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An Integrated End-User Data Service for HPC Centers

Henry Matthew Monti

(ABSTRACT)

The advent of extreme-scale computing systems, e.g., Petaflop supercomputers, High Per-
formance Computing (HPC) cyber-infrastructure, Enterprise databases, and experimental
facilities such as large-scale particle colliders, are pushing the envelope on dataset sizes. Su-
percomputing centers routinely generate and consume ever increasing amounts of data while
executing high-throughput computing jobs. These are often result-datasets or checkpoint
snapshots from long-running simulations, but can also be input data from experimental fa-
cilities such as the Large Hadron Collider (LHC) or the Spallation Neutron Source (SNS).
These growing datasets are often processed by a geographically dispersed user base across
multiple different HPC installations. Moreover, end-user workflows are also increasingly
distributed in nature with massive input, output, and even intermediate data often being
transported to and from several HPC resources or end-users for further processing or visu-
alization.

The growing data demands of applications coupled with the distributed nature of HPC
workflows, have the potential to place significant strain on both the storage and network
resources at HPC centers. Despite this potential impact, rather than stringently managing
HPC center resources, a common practice is to leave application-associated data management
to the end-user, as the user is intimately aware of the application’s workflow and data needs.
This means end-users must frequently interact with the local storage in HPC centers, the
scratch space, which is used for job input, output, and intermediate data. Scratch is built
using a parallel file system that supports very high aggregate I/O throughput, e.g., Lustre,
PVFS, and GPFS. To ensure efficient I/O and faster job turnaround, use of scratch by
applications is encouraged. Consequently, job input and output data are required to be
moved in and out of the scratch space by end-users before and after the job runs, respectively.
In practice, end-users arbitrarily stage and offload data as and when they deem fit, without
any consideration to the center’s performance, often leaving data on the scratch long after
it is needed. HPC centers resort to “purge” mechanisms that sweep the scratch space to
remove files found to be no longer in use, based on not having been accessed in a preselected
time threshold called the purge window that commonly ranges from a few days to a week.
This ad-hoc data management ignores the interactions between different users’ data storage
and transmission demands, and their impact on center serviceability leading to suboptimal
use of precious center resources.

To address the issues of exponentially increasing data sizes and ad-hoc data management,
we present a fresh perspective to scratch storage management by fundamentally rethinking
the manner in which scratch space is employed. Our approach is twofold. First, we re-design



the scratch system as a “cache” and build “retention”, “population”, and “eviction” policies
that are tightly integrated from the start, rather than being add-on tools. Second, we aim
to provide and integrate the necessary end-user data delivery services, i.e. timely offloading
(eviction) and just-in-time staging (population), so that the center’s scratch space usage
can be optimized through coordinated data movement. Together, these two combined ap-
proaches create our Integrated End-User Data Service, wherein data transfer and placement
on the scratch space are scheduled with job execution. This strategy allows us to couple job
scheduling with cache management, thereby bridging the gap between system software tools
and scratch storage management. It enables the retention of only the relevant data for the
duration it is needed. Redesigning the scratch as a cache captures the current HPC usage
pattern more accurately, and better equips the scratch storage system to serve the growing
datasets of workloads. This is a fundamental paradigm shift in the way scratch space has
been managed in HPC centers, and outweighs providing simple purge tools to serve a caching
workload.

This work was sponsored in part by the LDRD program of ORNL, managed by UT-Battelle,
LLC for the U.S. DOE (Contract No. DE-AC05-00OR22725), and by the U.S. NSF Awards
CCF-0746832, CNS-1016408, and CNS-1016793.
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Chapter 1

Introduction

1.1 Problem Statement

The advent of extreme-scale computing systems, e.g., Petaflop supercomputers, High Per-
formance Computing (HPC) cyber-infrastructure, e.g., TeraGrid [19], Enterprise databases,
and experimental facilities such as large-scale particle colliders, are pushing the envelope
on dataset sizes. Supercomputing centers routinely generate and consume ever increasing
amounts of data while executing high-throughput computing jobs. These are often result-
datasets or checkpoint snapshots from long-running simulations, but can also be input data
from experimental facilities. For example, the Jaguar petaflop machine [18] at Oak Ridge
National Laboratory, which is No. 2 in the Top500 supercomputers as of this writing, is
generating terabytes of user data while supporting a wide-spectrum of science applications
in Fusion, Astrophysics, Climate and Combustion. Similarly, input datasets — from experi-
mentation facilities such as the Large Hadron Collider (LHC) [43] or the Spallation Neutron
Source (SNS) [15, 40] — are on track to reach petabytes of data [94, 10]. Moreover, these
growing datasets are often processed by a geographically dispersed user base across multi-
ple different HPC installations. End-user workflows are increasingly distributed in nature
with massive input, output, and even intermediate data being transported to and from sev-
eral HPC resources or end-users for further processing or visualization. This is a common
use-case on the TeraGrid where result-data — from computations at any of the dozen sites
nation-wide — are required to be delivered to the end-user. These TeraGrid sites host some
of NSF’s most powerful supercomputers such as Kraken [11] at the University of Tennessee,
Ranger [17] at Texas Advanced Supercomputing Center and Blue Waters at the National
Center for Supercomputing Applications, and executing distributed workflows on these and
other HPC resources will of be continued importance.

The growing data demands of applications coupled with the distributed nature of HPC
workflows, have the potential to place significant strain on both the storage and network
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resources at HPC centers. Despite this potential impact, rather than stringently managing
HPC center resources, a common practice is to leave application-associated data management
to the end-user, as the user is intimately aware of the application’s workflow and data needs.
This means end-users must frequently interact with the local storage in HPC centers, the
scratch space, which is used for job input, output, and intermediate data, that are currently
on the order of terabytes. Scratch is built using a parallel file system that supports very high
aggregate I/O throughput, e.g., Lustre [39], PVFS [37], and GPFS [91]. To ensure efficient
I/O and faster job turnaround, use of scratch by applications is encouraged. Consequently,
job input and output data are required to be moved in and out of the scratch space by
end-users before and after the job runs, respectively. The scratch space requires proper
provisioning to accommodate the storage demands of all incoming jobs, which in turn affects
center serviceability. In practice, end-users arbitrarily stage and offload data as and when
they deem fit, without any consideration to the center’s performance, often leaving data on
the scratch long after it is needed. HPC centers are aware of these constraints and enforce
“purge” policies to manage the precious scratch space, wherein data is deleted based on a
time window (ranging from a few hours to a few days) [5, 2]. As centers become crowded, the
purge policies get more stringent to provide space for incoming jobs. The purge window is,
therefore, a product of the center’s load, its provisioned storage, and its desire to maintain
a certain level of serviceability.

However, this ad-hoc approach to data management ignores the interactions between differ-
ent users’ data storage and transmission demands, and their impact on center serviceability.
To address this, in this dissertation, we focus on comprehensive end-user data management,
which has largely been marginalized under current compute-focused center provisioning poli-
cies. In the remaining sections of this chapter, we provide further discussion of the challenges
posed by growing data demands and ad-hoc data management, as well describe the contri-
butions made by this research while attempting to address those challenges. Specifically,
Sections 1.1.1 and 1.1.2 describe the obstacles faced in scratch management and end-user
data delivery, respectively. Section 1.2 details our objectives, while Section 1.3 outlines this
dissertation’s contributions. Finally, Section 1.4 describes the organization of the remainder
of this dissertation.

1.1.1 Challenges in HPC Scratch Management

The scratch file system in an HPC center provides fast temporary local storage space for jobs,
and is a precious commodity, often consuming a notable fraction of the center’s operations
budget. Scratch storage is intended for very large — typically on the order of terabytes —
input, output, and intermediate data of currently running and soon-to-run user jobs. This
storage is usually served via a parallel file system (PFS) that supports very high aggregate
I/O throughput, e.g., Lustre [39], PVFS [37], and GPFS [91]. Consequently, to ensure effi-
cient data I/O and to support improved job turnaround times, supercomputing application
programmers are encouraged to utilize the scratch space.
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The scratch space, however, impacts the HPC center’s serviceability and necessitates proper
provisioning to accommodate the storage demands of all incoming jobs. Unlike the user
“home” file system that is meant for application development, the scratch is seldom regulated
with quotas to avoid introducing any ceilings on the applications’ data sizes. The input
datasets are brought in from remote data sources, and the result files are offloaded to end-
user and other off-center destinations. Consequently, the scratch storage is designed to be a
staging ground for transient datasets that are usually not held beyond the lifetime of a job
run. However, due to the lack of sophisticated “end-user data delivery services” — timely
staging of input data and offloading of result output data — HPC centers often resort to
“purge” mechanisms that sweep the scratch space to remove files found to be no longer in
use, based on not having been accessed in a preselected time threshold called the purge
window that commonly ranges from a few days to a week. The purge window depends on
the load, total scratch size, and required level of serviceability.

The scratch space is not intended to be used as a generic file system for persistent user
file storage. Instead, it is a special-purpose storage for the needed (“hot”) data of running
and waiting jobs. Nonetheless, in practice, the scratch space is utilized as a traditional file
system, with the purge policy added as an afterthought to delete the unneeded (“cold”)
data of finished jobs and to cap the scratch utilization within limits. Such an approach has
several disadvantages. First, it wastes scratch space by allowing users to stage input data
much earlier than job commencement and offload results much later than job completion.
This leads to sub-optimal use of scratch space, which should be used for new incoming jobs.
By extension, this impacts the HPC center’s serviceability. Second, it renders the input and
output data vulnerable to scratch storage system failure during the extra wait time, which
can increase job turnaround time.

The lack of elegant scratch space management is having a profound impact on HPC centers.
Users arbitrarily stage and offload data as and when they deem fit, without any consideration
to the center performance. Few solutions that are available in this landscape (e.g., the purge
mechanism) are disjoint with user job workflow, and thus are not efficient. Further, users can
easily trick the purging system into not deleting their datasets by periodically “touching” the
datasets, and essentially rendering the purge ineffective. Thus, there is an urgent need for
a coherent scratch space management solution. Such an approach can be very timely when
it comes to HPC acquisition proposals. Multi-million dollar HPC acquisition proposals are
won based on the FLOPS provided. Every dollar spent on provisioning the scratch space is a
dollar taken away from buying FLOPS. Efficient management can transform the productivity
of even an under-provisioned scratch storage system.

1.1.2 Challenges in End-User Data Delivery

There are many challenges associated with building robust data transfer services for HPC.
These services must provide high performance while transferring massive amounts of data to
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and from a geographically distributed user-base with varied end-user connectivity, resource
availability, and application requirements. Here we discuss the challenges of data delivery in
an HPC environment and the limitations of the tools currently employed for offloading and
staging data to a center’s scratch space.

Data offloading With the exponential growth in application input and output data sizes,
it is impractical to store all user data indefinitely. HPC centers are aware of this constraint
and enforce purge policies to manage the precious scratch space by deleting data based on a
time window (ranging from a few hours to days) [5, 2]. However, there is no corresponding
end-user service for a timely offload of data, to avoid purging. This is largely left to the
user and is a manual process, wherein users offload result-data using point-to-point transfer
tools such as GridFTP [34], sftp, hsi [49], and scp. The inherent problem with several
point-to-point transfer tools, used to offload data from supercomputers, is that they are
only optimized for transfers between two well-endowed sites. For example, the TeraGrid
offers several optimizations (TCP buffer tuning, parallel flows, etc.) for GridFTP transfers
between the various site pairs that make up the TeraGrid, which are already well connected
(10-40 Gbps links). In contrast, end-user data delivery involves providing access to the data
at the user’s desktop. How does one move data efficiently from well-provisioned HPC centers
(e.g., Jaguar, Kraken [11], Ranger [17], etc.) or a cyber-infrastructure (e.g., TeraGrid) to
the outside world? More often, users come from smaller universities and organizations with
varied connectivity to the HPC center. Thus, efficient and timely delivery of data cannot be
ignored as a “last-mile” issue.

Not providing a sophisticated solution for result-data delivery affects not only end-user ser-
vice, but also center operations. The output data of a supercomputing job is the result of a
multi-hour — even several days’ — run. A delayed offload renders output-data vulnerable
to center purge policies. The loss of output-data leads to wasted user time allocation that
is very precious and obtained through rigorous peer-review. Thus, a timely end-user data
offload can help optimize both center as well as user resources.

The need for such a service is also fueled by the, often, distributed nature of computing
services and users’ job workflow, which implies that data needs to be shipped to where it
is needed. For example, several HPC applications analyze intermediate results of a running
job, through visualizations, to study the validity of initial parameters and change them if
need be. This process requires the expeditious delivery of the result-data to the end-user
visualization application for online feedback. A slightly offline version of this scenario is a
pipelined execution, where the output from one computation at supercomputer site A is the
input to the next stage in the pipeline, at site B (Figure 1.1). Large-scale user facilities such
as the Spallation Neutron Source (SNS) [15] and Earth System Grid (ESG) [4] that employ
distributed workflows are already facing these problems and require efficient end-user data
delivery techniques.
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Figure 1.1: Depiction of use-cases for a timely offload of result-data and just-in-time staging
of input data.

Data staging The inverse of delivering data to the end-user is to stage the data from a
source location to an HPC center. Modern applications usually encompass complex analysis,
which can involve staging large input data from observations or experiments. The data can
originate from multiple sources ranging from end-user sites, remote archives (e.g., HPSS [44]),
Internet repositories (e.g., NCBI [78], SDSS [94]), collaborating sites and other clusters that
run pieces of the job workflow (e.g., Figure 1.1).

Once submitted, the job waits in a batch queue at the HPC center until it is selected for
running, while the input data “waits” on the scratch space. HPC centers are heavily crowded
and it is not uncommon for a job to spend hours — or even days — in the queue. Any failure
during this wait time would entail expensive re-staging. In the best case when the data is
staged at job submission, the input data spends the same time on the scratch as the job
turn-around time, i.e., (wall time + wait time). In the worst case, which is more common,
the data waits longer as users conservatively (manually) stage it in much earlier than job
submission. Thus, there is the need for an end-user data delivery service to stage the data
just-in-time so it is able to minimize resource consumption and exposure of data to failure.

From the above use-cases, we can state the problem as: Offload by a specified deadline
to avoid being purged; Or, Deliver by a specified deadline to ensure continuity in the job
workflow. This naturally leads to the question of how to build end-user data delivery services
that can be employed to mitigate the data delivery challenges in HPC.

1.2 Research Objectives

In this dissertation, we focus on comprehensive end-user data management, which has the
potential to provide improved serviceability for HPC centers and quicker job turnaround for
end-users. In light of the above discussions, we foresee several objectives for our Integrated
End-User Data Service and this dissertation. Namely:
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Reduce duration of scratch space consumption From a center standpoint, it is de-
sirable to stage the input data of a waiting job as late as possible and to offload the output
data from a completed job as early as possible, so that the scratch space is available for all
of the currently running jobs’ I/O (e.g., checkpointing and output). Thus, if a waiting or
completed job’s duration of scratch usage is reduced, it would help the HPC center better
service the currently running jobs.

Reduce exposure to failures Another downside of leaving data on the scratch is its
exposure to potential storage system failure. We refer to the time elapsed between when
data is staged until the associated job starts running as the exposure window, Ew. To protect
against storage failures, it is desirable to minimize Ew, preferably as close to 0 as possible.
For example, supercomputers such as Jaguar, ASCI Q, ASCI White, and PSC Lemieux all
cite storage as a primary reason for system downtime with MTBF of 37.5 hrs, 6.5 hrs, 40 hrs,
and 6.5 hrs, respectively [52].

Timely delivery of HPC data One primary goal of this research is to deliver application
data to center local storage from multiple sources just-in-time, or to end-users as quickly
as possible after job completion. This must be accomplished in the face of both transient
network conditions and changing batch queue job wait times or purge deadlines. Not properly
accounting for such dynamism can have adverse effects for both the center and end-users:
data delivery is delayed, and consequently job turnaround time is increased.

Minimize transfer times In addition to delivering data on time (either to the center or to
the end-user), our framework should also attempt to minimize transfer times by choosing the
best available routes and constantly reevaluating them. Reevaluation is critical to reacting
to changes in the data delivery schedule in a timely fashion. For instance, this can help
mitigate the effect of a sudden tightening in the delivery deadline due to the unexpected
cancellation of a large job at the HPC center.

Avoid starvation and reduce job stall time Finally, from a center serviceability per-
spective, it is essential that the job scheduler not be rendered idle either because the input
data of a waiting job has not been completely staged or because the waiting job’s data has
been purged from the scratch space prior to consumption. Such delays can result in jobs
being stalled and possibly rescheduled — a costly process —, as they wait for the necessary
input data to become available. Thus, comprehensive scratch management also requires uti-
lizing techniques such as intelligent prefetching to stage job input data and selective retention
of still useful data.
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1.3 Research Contributions

To address the issues of exponentially increasing data sizes and ad-hoc data management, this
dissertation presents a fresh perspective to scratch storage management by fundamentally
rethinking the manner in which scratch space is employed. Our approach is twofold. First, we
re-design the scratch system as a “cache” and build “retention”, “population”, and “eviction”
policies that are tightly integrated from the start, rather than being add-on tools. Under
the “Scratch as a Cache” paradigm, end-users’ data must be moved into the cache from
remote sources such as repositories or experimental facilities, processed at the center, and
the resulting data must then be evicted to remote sites for analysis. In reality, population
and eviction are large data transfers that correspond to data staging and data offloading,
respectively. As a result, the second component of our approach is to provide and integrate
the necessary end-user data delivery services, i.e. timely offloading (eviction) and just-in-
time staging (population), so that the center’s scratch space usage can be optimized through
coordinated data movement.

In the remainder of this section, we highlight the specific contributions made by each com-
ponent in our approach. Together these combined strategies enable the creation of our
Integrated End-User Data Service.

1.3.1 Scratch as a Cache

We present a novel method [73] for managing an HPC center’s scratch space, where the
scratch is treated like a cache. This approach limits unnecessary direct end-user interaction,
and allows caching policies to manage the scratch based job workflow needs, rather than end-
users’ desires. To facilitate this approach, we build cache retention and eviction policies using
“hints” from the user’s job submission script in order to accurately capture the data needs of
a job workflow. These hints include information about job input, output, and intermediate
files, their usage duration and the dependencies of other pieces of the workflow on these
datasets. With this information, we can move beyond just a better purge policy to create
integrated data services that work as fundamental part of the job workflow. These services
can stage remote data to the scratch just before it is needed (population), offload output
data to end-users after job completion (eviction), while retaining input, intermediate, and
output data that will be reused again in the near future. This strategy enables the retention
of only the relevant data for the duration it is needed. Redesigning the scratch as a cache
captures the current HPC usage pattern more accurately, and better equips the scratch
storage system to serve the growing datasets of workloads.
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1.3.2 Timely Data Offloading

We design a combination of both a staged as well as a decentralized offloading scheme [70,
72, 76] for job output data, which makes use of distributed intermediate sites. Compared
to a direct transfer, our techniques have the added benefits of resilience in the face of end-
resource failure and the exploitation of orthogonal bandwidth that might be available in the
end-to-end data path. Additionally, we develop a decision making component that factors
in parameters such as a center’s purge deadline, the user delivery schedule, and a snapshot
of current network conditions between the center and the end-user, to determine the most
suitable approach to offload. We employ active monitoring, using the Network Weather
Service (NWS) [107], to make the data offload process react to bandwidth degradation, thus
ensuring that a user-specified delivery constraint or a purge deadline can be met. Finally, we
have developed our solution in the context of real-world tools such as PBS [32] job submission
system and BitTorrent [41].

1.3.3 Just-In-Time Data Staging

We present a JIT staging framework [71, 74, 77] that attempts to have the data available
at scratch, from multiple input sources, just before the job is about to run. The framework
proactively brings the data to intermediate storage sites on the path from the end-user site
to the HPC center. This reduces the time for copying the data to scratch, thus providing
better opportunities for JIT staging. JIT staging faces the additional constraint of volatile
job startup times. To address this, we make use of Batch Queue Prediction [7] which pro-
vides estimates of job startup times. Furthermore, we employ an innovative combination
of high-efficiency data dissemination (BitTorrent [41]) and network monitoring (NWS [107])
to exploit orthogonal, residual bandwidth and to dynamically adapt to network volatility,
respectively, to improve overall scratch utilization.

1.3.4 Using the Cloud for End-user Data Delivery

We provide a cloud storage framework [75] for HPC, which utilizes proactive staging and
offloading of data to cloud storage locations so as to have the input data available at the
scratch storage — from multiple input sources — just before the job is about to run, and
to offload output data — from scratch to the cloud — as soon as the job completes. Our
framework is integrated with cloud resources exported by Windows Azure [67]. We adopt a
novel variation to the use of intermediate nodes that differs from how they are used in most
decentralized systems. The nodes participating in the transfer are in fact cloud resources,
with specified reliability guarantees, thereby eliminating the fundamental concern of data
delivery through a set of unreliable nodes. We have exported our end-user data delivery
service through the file system abstraction provided by FUSE [22]. End-user programs can
thus write and read to cloud storage and move data through them using standard file system
operations.
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1.4 Dissertation Organization

The remainder of this dissertation presents our Integrated End-User Data Service and is
organized as follows. In Chapter 2, we discuss necessary background information and relevant
related work in the field of HPC data management. In Chapter 3, we present our Scratch
as a Cache model, and demonstrate how treating the scratch as a cache has the potential to
improve the center’s overall serviceability. In Chapter 4, we examine the challenges faced,
and the strategies our approach employs in building a robust data offloading service, which
can offload end-user data prior to a purge deadline. In Chapter 5, we build on our work in
Chapter 4 and provide techniques and methods that allow end-user input data to be staged
to the center scratch space just-in-time. In Chapter 6, we investigate using cloud resources as
part of a collaborative end-user data delivery service. Additionally, we describe how cloud
storage can play an important role in HPC data management. Finally, we conclude this
dissertation and discuss future research directions in Chapter 7.



Chapter 2

Background and Related Work

2.1 Background on HPC Job Workflow

In this section, we present a brief primer on the current methodologies adopted in executing
jobs at an HPC center. Users typically write proposals to obtain compute time at HPC facil-
ities. These proposals are rigorously peer reviewed and, consequently, the allocated compute
time is a valuable commodity. As we mentioned earlier, long-running user jobs typically use
datasets from many sources. These datasets are required to be staged on scratch for analysis
and the outputs are moved back to the end-user locations. HPC centers are equipped with
various storage systems for different user needs: home is meant for development and com-
pilations and is served using a network file system; scratch is for high-speed I/O of running
jobs and is served using parallel file systems, e.g., Lustre [93]; and, archives are for long-term
storage and only support lower interaction rates. Thus, users are encouraged to stage their
input data onto the scratch for higher throughput and job turnaround.

Users usually submit their job requirements using scripts submitted to the scheduler at the
center. Users either stage their data manually, in an out-of-band fashion, or include the
staging commands in the scripts. Manual staging is error-prone and lacks coordination with
job start-up times. Scripted staging wastes compute allocation as it is performed as part of
the compute job; allocated cores are waiting while the data is being staged. In either case,
point-to-point data movement tools, e.g., secure copy (scp), GridFTP [29], hsi [49], etc. are
used to move data. As mentioned previously, these point-to-point transfer tools are only
optimized for transfers between two well-endowed sites, and they require the end-user to be
available for the duration of the time consuming data transfer process.

Once submitted, the job waits in a batch queue at the HPC center until it is selected for
running, while the input data typically “waits” on the scratch space. In the best case when
the data is staged at job submission, the input data spends the same time on the scratch
as the job turn-around time, i.e., (wall time + wait time). In the worst case, which is more
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common, the data waits longer as users conservatively (manually) stage it in much earlier
than job submission. As mentioned earlier, staging in the script or as part of the job run does
not solve this problem because while data may spend less time on the scratch space, precious
compute resources are wasted. Thus, the fundamental research problem of orchestrating data
movement and computation remains open and is the focus of this dissertation.

2.2 Related Work

HPC data management is a critical research area, and a number of works have explored it
from different perspectives. In the following, we discuss several related works.

2.2.1 GridFTP

GridFTP [34], is a high performance extension to the FTP protocol, which provides authen-
tication, parallel transfers, and allows TCP buffer size tuning. The GridFTP overlay network
service [88] implements a specialized data storage interface (DSI) to achieve split-TCP func-
tionality. The GridFTP client command is issued with source and destination URLs A/C
and C/D to denote a transfer between end points A and D through nodes C and D. In [54],
the authors have extended this effort to use previous transfers as a measure of the perfor-
mance of a particular node in the transfer overlay. These approaches address a similar goal of
improving transfers through the use of orthogonal bandwidth between two sites. Other work
on history based GridFTP transfer predictions [103] suggested that the relatively large error
in predictions can be reduced through the factoring in of dynamic measurements. Our work
differs as it focuses on making scratch space consumption more efficient through caching
policies and coordinated data movement. Our specific techniques enable the delivery of data
by a user-specified deadline or job start time, and further use dynamic measurements to
adapt and adjust the fan-out of transfers. However, the GridFTP transfer protocol (or the
other protocols described in this chapter) could be used as part of our framework in place
of our timely offloading and just-in-time staging services.

2.2.2 IBP

IBP [83] offers a data distribution infrastructure with a set of strategically placed resources,
storage depots, to move data. Together with the transport protocol, this is referred to as
logistical networking, and a network of storage depots are being built along major national
testbeds such as Internet2 [9], ReDDNet [6], etc., to enable end-user data delivery.

