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TABLE 3. "Expected" distribution of types of loop-forming 
omnivore links in all 40 Briand (1983) food webs. See text 
for derivation of expected values. 

Predator trophic position 

Prey trophic position 3 4 5 6 7 8 

No. loop-forming omnivore links 

1 82 60 25 9 7 2 
2 114 37 14 9 2 
3 30 15 10 2 
4 6 3 1 
5 4 1 
6 1 

spacing between trophic positions is constant along 
each diagonal from upper left to lower right in Tables 
2 and 3.) A somewhat more refined test of the common- 
sense hypothesis, which takes this into account, can be 
done as follows. 

Multiply each upper-left to lower-right diagonal in 
Table 3 by that factor which gives it the same total 
number of animal-animal links as the corresponding 
diagonal in Table 2. This readjusted table has a total 
of 219 animal-plant links, an excess of 103 over Table 
2. So taking into account the overall effect on omnivory 
of similarity of trophic position, we are still left with 
a deficit of [103/(434 + 103)] x 100 = 19% due to the 
larger costs of feeding on plants and animals. This still 
exceeds the observed 16% deficit with respect to Pimm's 
random models, and it should be borne in mind that 
any test based on Table 3 is biased against the com- 

mon-sense hypothesis because of the tendency for food 
web data to be more coarsely categorized at lower 
trophic levels. 

Omnivory is no more rare than one would expect 
on the basis of ecological common sense. 
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A NOTE ON THE GENERAL 
LIKELIHOOD MEASURE 
OF OVERLAP' 

Eric P. Smith2 

Measures of niche overlap are commonly used in 
ecological studies to summarize data on resource use 
by two or more species. Petraitis (1979) introduced a 
measure of overlap which is based on the likelihood 
that two or more species usage vectors are samples 
from the same unknown vector. However, for this like- 
lihood measure, which Petraitis termed a general mea- 
sure of overlap, the lower bound, and hence, range of 

possible values, is dependent upon the sample sizes 
and number of species considered. This distinction is 
important because differences in sample sizes alone 
may lead to deceptively large differences in values of 
the general likelihood measures. If a measure of over- 
lap is to be used to compare resource use at several 
times, or between different groups of species at the 
same time, the measure should be corrected for the 
sample size effect. 

Petraitis' general measure of overlap is estimated by 

G=rE (1) 

where 
r is a base 

E = njj(lOgrj - logrPij)I/N, 

ni1 is a discrete measure of the use of resource j 
(j = 1, 2, . . . ,R)byspecies i(i= 1, 2, . . ., s), 
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TABLE 1. Sample usage data for two species i with no overlap 
and different sample sizes (N). 

Case 1 Case 2 

Resource Resource 

1 2 N, 1 2 Ni 

Species 1 100 0 100 10 0 10 
Species 2 0 100 100 0 190 190 

= nij/: nij is the estimated proportional 
i=I ii 
use of resource j if all species were using 
resource j in the same proportion. 

R 

= nij/ ni1 is the estimated proportional 
j=1 

use of resource j by species i, 
and 

s R 

N = ni, is the total use of resources 
i=1 j=1 
(i.e., the total sample size). 

The above notation is Petraitis' (1979) with two ex- 
ceptions. R is used for the number of resources (to 
distinguish the number of resources from the base r) 
and a is used to differentiate between an estimate 
(e.g., Pij) and a parameter (e.g., pi). The data vector for 
species i, ni, is assumed to be a sample from a multi- 

R 

nomial distribution M(Nipi), with Ni = n, denoting 
j=I 

the sample size for species i (fixed). 
To illustrate the sample-size dependence, consider 

the data in Table 1. In Case 1, the sample sizes are the 
same, while in Case 2 they are quite different. Both 
examples have no overlap. However, in Case 1, G = 

0.50 while for Case 2, G = 0.81. Note that these esti- 
mates are the minimum values of G for the given sam- 
ple sizes (since there is no overlap). 

The dependence on the sample sizes can then be 
made clearer by computing the minimum of G for 
general sample sizes N1 and N2. To find the minimum 
value of G, we need only minimize the exponent. 

s R 

E = z z nj[logr(ci) - logr,(tj)]/N 
i=l i=l 

sR / \ 
= 

(I IN) /;2 niog( n,) - nijlogrN 
i=1 j= i=L 

- nijlogrnij + niilogrNi 

sR [ \ 
= (1 /N) z z niilogr, ni) 

i=1 j=1 i=1 

-niJlogrnifJ 

+ (1/N)L NilogrN1 - N logrN. (2) 

Note that the first part of the right-hand side is great- 
er than or equal to zero and the second part is negative 
and fixed. Hence the minimum occurs when the first 
part is zero, i.e., when each resource is used by only 
one species. 

Thus, the minimum of G is 

= 1= N(iogrNi gV) (3) 

Since Gmin depends on the Ni (which are assumed 
fixed), one may ask what values of Ni result in the 
smallest value of Gmin. By recognizing the similarity of 
the exponent in Eq. 3 to the Shannon-Wiener diversity 
measure, which is minimized when all proportions are 
the same, the minimum is obtained when Ni = N/s. 
Then, Gmin= 1/s. Note that if there are two species 
(s = 2), the measure is bounded as follows 

1 - G- Gmin ' 1/2. 

The value of the measure should be adjusted for the 
minimum whenever it is used to compare resource use 
data. 
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