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(ABSTRACT)

Four plates with centrally located circular holes were manufactured using a fiber place-
ment technique. With two plates the fibers were steered around the holes in curvilinear
trajectories. With the two other plates the fibers were placed in the conventional straight
line format. For the case of the curvilinear trajectories, the fibers were continuous from
one end of the plate to the other, whereas for the straight trajectories the fibers were cut
by the presence of the hole. Two plates, a curvilinear fiber plate and a straight fiber plate,
were tested in tension. The two other plates were tested in compression. The straight fiber
plates were considered as baseline cases. Since the plates were thin, compression testing
resulted in buckling and postbuckling. The current work focuses on the analysis of these
four plates and a comparison between the analysis and experimental results. Because of
a spatial dependence of the A and D stiffness matrices for the curvilinear fiber cases, the
analyses were conducted using finite element methods, and included a failure criterion. A

scheme to improve the plate design is also considered.
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Chapter 1

INTRODUCTION

The extensive use of fiber-reinforced composite materials dates back to the ‘60’s with the
appearance of several space programs. Since then, its field of application has broadened,
though the way to utilize and manufacture fiber-reinforced composite materials has re-
mained basically the same. The main barriers for further use of composite materials lies
in the fact that manufacturing of composites is often costly and technically difficult, and
actual gains made in structural efficiency using conventional designs have been moderate.
Conventional structural designs consist of using multiple plies of fibers embedded in a ma-
trix. At the ply level fibers are parallel to each other and straight. The orientation of the
fibers usually differs from ply to ply, each ply contributing in some way to the mechanical
characteristics of the structure. With this approach, stiffness and strength properties can
be tailored by utilizing fiber orientation effects. However, with straight fibers, varying the
structural tailoring from point to point in a flat plate, for example, can only be accomplished
by dropping or adding plies at specific locations.

In the 1980’s Cincinnati Milacron developed the concept of a fiber placement machine
which provided more flexibility to fiber orientation at the ply level. Specifically, the Cincin-
nati Milacron fiber placement machine allowed the fiber orientation of a ply to vary from

point to point within the ply. Utilization of such a concept could result in significant gains in
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structural efficiency. On the other hand, allowing the fiber path to vary from point to point
within a ply complicates any analysis technique used to predict the structural response. In-
deed, the A B D stiffness matrices change from point to point instead of remaining constant
for the entire laminate. This spatial dependence of the A B D matrices makes an analytical
solution very difficult to find. Therefore, most of the analyses for curvilinear fiber struc-
tures have been done with finite element based methods. Although almost all structural
designs have precluded the use of the curvilinear fiber format, several investigations have
been performed to evaluate any gains that might be possible by using this fiber format. In
most of the investigations, a plate with a centrally located hole was considered as a prime
candidate. However, the results found could be extended to other geometric discontinuities,
such as windows in an airplane fuselage and access panels in wings. Conventional designs
simply cut the fibers at these discontinuities, creating a stress concentration. On the other
hand, a curvilinear fiber path could distribute the load more effectively around the hole,
perhaps minimizing or eliminating stress concentrations.

In 1988 Hyer and Charette [1-4] and Charette [5] investigated the contribution of the
curvilinear fiber format in flat plates to resistance in tension. Several proposed designs
utilizing the curvilinear format were presented. In 1991 the gains in buckling performance
of flat plates using the curvilinear fiber format were explored by Hyer and Lee [6] . To
follow in the next chapter is a literature review in which these studies will be detailed.
These investigations motivated the manufacturing of four plates with a centrally located
hole. The plates were manufactured by Cincinnati Milacron with a fiber placement machine.
Two of the plates used the curvilinear format, while the two others represented baseline
straight fiber counterparts. Two plates, a curvilinear fiber plate and a straight fiber plate,
were tested in tension. The two other plates were tested in compression. Since the plates
were thin, compression testing resulted in buckling and postbuckling. Since the steering
radius of fiber placement machines was limited, the designs proposed in refs. [1-6] could not
be followed. The philosophy used was to manufacture a curvilinear format plate consistent

with the manufacturing constraints of the Cincinnati Milacron fiber placement machine.
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The plates were then tested at the NASA Langley Research Center. The testing of these
plates constitutes one of the rare sources of data regarding the utilization of curvilinear
fiber format.

The goal of the present work is to analyze and ezplain the results provided by the tested
plates. A finite element approach, including a failure criterion, was adopted to predict
the response. Chapter 2 begins by briefly reviewing the work of Hyer and Charette [1-4],
Charette [5], and Hyer and Lee [6]. Chapter 2 also describes details concerning the plate
manufacturing and testing. As will be discussed in Chapter 2, though there was a small
observed gain in buckling performance of the curvilinear fiber plate, the expected improve-
ment in performance for the curvilinear fiber plate was not realized for the tension testing.
The curvilinear fiber plate failed in tension at a load considerably less than the straight
fiber plate. This prompted an investigation of the material properties of the curvilinear and
straight fiber plates. This investigation of the material properties is discussed in Chapter 4.
However, to put the material property testing results into context, information regarding
the trajectories of the curvilinear fibers and the material property requirements for the finite
element analyses is necessary. This information is presented in Chapter 3.

Chapter 5 describes the modeling of the plates loaded in tension, including the boundary
conditions, the loading, and the fiber angles for the curvilinear plies. The data provided by
the strain gages are compared with the strains obtained by the finite element analysis. This
chapter also contains a comprehensive description of the failure criterion and the schemes
used to predict the plate ultimate load. An optimal fiber path was also computed using a
recursive scheme presented by Hyer and Charette [1-4] and Charette [5].

Chapter 6 presents the analysis of the compression tests. The chapter emphasizes the
boundary conditions of the tests, computes the buckling loads, and models the postbuckling
behavior of the plates. A final discussion in Chapter 7 will summarize the main conclusions

of this work.



Chapter 2

LITERATURE REVIEW

This chapter provides a brief summary of the investigation of Hyer and Charette [1-4],
Charette [5] , Hyer and Lee [6], and Hyer et al. [7] of curvilinear fiber plates. Interest in
curvilinear fiber format is recent. This explains the limited number of papers available in

the open literature.

L
< >
A
D
<—>
P P
<— —>» | W
00 Direction
¢ \4
ZL) Tension : Hyer & Charette
X Compression : Hyer & Lee

Figure 2.1: Plate geometry and nomenclature in refs. [1-6]
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2.1 Tensile Load

References [1-5] investigated the influence at the curvilinear fiber format on the tensile ca-
pacity of a plate with a centrally located circular hole. Figure 2.1 illustrates the planform
geometry of the plate under consideration. The plate was limited to 16 plies. The contribu-
tion of a curvilinear format was investigated for a variety of lay-ups and plate geometries.
An analysis using finite elements, a failure criterion, and a recursive scheme enabled these
researchers to study the influence of curvilinear fiber paths. The finite element mesh for the
quarter plate model used in refs. [1-5] is presented on the figure 2.2 . The mesh consisted
of 120 8-node quadrilateral elements. Recall from Figure 2.1 that the loading was in the

x-direction. Lines AA’ and BB’ were taken to be lines of symmetry.

2.1.1 Determination of the fiber angle

The key to the designs in refs. [1-5] was to align the fiber paths in the curvilinear plies with
the principal stress directions in those plies. In the analysis the fiber angle was assumed
to be constant within each element of the finite element mesh. The concept of principal
directions in a laminate had to be applied carefully, as the principal stresses directions vary
from ply to ply. For the first iteration, the fiber angle in the curvilinear plies was set equal
to zero. The stresses in each element were computed and principal stress directions in the
curvilinear plies determined. Then the fibers in these plies were aligned with these principal
stress directions and the stresses and the principal stress directions recomputed. By using
incremental changes, the principal stress directions and fiber angles in each element were

aligned to within a certain tolerance. The iteration was stopped once
(¢—6)/6 <0.01, (2.1)

where 6 denotes the principal direction and ¢ the fiber orientation.
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Figure 2.2: Finite element mesh used in refs. [1-5]
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2.1.2 Results

Somewhat independent of the orientation of the other plies, the fiber trajectories in the
curvilinear plies which satisfied equation 2.1 were computed as shown in figure 2.3. To
provide a baseline for comparison, results were all normalized by results obtained for a quasi-
isotropic (+£45/0/90)2, plate with an identical geometry. The maximum strain criterion was
used to estimate the ultimate load. The main results from the work are shown in Table 2.1.
The table illustrates the tensile failure load, normalized by the failure load for the quasi-
isotropic laminate, for nine laminates and various plate length to plate width, L/W, ratios
and various hole diameter to plate width, D/W, ratios. It was assumed that the load was
applied uniformly on opposite ends of the plate. The failure mode and the location of
failure are indicated. Unless otherwise indicated, failure was due to fiber tensile failure.
It can be seen from the table that a pure unidirectional laminate, laminate no. 2, was
considerably weaker than the baseline (normalized loads less than 1). A pure curvilinear
design, laminate no. 3, was stronger than the baseline, but only marginally so for larger
holes. For all curvilinear designs, the fiber orientation in the vicinity of the net section
was essentially 0°, so the fiber architectures of the curvilinear designs and the straight
fiber designs were virtually identical in the net section regions. A design with 2 of 16
plies orthogonal to the primary curvilinear load-carrying plies, laminate no. 4, was quite
effective. Design no. 6 studied further the influence of these orthogonal plies on the load-
carrying capacity by increasing their number. However, designs no. 4 and 6 were very
sensitive to shear loading and manufacturing of such plates would be very difficult. To ease
manufacturing problems, the idea of using (£45/C¢)s was pursued, i.e., laminate no. 5,
and offered an interesting compromise. The straight fiber (£45/0g)s counterpart, laminate
no. 7, was also studied. Both laminates 5 and 7 failed near the hole edge. Although the
stacking arrangement of the two plates were identical in this area, the load capacities were
different. An explanation was provided by considering the stress resultant distribution

and its magnitude. Essentially, the curvilinear fibers moved the load away from the hole.
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Figure 2.3: Example of fiber path proposed in refs. [1-5]

Laminates nos. 8 and 9 further illustrated this point. Despite having exactly the same
design at the net section, the curvilinear fiber plate bore more load than the straight fiber
plate.

The influence of a curvilinear format on buckling resistance was briefly investigated
by Hyer and Charette [1-4] and Charette [5]. The study was not too comprehensive but
preliminary conclusions could be drawn. Generally, the improvement of tensile performance
was at the expense of buckling performance. Nevertheless, the penalty was not worse, and

in fact less, than other straight fiber designs. This issue was pursued further by Hyer and
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Lee [6] by considering a different approach. These results are presented in the next section.

2.2 Buckling Resistance

Hyer and Lee [6] studied the gain in buckling resistance that the curvilinear fiber format
could achieve. A simply supported square plate with a centrally located hole was consid-
ered, as in refs. [1-5]. The finite element method was again used. Because of the work of
Hyer and Charette [1-4], aligning the fiber path with the principal directions in the curvi-
linear plies was judged not to be an appropriate approach to improve buckling resistance.
Instead, a sensitivity study and a gradient search technique using fiber orientation as a
design parameter were conducted.

The finite element mesh consisted of 120 elements. These 120 elements were grouped
in 18 different regions. The partition into regions is shown on figure 2.4. The fiber angle
was considered to be constant within a region and buckling was assumed to occur due to
uniform inplane displacement, A, at opposite edges of the plates. The other two edges were
traction free. Quarter symmetry was again assumed, though this can be inaccurate for large
values of Dyg and Dog.

The first step of the sensitivity study consisted of setting the fiber angle in the curvilinear
plies in all 18 regions equal to zero. Then the fiber angle in the curvilinear plies in one of the
18 regions was allowed to vary, while the fiber angles remained fixed at 0° for the remaining
17 regions of the plate. The buckling load of the plate was computed as a function of the
fiber orientation in each region. The fiber orientation which resulted in the highest buckling
load was then assigned to each region. The fiber angle in all the regions were then returned
to zero and the study was repeated for another of the 18 regions. The process was repeated
for each of the 18 regions. The curvilinear plies were then assumed to consist of these 18
regions, each with their own fiber orientation. Figure 2.5 shows the orientation in the 18
regions of the curvilinear ply computed by this sensitivity scheme. For a (£45/Cg)s, the
buckling load was 2.23 times greater than the buckling load for a (+45/0s)s laminate.
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Table 2.1: Failure loads of curvilinear plate in tension, from refs. [1-5]
Laminate Lay-up failure mode L/ W=1 L/W=2 L/ W=2
Number location D/W=1/6 | D/W=1/6 | D/W=1/3
1 (£45/0/90)s | 0 ply/net section 1.00 1.00 1.00
hole edge

2 (08)s shear failure/ 0.83 0.76 0.59
net section

3 (Cg)s matrix failure/ 1.26 1.18 1.01

away from hole

4 (0/C7)s C ply/net section 2.29 2.21 1.89
hole edge

5 (£45/Cs)s | C ply/net section 1.84 1.79 1.60
hole edge

6 (02/Cs)s C ply/net section 2.09 2.03 1.79
hole edge

7 (£45/06)s | 0 ply/net section 1.43 1.38 1.27
hole edge

8 (£45/02)25 | 0 ply/net section 1.29 1.26 1.20
hole edge

9 (£45/C2)2s | C ply/net section 1.47 1.44 1.33
hole edge

L: length of the plate
W: width of the plate
D: hole diameter
C: curvilinear ply

O: ply with fibers orthogonal to curvilinear plys
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Figure 2.4: Partition into 18 regions for the sensitivity study in ref. [6]
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Figure 2.5: Fiber angles in the curvilinear layers from buckling load sensitivity study for a
(£45/Cs); plate in ref. [6]
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The sensitivity method does not take in consideration the interaction between the dif-
ferent regions. Therefore, results from such an approach can be somewhat misleading. Hyer
and Lee [6] considered a second approach using a optimization method called the gradient
search technique. This second analysis optimized the combination of the 18 different angles.
This design achieved a buckling load almost three times higher than the one for the quasi-
isotropic case. The orientation of the fibers in each region found by the gradient search
technique was similar to the orientation found by the sensitivity analysis.

Neither the design resulting from the sensitivity scheme nor the design resulting from
the gradient search scheme could reasonably be judged manufacturable. The difference
in fiber angles between two adjacent regions was too large even for a smoothing scheme.
A new design was achieved by partitioning the plate into six radially oriented regions.
These regions are illustrated on figure 2.6. The buckling load from the gradient search
design with these six regions was 1.85 greater than the buckling load for the quasi-isotropic
case. The fiber angle for each of the 6 regions are shown in figure 2.7. The prebuckling
stress contours showed that curvilinear fibers moved a significant portion of the inplane
compressive load away from the hole. Unfortunately, designs which significantly improved
the buckling load gave poor results for a tension loading. However, for some lay-ups buckling
load and tensile load could both be improved by the curvilinear format. For instance, the
sequence (+45/0/90/C4)s reached a buckling load and a tensile load 1.3 times greater the
ones obtained for a quasi-isotropic plate. The later design was somewhat similar to the

design provided by Cincinnati Milacron.

2.3 Design, manufacturing, and testing of plates utilizing

curvilinear fiber trajectories

The results obtained by Hyer and Charette [1-4] and Charette [5], Hyer and Lee [6] en-
couraged the development of the curvilinear fiber format. Manufacturing and testing plates

utilizing this concept were the next steps of the overall study. Four plates were manu-
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Figure 2.6: Partition into six radial regions in ref. [6]
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Figure 2.7: Fiber angles in the curvilinear layers that maximize buckling load in a (£45/C¢)s
plate in ref. [6]
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factured with a Cincinnati Milacron fiber placement machine [7]. Two of them used the
curvilinear fiber format, one for a tensile test and the other for a compression test. The
two other plates were designed with straight fiber format for comparison. The Cincinnati
Milacron fiber placement machine was designed to manufacture large structures, i.e., ap-
proximately 30-50m. To study the curvilinear fiber concept, laboratory size specimens,
i.e., 1m, were felt to be more appropriate. Unfortunately, the order of magnitude smaller
laboratory specimens could not take full advantage of the curvilinear capabilities of the
large Cincinnati Milacron machine. The minimum radius of curvature of a steered path
using the machine was 0.380m. Thus using hole diameters of 0.1 to 0.2m in plates 1m
square presented a problem if any of the proposed curvilinear designs of refs. [1-6] were to
be manufactured. Rather than make large plates, which required very large loads to test,
laboratory size specimens with rough approximations to the curvilinear designs proposed
in refs. [1-6] were fabricated by Cincinnati Milacron. The plates actually manufactured will

be described in the next section.

