthy of further investigation. First, we should examine
the effects of signal noise for a particular choice of representative error. Our selection
was very low, resulting in a relatively high feedback weighting value. This high
computational value did not pose a problem in our “sterile” testing environment.
However, it is possible to achieve equitable performance for lower feedback weighting
values.

The two types of MRAC schemes produced similar results. We hypothesized
that MRAC, using a fixed feedback gain, would have a lower sensitivity to noise than
the fully adaptive version. The fully adaptive MRAC performed marginally better than
its counterpart in our study. We should reexamine these methods under more realistic
testing conditions.

We did not attempt control for an input to the reference model. Our design
procedure can be easily modified to account for this. Using a reference model
command, the plant has a non-zero steady state. This gives the designer a perspective
to better evaluate and design the ratio between proportional and integral weighting
matrices. A non-zero steady state also accentuates the benefits of adaptive control

over linear control.
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Another possibility for continuing research is the treatment of higher order and
MIMO systems. Our design procedure must be evaluated for this larger class of

systems to be truly effective in real world applications.
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Appendix A

Controllability and Observability

The tests for controllability and observability are identical for both continuous and
discrete time systems. These two tests are discussed for the generalized system, presented
as,

x(t) or x(k +1) = Ax(-)+ Bu() (A-1)

and _
y(O)=Cx(). (A-2)

The vectors x, y, and u are dimensioned n x 1, @ x 1, and m x 1, respectively. The
matrices A, B, and C are dimensioned n x n, n x m, and q x n, respectively

The test for controllability requires the formation of the controllability matrix .
E=[B AB A’B - A"'B] (A-3)
The pair (A, B) is controllable if
rank(§) = n. (A-4)
The observability test requires the formation of the observability matrix O.
o=[c ca ca’ .. ca™] (A-5)

The pair (A, C) is observable if

rank(O) =n. (A-6)
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Appendix B

Transformation to Feedback Canonical Form

The transformation of both continuous and discrete systems follow the same
procedure. For simplicity, we present the method of transformation for the SISO case.
For the generalized system
x(t) or x(k +1) = Ax(-) + Bu(") (B-1)
and
y() = Cx(), (B-2)

we seek a nonsingular transformation matrix T such that

A =TAT™ (B-3a)
B=TB (B-3b)
C=cT (B-3c¢)

where the minimal realization {A B, é} represents the system in feedback canonical form.

Feedback canonical form is demonstrated as,

X X - X X X|
00 010
,\ 0 : 1 0 :
A=|. 0o i 0 (B-4a)
01 : 00
10 - 0 0 0]

and
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o
I

(B-4b)
0

L.~
The upper row of A consists of the coefficients of the system's characteristic

equation. With a knowledge of Aand B, the reader can construct a controllability matrix

based upon this system realization.
i=[s AB A% .. A™] ®-5)
Forming the controllability matrix &, derived from {A,B,C}, the transformation matrix

may be calculated as,

T=E". (B-6)

214



Appendix C

Strictly Positive Real Conditions

The stability discussion of Chapter 4 involves a “leap of faith” that perhaps the

incredulous reader would prefer not to make. We hope that this section will provide some

insight into the jargon-filled realm of stability. Specifically, we shall derive the strictly

positive real conditions as applied to the linear subsystem of each adaptive algorithm.

First, we provide a review of the stability conditions from Chapter 4. These equations are

placed in a general form for convenience.
Continuous Case I:
ATP+PA=-1L"<0
C=B'P
Continuous Case II:
ATP+PA=-11L"<0
PB=C"-LW,
W W, =J+]"
Discrete Case:
ATPA-P=-1LT <0
A"PB=C" -LW,

W, W, =J+J" —-B"PB
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(4.1-5)

(4.2-52)
(4.2-5b)

(4.2-5¢)

(4.3-10a)

(4.3-10b)

(4.3-10c)



C.1 Terminology
Let's begin with a few definitions. For the SISO case, the term positive real
essentially means that the poles and zeros of a transfer function lie in the left-hand side or
on the imaginary axis of the complex plane and that the system transfer function has a
relative degree of 0 or 1. The mathematical requirement of a positive real transfer
function Z(s) is (Slotine and Li, 1991),
Re[Z(s)]= 0 V Re[s]=20. (C1-1)
Describing a system as strictly positive real implies that all poles and zeros of a transfer
function lie strictly in the left-hand side of the complex plane or
Re[Z(s-8)]20  V Re[s]=0and some 3>0. (C1-2)
Equation (C1-2) may be difficult to use when applied to higher order transfer functions.
As an alternative, we may state that a transfer function Z(s) is strictly positive real if and
only if
Z(s) is Hurwitz (eigenvalues are strictly stable) (C1-3a)
and

Re[Z(j0)]>0 V>0, (C1-3b)

We can infer from Eq. (C1-3b) that the Nyquist plot of Z(jw) lies in the right half of the
complex plane. From this we may establish the following claims of a strictly positive real
system (Slotine and Li, 1991):

e Z(s) has a relative degree of 0 or 1.
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e Z(s) is strictly minimum phase (all zeros lie in the left hand complex plane and none on
the imaginary axis).