Our approach also exploits the presence of pre-installed storage nodes for data delivery as
and when they are available. However, the main difference between IBP and our approach is
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that instead of only relying on specialized resources, we leverage general-purpose resources
to achieve end-user data delivery. Moreover, we differ in our approach to combine both a
staged as well as a decentralized data delivery. The induction of user-specified nodes also
allows the system to optimize the offload or stage-in on a per-user basis, which is not possible
with IBP. Further, our approach is unique as we strive to meet a deadline in data delivery
and stage in or offload to/from the HPC center.

In [35], the authors stream outputs from GTC runs through logistical networking. The
adaptive buffer strategy reconciles the rate of data production with that of available network
resources by failing over the transfer to a local IBP depot in case of a network failure. The
goal here is to overlap computation with in-situ network data transfer. This is complementary
to our work and such in-situ processing can also benefit from our decentralized transport.

2.2.3 BAD-FS

Batch Aware Distributed File System (BAD-FS) [33] constructs a file system for large, I/O
intensive batch jobs on remote clusters. BAD-FS addresses the coordination of input data
and computation by exposing distributed file system decisions to an external workload-aware
scheduler. We attempt to inherently improve the job workflow and center operations without
creating a new file system, but by viewing the scratch as a cache.

2.2.4 Kangaroo

The use of intermediate buffers to hide latency or to provide fault tolerance is a common
practice in OS as well as file systems. Kangaroo [100] extends this idea to Grid computing,
with the goal to provide reliability against transient resource availability. It hides network
storage using an application perceived file system with relaxed consistency semantics. The
primary goal of Kangaroo is to provide reliability for Grid data transfers in the face of
transient resource availability. However, Kangaroo simply provides a staged transfer mech-
anism and does not concern itself with network vagaries or changing route dynamics in an
end-to-end data path.

2.2.5 Coordinated Data Movement

Several previous efforts address the coordination of data and computation activities in HPC
centers. These range from simple dependency management in PBS [13] and Moab [69] to
treating data activities as data jobs [57, 108]. However, our approach is a paradigm shift
in how scratch storage is viewed and uses many of the aforementioned techniques to realize
a cache-based approach to HPC scratch management. In addition to synchronizing data
movement using a suite of cache management tools, our work also addresses data retention,
which only a workflow-aware caching scheme can accomplish.
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Stork [57] a scheduler for data placement activities in a grid environment, along with Con-
dor [63] and DAGMan [45], is used to schedule data and computation together in the face of
vagaries. However, these systems are positioned as a part of the application workflow rather
than a set of HPC center integrated services, where our work resides. Further, our approach
provides a way to deliver data in time through the exploitation of multiple data flow paths
in a resilient fashion.

DMOVER [8] is a tool that is used for moving data in the TeraGrid by aggregating data
transfer commands in a script and scheduling them using a separate queue. However, it only
addresses point-to-point data transfers using GridFTP. stagesub [108], that is deployed on
Jaguar, Kraken and at LBL addressed coordinating data staging and offloading alongside
computation through the use of data queues and job dependencies. However, it does not
address JIT staging, volatility and delivery based on a deadline. Our work can be used
in conjunction with these efforts to schedule a decentralized data delivery to coincide job
completion. Our solution can also be built upon to transfer intermediate checkpoint data as
long as our system is notified about the availability of the data.

2.2.6 Peer-to-peer Data Transfer

A number of systems such as Bullet[59, 58], Shark [30], and CoBlitz [79] have explored
the use of multicast and p2p-techniques for transferring large amounts of data between
multiple Internet nodes. The focus of these systems is on downloading of user data, or
receiving multimedia streams. Our end-user delivery services require factoring in center-
user service agreements and dynamic cloud resource availability, which are not considered
in these systems. Content distribution networks (CDN) such as CoDeeN [105] effectively
implement a system of proxy servers that users can explicitly use for faster delivery of data
to their nodes. Large files in CoDeeN are transferred using multicast streams. Similarly,
FastReplica [38] creates replicas of data on different content distribution nodes to support
faster data access. Our work shares with these systems the goal of utilizing multiple paths
for transferring large amounts of data, but differs in its focus on HPC applications and
automatic dynamic selection of intermediate nodes to facilitate multicast when necessary.

A number of bulk data-transfer protocols have been developed for Internet use, e.g., Slurpie [96]
allows clients to simultaneously contact a server and use random back-off to avoid perfor-
mance degradation due to congestion. The approach of downloading large files from several
mirror sites has been validated by its wide-spread use in BitTorrent [41], and many protocols
for parallel downloading from mirror sites have been proposed [89, 86, 42]. However, these
techniques have not been applied to large, scientific data in an HPC context (several orders
of magnitude larger than p2p data sizes) and are also not aware of application-level delivery
constraints [55]. These works are complimentary, and we built on the principles developed
in these systems.
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2.2.7 The Network Weather Service

The Network Weather Service (NWS) [107] provides a powerful framework which allows the
resources of distributed computers to be monitored. A number of different resources can
be observed such as the pair-wise bandwidth between computers and each computer’s CPU
utilization, though there are many other options. NWS bandwidth measurements have been
used in a static context to determine a Grid data site, offering optimal download rates,
from among multiple replicated alternatives [104, 103]. In this dissertation, however, we
use measurements to determine a path within a network of nodes and dynamically adjust it
based on bandwidth degradation.

2.2.8 Large System Reliability

Moving data away from a centralized storage, such as HPC centers, is also encouraged by
recent studies that show that the rate of storage system failures is high [92, 82, 95]. Previous
works [31, 53, 87] tried to improve reliability in large-scale installations, such as the HPC
scratch space. These works entail going through a rigorous and time-consuming acquisition
process mired with delays. In contrast, the use of intermediate and cloud storage nodes can
provide a solution that can be arbitrarily grown to accommodate any desired level of storage
while providing scalability and reliability.

2.2.9 Timely Offloading and Staging

Timely offloading of output data from the HPC center can only be achieved by coinciding the
output data movement with the completion of the compute job. Previous work in this regard
treats data offloading as an I/O job and schedules it alongside computation so it begins at job
completion [108]. Such a coordinated approach optimizes center resource usage and ensures
timely data delivery. Techniques presented in this dissertation complement the coordinated
scheduling and the two approaches can be used together.

Staging of data on the HPC center to enable timely execution of jobs is another related
direction. Recent work on staging by others [27] as well as our own [73, 71] has shown the
importance of integrating staging services into center management software. Such works are
complementary to our work, and vice versa, in that an integrated staging and offloading
solution can significantly improve the overall serviceability of a center.
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2.2.10 Caching

A mature body of work, comprising of simple to advanced pattern-based approaches, exists
for data caching [66, 50, 61, 60] and prefetching [80, 102, 28] to improve I/O performance
and bridge the gap between the CPU and disk access speeds. In this dissertation, we exploit
and leverage existing algorithms to better manage the scratch space.

Finally, scientific data caches [101, 64] provide techniques to accelerate data accesses in the
HPC center by offering dataset caching. However, these systems are not workflow-aware and
perform simple LRU based cache replacement.



Chapter 3

Rethinking HPC Center Scratch

Storage

The scratch file system in an High Performance Computing (HPC) center provides fast
temporary local storage space for jobs, often consuming a notable fraction of the center’s
operations budget. Scratch storage is intended for the very large input, output, and inter-
mediate data of currently running and soon-to-run user jobs. Developers are encouraged to
use the scratch so their applications benefit from its high performance and abundant storage
space. Moreover, the scratch is seldom regulated with quotas to avoid introducing any ceil-
ings on applications’ data sizes. However, the scratch space is not intended to be used as a
generic file system for persistent user file storage. Instead, it is a special-purpose storage for
the needed (“hot”) data of running and waiting jobs. Nonetheless, in practice, the scratch
space is utilized as a traditional file system, with purge polices added as an afterthought to
delete the unneeded (“cold”) data of finished jobs and to cap the scratch utilization within
limits. This ah-hoc data management leads to sub-optimal use of scratch space, which should
be used for new incoming or currently running jobs.

The dearth of comprehensive scratch space management results in significant drawbacks for
both centers and end-users. Users arbitrarily stage and offload data as and when they deem
fit, without any consideration to the center performance. Thus, there is an urgent need
for a coherent scratch space management solution. Such an approach can be very timely
when it comes to HPC acquisition proposals. Multi-million dollar HPC acquisition proposals
are won based on the FLOPS provided. Resources used for provisioning the scratch space
cannot be used to buy more compute power. Efficiently managing a center’s scratch space
can transform the productivity of even an under-provisioned scratch storage system.

In this chapter, we argue that re-envisioning the scratch as a cache captures the current HPC
usage pattern more accurately than simple purge policies and better equips the scratch stor-
age system to serve growing HPC datasets, while addressing the concerns discussed above.
To facilitate this approach, we design cache retention and eviction policies are tightly inte-

16
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grated from the start, rather than being add-on tools. Additionally, we present a work-flow
aware caching approach that uses “hints” from the user’s job submission script in order to
accurately capture the data needs of a job workflow. These hints include information about
job input, output, and intermediate files, their usage duration and the dependencies of other
pieces of the workflow on these datasets. Moreover, we validate our approach through simu-
lation, comparing it against standard scratch management techniques. This approach allows
application developers and end-users to make use of high performance scratch resources,
while also limiting unnecessary direct end-user interaction. It allows caching policies to
manage the scratch based job workflow needs, rather than end-user desires.

3.1 Scratch as a Cache

The key idea behind our approach is to view the HPC scratch storage as a cache. To this end,
we need to support three basic cache operations namely, “populating” the cache, “retaining”
appropriate datasets in the cache, and “evicting” datasets from the cache. Further, we must
be able to determine the scenarios where HPC data is “hot” and should be populated or
retained within the cache, and determine when HPC data is “cold” and therefore should be
evicted from the cache. The premise is that if these operations are integrated with the storage
system, and are the basis for its functioning, then scratch space usage can be fundamentally
optimized.

3.1.1 Rethinking “Hot” and “Cold”Contents

Managing scratch as a cache entails rethinking the traditional classification of cache contents
as “hot” and “cold”. Typically, the most recently used (MRU) dataset is considered hot and
retained in the cache as it is likely to be accessed again. Conversely, the dataset that is
least recently used (LRU) is considered cold, and is evicted from the cache. However, this
classification does not always apply to scratch space contents. Below, we highlight some
common scenarios and discuss hot and cold in the context of “scratch as cache”.

An input dataset consumed by a job that has completed. Even though the dataset
was recently used, it is unlikely that it will be reused by any other job on the supercomputer.
In fact, most HPC jobs consume their input data during the initial phase of the run and do
not reuse it again. These most recently used datasets are thus cold and can be evicted.

A dataset that was recently staged into the scratch in anticipation of a job run.

This is an MRU dataset that is hot and cannot be evicted as the associated job has not even
started. However, if the job run is delayed, under traditional scratch operations, the user
will need to explicitly touch the dataset periodically to avoid purging. In modern (crowded)
HPC centers, long job wait times are the norm.
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Job waits in the queue
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of input  
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(a) Traditional approach to scratch usage.
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(b) Scratch as a Cache.

Figure 3.1: (a) Traditional approach to scratch usage is a set of disjoint tools, performing
uncoordinated data movement, job submission, and scratch purging. (b) Scratch as a cache
operates the scratch using specific cache operations that are driven using hints from the job
workflow.

A dataset that the user simply “touches” to persistently avoid purging and trick

the system. These MRU datasets may be cold and can be evicted if no jobs use them as
input. Traditional scratch operations cannot identify, and catch this scenario.

Result and intermediate datasets that were recently produced. These MRU datasets
can be evicted from the scratch space, as long as they are not input to other co-dependent
jobs in the workflow.

An input dataset that is cold due to prolonged job wait and the user has not

been renewing it via retouching. This is an LRU dataset that is hot and should not
be evicted. To begin with, this input dataset should only have been brought into scratch
storage to coincide with job startup.

This shows that access recency or frequency are not the only reasons driving scratch manage-
ment. The aforementioned scenarios require information from the job workflow to identify
truly hot and cold contents. Note that traditional scratch management cannot even capture
these usage scenarios. In the next section, we further discuss the limitations of traditional
scratch management.
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3.1.2 Limitations of Current Scratch Management Techniques

The problem, as mentioned earlier, with the way scratch storage is currently managed in HPC
centers is that the data purge operations are added as an afterthought, are not workflow-
aware, and lack tight integration with scratch management: Data is staged to/from the
scratch in an out-of-band way, and purging is the only means to ensure space availability.

The purge mechanism performs an LRU-like eviction based on a temporal window, deleting
datasets that have not been accessed for the last ‘n’ days [5]. However, this ad-hoc approach
is unable to capture many of the discussed scratch usage scenarios highlighted earlier. This is
because the HPC job workflow and the legacy of the user job submission process imposes new
requirements on the scratch, which cannot be satisfied by a purge policy alone. Troublesome
scenarios include when users stage in data way in advance, or offload result data much later,
as well as user behavior (touching files) to mitigate the effects of the uncoordinated job
submission process. Figure 3.1(a) presents an overview of how scratch space is used currently
in HPC centers, using a set of disjoint tools (out-of-band data movement, job submission, and
purging) with no coordination between one another. Moreover, the figure depicts a number of
individual operations manually performed by the user on the scratch storage. The problem is
only compounded with ever increasing users, each performing such disconcerted operations.
In crowded HPC centers, where scratch space is precious, streamlining usage by way of
treating the scratch as a cache can improve serviceability. On one end, using this approach,
even modestly provisioned scratch storage systems can be tuned for higher performance.
At the other end, leadership-class facilities that boast several hundred terabytes of scratch
space can also benefit from sophisticated scratch storage management, as modern petascale
applications at such centers consume ever more data.

3.1.3 Cache Management Overview

Figure 3.1(b) presents an overview of scratch as a cache. In this approach, direct user
managed operations on the scratch storage are avoided and the scratch is strictly managed
using cache management tools. User submitted jobs are translated into a series of cache
operations, in addition to the computation itself, which are then used to operate the scratch
storage. We manage the scratch cache by ensuring that all staging and offloading of job
data is performed using cache population and eviction tools. In this model, users do not
arbitrarily move data in and out. Job input and output data are not retained beyond the
lifetime of the application run, unless otherwise specified. Populating the cache with job
input data is accomplished using just-in-time staging tools so that it coincides with job
startup. This ensures that the input data is not moved into the scratch space too much
in advance, occupying space and increasing the exposure to failures. Only data that is
needed immediately is retained in the cache. Cache eviction involves offloading result files
immediately after the computation has finished. Thus the output data of a job is not held
in the scratch cache beyond the lifetime of the job run. Consequently, the cache is strictly
used for hot job data. Cold data, even though only recently produced (output), is moved
out of the cache.



Henry M. Monti Chapter 3. Rethinking HPC Center Scratch Storage 20

Compared to the traditional way of scratch usage (Figure 3.1(a)), the cache approach sig-
nificantly reduces the direct user interaction with scratch storage. Each user’s job is now
streamlined into a well coordinated set of operations that are performed by the center as
and when it is optimal to do so rather than disjoint activities. This significantly optimizes
scratch space usage and makes it more available for running or soon-to-run jobs. An ad-
ditional advantage is that we can now perform globally optimal decisions that improve the
HPC center performance at large.

The logical extension to the “scratch as cache” paradigm is to view the scratch as one of
the levels (Tier 1) within a multi-level storage for the HPC center. The next level, Tier
2, can be more broadly defined as a variety of potential sources and destinations for the
job datasets, including center-wide storage [16, 1], archives [44] at the center, user-specified
nearby storage [83, 72], or end-user locations. Data is moved into and out of Tier 1 from/to
Tier 2 storage using cache management tools.

3.2 Workflow-Driven Caching

From the above discussion, it is evident that in order to manage and operate the scratch as
a cache we need guidelines and “hints” from the user’s job workflow. The job workflow can
provide details such as input, output, and intermediate files, their sources and destinations,
the transfer protocols to be used, and more importantly crucial data dependencies. For
instance, the workflow can be used to garner information such as whether the output of one
task is the input to another. Such a dependency can be used to determine if a given output
dataset should be retained in the cache. Workflow-specific hints enable retention of datasets
only for the duration they are needed. Current scratch operations are significantly stymied
by the lack of such coordination between user workflows and scratch storage management,
which results in uncoordinated data movement, wastage of scratch space and, potentially,
increased job turnaround and a negative impact on HPC center serviceability. Workflow-
driven cache management can remedy such issues and improve serviceability.

3.2.1 Collecting Information from the Job Script

HPC users normally specify their resource requirements and data movement in a job script
and submit it to the job scheduler at the center. The resource manager at the center deciphers
these requirements, allocates resources, and executes the data movement and computation
commands. Therefore, the job script is a logical place to specify hints that can aid in cache
management. If we can instrument the job script with guidelines regarding which input
datasets of the job to populate the cache with, which ones to evict, and which ones to retain
and for how long, then the cache management infrastructure could use this information to
make global decisions across all jobs.



Henry M. Monti Chapter 3. Rethinking HPC Center Scratch Storage 21

#PBS −N SampleJob

#Populate g r i d f t p : //Tier2/home/user/ InputFi l e1 − l user f i l e :// Tier1/ scrat ch /user
#Populate g r i d f t p : //Tier2/home/user/ InputFi leN − l user f i l e :// Tier1/ scrat ch /user

mpirun −np 128 /myapp

#Evict f i l e : //Tier1/ scrat ch /user/Output1 scp :// Tier2/home/user /Output1 − l user
#Evict f i l e : //Tier1/ scrat ch /user/OutputN scp :// Tier2/home/user /OutputN − l user

#Retain f i l e : //Tier1 :/ scra t ch / user/Output5 [−d HOURS] −e v i c t scp :// Tier2/home/user/Output5

Figure 3.2: An instrumented PBS script demonstrating the caching directives.

Instrumenting the Job Script

To support cache management, we have instrumented the PBS [32] job scripting system with
cache-specific directives. Users can prefix the data movement operations that they already
conduct with #Populate, #Evict, and #Retain directives to indicate the input and output
files, their sources, destinations and transfer protocols in Tier 2 storage. Figure 3.2 shows
a sample PBS script with the directives to populate Tier 1 from Tier 2 using the gridftp

transfer protocol, to evict from Tier 1 to Tier 2 using scp, and to retain an output dataset
for a certain duration and eventually evict it to Tier 2. Further, Table 3.1 shows a summary
of the directives supported in our instrumented job scripts.

3.2.2 Cache Operations

Instrumented scripts, such as the one shown above, are input to a parser that is part of
the cache management suite, which identifies job files, their locations and longevity in the
Tier 1 cache. The parser separates the job script into cache “population jobs”, “eviction

Directive Function
Populate Move job input data into the

scratch from Tier 2 storage, but
only when necessary

Evict Move job output and interme-
diate data out of the scratch
and to Tier 2 storage

Retain Essentially Evict(n), where n

is the retention period for the
dataset

Table 3.1: Job script instrumentation directives for managing scratch as a cache.
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Population

− "GridFTP" data2 from Host2@Tier2
− "SCP" data1 from Host1@Tier2

Computation
− Produces output and temp files

Eviction
− Move output to hostN@Tier2

Job

Retention
− Retain select output data for
dependent jobs in the scratch cache

Inter−dependent Tasks

Figure 3.3: A single user job being parsed into population, computation, retention, and
eviction jobs.

jobs”, “retention jobs”, and the computation job with dependencies between them so that
the cache population occurs before computation commencement and an eviction is only
carried out after job completion (Figure 3.3). To this end, we leverage work, such as [108],
which exploit modern resource manager (e.g., PBS [32], Moab [69]) primitives to setup job
dependencies for sequencing multiple jobs together. Our work is significantly different in that
it uses these dependencies and instrumentation to fundamentally rethink scratch operations
as a cache and not just automate data movement. These cache operation jobs (cache-ops)
could even be submitted to a separate “CacheOps” queue instead of the standard batch
queue used for computational jobs. The queue could be setup to accept only cache-ops that
are size zero jobs that usually involve only data movement and will be run on the center’s
I/O nodes.

Populating the Cache

The cache management suite examines the submitted jobs to determine when a particular
job’s population operation should be initiated. Populating the scratch cache is essentially
the staging of data from Tier 2 to Tier 1 storage. However, the staging of input data is not
performed immediately after job submission as the job may have to wait in the queue until
compute resources become available. To this end, the cache population operations perform
just-in-time staging (Chapter 5) to bring the data in to coincide with job startup and attempt
to minimize the exposure window of an input dataset on the scratch space. In our context,
the exposure window (Ew) can be defined as the time spent by the input dataset waiting for
the job to commence and is, Ew = TJobStartup−TStageIn, where TJobStartup is the estimated job
startup time and TStageIn is the time to stage the input dataset. JIT staging makes use of
an estimated job startup time, from a batch queue prediction service (e.g., NWS [107]), as a
data staging deadline and a dynamic, decentralized transfer scheme that is able to adapt to
changing conditions to deliver data in time. For the purpose of this discussion, we assume
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that a transfer time is specified by the user as part of the populate directive in the job script,
much like the “walltime” specified by users to denote the duration of an application run. In
the absence of explicit transfer time specification, the cache management software can also
perform on-the-fly bandwidth measurement to the Tier 2 storage to estimate transfer times.

Thus, the cache population jobs are submitted to the appropriate queue in the resource
manager and are launched as late as possible so as to minimize Ew. During this time, the
computation job is submitted to the batch queue so it can commence execution by TJobStartup,
but with a dependency on the input data population job.

Evicting from the Cache

Evicting the output data of a job is essentially offloading it to Tier 2 storage. The transfer
protocol and authentication to be used for this operation are provided as hints in the #Evict
directive in the job script. The eviction job is configured to begin immediately after com-
pletion of the compute job. In addition to moving the result output data, the user can also
identify “temp” files from the application run that are no longer needed. Temporary files
from a petascale application run can amount to several terabytes of data themselves. In many
cases, these are used for debug operations or checkpoints. In normal scratch operations, the
user moves his output and needed temp files manually, at some point before the purge, and
leaves it to the purge mechanism to remove the rest of the temp files. Very few users are
courteous to scratch space administrators and perform cleanup after their job completion.
This obviously results in huge files occupying the scratch space unnecessarily. The purge
mechanism will not delete them as they have just been created. With our approach, purging
the temp files can now be specified in the eviction jobs. Consequently, removing temporary
files from a run can be performed hand-in-hand with computation job completion. Finally,
in order to capture the case where not all output data and temp files are explicitly specified
by the user, the cache management software performs a periodic LRU sweep with a large
temporal window (similar to a purge, but with a significantly longer duration). Thus, with
this mechanism, the scratch is truly used as a cache by removing the datasets that will not
be used again, at least not in the near future.

Dataset Retention

In order to retain datasets in the scratch beyond the lifetime of a job run, we have introduced
the #Retain directive in the job script. Using this directive, users can specify the datasets,
the duration for which they need to be retained and their destination once evicted. In
some cases, the output of one job can be the input to another and the dependent task
may not be scheduled until later. In such cases, it might be cost effective to retain the
dataset in the scratch instead of evicting it to Tier 2 and populating it back into Tier 1
storage. This needs to be balanced with scratch space usage, particularly when there are
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many such co-dependent jobs. To address this, we submit a retention job that touches the
datasets periodically to protect it from the purge mechanism and eventually evicts it after
the retention period expires. To prevent users from artificially retaining datasets, we impose
the restriction that the duration cannot be longer than the original scratch purge window.
In essence, a retention job is an Evict(n), where n is the duration the output dataset spends
on scratch (Tier 1) beyond job completion. The degenerative case, Evict(0) is an immediate
eviction of result and temp files from the cache.

3.2.3 Discussion

An important observation of this work is that although individual users specify their job-
specific constraints, the cache management suite at the HPC center attempts to reconcile
these with other jobs for globally efficient scratch management, with the aim to satisfy the
goals laid out in Chapter 1.

The cache management software analyzes all submitted jobs to make a decision regarding
which population jobs to launch at what time. The Tier 1 storage offers a finite amount of
bandwidth to Tier 2, which is governed by the HPC center’s connectivity. Consequently, the
population and eviction jobs compete for the available bandwidth. It is conceivable that an
eviction can interfere with a population job that needs to be completed in time so the com-
putation can start. One can argue that evictions can wait as timely population of the input
data determines job turnaround time. Although not implemented in the current prototype,
one can imagine throttling eviction jobs by assigning them a lower priority compared to pop-
ulation jobs. On the flip side, delayed evictions result in unnecessary space consumption.
Therefore, any prioritization of evictions needs to be balanced against available space.

In essence, our cache-based view of the scratch allows us to perform such optimizations if
need be: to throttle certain parts of a workflow in order to achieve a higher degree of center-
wide serviceability. The extant approach of manual, arbitrary data staging and offloading
— or lack thereof — simply does not allow any such possibility.

3.3 Log-Driven Simulation

We have implemented the techniques described so far for managing the scratch space as a
cache as part of a realistic simulator, simHPC, described in Appendix A. In this section,
we describe the caching specific components added to simHPC. The simulator is driven by
nearly three years of job logs from the Jaguar supercomputer [18]. The logs contain each
job’s queue entry time, start time, predicted and actual wall time, the number of nodes
needed for the job, and the memory resources used by each node. Using this information the
simulator models job queuing, scheduling, job start times, job execution times, and provides
data about scratch space usage and the time it would take to stage and offload the required
data for a given job. This information can then further be used to determine any delay in
meeting job scheduling deadlines.
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Figure 3.4: The architecture of the caching specific portions of the simulator.