2.3.1 Plate Manufacturing

The four plate specimens were produced on Cincinnati Milacron’s 12 tow FPS fiber place-
ment machine with an A975F control. This machine was a joint development effort between
Cincinnati Milacron and Thiokol Corporation. The plates were produced using Fiberite
FX13F77-2 graphite-epoxy tow material. The tow material was 0.28mm thick, with a nom-
inal width of 3mm. The fiber placement machine uses 7 axes of motion to compact the
tow onto the mold surface. As stated previously, the 0.380 m steering radius dictated the
minimum size of the specimen fabricated. Figure 2.8 provides details of the curvilinear
fiber trajectories used. The program used to define the fiber trajectories in the curvilinear
plies allowed only fiber courses that extended from one end of the panel to the other to
be machine laid. The curvilinear courses that did not extend the full length of the panel
were filled in by hand. The corners of the +£45 plies contained tows that were too short to

be machine laid due to the cut length limitation were also placed by hand. As shown in
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figure 2.8, some of the curvilinear courses that steered around the hole extended outside
the panel dimensions.

As can be seen comparing figure 2.8 with figure 2.7 and figure 2.3, the design adopted
by Cincinnati Milacron was neither the one proposed by Hyer and Charette [1-4] and
Charette [5], nor the one proposed by Hyer and Lee [6]. The design developed by Cincinnati
Milacron was similar to the one developed by Hyer and Lee [6] for the regions 1, 2 and 3
shown in figures 2.6 and 2.7. The fiber angle of both designs are approximately equal to
zero at the net section of the plate and the magnitude of the fiber angles increased when
going from the region 1 to 2, and 2 to 3. Passing region 4, the fiber angle keeps increasing
for Hyer and Lee’s [6] design, reaching almost —90° near the z-axis. On the other hand,
for the design developed by Cincinnati Milacron, the magnitude of the fiber angle began to
decrease after passing region 4, to reach an angle close to 0° near the z-axis. In other words,
the fiber angle gradient kept increasing by passing from region 1 to 6 for Hyer and Lee’s [6]
design, while it first increased and then decreased for the curvilinear plies manufactured by
Cincinnati Milacron.

The design developed by Cincinnati Milacron was similar to that proposed by Hyer
and Charette [1-4] and Charette [5] along BB’ (see figure 2.3) and near the hole edge.
Nevertheless, the further the fibers were located from BB’, the more the two designs differed.
Near the opposite edge to BB’ in figure 2.3, for the curvilinear path designed by Cincinnati
Milacron, the fiber angles were positive instead of being negative. For this upper part
of figure 2.3, the fiber orientation was exactly the opposite to the orientation shown in
figure 2.8. Because of the manufacturing limitations, the philosophy used to manufactured
the plates was to make the curvilinear design as simple as possible and learn from this case
before going to either of the designs analyzed in refs. [1-6]. This step would require either
making larger plate specimens, or altering the tow placement head.

The plies shown in figure 2.8 were further trimmed. The plates consisted of 16 plies.
The stacking sequence of the curvilinear plate was (£45/C32/0/90/C2);, where C denotes

a curvilinear ply. To make straight fiber plates, the curvilinear plies are replaced by 0°
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Figure 2.8: Data provided by Cincinnati Milacron for the fiber paths in ref. [7]
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plies, resulting a (£45/03/90/0;), laminate. The 0° direction is along the longest side of
the plate. Non destructive C-scans of the specimens were performed after curing to check

that no defect appeared.

Description of the tensile specimens

The two plates for the tensile testing, one using the curvilinear fiber format and the other
using the straight fiber format, were trimmed to be rectangular. The length of the plates
was 1.067m and the width 0.43m. On each end 0.152m was used for gripping. As shown
in figure 2.9, steel grips which held the specimens by bolting them between the two halves
of the grips were used to load the plates. Glass-epoxy doublers were bonded in the bolting
region. The specimens were placed vertically in a load frame and the lower end was loaded
downward, with the upper end being held stationary. Strain gages were placed on the plates.
Their locations are shown on figure 2.9. Each gage represented on the figure symbolizes a
pair of gages, one on the front side and the other on the backside of the plate (back-to-back
gages). For the tension loading, an average strain value was computed for the two gages

and that strain was assigned to this location.

Description of the compression specimens

The two plates for compression testing were trimmed to be square, specifically, 0.43m square
(see figure 2.9). The location of the back-to-back strain gages for these panels was the same
as for the tensile tests. Besides the strain gages, displacement transducers were installed to
measure the out-of-plane deflection and the end-shortening of the plate. One surface of each
compression specimen was painted white and shadow moire interferometry used to study
out-of-plane deflection. The two loaded edges (top and bottom in figure 2.9) were clamped
while the two other edges were simply supported. The plates were placed vertically in the

load frame. The top clamped edge was displaced downwards and buckling occurred.

A comprehensive discussion of the tensile and the compression testing will be presented
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Figure 2.9: Dimensions of test plates in ref. [7]
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in later chapters. However, the primary motivation for the current study is the fact that
the curvilinear fiber tensile specimens failed at a load 39% less than the straight fiber
tensile specimen. This was a very surprising result. On the other hand, the buckling load
of the curvilinear fiber compression specimen was 12% greater than the buckling load of
the straight fiber compression specimen. This conformed to the predictions of the earlier
studies.

As a summary, this chapter has discussed the fact that in past research several finite
element models suggested there may be an advantage to using the curvilinear format. No
experiments had previously been conducted to confirm these findings. However, Cincinnati
Milacron, in collaboration with the NASA Langley Research Center, manufactured and
tested plates using a simplified curvilinear fiber format. The goal of the work presented
here is to analyze all the results provided by these experiments and to contribute to the

research in the field of curvilinear fiber format construction.



Chapter 3

Representation of fiber trajectories

Since the curvilinear fiber trajectories are so central to this study, this chapter focuses the
trajectories in the plates manufactured by Cincinnati Milacron and discusses how these
trajectories are represented in the analyses. This information is also needed for a complete
understanding of the results from the material property testing discussed in Chapter 4. A
brief description of the finite element models used is necessary, but issues like boundary

conditions and loadings are addressed in later chapters.

3.1 Finite element approach

The commercially available general purpose program PATRAN, a product of PDA Engi-
neering [8], was used as a finite element pre- and post-processor for all the models created
for this investigation. ABAQUS, a product of Hibitt, Karlsson and Sorenson, Inc [9, 10],
and a finite element program for plates, FEM2D, developed by Liu [11] were used as proces-
sors. Preprocessing includes the creation of the model geometry, the definition of boundary
conditions, the definition of the loading, and the assignment of the material properties.
Processing takes care of the computational part. Processing calculates the model stress
state, its deformations, or other mechanical response requested by the user. All the results,

such as the deformed shapes or strain contours, were visualized with PATRAN.

22
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3.1.1 Mesh

The plate had two axes of symmetry, one along the z and one along y axis. The loading,
the material properties and the boundary conditions were perfectly symmetric with respect
to these axes. Therefore for inplane tensile loading only a quarter of the plate needed to be
considered. The model is presented on figure 3.1. The mesh was made up 200 elements.

The presence of the hole at the center of the plate implied a stress concentration. This
stress concentration was taken in consideration by refining the finite element mesh around
the hole. For compression testing, the specimens were trimmed to be square. Hence the
compression specimen was defined by considering the area A of the figure 3.1.

For the model used in tension, the mesh was adjusted in the gripping area such that a
node was located at the exact position of each bolt hole (see figure 2.9). The element used
was an 8-node rectangular element with nine integration points (also called a serendipity
element). The model consisted of 663 nodes. The order of the nodes and the integration
points for the element are presented on figure 3.2. ABAQUS offers a large array of element
types. The element selected from ABAQUS for the tensile model was a two-dimensional
plane stress element. The thickness of the plate was part of the ABAQUS input file. The
element in FEM2D was a two-dimensional plane stress element capable of using anisotropic

material properties.

3.2 Modeling of the curvilinear fiber path

An important step in developing the finite element model was the determination of the
fiber orientation in the curvilinear plies in each element of the mesh. Ideally, having an
expression for computing the fiber angle at any given location within the curvilinear ply
would be the most convenient. This was accomplished by using the drawing supplied by
Cincinnati Milacron, figure 2.8. From figure 2.8, the ¢ — y coordinates of two curvilinear
fiber paths, denoted as a-a’ and b-b’ in figure 2.8, were determined by using a digitizer.

The origin point, z = 0 and y = 0, was considered to be at the center of the hole. The
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Figure 3.1: Finite element mesh for plates loaded in tension
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Figure 3.2: Node numbers and integration point numbers for a serendipity element

digitized path consisted of 120 z — y data points. Several functions were used to fit the data
so the fiber angle could be determined. Figure 3.3a illustrates the digitized data. Because

of its ”bell shape”, the form of the normal equation was chosen as a prime candidate for

the curve fitting. The first equation form considered was

y(z) = Ezpla+ b+ z?, (3.1)

with @ and b to be found. The curve fitting proposed by Mathematica [12] is plotted on
figure 3.3b. The equation of the curve is

y(z) = Ezp[—2.36137 — 35.64z7]. (3.2)

The curve fitting was judged not to be satisfactory. To improve the precision, another term,

4

z*, was added to the exponential, i.e.,

y(z) = Ezpla+ bz? + cz]. (3.3)
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The equation

y(z) = Exp[—2.5744 — 20.46z> — 132.882"] (3.4)

was obtained. The curve is presented on figure 3.3c. The contribution of the term in z* was

important. The result obtained was close to the path described by the measured points.
Nevertheless a third equation was considered by adding z® to the exponential. The resulting
equation

y(z) = Exp[—2.5744 — 20.46462% — 213.8z* 4 618.3929) (3.5)

is plotted on figure 3.3d. The difference with the former result is negligible. Hence, equa-
tion 3.4 was considered as the best choice to describe the fiber trajectory. This equation
describes the fiber path tangent to the hole edge (b-b’). The other fiber paths can be
obtained either by translating the equation in the y direction, or by using symmetry with
respect to the z axis for the second half of the plate.

The finite element mesh and the representation of the fiber path were superposed to
compute the fiber angle for each element. This superposition is shown in figure 3.4. The
fiber trajectory was approximated as a straight line within an element. Two approaches
were taken to compute the fiber angle according to the element location. In the area B (see
figure 3.1), two sides of the elements are perpendicular to the z axis. Call Ay the distance
between the ordinate of a fiber entering particular element and the ordinate of the same
fiber exiting the element. In area B, Ay is constant within an element. Call Az the length
of a element in the z direction. The fiber angle in this element is thus

6 = sin™! % (3.6)

The value of Ay can be easily obtained by considering the equation of the fiber trajectory
and the value of Az depends on the mesh. For area A, the fiber angles were computed by

hand. An average angle was estimated per element using a protractor.
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Figure 3.4: Superposition of the finite element mesh and curvilinear fiber paths



Chapter 4

EXPERIMENTS WITH PLATE
COUPONS

As has been mentioned, the unexpected lower load capacity of the curvilinear tensile spec-
imens prompted an investigation of the properties of both the curvilinear and the straight
fiber materials. The investigation was conducted by way of mechanical tests. Two cate-
gories of mechanical testing were performed. First, two straight sided-coupons were cut
from the remnants of broken plates that were loaded in tension: one from the plate con-
taining curvilinear fibers, the other from its straight fiber counterpart. The purpose of this
first set of tests was to calculate elastic properties to be used in the finite element analyses.
Second, eight other coupons, four from each fiber format, were cut from the remnants to
investigate the strength properties of the plates. These coupons were tapered so as to have
a minimum cross-sectional area at midlength. The geometry of the coupons are described
in this chapter, as are the tests conditions. The results from the testing are presented and

discussed.

29
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4.1 Plate thickness

Only small areas of the two plates tested in tension were not damaged. Pictures from the
broken plates are presented in figure 4.1. As shown in figure 4.2, the coupons were cut from
the broken plates as close as possible to the glass-epoxy doublers. Two reasons motivated
this choice of location. First, this region of the plate was not damaged by the tests, either
for the plate using the curvilinear fiber format, or for the plate using the straight fiber
format. Second, it was in this region that the two plates were the most alike. As was seen
in the last chapter, the fiber angle in the curvilinear plies varied between 3° and 20.5° in
the regions from where the coupons were cut.

According to ref. [7], the thickness of the tow material used to make the plates was
0.28mm. Hence, with the plate being made of 16 plies, the total plate thickness was origi-
nally estimated to be 4.48mm. As will be seen in Chapter 6, the plate thickness is a major
parameter for the computation of the buckling load and the postbuckling response of the
plate. The ultimate tensile load can also be influenced by thickness variations. Hence, the
thickness of the coupons cut from the plates was measured and investigated.

The thickness was measured with a micrometer at three different locations for each
coupon. These locations are indicated on the subfigure of the tapered coupon in figure 4.2
as 1, 2, and 3. All the measurements were taken twice to reduce the error. The two values
for each location were averaged. An average over all the measurements was computed to
determine the ply thickness to use in finite element analyses. Several interesting points can
be made from these measurements. First, all the values of the measurements were below
the anticipated thickness presented in ref. [7]. The average thickness evaluated over 30
locations (3 X 10 coupons) was 4.03mm. This represents a 10% difference relative to the
expected thickness considering the 0.28 mm tow material of ref. [7].

The second point of interest was the variation of the thickness within a coupon. By
measuring the thickness from location 1 to 3 (see figure 4.2), this variation depended upon

whether the coupons came from the plate using the curvilinear fiber format, denoted as
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(a) Curvilinear fiber plate (b) Straight fiber plate

Figure 4.1: Pictures of the broken plates tested in tension
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Figure 4.2: Location of the coupons and location of the thickness measurements
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C, or whether the coupons came from the plate using the straight fiber format, denoted
as S. As shown in figure 4.3, the thickness variation in the C coupons was almost twice as
large as the variation in the S coupons. Moreover, the thickness of the C coupons tended
to decrease linearly going from the location 1 to 3. Because of the damage due to the
testing, measurements on the remnants far beyond point 3 were not possible. Nevertheless,
as shown in figure 4.2, location 3 was close to the hole edge and so it was subjected to high
stress. Hence, the thickness at the failure location within the tensile plate could have been

smaller than elsewhere on the plate.

4.2 Material Characterization Testing

This first category of tests were performed to estimate the elastic properties of the curvi-
linear and straight fiber plates. According to Cincinnati Milacron, the plates using the
curvilinear fiber format and the plates using the conventional straight format were made

from the same material, and the plates were processed in an identical manner.

4.2.1 Coupon Geometry

Figure 4.4 presents the geometry of the coupon used for the elastic property tests. The
coupon was designed to be as long as possible without encountering any damage in the
failed plates. For elastic property testing a straight sided coupon was adopted because
no stress concentration due to geometrical factors would appear. This geometry was not
considered for measuring the strength of the material because of the large variation of the
failure location it would induce. The coupons were not loaded to failure to determine the
elastic properties. Two pairs of back-to-back strain gages were placed on each side of the
coupon (see figure 4.4). The first pair of strain gages was bonded on the coupon in the
longitudinal, or loading, direction. These gages were used to compute longitudinal strain
€;. The other pair was placed orthogonally with respect to the first one to determine

transverse strain €¢,. Knowing the applied load, F, and the cross-section area S of the
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coupon, the material properties E, and v,y could be computed by applying the formulae:

F
= 4.1
Ex S X € (4.1)
€y
= .2
Vgy . (4.2)

where E; is Young’s modulus in the z direction and v, is a Poisson’s ratio.