We now extend this discussion to the MIMO case where we have a matrix of
transfer functions, Z(s). From Anderson (19675, the n x n transfer matrix Z(s) is positive
real if

Z(s) has elements that are analytic (defined, not infinite) for Re[s]> 0, (C1-4a)

Z'(s)=Z(s") for Re[s]>0, (C1-4b)
and
Z(s)+ Z" (s") is positive semi-definite (non-negative) for Re[s]>0. (Cl-4c)
Note that the superscript asterisk denotes complex conjugation. Equation (C1-4c) can be
proven equivalent to
Z(jw)+ Z" (-jw) is positive semi-definite for ¥ Re[w] (Hitz and Anderson, 1968)
(C1-44d)
The transfer matrix Z(s) is strictly positive real if Eq. (C1-4) is satisfied for Z(s-8) and
some & > 0 or

Z(s) has elements that are analytic (defined, not infinite) for Re[s]20,  (Cl1-5a)
Z’'(s)=Z(s") for Re[s]20, (C1-5b)

and

Z(s)+Z" (s") is positive definite for Re[s]>0. (C1-5c)

We have, additionally that
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Z(jo)+ Z" (-jw) is positive definite for ¥ Re[w]. (C1-5d)
We shall present an algebraic criterion for the transfer matrix Z(s) to be strictly

positive real. Let

Y(s) = Z(s)+ Z" (-s). (C.1-6)
Note that this implies,
Y(s)=Y"(-s). (C.1-7)
If s =jwthen
Y(jo) = Z(jo) + Z" (-jw). (C.1-8)

From equations (C.1-5d) and (C.1-7), we see that Y(jw) is positive definite Hermitian.
Because of this property, we may factor Y(s), the n x n matrix of rank r, such that

Y(s) = WT(—=s)W(s) (C.1-9)
where W(s) is an r x n matrix of rank r. Factorization principles dictate that if Z(s) has
elements that are Hurwitz then W(s) will as well (Anderson, 1967). The existence of W(s)
and its properties is contingent upon Z(s) being strictly positive real. If W(s) has elements
that are not Hurwitz, then Z(s) is can not be strictly positive real. We constrain W(s) to
have elements that are Hurwitz and develop a realization of Y(s) based upon W(s). From
Eq. (C.1-6) we can also realize Y(s) in terms of Z(s). After transforming these two
realizations such that they are in the same canonical forms we equate similar terms,
algebraically demonstrating the strictly positive real constraints on Z(s).

C.2 Continuous Case I
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We represent the linear subsystem in section 4.1 by the input-output transfer
function Z(s),

Z(s)=C[sI-AT'B. (C.2-1)

Using Z(s), we establish a set of state equations where x is the state vector, u is the input
and y is the output.

sx(s) = Ax(s) + Bu(s) . (C.2-2)

y(s) = Cx(s) (C.2-3)

Way may equivalently say that the set {A, B, C} is a realization of Z(s). If {A,B,C}isa

minimal realization (having no extraneous state variables), then there exists an infinity of

other minimal realizations that describe the same transfer matrix. We proceed under the

assumption that {A, B, C} is indeed a minimal realization, and that other minimal

realizations can each be calculated using a particular nonsingular transformation matrix T.
Let the set {F, K, LT} represent a minimal realization of W(s). By equating similar

realizations of Y(s) we demonstrate the conditions necessary to satisfy the strictly positive
real conditions for Z(s). The realizations given by Eq. (C.1-6) and Eq. (C.1-9) are both
minimal (Anderson, 1967).

Let the set {A,,B,,C, } represent the realization of Y(s) derived from Eq. (C.1-6).

{A,B,,C}= Y(s) =C[sI- AT'B-B"[sI+AT] 'C"

pner s SYefS) e
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Let the set {A,,B,,C, } represent the realization of Y(s) derived from Eq. (C.1-
9).