Figure 3.4 shows the additional components built on simHPC, namely, the job queue man-
ager, the population, eviction, and job runtime manager, the cache policy manager, and the
scratch manager. The job queue manager maintains all of the data collected from the logs,
and determines when a job should begin the population process. The population, eviction,
and runtime manager performs either a normal or a just-in-time staging and then schedules
the job to run when resources are available. It also handles offloading of data. This module
communicates with the cache policy manager to allocate scratch space for the job. The
cache policy manager contains the implementations of the different caching mechanisms and
is capable of determining the workflow information for a job. This module determines what
datasets will be evicted out of the scratch space when the data needs of incoming jobs cannot
be met. Once a job’s data is selected for removal, the eviction module offloads it to sec-
ondary storage, and the scratch module is queried to free and allocate the associated space.
In addition to modeling the scratch space the scratch module also provides accounting and
statistics such as the scratch space used and the data read as well as other vital statistics.

We note that the total simulated scratch space capacity has no bearing on the simulation
as we measure scratch utilization per hour, instead of cumulative utilization. Additionally,
we also synthesize the job logs to introduce various dependencies and for testing usage
scenarios. This is not an issue, because synthesizing job logs is a common practice when
realistic dependency logs are unavailable. Moreover, the logs were randomly synthesized to
be fair to all of the candidate techniques and do not favor our workflow-aware caching.

3.4 Evaluation

In this section, we present an evaluation of our scratch as a cache approach using simHPC,
described in Section 3.3 and in Appendix A. simHPC is driven by job-statistics logs collected
over a period of three-years on the Jaguar [18] supercomputer. Table 3.2 shows some relevant
characteristics of the logs.

In the following, we use our simulator to first justify the need for treating the scratch space
as a cache, followed by an investigation of the various aspects of the caching model. In all
of our experiments, we used 1 TB as scratch capacity.
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Figure 3.5: Average scratch utilization over the duration of the logs under traditional man-
agement and simple caching algorithms. All jobs are assumed to be independent.

3.4.1 Behavior of Traditional Caching Mechanisms

The goal of this set of experiments is to justify treating scratch space as a cache. For this
purpose, we first study how scratch utilization is affected under the normal purge policies.
Here, we set the purge period to seven days, and monitored the amount of scratch space
used per hour. Figure 3.5(a) shows the results. In the beginning, the rate of job issue was
not too high, so the periodic purge is able to keep the space utilization lower. However, as

Table 3.2: Statistics about the job logs used by simHPC.
Duration 22753 Hrs

Number of jobs 80025
Job execution time 1 s to 120892 s, average 5849 s
Input data size 2.28 MB to 7481 GB, average 65.3 GB
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Figure 3.6: Data read under the studied
approaches over time.
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Figure 3.7: Data read under the studied
approaches over time, when 59.8% of the
jobs have workflow dependencies.

the rate of job issue increased, the scratch utilization became high. We note that having
constant utilization is not undesirable, however, the after-the-fact purge will be unable to
accommodate any instantaneous increase in job issue rate.

Next, we tried two different caching algorithms to manage the scratch: the commonly used
LRU (Figure 3.5(b)) and MRU (Figure 3.5(c)) algorithms. We note that while LRU results
in a steady increase in scratch utilization with an average of 20.1% higher usage per hour
compared to 7-day Purge, MRU is able to drastically reduce scratch utilization per hour,
with an average per hour savings of 98.4% compared to 7-day Purge. Thus, this result
indicates that MRU would be a promising approach.

Additionally, Figure 3.6, shows the amount of data read under the three approaches. Here,
we observe that under both 7-day Purge and MRU the data was staged much earlier than
under LRU, although the same amount of data is eventually read under all the three schemes.
This provides a different perspective in that the exposure window, Ew, under MRU is much
greater than that under LRU, and thus indicates that MRU would be undesirable.

These results show that scratch utilization can be improved using better management, how-
ever, simplistic algorithms are unlikely to yield the desired objectives.

3.4.2 Effect of Workflow-Aware Caching on Scratch Utilization

In this experiment, we first introduced job dependencies between the traced logs. Specifically,
we synthesized the logs to introduce job dependencies of up to three jobs spread over a
period of a week. In total, 59.8% of the jobs in the logs are chained into workflows. Then,
we repeated the previous set of experiments with 7-day Purge, LRU, and MRU and also
utilized our workflow-aware caching algorithm to study its effect. Figures 3.7 shows the data
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(d) Workflow-Aware Caching.

Figure 3.8: Average scratch utilization over the duration of the logs under traditional man-
agement and caching algorithms. 59.8% of the jobs are chained in dependent workflows.

read, and Figure 3.8 shows the scratch utilization under our approach. We observe that
workflow-aware caching was able to reduce the average scratch space utilization per hour by
6.6% (e.g. 67.5 GB/Hr on average per Terabyte of storage) compared to LRU. Moreover,
MRU reads the most amount of data. This is because MRU blindly throws away the data as
soon as it has been used, without any regard to whether it will be utilized again in the near
future or not. In contrast, workflow-aware caching reduced the amount of data transferred
when compared to 7-day Purge, LRU, and MRU by 1.8%, 5.7%, and 20.4%, respectively.
Reducing the amount of data transferred also implies a lower probability of missing job
scheduling deadlines due to smaller times required to bring all the necessary data into the
scratch.

These results stress the need and the importance of integrating workflow information into
scratch management.



Henry M. Monti Chapter 3. Rethinking HPC Center Scratch Storage 29

3.4.3 Impact on Job Scheduling & Performance

We have shown that workflow-aware scratch management can improve space utilization and
reduce data transfer requirements. In this set of experiments, we study the impact of the
reduced data transfer on meeting job scheduling deadlines. In this context, system designers
and funding agencies (e.g., US DOD, NSF, DOE, etc.) are adopting performance speci-
fication metrics such as expansion factor [19, 18] (EF), defined as the ratio (wall time +
wait time)/wall time averaged over all jobs (the closer to 1, the better). Therefore, we use
expansion factor in our study.

Table 3.3 shows the EF for the studied approaches. First, we examined the queue entry time
for determining the wait time in calculating the EF. Here, we observe that the traditional
purge may lead to extremely high average EF as over time, the wait time accumulates as
jobs are delayed as their data is staged in. Treating the scratch as a cache, reduces the EF
to more acceptable values.

Next, we determined the wait time for our calculation using the time when staging for a
job-associated data is initiated. This approach removes the accumulating delay affect and
presents a more realistic EF. However, once again we observe that the traditional purge-
based approach is far from ideal with 286.0% overhead, where as workflow-aware caching
results in only 4.0% overhead.

Also note that, from these results it would seem that LRU is comparable to workflow-aware
caching. However, we believe this to be an artifact of our job log synthesis when introducing
workflow dependencies, and is not an argument for LRU-based caching being a suitable
option in general for scratch management.

3.4.4 Effect of Types of Tier 2 Storage

In Section 3.1, we have discussed various storage devices that can act as Tier 2 storage for
our scratch cache. In our next set of experiments, we study the affect of different types
of Tier 2 on EF. Here, we consider our workflow-aware caching method, when the average
Tier 2 Bandwidth is 10 Gbps, 250 Mbps, and 50 Mbps. We synthesized logs by randomly
assigning a Tier 2 bandwidth to each job entry in the original log to denote input datasets
originating from disparate data sources. Consequently, this results in a diverse staging in
time.

Table 3.3: Average expansion factor observed for the studied caching polices.
7-day Purge LRU MRU Workflow

Queue Entry 167289 2.54 2.59 2.54
Stage in Time 3.86 1.04 1.05 1.04
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Figure 3.9: The distribution of EF as the average bandwidth to Tier 2 storage varies. 10
Gbps achieves a 1.04 average EF, while 250 Mbps achieves 2.09 and 50 Mbps achieves 6.51.

Figure 3.9 shows the cumulative distribution of EFs under various Tier 2 average bandwidths.
Even when all Tier 2 storage is capable of providing a low bandwidth of only 50 Mbps, 71.5%
of the jobs finish with an EF less than 1.5 and an average expansion factor across all jobs
of 6.51. Both 10 Gbps and 250 Mbps provide significantly better average EFs of 1.04 and
2.09, respectively.

In summary, the presented workflow-aware caching provides effective means to reduce average
scratch utilization, reduces data that needs to be transferred per job, and allows for managing
the scratch space in a globally optimal manner.

3.5 Chapter Summary

In this chapter, we have argued for treating the HPC center scratch space as a specialized
cache that manages the inflow and outflow of necessary job data in a workflow-aware inte-
grated fashion. We have presented the design and evaluation of a workflow-aware caching
approach, which provides an improvement in average scratch utilized per hour compared to
an LRU based caching mechanism, and reduces the amount of data read on average compared
to both a traditional purge and other caching approaches. Furthermore, the approach results
in an improvement of the expansion factor — a popular metric to measure a center’s ser-
viceability — compared to the currently-used purging. Additionally, the presented approach
works equally well for any kind of Tier 2 storage available to the users. Thus, our solution
is able to reconcile several key factors such as reducing the duration of scratch space con-
sumption, adapting to volatility, and delivering the data on time. Finally, we note that the
fundamental contribution of this chapter is the paradigm shift in managing the scratch space
comprehensively and not as an after thought: this provides opportunities for HPC center
managers to design customized scratch management as needed for their installations.



Chapter 4

Timely Offloading for HPC Output

Data

Modern High Performance Computing (HPC) centers are charged with supporting scientific
applications that increasingly use and produce very-large datasets, e.g., analysis of neutron
scattering data and deep-space observations. Of special importance are application result
datasets or checkpoint snapshots from long-running simulations, which are required to be
offloaded to end-user locations, where they can be analyzed for further scientific insights. For
example, the Department of Energy’s (DOE) Jaguar supercomputer at Oak Ridge National
Laboratory (ORNL) is generating terabytes of data from user jobs from a wide-spectrum
of science applications in Fusion, Astrophysics, Climate and Combustion. Result outputs
from Fusion applications such as GTC [23] and GTS [106] can reach up to 40 TB and
50 TB, respectively, for a 100,000+ core run. In many cases, checkpoint data also doubles
as result outputs that are used for inspecting job progress or for eventual aggregation into
a set of visualized images (e.g., as in GTC, GTS, etc.). In fact, as the complexity and size
of applications increase with the advent of petascale supercomputers, we may soon be faced
with offloading a petabyte of data from a single application run. Another driving example
is the TeraGrid collaboration [19], where result-data — from computations at any of the
ten sites nation-wide — is required to be delivered to the end-user. These user facilities are
accessed by a geographically distributed user-base with varied end-user connectivity, resource
availability, and application requirements, delivering result-data to whom in a timely manner
is a crucial challenge.

A common practice in HPC centers is to leave application-associated data management to
the end-user, as the user is intimately aware of the application’s data needs. However,
due to the growing data demands of HPC applications, it is impractical to store all user
data indefinitely at the center. HPC centers are aware of these constraints and enforce
purge policies to manage the precious scratch space, wherein data is deleted based on a
time window (ranging from a few hours to a few days) [5, 2]. As centers become crowded,

31
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the purge policies get more stringent to provide space for incoming jobs. Unfortunately,
there is no corresponding end-user service for a timely offload of data to avoid purging. As
stated earlier, this is largely left to the user and is a manual process, wherein users stage
out result-data using point-to-point transfer tools such as GridFTP [34], sftp, hsi [49], and
scp.

Both end-user and center operations are negatively impacted because a comprehensive result-
data offloading solution is not available. The output data of a supercomputing job is the
result of a multi-hour — even several days’ — run, and is usually stored on the center’s
scratch space. A delayed offload of such data results in sub-optimal use of scratch space in
that the space is being used for a job that is no longer running. Furthermore, a delayed
offload renders output data vulnerable to center purge policies. The loss of output data
leads to wasted user time allocation, which is very precious and obtained through a rigorous
peer-review process. Thus, a timely offload can help optimize both center as well as user
resources.

In this chapter, we address the challenges associated with providing a data offloading ser-
vice for HPC centers. We design a combination of both a staged as well as a decentralized
offloading scheme for job output data. Compared to a direct transfer, our techniques have
the added benefits of resilience in the face of end-resource failure and the exploitation of
orthogonal bandwidth that might be available in the end-to-end data path. Our approach
uses a collection of intermediate nodes that are specified and trusted by the end-user, thereby
eliminating the concern of data delivery through a set of unreliable sites in a decentralized
environment. Additionally, we develop a decision making component that factors in param-
eters such as a center’s purge deadline, the user delivery schedule, and a snapshot of current
network conditions between the center and the end-user, to determine the most suitable ap-
proach to offload. Further, we employ active monitoring, using the Network Weather Service
(NWS) [107], to make the data offload process react to bandwidth degradation, thus ensur-
ing that a user-specified delivery constraint or a purge deadline can be met. Moreover, we
utilize erasure coding schemes to ensure that the offload is fault-tolerant. Finally, we have
implemented the offloading service components, and have thoroughly evaluated it using both
trace-driven simulations, as well as actual tests using the PlanetLab testbed [81].

4.1 Requirements of a Result-Data Offloading Service

Current solutions for offloading large data to end-user sites are often mired by several factors.
First, a direct download from the HPC center to the end-user requires that end resources
be available for the entire duration of the transfer. This can be a significant space and
bandwidth commitment from both the HPC center and the end-user. For instance, the end-
user resource might be unavailable when the data needs to be offloaded. This renders the
result-data vulnerable to center purge policies. A desirable alternative, however, is to quickly
move the data from center scratch space — perhaps to an intermediate storage location — so
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Figure 4.1: Depiction of usecases for a timely offload of result-data: (a) An expeditious
offload to release center scratch space and to protect the data against a purge; (b) An
end-user data delivery; and (c) Data delivery to another part of the job workflow.

that the high-end, expensive resource can be relieved. Better yet, the intermediate location
can be on the data path to the end-user, so the data can be delivered from the intermediate
location to the destination when the end-resource becomes available again.

Second, current data offloading schemes from HPC centers do not exploit orthogonal (resid-
ual, unused) bandwidth that might be available between two transfer end-points. Exploiting
such bandwidth can help alleviate several problems endemic to data downloading, such as
bandwidth volatility.

In essence, what is needed is an architecture for timely end-user data delivery that is able
to reconcile both the HPC center’s as well as a user’s constraints amidst varying bandwidth
and resource availability conditions.

4.2 Design

In the following, we first present an overview of the system architecture. Next, we discuss
intermediate node selection and usage. Finally, we describe how individual components are
integrated and utilized to provide the timely offloading service.
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Table 4.1: Input parameters for the data offload manager.
Parameter Description Source
Dpurge Purge deadline Center configuration
S Job output data size Job specification

JSLA Data delivery schedule Center-user SLA
< Ni, Pi, List, properties, and available Node discovery
BWi > bandwidth of intermediate nodes process

4.2.1 Architecture Overview

Figure 4.1 illustrates the overall offloading framework, which entails a combination of strate-
gies both at the center and the end-user site to orchestrate the transfers. The design chal-
lenges arise from the interplay between the center’s purge policy, the job submission system
and the data transfers for offloading.

We design a new software component, the Data Offload Manager, to capture the above
interactions and drive the offloading process. The Manager is integrated into the HPC center
management software suite, and is provided with a number of critical center parameters and
job descriptions to guide its operation. The Manager takes as input, guidelines regarding
the purge deadline, Dpurge, from the HPC center’s scratch space purging system, and the
job specification from the job submission system. The specifications include the output data
size, S, the job’s data delivery schedule as per the Service Level Agreement (SLA), JSLA, and
other details such as any potentially available intermediate nodes, < Ni, Pi, BWi >, where Pi

denotes usage properties/constraints of the node, Ni, and BWi denotes the current snapshot
of the observed NWS bandwidth between the HPC center and Ni. Table 4.1 summarizes the
list of parameters used in our system.

The Manager uses these parameters to determine a course of action, i.e., an offload schedule,
Os, for offloading the job’s output data. Os can be either a direct center to end-user site
transfer or a decentralized transfer through the intermediate nodes. The goal is to deliver
the data in time, Toffload, such that:

Toffload ≤ Min(Dpurge, JSLA) (4.1)

Given the dynamic nature of the system, Os needs to be constantly re-evaluated based on
an updated < Ni, Pi, BW ′

i >, where BW ′

i is the latest snapshot of NWS measurements.
Alternate routes have to be taken to meet the SLA if the re-evaluated time to offload,
T ′

offload, increases such that:

T ′

offload > JSLA (4.2)
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Parameter Specification

The offloading scheme relies on the job submission system for critical input parameters, some
of which cannot be inferred from the center management software and must be specified by
the end-user. For this purpose, we instrument the center’s job submission system to enable
end-users to provide information, e.g., delivery constraints and deadlines etc., as part of their
regular PBS [32] job scripts. This has the added advantage of enabling easy integration and
adaptation of our solution. The user simply submits the modified PBS script to our system
on the center, which extracts the offloading-specific parameters and passes them to the
offload manager.

Initiating the Offloading Process

Eager offloading has to be started to coincide with job completion so that output data can
be expeditiously staged out. Thus, a desired functionality of the job submission system
is to be able to automatically initiate a pre-specified process at job completion. Previous
work [108] has focused on a similar goal, by instrumenting the job submission system to
start user-specified direct data transfers, e.g., secure copy scp or GridFTP [34], upon job
completion. This was accomplished by setting up separate queues for data and compute
jobs, submitting the offload job to the data queue and specifying job dependencies such that
the offload only begins after the compute job (dependency setup mechanisms are allowed by
most modern resource managers). However, only simple user-specified direct data transfer
commands were executed (e.g., scp or GridFTP) as part of offload in that work. In this
dissertation, we use and extend this work to intimate the offload manager of the availability
of a job’s result dataset for decentralized offloading of the data, which can then initiate the
offload. The presence of a center-wide offload manager has the advantage that it can perform
global optimization, for example it can assign a higher priority to an offload that is on a
tighter deadline than others.

A final piece in the data offload architecture is the utilization of a number of user-specified
intermediate storage locations or nodes to which data from the center is offloaded, and
from which the end-user site can then asynchronously retrieve the data. These nodes are
specified by the user as part of the job submission script. By selecting resources that are
closer (in bandwidth) to the center, the offload bandwidth utilization can be maximized and
the chances of loosing data due to a purge reduced. The intermediate nodes also provide
multiple data flow paths from the center to the submission site, faster retrieval speeds, as
well as fault-tolerance in the face of failure.
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4.2.2 Intermediate Nodes

In the following, we discuss the motivation, discovery, and utilization of intermediate storage
locations in enabling a timely HPC data offloading process.

Motivation for Collaboration

The decentralized offload makes extensive use of intermediate nodes. We envision these to
be nodes that are specified and trusted by the user. More specifically, consider the following
collaboration scenarios that present a strong case for the participation of intermediate nodes
in the data offloading process.

In today’s HPC environment, supercomputing jobs are almost always collaborative in na-
ture. In fact, a quick survey of jobs that are awarded compute time on the ORNL National
Leadership Class Facility (NLCF) — through the DOE’s INCITE [46] program — shows
that these jobs involve multiple users from multiple institutions. This collaborative property
is even more true in large national infrastructures such as the TeraGrid [19] that are among
the key drivers for end-user data delivery. Jobs in the TeraGrid are usually from a virtual
organization (VO), which is a set of geographically dispersed users from different sites, com-
ing together to solve a problem of mutual interest for a certain duration. In such cases, it is
clear that many users, from different sites will be interested in the resulting job output data.
Thus, there is a natural need to dispatch the result data to more than a single location.

This property of collaborative science can be exploited to perform a collaborative offload of
job output data. Participating sites can come together to form an overlay of intermediate
nodes that contribute space and bandwidth for the offload. We argue that there exists
a natural incentive for the participating sites to do so. Such a definition of intermediate
nodes makes them more reliable and alleviates a key concern of precious result-data being
transferred through an unreliable substrate.

The natural incentive works well when the project is a large collaborative one. In this case,
our work does not expect any well-established infrastructure. Instead, it attempts to piggy-
back on existing connectivity and residual bandwidth therein. Such a setup is well suited
for long-running jobs where the overhead of intermediate-node setup is justified. More and
more, we are observing that HPC jobs are either long-running, or that the same users run a
large number of small jobs where the setup cost is amortized over the multiple runs.

Node Specification

The intermediate nodes are specified by the users as part of their job submission scripts. We
provide special directives with which users can annotate their job scripts. These directives are
parsed by the offload manager to extract and maintain a list of user-specified intermediate
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Figure 4.2: Intermediate node discovery using random p2p messages. Here, the end-user
submission site (black) discovers three intermediate nodes (gray).

nodes. The explicit specification of all of the intermediate nodes that a user has access
to may not be practical for large collaborations. Here, it is intended to demonstrate how
a single user, even with just a handful of collaborating sites can exploit the intermediate
nodes to conduct a collaborative download. In the case of large collaborations, we can
imagine specifying simply the VO that the user is part of, in the job script. The data offload
manager then submits the job to the scheduler. This way, the overlay of intermediate nodes
becomes an integral part of the job and can be used for the delivery of the job’s result
data. End-users can further qualify the intermediate node specification with usage policies,
which specify the available storage and the load threshold at the intermediate node. For
instance, an intermediate node might be willing to participate in the collaborative offload as
long as the load incurred due to the transfer is below a certain level. We will discuss this
specification in more detail later in Section 4.3.

Node Discovery

The intermediate nodes are selected from among the participating sites that are interested
in the data transfer. However, not all nodes are available at all times. Thus, there is a
need to discover appropriate volunteer intermediate nodes (Ni’s). Given the dynamic avail-
ability, and varied resource sharing policies of participants, a centralized approach would be
cumbersome and impractical. Instead, we utilize the distributed and decentralized commu-
nication substrate provided by structured p2p networks [90, 98] to locate Ni’s in a dynamic
environment.

We use a p2p overlay (Pastry [90]) to arrange sites that intend to participate in the collab-
orative offload (Figure 4.2). Use of the overlay provides reliable communication with other
participants in the network. The participating sites, Ni’s, use the overlay to advertise their
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availability to other nodes in the overlay using random broadcast. Nodes that receive these
messages build local information about available nodes for offload. A given node can use its
own policies and information about a remote node’s capacity to make a decision regarding
whether to use the remote node for the offload.

Finally, before submitting a job to the HPC center, the submission site, Ns, interacts with
the center to sort the Ni’s with increasing latency from the center, while at the same time
with decreasing latency from Ns. A greedy approach is sufficient here, as the dynamic nature
of the system takes away any advantage of trying to further optimize such ordering before
the actual offload process starts. The sorted set of nodes is provided to the center to utilize
as the intermediate nodes, and becomes an integral part of the job’s workflow.

While not part of our current implementation, the scalable p2p discovery can also exploit
the resource discovery or selection mechanisms of a VO to identify intermediate nodes within
a large collaboration. VOs typically use a Monitoring and Discovery System (MDS) that
maintains a list of available resources that are willing to accept jobs. In our case, this
infrastructure will need to be extended to accommodate storage resources willing to donate
allocations and run our service.

Landmark Nodes

The reliance of our design on intermediate nodes exposes the offload system to possible
failures due to lack of sufficient Ni’s. For instance, the submission site may not have access
to any (or sufficient enough) intermediate nodes on the path to the HPC center. This could
be either due to the lack of many participating sites in the job or due to the volatility of
the intermediate nodes. To avoid such a scenario, we utilize a number of geographically
distributed Landmark nodes that are always available and can serve as intermediate nodes
in case enough p2p-nodes are not available. The Landmark nodes can be other HPC centers,
or nodes along national links such as, Internet2 [9] Lambda Rail [12], REDDNET [6] or the
TeraGrid [19] to which many end-users may be connected and have access to. The location
and number of the Landmarks is determined through out-of-band agreements with the HPC
center. An example application for this usecase is CERN’s LHC [51] experiment, which is
proposing to use national and regional sites as Tier 1 and Tier 2 data distribution centers
to disseminate the experimental data from Tier 0 at CERN. Individual users can download
data from these tier sites depending on geographic proximity.

4.2.3 The Data Offloading Process

The offloading process is initiated at the completion of a job as follows. First, the center
chooses a number of nodes from the set of Ni’s ordered by available bandwidth. The exact
number of nodes used for this purpose, i.e., the fan-out, is chosen to achieve maximum
(pre-specified) out-bound center bandwidth utilization, or to meet previously agreed-upon
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Figure 4.3: The data flow path from the HPC center to the submission site. The intermediate
nodes are represented by hexagons. The participants also run an instance of the NWS (gray
square) for bandwidth monitoring.

offload deadlines. These chosen Ni’s serve as the Level-1 intermediate nodes. Note that
the selected fan-out is not static, and can vary depending on the transfer speeds achieved.
Second, the result-data is split into chunks and parallel transfer of the chunks to Level-1
nodes is initiated. Since the Level-1 nodes are much closer to the center than the submission
site, the offload time is expected to be much smaller than a direct transfer to the submission
site. If not, the manager would have opted for a direct transfer schedule to the end-user site,
and not the decentralized offload. This has the desired effects of both releasing the precious
scratch space occupied at the center and protecting the data from the purge. Third, Level-1
intermediate nodes may also further transfer data to the Level-2 intermediate nodes (once
again chosen from Ni’s), and so on. Consequently, data flows towards Ns, though it is not
pushed to Ns. Finally, Ns can asynchronously retrieve the data from the Level-N nodes.
Decoupling Ns from the data push path allows the center to offload the data at peak (pre-
specified) out-bound bandwidth without worrying about the availability (and connection
speed) of Ns, while enabling Ns to pull (retrieve) data from Ni’s as necessary. The key steps
in the offload process are illustrated in Figure 4.3.