Testing conditions

On each end of the coupons 38.1mm of length were used for gripping. The coupons were
placed vertically and the upper end was displaced upward with the lower end held stationary.
Much care was taken aligning the longitudinal axis of the coupons with the loading axis. The
magnitude of the applied load and the strain for each strain gage were sent to a computer
in terms of voltages. A FORTRAN program was written to convert these raw voltage data

to MPa for the stress and to pe for the strains.

Presentation of the results

For each of the straight-sided coupons two analyses were performed, one by varying the load
from 0 to 1000N, and the other by varying the load from 0 to 50 000N. Young’s modulus

E. and Poisson’s ratio v;, were computed for each of these load ranges and compared.

Results obtained from the coupon with straight fibers

The results obtained for the coupon using straight fibers are shown in the upper two figures

of figure 4.5. Young’s modulus could be approximated by computing the slope of the relation
0z = f(€z) & 0, = Ep X €. (4.3)
In the same way, v, was equal to the slope of the relation

€, = f€z) & €y = —Vgy X €5 (4.4)
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Figure 4.4: Geometry for elastic property characterization coupons
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Table 4.1: Results from elastic property characterization testing of the straight fiber coupon

0-10000N | 0-50000N
E,(GPa) | 88.7 90.6
Vey 0.318 0.319

The mathematical expressions of these two relations have been defined by a linear curve
fitting. The results are presented in table 4.1. The curve fitting precision factor was very
high and almost equal to 100%. Values of the engineering constants are the same for the
two load ranges within a 2% tolerance. The data provided by each gage of the back-to-back
pair of strain gages measuring the same strain were very close to each other. As shown in
figure 4.5 for the load range 0-50 000N, the strain data for each gage of the back-to-back
pairs almost coincided. Thus there was no bending in the coupon. The average value of

two strain gages was considered for the computation of E, and v,y in table 4.1.

Determination of E,, E,, v1, and G2

Knowing FE. and v, is not sufficient to be able to compute all the elastic properties at
the ply level. Two more engineering constants, i.e., E, and Gy, are required to be able to
compute exactly E;, Es, 112, and G13. However, since there was interest in the strength of
the plates in the loading directions and since strength testing should rely on more than one
coupon, the limited amount of remnants of the failed plates were used for multiple strength
test coupons oriented in the loading direction, as shown in figure 4.2. To measure E, and
G'zy, coupons at other orientations would be required and there simply were not enough
remnants for this. Thus the ply level elastic properties were estimated using the value of
E;, vy, the ply orientation, the ply thickness, and micromechanics. Table 4.2 presents the
engineering properties of a typical graphite-reinforced composite as a function of the fiber
volume fraction. The values presented in table 4.2 were taken as a baseline for computing

the relative variation of three engineering constants with respect to the remaining one of
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Table 4.2: Variation of the material properties with respect to the fiber volume fraction for
a typical graphite-epoxy composite

composite property | fiber volume fraction

0.2 04 0.6

E, (GPa) 50.2 96.1 141.7

V1o 0.324 0.289 0.259

E, (GPa) 6.69 9.03 12.38

G12 (GPa) 2.23 297 4.05

them, i.e., for instance
Al/lg = f(AEl) AEg - f(AEl) AGlz = f(AEl) (45)

These relationships are quite close to being linear. By considering the engineering constants
for a 0.6 fiber volume fraction as a 100% basis, it was shown that decreasing E; by 10.0%
was accompanied by an increase of 1.41% for v19, and a decrease of 2.2% for the values of F,
and G13. Hence, successive values of Eq, F,, G12, and vy, along with the plate stacking
sequence and the ply thickness computed in the previous section, were used as input to a
FORTRAN program to compute E; and v;,. The quantities E, and v, were computed

using the following formulas:

_ A]l X (1 - Va:yVyz:)

4,
E. Nxh (4.6)
_ —Ayp
Vgy = AL (4.7)

with N the number of plies and h the ply thickness. The variation of E, with respect to
the fiber volume fraction is presented in figure 4.6. The elastic property characterization
tests presented previously for the coupon using the straight fiber design showed that F,
was equal to 90 GPa and v,, was equal to 0.319 (see Table 4.1). For these values of E; and

Vzy, the micromechanics scheme gave the results presented in table 4.3.
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Table 4.3: Estimates of the elastic properties at the ply level

E; (GPa) | 130.0
E, (GPa) | 10.66

12 0.263
G12 (GPa) 3.88
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Results obtained from the coupon with curvilinear fibers

The interpretation of the results obtained by testing the C coupon was more complex
because of the presence of plies containing curvilinear fibers. As stated previously, the
coupons were cut as close as possible to the glass-epoxy doublers, so the curvilinear angles
were as close to zero as possible. The curvilinear path within the curvilinear ply is shown
in fig 4.7. This path, of course, is an approximation. The fiber angle actually varied
continuously along the length of the specimen. However, for the finite element analysis, as
discussed in chapter 3, fiber angles were assumed to be constant within an element. The
fiber angles shown in the coupon in figure 4.7 are consistent with the fiber angles in the finite
elements in figure 3.4 which span the coupon. This variation in the fiber orientation within a
coupon induced an important variation of the global material properties within the coupon.
Assuming that the plates using the curvilinear fibers and the plates using the straight fibers
were manufactured with the same material, the engineering constants evaluated previously
should be valid for either plate. By considering an orientation variation from 3° to 20.5°,
as illustrated in figure 4.7, the engineering constaﬁt E; could be expected to vary from
88.7 GPa to 56.4 GPa within the coupon.

A straight-sided coupon cut from the panel using a curvilinear fiber format was tested
following the same testing conditions as used for the straight fiber format coupon. Back-to-
back pairs of strain gages were placed at the midlength of the coupon. The results from that
testing are shown in the upper portion of figure 4.13. The experimental value of E, = 57.3
GPa was obtained by curve fitting load vs. strain data from this coupon.

To further study the issues associated with the curvilinear fiber coupon, a finite element
analysis of the straightside curvilinear fiber coupon was developed. The displacements of
the nodes representing the bottom part of the coupon which was held fixed in the grip were
restrained in the 3 directions, i.e., z, y, and 2. A constraint equation imposed a constant
displacement in the loading direction for the nodes representing the part of the coupon

held in the upper grip. The longitudinal strain field of the model is presented in figure 4.8
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for a load of 100 N. Considering the cross section of the coupon, this load corresponds
to a stress of 0.672 MPa. The strain at the strain gage location computed by the finite
element analysis was equal to 9.14ue. By applying Hooke’s law, Young modulus at the
strain gage location obtained by the finite element analysis was 73 GPa. This value was 20
higher than the value 57.3 GPa found experimentally. This difference could have resulted
from approximations made regarding the finite element analysis, or it could be that the
curvilinear fiber material was different than the straight fiber material. The point was not
investigated further and it was assumed that the elastic properties of the curvilinear fiber

plates were the same as the elastic properties of the straightline fiber plates.

4.3 Strength Measurements

Testing strengths is not as simple as testing for elastic properties. The geometry of the
coupon strongly influences the results. The strength coupons were again cut as close as
possible to the glass-epoxy doublers. Hence, the coupons from the panel using the curvilin-
ear fibers and the ones from its straight fiber counterpart should behaved similarly. This
section describes the coupons used for the strengths measurements, the strength measure-

ment results, and an analysis of the results.

4.3.1 Coupon Geometry

Strength property measurements in structural materials can be characterized in terms of
three regions in the coupon: 1. the gripping region, 2. the central gage region, 3. the
transition region between the gripping and the gage region. The coupon geometry has a
significant influence on the quality of the tests results. To neglect one of these three regions
in the coupon design could lead to misleading results. The first part of this section describes

the different coupon designs presented in the literature [13, 14, 15].
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Figure 4.8: Predicted longitudinal strain field in the straight-sided curvilinear fiber coupon

during tensile testing
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Description of the coupons currently used in the industry

Three popular coupon designs are presented in figure 4.9. These are described below.

The ASTM D638 (”Dogbone”) coupon

According to [13], the dogbone coupon, figure 4.9.a, does not provide a satisfactory tension
coupon for fiber-dominated materials. The stress distribution is uniform in the gage sec-
tion but important stress concentrations appear in the transition region. As a result, the
strengths of the material are highly underestimated using the dogbone coupon. The analysis
presented in [15] judges this coupon unsatisfactory for both unidirectional and laminated

composites.

The straight-sided coupons

Results of a survey presented in [13] indicates that straight-sided coupon with bonded
doublers, figure 4.9.b, embraced under ASTM test Method D3039, provides test results
generally considered acceptable. However the stress field near the tab termination is complex
and includes stress concentrations which can sometimes lead to questionable results. A
straight-sided coupon was not used for the strength tests here mainly because of the inability

to know where along the length failure would occur.

Linear tapered “bowtie” coupon

The bowtie shape, figure 4.9.c, was designed to solve the stress concentration and doublers
problems. Reference [15] provided very encouraging results for this design. The failure
mode is consistently in the gage area and the results are close to the computed strengths of
the material. Its main disadvantage is its length. The length required is large. A coupon

of this size could not be cut from the plate remnants.
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Streamline coupon

The streamline coupon is theoretically free from stress concentration. It was designed by
considering fluid mechanics concepts. Conventional machining techniques cannot be used
to cut a coupon with a streamline shape.

Either because of complexity or lack of sufficient material, none of the coupon designs
currently used by the testing community were suitable for the present study. Neverthe-
less the “bowtie” coupon was taken as baseline to create the design used in the present
study. A finite element analysis of the specific design was conducted to determine the stress

distribution and estimate the stress concentration factor in the gage area.

4.4 Design of coupon used in present study

According to [13], the ideal strength coupon should provide a large effective loaded area in
the grip region to compensate for stress concentrations caused by the gripping arrangement.
It should also allow the stresses in the gage region to approach a uniform condition of high
stress to ensure that failure takes place in that region. The bowtie coupon best fits these
criteria and thus served as a reference to design the coupon used.

The coupon design is presented in figure 4.10. As stated earlier, its dimension were
limited by the size of the region of the remnants from which to cut coupons. The end
regions of the coupon were wider to make gripping easier. The width of the coupon was
minimum at midlength. A pair of back-to-back longitudinal strain gages were bonded at
this location. The reduction of the width of the coupon induced a stress concentration and
insured failure might occur at this location. The strain gages were used to measure load vs.

strain.
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(a) "Dogbone" Specimen
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(b) Straight Sided Coupon
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(c) "Bowtie" Specimen
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Figure 4.9: Coupons currently used in the industry
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Figure 4.10: Geometry for strength measurement coupons
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4.5 Coupons with straight fibers

The testing conditions for strength measurements were the same as the ones used for the
elastic property characterization tests. A length of 38.1 mm was used on each end of the

specimens to clamp the coupon between steel grips.

4.5.1 Finite-Element analysis - strain concentration factor

A finite element analysis of the strength testing was used to estimate the stress concentration
factor due to the reduction in width. The resulting predicted strain distribution in the load
direction for a load of 100N is shown in figure 4.11. As foreseen, a strain concentration
appeared in the minimum width area. During the test, the strain gages measured the strain
at midlength, at the intersection of the two axes of symmetry. A strain concentration factor
was computed to predict a actual failure strain for the material. For the 100 N load, the
highest strain in the minimum width location was ¢ = 11.9ue. It occurred at the edge of
the coupon. For the same load, the strain at the midwidth location but in the center of the
coupon away from the edge was 9.45u¢. This translates into a strain concentration factor

of 1.26.

4.5.2 Experiments

For strength testing, four coupons, denoted as S1, S2, S3 and S4, were cut from the panel
containing the straight fibers. The four coupons were loaded to failure. The raw results
to voltages were converted in MPa for the stresses and to ue for the strains. The results
are presented in the lower two-thirds of figure 4.5. In each subfigure in figure 4.5, three
curves are plotted for each coupon, two represent the results provided by each of the two
back-to-back gages, and the third one is an average of the two gages. In general, there was
good agreement between the two back-to-back strain gages. Table 4.4 summarizes all the
results. The strain ¢, is the strain at the minimum width location away from the edge,

and €, is the strain concentration factor (1.26) times this strain. The scatter of the final
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Figure 4.11: Strain in the loading direction in the straight fiber strength coupons
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Table 4.4: Straight fiber coupons: Results from the strength measurements

Coupon | Failure load F Cross-section Final stress | Failure Strain | Failure strain
(N) area at the gage % ¢; for for
location, S MPa coupon material
(mm?) (ne) em = Jes (1)
S1 92 050 114.4 804.6 8175 10 300.5
S2 100 500 117.6 854.6 8 175 10 300.5
S3 87 820 108.2 811.64 8 205 10 338.3
S4 106 600 117.6 906.5 9 230 11 629.8
Average 96 742.5 114.45 845.28 8 446.0 10 642.0
Scatter 19% 8.21% 129 12.5% 12.1%

f: strain factor

stress and the failure strain is 12%. This is reasonable for strength measurements. The
failure strain computed from the average over the four coupons was equal to 10 642pu¢. It is
interesting to correlate the experimental results with the finite element analysis. According
to the finite element analysis, the strain field in the coupon reached a strain of 10 642u¢ in

the minimum area region for a load equal to

€m

10 642pue
P L

X 50N = 89 362N (4.8)

with €sc,, being the highest strain obtained from the finite element analysis (see figure 4.11).
This failure load agrees within a 7% tolerance with the failure load determined experimen-
tally, i.e., 96 742.5 N (see Table 4.4). The agreement between the experimental results and
the results provided by the finite element analysis gives credit to the value of the engineering

constants computed and ply thickness measurements investigated in the previous section.
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Figure 4.12: Failure location in strength coupons
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4.5.3 Failure location

The upper portion of figure 4.12 shows the failure location for the four straight fiber strength
measurement coupons. According to the finite element analysis, the coupons should have
failed at the cross section with the minimum area. The results presented in figure 4.12 are
very satisfactory. Coupons S3 and S4 failed at the cross section. In coupons S1 and 52 the
failure was initiated at one side of the coupon and then propagated across the coupon near

the minimum area.

4.6 Coupons with curvilinear fibers

4.6.1 Results

The testing conditions for the strength coupons with the curvilinear fibers were the same
as the ones used for the strength coupons with straight fibers. Four coupons, denoted as
C1, C2, C3 and C4, were loaded to failure. The resulting relations between strain and
average stress are presented in the lower portion of figure 4.13 for the four coupons. Again,
these figures represent the results provided by each of the two back-to-back strain gages,
and their average. As with the S coupons in figure 4.5, the figures demonstrate the lack of
bending for coupons C1-C3. Coupon C4 experienced some bending. The values obtained
for the peak loads and the strains of the tapered coupons just before failure are summarized
in table 4.5.

Compared to the results obtained for the S coupons, the strains at failure were not as
consistent. Also, the failure load was much lower for the coupons with curvilinear fiber
plies. This difference in the load carrying capacity can be explained by considering the
stacking sequence of the laminates. The stacking sequence of the curvilinear panel was
(£45/C32/0/90/C3);, where the C denotes layers with the curvilinear trajectories. The fiber
orientation within a coupon was shown in figure 4.7. None of the fibers in the curvilinear

plies traversed the coupon from one gripped end to the other. Only two 0° plies offered
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Table 4.5: Curvilinear fiber coupons: Results from the strength measurements

Coupon | Failure load F Cross section Final stress | Failure Strain

(N) area at gage £ ¢s for
location, S (mm?) MPa coupon (ue€)
C1 49 770 118.5 420 7 260
C2 42 300 109.9 384.9 6 492
C3 54 400 111.9 486.1 8179
C4 59 170 118.5 499.3 9 830
Average 51 410 114.7 447.6 7 940
Scatter 32% 7.5% 25% 42,

full fiber resistance in the loading direction. On the other hand, the stacking sequence of
the straight fiber panel (£45/02/0/90/02), included 10 0° plies in the loading direction.
This is five times more than the number of 0° plies in the sequence with the curvilinear
plies. So, assuming that the volume fraction was the same for the two fiber formats, the
number of fibers passing from one grip to the other was much more for the S coupons. This
can explain the difference in the failure load between the S and C coupons. Nevertheless,
assuming that the two plates were made of the same material, the ultimate failure strain
in the fiber direction should have been the same. A failure analysis would assume laminate
failure when the first fiber breakage occurs in any ply. The 0° fibers, being parallel to the

loading direction, would be the first to break.