{A,,B,,C,}= Y(s) = —K"[sI+ F"] LL"[sI - F]'K

paci(D ML) e

Assuming that Z(s) is strictly positive real, W(s) must be Hurwitz. We examine
the state dynamics matrix of W(s) to derive the constraints for the Hurwitz condition. Let
w represent the state vector of W(s). Using Lyapunov's direct method, we formulate a

positive definite function in terms of the state variable w.

V(w)=w'Pw (C.2-6)
where P is an n x n positive definite matrix. We proceed to develop the first derivative of
V(w) and constrain it to be negative definite.

V(w) = wPw+ w'Pw (C.2-7)
Proving W(s) to be Hurwitz, we consider the homogeneous equation,
w(t) = Fw(t).
We substitute this expression into Eq. (C.2-7), producing
V(w) = (Fw)"Pw + w'P(Fw).
Factoring out w, we have

V(w)=w"(F"P+PF)w. (C.2-8)
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The Lyapunov first derivative must be negative definite to guarantee asymptotic stability.
Asymptotic stability implies that F contains strictly stable eigenvalues, or, that the
elements of W(s) are Hurwitz. We conveniently assign

F'P+PF=-LL" <0 (C2-9)
so that Eq. (C.2-8) is negative definite. This assignment aids in the transformation of

{A,.B,,C, } into the same canonical form as {A,,B,,C, }. The new realization is related
to {A,,B,,C, } by the process,
{A,.B,.C,}={TA,T",TB,,C,T"}

for which

We define A; as,

F 0
A, =TA,T = :
’ 2 [FTP+PF+LLT —FT]

Substituting for LL" using Eq. (C.2-9) reduces A; to

F 0
A3=[O —FT]' (C.2-10a)

Now, we transform the rest of the realization.

K
B.=TB, = C.2-10b
C,=C,T"=[K'P K] (C.2-10c)
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The new realization for Y(s) is

F 0 ][K][K"P
{As,Ba,C'f}={[0 —FTJ’[PK]’[-KT]}’ (C2-11)

With the first and third realizations in the same canonical forms, we may satisfy the strictly
positive real conditions for Z(s). We relate this realization to that the defined, yet
theoretical matrix W(s). Equating Eq. (C.2-11) to Eq. (C.2-4) shows that the matriceg A
and F are identical (Anderson, 1967). It follows that A must satisfy Eq. (C.2-10).
| ATP+PA =-LL" <0. (C2-12)
This is equivalent to Eq. (4.1-10)
Since K =B and C" = PK,
C' =PB.
By transposing both sides of the last expression, we arrive at the more conventional
presentation used in Eq. (4.1-5).
C=B'P. (C.2-13)
C.3 Continuous Case II
We extend the results of section C.2 to examine a system using a feedthrough
term. With Eq. (C.1-6) and Eq. (C.1-9) remaining valid, we develop the new realizations
of Z(s) and W(s).

{A,B,C,J} = Z(s)=J+C[sI-AT'B (C.3-1)
{E.K,L",W,}= W(s)=W, +L[sI-F]'K (C.3-2)

Realizing the transfer matrix Y(s) in terms of Z(s),
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{A,,B,C,,D,}= Y(s)=T+C[sI-AT'B+J" _BT[sI+ AT]'ICT ,

or equivalently,

{AI,B,,CT,D1}={[3 _24,[;] [_ET],J+JT}. ~(C3-3)

We realize Y(s) is in terms of W(s).

A,,B,,C,,D,}= Y(s) = (W? —KT[sI+ FT[ LYW, + LT[sI -F]'K
2 2 2 2 0
=WIW, + WILT[sI - F]'K

~K"[s1+F*]'LW, -K"[sI+F* ] LL"[s] - FT'K

This can be written as,

F 0 K ][w]LT
{Az,Bz,cj,D2}={[LLT -FT]’[LW ][ ;{T ],wgwo}. (C.3-4)
I -

Using the transformation procedure of Eq. (C.2-10) and the same matrix T, we

develop a third realization of Y(s).

F 0 K WILT+K™P
{A:B,C],D; }= {{0 —FTJ’[PK+LWO]’[ " kT ]’W"TW"} (€.3-5)

By equating the first and third realizations of Y(s), we develop the strictly positive real

constraints on Z(s):
ATP+PA =-LL" (C.3-6a)

PB=C" -LW, (C.3-6b)
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WyW, =T+J" (C.3-6c)
These conditions are equivalent to Eq. (4.2-5).