The Push of data from one level to another (e.g., Level-1 to Level-2) is similar to the initial
offload process, and is decentralized. Similar to the center, Level-i nodes may want to achieve
a predetermined out-bound bandwidth, or may simply be configured to offload the data they
have to a configurable number of Level-(i+1) nodes for replication purposes. Either option
results in choosing the fastest nodes to complete the Push operation.

The use of intermediate nodes in our system provides multiple data-flow paths from the
center to the submission site Ns, leading to several alternative options for data delivery. For
instance, data may be replicated across different Ni’s during the transfer from one level to
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Figure 4.4: Bandwidth monitoring using the NWS. ’S’ indicates our software.

another. This will allow Ns to pull data from a number of locations, thus providing fault
tolerance against node failure, as well as better utilization of the available in-bandwidth at
Ns. The schedule can also be used to simultaneously deliver data to multiple interested sites.

Providing Service Guarantees

The submission site and the HPC center have SLAs regarding how quickly data can be
offloaded from the center. Similar to the intermediate node specification, the SLAs are also
specified in a job script.

Given the dynamically changing bandwidths between participants, a fixed or statically cho-
sen fan-out is insufficient. Therefore, we utilize a bandwidth monitoring-based scheme to
dynamically adjust the fan-out and ensure meeting the SLA. For this purpose, we employ
the Network Weather Service (NWS) [107] to monitor and estimate the available bandwidth
between participating nodes. As seen in Figure 4.4, each participating node joins a “clique”,
which is a group of sensors that measure bandwidth. A token is passed around (Step 1),
which serves as an indication to a node to probe (Step 2) other nodes for available band-
width. The replies (Step 3) are recorded not only at the node, but also at a central NWS
repository (Step 4). The token is then forwarded to the next node (Step 5). The clique gives
the center an estimate of the bandwidth available from it to different nodes. The center uses
this information to decide whether a chosen fan-out is sufficient to meet a particular SLA,
or needs to be increased. If needed, additional nodes from the set of Ni’s can be chosen to
increase the fan-out and meet the SLA. Nodes at Level-i utilize a similar approach to deter-
mine the fan-out for Level-i + 1. At each level, a decision making component re-evaluates
the time to offload as mentioned earlier. In case the number of available Ni’s are insufficient
for meeting the SLA, the submission site is informed, which in turn can either provide more
intermediate nodes or accept the best effort from the HPC center.

Fault Tolerance through Erasure Coding

As stated earlier, pieces of the result-data can be replicated across many participating in-
termediate nodes, facilitating retrieval from any subset of the nodes. In addition to this,
we apply erasure coding [65, 85] to the data to improve the reliability of the transfer, while
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minimizing the amount of transferred data. The computational cost of erasure coding can
be paid by the Level-1 intermediate nodes if coding at the HPC center (which will be part
of the job’s time allocation) is an issue.

Discussion

Recent studies have shown the high rate of storage system failures [92, 82, 95] and the com-
plexity of ensuring reliability in large-scale installations [31, 53, 87] such as the HPC scratch
space. Improving reliability in such fixed installations entails going through a rigorous and
time-consuming acquisition process mired with delays. In contrast, the collective use of less-
reliable individual intermediate nodes can provide a solution that can be arbitrarily grown
to accommodate any desired level of reliability. Thus, we argue that although individual
intermediate nodes may be more prone to errors compared to single disk in an HPC center,
as a system our approach is able to provide better reliability due to its flexibility. Plus,
this reliability comes for free as we use resources volunteered by collaborators, which would
otherwise not be used [36].

4.2.4 Design Summary

By way of eagerly offloading result-data from the center, our system avoids data loss due to
the center’s purge policies. This in turn allows the center to free-up precious scratch space
for in-coming jobs and their data, thereby improving its serviceability. By staging the data
to a network of intermediate nodes, en-route to the destination, we ensure that the offload
will not fail due to end-user resource unavailability. The result-data can be pulled from the
intermediate nodes as and when the end-user resource becomes available. Finally, our design
provides an integrated data management solution for the HPC center, rather than leaving it
up to the users, thus allowing them to focus on their applications and not bogged down by
unnecessary system-level details.

4.3 Implementation

The implementation of the offloading framework comprises of about 3000 lines of C code,
with the p2p substrate built using FreePastry [48] in Java. Figure 4.5 shows the architecture
of the software that runs on all the participating nodes. The software also runs on the HPC
center as an Offloading Service. The list of Ni’s and the SLA are provided through the
job submission script. The role of various components is as follows. The Node Manager is
responsible for maintaining Ni’s. The SLA Compliance module uses bandwidth predictions
provided by NWS [107] (through the NWS Query module) to guide the offload process
in meeting that SLAs. The Erasure coding module transforms the data to be sent out
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into error-coded chunks, and the Transfer Module is charged with pushing out the encoded
chunks to the next-level intermediate nodes. Finally, at the heart of the system is the Offload
Manager that integrates all the modules and uses them to select different offload schedules
and to enable the transfers. The erasure code that we have used is Reed-Solomon [84] in 4:5
coding configuration, i.e., four input chunks are coded to produce five output chunks, with
a redundancy of 25%. The chunk-size is a tunable parameter which can be set based on the
size of the datasets being offloaded.

4.3.1 Integration with Job Submission System

HPC centers utilize job management systems, e.g., batch job queuing using PBS [32], to
ensure proper operation. Typically, the job submission system constitutes a user job script
and a resource manager at the supercomputer center that schedules the jobs based on a
queuing system. Thus, the natural place to specify user-defined intermediate nodes and
deadlines is the existing job submission scripts.

To this end, we have instrumented the PBS [32] job submission system that is prevalent in
HPC centers to enable specification of user-defined intermediate nodes and deadlines. We
have devised a way for specifying intermediate nodes and delivery deadlines as annotations
within a standard PBS script. These annotations are specified as directives, much like other

Table 4.2: New script directives used for offloading.
Directive Parameters Description
Stageout Output dataset, Specifies offloading dataset

destination site and the target destination site
InterNode IP address, bandwidth Specifies an intermediate

snapshot, availability, capacity site location
Deadline Time Specifies the deadline for

the offload to complete
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#PBS −N myjob
#PBS − l nodes =128 , wtime=12:00

mpirun −np 128 ˜/MyComputation

#Stageout f i l e : ///home/ scrat ch /user/ output1 f i l e :///home/ scrat ch /user / output1
#Stageout f i l e : ///home/ scrat ch /user/ output2 f i l e :///home/ scrat ch /user / output2

#InterNode node1 . S1 : 49665 : 50GB
. . .
#InterNode nodeN .SN:49665 : 30GB

#Deadl ine 12/14/2010 :12 :00

Figure 4.6: An instrumented PBS script containing offload specific directives.

PBS directives (e.g., #PBS). The intermediate nodes can be further qualified with policy
specifications that capture usage constraints. These constraints include the amount of space
available for offload on a node, and the node’s availability. More fine grained policies can be
easily added.

Table 4.2 presents the directives that we have introduced to support the offloading process.
Figure 4.6 shows an instrumented PBS script with these directives, wherein a user specifies
the output data and the final destination, the use of intermediate nodes with their space
constraints, a port number where our transfer protocol is listening, and a delivery deadline.

To handle the instrumented job script, we have implemented a parser that runs on the
HPC center. When an annotated PBS script is submitted for execution to the job scheduler
at the HPC center, it is intercepted by our parser that filters out directives specific to
data offloading, and passes those details to the Offloading Service for data delivery. The
remaining PBS script is then handed over to the PBS queue for standard processing. As
discussed above, the Offloading Service is aware of the center’s purge deadline and attempts
to reconcile that with the user’s delivery deadline and the intermediate/landmark nodes to
achieve a desired data transfer schedule.

4.3.2 Integration with BitTorrent and NWS

We have designed our offloading mechanism to exploit the data dissemination abilities of
BitTorrent [41] and the network monitoring facilities of NWS [107]. While both of these
services are centralized in our current implementation, we note that the design provides for
distributed equivalents to be built and substituted easily.

Each participating node in our system runs an NWS daemon. We have configured NWS
sensors that keep track of the vital statistics of each node, as well as record bandwidth
measurements between nodes. These measurements are retrieved by our Offload Manager
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via periodic queries and used in determining appropriate offload paths that can sustain
sufficient bandwidth to meet specified SLAs. The Offload Manager also employs the data
from NWS to select additional peer nodes in case an SLA cannot be met.

The decision to add additional nodes to the offload path is driven by several factors: user-
center delivery and purge deadlines, storage capacity of nodes (specified via the PBS script),
and the available bandwidth.

Once a set of intermediate nodes is selected using NWS, we use BitTorrent’s scatter-gather
protocol to transfer the file from the center to the selected intermediate nodes. The offload
happens as follows. The Offload Manager creates a meta-data “torrent” file for the subset
of data to be transmitted to a set of chosen intermediate nodes. The Manager also pro-
vides BitTorrent tracking services so that the intermediate nodes know what data has been
transmitted to which node. Once the nodes receive the torrent file, they use the metadata
information along with the tracker to “download” the data subset to their local storage. The
process is repeated at all the intermediate node levels. The end-host can also use appropriate
torrent files to download the result-data from the intermediate nodes, thus completing the
offloading process. Finally, issues that could arise due to the use of multiple data sources are
simplified by using BitTorrent. For example, if two Level-1 nodes decide to send the same
dataset to a Level-2 node, BitTorrent will automatically utilize both copies of the data at
the Level-1 nodes to quickly complete the transfer.

4.3.3 Deployment

We briefly highlight some deployment issues pertaining to the design details illustrated above.
Earlier, we discussed how, given a set of intermediate nodes, our approach can discover a
subset of them and compose them in a scalable fashion for a collaborative data delivery.
However collaborative the nature of scientific discovery, in day-to-day supercomputing envi-
ronments, resource sharing often boils down to agreements between compute clusters, storage
resources, and networks. The Grid community has spent a significant amount of time and
effort in enabling these policies and collaborations, and we can leverage much from it. In-
stead, in this brief deployment discussion we put forth the concept of a Storage Service, a
piece of software that an intermediate node can run to participate in our infrastructure. The
storage service is essentially the building block for constructing our overlay and involves an
intermediate node allocating a certain amount of storage (exposed at a mount point), ad-
vertising the protocols available for data transfers, and installing and running the software
necessary for scalable discovery. The service also runs our BitTorrent-based data servers
and clients as well as an NWS daemon. A node can choose not to run our data movement
tool and instead opt for an existing transfer tool. Our data delivery mechanism will need to
factor this, in addition to the advertised available storage, into the decision making. In the
future, we can envision a catalog of such storage servers being maintained at a well-known
location in the case where the user is part of a collaborative science team. In those cases,
users need not specify the intermediate nodes in their job script, as that can quickly become
cumbersome.
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4.4 Simulating the Offloading Process

The interplay between the different system components at an end-user site and the HPC
center is complex and requires a controlled environment for in-depth analysis, which is near-
impossible to do in real HPC setups. Thus, we have developed a realistic simulator for
the offloading process, simHPC, which models both job execution and data offloading. Ap-
pendix A contains additional detailed information about the design and inner workings of
simHPC.

4.5 Evaluation

We evaluate our result-data offloading service using both the implementation of Section 4.3,
and the HPC center data-subsystem simulator of Section 4.4 and Appendix A. The goal of
the evaluation is to show the effectiveness of our approach to better handle data offloading.

4.5.1 Implementation Results

We emulated the dynamic behavior of the proposed data offload model using the distributed
testbed facilities of PlanetLab [81]. For our experiments, we chose 22 PlanetLab sites such
that the HPC center and the submission site were on opposite coasts of the US, while the
rest of the nodes were geographically scattered in between. All the nodes were arranged in a
tree with the HPC center as root, the number of children ranging from zero to four, and two
levels of intermediate nodes. Such a tree offers multiple data flow paths from the center to
the submission site and allows for testing the approach under different scenarios. Table 4.3
shows the observed average bandwidth between the center, Level-1, Level-2, and Ns nodes
used in our experiments. While Figure 4.7, shows the overall experimental setup, as well
as the observed pair-wise bandwidth between various nodes on the data flow path. In the
following experiments the BitTorrent chunk size was set to 256 KB. Moreover, the reported
numbers represent averages over a set of three runs.

Table 4.3: Inter-level bandwidth statistics.
From To Average BW (Mbps) Observed Stdev (Mbps)
Center Level-1 20.7 16.7
Center Ns 2.05 -
Level-1 Level2 5.4 3.6
Level-1 Ns 2.2 0.2
Level-2 Ns 8.4 12.9



Henry M. Monti Chapter 4. Timely Offloading for HPC Output Data 46

Center

cb da

e gf h i

k l

j

m n

to p q r s

Ns

(i) Relationship between
nodes.

Observed Bandwidth (Mbps)
Node PlanetLab site

Ns a b c d
Center jerry.cc.vt.edu 2.05 45.7 12.6 13.5 11.1
Ns planet1.scs.stanford.edu - 2.13 2.02 2.37 2.28
a bob.cc.vt.edu 2.13 - 12.6 13.4 8.36
b pepper.planetlab.cs.umd.edu 2.02 12.6 - 30.4 12.5
c salt.planetlab.cs.umd.edu 2.37 13.4 30.4 - 14.3
d plgmu2.ite.gmu.edu 2.28 8.36 12.5 14.3 -
e planet2.scs.stanford.edu 42.6 2.28 2.19 2.15 2.25
f planetlab-1.cs.princeton.edu 2.08 7.93 7.12 9.32 10.9
g planetlab-2.cs.princeton.edu 1.84 8.84 12.5 12.5 13.1
h planetlab-3.cs.princeton.edu 1.96 8.26 7.63 9.69 11.3
i planetlab-4.cs.princeton.edu 1.82 7.77 10.7 10.9 11.9
j planetlab1.cs.purdue.edu 2.36 4.38 5.18 5.21 4.98
k planetlab2.cs.purdue.edu 2.28 4.46 5.79 5.66 5.17
l planetlab1.cs.wisc.edu 1.82 3.31 3.67 3.90 3.83
m planetlab2.flux.utah.edu 3.48 2.50 2.73 2.83 2.65
n planetlab4.cs.duke.edu 2.14 8.56 8.18 8.36 1.72
o pl1.unm.edu 3.57 2.53 2.29 2.31 1.01
p pl2.unm.edu 3.39 2.55 2.21 2.27 1.18
q planetlab2.cis.upenn.edu 2.05 1.66 10.6 11.3 11.1
r ricepl-2.cs.rice.edu 4.13 3.58 4.03 4.10 4.22
s planetlab8.millennium.berkeley.edu 28.7 1.92 1.99 1.79 1.94
t planetlab9.millennium.berkeley.edu 29.9 1.88 2.03 1.93 1.99

(ii) Chosen PlanetLab sites, and observed bandwidths between nodes.

Figure 4.7: The experimental setup used for evaluation.

Approach Feasibility

In the first set of experiments, we determined the feasibility of our approach compared to
several point-to-point direct transfer tools that are prevalent in HPC: (i) scp, a baseline
secure transfer protocol; (ii) IBP [83], an advanced transfer protocol that makes storage part
of the network, and allows programs to allocate and store data in the network near where
they are needed; (iii) GridFTP [34], an extension to the FTP protocol, which provides
authentication, parallel transfers, and allows TCP buffer size tuning for high performance;
and BBCP [21], which also provides high performance through parallel transfers and TCP
buffer tuning. Note that these protocols are all typically supported [24] by HPC centers such
as Jaguar [18].

We used a range of file sizes from 500 MB to 5.0 GB and measured the time for each direct
transfer method between the center and the submission site. For our offloading, we used a
combination of BitTorrent and NWS as outlined earlier.

In Table 4.4, we compare Direct transfers with the times to offload data from the source
(HPC center) to Level-1 nodes (Offload), time to forward the data from Level-1 to Level-2
(Push), and the time it takes the submission site to pull the data (Pull). Compared to
the Direct transfer mechanisms, the Offload is able to release the HPC center scratch space
dramatically sooner for the data sizes we considered, as shown in Table 4.4. This has a
significant impact on the HPC center serviceability since the free space can now be used for
new incoming jobs.
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Table 4.4: Comparison of decentralized transfer times (in seconds) with different direct
transfer techniques. The buffer size for IBP, GridFTP, and BBCP is set to 1 MB. The
number of streams in GridFTP and BBCP is set to 8 and 16, respectively.

File Size 500 MB 2.1 GB 5.0 GB

Offload 169 570 1339
Decent- Push 349 1123 2692
ralized Pull 202 562 1387

Slowdown wrt. Slowdown wrt. Slowdown wrt.
Ofld. Pull Ofld. Pull Ofld. Pull

scp 1443 8.5x 7.1x 5834 10.2x 10.4x 13917 10.4x 10.0x
Direct IBP 929 5.5x 4.6x 3660 6.4x 6.5x 8546 6.4x 6.2x

GridFTP 359 2.1x 1.8x 1603 2.8x 2.9x 3624 2.7x 2.6x
BBCP 273 1.6x 1.4x 995 1.7x 1.8x 2373 1.8x 1.7x

Compared to each Direct transfer mechanism, the time to pull the data to the submission site
is also reduced as seen in Table 4.4. The reported pull time represents the time to transfer
the file from Level-1 and Level-2 nodes to the submission site, and does not include the
transfer time from the source. However, the submission site pull is asynchronous, and can
start as soon as chunks begin to arrive at Level-1 nodes. We note that the overall transfer
time, i.e., the time from when the source starts sending the data to when the submission site
has received all the data is not a suitable metric, as our approach allows the site to be offline
during the offloading process and delay starting the pull as necessary. However, the earliest
time the user can get the output data is still a useful metric. In our system, the end-user can
start retrieving the data as soon as the center has offloaded it to Level-1 nodes. Thus, the
Offload times reported in Table 4.4 also serve as the earliest data availability metric, and as
stated earlier are significantly better in our approach compared to a direct data transfer.

Dynamic Data Scheduling

In this section, we compare our approach with a regular BitTorrent-based data transfer.
In this case, we use NWS bandwidth measurements to greedily provision Level-1 nodes
to increase the fan-out until a maximum (predetermined) center outbound bandwidth is
utilized.

Table 4.4, discussed in the previous section, shows data offloading using the bandwidth
measurement-based approach. Table 4.5 shows the time taken to deliver a 5.0 GB dataset
using the regular, unmodified BitTorrent protocol. Our results indicate that all three steps
in our approach: Offload, Push and Pull out-perform the corresponding steps in a regular
BitTorrent transfer. The Offload from the HPC center to Level-1 nodes is 52.9% faster,
while the Push from Level-1 nodes to Level-2 nodes is 26.9% faster. Use of bandwidth
measurements, therefore, results in reduced intermediate forwarding time. The time to pull
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Table 4.5: The time to transfer a 5.0 GB file using standard BitTorrent. The equivalent
phases for our scheme are shown in brackets.

Phase Time(s)
Send one copy from center (Offload) 2844
Send to all intermediate nodes (Push) 3684

Submission site download (Pull) 1393

the file to the submission site is slightly increased by 0.4%. This is expected, as the flow
paths do not affect the time it would take for the submission site to pull the file. These
results show that bandwidth measurement provides a good tool for improving offload times.

Effect of Chunk Size on Offload times

In our next experiment, we varied the chunk size used by BitTorrent and observed the effects
on file transfer time. The results are shown in Table 4.6. As the chunk size increases, the
transfer time decreases. A chunk size of 1024 KB improves transfer speed by 6.58% when
compared with the default chunk size of 256 KB. These results indicate that the transfers
can benefit from larger chunk sizes.

When to Employ Staged Offload?

In the experimental setup we have adopted, the bandwidth available between the center
and Level-1 nodes is greater than that between the center and Ns. Thus, in this setup, the
center will always decide to perform staged offloading. In the next experiment, we modified
the setup to use a node from our Level-1 nodes, i.e., a node with better connectivity to the
center, as the end user site, and did not use Ns. Then, we repeated the above experiment to
offload a 2.1 GB file, first, without considering direct transfer and always using the staged
offload mechanisms, and second, with the ability to choose between direct and staged offload
depending on the ability to meet a SLA deadline. We observed that for the first case, the
time to offload and pull the data was 610 seconds and 400 seconds, respectively. In contrast,
for the second case the direct transfer completed in 380 seconds, an improvement of 37.7%
in offload times. This result coupled with the earlier experiments stress the need for the
offload mechanisms to dynamically adjust to the variations in the system behavior and to
not be hard-wired to simply always do a staged offload or a direct transfer.

Table 4.6: Relative improvement in file transfer times using BitTorrent under varying chunk
sizes, compared to the default chunk size of 256 KB.

Chunk Size 128 KB 256 KB 512 KB 1024 KB
Time saved (%) -2.14 0 5.46 6.58
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Figure 4.8: Utilized out-bound bandwidth at the center, as the system adjusts to failures
and meets the 600s deadline for offloading. The labeled regions represent utilized bandwidth
to individual nodes.

Enforcing SLA

In the next experiment, we study the effectiveness of the proposed approach in enforcing
SLAs. We assume that the submission site and the HPC center have agreed on an SLA to
offload the 2.1 GB file to four Level-1 nodes (N1 to N4) or a direct transfer in 600s. Initially,
we choose a site that supports a large bandwidth between the center and the site. Thus,
our algorithm starts off by doing a direct transfer. However, at time t1 = 10s, we limit the
inbound bandwidth of the site to 1/10 of its value. Soon after this happens, our system
realizes that the SLA cannot be met with a direct transfer and switches to a staged offload.
Once an offload schedule is chosen, we utilize bandwidth provided by the NWS to estimate
the time Et it would take to offload the remaining chunks of the file. If Et turns out to be
longer than necessary to meet the SLA, the fan-out is increased. The process is repeated
every time the available bandwidth predictions change. To force dynamic scheduling to come
into play, we artificially introduced two bandwidth-changing events during the offload: at
time t2 = 150s, we limited the available bandwidth to N1 to about 1 MB/s; and at time
t3 = 250s, we failed N2. Figure 4.8 shows the sum of the utilized bandwidths between the
center and each of the four Level-1 nodes reported every second. Initially, only N1 and N2

are used. Soon after t2, the drop in N1’s bandwidth is detected causing an increase in Et.
The system reacts by increasing the fan-out to use N3, so that Et remains under the 600s
deadline. Note that between t2 and t3, the maximum available bandwidth of N3 was not
needed to meet the SLA and was not utilized. However, when N2 failed at t3, the system
first uses N3’s maximum bandwidth as observed as a spike (indicated by the arrow) in N3’s
curve following t3. However, this increase is not sufficient to compensate for the loss of N2,
hence, the fan-out is adjusted to also use N4. Also note that between t4 and t5, the available
bandwidth for N1 is reduced significantly enough to cause the system to utilize a higher
bandwidth to N4 so that the overall total bandwidth is maintained to meet the SLA. Once
N1’s bandwidth returns to normal, our greedy algorithm once again increases the use of N1’s
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Figure 4.9: Available data under different error coding schemes, as intermediate nodes fail.

bandwidth and reduces the use of N4’s bandwidth. The two spikes at t4 and t5 capture the
system response time to these events. Finally, as observed from the figure, the system is able
to transfer the file within the specified SLA by dynamically adjusting the fan-out.

Data Availability

In this experiment, we measured the effect of Error Coding on fault tolerance. For this
purpose we randomly failed several intermediate nodes during the course of the transfer
and determined what portions of the file become unavailable. The experiment was repeated
with an increasing number of failed nodes, up to 10 (50%). Figure 4.9 shows the average
results over three runs for four scenarios: with no error coding, using 4:5 Reed-Solomon [84]
coding (RS), and using replication to create two copies under both no error coding and RS.
As expected, using neither error coding nor replication causes data to become unavailable
even with a single failure, with up to 87.9% of data being unavailable with 10 failed nodes.
Use of error coding or replication allows the file to be transferred successfully even when
multiple nodes on the path from the center to the client fail. Note that both RS-single copy
and replication are able to provide 100% availability with up to two (10%) node failures.
This is promising as our RS code has only 25% redundancy to that of 100% of replication.
However, with additional node failures simple replication is able to provide better availability
than RS. Creating two copies of the data under RS further improves data availability: 100%
availability when 25% of the intermediate nodes have failed, 89.7% availability with the
extreme case of 50% of failed intermediate nodes. Hence, error coding at the center along with
replication through multiple data-flow paths can provide excellent fault-tolerance behavior
for the offloading process.
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Figure 4.10: Overall scratch utilization over the duration of the traces under different ap-
proaches. The solid line shows the average utilization measured per hour.

4.5.2 Simulation Results

In the next set of experiments, we utilized our simulator (Section 4.4 and Appendix A)
to study in detail the impact of our approach on overall scratch utilization, and towards
mitigating the role of failures in job scheduling delays.