4.6.2 Finite element analysis

To study the strains in the 0° plys, a finite element analysis was developed to determine
the strain field in the C coupons. The fiber angle in the curvilinear plies was considered to
be constant within an element and the fiber angles for the curvilinear plies for the coupon
were presented in figure 4.7. A 100 N load was applied to one end of the coupon while
the other end was held fixed. The strain in the loading direction is shown in figure 4.14.

The failure location was not in the notched area, rather it occurred where the fiber angle
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Figure 4.14: Strain in the loading direction of the curvilinear fiber strength coupons
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in the curvilinear ply was the highest (i.e., 20.5°, see figure 4.7). For a 100 N load, the
maximum strain at this location was equal to 17.74ue. According to the tests on the S
coupons, the maximum strain in the 0° plies just before failure was 10 642u¢ (see table 4.4).
Because of the linearity of the finite element analysis, the load for this strain level for the
C coupon was equal to 59 988 N. This failure load computed by the finite element analysis
was compared with the values found experimentally in table 4.5. There was a 14, difference
between the finite element predictions and the average failure load found experimentally.
This difference can find various interpretations. First, the elastic properties of the panels
using the curvilinear fibers may have been softer than the elastic properties used for the
panels manufactured with straight fibers. Here they are assumed to be the same. A second
approach is to say that a 14}, difference was reasonable for strength measurements. As
shown in table 4.5, the scatter of the final load was 32%. This percentage is somewhat usual
for strength measurements. The third explanation, which is the most plausible, is that
the 10 0° plies in the straight fiber coupons didn’t all fail exactly at the same time. The
laminate was capable of bearing load after some of these plies fail. Experimentally, the first
failures for the S coupons could be heard when the laminate reached approximately 75% of
the failure load. On the other hand, for the C coupons, having only two 0° plies, the final

failure coupon followed almost immediately the first audible report from the coupon.

4.6.3 Failure location

The failure locations as they appeared on the broken coupons are sketched in figure 4.12.
Comparing figure 4.12 and the finite element predictions illustrated in figure 4.14, there was

almost perfect agreement as regards failure location.

4.7 Closure

With a reasonable estimate of the elastic and strength properties, attention turned to the

prediction of the response of the straight and curvilinear fiber tensile and compression
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plates. That is the subject of the next several chapters.
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Chapter 5

TENSION TESTS

This chapter presents the finite element model used to analyze the tension tests. The finite
element mesh was shown in figure 3.1. Issues like the boundary conditions, loading, and
the type of finite elements chosen are addressed. The results obtained by the finite element
analysis are systematically compared with the experimental results. The ultimate failure
load was computed with FORTRAN programs using various failure criteria. The fiber path
in the curvilinear plies was optimized with an improved scheme based on earlier work of

Hyer and Charette [1-4] and Charette [5].

5.1 The Finite Element Approach

5.1.1 Preprocessing
Boundary Conditions

The boundary conditions were the result of two characteristics of the model: the choice
of an inplane finite element and the two axes of symmetry of the plate. The analysis
consisted of an inplane problem, so the third degree of freedom (i.e., the displacement
in the z direction) was not active in the model and could not be restrained. Second,

modeling a quarter of the plate was sufficient because of symmetries involving geometry,
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loading, material properties, and boundary conditions with respect to the = and y axes. As
shown in figure 5.1, the symmetry of the plate was represented by two classic roller type
boundary condition. Formally, the boundary conditions applied along AA’ and BB’ can be

sumimarized as :

u = 0 along AA’
v = 0 along BB’,

where 4 and v represent the displacement field in the z and y directions.

Loading

Steel grips, with serated surfaces, held each end of the tensile plates by bolting through the
thickness of the specimen. The serated surface of the grips bore against the glass-epoxy
doublers used in the bolting region. The glass-epoxy doublers were shown in figure 2.9.
These loading features were complex and difficult to model. The glass-epoxy doublers and
the end of the plate were compressed between the steel grips, and pulled by concentrated
loads at the location of the bolts. The serated surface of the grip also exerted a force on
the plates, hopefully greater than the concentrated loads. As seen earlier, the mesh was
arranged so that a node was situated at the exact location of each bolt. In the first loading
case of the finite element analyses, the model was loaded by concentrated loads applied
at these nodes (see figure 3.1). In the second loading case, a uniform load was applied
downward along bottom edge of the plate (see figures 3.1 and 5.1). A uniform load would
be realistic if the steel grips and the doublers were perfectly coupled through the serated
surface. In this case, there would be no stress concentration due to the bolts.

All the model characteristics discussed so far were defined in PATRAN. This preliminary
PATRAN model was converted into a preliminary ABAQUS input file through the PATABA

translator.
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5.2 Processing

A whole section devoted to composites materials has been developed by ABAQUS several
years ago. Through the keywords COMPOSITES and ORIENTATION, the material char-
acteristics of the model can be defined at the ply level within the *MATERIAL card. This
card has to refer to elements. The first finite element analyses were made with this arrange-
ment. The results revealed a mesh instability. Instabilities arose because of shortcomings in
the element formulation process, such as the use of low-order Gauss quadrature rules. All
the shell elements in the ABAQUS element library are defined with a reduced integration
and are rather unduly susceptible to inplane load patterns. For the current configuration,
computed displacement were excessive [16] . Therefore, using shell elements combined with
the COMPOSITE option could not be considered for this problem. The analysis of the plate
using the curvilinear fibers could not be proceed in ABAQUS unless the ANISOTROPIC
option was used to define the material properties. This option required the input of an
eight by eight stiffness matrix for each element of the mesh. This alternative was judged to
be too laborious and thus FEM2D was used.

No preprocessor was available for FEM2D. Hence, the preprocessing was created using
PATRAN and PATABA. A program in FORTRAN was created to translate the ABAQUS
input file into a file readable by FEM2D. The nodal coordinates, boundary conditions,
and connectivity matrix were read from the ABAQUS input file, reformatted, and then
placed in the appropriate order in a file for FEM2D. The material characteristics for the
composite layup were defined by providing the [A] matrix for each element. The [A] matrix
is sufficient to characterize composite material behavior due to inplane loads. Ordinarily,
the resultant forces and moments are written in terms of the middle surface extensional

strains and curvatures as

= X . (5.1)



CHAPTER 5. TENSION TESTS 63

In the current case, there are no moments. Moreover, the symmetry of the stacking sequence

implies that the matrix [B] is equal to zero. Hence the former relation can be reduced to

(V) = [A] x (). (5.2)

The program written to create the input file for FEM2D computed for each element the [A]
matrix according to the element material properties, stacking sequence, and curvilinear fiber
trajectories. The [A] matrices computed in the gripping area took into consideration the
influence of the glass-epoxy doublers. The input file contained all the information necessary
to analyze the problem. The results provided by the program (i.e., displacements, stresses,
strains...) were computed at the integration points of the elements. Several post-processing
programs were written. One program transformed the results into a neutral file readable
by PATRAN. All the results computed by FEM2D could be visualized, e.g. the deformed
shape or the stress resultants. A second post-processor included several failure criteria to
predict the ultimate load of the plates.

For the straight fiber plate the lay-up was a balanced (+£45/03/90/02), arrangement.
ABAQUS could be used and the option LAMINATE was used to define the material prop-
erties, i.e., Bz, Ey, vy, Gy, Gy;, and G, in the global coordinate system at the ply level.
For a balanced laminate, the terms A and A,¢ are equal to zero so the A matrix could

fully be defined just by considering E,, Ey, vy, Ggy. That is,

_ EcxNxh _ EyxNxh_
An = 1—vzy Xvyz Az = 1-vey Xvys (5 3)

Arg = 222 E fgq = N X h X Gay.
The values £, E,, vy and Gy, in the global coordinate system were calculated using a
standard approach based on classical laminated theory [17].

Two sets of material properties had to be defined. The presence of the glass-epoxy

doublers in the gripping area at the ends of the plate had to be taken in consideration.
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Hence two different *SOLID SECTION inputs (see table 5.1 for the keywords meaning)
were defined to differentiate the gripping area from the rest of the plate.

In ABAQUS, the output results could either be presented for each node, each element, or
at each integration points. The PATABA interface gave the user the flexibility to choose the
response quantities to be calculated. Practically, almost all the quantities were computed at
the integration points and then extrapolated to the requested locations. The type of results
(i.e., displacement, strains, stresses...) requested by the user in the interface PATABA
appeared at the bottom of the input file. All the results were translated by a second
interface called ABAPAT in a file readable by PATRAN to visualize the results. It includes
most of the keywords described in the table 5.1.

5.2.1 Material Properties

The material properties used in the analysis were experimentally determined and discussed
in Chapter 4. Specifically, the ply properties used were given in Table 4.3. A ply thickness

was taken to be 0.25mm. A tensile failure strain in the fiber direction of 10 642u¢ was used.

5.2.2 Validity of the finite element programs

Many checks were conducted to confirm the validity of the finite element results. The model
using straight fibers was investigated using both ABAQUS and FEM2D. For the ABAQUS
analysis, an 8-node thin solid element was used. The results provided by ABAQUS and
FEM2D were compared. Stresses, strains, and displacements were compared at various
locations of the plate and always showed a perfect agreement between the two programs.
As an example, figure 5.2 shows the strains computed along the bottom edge (see figure 5.1)

of the plate for a specific load level for the case of a uniform loading.
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Table 5.1: ABAQUS keyword definition for tension test

65

KEYWORDS

*NODE
*NSET
*EQUATION
*ELEMENT, TYPE=CPS8,ELSET=PID0

*SOLID SECTION,ELSET=PIDO,MAT=1

*MATERIAL,NAME=1
*ELASTIC, TYPE=LAMINA

*STATIC

*CLOAD

*BOUNDARY

*NODE FILE, *NODE PRINT

Nodal coordinates definition
Node set creation
Multipoint constraint

Element set creation, Element type,
Identification

Element property assignment, Element set
named PIDQ, Identification of the material
used for this element set

Material definition, Name of the material

Elastic material properties, type of the
material
Implies a linear analysis

Loading definition
Definition of the boundary conditions
specify calculated quantities
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5.3 Strain gages

As was seen in figure 2.9, back-to-back strain gages at different locations monitored the
response of the plate during the tensile test. The strain response indicated that the loading
was symmetric across the width of the plate, and along the top and bottom edges. The
strains measured by the gages at various location on the two specimens are compared in
figure 5.3 and in figure 5.4 with the finite element predictions. Figure 5.3 compares the
experimental results with the results obtained by the finite element analysis considering a
uniform loading case. Figure 5.4 compares the experimental results with the results obtained

by the finite element analysis considering concentrated loads.

5.3.1 Summary of experimental results

During the experiments, until failure, the strains at location ‘m’, ‘c’, ‘¢’, ‘g’, and ‘i’ were

practically the same for the curvilinear fiber specimen as they were for the straight fiber
specimen. At locations ‘a’ and ‘o’ the curvilinear fiber specimen was more highly strained
than the straight fiber specimen. The strain field between ‘a’ and ‘m’ seemed to be more
uniform for the plate using straight fibers than for the plate using the curvilinear fibers. At
the location ‘k’, where failure should occur, the strains for the curvilinear specimen were

slightly higher in the linear range.

5.3.2 Analysis of figures 5.3 and 5.4

General comments

By studying figures 5.3 and 5.4, it is seen that the boundary conditions in the gripping area
didn’t strongly influence the strain fields at the gage locations. For the finite element anal-
yses, the strains predicted at the net section were the same considering either concentrated
loads or a uniform load. For the straight fiber plate, the finite element analysis and the

L7‘7‘

experimental data coincided almost perfectly at the locations ‘a g’, and ‘i
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Figure 5.3: Results obtained at strain gage locations considering a uniform load
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Upper part of the plate: gages ‘m’, ‘o’, ‘a’, and ‘¢’

For the upper part of the plate, the results obtained by considering a uniform load seemed
to match somewhat better the experimental data. For both the loading cases, the strains
obtained from the straight fiber plate at location ‘c’ and ‘o’ were less than the finite ele-
ment predictions, while they corresponded fairly well for the curvilinear fiber plate. For
the straight fiber plate there was a maximum of 43} difference in the slope between the
experimental data and the finite element predictions at location ‘o’ with concentrated loads.
At location ‘m’ the experimental data corresponded fairly well for the uniform load case.
On the other hand, for concentrated loads, the experimental strains were higher than the
finite element predictions at location ‘m’, i.e., there was a 21% difference in slope for the
straight fiber plate and a 35% difference in slope for the curvilinear fiber plate. At the
location ‘a’, for both loading cases the finite element analyses agreed almost perfectly with
the experimental data for the straight fiber plate, and are fairly close for the curvilinear

plate.

Net-section: gages ‘e’, ‘g’, ‘i’ and ‘k’

In general, the strains measured during testing and the strains computed with the finite
element analyses agreed within a 3% tolerance at the net section for gages ‘e’, ‘g’, and ‘i’.
On the other hand there was a noticeable difference between the finite element predictions
and the experimental results at location ‘k’. Location ‘k’ was at the hole edge and slight

misalignment of the gages, or imperfections in the edge of the laminate from cutting the

hole, could impact gage response.

Closure

In general, the strains measured during the testing agreed reasonably well with the strains
computed from the finite element analyses. The loading mode (concentrated loads or uni-

form load) did not seem to have an important effect on the strain field.
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5.4 Failure analysis of tensile specimens

The straight fiber plate failed at a load of 0.836 MN and the curvilirear fiber plate failed at
0.609 MN. This represents a 37% difference. The failed specimens are shown in ref. [7] and
in figure 4.1. The plate using the curvilinear fiber format failed at the net section. During
the loading, very sharp noises emanated from this specimen. The straight fiber plate also
failed at the net section, but only on the right side. On the left side, there was failure at the
doublers or within the doublers. The goal of this section is to study the failure modes of
the two plates based on the finite element results. These failure modes are compared with
the experimental failure modes.

Many failure criteria for fiber-reinforced composites have been developed within the last
ten years. The most frequently used ones are the maximum stress, maximum strain, Tsai-
Hill, Tsai-Wu, and Hashin-Rotem criteria. All these criteria use quantities computed at the
ply level.

The program FEM2D computed all the strains at the integration points in the global
coordinate system. However, only the value computed at the fifth integration point, the
center one, was considered for this failure analysis. A FORTRAN program was developed
to estimate the ultimate failure load of the plates manufactured by Cincinnati Milacron.
This program had three main objectives: first, to compute the stresses at the ply level;
second, to apply different failure criteria, and finally; to classify the failures by ranking the

load level required to produce them.

5.4.1 Stress Computation

The middle surface strains were obtained from FEM2D. Because the middle surface cur-
vatures were equal to zero for the test in tension, the middle surface strains at the plate
level were equal to the strains in each ply in the global coordinate system. Let o, oy,
Try, €z, €y, and Yy be the values of the stress and strain fields within an element. The

quantities oy, 09, T12, €1, €2, and 12 denote the stresses and strains at the ply level in the
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principal material coordinate system. The ply angle is denoted by . The transformation
matrix is T and R is an intermediate matrix to pass from the tensor shear strain to the
engineering shear strain. In order to compute the stresses or the strains in the principal

material coordinate system, the following transformations have to be carried out:

cos2 @ sin? @ —2sinfcosé
[ T ] = sin? @ cos2 @ 2sin 6 cos (5.4)
sin@cosf —sinfcos@® cos?@ —sin?6
1 00
[ R ] =101 0 (5.5)
0 0 2
€x ]. 0 0 ] ex
& |=10 1 0 |X]| g (5.6)
€ay 00 05 Yoy
[ e ) (e )
€2 = [ T ] X €y (5.7)
\ iz ) \ v )
/ €1 \ { €1 \
€9 = [ R ] X €2 (58)
\ 112 ) \ €12 /
o1 Qu Q2 0 €
oy | = | Q2 Q22 0 | X]| € | (5.9)
T12 0 0 Qes Y12

where Q denotes the reduced stiffness matrix.
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5.4.2 TFailure criteria

The usual failure criteria either assume no stress interaction (maximum stress, maximum
strain) or full stress interaction (Tsai-Hill, Tsai-Wu, Hashin-Rotem) [18, 19]. The following
section presents briefly the different failure criteria used in this study. The criteria selected
were the maximum stress and the maximum strain criteria from the no interaction criteria
group, and the Tsai-Hill criterion from the interactive criteria group. According to the
literature, they are the most generalized and representative from their group.