C.4 Discrete Case

We develop the discrete strictly positive real constraints for the generalized
discrete system,

Z(z)=J+C(zI-A)"'B. (C.4-1)

From Z(z), we establish the following state equations for which x is the state vector, u is
the input, and y is the output.

zx(z) = Ax(z) + Bu(z) (C4-2)

y(z) = Cx(z)+ Ju(z) (C4-3)

Let the set {A,B,C,J} be a minimal realization of Z(z). Because we only discuss the

characteristics of an open-loop plant (and not any means of control), the results from the

continuous discussion on strictly positive real properties may be mapped dircctly into the

z-plane by means of the bilinear transform:

z-1

. (C.4-4)
z+1

s=

Let Z(s) be realized by the set {A,,B,,C,,J.}. We also give the equations of

(C.3-6) a continuous denotation using a subscript “c”.

ATP.+PA, =-LTL (C.3-6a)

c

PB =CI -L_W,, (C.3-6b)
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W Wo, =, +17 (C.3-6¢)

Using the bilinear transform, our goal is to realize Eq. (C.3-6) in terms of discrete
matrices. Substituting for s in Eq. (C.2-2) yields,

(z-Dx(k)=A_(z+1x(z) + B (z+u(z). (C.4-5)

We convert this equation into a finite-difference expression and group future time step

values on the left.
(I-Ax(k+1D-Buk+1)=(I+A,)x(k)+B.uck) (C.4-6)
To alleviate the problems associated with future time step, we introduce a new vector p,

defined as,

pk+1)=(1-A Jx(k+1)-Bu(k+1). (C4-7)
The vector p may be equivalently defined as,

p(k) = (I- A, )x(k)-Bou(k),

thus providing a new expression for x(k).

x(k)=(I-A,) pk)+(I-A,) Buk) (C.4-8)
Substituting equations (C.4-7) and (C.4-8) into Eq. (C.4-6) produces a state equation in
terms p and u, and is given as,

pk+1)=(1+A XI-A,) pk)+2(1- A, ) Bu(k). (C.4-9)

Equation (C.4-8) is converted into the transfer function form.

(@) _ _ AV T AV )
u(z)‘z[ZI 1+AXI-A)"] @-A.)'B, (C.4-10)
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To realize the input-output transfer matrix Z(z) we must substitute Eq. (C.4-8) for
x(k) in y(k) = C x(k)+J u(k).
y() = C[(1-A,) ' p) + (1- A, Bu(k) |+ T u(k)
Terms can be regrouped such that
yk)=C(I- Ac)_lp(k) + [CC(I - Ac)_lBc + Jc]u(k) . (C4-11)

We convert this finite difference equation into the z domain and then divide through by the

input to create the transfer function Z(z).

Z—MC-A‘p(z)CIABJ
()(Z) a )()+( ) B.+

Using Eq. (C.4-10), we substitute the transfer function P E ; into Z(z). This yields,
u(z

Z(z)=2C, (- A ) [1-(1+AXI-A)"] (1-A.)B,
(C4-12)
+C,(I-A,) B, +]7,

Although this equation is a legitimate realization of Z(z), the current form hinders

the ensuing mathematical development. Life will be easier on us if we isolate C. on the
171
left side of [zI -(I+AXI-A,) 1] . Additionally, we will manipulate the constituents of

the state dynamics matrix and the plant input matrix to aid further development. Consider

the following element of Z(z) from Eq. (C.4-12).

(-A)"[a-@1+AX-A)" ]’1(1 ~A)" (C.4-12a)
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Using the property of matrix inverses: if the matrices A and B are square and invertible
and if the matrix AB is invertible then (AB)™” =BA™ (Perry, 1988), we can regroup the
expression in (C.4-12a).
{[zI ~(1+AX-A) Ja- Ac)}_1 (1-A)"

Within the braces, (I—-A,) distributes over the adjacent term.