Center Log Statistics

The simulator is driven by job-statistics logs collected over a period of three-years (2004-
2007) on the Jaguar [18] supercomputer. Table 4.7 shows some relevant characteristics of the
logs. Also, note the large variance in both the duration of the jobs (from a few seconds to
over a day) and the amount of data they access (from a few MBs to several TBs), implying
that even a small amount of scratch savings for larger jobs can enable accommodating a large
number of smaller jobs, consequently increasing the center’s job throughput. For this study,
we assume that the job input and output data sizes are capped to the total aggregate memory
usage of the job. For example, if the job used 1,000 compute cores and 2GB of memory per
core, we assume its output data size to be 2000GB. This is a very reasonable assumption
given that many data-intensive applications’ checkpoint or restart output datasets cannot be
larger than their total memory usage. In the absence of per job output data size information

Table 4.7: Statistics about the job logs used by simHPC.
Duration 22753 Hrs

Number of jobs 80025
Job execution time 1 s to 120892 s, average 5849 s
Input data size 2.28 MB to 7481 GB, average 65.3 GB
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Figure 4.11: The scratch savings achieved by using a decentralized offload compared to a
standard 7 day purge.

in the logs, we consider such an estimate to be a realistic approximation, capturing current
usage trends. The output data itself can run in the hundreds of GBs and TBs for leadership
simulations on Jaguar. For example, Fusion applications such as GTC, GTS and XGC1
produce 44 TB, 50 TB and 300 GB, respectively, of output data from runs on 100,000+
cores. Given that outputs themselves can be quite large, we did not include the effect of
intermediate checkpoint snapshot data on scratch utilization.

Impact on Scratch Space Utilization

In the first set of experiments, we quantify the impact of our timely offloading approach on
scratch space usage. We play the logs in our simulator and determine the amount of scratch
used both under a 7-day purge policy and decentralized offloading. For this test, we assume
that the scratch is empty at the beginning. Only output data is considered, and a data
item is only purged if its associated job has completed. Figure 4.10 shows the scratch space
usage under the studied approaches, measured every 10 minutes. Observe that the scratch
utilization under decentralized offloading is (as much as an order of magnitude) lower than
that under a 7-day purge.

To further illustrate the reduced scratch usage, Figure 4.11 shows the average per hour
savings achieved by the decentralized offloading approach. Here, we observe that on average
across the entire log, decentralized offloading uses 88.2% less scratch per unit of time (e.g.
882 GB/Hr on average per Terabyte of storage) compared to a simple 7-day purge. Thus,
our approach is a promising way for conserving precious scratch resources.
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Table 4.8: Job delays under the different offloading approaches.
Offload Type Jobs Delayed Maximum Delay (Hrs) Average Delay (Hrs)

5.0 TB 2.5 TB 1.0 TB 5.0 TB 2.5 TB 1.0 TB 5.0 TB 2.5 TB 1.0 TB
7-day Purge 2541 11027 71253 59.0 351.3 7347.2 37.2 109.3 3446.0
Decent.

Offloading (DO) 0 1010 2893 0.0 38.6 92.0 0.0 24.0 47.4
DO + Encoding 0 1226 3013 0.0 58.3 113.7 0.0 42.6 57.7
DO + 2 copies 114 1874 3409 2.5 82.0 142.2 1.8 54.2 77.0
DO + Encoding

+ 2 copies 197 1739 3207 7.6 85.8 142.0 5.4 59.2 80.8

Impact on Job Scheduling & Center Serviceability

In the next experiment, we limit the available scratch space, and study how job scheduling
will be affected under a simple 7-day purge and our decentralized offloading with several
redundancy improving techniques, namely, erasure coding, two data copies, and two-copies
plus erasure coding. To analyze the impact of completed jobs’ data offloading on the schedul-
ing of new in-coming jobs, we measure the delay that might be incurred in starting the new
jobs. New jobs will be delayed if their input data cannot be staged into the scratch space
due to a lack of sufficient space, resulting from the scratch not having been cleared of result
output data from the previously completed jobs. Table 4.8 shows the results in terms of the
number of jobs delayed, the maximum observed delay, as well as the average delay. Compared
to a simple 7-day purge, decentralized offloading can significantly reduce the delays: 78.1%,
and 98.6% for 2.5 TB and 1 TB scratch size, respectively, while 5 TB under decentralized
offloading experiences no delays. Moreover, introducing redundancy improving techniques
also introduce delays, however, such delays are nominal compared to the 7-day purge. For
instance, the average delay under decentralized offloading with both erasure coding and two-
copies is 85.4%, 45.7%, and 97.7% less than that under 7-day purge for a scratch size of 5
TB, 2.5 TB, and 1 TB, respectively.

Next, we calculate the impact of observed delays in job scheduling using a new metric, Ex-
panded Usage Factor (EUF), which we define as the ratio (execution time + data wait time)
/execution time, where the data wait time is the time the output data has to wait on the
scratch space after job completion before being offloaded. Our EUF metric is inspired by
the widely-used expansion factor [19, 18], which is often used to quantify job delays in HPC
centers. Expansion factor is defined as the ratio (wall time + wait time)/wall time averaged
over all jobs (the closer to 1, the better). Similarly, EUF indicates the extra, avoidable time
for which a dataset occupies the scratch space, and the closer its value is to one, the better.
Thus, EUF also provides a valuable measure of the HPC center serviceability in terms of
precious scratch space consumption. Figure 4.12 shows the average EUF for the HPC center,
for a duration of three years and 80,025 jobs, under different scratch sizes. Once again, the
decentralized offloading (even with erasure coding and two data copies) behaves superior
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Figure 4.12: Average Expanded Usage Factor for the HPC center for a duration of three
years and 80,025 jobs, under a 7-day purge and decentralized offloading with erasure coding
and two-copies for varying scratch sizes.

to a 7-day purge with an average EUF reduction of 99%, 94% and 97%, with an available
scratch size of 1 TB, 2.5 TB and 5 TB, respectively. Observe that even when the scratch
space is 5 TB, i.e., well beyond the job-trace footprints, the decentralized approach provides
a much better EUF.

Impact of Failures

Next, we measure how first-level intermediate node failures during the decentralized offload-
ing process impact job scheduling. The total number of intermediate nodes used in this study
is 25, and we assume that 10% to 50% of these nodes fail randomly during the course of an
offload. Table 4.9 shows the corresponding delays under the studied scenarios. It is observed
that compared to the case of no failures, intermediate-node failures can significantly delay
job scheduling. However, as the failures increase from 10% to 50%, the average delay remains
under 68.3%, 24.5%, and 25.3% for 5 TB, 2.5 TB, and 1 TB scratch size, respectively.

Next, Figure 4.13 shows how first-level intermediate node failures affect the EUF. A large
number of first-level node failures may result in retransmissions to ensure data is not lost,
which in-turn may cause the offload process to take longer. It is observed that with a

Table 4.9: Observed job delays under decentralized offloading with erasure coding and two-
copies, when 10, 25, or 50 percent of the first-level intermediate nodes have failed.
Percent Failed Number of Jobs Delayed Maximum Delay (Hrs) Average Delay (Hrs)

5.0 TB 2.5 TB 1.0 TB 5.0 TB 2.5 TB 1.0 TB 5.0 TB 2.5 TB 1.0 TB
10 percent 1129 2613 4991 66.9 156.8 221.0 42.9 90.2 96.0
25 percent 1217 2687 5405 82.1 185.1 248.4 54.0 108.3 101.4
50 percent 1484 3553 7059 122.9 231.4 325.5 72.2 112.3 120.9
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Figure 4.13: Average Expanded Usage Factor under decentralized offloading with replication
and erasure coding for varying scratch sizes and different intermediate node failure rates.

constrained scratch size of 1 TB, the average EUF is increased by 98%, 127%, and 323%
for 10%, 25%, and 50% of the nodes failing compared to the no failure case of Figure 4.12.
Similar failure effects are observed for other scratch sizes.

In summary, the decentralized offloading approach is promising in its ability to reduce job
scheduling delays, improving expansion factor, and can tolerate failures without drastically
degrading overall system performance.

4.6 Chapter Summary

In this chapter, we have presented the design and implementation of a result-data offloading
service for HPC centers. Offloading large data to end-user locations in a timely manner
is critical to center operations, its availability and serviceability. Our approach presents a
fresh look at offloading by using a set of user-specified intermediate nodes to construct a p2p
network and transferring data based on bandwidth-adaptation. Our results indicate that
our offloading approach can improve the rate at which the data is offloaded from the center,
while allowing the submission site to pull the data as and when the site becomes available, at
a much higher transfer rate because the result-data has already been staged closer. Further,
offloading enables us to deliver data based on a previously agreed upon SLA, dynamically
varying the fan-out as necessary. Thus, our scheme can be extremely useful to both HPC
centers and users.



Chapter 5

Just-In-Time Staging of HPC Input

Data

The advent of extremely powerful computing systems such as Petaflop supercomputers,
and the data they can process such as very-high-resolution space observations, are pushing
the envelope on dataset sizes. For instance, the Large Hadron Collider (LHC) [43] or the
Spallation Neutron Source (SNS) [15] will generate petabytes of data. These large datasets
are processed by a geographically dispersed user base. Therefore, result output data from
High Performance Computing (HPC) simulations are not the only source that is driving
dataset sizes. Input data sizes are also growing many fold [43, 15, 94, 10].

To match the I/O capabilities with the computational power in an HPC center, the required
input data for a given job is almost always copied or staged to a fast local storage at the
center — the scratch parallel file system — before the job is started. The use of scratch is
strongly encouraged, as the alternative of accessing data remotely while a job is executing
on the typically large number of resources creates unnecessary stalls and wastes precious
allotted compute time, consequently reducing overall efficiency. Modern applications usually
encompass complex analyses, which can involve staging large input data using point-to-point
transfer tools such as scp, hsi [49], and GridFTP [29], from observations or experiments.
Moreover, the sources of data are increasingly becoming dispersed as scientists tackle complex
problems, e.g., near real-time modeling of adverse weather [26], which depend upon large
swaths of data originating from distributed sensors. Thus, input data can originate from
multiple sources ranging from end-user sites, remote archives (e.g., HPSS [44]), Internet
repositories (e.g., NCBI [78], SDSS [94]), collaborating sites and other centers that run
pieces of the job workflow.

As discussed in Chapters 1 and 3, scratch is expensive — costing millions of dollars for state-
of-the-art supercomputers, e.g., Jaguar’s [18] scratch has 14,000 disks, 192 object storage
servers, 1300 object storage targets and 48 controller pairs — and consumes a notable fraction
of the HPC center’s operations budget. More importantly, scratch is meant for facilitating

56
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currently running or soon to run jobs. This usecase precludes simple scratch management
policies, e.g., quotas or charging for space usage are rarely used so that currently running
jobs will not fail due to lack of space. However, from a center standpoint, sub-optimal use of
scratch could impact the center’s serviceability, i.e., the ability to serve more incoming jobs.
That is why, even with huge scratch capacities, supercomputer administrators constantly
trim usage through purge policies and weekly reminders to users to move their data from
scratch. From a user standpoint, the input data is exposed to potential unavailability due
to storage system failure [92, 82, 95] while it is waiting on the scratch. Consequently, when
the job is started, crucial pieces of input data may be unavailable, requiring a rescheduling
(a delay on the order of hours to days). What is needed is a framework that enables timely
staging of large input datasets for jobs.

In this chapter, we present a JIT staging framework that attempts to have the data available
at scratch, from multiple input sources, just before the job is about to run. The framework
proactively brings the data to intermediate storage locations on the path from the end-
user site to the HPC center. This reduces the time for copying the data to scratch, thus
providing better opportunities for JIT staging. Our staging framework employs an innovative
combination of high-efficiency data dissemination (BitTorrent [41]) and network monitoring
(NWS [107]) to exploit orthogonal, residual bandwidth and to dynamically adapt to network
volatility, respectively, to improve overall scratch utilization. Further, the overarching unique
goal of our work is to reconcile scratch space consumption with volatility (both network
and storage) and timely staging, which is in contrast to existing works on decentralized
transfers [59, 58, 30, 57, 79]. Finally, we evaluate our staging framework using both real-
world experiments as well as extensive simulations using three years worth of job logs from
the ORNL Jaguar supercomputer [18].

5.1 Design

Staging the data to be coincident with job startup, i.e., Just-in-time (JIT), is challenging.
First, we need to know when the user’s job will commence. This has been explored exten-
sively [97, 47], and HPC schedulers (e.g., PBS Pro [13], Moab [69]) can also provide a batch
queue wait time estimate based on current and historical (jobs with a similar profile) data.
However, a simple and direct use of batch queue predictions in JIT staging is not appro-
priate due to sudden changes in schedules. For example, an unexpected failure can cause a
10,000-core job to suddenly exit, resulting in many jobs being promoted to “ready to run”
state, all too quickly.

Second, we need an estimate of how long the data staging would take from the input locations
to the HPC center. We need continuous bandwidth measurements so they can be factored
in to revise the route dynamically and adapt to changing network conditions. The upshot is
that both the queue wait time estimates and network bandwidth estimates are volatile and
“soft.” Consequently, our staging solution needs to be resilient to adapt to these transient
conditions.
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Figure 5.1: Overview of our staging framework, and interactions between the components.

5.1.1 Architecture

In the following, we detail our framework components, and how they are integrated to
realize just-in-time staging. Figure 5.1 shows the high-level system overview, and illustrates
interactions between our framework components.

Intermediate Nodes

Our framework uses intermediate nodes (Nis) that can provide temporary storage for data
on the path from the source to the HPC center. The intuition behind using Nis is that
nodes closer to the center than the user site can support faster data transfers for staging and
reduce staging times. This provides for delaying the staging to much later than when using
a direct transfer, which also reduces Ew.

Given the collaborative nature of large scientific applications, these nodes can be the col-
laborating sites, from where other input data can also be staged, ensuring that the data are
transferred through a dependable substrate. Using these nodes, the HPC center can also
asynchronously retrieve data from other sources, decoupled from the user site. Intermediate
nodes provide multiple data flow paths from the user site to the center, which lead to better
bandwidth utilization, faster staging speeds, as well as fault-tolerance in the face of failures.
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Motivation for Collaboration

In today’s HPC environment, supercomputing jobs are almost always collaborative in nature.
In fact, a quick survey of jobs awarded compute time on the ORNL NLCF, through the
DOE’s INCITE [46] program, suggests that these jobs involve multiple users from multiple
institutions. This collaborative property is even more true in TeraGrid [19], where jobs are
usually from a virtual organization, which is a set of geographically dispersed users from
different sites, coming together to solve a problem of mutual interest for a certain duration.
An example of this usecase is the Earth System Grid [4], where it is not uncommon for
different research groups to voluntarily replicate climate model data. In such cases, it is clear
that many users, from different sites will be interested in seeing the job run to completion,
with as little delay as possible. This emerging property of collaborative science can be
exploited to perform a collaborative staging of job input data. We therefore argue that there
exists a natural incentive to provide resources for the JIT staging process, and that such
resources are essential to the application itself and should not be construed as an “extra”
component needed solely for JIT staging.

Queue Prediction as Staging Deadline

In our design, the HPC center is expected to support a batch queue prediction service (e.g.,
NWS batch queue prediction [7]), which the users can query before submitting their jobs
to get an estimate of queue wait times. Such a service is of interest to both centers as well
as users as centers get more and more crowded. Scheduling based on queue wait times is
already popular in TeraGrid [19] supercomputer centers. In fact, modern resource managers
(e.g., Moab [69]) are beginning to provide services that would enable users to query and
obtain start times of queued jobs. The prediction service can usually provide both wait time
estimates as well as the probability of a job starting by a user-specified deadline [7]. In cases
where direct wait time predictions are unavailable, the user can pose a query to the service,
with a deadline, and determine the likelihood of the job starting by the deadline. A 90% or
higher probability can be treated as an affirmation of the user-specified deadline and can be
used as the job startup time and, consequently, the staging deadline.

However, the job can potentially start earlier than this predicted deadline due to inaccuracies
in the prediction or due to failure of other running jobs. Similarly, a lower probability may
mean that the job may not commence by the user-specified deadline, but is only an estimate.
To accommodate this, we can let the user tweak the estimate by up to a fixed factor, f ,
moving the deadline earlier. However, limiting the adjustment to only a factor is necessary
to ensure global fairness in the staging of all jobs [74]. Consequently, the estimate is reported
to the staging manager so it can ensure that the user-submitted deadlines are within the
factor.
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Algorithm 1 The timely staging algorithm.

Job = CreateJobScript(< Ni, Pi >,Dj, BWi)
TPredict = GetJobStartUpPredictionFromBQP (Job)
TJobStartup = ManagerReconcile(Job, TPredict, f)
for Each Dj do

Determine Xj such that:
Tj = Min(DirectT ransferj , DecentralizedTransferj)
ScheduleTransfer(Tj)

end for

repeat

BW ′

i = GetNWSUpdate(BWi)
T ′

JobStartup = GetBQPUpdate(TJobStartup)
for Each Tj do

T ′

j = Recalculate(Tj , < Ni, Pi, BW ′

i >)
if T ′

j > T ′

JobStartup then

Increase the Fan− in

end if

end for

until Staging Completes

Timely Staging Algorithm

Once a deadline for completing the input data staging is determined, the user submits a job
script to the staging manager at the center with a description of the job and other details
necessary for timely staging. The script includes attributes such as the user-adjusted job
startup deadline, the set of intermediate nodes, < Ni, Pi >, where Pi denotes the usage
properties of the intermediate node Ni, for the decentralized staging process, and the sizes
and locations of the input datasets, Dj. The staging manager also takes as input the current
snapshot, BWi, of the observed NWS bandwidth between the HPC center and Ni as well
as between the Ni’s themselves. While we currently use bandwidth snapshots, we note that
our model is independent of a specific network “distance” metric and can work with other
possible metrics. This could include bandwidth, latency, as well as considerations such as
out-of-band agreements.

Algorithm 1 shows the pseudo-code for the JIT staging manager. The manager reconciles the
predicted job start deadline with the user-adjusted one to determine if it can allow the user’s
tight deadline. This reconciled deadline is denoted by TJobStartup. Based on these parameters,
the manager decides upon a data staging schedule, Xj , for each Dj, which delivers the
dataset in time, Tj = Min(DirectT ransfer,DecentralizedTransfer). To estimate these
times, the manager uses the measured available bandwidth to the user site as well as the
intermediate nodes. To create a distributed schedule, the intermediate nodes are sorted based
on available bandwidth and then the number of nodes to which data is sent is increased until
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overall transfer times that are better than a direct transfer (if possible) can be achieved.
This choice is dictated largely by the available bandwidth and storage at the intermediate
nodes. When the intermediate nodes can provide a faster transfer, a decentralized transfer
is scheduled. Each dataset could come from a variety of sources, including those wherein
our decentralized transfer software cannot be installed. In such cases, the manager relies
on just-in-time probes to the data source to judge if a direct transfer to the HPC center
is most appropriate. Alternatively, such input data could also be transferred through the
intermediate nodes by having the edge-level nodes pull the data from the source, enabling
decentralized staging.

The multi-input staging should obviously also complete before job startup and should satisfy
the property, Max(Tj) ≤ TJobStartup. Minimizing transfer times by choosing the intermediate
nodes with the best available transfer rates helps achieve this goal. At the same time, each
input staging, Xj, is also started as late as possible to reduce the duration of scratch space
consumption and, consequently, the exposure window, Ew of the datasets. The exposure
window for each input dataset is: Ewj = TJobStartup − Tj . Then, total exposure of all input
data is, Ew = Sum(Ewj). The closer Ew is to 0, the better. Thus, the ideal start time for
each input dataset is the one that achieves, TJobStartup−Tj = 0. In practice, however, a small
difference is desirable to safeguard against unexpected delay. This approach factors in both
timely delivery as well as scratch space usage optimization.

Re-evaluating Staging Decisions

Even after a particular course of action, e.g., decentralized transfer, is chosen, the manager
periodically re-evaluates the staging (Algorithm 1) based on an updated < Ni, Pi, BW ′

i >,
where BW ′

i is the latest snapshot of bandwidth measurements. If the reevaluated time to
staging, T ′

j , satisfies the property, T ′

j > TJobStartup, then, alternate (available) routes are
taken to stage the data before job startup, enabling us to meet the staging deadline.

In addition to re-evaluating the network routes based on updated bandwidth measurements,
the staging manager also has to account for batch queue status changes discussed earlier.
We address this by having the manager periodically obtain new estimates T ′

JobStartup from
the batch queue service. If the staging schedules reflect that Tj > T ′

JobStartup, then alternate
routes are evaluated to ensure timely delivery. A side effect of this is the prevention of job
scheduler starvation due to inability to schedule jobs as a result of unfinished stagings.

5.1.2 Supporting Timely Staging

Once the data staging is initiated, the client chooses a number of nodes from the set of
Ni’s ordered by available bandwidth. Figure 5.2 shows the data flow from end-user site to
the HPC center. These chosen Ni’s serve as the Level-1 intermediate nodes. Note that the
selected Ni’s are not static, and can vary depending on the actual transfer speeds and the
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Figure 5.2: The data flow path from the client site to the HPC center. Each intermediate
node (hexagon) runs NWS (gray square) for bandwidth monitoring.

impending deadline. The manager monitors the changing bandwidths periodically (using
NWS) to determine if more Ni’s need to be added. Next, the input data is split into chunks
and parallel transfer of the chunks to Level-1 nodes is initiated. The transfer may also involve
further levels of intermediate nodes (up to Level-N). The choice of the number of levels of
intermediate nodes is left to the users, and does not have a direct bearing on the center to
Level-N node performance that is critical for our design. The levels simply enable users to
provide multiple data-flow paths to the center, and we foresee the levels to be not more than
two in typical scenarios. Additionally, depending on the availability of intermediate nodes,
the client can also stage the data to Level-N nodes much earlier than the deadline.

As the job startup deadline approaches, the proximity of the Level-N nodes to the center
allows them to quickly move the input data to the center’s scratch space. The JIT manager
can vary the fan-in, i.e., the number of Level-N nodes from where to simultaneously retrieve
data. The cardinality of the fan-in is chosen to stage all the necessary data before the
predicted job start time (Algorithm 1). The fan-in is expanded until the deadline can be
met or until no more nodes can be added. The goal is to obtain the best possible transfer time
given the intermediate nodes and job deadline. Also, this design allows the Level-N nodes
to stage the data at peak (pre-specified) bandwidth at the most appropriate time without
worrying about the availability (and connection speed) of the submission site (Figure 5.2).

Intermediate nodes provide multiple data-flow paths as well as several alternative options
for data delivery. Such multiple paths open up the possibility of a number of alternate
approaches for data flow. For instance, data may be replicated across different Ni’s during
the transfer from one level to the other. This lets the center to pull data from a number of
locations for fault tolerance.
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The amount of data transferred between the intermediate nodes will vary depending on
the number of nodes used and the above parameters, as well as the network conditions at
the time of the transfer. However, as stressed earlier, the intermediate nodes are provided
by collaborators (e.g., as in TeraGrid or ESG) that already have an interest in seeing the
job succeed, and any overhead due to retransmissions between intermediate nodes can be
considered as necessary to this end.

5.1.3 Discussion

Impact of storage system failures

Recent studies have shown the high rate of storage system failures [92, 82, 95] and the com-
plexity of ensuring reliability in large-scale installations [31, 53, 87] such as the HPC scratch
space. Improving reliability in such fixed installations entails going through a rigorous and
time-consuming acquisition process mired with delays. In contrast, the collective use of less-
reliable individual intermediate nodes can provide a solution that can be arbitrarily grown
to accommodate any desired level of reliability. Thus, we argue that although individual
intermediate nodes may be more prone to errors compared to individual disks in an HPC
center, as a system our approach is able to provide better reliability due to its flexibility.
Plus, this reliability comes for free as we use resources volunteered by collaborators, which
would otherwise not be used [36].

Impact on Infrastructure Costs

We reiterate that our design does not require the explicit setup and management of landmark
or intermediate nodes. Instead, it leverages and “piggybacks” on existing infrastructure. Sev-
eral national testbeds, e.g., TeraGrid [19], REDDNET [14], etc., are already in production
and can act as such nodes, without incurring any additional costs such as electricity, man-
power, and management costs. Moreover, intermediate nodes use resources that are already
part of the “collaborative” job. We also do not require extra provisioning of network band-
width, rather we employ the residual bandwidth that would have otherwise gone unused.
Nonetheless, extra usage, if necessary, can be construed as necessary for completing of the
collaborative job, and the burden can be shared by all the collaborators, not unlike when
researchers have to utilize extra resources individually to support a demanding job. Overall,
our design also achieves better utilization of resources and possibly a higher system-wide
efficiency.
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Figure 5.3: Implementation architecture for timely staging.

Alternative Data Staging Designs

There are several possible alternative solutions for the HPC staging problem, namely, adding
more scratch space, streaming data directly and not using the scratch space, and moving
computations closer to data. In the following, we discuss why we did not adopt these options
in our design.

First, we reiterate that simply adding more scratch is not practical, as scratch is a precious
commodity and provisioning more scratch means taking dollars away from buying FLOPS,
and more FLOPS are how most HPC acquisition proposals are won.