As was seen in Chapter 4, the mechanical characteristics of the material used to man-
ufacture the plates were not well known. All the failure criteria defined in this section use
strengths at the ply level, i.e., in the fiber and matrix directions. In the present case, the
strengths were defined considering values for usual graphite-epoxy material and extrapolat-
ing these data in the context of the experimental results obtained in Chapter 4. Because
of the lack of precise data for the strengths, the goal of the following paragraphs is not to
precisely predict the failure loads of the specimens, but rather to compare the performances
in tension of the curvilinear plate with the performances in tension of its straight fiber
counterpart. All the failure loads are compared to the load for which the first fiber failure
occurs in the straight fiber plate. This investigation was achieved by considering both a
uniform load at the end of the plate and then considering concentrated loads. No important
difference between the two cases were detected. Hence, only the results computed with a

uniform load will be presented.

Maximum stress criterion

According to the maximum stress criterion, failure occurred when the stresses in the prin-
cipal material directions reached their individual failure levels. That is, when either

% = 1 = fiber failure

or

$# = 1 = matrix failure
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or

T = 1 = shear failure.

The tensile and compressive strengths, X, Y, and S, have to be chosen based on the sign of
the local stresses. It is usual to consider that the structure failed at the first fiber failure.
Call F; the load when the first fiber failure occurred in the straight fiber plate and express
other results in terms of F1. The failure scenario based on the maximum stress criterion is

shown in Tables 5.2-5.5.

Table 5.2: Fiber failure for the straight fiber plate: maximum stress criterion

Rank Location Ply | Failure
(see fig. 5.5) load
1 16 0° 31
2 13 —45° | 1.076 K
3 14 —45° | 1.097 F}

Table 5.3: Matrix failure for the straight fiber plate: maximum stress criterion

Rank Location Ply | Failure
(see fig. 5.5) load

1 16 90° | 0.433

2 15 90° | 0.472 I

3 14 0° | 0.480 F;

Table 5.4: Fiber failure for the curvilinear fiber plate: maximum stress criterion

Rank Location Ply | Failure
(see fig. 5.5) load

1 16 0° | 1.055 Fy

2 16 C | 1.055 I

3 15 C |1.143 14
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Table 5.5: Matrix failure for the curvilinear fiber plate: maximum stress criterion

Rank Location Ply | Failure
(see fig. 5.5) load

1 16 90° | 0.457 Fy

2 15 90° | 0.503 Fy

3 14 0° | 0.563 Fy

Maximum strain criterion

According to the maximum strain criterion, failure occurred when the strains in the principal
material directions reached their individual failure levels. That is, when either

% = 1 = fiber failure

or

# = 1 = matrix failure

or

L2 = 1 = shear failure.

Tensile or compressive maximum strains, X, Y, and S, have to be chosen on the basis of
the sign of the local strains. Call F5 the load when the first fiber failure occurred in the
straight fiber plate and express other results in terms of F5. The failure scenario based on

the maximum strain criterion is shown in Tables 5.6-5.9.

Table 5.6: Fiber failure for the straight fiber plate: maximum strain criterion

Rank Location Ply | Failure

(see fig. 5.5) load
1 16 0° F
2 13 —45° | 1.069 F3

3 14 —45° | 1.095 F,
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Table 5.7: Matrix failure for the straight fiber plate: maximum strain criterion

Rank Location Ply | Failure
(see fig. 5.5) load

1 16 90° | 0.560 F»

13 0° | 0.618 F,

3 14 0° | 0.636 F,

Table 5.8: Fiber failure for the curvilinear fiber plate: maximum strain criterion

Rank Location Ply | Failure
(see fig. 5.5) load

1 16 0° | 1.051F;

2 16 C | 1.051 F»

3 15 C | 1.076 F;

Discussion

As can be seen by an examination of Tables 5.2-5.9, in general, application of the maximum
stress and maximum strain criteria gave similar results. In both cases, the first fiber breakage
was predicted to occur at the net section in the 0°, and the 0° and curvilinear plies for plates
with straight and curvilinear fibers, respectively. The ranking of the failures was the same
for both the failure criteria. For the straight fiber plate, first fiber failure was predicted to
occur in element 16 at the net section. It was followed by a failure in the —45° plies in
elements 13 and 14. For the curvilinear fiber plate, the first fiber failure appeared at the
element 16 in the 0° and C plies. This was followed by a fiber failure in the element directly
next to it, element 15, in the same plies.

For both the straight and curvilinear fiber plates, matrix failure initiated at about half
the failure load and at the net section, i.e., for the elements 16 and 15 in the 90° plies, and
for elements 14 and 13 in the —45° plies.

By considering that failure occurs at the first fiber breakage, both the maximum stress
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Table 5.9: Matrix failure for the curvilinear fiber plate: maximum strain criterion

Rank Location Ply | Failure
(see fig. 5.5) load

1 16 90° | 0.601 F,

2 15 90° | 0.680 F»

3 14 0° | 0.691 F,

and the maximum strain criteria showed that the failure load of the curvilinear fiber plate
should have been 5 to 6% higher than the failure load of its straight fiber counterpart. The

predictions contradicted the experimental results presented in [7].

Tsai-Hill criterion

The various interactive criteria predict failure should have occurred when a polynomial
function involving stresses (or strains) and strengths (or maximum strains) was satisfied [17].
The Tsai-Hill criterion can be derived from considering the von Mises criterion for metals.

The Tsai-Hill criterion polynomial is as follows:

@G @@ @ e

Because of the interaction between X, Y, S, the Tsai-Hill criteria can give results close to
experiments. Nevertheless, for several layups, it was shown [18] that the criterion not only
can underestimate the ultimate laminate failure, but it may not correctly predict the trend
of the data. Tables 5.10 and 5.11 present the results from the failure analysis using the
Tsai-Hill criterion. The failure load for the straight fiber is case denoted as F. All other

failure results are interpreted in terms of F.
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Table 5.10: Failure of the straight fiber plate using Tsai-Hill failure criterion

Rank Location Ply | Failure
(see fig. 5.5) load
1 14 0° F
2 13 0° [1.010F
3 17 0° [ 1.105 F

Table 5.11: Failure of the curvilinear fiber plate using Tsai-Hill failure criterion

Rank Location Ply | Failure
(see fig. 5.5) load

1 14 0° |1.130 F

13 C |1138F

3 17 C [1.201F

Discussion

As can be seen by inspection of Tables 5.10 and 5.11, the failure locations were predicted to
be the same for both the curvilinear and the straight fiber plates. Both the plates failed at
the element 14 in the 0° plies. Nevertheless, the failure load of the curvilinear plate was 13%
higher than the failure load of the straight fiber plate. The difference between the Tsai-Hill
criterion predictions and the experimental results are very important. Possible explanations

are provided in the next sections.

5.5 Investigation into failure resulting from possible manu-

facturing features

The failure analysis presented in the previous section predicted that the failure load for the
curvilinear fiber plate should have been slightly higher than the failure load of its straight

fiber counterpart. According to [7], the curvilinear plate failed at a load 37% lower than the
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failure load of the straight fiber plate. This difference motivated an investigation regarding
possible geometric and /or material characteristics in some regions of the curvilinear plate.

Cincinnati Milacron used a special-purpose path generation program to steer the tows
in curvilinear trajectories. Limitations of this special-purpose program allowed only courses
that extended from one end of the plate to the other to be laid by machine. The curvilinear
courses that did not extend the entire length of the plate were filled in by hand. Laying
down the fibers by hand may have affected the material characteristics the curvilinear plies.
This is discussed below.

Four different test cases were analyzed by either softening or stiffening the material
in the region laid down by hand. The material properties were changed for the elements
highlighted in figs. 5.6 and 5.7. The remaining part of the plate retained the material
properties defined in Chapter 4, and only the curvilinear plies were affected by these changes.
In all four cases, a uniform load was considered at the end of the plate. This assumption
seemed to be reasonable in light of the results provided by the strain gages in section 5.3.
The failure loads for these modified curvilinear fiber plates were compared to the failure

loads for the baseline curvilinear fiber plate.

Case 1: Results obtained by stiffening the material

The material laid down by hand might have had a fiber volume fraction higher than the
material laid down using the fiber placement machine. To represent this, Young’s modulus in
the fiber direction of F; = 180G Pa was assigned to the elements highlighted in figure 5.6(a).
The other engineering constants in the highlighted area, F;, v12 and G2, were not changed.
According to the maximum stress and maximum strain criteria, this design would have failed
at element 16 (see figure 5.5) in the 0° and C plies. The fiber angle in the C plies was equal
to 0° for this element. The failure load for case 1 was only 2% lower than the failure load of
the straight fiber plate and 7% lower than the failure load of the curvilinear plate with no
material property changes. Thus having a stiffer material in the region laid down by hand

would not have seriously influence the failure loads.
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Figure 5.6: Possible manufacturing features: Cases 1 and 2
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Case 2: Results obtained by softening the material

An extreme case was considered by setting the Young’s modulus in the fiber direction equal
to the Young’s modulus in the matrix direction, i.e., Ey = E, for all the elements high-
lighted in figure 5.6(b). The maximum stress and maximum strain criteria both predicted
the first fiber failure to have occurred at element 14 (see figure 5.5) in the 0° plies. This
failure mode was predictable. Element 14 was the element closest to the net section in
which the material properties were changed. The fiber angle in the C plies in this element
was close to 0°. By weakening the C plies in the element, more load had to be carried by
the 0° plies. According to the maximum stress and maximum strain criteria, this design
should have failed at the same failure load as the plate using the straight fibers. Lowering
the fiber modulus in the area where material was laid down by hand decreased the strength

in tension of the curvilinear plate by 5%.

Case 3: Gap between the material laid down by hand and the material placed

with the fiber placement machine

This third case studies the effect of a bad transition between the curvilinear plies laid down
by hand and the curvilinear plies laid down with the fiber placement machine. During
manufacturing resin would possibly fill any gap between these two areas. Therefore, the
material properties of the elements highlighted in figure 5.7(c) were changed. Young’s
modulus in the fiber direction was set up equal to 12GPa. This change didn’t appreciably
influence the predicted failure load of the plate. According to the maximum stress and
maximum strain criteria, such a plate would fail exactly at the net section at element 16
in the 0° and C plies. The failure load of this design would have been slightly higher than
the predicted failure load of the straight fiber plate and 3% lower than the predicted failure

load of the baseline curvilinear fiber plate.
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Case 4: Combination of cases 3 and 1

The design presented in figure 5.7(d) was a combination of figures 5.7(a) and 5.7(c). Young’s
modulus in the fiber direction was increased in the area where material was laid down by
hand, and decreased for the elements situated at the transition between the two areas.
According to the maximum stress and maximum strain criteria, this design was predicted
to fail at the net section in the softer elements in the 0° plies. The failure load was estimated
to be 8% lower than the failure load of the straight fiber plate and 13% lower than the failure
load of the baseline curvilinear fiber plate. Thus, this last design seemed to be the most
critical. However, the 13% reduced load is a factor of three less than the observed 37

reduced load.

Closure

None of the four cases considered could reasonably be a candidate to explain the 37%
difference between the experimental failure load of the straight fiber plate and the failure

load of the curvilinear fiber plate. Other possibilities had to be sought.

5.6 Validity of the failure analysis: Another interpretation

of results

The failure analyses presented in the previous section which showed that the strengths in
tension should have been 5% to 13% higher for the curvilinear fiber specimen than the straight
fiber specimen contradicts the 37% lower value observed in the experiments. In addition, the
various possible manufacturing features did not explain the difference. The difference may
be explained by considering the experimental load vs. axial displacement characteristics for
the two specimens shown in figure 5.8. It must be noted that the displacement shown in
figure 5.8 was the motion between the upper and the lower heads of the load frame. The

order of the two curves were inverted by mistake in [7]. Actually the straight fiber specimen
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was slightly stiffer than the curvilinear fiber specimen. This remark confirm the conclusions
drawn in Chapter 3.

As can be seen in figure 5.8(a), the load vs. axial displacement relation for the curvilinear
fiber plate followed a linear path until reaching the first fiber breakage. This occurred at
a load of 0.56 MN. Final failure almost immediately followed the first fiber breakage. The
final load of the curvilinear fiber plate was estimated to be 0.609 MN in [7]. The first part of
the relation presented in figure 5.8(b) looks very much like the load vs. axial displacement
relation of the curvilinear fiber plate. It begins with a linear part until it reaches what
is probably the first fiber breakage, occurring at 0.51 MN. Contrary to what happened to
the curvilinear fiber plate, this first fiber breakage wasn’t followed immediately by a total
failure. The straight fiber plate kept on sustaining more load. Several hypotheses can be
given. First, all the 10 0° plies may not have failed at the same time at the net section.
Second, the propagation of the failure or crack may have been more difficult in the straight
fiber plate than in the curvilinear plate. More plausible, an unexpected parameter appeared
during the testing. The straight fiber plate didn’t fail in a classic failure mode. As can be
seen in figure 4.1, the straight fiber plate failed at the net section but only at the right
side. On the left side there was failure at the doublers. Thus, it may be assumed that the
boundary conditions in the gripping area changed during the testing.

By considering a first fiber breakage at a load of 0.51 MN for the straight fiber plate, the
experimental results and the failure predictions presented in section 5.4 coincide. Indeed,
with this assumption, the first fiber breakage load of the curvilinear plate was 11% higher
than the first fiber breakage load of the straight fiber plate during the testing. This difference

is close to the predictions given by maximum stress, maximum strain, and Tsai-Hill criteria.

5.7 Improved plate

Neither Hyer and Charette [1-4] nor Charette [5] studied a plate with exactly the same

geometry and stacking sequence as the plate manufactured for testing. The goal of this



CHAPTER 5. TENSION TESTS 89

section is to estimate the ultimate tension load from plates designed by using a scheme
similar to the one developed in refs. [1-5] and compare the improved design with the plates
manufactured by Cincinnati Milacron. The FORTRAN program written to compute the
fiber path was based on FEM2D but with several modifications and added subroutines.

As stated in the literature review, the basic idea developed by Hyer and Charette [1-4]
and Charette [5] was to orient the curvilinear fibers in the principal stress directions. In
the case of an isotropic material, the material properties, geometry, and the load features
determine the principal stress directions. In a laminate the principal stress directions will
vary from ply to ply. An iteration process was developed to compute the principal stresses
within the group of plies containing curvilinear fibers and to align the fiber trajectory of
the plies with the principal stress directions. The plies which used the straight fibers with
a constant fiber angle were not subject to any fiber realignment. As mentioned previously,
the 0° direction was fixed along the z axis.

Due to the use of a finite element analysis, two approximations were made. As men-
tioned previously, the fiber path within an element was approximated as a straight line
rotated by an angle 8 with respect to the z axis. Second, the midplane strains used to de-
termine the principal stresses and principal stress directions were computed at the centroid
of the element, i.e., the fifth integration point of the element (see figure 3.2). This location
represents an average value within the element. The program FEM2D was modified and
used as a subroutine such that only this centroidal value was computed. The entire program

used to compute the new fiber angle is shown in Appendix A.