[20-A)-@+A)] @-A,)" (C.4-12b)
We apply the matrix inverse property, arriving at,

[1-A)e1-A)-@+A)]) . (C.4-12¢)

Distributing (I - A,) over the right side produces

[2-A) -@-a)+A,)] -
Using the identity of
(I-AXI+A)=(I+AXI-A,),
we make a commutative change in the previous expression. We also insert the identity

matrix I which shall be defined subsequently.
[21-A) -+ AXT-AN]
If we define the identity matrix such that,
I=(1-AXI-A)",

substituting for I produces
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[2(0-A) -+ AXI-AXI-A)I-A)] - (C.4-12d)
Since (I+A,) commutes with (I-A,), we have
[20-A.F -@-A.Y@+AXT-A)T - (C.4-12¢)
The term (I - Ac)2 is factored out to the left. Then we use the property of matrix inverses,
yielding,
[a-@+a)t-a)"] @-A)". (C.4-12f)
We substitute this expression back into Eq. (C.4-12) and arrive at the final realization of
Z(z) in terms of continuous matrices.
Z(z)=2C [~ (1+AXI-A.)'] 1-A)’B,+C.(I-A)'B.+], (C4-13)
The matrices A, B., C. and J. must be defined so that Z(z) assumes the form of Eq. (C.4-
1):
Z(z)=C(zI-A)"'B+]J.

Equating Eq. (C.4-13) to Eq. (C.4-1) produces the relations:

A=(I+AYI-A) (C.4-14a)
B=2(1-A.)"B, (C.4-14b)
Cc=cC, (C.4-14c)
J=CI-A) B, +], (C.4-14d)

From Eq. (C.4-14), we can solve A, B, and J. in closed form.
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A =(A+D) 7' (A-]) (C.4-15a)
B, =2(A+I)"’B (C.4-15b)
J.=J-C(A+I)"B. (C.4-15¢)

We proceed to substitute for the continuous matrices in equations (C.3-6).

Equation (C.3-6a) becomes
(AT-I)AT + 1)'1 P+P(A+D)7'(A-T)=-LTL < 0. (C.4-16)
If we make the assumptions that
P.=05(AT+I)P(A+I) (C.4-17)
and
L.=L, (C.4-18)
Eq. (C.4-16) becomes
0.5(A" -I)P(A+1)+0.5(AT +I)P(A-T)=-LL" <0.
Distributing through all terms, he have
0.5(A"PA + AP —PA - P)+0.5(A"PA - ATP+PA - P)=-LL" <0,
which evolves into the final discrete strictly positive real equivalent to Eq. (C.3-6a).
ATPA-P=-1L"T<0 (C.4-19)
This concludes the derivation of Eq. (4.3-10c).

With the established definitions of the continuous matrices, we make substitutions

into Eq. (C.3-6b) to arrive at its discrete equivalent. Eq. (C.3-6b) becomes
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(AT+I)P(A+I) ' B=C" -LW,,.
Under the assumption that
W, =W, -L"(A+I)"'B, (C.4-20)
Eq. (C.3-6b) can evolve as,
(AT +1)P(A+1)'B=C" -L[W, -L"(A+1)"B]
(ATP+PYA+1)"B=C"-LW,-LL"(A+I)"B |
(A"P+P+LL Y A+I)"B=C" -LW,

Substituting for LLT using Eq. (C.4-19) permits further development.
(ATP+P+ATPA-PYA+I)'B=C" -LW,
ATP(A+I)A+1)"B=CT -LW,

ATPB=C" -LW, (C.4-21)
Thus, we have derived the discrete strictly positive real constraint from Eq. (4.3-10b).

Finally, we determine the discrete equivalent to W, W,  =J +J7. We substitute
for J. and Wy from equations (C.4-15c) and (C.4-20), respectively.
(WOT ~BT(AT+1)" L)(WO ~LT(A+I)"B)=T-C(A+I)'B+IT —BT(AT+I)"CT
Distributing terms on the left side of this equation produces

WTW, -WTLT(A+1)"B—BT(AT+1) LW, + B*(AT+1) LL"(A+1)"'B

=J+J"-C(A+I)'B-BT(AT+1) C"
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Next, we group similar terms.

WTW, +(C~WTLTA+1)"B+BT (AT +1)'(C" - LW, )+BT(A" +1) LL"(A+1)"B

=J+J"
Recall that

ATPA-P=-LL" (C.4-19)
and

A"PB=C" -LW, (C.4-21)

or equivalently,
B'PA=C-WIL'.
We use these results to produce

WTW, +(B"PA)A +I)"B+BT(AT+1) (ATPB)-J-1"
=B"(AT+1) (A"PA-PYA+I)"'B
=0.5B"[(AT+1)"(A™PA-P)}A+1)'B

+0.5B"(AT+1) [(A"PA-P)A+1)"B]

Grouping similar terms,
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WIW, -J -1