Second, streaming data online and bypassing scratch to support HPC applications is not
viable and sustainable (based on Top500 supercomputers). Additionally, distributed filesys-
tems or middleware are seldom an option for extreme-scale, leadership class machines. The
scratch space is a parallel file system that is made available at a mount point, to the hun-
dreds of thousands of compute cores where the parallel job’s processes run. Serving the
hundreds of thousands of compute processes of a currently running job through remote I/O
to a distributed file system that is geographically dispersed is a significantly expensive op-
tion, and an impractical one. Furthermore, streaming mechanisms cannot match the I/O
rates required to keep such large systems busy, e.g., Jaguar’s [18] scratch offers I/O rates of
256 GB/s. In fact, as pointed out earlier, HPC centers spend millions of dollars provisioning
and optimizing scratch exactly to avoid this scenario.

Third, moving computation closer to data is a compelling idea, but there are numerous HPC
applications, e.g., DOE supercomputer and NSF TeraGrid applications, which cannot be
sustained on users’ local clusters where data may be available. Our design takes all these
factors into consideration for realizing a practical solution to the staging problem.

5.2 Implementation

We have implemented the JIT staging manager using about 3500 lines of C code. Figure 5.3
shows the overall architecture as well as the interactions between the manager components.
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#PBS −N myjob
#PBS − l nodes =128 , wal l t ime =12:00

mpirun −np 128 ˜/MyComputation

#Stage f i l e : // Submiss ionSi te :/home/user / input1 f i l e :///home/ scrat ch / user/ input1
#Stage wget : //WebRepo :/ input2 f i l e :///home/ scrat ch / user/ input2

#InterNode node1 . S i t e1 : 49665 : 50GB
#InterNode nodeN . SiteN :49665 : 30GB

#JobStartDeadl ine 11/14/2011 :12: 00

Figure 5.4: An instrumented PBS script containing the directives for timely staging.

5.2.1 Integration with Job Submission

To facilitate easy adoption of our scheme by the community, we have integrated it with
the widely-used PBS [32] job submission system. Specifically, we have instrumented the
job submission scripts to let users specify intermediate nodes and deadlines. An example
instrumented PBS script is shown in Figure 5.4, where the user specifies intermediate nodes
and deadlines as well as details such as available storage capacities. The nodes listed in
the script are just a suggestion, and the actual runtime queries these nodes directly for
availability as needed.

The annotated script is submitted to the staging manager on the center, which filters out the
staging-specific directives and forwards the remaining script to the standard batch queue,
but with a dependency on the staging task. We extend our earlier work [73] on instrumenting
the job submission system for this purpose.

5.2.2 Integration with BitTorrent and NWS

We exploit BitTorrent’s [41] scatter-gather protocol for transferring data by extending the
protocol to use NWS bandwidth measurements. The NWS measurements are integrated with
BitTorrent to dynamically select fast locations where a particular dataset can be retrieved,
and adapt to changing network behavior by adjusting fan-in to enable staging of data in
time.

Since our system uses BitTorrent, the source only needs to send one copy of the data to
the intermediate nodes. Once complete, if bandwidth is a consideration the source can stop
“seeding”, and the intermediate nodes will propagate data among themselves. However, if
the source stays online after the “client offload” completes, the transfer could be quicker.
Additionally, the HPC center will only need to pull one copy of the data to complete the
staging process.
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5.2.3 Center-wide Global Staging Considerations

Since we anticipate that all jobs, along with their staging needs, will be submitted through
the staging manager, we have instrumented into the manager certain global optimizations
that can be performed across all jobs. (1) All jobs that desire a staging to the Level-N , i.e.,
one hop away from the center, can be started immediately. Since these staging operations do
not use any center resources — neither occupying scratch space nor consuming bandwidth
— the data can be brought closer to the center and pulled in much faster when needed.
(2) A job whose startup deadline tightens during the course of a previously initiated staging
will be given higher priority if it is determined that the staging may not complete in time.
For instance, this could mean providing more flows to maximize the last leg of the transfer,
using more of the center’s in-coming bandwidth.

5.2.4 Ensuring Data Reliability

To ensure that data is reliably staged on the center, we employ replication of data by sending
out chunks to more than a single location. This is a tunable parameter in our implementation
and users can specify the minimum number of replicas that should be created for a given
dataset. If necessary, more space-efficient erasure codes can be used. The erasure code that
we have used in our implementation is Reed-Solomon [84] in 4:5 coding configuration, i.e.,
four input chunks are coded to produce five output chunks, with a redundancy of 25%. The
chunk-size is also a tunable parameter which can be set based on the size of the datasets
being transferred.

5.2.5 Multi-Input Staging

Our implementation is capable of retrieving data from more than a single source, directly
as well as incorporating it into the decentralized transfer. The data sources are provided
as links in the job-submission script. If the external data source runs an instance of our
software, the staging manager can simply use the NWS information to decide between direct
or decentralized staging. However, if the external source does not support NWS, the staging
manager uses small scale tests, e.g., a partial download from a web repository, to determine
expected transfer times and make staging decisions. In this case, the goal of the staging
manager is to ensure staging of all input data from all sources before the predicted job
startup time.
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Table 5.1: Average observed bandwidth between PlanetLab nodes during experimentation.
All numbers are in Mb/s.

Center Client Level-1 Level-2
Center - 3.82 - 10.9
Client 3.07 - 5.22 -
Level-1 - 3.86 - 4.22
Level-2 9.47 - 5.66 -

5.3 Simulating HPC Data Staging Process

To systematically study the staging process in detail, we have developed a realistic simulator,
simHPC, which models many aspects of the HPC environment including both job execution
and data staging. simHPC also provides accounting and statistics about the staging process,
such as the scratch space used and the data read, as well as other vital statistics. simHPC’s
features and capabilities are throughly described in Appendix A.

5.4 Evaluation

In this section, we present an evaluation of our timely data staging using: (i) the implemen-
tation discussed in Section 5.2, running on the PlanetLab testbed [81]; and (ii) the HPC
center data-subsystem simulator of Section 5.3 and Appendix A, which is driven by three-
year job logs from the Jaguar [18] supercomputer. We also compare our JIT staging to
commonly-used direct transfer techniques for staging input data in HPC centers.

5.4.1 Implementation Results

First, we use the PlanetLab [81] testbed to study the effectiveness of our decentralized
staging in a true distributed environment. We chose 20 PlanetLab nodes arranged in a
tree-structure: one as the client site and root of the tree, one as the HPC center, 10 and 8
Level-1 and Level-2 nodes (Figure 5.2), respectively. Table 5.1 shows the average bandwidth
observed between the nodes during the course of our experiments. Our results represent
averages over a set of three runs.

Decentralized JIT Staging vs. Direct Transfer

In this experiment, we compare our decentralized JIT staging to several point-to-point di-
rect transfer tools that are prevalent in HPC: (i) scp, a baseline secure transfer protocol;
(ii) IBP [83], an advanced transfer protocol that makes storage part of the network, and
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Table 5.2: Comparison of decentralized transfer times with different direct transfer tech-
niques. The buffer size for IBP, GridFTP, and BBCP is set to 1 MB. The number of streams
in GridFTP and BBCP is set to 8 and 16, respectively.

Transfer time (s)
Step 1 GB 2 GB 5 GB
scp 1730 3588 8137
IBP 911 1908 4561

GridFTP 965 1841 4404
BBCP 922 1875 4745

Client Offload 703 1264 4082
Center Pull 155 337 731

allows programs to allocate and store data in the network near where they are needed;
(iii) GridFTP [34], an extension to the FTP protocol, which provides authentication, paral-
lel transfers, and allows TCP buffer size tuning for high performance; and BBCP [21], which
also provides high performance through parallel transfers and TCP buffer tuning. Note that
these protocols are all typically supported [24] by HPC centers such as Jaguar [18].

For this experiment, we used a range of file sizes from 1 GB to 5 GB (limited by PlanetLab
policies), and measured the time for each direct transfer method between the center and
the submission site. For JIT staging, we used a combination of BitTorrent and NWS as
outlined earlier. Table 5.2 shows the times for the direct data transfer techniques from client
to HPC center (scp, IBP, GridFTP, BBCP), from client to Level-1 nodes (Client Offload),
and from Level-2 to the center (Center Pull). Compared to a direct transfer, decentralized
staging can potentially reduce the last-hop (equivalent to Center Pull) transfer times by
91.0% and 91.0% for scp and by 83.9% and 83.4% for GridFTP, for 1 GB and 5 GB data
sizes, respectively. This implies that the decentralized staging can potentially delay copying
of data to scratch space by a factor of 11.0 for scp and 5.9 for GridFTP on average across
the studied file sizes, and still get the data to the center in time for the job to start. Thus, it
reduces the time the scratch space has to hold the data, consequently, reducing the exposure
window (Ew), and improving center serviceability.

The reported Center Pull time represents the time to transfer the file from Level-1 and Level-
2 nodes to the center, and does not include the transfer time from the source. However, the
Center Pull is asynchronous, and can start as soon as chunks begin to arrive at Level-2
nodes. We note that the overall transfer time, i.e., the time from when the source starts
sending the data to when the center has received all the data is not a suitable metric, as our
approach allows the center to delay starting the pull as necessary. However, the earliest time
the center can get the input data is still a useful metric. In our system, the center can start
retrieving the data as soon as the client has offloaded it to Level-1 nodes. Thus, the Client
Offload times reported in Table 5.2 also serve as the earliest data availability metric, and as
stated earlier, are significantly better in our approach compared to a direct data transfer.
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Table 5.3: The time to transfer a 2 GB file using standard BitTorrent. The equivalent phases
for our scheme are shown in brackets.

Phase Time (s)
Send to intermediate nodes (Client Offload) 1428
Download at HPC center (Center Pull) 362

Effect of Using NWS Measurements

Next, we compare our NWS-based monitored transfer approach with a standard BitTorrent-
based data transfer. In this case, we use NWS bandwidth measurements to greedily provision
Level-2 nodes to increase the fan-in, i.e., the number of nodes simultaneously transferring
data to the center, to utilize the maximum center in-bound bandwidth. Table 5.3 shows
the times taken to deliver a 2.0 GB file using the standard BitTorrent protocol. Compare
these to the transfer times using our timely staging shown earlier in Table 5.2: both Client
Offload and Center Pull in our approach out-perform by 11.5% and 6.8%, respectively, the
corresponding steps in regular BitTorrent transfer. These results show that active bandwidth
monitoring serves as a good technique to improve staging times.

Employing Decentralized Staging

In the above experiments, the bandwidth available between the Level-2 nodes and the center,
which dictates Center Pull times, is greater than that between the client and the center,
which dictates direct transfer time. Thus, the center always decided to perform decentralized
staging. In the next experiment, we modified the setup to use a faster node as the client
site, and repeated the experiment for staging a 2 GB file. First, we do the transfer without
considering direct transfer and always using decentralized staging. Second, we repeat the
experiment with the ability to choose between direct and decentralized staging depending
on the ability to meet a transfer deadline (job startup). We observed that for the first case,
the time to stage and transfer the data to the center was 2867 seconds. In contrast, for the
second case the direct transfer completed in 968 seconds, an improvement of 66.2%. This
stresses the need for the staging mechanisms to dynamically adjust to the variations in the
system behavior, and to not be hard-wired to simply always do a staged transfer or a direct
transfer.

Multi-Input Staging

Next, we study the ability of our decentralized staging to accommodate input data from
multiple sources. We consider three configurations, shown in Figure 5.5, with two sources
(X and Y ) of data in addition to the client site (S). In I, the data from all sources is staged
in a decentralized manner. This captures retrieving data from slower external sources. In II,
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Figure 5.5: Configurations used in Multi-Input test.

we consider fast external sources, e.g., online data repositories [78] so the center can directly
retrieve from them. Finally, in III, the intermediate nodes may already have the data, such
as collaborating sites in TeraGrid jobs [19]. For each case, we compare scp and GridFTP
from the sources to that of our staging. Table 5.4 shows the results. It is observed that
decentralized staging is able to handle multiple sources, and has the potential to outperform
the direct transfers by 79.3%, 90.8% and 80.9% for scp and 65.3%, 83.3%, 63.6% and for
GridFTP, in scenario I, II, and III, respectively. In real transfers, the various configurations
will switch depending on the transfer rates and staging deadlines.

Behavior Under Failures

Improved transfer times are key to JIT staging, and thus reducing scratch space usage times.
In the following set of experiments, we study how failures will affect the transfer times under
our framework.

First, we examine intermediate node failures. We focus on our decentralized staging, as
a failure under direct will result in the data transfer not completing by job startup time,
consequently leading to obvious job rescheduling. Figure 5.6 shows transfer time achieved by
our approach under various failure scenarios, normalized to direct transfer time. We failed
two intermediate nodes under three different scenarios: two Level-1 nodes fail, a Level-1 and
a Level-2 node fail, and two Level-2 nodes fail. In this test, the number of replicas at each

Table 5.4: Comparison of multi-input data transfer under direct and decentralized staging.
Transfer Time (s)

Step Conf I Conf II Conf III
scp 1505 1732 1789

GridFTP 901 946 934
Client Offload (S) 318 672 740

X offload 646 92 N/A
Y Offload 574 142 N/A
Center Pull 312 158 340
Staging time 312 158 340
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Figure 5.6: Transfer time as different combinations of Level 1 (L1) and Level 2 (L2) nodes
are failed. The results are normalized with respect to a direct transfer.

level is set to 3. The system tolerates two Level-1 failures, i.e., 20% of Level-1 nodes, with
negligible affect. A failure at Level-2 increases the transfer time somewhat (by a factor of
1.3), but two Level-2 failures are significantly more disruptive (time increases by a factor
of 2.7). However, this is an extreme case with 25% of the Level-2 nodes failing. On the
plus side, the transfer time, even with these failures, is less than half (41.2% on average)
that of the direct transfer. Furthermore, our flexible design can easily accommodate extra
replicas to improve fault tolerance, as observed by the reduction of transfer times for each
of the Level-2 failure cases when one extra replica is used. This experiment shows that
the dynamic rerouting of our approach can adapt to the changing network conditions and
ensure meeting the staging deadline with minimal delays, if any. Moreover, the use of a
flexible routing path between the client site and HPC center allows for offsetting delays due
to intermediate node failures.

These results also imply that using the Reed-Solomon [84] error coding, described in Sec-
tion 5.2, can provide an additional layer of protection when used in coordination with the
replication described above. Hence, error coding at the source along with replication through
multiple data flow paths can provide good fault tolerance for the staging process.

Next, we examine how failure in the scratch space affects the ability of a transfer scheme
to meet a given job deadline. Here, we capture the early-transferring approach of users by
starting the direct transfers as early as TJobStartup − n ∗ Tj, with 1 ≤ n ≤ 10. Next, we
randomly introduce a single failure on the scratch space between the time of starting the
transfer and TJobStartup, and determine the delay in meeting the job deadline, as well as
the extra amount of data that has to be transferred. For timely staging, we assume perfect
prediction, so it starts staging-in data as late as possible for a given file size. The experiment
is repeated 25 times using files of sizes from 1 GB to 5 GB, for each studied n. Figure 5.7
shows the distribution of delay in meeting a deadline and the amount of data re-transferred,
respectively. In the distributions, a higher count for a smaller x-axis value is desirable as
that implies less delay and higher chances of meeting a deadline, and less data re-transfers.
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(b) Timely staging.

Figure 5.7: The distribution of staging delay and re-transmission overhead for 25 transfers
with one scratch space failure. n represents by how early data staging is started before job
startup, with higher n implying an earlier start of the staging process.

Our timely staging shows excellent properties with 98% of the transfers completing with no
delay. In contrast, only a direct transfer that starts as early as with n = 10 is able to come
close with 94% transfers without delay. With n = 2, only 31% of direct transfers complete
in time. The flip side is that by staging early, the data remains exposed to the failures on
the scratch and possible re-transfers. It is observed that while over 91% of the transfers in
our approach had no retransmissions due to exposure to failures, that is only true for 36%
of the cases with direct transfers.

Note that since we introduce a single failure, the maximum overhead is 100%. In real
scenarios, multiple failures can further exacerbate the problem, as the re-transfer may now
take much longer than the earlier transfer or failures in the system may prevent immediate
response to a failure. This implies that delaying staging is preferable. Thus, JIT staging is
able to withstand failures much closer to the job deadline, and the delay if any is small, and
can be mitigated by assuming a slightly tighter deadline than actual (Section 5.1).

Table 5.5: Statistics about the job logs used by simHPC.
Duration 22753 Hrs

Number of jobs 80025
Job execution time 1 s to 120892 s, average 5849 s
Input data size 2.28 MB to 7481 GB, average 65.3 GB
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5.4.2 Log Analysis

In this section, we examine the three-year Jaguar [18] supercomputer job logs (Section 5.3
and Appendix A) in depth to gain information that can improve the implementation of our
JIT staging service. Table 5.5 shows some relevant characteristics of the logs.

Comparing Actual and User-Estimated Job Run-times

First, we examine the accuracy of user-estimated run-times, as many works [99] have noted
that users generally request more resources than required by their jobs. Figure 5.8 plots
the user requested run-times with the actual run-times as recorded in the logs, and confirms
this perception. Across the logs, the users over-estimated the requirements by 50.9 times on
average for jobs longer than 30 seconds (430 times for all jobs), mostly due to jobs ending
prematurely. Some of this discrepancy may be due to errors encountered by users while
running their jobs, which is pertinent information for our staging service. Nonetheless, much
of the difference appears to be users being cautious in specifying requirements, mainly to
ensure that their job completes regardless of any transient issues that may occur at the HPC
center. As stated earlier, this over-estimation works against our overall goals, since we would
like to stage user data to the center as late as possible.

A complementary way of examining actual and user-predicted run-times is to consider the
ratio of actual and user-predicted job run-times, or R value. The R values can be used to
predict accurate job run-times from user-predicted run-times [99]. Figure 5.9 shows the R
values for the studied trace, classified into 10 bins. For example, the 0th bin represents an
R value of 0.0 to 0.09, and is equivalent to a job using 0% to 9% of its requested time. We
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observe that most jobs do not run for their requested run-time. For example 32.3% jobs
use less than 10%, and 63.5% use less than 50%, while only 16.4% use more than 90% of
the requested allotment. There is also a small (but significant) number of jobs that use
more than 100 percent of their predicted time. We presume that these are either completed
jobs that spend a few extra seconds freeing resources, or jobs that have encountered errors.
Out of 10584 (13.2%) jobs that use more than their allocation, 890 run 2 minutes past the
requested allocation time and only 141 run 5 minutes past the requested allocation time.

Examining Trends in Queue Wait Times

In Section 5.1, we discussed using a batch queue prediction service to provide staging dead-
lines, however, the estimates provided by these services are primarily estimates of jobs’ queue
wait times. Queue wait times are particularly important to our JIT staging as a job must
have sufficient queue wait time left for the required data to be staged in on time. Moreover,
understanding the relationship between queue wait time and other important center metrics
could provide further insights for refining the design parameters of JIT staging.

First, we examine how a job’s input data size is associated with queue wait times. Figure 5.10
shows the result for queue wait times ranging from under 5 minutes to over 1 month. It
is observed that the average input data size grows slower than the queue wait time. For
example, a job that spends 3 hours waiting in the queue has an average input data size of
62.2 GB, while a job that spends 6 hours (100% increase) in the queue has an average of
31.8% more input data or 82.0 GB. This trend is similar at longer queue wait times as well.
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However, we note that a fundamental assumption in our analysis and simulations is that the
input data sizes = num cores * memory used. Larger jobs frequently mean more cores and
memory, but they may not always mean more data. Jobs can simply be large simulations
that use very little data but produce large outputs. On the contrary, data analysis jobs are
usually not that large in terms of cores and memory, but consume large amounts of input
data. Unfortunately, the information in the job logs does not allow making this distinction.
Nevertheless, the logs suggest that for a broad range of medium to large sized jobs, enough
time is spent waiting in the queue before running to provide an opportunity to do JIT staging
of job data.

Second, we examine the association of queue wait times and center utilization expressed as
a fraction of total node hours as shown in Figure 5.11. Here, the node hours are defined as
walltime ∗ numberofnodes. For these logs, jobs that spend long periods of time waiting in
the queue use significant center resources. The single bin with the largest amount of node
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Table 5.6: The number of jobs impacted by unexpected job failures.
Time Window Jobs Affected

Total Avg. Max. Min. Absolute Total
30 s 10049 1.52 20 0 9422
1 min 17686 1.89 40 0 14869
3 min 37988 3.18 210 0 24397
5 min 53964 4.09 210 0 29551

hours used is < 1 week (longer than 1 day) with 17.8 m node hours or 27.4% of the total
center utilization. Another interesting observation is that jobs that spend more than 12 hrs
in the queue account for 62.1% of the overall utilization of the center, even though they only
account for 21.5% of all jobs. This analysis suggests that jobs which use significant center
resources are also the ones most able to take advantage of our JIT staging service.

Finally, a range of important trends relating to queue wait time, such as run-time, and
average utilization are plotted in Figures 5.12, 5.13, 5.14, and 5.15. We note that these
trends may not be applicable for other logs and HPC installations, but provide useful insights
in realizing a JIT data staging service.

Quantifying the Effect of Unexpected Job Failures

Unexpected job failure may cause jobs waiting in the queue to start executing immediately,
(much) earlier than their planned/predicted start times. Such unexpected job execution
poses potential problems for JIT staging, as the staging of a job’s associated data may have
not yet completed. In this experiment, we analyze the job logs to quantify the impact of
unexpected job failures by measuring both how frequently they occur and how much time
the waiting jobs spend in the queue prior to running.

We step through the logs and examine each job individually. If a job does not use its entire
requested allocation, we treat it as a potential failure, and observe all of the subsequent
newly running jobs that start in a short time window after the initial failure. The time
windows examined range from 30 seconds to five minutes. This approach assumes that
every job starting in the time window was directly affected by the failing job and is likely
to over-estimate the number of new jobs. We count the total number of jobs affected by
failures and the average, maximum, and minimum number of new jobs per failure. The
results of this analysis are shown in Table 5.6. Since each job is examined individually, there
is the potential to count the same new job multiple times. To quantify the impact of such
duplication, we also included the “Absolute Total,” which removes any duplicate jobs that
have been counted several times. On average, each job failure causes only a few new jobs to
start unexpectedly, from 1.52 to 4.09 jobs. However, for the larger time windows, there can
be up 210 new jobs that appear to be affected. Overall, anywhere from 11.8% to 36.9% of
all jobs can be affected by job failures, depending on the time window.
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Table 5.7: Input data size and amount of queue wait time for jobs affected by the failure of
other jobs.

Time Window Queue Wait (Min) Data Size (GB)
Avg. Max. Min. Avg. Max. Min.

30 s 303.4 72726 1.67 66.4 7481.7 0.24
1 min 341.2 72726 1.67 67.4 7481.7 0.24
3 min 326.4 72726 1.67 70.4 7481.7 0.24
5 min 312.6 72726 1.67 69.2 7481.7 0.24

We also examined the amount of time jobs spend in the queue and the input data sizes to
see how much opportunity there is for our JIT staging service. The results can be seen in
Table 5.7. The analysis converges to the top and bottom values quickly for both queue wait
time and input data sizes. The average queue wait times range from 303.4 minutes to 341.2
minutes, while the average data sizes range from 66.4 GB to 70.4 GB. It seems unlikely that
these are general results, but they emphasize that a JIT time staging service must be able
to handle job failures.

5.4.3 Simulation Results

In this section, we use the job logs discussed above to study the performance of timely staging
using simHPC.

Impact on Scratch Space Usage

In this experiment, we quantify the impact of timely staging on scratch space usage. We play
the logs in our simulator and determine the amount of scratch used both under direct and
timely staging. For this test, we assume that the scratch is empty at the beginning, and use
perfect batch queue prediction. Moreover, the center is setup for weekly purges of the scratch
space and the maximum center in-bound bandwidth is limited to 10 Gb/s. Only input data
is considered, and a data item is only purged if its associated job has completed. Figure 5.16
shows the instantaneous savings in scratch space usage by timely staging compared to direct,
measured every 10 minutes. The instantaneous savings (associated with a job input data)
become zero as the job startup time approaches, as timely staging has to bring in the
necessary data. A more representative aspect is the average savings over a period of time,
as it captures not only the savings but the duration for which the savings were possible.
Therefore, we also show the average savings calculated per hour. Finally, we calculated the
average savings per hour across the entire log, and found that staging potentially uses 2.43%
less scratch per unit of time (e.g. 24.9 GB/Hr on average per Terabyte of storage) compared
to direct. Thus, timely staging is a promising way for conserving precious scratch resource.
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Figure 5.16: Scratch savings under timely
staging compared to direct transfers. The
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Effect on Exposure Window

In this experiment, we repeat the previous experiment, but now study the exposure window
(Ew), i.e., duration for which the data has to wait on the scratch before the associated job is
run. Figure 5.17 shows the observed Ew under direct and timely staging, for each job in our
log, arranged in ascending order. In this experiment, timely staging can potentially reduce
the Ew of 30.7% of the jobs to zero, and for the remaining jobs it was capable of reducing
Ew by 64.2%, i.e., 75.2% reduction on average across all jobs. Moreover, we found that Ew

was reduced by more than a factor of 10 for 48.3% of the jobs. However, it is seen that some
jobs (≈ 1.3%) with large Ews saw only negligible (< 1%) affect from timely staging. The
reason for this is that: (i) many jobs require large input data, so the long duration of transfer
increases the effective Ew; and (ii) many jobs in our logs arrived in bursts, and timely staging
is forced to start transfers early to ensure all necessary data is available and avoid staging
errors. Overall, the significantly reduced Ew for most jobs under JIT staging shows that it
can provide better resiliency against storage system failures and costly re-staging.