The iteration scheme can be described following a number of steps contained in a loop:

1. A data file was needed to initiate the first iteration. This file was part of an ABAQUS
input file created after pre-processing. It contained the nodal coordinates for the mesh, the
loading features, and the connectivity matrix. In the main program, an initial value for the

fiber angle in the curvilinear plies was assigned to each element. The values of the initial
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angle had a slight influence the final plate design. Specifically, the number of iterations nec-

essary to align the fibers with the principal stresses within a certain tolerance was affected.

2. At this point, the main program called the subroutine PRG. This subroutine created
an input file readable by FEM2D using the above mentioned data files. The main part of
this subroutine was devoted to the computation of the [A] matrix of each element. All the

subroutines called by PRG were computational subroutines.

3. The iteration process continued by calling the subroutine containing the finite element
processor. This subroutine was actually FEM2D. The data file created by PRG constitutes

its input file. The finite element program computed the midplane strains

€

80O

€

Qo

80O

Ty
for each element of the mesh at the fifth integration point. Since, the midplane curvatures

are equal to zero, the relation for each ply was

€z \ e \ Ky
& [=1 & |+z2x]| & (5.11)
Yoy ) Yoy ) Kzy
[ e (@
o [=] & |- (5.12)
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4. Having the values of the laminate strains from the previous step for the fifth Gauss
point of each element, the stresses in each ply would be obtained by multiplying the strain
vector by the reduced stiffness matrix. These computations were performed only for the

curvilinear plies. The plies using the straight fibers were not involved. The principal stress
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direction for the curvilinear plies in each element were computed using the equation :
1 2T,
6 = - tan™" (-i) , (5.13)
2 Oz — Oy
where the principal direction is denoted by 6, and o, oy, and 7., are the stresses within

the ply in the 2 — y coordinate system.

5. At this stage the first iteration was finished. For each element the principal stress
direction was compared to the fiber angle. The process was considered to have converged
when 190 elements out of 200 exhibited a difference of less than 0.5° between the principal
stress direction and the fiber angle. If this requirement was not fulfilled, the element fiber
angle was replaced by the principal stress direction. A new cycle of the iteration procedure
then began by computing new [A] matrices taking in consideration the new fiber angles in
the curvilinear plies. Once 190 elements converged to within the tolerance, the iteration
scheme stopped and created an output file containing the final angles and the number of
iterations required to reach this results. Figure 5.9, summarizes the main stages of the

iteration scheme.

5.7.1 Results

In practice, convergence was realized in 6 to 10 iterations. The fiber angles obtained for
each element are presented in figures 5.10 and 5.11. It is interesting to compare the design
presented in figures 5.10 and 5.11 with the design proposed by Hyer and Charette [1-4] and
Charette [5] shown in figure 2.3. As mentioned in Chapter 2, Hyer and Charette [1-5] and
Charette [5] never studied a plate with the exact same geometry and stacking sequence, i.e.,
(£45/C2/0/90/C3)s, as the plates tested. Nevertheless the fiber trajectories presented in
figures 5.10 and 5.11 and the fiber trajectories presented in figure 2.3 are similar. The fiber
trajectory of the improved plate presented in figures 5.10 and 5.11 and the fiber trajectory
considered by Cincinnati Milacron in figure 2.8 differ mainly in the area denoted as ‘A’ in

figures 5.10 and 5.11. Instead of having a negative angle and going away from the hole, the
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Figure 5.9: Iteration algorithm for improved plate design
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Figure 5.11: Fiber angles for improved plate design in the hole area
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Table 5.12: Failure load of the improved plate

Failure load | Failure load
max. stress | max. strain
Straightline fiber 1.00 1.00
(£45/05/90/0,),
Improved plate 1.17 1.16
(£45/C2/0/90/C3)s

fibers in the upper part ‘A’ have a positive fiber angle and tend to go towards the hole.
The fiber trajectories in the gripping area, and near to it, are very similar to the design
used to manufacture the plates. By comparing the trajectories in figures 2.3 and 5.11, the
conclusion can be drawn that the fiber path computed with the iteration scheme described
previously does not strongly depend on the plate geometry and the stacking sequence.
References [4] and [5] showed that when considering a plate with a hole and curvilinear
fiber trajectories loaded in tension, the stacking sequence is one of the most important pa-
rameters for the strength of the plate. To evalue the strength of this improved plate design,
two failure criteria were considered: the maximum stress criterion and the maximum strain
criterion. To provide a basis for comparison, the failure load computed for the improved
plate presented in figures 5.10 and 5.11 was normalized by the failure load obtained in
the previous section for the plate using straight fibers, i.e., (£45/03/90/02)s. The results
of the comparison are presented in Table 5.12. The failure load of the improved plate was
1.16 times higher than the failure load of its straight fiber counterpart. The results provided
by the maximum stress criterion and the maximum strain criterion coincide. The contri-
bution of the curvilinear fiber format may seem less important than expected compared
to some designs presented in Chapter 2 which showed a 200% improvement with respect
to their quasi-isotropic baseline. However, cases presented in [1-5] with stacking sequences
having the same proportions of curvilinear plies as the manufactured plates, i.e., 50%, had

results very similar to Table 5.12.
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5.7.2 Closure

The scheme considered to improve the fiber trajectory by aligning the curvilinear fibers with
the principal stress directions within a finite element treated individual element level angles
as design variables. The difficulties of that approach included dependency of the number
of design variables on mesh density and most of all, the lack of fiber continuity across the
finite elements interfaces. Because of the lack of fiber continuity, the design presented in
figures 5.10 and 5.11 would have to be modified to be manufacturable. These modifications
would most probably lower performance in tension, performance which is already only 16
better than its straight fiber counterpart. Therefore the most efficient designs manufac-
turable with a fiber placement utilizing the stacking sequence used by Cincinnati Milacron
should have performances very similar to plates using the straight fiber format.

The next chapter focuses on the compression test of the plates. As the plates were

loaded past their buckling load, postbuckling response dominated.



Chapter 6

Compression tests

Buckling and postbuckling analyses were performed to compare the results obtained during
the experiments and the results provided by finite element modeling. In a manner similar
to the analyses for the tension tests, these analyses can be broken down into preprocessing,
processing and post-processing steps. Preprocessing again includes definition of geometry,
loading, boundary conditions, and material property considerations. The latter involves
definition of the fiber paths. Processing involves the computation of the buckling load and
the study of the postbuckling behavior for the curvilinear and the straight fiber plates.
Postbuckling includes the visualization of the results using PATRAN, and a comparison

with the experimental data.

6.1 Preprocessing

As for the tension test, PATRAN [8] was used as a pre- and postprocessor for the finite
element analysis. ABAQUS [9, 10] was used as a processor.

6.1.1 Geometry of the plate used in compression

Buckling analyses were performed on both the plate using curvilinear fibers and on its

straight fiber counterpart. For compression testing, the specimens were trimmed to be
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square, specifically 0.43 meter square. The length of these shorter compression specimens
are shown by the dashed lines in figure 2.9. The mesh used for the finite element analyses
is presented in figure 6.1 . Because of symmetry, only a quarter of the plate was modeled.
As for the model tested in tension, the mesh was refined in the hole area to take into
consideration the stress concentration due to the hole. The model contains 160 elements.

The element used is a 8-node shell element with reduced integration.

6.1.2 Fiber angles

The stacking sequence of the curvilinear plate was (£45/C2/0/90/C>),, where the C denotes
plies with the curvilinear trajectories. The 0° direction was along the z axis. The stacking
sequence of the baseline straight fiber plate was (£45/03/90/02)s. The fiber path presented
in figure 2.8 was also valid for the curvilinear plate tested in compression. Hence all the
computations performed in chapter 3 in the hole area for the plates tested in tension were

applied the compression problem.

6.1.3 Loading

During the tests performed at the NASA Langley Research Center, the compression spec-
imens were loaded by placing the specimen vertically in the load frame and displacing the
top edge downward a known amount with the upper head of the load frame. The opposite
edge rested on the lower stationary head of the load frame. These loading features were
imposed in ABAQUS by mean of constraint equations [9, 10]. A node set was created which
contained all the nodes located along the loaded edge. A multipoint constraint equation
was defined which imposed the same displacement in the loading direction (i.e.,  direction)
to all the nodes contained in this node set. Then a concentrated load was applied to one of
these nodes. Because of the constraint equation, this concentrated load was equivalent to

a uniform displacement of the loaded edge.
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Figure 6.1: Finite element mesh used to model the compression test
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6.1.4 Boundary conditions

The top and bottom edges (see figure 2.9) where the load was applied were clamped. The left
and right vertical edges of the specimens were simply supported with knife edges running
parallel to the loading direction. Note: The origin of the global coordinate system was
located at the upper left corner of the model (see figures 6.1 and 6.2). The coordinates of
the center of the hole were (0.215m, 0.215m).

The boundary conditions imposed in PATRAN were :

1. Symmetry about £=0.215m. This required v, = ®, = ®, = 0 on that edge of the mesh.
2. Symmetry about y=0.215m. This required u, = ®, = ®, = 0 on that edge of the mesh.
3. Simple supports on the edge y=0. This required u, = ®, = 0 on that edge of the mesh.
4. Clamped supports on the edge z=0. This required v, = &, = &, = 0 on that edge of
the mesh.

In the above ®,, ®,, and ®, represents the rotations around the z axis, y axis, and z axis,
respectively. Some of the above boundary conditions are irrelevant if one is seeking an
analytical solution of this problem. Because of the discretization of the model into finite
elements and nodes, a finite element analysis required additional conditions. The lack of one
of these conditions could result in obtaining an unstable solution. The boundary conditions

are presented in figure 6.2.

6.1.5 Material properties

According to the data provided by Cincinnati Milacron, the plates tested in tension and the
plates tested in compression were made of the same material. Hence, the material properties

determined in the Chapter 3 were used.

6.2 Processing

The options COMPOSITE and ORIENTATION in ABAQUS were used to define the lam-
inate lay-up. Each ply of the laminate was defined individually by specifying its thickness
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and fiber orientation. The option ORIENTATION created a local coordinate system for
each ply. The local z axis was oriented in the fiber direction. The material properties were
prescribed though the option LAMINATE by defining E,, E;, v12, and Gj2. These values
had to be defined in the local coordinate system, i.e., E; represented Young’s modulus in

the fiber direction, F; Young’s modulus in the matrix direction, etc...

6.2.1 Eigenvalue Buckling Prediction

During the tests performed at the NASA Langley Research Center, the specimens were
loaded in compression to failure. Failure occurred in the postbuckling range. Hence, the
finite element analysis was developed for the postbuckling range. However, collapse studies
are typically begun with eigenvalue buckling estimates. Buckling loads were estimated
from the experiments by the intersection of the least-square straight lines fit to the load
vs. endshortening data just before buckling and just after buckling. With this approach,
the buckling load of the straight fiber plate was estimated to be 49 800 N and the buckling
load of the curvilinear panel was estimated to be 56 500 N. The prebuckling responses were
essentially linear. To compute the buckling eigenvalue is not computationally very costly for
ABAQUS. Eigenvalue buckling estimates are obtained by using the *STATIC procedure to
specify that the calculation is linear. Finally a *BUCKLE procedure predicts the buckling
modes and the corresponding eigenvalues. Since the lowest buckling load is the only one
of interest, only the first eigenvalue is required to converge. However, here the first two
converged eigenvalues were computed.

To check that no mistake was made in using ABAQUS, a simpler check case was ana-
lyzed. This check case was that of a square thin elastic plate simply supported on all for
edges and compressed in one direction. All the ABAQUS input described previously was
used. However, all the plies in the stacking sequence were aluminum. Therefore F; was
set equal to Fy. The purpose of this check case was that an analytical solution could be

computed. The solution was presented in by Timoshenko and Gere in 1961 ([10] section
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9.2) as

ert 472D
Nert = ot (6.1)

where N¢™# is the critical value of the edge load per unit length of the edge, b the length
of each edge of the plate, and D = u,(—lft_s;ﬁ is the elastic bending stiffness of the plate
having Young’s Modulus E, Poisson’s ratio v, and thickness t. The numerical results of
these computations do not present a direct interest for this study and therefore they won’t
be detailed herein. Nevertheless, the buckling load computed by ABAQUS and the one
computed using equation 6.1 show a agreement within 3%.

With this check having given satisfactory results, ABAQUS was used to compute the
critical buckling load of the finite element models representing the straight fiber and curvi-
linear fiber plates. Table 6.1 summarizes the results obtained during the experiments and
the results computed by ABAQUS. With the finite element analyses, there was a 5%, differ-
ence between the buckling load of the two plates, the straight fiber case being larger. On the
contrary, according the the experiments, the buckling load of the curvilinear fiber plate was
12% higher than the buckling load of the straight fiber plate. Though the magnitudes of the
predictions and observations were similar, it was troubling that the finite element analyses
predicted a higher buckling load for the straight fiber plate, yet the experiments indicated
the curvilinear fiber plate had a higher buckling load. However, the buckling load depends
on the 37¢ power of the plate thickness. A small difference in the plate thickness can induce
an important variation in the buckling load. An 8% difference of the curvilinear fiber plate
thickness (i.e., 0.3mm) would bring its buckling load to the value found experimentally. As
was seen in chapter 3, 8% was a reasonable variation of thickness to expect. Thus, con-
sidering the error factor of the experiments and the importance of the plate thickness, the
results presented in table 6.1 were judged to be reasonable.

Cases with nonperfectly clamped boundary conditions were investigated. It is possible
that, due to fixture compliance, the clamped boundary conditions were not really clamped.
That is, there was a rotation at the clamped boundary due to fixture elasticity. To model

this possibility, spring elements were placed at all the nodes associated with the clamped
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Table 6.1: Comparison between the experimental and analytical buckling loads

Experimental Buckling load Difference
buckling load, N | computed by ABAQUS, N
Curvilinear 56 500 48 900 +16Y%
Straight 49 800 51 500 -3.3%
Difference +12% -5%

loaded edges. The selected spring element had to be placed between a node and ”ground”.
The element used in this investigation was a torsional spring constraining the rotation about
the y axis (see figure 6.3). A spring stiffness k (N — m/rad) was assigned to the spring
elements such that M = k0O, where M was the restraining moment and © the rotation of
the supposedly clamped end. The edge of the plate was clamped for £ — oo and simply
supported for k equal to zero. For any value of k between 0 and co, the boundary conditions
for the two loaded edges were an intermediate case between simply supported and clamped.
Figure 6.3 presents the deformed shape in the out-of-plane direction for three different type
of boundary conditions: simply supported; intermediate case involving spring elements;
and clamped. The edge where these boundary conditions were applied is indicated by an
arrow. As can be seen the shape of the deformed plate depended strongly on the degree of
support of the boundary. The buckling loads were computed as a function of the stiffness
coefficient k both for the plate using curvilinear fibers and the plate using straight fibers.
These relationships between the buckling load and k are presented in figure 6.4.

Several conclusions can be drawn from figure 6.4. For 0 < k < 200 the buckling load was
sensitive to the variation of the stiffness coefficient. At the beginning of this interval, the
buckling load of the plate using the curvilinear fibers was higher than the buckling load of its
straight fiber counterpart. At approximately a stiffness coefficient equal to 170 N — m/rad
the two fiber formats reached the same buckling load. For £ > 170, the buckling load of
the straight fiber plate was greater than the buckling load of the curvilinear fiber plate.

For even higher values of k, the buckling loads both reached plateaus. Nevertheless, in the
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Figure 6.3: Difference in the deformed shape of plate according the boundary conditions
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range 0 < k < 1000 the difference between the two buckling loads never exceeded 10%. In
addition, the buckling load obtained by considering the two edges clamped matched the
experimental results within a 16% tolerance. Hence the boundary conditions during the

experiments were considered clamped.

6.3 Postbuckling

The next phase of the finite element analysis was to study the postbuckling behavior of the
plates. This investigation usually included a load-displacement analysis to ensure that the
eigenvalue buckling prediction already obtained was accurate. The experiments performed
at the NASA Langley Research Center did measure the load vs. end-shortening and the
load vs. the out-of-plane displacement for the straight fiber and the curvilinear fiber plates.

In this section, all the experimental data were compared with the finite element analyses.