=0.58" {[(AT +1)"(ATPA - P)-2PA|(A+1)" + (AT +1) [(ATPA - PYA+D)" - 2ATP]}B
=0.5BT(AT+1)" {[(ATPA —P)-2(A" +I)PA]+[(A"PA - P)-2A"P(A + I)]}(A +I)'B
=-0.5BT(AT +1)" [(A™PA +PA + PA+P)+(A'P+P+ATPA + ATP)](A +I)7'B
=-0.5BT(AT +1)" {[(AT +I)PA+P(A+T)|+[(AT +I)P+ ATP(A + I)]}(A +I)'B
=-0SBT[PA(A+ 1) + (AT +1) P+ P(A +1)" + (AT +1) A"P[B

= —0.5BT [(PA +P)A+T)" +(AT+1)" (P + ATP)]B

= —0.5B" [P(A +IA+I) +(AT+I) (AT + I)P]B

We now arrive at the final expression which is equivalent to Eq. (4.3-10c).

W, W, =J+J" -B'PB (C.4-22)
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Appendix D
Predicting Representative Trajectory Values

We base weighting matrix calculations on the approximate sizes of model and plant
state vectors. If done correctly, the control algorithm achieves:
(1) Insensitivity to initial conditions
(2) Minimization of the error between the MRAC proportional gains and the CGT gains

To find representative trajectory values, we first determine the maximum and
minimum values of position and velocity of the model. The model's trajectories are
governed by their characteristic equation and initial conditions. We assume that there is
no command input to the plant. We provide a review from Rao (1990) on free vibration
with viscous damping for the underdamped and critically damped cases. Although we
specifically treat the reference model, substitutions can be made to evaluate the nominal
plant.
D.1 Underdamped Case

The position of the model, x42(t), is defined in time by

X (1) = X, ™" sin(w_,t+0, ). (D.1-1)

The terms {,, and @, are the model's damping ratio and natural frequency, respectively.

The model's damped natural frequency, (g, 1s defined as,

Opg = Oy 1—C2 (D.1-2)

The remainder of the terms of the homogeneous solution in Eq. (D.1-1) are
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X, =4C +C2, (D.1-3)

for which,
Crt = X2 (t=0) =X (D.1-4)
and
C.,= X (t= O)Jmfmmmnxmm _Xmot E;:n(:)mxm20 ’ (D.1-5)
and
¢, =tan(C,,/C,,). (D.1-6)

By differentiating xg2(t), we derive the model's velocity, X mi(t).
X, (1) = X_e onom! [— . sin(wmdt + ¢m)+ ®_, cos(wmdt + ¢, )] (D.1-7)
To find the relative extrema of position and velocity, we consider the critical points
of time where t = 0 and t = e. Additionally, relative extrema of position and velocity
occur at times for which velocity and acceleration equal zero, respectively. Let's derive

acceleration by taking the first derivative of velocity in Eq. (D.1-7).
X, (t) = —ch"'"‘”""‘[(cofnd =02, )sin(Wogt + 0, )+ 20,0,,0,,, cOS(W, 5t + 0., )]

(D.1-8)
We find the critical points for position by setting Eq. (D.1-7) equal to zero. We

denote these critical times as tamx2.

ta‘n((l)mdtcrxm2 + ¢m) = % (D. 1 '9)
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The tangent function is periodic and we consider its value for all possibilities resulting in a

positive tomxe. We introduce a counting integer, n, as a counting index for the calculation

of critical time points.
tan"(cw"“‘ ]— ¢, +nIl
)
tmy = e V positive tomxe and integersn  (D.1-10)
0]

md

Using a similar procedure, we determine the critical time points for velocity by

setting Eq. (D.1-8) to zero.

o, -0

md

o (%w_] ¢ +m00
o

V' positive temx and integers n

cxml —

(]

md

(D.1-11)
D.2 Critically Damped Case

For the circumstance where {, = 1, the position of the model is defined by

Xma (D) =e7="(C,, +C_,1), (D.2-1)
where
Coi =X (t=0)=x_, (D.2-2)
and
Co2 =X (t=0)+®_ X, 20 = X0 + OpnXpmoo - (D. 2-3)

Differentiating the position equation provides us with an expression for velocity.

Xt (1) = €™ [<0,,,C.y + (1= ©0,,,1)Cpr | (D. 2-4)

235



Now, we calculate the critical points by first deriving an expression for
acceleration.

Rt (1) = =00, ™™ [~ 00,1, Cpoy + (2= 0t )Copr | (D. 2-5)

Similar to the underdamped case, we calculate critical points for position, temxe, and

velocity, temxi.

omez = C“" =~ Doy (D. 2-6)
wmnCm2

o = 22~ Pra o (D. 2-7)
O‘)mncmZ
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