Effect of Job Startup Time Prediction

In this experiment, we randomly introduce up to 20% variance in the batch queue prediction
and the actual job start-up time. Then, we simulate the time by which timely staging will
miss the actual job start-up, i.e. staging error. Figure 5.18 shows the distribution of staging
error for different prediction accuracies. The results show the dependence of timely staging
on the accuracy of batch queue prediction: as the error in accuracy increases from 0% to
20%, the number of jobs with no staging error reduces from 95% to 55%. However, even
with increased prediction error, the number of jobs with significant delays is much less than
half (30.6% of the jobs suffer a staging error of more than 1000 seconds). Note that in this
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Figure 5.18: The effect of batch queue prediction accuracy on the staging error.

test, we assumed that the prediction error remains constant, however, in real scenarios, the
accuracy is improved as the start-up time draws near, implying that timely staging will have
much improved performance than studied in this case. Finally, the results show that the
approach can withstand some prediction errors, and with improved predictions becoming
available, can provide better staging alternatives.

5.5 Chapter Summary

In this chapter, we have presented the design and implementation of a timely staging frame-
work, which attempts to coincide input data delivery with job startup. Our framework lever-
ages periodic job wait time estimates from a batch queue prediction service, user-specified
intermediate nodes, BitTorrent, and periodic network bandwidth measurements to deliver
input data on time. Moreover, our prototype has been integrated with the PBS scheduler
to aid in end-user adoption. Our evaluation shows a reduction in staging times compared to
direct transfers, a reduction in wait time on scratch, and a reduction in scratch usage/hour.
Therefore, by staging data just-in-time our framework can optimize center scratch usage,
improve center serviceability, and protect input data from undesirable failure scenarios.



Chapter 6

A Cloud-Based Adaptive Data

Transfer Service for HPC

High Performance Computing (HPC) is facing an exponential growth in job dataset sizes.
Terabytes of reduced, result and snapshot data from experimental facilities (e.g., Spalla-
tion Neutron Source [15], Large Hadron Collider [43]), collaborations (e.g., Earth System
Grid [4]), state-of-the-art cyber-infrastructure (e.g., TeraGrid [19]) and supercomputers (e.g.,
Jaguar [18], Kraken [11]) needs to be delivered to end-users or other destinations for local
interpretation of results, visualization or for further analysis. Several applications, running
on the Jaguar machine, are already producing tens of terabytes of data. Similarly, large
input datasets are required to be staged into HPC centers from multiple end-user locations
for consumption by supercomputing jobs. End-user data delivery services are often an af-
terthought in multi-million dollar HPC centers and cyber-infrastructure projects, leading to
their sub-optimal use. An advanced data delivery scheme can have a significant impact on
user experience and also improve HPC center serviceability.

In Chapters 4 and 5, we presented the design and implementation of frameworks that enabled
the timely, decentralized, offload and staging of application data to mitigate the above issues.
We focused on utilizing a group of user-specified intermediate nodes, from collaborators
working on the same problem, arranged in a peer-to-peer overlay, to help HPC data transfer
by providing multiple data flow paths, thereby exploiting orthogonal bandwidth between the
end-users and the center. The collaborator sites provide for dynamically adjusting the data
transfer by allowing data to be split and sent to multiple sites simultaneously, i.e, vary the
fan-out. The sites can themselves be arranged in multiple tiers, so as to provide multiple
data flow paths. Most importantly, such intermediate storage decouples the transferring
of data from/to the HPC center to/from end-user sites, thus addressing the issue of end-
user site availability during point-to-point transfers. However, a significant drawback of
this approach is the absolute reliance on user-specified intermediate nodes, which can be
quite volatile, unreliable, and scarce in all but very large collaborative projects. Therefore, a
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reliable and timely data transport cannot be guaranteed through such a distributed, transient
substrate. To address this, we propose to use cloud storage resources as intermediate storage
for decentralized data offloading and staging.

There are many potential advantages to utilizing the cloud in HPC settings. The cloud is
provisioned such that it is able to seamlessly absorb the terabytes of data emanating from
simulations or observations. The cloud is also distributed with many data centers providing
storage, so data can be stored in the cloud and moved closer to either the end-user or the HPC
center, when appropriate. Moreover, the many data centers can be used to improve offload
performance, since the data can be dynamically split and written to many cloud storage
targets. Once the data is transferred to the cloud, the HPC center’s storage is freed, which
leaves the center less burdened and the end-user data safely stored in the managed cloud
infrastructure at low cost. Meanwhile, geographically distributed researchers can access the
data from the cloud storage for further analysis or visualization by staging it to their local
storage. The data can stay cached in the cloud as long the users are willing to pay the costs
of doing so (typically much less than the equivalent cost of storing data on center scratch
space), enabling quick access for collaborators. Similarly, input data can be stored on cloud
resources closer to the HPC center, thus enabling the center to pull the data from the cloud
when needed.

Towards this end, in this chapter we present CATCH, a cloud-based adaptive data transfer
service for HPC. CATCH provides a cloud storage framework for HPC, which utilizes proac-
tive staging and offloading of data to cloud storage locations so as to have the input data
available at the scratch storage — from multiple input sources — just before the job is about
to run, and to offload output data from scratch to cloud as soon as the data is available.
The goal is to reduce the amount of time that data spends on the scratch space. We utilize a
combination of both a staged as well as a decentralized delivery scheme for job data. Further,
we integrate CATCH with cloud resources exported by Windows Azure. CATCH seamlessly
interfaces with existing cloud services, transferring data to/from the cloud, working with
essentially a black box. Additionally, we export our end-user data delivery service through
the file system abstraction provided by FUSE [22]. Thus, end-user programs can write and
read to cloud storage and move data through them using standard file system operations.
Finally, we evaluate CATCH against common HPC transfer mechanisms using our Windows
Azure-based implementation.

6.1 Using the Cloud for End-User Data Delivery

Cloud computing is emerging as a viable approach for enabling fast time-to-solution for
small enterprises that benefit from the cloud’s pay-per-use utility computing model. The
cloud supports automatic resource management, protection against data loss, and ubiquitous
availability.
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6.1.1 Cloud as Intermediate Storage for Data Transport

A main challenge in developing a distributed HPC center-user data delivery framework, as
envisioned by CATCH, is the need for a bevy of geographically distributed storage nodes to
facilitate data flow. To this end, we aim to utilize the cloud to provide intermediate storage
on the path from the end-user to the HPC center, so as to facilitate efficient data transfers.

A number of cloud features make it suitable for CATCH. First, the cloud provides scalable,
distributed, and always available storage. For example Windows Azure allows blobs (binary
large objects), each of up to 50 GB at present [67]. Given that our approach will use
cloud storage as an intermediate location during transport, even larger amounts of overall
data can be handled. Thus, a wide variety of HPC applications can be supported by the
resulting data delivery services. From an HPC center’s standpoint, data can be stored in
the cloud and only moved to expensive on-site scratch storage when needed, dramatically
reducing the total amount of data HPC centers must store. From the end-users’ perspective,
data could be handed-off to the cloud, which frees the users from explicit data management
that is typically required when using HPC resources. Second, the cloud can provide very
high data reliability guarantees through replication, geographically distributed storage, and
active fault ramifications. This relieves both HPC centers and end users from expensive data
redundancy improving operations. Third, data can be strategically placed in the cloud, i.e.,
relatively close to an HPC center or end-user, yielding potentially higher transfer rates and
lower latency when the data is needed. This is further enhanced if the cloud service provider
supports Content Distribution Networks (CDNs). Finally, the cost of utilizing cloud storage
resources is very low compared to the multi-million dollar storage systems at HPC centers.
The conjoined use of HPC and cloud storage can increase the serviceability of the HPC
scratch storage. This is a very attractive solution, given that HPC acquisitions are typically
done on the basis of FLOPS/$ and I/O sub-systems are always resource constrained.

6.1.2 Azure Data Services

We have used the Windows Azure platform [67] for building CATCH. The following Azure
features dictated our decision. (i) Azure provides a large scalable storage space for users,
which matches typical HPC application needs: 100 TB per storage account, and up to five
storage accounts per Azure subscription. (ii) The Azure storage service provides SLAs for
up-time and correctness, and it is highly-available. (iii) Azure also provides CDN capability
(currently in testing as Community Technology Preview), which can be leveraged to build
efficient data placement that improves overall observable data transfer rates.(iv) The cost of
Azure services is low, e.g., storage costs $0.15 per GB per Month, and thus feasible for our
intended use of cloud storage in HPC data transport.
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Figure 6.1: The main software components of CATCH.

6.2 Design

Cloud storage locations provide the foundation for supporting a decentralized data delivery
service, e.g., for data offloading and staging, for HPC end-users. As stated earlier, the
dynamic nature of the interconnects between end-user sites and the HPC center can make
the amount of time it takes for a direct transfer to complete vary significantly. CATCH uses
cloud storage to provide robust and efficient resources, which can be used to create on-the-fly
per-collaboration/user infrastructure to support the decentralized data delivery. This helps
to address the issues of purge deadlines, thus releasing center scratch storage and seamlessly
moving data closer to end-users.

6.2.1 Design Overview

CATCH has three main software components as shown in Figure 6.1: client stub to allow
for interfacing with cloud resources; cloud manager (e.g., a cloud file system) to interact and
affect how data is stored and moved in the cloud; and center stub to provide a transparent
interface to accessing and storing data on cloud resources.

A user who wants to run an application at the HPC center, first queries the center stub to get
an estimate of when the user’s job will be scheduled. Based on this estimate and the size of
the input data, the client stub then determines whether a direct transfer would be sufficient.
If not, the user attempts to utilize the cloud resources to facilitate a decentralized data
transfer. Since storage in the cloud is cheaper compared to storage at the HPC center, such
a decentralized transfer can be initiated much earlier than a direct transfer. HPC center
storage is precious and user data is constantly purged to make room for data from new
incoming jobs. Thus, the end-user site utilizes our software hooks to transparently move the
data into the cloud. Next, we either count on the cloud internals or our pre-staging interface,
through the cloud manager, to move the data to cloud sites closer to the HPC center. When
the job is about to be scheduled, the center stub pulls the data from the cloud to the center
PFS, thus completing the transfer. Conversely, when the job finishes (or has intermediate
data for the user), the center stub pushes the data onto the cloud resources. The client
can then retrieve this data when and how it wishes. This design essentially decouples the
center-side and client-side transfers and provides flexibility and fault-tolerance. Figure 6.2
shows the high-level flow of data in CATCH.
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Figure 6.2: The data flow path from the HPC center to the end-user site. The intermediate
resources are represented by hexagons. The gray squares represent software hooks/APIs that
CATCH uses to control the data flow.

We have developed detailed models for building end-user data delivery services with ad-hoc
resources in our previous work [72, 74] and in Chapters 4 and 5. In CATCH, we overcome all
of the issues arising from such ad-hoc intermediate sites, by leveraging cloud resources and
integrating the cloud model with HPC data movement. However, the fundamental issues of
node selection and meeting delivery deadlines are very similar, thus we leverage our previous
work in CATCH to this end.

6.2.2 Cloud Data Interface

The cloud provides a suitable platform for developing and expanding end-user data delivery
services. We have built our software using the Azure [67] platform. In the following, we
discuss several possible heuristics for the HPC data transfer system to interact efficiently
with the cloud.

Straw-man Approach

The first approach that we consider is a simple use of cloud resources for storing HPC data.
This straw-man approach is illustrated in Figure 6.3(a). Here, end-users push their job’s
data to the cloud, which can then be retrieved by an HPC center before the end-users job
will run. Upon job completion, the HPC center can take the result data and store it in the
cloud for the end-user to retrieve as necessary. This method uses the standard Azure API
and relies entirely on the cloud for performance. For example, if the cloud either stores or
moves the data closer to the HPC center, better performance would be observed. However,
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Figure 6.3: Different approaches for using the cloud to implement end-user data delivery
services.

if data is stored at arbitrary locations, no performance improvement guarantees can be
made. Nonetheless, this approach is the key step in decoupling the end-users from the HPC
center, thus allowing the end-users to be intermittent and freeing them from issues of data
retransmission, and resulting job rescheduling.

Utilizing Storage Regions

The main drawback of the Straw-man is that it does not exploit the data flow information,
i.e., where and when a data item is needed, which is available in HPC job scripts. Moreover,
typical HPC data, especially input data is stored once by the end-user and retrieved once
by the HPC center, thus giving cloud management little opportunity to identify data access
hotspots and migrate data to resources closer to where the data is being accessed. Thus,
Straw-man cannot ensure that cloud-enabled decentralized data transfer would yield better
transfer performance compared to a point-to-point transfer. However, transfer rate perfor-
mance gains are desirable when retrieving data at the HPC center as delays may cause the
associated job to be rescheduled, consequently increasing job turn-around time and affecting
overall center serviceability.

To address these issues, we exploit Azure’s support for specifying regions for storing data
to reduce data access latency experienced by the HPC center. This approach is illustrated
in Figure 6.3(b). Here, the end-user can choose to put the data in a particular part of the
cloud that is closer to the HPC center. In this use-case, although the end-user may want
to (eventually) store data on resources that are farther from her site (closer to center), the
Azure management may hide the increased transfer latency from the end-user by allowing
data to be placed nearby and then migrating it to the specified region transparently. If such
support is not available and higher transfer latencies are exposed to the end-user, the user
can choose to transfer the data into the cloud much earlier to avoid delays and potential job



Henry M. Monti Chapter 6. A Cloud-Based Adaptive Data Transfer Service for HPC 86

rescheduling if the HPC center needs the data before the transfer is completed. Based on our
interactions with HPC users, we note that most users tend to start their data transfers well
in advance (sometimes on the order of days). However, the cloud provides a better option
for advance transfers compared to moving data (well before job startup) to the precious PFS
on the center, where it can hinder the center’s ability to service other currently running jobs.

One challenge in implementing this approach is how the region specification can be made
transparent to the application. To this end, we assume that: (i) the end-user (via collab-
orators) has multiple storage accounts in different regions in the cloud; (ii) information is
available in the job script (as discussed earlier) to determine which region a data item should
be stored in; and (iii) the information can be relayed to CATCH runtime. The runtime can
then utilize appropriate Azure API to accomplish region specific storage. We note that re-
gion specification in Azure seems to be static, thus a priori knowledge of where the data
would be consumed is needed. That said, most data consumption locations can be derived
from the HPC job scripts, so this is not expected to be problematic. A bigger challenge
is that the granularity of the regions available in Azure is too coarse, e.g., only a handful
of regions (South Central US, North Central US, and Anywhere US) are available for the
entire US. This could limit our ability to derive optimal performance from our data transfer
service.

Facilitating Dynamic Data Flow

Our main goal is to develop a service that allows data to “flow” closer to locations where
it is needed, before it is accessed, so as to reduce access latency. CATCH can benefit if
individual cloud storage locations and their performance were known. However, the key
cloud advantages of transparency and decoupling of management from usage, pose a hurdle
for our approach. A set of distributed cloud storage resources are not as configurable as a
set of explicit collaborator sites providing storage (such as those explored in our previous
work on decentralized HPC data transfers).

The CDN service provided by Azure can yield a more dynamic and robust data transport
than using regions, e.g., by caching data close to the HPC center. This is useful for output
data from HPC jobs as it would be consumed by many collaborators, which provides enough
repeat accesses to the same data to enable the cloud mechanisms to optimize data placement.
However a CDN only improves performance for repeat accesses, and as stated earlier, HPC
input data is often consumed once. We overcome this problem by utilizing collaborator sites
closer to the HPC center to pre-access data before it is retrieved by the center, potentially
triggering CDN-enabled data migration. This will move the data closer to the collaborator
site. Since, the HPC center (or conversely end-user) is also nearby, the intuition here is that
accesses to the data from the center when needed will thus experience lower latency. This
approach is illustrated in Figure 6.3(c). In essence, by accessing the data from collaborator
sites closer to the center, the data is prefetched to high speed CDN locations, making it
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readily available for the center when needed. Note that pre-accessing the data does not
imply downloading the entire dataset. Rather, reading a few random bytes in a blob is
expected to do the trick (as the blob is treated as a monolithic unit for CDN purposes),
without incurring the cost of reading large data from the cloud.

An alternative approach to using the CDN capability is to leverage the availability of multiple
cloud accounts, e.g., belonging to different collaborators and in cloud regions that are close
to them. The relative distance of collaborators (in terms of available bandwidth) can be
determined using standard network monitoring, e.g., NWS [107], and the collaborators are
then arranged on the end-to-end path from the user to the HPC center. The end-user
can then store the data into his account and pass the appropriate access credentials to the
collaborators, who can then invoke copying of data from one account to another. This would
in essence move the data closer to the HPC center. We note that this is a non-standard use of
the cloud API. However, the advantage is that this approach allows for explicit monitoring,
and can affect the flow of data through the cloud at much finer granularity, consequently,
leading to improved HPC data transport.

6.2.3 Data Transport as a File System

In order for the entire end-user data delivery mechanism, through the intermediate cloud
storage nodes, to be transparent both to the user as well as the HPC center, we put forth
an easy-to-use file system interface. In our design, the client and center stubs talk to a
transparent file system mount point, provided through FUSE [22] as Cloud FS (Figure 6.1),
which abstracts the process of accessing the cloud storage and in addition moves the data
closer to the end-user or the HPC center. The use of FUSE to abstract access to different
storage substrates has gained wide spread popularity due to the ease with which purpose-
built storage systems can be transparently made available by having them implement certain
POSIX APIs (e.g., s3fs [25] for Amazon S3 or stdchk [56, 62], a file system atop distributed
storage made of disks, memory, or SSDs.) The read() or write() call in these situations
typically abstracts parallel striping or a network transfer, respectively. The novelty of our
approach in Cloud FS, however, lies in the fact that we hide the data transport behind a file
system interface.

We have developed a scalable and robust FUSE-based Cloud FS module to allow end-users
and HPC center management tools to access cloud storage. An in depth discussion of Cloud
FS, and how we use it to access cloud storage is presented in Section 6.3. Here, we focus
on how the file system abstraction can serve to capture cloud data flow. To this end, we
augment the FUSE driver semantics with the notion of data flow, in addition to the basic
get and put services (i.e., a write() call will also need to implement methods necessary to
propagate the data further in addition to the standard network transfer required to store
the data in the cloud.) Such an approach not only allows us to store data into the cloud,
but also helps to migrate the data towards its final destination.
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#PBS −N myjob
#PBS − l nodes =128 , wal l t ime =12:00

mpirun −np 128 ˜/MyComputation

#CollabAcct co l l ab1 . blob . cor e . windows . net : 50GB
. . .
#CollabAcct col labN . blob . cor e . windows . net : 30GB

Figure 6.4: An example annotated job script with cloud storage specific directives.

The augmented module performs a number of functions. (i) It has to negotiate access to the
cloud storage. This is achieved by providing Cloud FS a list of account credentials at start up.
This can be a single account or a list of credentials to be used appropriately. To allow users
to control what credentials to use for data accesses through Cloud FS, we provide an ioctl

call to specify the identifier of credentials to use. The credentials to use can be changed as
often as before each data access. However, typically the module will automatically determine
which account/region/location to use as per the data transfer SLAs. (ii) The module stores
and retrieves the associated data chunks from the cloud. To facilitate this, the source of the
data, i.e., the HPC center stub in offloading and client stub in staging, maintains a mapping
of dataset to chunks (and their locations in the cloud). On an offload from the center, the
client stub can use the mapping information available at the center stub to pull the necessary
chunks of the datasets from the Cloud FS. Similarly, for a staging from the end-user, the client
stub provides the location of the input dataset chunks. (iii) The module may also have to
probe different intermediate locations to determine the best path to utilize. One approach
is to perform a number of small GET and PUT operations on the cloud, and determine
observed bandwidth, which can then be used to select appropriate storage regions. Another
approach, if the cloud service provider supports it, is to use cloud monitoring services. This
information can then be used transparently to change storage regions and achieve better flow
rates. The module integrates such interactions into the data flow, thus providing transparent
services to the users. Using the aforementioned FUSE-based data flow file system, the client
and center stubs can orchestrate the cloud intermediate nodes into multiple levels to move
the data closer to the destination.

6.2.4 HPC Job Submission Integration

We propose to specify the cloud accounts and those of the collaborators as part of the
user’s job submission script (e.g., PBS [32]). Special directives can be used to annotate the
job script as shown in Figure 6.4. This way, the cloud storage sites associated with the
collaborators become an integral part of the job and can be used by the center stub for the
end-user data delivery. End-users can further qualify the job submission scripts with usage
properties of the collaborator’s account, e.g.,how much storage to make available or what is
the load threshold. This information can then be used by the stubs to derive how best to
route data between each other.
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6.2.5 Viability of Using Cloud Resources

An important consideration in the design of CATCH is the cost of utilizing cloud resources.
For example, transferring tens of terabytes of data through the cloud multiple times during
the life of a single job may result in excessive cloud charges, as cloud service providers often
bill per unit data transferred and stored. However, a number of factors work in the favor
of CATCH-like systems. First, the cost of using cloud resources is falling sharply [68], and
wider adoption of cloud resources is likely to continue this trend. One can argue that the
amount of data being used is also growing, and thus the impact of falling prices may be
negated. We note that the increase in data impacts both centralized provisioning on HPC
centers and cloud resource provisioning similarly, and although crucial, should not be a
deciding factor in this context. Second, much like how cloud computing is seen as a viable
alternative for mid-sized computing (e.g., jobs requiring a few thousand cores), there is also
a tipping point up to which cloud storage is viable for HPC job data. We analyze these
scenarios in our evaluation. Further, our analysis of three years worth of logs from the
Jaguar supercomputer [74], shows that there exists a large number of jobs that are mid-
sized, and do not involve terabytes of data. These jobs can benefit from CATCH. Finally,
the upfront costs of I/O management and acquiring disks for large supercomputers may
easily exceed tens of millions of dollars. While, such costs can certainly be amortized over
the lifetime of an HPC center, it still cannot retain job data beyond a certain window of
time. CATCH provides a way to complement such storage at relatively low costs without
high upfront costs.

6.3 Implementation

We have implemented CATCH using about 2500 lines of C# code with the Windows
Azure [67] platform as the cloud storage backend. Although our current implementation uti-
lizes Azure, our design is general enough to be interfaced with other cloud service providers.

6.3.1 Architecture

The main components of CATCH are shown in Figure 6.5. The Cloud FS, supported via
FUSE, provides applications with a transparent interface to CATCH. Once the application
data is written to a PFS, the center stub simply writes that data to a special mount point,
or performs ioctl calls for control commands, and the Cloud FS component converts data
access to operations on the cloud. The Scheduling Monitor interacts with the center wide
job scheduler or with Batch Queue Prediction (BQP) [7] to determine when a job completes
or when it is likely to run. This information is reported to the Transfer Manager, which
uses it to determine when to start a transfer. The Network Monitor determines what cloud
accounts provide the best transfer rates by occasionally PUTing or GETing test blobs to
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the cloud and measuring bandwidth. The Transfer Service component uses the bandwidth
and scheduling information to decide where and when data should be stored to or retrieved
from the cloud. The Transfer Service then splits the data into chunks and passes them to
the Azure Request module. This module is responsible for interfacing with the cloud storage
service and creates the appropriate HTML requests.

FUSE Module Interface: The architecture and the flow control in our FUSE-based Cloud
FS module is displayed in Figure 6.6. When an I/O operation is performed on a file in our
mount point (step 1), it is redirected to the Cloud FS module (2, 3, 4) by the FUSE runtime.
Cloud FS then processes the I/O to take appropriate cloud actions (5).

6.3.2 Data Operations

Access to the Windows Azure [67] Blob service is achieved through a RESTful API, where
all operations are performed using HTTP requests. The Blob service provides two types of
blobs. (i) Block blobs are made up of “blocks” that can each be of up to 4 MB, a block
blob can have up to 50,000 “blocks” providing a maximum blob size of 200 GB. Block blobs
have commit-update semantics, i.e., a number of blocks are first uploaded, and then another
request is sent to commit the changes. (ii) Page blobs, that we use in CATCH due to their
similar semantics to standard files, consist of 512-byte regions and provide immediate or
in-place updates much like a traditional disk. They also have a large maximum blob size of
1 TB. Each CATCH operation corresponds to HTTP requests with particular query, headers,
and other parameters. In the following, we describe different data functions supported in
CATCH.

Storing Data

This operation is achieved using an HTTP PUT request. In addition to the content of
the data, the request also includes information about the content length and the particular
region of the blob to write to, i.e., offset. With page blobs, the maximum request size is
4 MB (consisting of contiguous 512 byte aligned regions). Files larger than this are broken
into chunks before being sent to the cloud storage. Upon receiving the HTTP request, Azure
parses the request and stores the data.
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Retrieving Data

Retrieving blob data is the inverse operation of storing data, and is done using an HTTP
GET request. This request must also include a region of the blob to read. If the request
succeeds, the body of the response will have the requested data. CATCH tries twice to read
the data before reporting an error to the application. The retry mechanism is added to
overcome trivial failures due to lost messages or delayed response from Azure.