6.3.1 Imperfection

For a postbuckling analysis, the perfect geometry must be ”seeded” [9, 10] with an im-
perfection to force it into a postbuckling state. Theoretically, a plate under compression
having a perfect geometry may never buckle because the perfect plate has no prebuckled
out-of plane displacement in the postbuckled mode, and thus no ability to switch to that
mode. However, the existence of an imperfection in the form of an out-of-plane displace-
ment couples the prebuckled and postbuckled states. The larger the magnitude of the
out-of-plane imperfection, the more dominant is the coupling and the more dominant is
the out-of-plane response in the prebuckling state. For large coupling, the transition to the
postbuckling state is smooth with an ever-increasing out-of-plane deflection. On the other
hand, for small initial out-of-plane imperfections, there is little out-of-plane deflection in the
prebuckling state. Transition to the postbuckling state is marked by a sudden increase in
out-of-plane deflection. In either case, the out-of-plane deflections lead to a loss of inplane

stiffness. The magnitude of the initial imperfection can be estimated by examining the load
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vs. end-shortening and load vs. out-of-plane displacement relations.

Obviously, imperfections occur naturally in experiments, whereas in analyses they have
to be artificially included. An imperfection can be artificially included in a finite element
analysis in different ways. One or several nodes can be displaced by a small amount in
the out-of-plane direction. In practice, an initial out-of-plane displacement varies usually
between 1 to 5% of the plate thickness [9, 10]. Another way to create an irregularity in the
plate geometry is to apply a small load at one node of the plate in the out-of-plane direction.
This load creates an initial deflection which will provide the necessary perturbation of the
solution so that the plate deforms into the postbuckling state. This second alternative was
chosen for the current analysis. A transverse load was applied in the out-of-plane direction
at a node situated in the center of the plate. The magnitude of this load was small, i.e., 5
N. For smaller load levels, the solution failed to switch from the linear buckling mode to the
nonlinear postbuckling behavior. The finite element analysis using the smallest imperfection
presented a very sharp loss of stiffness at an applied load close to the critical buckling
load computed thought the buckling analysis. As the initial imperfection magnitude was

increased, the transition from prebuckling to postbuckling became smoother.

6.3.2 Nonlinearity and ABAQUS

All the finite element analyses presented so far in the current work were geometrically linear.
To investigate the postbuckling response of the plates manufactured by Cincinnati Milacron
required a geometrically nonlinear analysis. The finite element approach used by ABAQUS
was rather different from the ones presented in the previous pages. At this stage, the
buckling load was known. It was computed by a linear eigenvalue buckling prediction. For
the postbuckling analysis, the edge load was applied by requesting that the load be increased
monotically up to 1.5 times the value of the buckling load. This was done by suggesting
five equal increments, using the automatic loading capability. ABAQUS subdivided the five
equal increments into smaller increments as buckling occurred and the response became

more severely nonlinear. A maximum of eight iterations per increment was allowed. The
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analysis stopped when too many increments were needed, or when ABAQUS reached the

maximum load specified by the user. An ABAQUS input file is shown in Appendix B.

6.3.3 Results of the postbuckling analysis

The compression tests achieved at the NASA Langley Research Center provided several
sources of data. Strain gages were bonded at specific location on the compression test spec-
imens. These locations were illustrated in figure 2.9. Displacement transducers measured
the out-of-plane deflection and overall inplane shortening. In these section all the experi-
mental data are compared to the results found though the finite element analyses. The load
vs. end-shortening relation and the out-of-plane deflection are presented with the results of
the finite element analyses in figure 6.5 for the curvilinear fiber specimen and in figure 6.6
for the straight fiber specimen. Overall, the prebuckling slopes of the two specimens and

their finite element models were approximately the same.

Load vs. End-shortening relations

As can be seen in figure 6.5 for the load vs. end-shortening relation, the measured postbuck-
ling slope of the curvilinear fiber plate and the postbuckling slope obtained by the finite
element analysis were very close. The measured postbuckling slope of the straight fiber
plate, figure 6.6, was less than the finite element predictions. The predicted postbuckling
slope of the straight fiber plate was greater than the predicted postbuckling slope of the
curvilinear fiber plate. This was expected because the postbuckling slope is determined
to a large extend by the elements of the D;; matrix, specifically D;;. The overall value
of D,; was greater for the straight fiber case than for the curvilinear fiber case. How-
ever, experimentally, the straight fiber case exhibited less slope than the curvilinear fiber
case. This difference may be explained by experimental problems which occurred during
the tests. Problems with deformations of the simple support fixtures probably masked the
actual postbuckling response of the straight fiber plate (see Ref. [7]).
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Load vs. Out-of-plane deflection relations

The out-of plane deflections of the curvilinear fiber plate shown in figure 6.5 for the ex-
periments and the finite element analysis are similar. The load difference (vertical shift)
between the two relationships corresponded almost exactly to the difference between the
buckling load found experimentally and the buckling load computed by the finite element
analysis (see Table 5.1). The pre- and postbuckling slopes obtained by considering experi-
mental data and the finite element model were almost identical. The out-of-plane deflection
from the straight fiber plate is presented in figure 6.6. The prebuckling relation and the
beginning of the postbuckling curve for the finite element analysis and the experiments were
close. For large deformations, the difference between the two relations was large. Again,
this difference may partly be explained by the problems encountered with support fixtures

in the experiments.

Results provided by the strain gages

The strains from the back-to-back gage pairs at location ‘a’ though ‘k’ in figure 2.9 were
measured during the compression experiments. These data are compared to the strains
obtained by the finite element analyses in figure 6.7 for the straight fiber plate, and in
figure 6.8 for the curvilinear fiber plate. In these figures, compressive load is considered

positive, as is compressive strain.

General comments for both the curvilinear and the straight fiber plates

The back-to-back pairs near the simply supported edge, location ‘a’ and ‘e’, reflected the fact
that both gages of the back-to-back pair were always in compression. The simply supports
held the plate flat in that region so the response was strictly planar and compressive. Away
from the simply supported edges, where the plate was not constrained to remain planar,
the strains generally started compressive, and as the plate buckled the strains on one side

of the plate became tensile, while the strains on the other side remained compressive. The
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strains at location ‘c’ showed that the loading was symmetric.

Straight fiber plate

As seen in figure 6.7, the agreement between the finite element analysis and the experiment
was quite good for the gage ‘a’, ‘g’, ‘i’ and ‘k’. For the gage location ‘e’, the results provided
by the strain gage which sustained the largest compression strain coincided well with the
finite element model. On the other hand, the second branch of the load vs. strain relation
did not compare well. This difference may have been due to edge effects along the sides of the
plate. The strains at location ‘c’ were small. Thus, in absolute value, the difference between

the experimental results and the finite element results at location ‘c’ was acceptable.

Curvilinear fiber plate

From figure 6.8, general comments can be made regarding all the six strain gages. Except,
for location ‘a’, for a given strain the corresponding load computed by the finite element
analysis was generally about 10% lower than the load found experimentally. Thus by in-
creasing the computed buckling load by 10%, the measured postbuckling response of the
plate using the curvilinear fiber format would coincide almost exactly with the postbuck-
ling response computed by the finite element approach. The comments made previously for

the straight fiber plate regarding strains at locations ‘e’ and ‘c’ can be repeated here.

Closure

The finite element analyses and the experimental measurements showed a fairly good agree-
ment for the pre- and postbuckling response. There was no noticeable difference in the buck-
ling performance between the plate using curvilinear fibers and the plate using the straight
fibers. Two reasons may explain this lack of difference: First, the design considered by
Cincinnati Milacron was not designed specifically to provide high buckling resistance, as

was the case with Hyer and Lee [6]. Second, only half of plies in the stacking sequence
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were curvilinear. The designs considered in ref. [6] which achieved a high buckling load rec-
ommended a large percentage of curvilinear plies. Thus, the design of composite structure
using a curvilinear fiber format should be studied very carefully before manufacturing if

improvements in the mechanical performances are to be expected.



Chapter 7

Summary, conclusions, and

recommendations

This study focused on the analyses of plates using curvilinear fiber trajectories manufactured
by Cincinnati Milacron and tested at the NASA Langley Research Center. Some additional
experiments with coupons cut from the plates tested in tension provided information about
the plate thickness, the elastic properties, and the strengths of the material. The analyses
of the plates tested in tension were conducted using finite element methods and included
failure criteria. In compression, the buckling load and the postbuckling behavior of the

plates were also investigated. Comparisons with test results were made.

7.1 Detailed summary and conclusions

1. The literature review summarized the content of previous work done in the field of using
the curvilinear fiber format. Past research suggested that using a curvilinear fiber format
may result in an important gain in tension or buckling resistance. The past work was all
done using finite element analysis and most designs proposed in the literature review did
not take in consideration manufacturing constraints. First, the difficulty of most approaches

used included dependency of the number of design variables on finite element mesh density
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and the lack of fiber continuity across finite element interfaces. Second, the proportion of
curvilinear plies for designs presenting big gains in compression or tension resistance was
very important (i.e., usually between 70% and 90% of the total number of plies). Such designs
are very weak in other loading modes.

No experiments had been conducted to confirm these findings before Cincinnati Mi-
lacron, in collaboration with the NASA Langley Research Center, manufactured and tested
plates using the curvilinear fiber format. None of the designs presented in previous work
was followed by Cincinnati Milacron because of manufacturing limitations. Only half of the
plies in the stacking sequence used the curvilinear fiber format.

Experimental results: In tension, the curvilinear fiber plate failed at a load 37% lower
than the failure load of its straight fiber counterpart. This was an unexpected result. The
buckling load of the curvilinear fiber plate was 12% higher than the buckling load of the
straight fiber plate.

2. The unexpected lower load capacity of the curvilinear fiber plate in tension prompted
an investigation of the properties of both the curvilinear and the straight fiber material.
Two categories of mechanical testings using coupons from the remnants of the broken plates
were performed. The purpose of the first set of tests was to calculate elastic properties to
be used in the finite element analyses. The second set of tests was performed to investigate
the strengths properties of the plates. The results showed that the curvilinear fiber plate
and the straight fiber plate could be considered to be made out of the same material.
With reasonable estimates of the elastic and strength properties, attention turned to the
predictions of the response of the straight and curvilinear fiber tensile specimens.

3. During the experiments performed at the NASA Langley Research Center, back-to-
back strain gages were placed at different locations on the plates. In general, the strains
measured during the experiments and the strains computed with the finite element analyses
coincided fairly well. This agreement gave credit to the engineering constants computed
through the testing of coupons cut from the remnants of the tensile plates. Having in

hand the finite element prediction of the strain and stress field in the plates, a FORTRAN
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program was written to predict the failure modes of the plates using the maximum stress,
maximum strain, and Tsai-Hill failure criteria. All the failure criteria used contradicted the
experimental results. They predicted that the curvilinear fiber plate could sustain between
5-13% more load than the straight fiber plate.

This contradiction prompted an investigation into failure resulting from possible man-
ufacturing features. Some parts of the curvilinear plies could not be laid down by the fiber
placement machine and so material was placed by hand in these regions. The influence of
possible material properties variations in these regions was studied. It was concluded that
these manufacturing features could not reasonably explain the 37% difference between the
experimental failure load of the straight fiber plate and the curvilinear fiber plate.

The difference between the experimental failure loads and the finite element predictions
was explained by considering the experimental load vs. axial displacement characteristics
for the two specimens. This relation showed a first fiber breakage in the straight fiber
plate appearing for a load lower than the final failure load. Contrary to what happened
in the curvilinear fiber plate, this first fiber breakage was not immediately followed by a
total failure but the plate kept on sustaining more load. For the curvilinear fiber plate,
total failure followed immediately after first fiber failure. Propagation of the failure may
have been more difficult in the straight fiber plate, or some unexpected parameters appeared
during the testing. By considering a first fiber breakage at a load of 0.51MN for the straight
fiber plate, the experimental data and the finite element predictions coincide.

As an aside, an improved plate for tension resistance was designed using a scheme
similar to the one developed by Hyer and Charette [1-4] and Charette [5]. The same
stacking sequence and plate thickness as the plates manufactured by Cincinnati Milacron
was considered. It was shown that the final failure load of the improved plate was 16Y% higher
than the failure load of its straight fiber counterpart using the maximum stress criterion.
The gain in tension resistance was not very important compared to other curvilinear designs
presented in the literature review. Because of the lack of fiber continuity across the finite

element interfaces, the design would have to be modified to be manufacturable. These
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modifications would most probably lower its performances in tension resistance.

4. During the experiments in compression, the buckling load of the curvilinear fiber
plate was 12% higher than the buckling load of its straight fiber counterpart. According to
the finite element analyses, there was no noticeable difference in the buckling performance
between the straight fiber plate and the curvilinear fiber plate. The buckling load computed
by the finite element analysis matched the experimental results for the straight fiber plate
within a 4% tolerance. For the curvilinear plate, the buckling load predicted by the finite
element analysis was 16% lower than the experimental buckling load. This difference is
reasonable considering probable variation in the plate thickness.

The postbuckling response was also investigated. This investigation included a load-
displacement analysis to ensure that the eigenvalue buckling predictions already obtained
was accurate. The strains measured at strain gages locations coincided fairly well with the

strains computed with the finite element analyses.

7.2 Recommendations

Though prior work has shown that the curvilinear fiber format can result in significant gains
for specific design objectives, these studies did not consider manufacturing constraints. Fu-
ture work on the curvilinear fiber format should include process parameters. Optimization
schemes should be developed taking into consideration geometrical aspects related to design
and manufacturing.

Future studies could also focus on the development of new failure criteria more adapted
for curvilinear fiber paths. Composite material stress-strain behavior can be linear or non-
linear depending on the ply orientation of the individual ply or laminate. The presence of
curvilinear plies could introduce new parameters. The present work could not explain for
sure why the straight fiber plate manufactured by Cincinnati Milacron could sustain more

load after the first fiber breakage. New investigations should be done in this direction.
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Appendix A

FORTRAN program used in

section 5.7

This appendix contains the listing of the program used to align the fiber angle in the

curvilinear plies with the principal stress direction (see section 5.7).