Data Flow

Center and client stubs need to use the Cloud FS to orchestrate data flow. To provide these
stubs with options to control different cloud functions, we have enabled a set of control
knobs that can be set using ioctl calls. The FUSE layer exposes a set of POSIX APIs
that any underlying system can implement to provide access to its features. Unlike read()

and write() calls, ioctl() allows us to manipulate the underlying device parameters of the
special files. This provides us an elegant way to orchestrate many sophisticated data flow
operations on the cloud storage, much beyond basic store and retrieve functionality.

Consider a case where the HPC center stub wants to disseminate the chunks of a dataset to
different geographic regions to facilitate better data access to end-users. The center stub first
interacts with the client stub to determine an appropriate data flow path. Let us assume that
three regions, R1, R2, and R3 can provide the best data flow, and the credentials to use the
regions are already available to the Cloud FS. Before data is written to the cloud, the center
stub issues a “SET REGION” ioctl to Cloud FS to indicate that the data should be written
to R1, which is done when the data is written. Then, CATCH decides that data should be
moved to R2. This copying of data is initiated through a “COPY REGION” ioctl to Cloud
FS. This indicates that cloud service calls for moving data from R1 to R2 should be issued.
Another “COPY REGION” call can also be issued to move the data to R3. This completes
the data flow. The stubs can also use the interface to pass a pointer to a configuration file or a
structure containing one or more account credentials. This information is passed to CATCH
and used for future data operations on a particular dataset or mount point. Additionally,
in the default configuration, CATCH will measure bandwidth using probes to determine the
fastest accounts, but instead the client stubs may specify in a structure the fraction of data
to go to each account.

6.3.3 Real World Considerations

There are several factors that affect CATCH when it is used to offload and stage data.
Behind the Cloud FS mount point, CATCH is utilized in coordination with the center PFS
as part of an integrated data service. This allows for the HPC jobs to continue without
being affected by the response times of CATCH’s cloud interactions. In this scheme, data is
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transferred from the cloud resources to the PFS before its associated HPC applications are
scheduled for execution. Similarly, the jobs output data is buffered on PFS, which is then
offloaded to cloud sources asynchronously from job execution and on-line data accesses.

Multi-Input Staging and Multi-Output Offloading

Our implementation is capable of retrieving data from more than just cloud resources, e.g.,
national data repositories, etc., and these other resources can also be incorporated into the
decentralized transfer. The data sources are provided as links in the job-submission script.
The transfer manager, through the network monitor, uses small scale tests, e.g., partial
download or upload from a web repository, to determine expected transfer times and make
staging and offloading decisions. In case of staging, the goal is to ensure staging of all input
data from all sources completes before the predicted job startup time. For offloading, the
goal is send the data as quickly as possible, so in the event that the additional resource is
slow, it will not be utilized.

6.4 Evaluation

In this section, we present an evaluation of CATCH using the implementation described in
Section 6.3. We also compare our results to popular direct transfer techniques that are the
default approach for transferring data in many HPC centers.

6.4.1 Implementation Results

For our implementation experiments, we use the Azure Cloud storage service to study the
effectiveness of our end-user data delivery service in a true distributed environment. We
created 5 Azure storage accounts in the following regions: Anywhere US, North Central
US, South Central US, Anywhere Europe, and Anywhere Asia. While there are a few
more regions provided by Azure, this selection provides a representative and geographically
dispersed testbed for our experiments. For the following experiments, we only consider one
explicit level of intermediate storage accounts, i.e., data is pushed from the source (either
HPC center or end-user site) into the cloud, and is then pulled from the cloud onto the
destination. In contrast, multiple levels are created when data is moved between different
accounts before being transferred to the destination. The setup consists of the HPC center,
the cloud accounts, and a client. The roles of the HPC center and the client are provided
by a lab machine at Virginia Tech and a remote node running on Amazon’s EC2 [20]. For
all experiments data is pushed to the cloud, by either the HPC center or client and then
retrieved by the other role. In the following, the presented results represent averages over a
set of three runs.
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Table 6.1: Average observed bandwidth and transfer times for a 4 MB probe to different
Azure regions.
Regions Anywhere US North Central US South Central US Anywhere Europe Anywhere Asia

(Mb/s) (s) (Mb/s) (s) (Mb/s) (s) (Mb/s) (s) (Mb/s) (s)
Put 4.7 7.2 4.2 8.0 4.9 6.9 3.4 10.0 2.5 13.2
Get 5.4 6.2 3.2 10.5 6.2 5.4 4.2 7.9 1.7 19.8

Probes to Cloud Resources

A crucial component of CATCH is the ability to dynamically adjust to changing network
capabilities as data is staged or offloaded. Since the cloud is a black box, we determine the
best sites for storing the data by directly measuring the data rates we can obtain. In our first
experiment, we determine the effectiveness of probing the cloud. To this end, we send a 4 MB
dummy blob to each of the regions considered in this study, and measure the time it takes to
either PUT or GET the blob. The results are shown in Table 6.1. We make two observations
from the results. (i) There is a marked difference between the measured test blob access times
to different regions. This is promising as CATCH can use such measurements to guide its
data transport, without worrying about Azure hiding such details. (ii) This also shows that
the regions are in fact distinct and provide different throughputs. Thus, if data is moved to a
region closer to its final destination, better transfer times will be observed on the on-demand
data access. Overall the transfer times and transfer rates to data centers in the US provide
the best probe times for our location. The data center in Europe is sometimes faster, but
in the worst case it is only slightly slower. From our location the slowest region is in Asia.
This is expected as this region is provided to be primarily accessed by people close to Asia.

Effect of Multiple Transfer Streams on Access Times

During our previous experiments we observed that Azure is capable of handling many si-
multaneous requests, which can provide high aggregate throughput. To take advantage of
this ability we designed CATCH to utilize multiple streams for transferring data simultane-
ously. In our next set of experiments, we demonstrate the effect of using multiple streams
on transfer rates from Azure. In this experiment, only one region is used for each transfer,
and the number of simultaneous streams varies from 1 to 32. The file size used for testing
the transfer rate is 1 GB. Figure 6.7 shows the times for data transfer from client to the
cloud (Write (a)), and the cloud to the HPC center (Read (b)) under different numbers of
simultaneous streams. Compared to a transfer with a single stream, the multi-stream staging
and offloading can reduce the last-hop transfer times by up to 88.1% and 91.3% for reading
and writing, respectively. Another observation is that using between 8 and 16 streams offers
the best performance overall for our setup. Utilizing more streams results in a bottleneck on
our emulated end-user site and HPC center. While this result will hold for a typical end-user
site, we believe the HPC center can use many more simultaneous streams without suffering
from performance degradation. This is promising in that it shows that CATCH can help
reduce the data staging times even more when used at a real HPC center.
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(a) Data staging times from end-user site (Write).
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(b) Data retrieving times from HPC center (Read).

Figure 6.7: Transfer times (in seconds) to different cloud regions, using increasing numbers
of streams. The file size used is 1 GB.

This result also implies that using multiple streams can delay copying of data to and from
scratch space by a factor of 4.3 on average across the studied stream counts, and still get the
data to the center in time for the job to start. Thus, it reduces the time the scratch space
has to hold the data before it is used, consequently, improving center serviceability.

Effect of Using Multi-Region Access

In our next experiment, we repeat the probe-test from our first experiment but for accesses
to multiple regions. Table 6.2 shows the times taken to transfer a 1 GB file to 2 and 3 differ-
ent regions using CATCH. Data movement between the different regions is accomplished in
CATCH by orchestrating data flows between different accounts through the FUSE abstrac-
tion. CATCH actively probes the cloud regions before and during the transfer to determine
the fastest regions. In these cases, regions in the United States were utilized due to their
higher bandwidth. The experiment was performed using 8 and 16 streams since both of
these scenarios provided good performance in the previous experiment. Compare these to
the transfer times shown earlier in Figure 6.7: multi-region Write and multi-region Read
out-perform the standard write and read significantly (up to 43.8%) for all regions except
for North Central US which has very similar times. This performance improvement was
very consistent across runs. These results show that active bandwidth monitoring provides
a good tool for improving transfer times.

Table 6.2: The time to transfer a 1 GB file using multiple regions.
Threads

Number of regions 8 16
Write Read Write Read

2 547 544 520 548
3 592 593 588 672
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Table 6.3: Comparison of decentralized transfer times (in seconds) with different direct
transfer techniques. The buffer size for IBP, GridFTP, and BBCP is set to 1 MB. The
number of streams in GridFTP, BBCP, and CATCH is set to 8, 16, and 16, respectively.

CATCH
Write (Offload) 520
Read (Pull) 548

Direct
scp 2821
IBP 1791

GridFTP 722
BBCP 573

Comparison with Direct Transfer Methods

For our next experiment, we utilized our 5 cloud storage accounts coupled with 5 Planet-
Lab [3] nodes to create a distributed testbed for comparing different HPC data movement
techniques with CATCH. A more detailed description of our PlanetLab experimental setup
can be found in Chapters 4 and 5.

We compared several point-to-point direct transfer tools that are prevalent in HPC: (i) scp,
a baseline secure transfer protocol; (ii) IBP [83], an advanced transfer protocol that makes
storage part of the network, and allows programs to allocate and store data in the network
near where they are needed; (iii) GridFTP [34], an extension to the FTP protocol, which
provides authentication, parallel transfers, and allows TCP buffer size tuning for high per-
formance; and BBCP [21], which also provides high performance through parallel transfers
and TCP buffer tuning. Note that these protocols are all typically supported [24] by HPC
centers such as Jaguar [18].

Table 6.3 shows the result. One important point to note here is that while direct trans-
fer methods include the flow of data from source to destination, CATCH Read and Write
numbers only include either storing the data into the cloud or retrieving the data from the
cloud. In the best case for CATCH, a Read can begin as soon as initial part of a dataset
becomes available by a Write. The overall end-to-end transfer time can then be calculated as
maximum of Read and Write times: 548 seconds in our case. In the worst case, there may be
an arbitrary wait between the Read and Write operations. However, from the center point
of view, only the time it has to stay engaged in the transfer is critical, as communication
between the cloud and the end-user site is decoupled from the center. Current point-to-point
transfer tools cannot enable this behavior as they expect a significant resource commitment
from end-users and HPC centers for the duration of the transfer. Thus, only the access times
to/from cloud are of concern. It can be observed that from this perspective, CATCH is able
to achieve 6.8% (wrt. BBCP) to 81.1% (wrt. scp) better performance compared to direct
transfer mechanisms on average across both Read/Write operations. These results suggest
that CATCH is a viable option for HPC end-user data delivery services.
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Table 6.4: Current Azure pricing.
Storage $0.15/GB
CDN $0.15/GB

Transfer $0.10/GB

6.4.2 Cost of Cloud Usage

In the next experiment, we determine how the cost of cloud services impact CATCH usage.
Table 6.4 shows the current pricing structure used by Azure [68]. Table 6.5 shows three
different usage scenarios for HPC application workflows, and the cost for using CATCH for
the applications. To give a sense of the scale of the job that produces terabytes of data,
consider that a 100,000-core run of GTS fusion application on Jaguar produces a 50 TB
dataset. Since the pricing for cloud usage are expected to fall, the Table also shows the cost
of using CATCH if the prices are reduced by 10%, 50%, and 90%. In contrast, consider that
in a typical HPC center, I/O subsystem costs can account for 20% to 30% of the acquisition
cost and may run into millions of dollars. Even though the acquisition cost is amortized
over the life of a machine, the annual running costs can still run into millions of dollars.
While such PFS storage is needed at the center for a quick dump of job data, it cannot
retain the data beyond a purge window, let alone the duration of a collaboration. Thus,
CATCH provides a way to complement storage at the HPC center, especially for mid-size
HPC applications.

6.5 Chapter Summary

In this chapter, we have presented the design and implementation of a decentralized end-user
data transport service, CATCH, for HPC. The novelty of our approach lies in the transparent
use of cloud storage resources as intermediate nodes, and bringing such resources to bear on

Table 6.5: Cost of using CATCH for different workflows under varying pricing structure.
A B C D

Data size 50 TB 10 TB 1 TB 500 GB
CDN usage Yes No Yes No

Num. uploads 1 1 1 1
Downloads 10 10 5 10

Cost (current) $70,000 $12,500 $900 $625
Cost (90%) $63,000 $11,250 $810 $563
Cost (50%) $35,000 $6,250 $450 $313
Cost (10%) $7,000 $1,250 $90 $63
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the timely problem of HPC data delivery. To this end, CATCH provides a FUSE-based file
system abstraction to the cloud storage, so that end-users can access CATCH transparently.
Using this backdrop, we present several techniques to improve the end-user data delivery
experience, by bringing data closer to the HPC center or the user so the data can be pulled
eventually as needed to coincide job startup or a workflow deadline, respectively. CATCH
exploits several desirable characteristics such as disseminating chunks to a geographically
distributed set of locations, and extends them further, all in a seamless fashion to HPC
users. Our results indicate that CATCH is able to exploit orthogonal network bandwidth
and adapt to network conditions, reduce scratch space consumption, and mitigate the high
cost of HPC I/O acquisition, especially for mid-size HPC workflows.



Chapter 7

Conclusion

7.1 Dissertation Summary

This dissertation presents the design of an Integrated End-User Data Service for High Per-
formance Computing (HPC) centers. Our service attempts to address the issues of expo-
nentially increasing data sizes and ad-hoc data management, through comprehensive scratch
management which can provide benefits for both the center and the end-user. Our strate-
gies comprise a novel workflow-aware caching system wherein the scratch space is treated
like a cache and end-user workflow information is used to make informed data movement
decisions. Moreover, we provide sophisticated end-user data delivery services, which provide
an intermediate staging ground for end-user data, allowing it be staged to or offloaded from
the center scratch as part of the job workflow. These combined strategies allow data to be
managed without significant end-user interaction, prevent precious scratch space resources
from being wasted by storing stale data, and allow end-users to potentially avoid the effects
of purge policies and scratch space failures. Below, we detail the specific contributions made
by each component of our Integrated End-User Data Service.

We present [73] a novel model for managing an HPC center’s scratch space, “Scratch as
a Cache”, where the scratch is treated like a cache rather than a normal storage system.
This approach limits unnecessary direct end-user interaction, and allows caching policies
to manage the scratch based job workflow needs, rather than end-users’ desires. We have
presented the design and evaluation of a workflow-aware caching approach, which provides a
6.6% improvement in average scratch utilized per hour compared to an LRU based caching
mechanism, and reduces the amount of data read on average by 9.3% compared to both
a traditional purge and other caching approaches. Furthermore, the approach results in
an improvement of 282.0%, on average, in the expansion factor — a popular metric to
measure a center’s serviceability — compared to the currently-used purging. Additionally,
the presented approach works equally well for a range of Tier 2 storage types available to
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the users. Thus, our solution is able to reconcile several key factors such as reducing the
duration of scratch space consumption, adapting to volatility, and delivering the data on
time. Finally, we note that the fundamental contribution of this work is the paradigm shift
in managing the scratch space comprehensively and not as an after thought: this provides
opportunities for HPC center managers to design customized scratch management as needed
for their installations.

A crucial component of the Scratch as a Cache model is the ability to populate and evict from
the cache, or scratch space. End-users’ data must be frequently moved in to the cache from
remote sources such as repositories or experimental facilities, processed at the center, and
the resulting data must then be evicted to remote sites for analysis. In reality, population
and eviction are large data transfers and correspond to data staging and data offloading,
respectively. In this dissertation, we have presented both data staging and offloading services,
here we discuss the specific accomplishments of our end-user data delivery services.

We design [70, 72, 76] a combination of both a staged as well as a decentralized offloading
scheme for job output data, which makes use of distributed intermediate sites. Our approach
presents a fresh look at offloading by using a set of user-specified intermediate nodes to
construct a p2p network and transferring data based on bandwidth-adaptation. Compared
to a direct transfer, our techniques have the added benefits of resilience in the face of end-
resource failure and the exploitation of orthogonal bandwidth that might be available in
the end-to-end data path. Our results indicate that our offloading approach improves the
rate at which the data is offloaded from the center (90.4% for a 5 GB data transfer), while
allowing the submission site to pull the data as and when the site becomes available, at a
much higher transfer rate because the result-data has already been staged closer. Further,
offloading enables us to deliver data based on a previously agreed upon SLA, dynamically
varying the fan-out as necessary. An analysis of our approach using a realistic simulator,
driven by a three-year log from an actual supercomputer reveals that it is better able to
manage the scratch space and reduce job delays. Thus, our scheme can be extremely useful
to both HPC centers and users.

We also present [71, 74, 77] a JIT staging framework that attempts to have the data available
at scratch, from multiple input sources, just before the job is about to run. The framework
proactively brings the data to intermediate storage sites on the path from the end-user site to
the HPC center. This reduces the time for copying the data to scratch, thus providing better
opportunities for JIT staging. Our framework leverages periodic job wait time estimates from
a batch queue prediction service, user-specified intermediate nodes, and periodic network
bandwidth measurements to deliver input data on time. Our evaluation shows as much as
91.0% reduction in staging times compared to direct transfers, 75.2% reduction in wait time
on scratch, and 2.4% reduction in usage/hour. Thus, our JIT staging solution is able to
reduce the duration of scratch space consumption and decrease the exposure window, while
adapting to network volatility to deliver the data prior to job start, consequently improving
HPC center serviceability.
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Finally, we provide [75] a cloud storage framework for HPC, which utilizes proactive staging
and offloading of data to cloud storage locations so as to have the input data available at the
scratch storage — from multiple input sources — just before the job is about to run, and
to offload output data — from scratch to the cloud — as soon as the job completes. The
novelty of our approach lies in the transparent use of cloud storage resources as intermediate
nodes, and bringing such resources to bear on the timely problem of HPC data delivery.
Using this backdrop, we present several techniques to improve the end-user data delivery
experience, by bringing data closer to the HPC center or the user so the data can be pulled
eventually as needed to coincide job startup or a workflow deadline, respectively. CATCH
exploits several desirable characteristics such as disseminating chunks to a geographically
distributed set of locations, and extends them further, all in a seamless fashion to HPC
users. Our results indicate that CATCH is able to: exploit orthogonal network bandwidth
and adapt to network conditions, e.g., CATCH reduces average transfer times compared to
direct transfers by as much as 81.1%; and mitigate the high cost of HPC I/O acquisition,
especially for mid-size HPC workflows.

Together, these combined approaches create our Integrated End-User Data Service, wherein
data transfer and placement on the scratch space are scheduled with job execution. This
strategy allows us to couple job scheduling with cache management, thereby bridging the
gap between system software tools and scratch storage management. It enables the retention
of only the relevant data for the duration it is needed. Our strategies capture the current
HPC usage pattern more accurately, and better equip the scratch storage system to serve
the growing datasets of workloads.

7.2 Future Research Directions

In this dissertation, we have explored how to build advanced end-user data services that
support HPC applications’ growing data demands and help optimize scratch space usage.
However, the modern distributed HPC workflow still poses many challenges to HPC system
designers and application developers. A major challenge focused on by this dissertation
is that data must be moved to and from an HPC center’s scratch space frequently to ac-
commodate the needs of end-users’ workflows. In Chapter 6, we used cloud storage as an
intermediate staging ground to hold a job’s input and output data. A natural next step
would be to extend our use of the cloud model and explore the demonstrated capabilities
of cloud infrastructure in not just handling data storage, but also data-intensive applica-
tions and attempt to design high-end systems that support both scientific and enterprise
workloads using cloud and HPC resources.

We are concerned with supporting applications that have both significant compute compo-
nents, i.e., are HPC-friendly, and data processing components, i.e., are cloud-friendly. For
example, pre-processing or post-processing, as well as smaller and simpler data manipula-
tions can be performed using cloud resources, while the primary compute intensive part of
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the workflow can still be shipped to the center and executed when necessary. This would
result in more computation happening closer to data stored in the cloud, and thus reduces
unnecessary data movement to and from the center, while making the scratch more available
for the most compute intensive parts of HPC job workflows. Examples of such applications
include space observation analysis, event detection in atomic colliders, and stock market
modeling. In this context, a critical research challenge lies in determining and coordinating
the right computation and storage resources to allocate to a job when using both HPC and
cloud resources.

We intend to design and develop an integrated HPC and cloud platform to support emerging
scientific and enterprise applications. This platform can potentially offer the HPC commu-
nity the high-throughput data processing benefits of the cloud, while facilitating use of HPC
resources as “accelerators” for the most compute intensive components of HPC and en-
terprise applications. This strategy enables quick and efficient utilization of cloud storage
and compute resources for both the user and the HPC center. The overall goal is a holis-
tic approach to deriving optimal performance from cloud and HPC resources by matching
application tasks to the best resources.
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Appendix A

Simulating HPC Data Management

with simHPC

The interplay between the different system components at an end-user site and the HPC
center is complex and requires a controlled environment for in-depth analysis, which is near-
impossible to do in real HPC setups. Thus, we have developed a realistic simulator to
examine data management at HPC centers, simHPC, which models job execution, scratch
management, and data movement.

A.1 Job Scheduling

In simHPC, jobs are scheduled using a First-Come First-Served (FCFS) policy with back-
filling. Here, a number of large jobs are first scheduled in the order they arrive, until a
majority of the machine’s resources are allocated. Next, smaller jobs are scheduled. This
approach is often employed in large-scale supercomputers, such as Jaguar [18], which are
intended to run a few large jobs that take up most of the machine (e.g., 100,000 cores).
However, such larger jobs can leave a small but significant number of cores idle; back-filling
helps to avoid this by assigning smaller jobs to the idle cores. The goal is to strike a balance
between the HPC center’s desire to cater to “hero apps” that could take up an entire machine
and potential idle cores.

A.2 Trace-Driven Simulation

simHPC utilizes a number of different traces to provide an accurate model of the system.
Specifically it uses job and bandwidth traces.
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Table A.1: Statistics about the job logs used by simHPC.
Duration 22753 Hrs

Number of jobs 80025
Job execution time 1 s to 120892 s, average 5849 s
Input data size 2.28 MB to 7481 GB, average 65.3 GB

A.2.1 Job Traces

The job traces were obtained from ORNL’s Jaguar supercomputer [18] and represent nearly
three years of job execution [73]. These traces provide for each job: arrival time, start time,
total job execution time, and the compute resources used. Additionally, the traces also
contain the amount of physical memory and virtual memory used by a job. The memory
values and compute resources are used to estimate the amount of data used or created by a
job, e.g., the product of the utilized memory per core and the number of cores requested by
an application provides the size of a possible input, checkpoint, or output data item which
needs to be moved to or from the scratch space 1. Finally, each job in the trace corresponds
to a job executing in our simulator. Table A.1 shows some relevant characteristics of the
logs.

A.2.2 Bandwidth Traces

We model the intermediate nodes by using NWS bandwidth measurements from 50 different
sites on the PlanetLab [81] testbed. The bandwidth traces provide pairwise bandwidth
measurements for the 50 sites over a duration of 96 hours. Each simulated node in simHPC
is assigned a measured trace. Since there are more nodes in the simulator than measured
on PlanetLab some nodes will have duplicate bandwidth traces. Nodes running for longer
than 96 hours simply loop through their associated trace. Since the measured bandwidth
is for pair-wise exclusive communication, it does not capture the behavior when a node is
participating in multiple transfers. In simHPC, we make an assumption that the available
pair-wise bandwidth is reduced proportionally by the number of transfers in which a node
is involved.

A.2.3 Simulator Output

simHPC provides an output trace with information about overall scratch space usage and
the time it would take to transfer the required data to and from the scratch for a given job.
This information can then further be used to determine any delay in meeting job scheduling
deadlines.

1HPC centers neither log the submission scripts, nor the input and output data generated by specific
jobs. It is not possible to change this behavior due to administrative reasons. Thus, we have to resort to
such approximation.
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Figure A.1: Control flow in simHPC.

A.3 Flow of Control in simHPC

simHPCmaintains a pool of nodes arranged in a configurable topology to use as intermediate
nodes. Nodes are randomly selected to facilitate the simulated transfer. If a node is used for
multiple transfers at the same time, the bandwidth is equally divided between the transfers.
Moreover, simHPC can also capture varying storage capacities of the nodes and can alter
transfer paths based on the capacities. In simHPC, we are mainly concerned with moving
the data between the center and the first-level intermediate nodes only. Note that, while this
can be easily extended to capture the end-user data delivery, we do not, as we can utilize
our real implementation (Chapters 4, 5, and 6) to more accurately study such behavior.

Figure A.1 illustrates simHPC’s operation. The main driver is a Job tracker that reads the
logs, and selects an appropriate action for the simulator to take. We have opted for using
the same time-scale as the logs. At each job arrival, the tracker places it in a wait queue.
The job input data staging is then started. The staging process may take many simulator
ticks depending on the size of the input data, but once the process completes the job is
moved to a run queue. The job will wait there until sufficient compute resources to run the
job become available. Once the job completes its execution, it moves to the offload queue.
If the simulator is modeling a decentralized offload, intermediate nodes will be chosen and
the offload process will begin. If the standard approach is used, the data will remain on
the scratch until it is purged by the center. Finally, simHPC also provides accounting and
statistics about the staging and offloading process, such as the scratch space used and the
data read, as well as other vital statistics.