C Yannick FIERLING SS : 231-67-1755

C

C **k
C * MAIN PROGRAM *

C * %

C * .It: Number of iteration needed to align the principal *

C * stress direction with the fiber angle in the C plie *

C * .Qa(i): fiber angle in the C ply for elemenet i *

C * .TAIf(i): principal stress direction for the element i *

C**
C 34 3 3¢ 3k 3k K 3 2 e 4ok 4 2 3¢ 3¢ e 3K ke e e e ke 2k o ke 3k ok A K
C

Double precision Qa,TAIf

Dimension Qa(200),TAlf(200)
C

It=0
numele=200

do 10 i=1,numele
10 Qa(i)=0

30 call prg(Qa)
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do 60 i=1,200
60 TAIf(i)=0
It=It+1
call FEM2D
call angle(Qa,TAIf,It)
do 20 i=1,numele
Qa(i)=TAl(i)*180/3.1415
20 continue
Go To 30
End
C
C e Ak * 3 e e
C * Subroutine FEM2D *
C * Computes the strain field in each element at the *
C * centroidal integration point and writes the output *
C * file in ISTRESS used in the Subroutine angle *
*
8 Kok kK *xok HoRok Rk
C
SUBROUTINE FEM2D
C PROGRAM FOR STRESS ANALYSIS OF TWO-DIMENSIONAL
C LINEAR ELASTIC ORTHOTROPIC COMPOSITE STRUCTURES
C DAHSIN LIU, MARCH 1, 1983
C
COMMON /SOL/ NUMNP,NEQ,NWK NUMEST MIDEST,MAXEST,MK
COMMON /DIM/ N1,N2,N3,N4,N5 N6,N7,N8,N9,N10,N11,N12,N13,N14,N15
COMMON /EL/ IND,NPAR(10), NUMEG,MTOT ,NFIRST ,NLAST,ITWO
COMMON /VAR/ NG,MODEX
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

C

DIMENSION TIM(5), HED(10)

DIMENSION IA(1)

EQUIVALENCE (A(1),IA(1))

]

C THE FOLLOWING TWO CARDS ARE USED TO DETERMINE THE MAXIMUM HIGH
C SPEED STORAGE THAT CAN BE USED FOR SOLUTION. TO CHANGE THE HIGH
C SPEED STORAGE AVAILABLE FOR EXECUTION CHANGE THE VALUE OF MTOT
C AND CORRESPONDINGLY COMMON A(MTOT)

C

COMMON A (500000)

MTOT = 500000

C

C DOUBLE PRECISION CARD

C ITWO = 1 SINGLE PRECISION ARITHMETIC

C ITWO = 2 DOUBLE PRECISION ARITHMETIC

C

ITWO=2

C

C THE FOLLOWING SCRATCH RILES ARE USED

C IELMNT = TAPE STORING ELEMENT DATA

C ILOAD = TAPE STORING LOAD VECTORS

C IIN = INPUT TAPE

C IOUT = OUTPUT TAPE

C

open(3,file="data2’)

open(16,file="ISTRESS’)

IELMNT =1

ILOAD =2

IIN=3
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IOUT = 4
ISTRESS= 16

C

200 NUMEST = 0

MAXEST = 0

c

CINPUTPHASE

C

CALL SECOND (TIM(1))

C

C READ CONTROL INFORMATION
c

READ(IIN,1000) HED,NUMNP,NUMEG,NLCASE,MODEX
IF (NUMNP.EQ.0) STOP
C

C READ NODAL POINT DATA

C

Ni=1

N2 = N1 4 3 * NUMNP

N3 = N2 4+ NUMNP * ITWO

N4 = N3 + NUMNP * ITWO

N5 = N4 + NUMNP * ITWO

IF (N5.GT.MTOT) CALL ERROR (N5 - MTOT,1)
C

CALL INPUT (A(N1),A(N2), A(N3), A(N4), NUMNP, NEQ)
SEQI = NEQ + 1

8 CALCULATE AND STORE LOAD VECTORS

ISIG = N5 + NEQ * ITWO

REWIND ILOAD

C

DO 300 L= 1, NLCASE
C

READ(IIN,1010) LL,NLOAD
C

IF (LL.EQ.L) GO TO 310
STOP
310 CONTINUE

C

N7 = N6 + NLOAD

N8 = N7 + NLOAD

N9 = N8 + NLOAD * ITWO

o

IF (N9.GT.MTOT) CALL ERROR (N9 - MTOT,2)

c

CALL LOADS (A(N5),A(N6),A(N7),A(N8),A(N1),NLOAD,NEQ)
C

300 CONTINUE

C

C READ, GENERATE AND STORE ELEMENT DATA
C

N6 = N5 + NEQ

DO 101 = N5,N6

10 TA(T)=0

IND=1

C
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CALL ELCAL

C

CALL SECOND (TIM(2))

c

CSOLUTIONPHASE

C

C ASSEMBLE STIFFNESS MATRIX
C

CALL ADDRES (A(N2),A(N5))

C

MM = NWK/NEQ

N3 = N2 + NEQ +1

N4 = N3 + NWK * ITWO

N5 = N4 + NEQ * ITWO

N6 = N5 + MAXEST

IF (N6.GT.MTOT) CALL ERROR (N6 - MTOT,4)
C

C WRITE TOTAL SYSTEM DATA
C

C
C IN DATA CHECK ONLY MODE WE SKIP ALL FURTHER CALCULATIONS
C

IF (MODEX.GT.0) GO TO 100
CALL SECOND (TIM(3))
CALL SECOND (TIM(4))
CALL SECOND (TIM(5))
GO TO 120

C

C CLEAR STORAGE

C

100 NNL = NWK + NEQ
CALL CLEAR(A(N3), NNL)
c

IND = 2

C

CALL ASSEM (A(N5))

C

CALL SECOND (TIM(3))

C

C TRIANGULARIZE STIFFNESS MATRIX
C

KTR =1

CALL COLSOL (A(N3),A(N4),A(N2),NEQ,NWK,NEQ1,KTR)
C

35 CALL SECOND (TIM(4))

C

KTR = 2

IND =3

C

REWIND ILOAD

DO 400 L=1,NLCASE

C

CALL LOADV (A(N4),NEQ)
C

C CALCULATION OF DISPLACEMENTS

C

CALL COLSOL (A(N3),A(N4),A(N2),NEQ,NWK,NEQ1,KTR)
C

CALL WRITE(A(N4),A(N1),NEQ,NUMNP)
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C

C CALCULATION OF STRESSES
C

CALL STRESS (A(N5))

c

400 CONTINUE

CALL SECOND (TIM(5))

C

C PRINT SOLUTION TIMES
C

120 TT = 0.

DO 5001 = 1,4

TIM(I) = TIM(I+1) - TIM(I)
500 TT = TT + TIM(I)

C

close(16)

close(3)

C READ NEXT ANALYSIS CASE
C

C GO TO 200

C

1000 FORMAT (10A4/515)
1010 FORMAT (2I5)
RETURN

C

C

END

* * ok ok * PETTY

C

SUBROUTINE ERROR(N,I)

C

C PROGRAM

C TO PRINT MESSAGES WHEN HIGH-SPEED STORAGE IS EXCEEDED

C

COMMON/TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

C

GO TO (1,2,3,4),1

C

1 WRITE(ISTRESS,2000)

GO TO 6

2 WRITE(ISTRESS,2010)

GO TO 6

3 WRITE(ISTRESS,2020)

GO TO 6

4 WRITE(ISTRESS,2030)

C

6 WRITE(ISTRESS,2050) N

2000 FORMAT (//’ NOT ENOUGH STORAGE FOR READ-IN OF ID ARRAY AND
123HNDDAL POINT COORDINATES')

2010 FORMAT (//'NOT ENOUGH STORAGE FOR DEFINITION OF LOAD VECTORS')
2020 FORMAT(//'NOT ENOUGH STORAGE FOR ELEMENT DATA INPUT’)
2030 FORMAT (//'NOT ENOUGH STORAGE FOR ASSEMBLAGE OF GLOBAL STRUCTUR
155HE STIFFNESS, AND DISPLACEMENT AND STRESS SOLUTION PHASE' )
2050 FORMAT (// "™** ERROR STORAGE EXCEEDED BY", I9)

RETURN

END

(J 24 2 ok * 3 ek ke ok k 3 3% 3 ke K
SUBROUTINE INPUT (ID,X,Y,Z,NUMNP,NEQ)

c

C PROGRAM



APPENDIX A. FORTRAN PROGRAM USED IN SECTION 5.7 129

C TO READ, GENERATE, AND PRINT NODAL POINT INPUT DATA
C TO CALCULATE EQUATION NUMBERS AND STORE THEM IN ID ARRAY
C

C N=ELEMENT NUMBER

C ID=BOUNDARY CONDITION CODES (0=FREE,1=DELETED)

C X,Y,Z= COORDINATES

C KN= GENERATION CODE

C L.E. INCREMENT ON NODAL POINT NUMBER

c

IMPLICIT REAL*8(A-H,0-Z)

c

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON

C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM

C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST ABOVE

C CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

C

COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

DIMENSION X(1),Y(1),Z(1),ID(3,NUMNP)

C

C READ AND GENERATE NODAL POINT DATA
C

KNOLD=0

NOLD=0

C

10 READ(IIN,1000) N,(ID(I,N),I=1,3),X(N),Y(N),Z(N),KN
IF (KNOLD.EQ.0) GO TO 50
NUM=(N-NOLD) / KNOLD
NUMN=NUM-1
IF(NUMN.LT.1) GO TO 50
XNUM=NUM
DX=(X(N)-X(NOLD))/XNUM
DY=(Y(N)-Y(NOLD))/XNUM
DZ=(Z(N)-Z(NOLD))/XNUM
K=NOLD

DO 30 J=1,NUMN

KK=K

K=K + KNOLD
X(K)=X(KK)+DX
Y(K)=Y(KK)+DY
Z(K)=Z(KK)+DZ

DO 301=1,3
ID(L,K)=ID(IL,KK)

30 CONTINUE

C

50 NOLD=N

KNOLD=KN
IF(N.NE.NUMNP) GO TO 10
C

C WRITE COMPLETE NODAL DATA

C

C NUMBER UNKNOWNS
C

NEQ=0

DO 100 N=1,NUMNP

DO 1001=1,3

IF (ID(I,N)) 110,120,110
120 NEQ=NEQ + 1
ID(I,N)=NEQ

GO TO 100
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110 ID(I,N)=0

100 CONTINUE

C

C WRITE EQUATION NUMBERS

c

RETURN

C

1000 FORMAT (415,3F10.0,15)

C

END

C*—-l 4 ok Ak * 2 e ok e sk 3k 2k e A e i e e 3
SUBROUTINE LOADS (R,NOD,IDIRN,FLOAD,ID,NLOAD,NEQ)

C

C PROGRAM

C TO READ NODAL LOAD DATA

C TO CALCULATE THE LOAD VECTOR R FOR EACH LOAD CASE

C AND WRITE ONTO TAPE ILOAD

C

IMPLICIT REAL * 8(A-H,0-Z)

C

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST ABOVE
C CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

C

COMMON /VAR/ NG, MODEX

COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT ISTRESS

DIMENSION R(NEQ),NOD(1),IDIRN(1),FLOAD(1)

DIMENSION ID(3,1)

C

READ(IIN,1000) (NOD(I),IDIRN(I), FLOAD(I),I=1,NLOAD)

IF (MODEX.EQ.0) RETURN

c

DO 210 I=1,NEQ
210 R(I)=0.
C

DO 220 L=1,NLOAD
LN=NOD(L)

LI=IDIRN(L)

M=ID(LLLN)

IF(II) 220,220,240

240 R(1I) = R(IT)+ FLOAD(L)
C

220 CONTINUE

C

WRITE (ILOAD) R
C

200 CONTINUE

C

1000 FORMAT(215,F15.5)

RETURN

END

C A Ak X Kok %k ok * %k k% %%
SUBROUTINE ELCAL

C

C PROGRAM

C TO LOOP OVER ALL ELEMENT GROUPS FOR READING,
C GENERATING AND STORING THE ELEMENT DATA

C
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COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK
COMMON /EL/ IND,NPAR(10), NUMEG,MTOT,NFIRST,NLAST,ITWO
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

COMMON A(1)

gEWIND IELMNT

g LOOP OVER ALL ELEMENT GROUPS
go 100 N=1,NUMEG

EEAD(IIN,lOOO) NPAR

CALL ELEMNT

C

IF (MIDEST.GT.MAXEST) MAXEST=MIDEST

C

WRITE (IELMNT) MIDEST,NPAR,(A(I),I=NFIRST,NLAST)
C

100 CONTINUE

C

RETURN

C

1000 FORMAT (2015)

C

END

C * * * L2
SUBROUTINE ELEMNT

C

C PROGRAM

C TO CALL THE APPROPRIATE ELEMENT SUBROUTINE
C

COMMON /EL/ IND,NPAR(10),NUMEG,MTOT,NFIRST ,NLAST,ITWO
C

NPAR1=NPAR(1)

c

GO TO (1,2,3),NPAR1
C

1 CALL TRUSS

RETURN

C

C OTHER ELEMENT TYPES WOULD BE CALLED HERE, IDENTIFYING
C EACH ELEMENT TYPE BY A DIFFERENT NPAR(1) PARAMETER
c

2 RETURN

C

3 RETURN

c

END

C*** K K * 20 e 2k 3k K KA 243k e e ke ok
SUBROUTINE COLHT (MHT,ND,LM)

C

C PROGRAM

C TO CALCULATE COLUMN HEIGHTS

C

COMMON /SOL/ NUMNP,NEQ,NWK ,NUMEST ,MIDEST,MAXEST MK
DIMENSION LM(1),MHT(1)

C

LS=100000
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DO 100 I=1,ND

IF(LM(I)) 110,100,110

110 IF(LM(1)-LS) 120,100,100

120 LS=LM(T)

100 CONTINUE

C

DO 200 I=1,ND

TI=LM(T)

IF(IL.EQ.0) GO TO 200

ME=II - LS

IF(ME.GT.MHT (1)) MHT(II)=ME

200 CONTINUE

C

RETURN

END

c* sk
SUBROUTINE ADDRES(MAXA,MHT)

C

C PROGRAM

C TO CALCULATE ADDRESSES OF DIAGONAL ELEMENTS IN BANDED
C MATRIX WHOSE COLUMN HEIGHTS ARE KNOWN
c

C MHT = ACTIVE COLUMN HEIGHTS

C MAXA = ADDRESSES OF DIAGONAL ELEMENTS

C

COMMON/SOL/ NUMP,NEQ,NWK,NUMEST ,MIDEST,MAXEST,MK
DIMENSION MAXA(2),MHT(1)

C

C CLEAR ARRAY MAXA

C

NN=NEQ + 1

DO 20 I=1,NN

20 MAXA(I)=0

C

MAXA(1)=1

MAXA(2)=2

MK=0

IF (NEQ.EQ.1) GO TO 100

DO 10 I=2,NEQ

IF (MHT(I).GT.MK) MK=MHT(I)

10 MAXA(I4+1)=MAXA(I) + MHT(I) + 1

100 MK=MK + 1

NWK=MAXA(NEQ+1) - MAXA(1)

C

RETURN

END

kR R AR * *kdk * Hok Rk
SUBROUTINE CLEAR(A,N)

C

C PROGRAM

C TO CLEAR ARRAY A

C

IMPLICIT REAL*8(A-H,0-Z)

C

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST ABOVE
C CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

C
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DIMENSION A(1)

DO 10 I=1,N

10 A(I)=o0.

RETURN

END

C * * * e *kk
SUBROUTINE ASSEM (AA)

(¢

C PROGRAM

C TO CALL ELEMENT SUBROUTINES FOR ASSEMBLAGE OF THE
C STRUCTURE STIFFNESS MATRIX

C

COMMON /EL/ IND, NPAR(10), NUMEG,MTOT,NFIRST ,NLAST,ITWO
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT ISTRESS
DIMENSION AA(1)

C

REWIND IELMNT

C

DO 200 N=1,NUMEG
READ(IELMNT)NUMEST,NPAR,(AA(I),I=1,NUMEST)

C

CALL ELEMNT

C

200 CONTINUE

RETURN

C

END

c** * 3 kA i ok ok % ek 4 ok ok
SUBROUTINE ADDBAN (A,MAXA,S,LM,ND)

C

C PROGRAM

C TO ASSEMBLE UPPER TRIANGULAR ELEMENT STIFFNESS INTO
C COMPACTED GLOBAL STIFFNESS

C

C A = GLOBAL STIFFNESS

C S = ELEMENT STIFFNESS

C ND = DEGREE OF FREEDOM IN ELEMENT STIFFNESS

C S(1) S(2) S(3) ...

C S = S(ND+1) S(ND+2) ...

C S(2*ND) ...

c
C A(1) A(3) A(6) ...
C A = A(2) A(5) ...
C A(4) ...

c

IMPLICIT REAL*8(A-H,0-Z)

e

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON

C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM

C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST ABOVE
C CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

C

DIMENSION A(1),MAXA(1),S(1),LM(1)

C

NDI=0

DO 200 I=1,ND
II=LM(T)

IF(IT) 200,200,100
100 MI=MAXA (II)

133
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KS=I

DO 220 J=1,ND

JI=LM(J)

IF(3J) 220,220,110

110 1J=I1- JJ

1IF(1J)220,210,210

210 KK=MI + 1J

KSS=KS

IF(J.GE.I) KSS=J + NDI

A(KK)=A(KK) + S(KSS)

220 KS=KS +ND -J

200 NDI=NDI + ND -1

C

RETURN

END

C Aok Kk ek N ke K
SUBROUTINE COLSOL(A,V,MAXA,NN,NWK,NNM,KKK)

C

C PROGRAM

C TO SOLVE FINITE ELEMENT STATIC EQUILIBRIUM EQUATIONS IN
C CORE, USING COMPACTED STORAGE AND COLUMN REDUCTION SCHEME
C

C - INPUT VARIALES -

C A(NWK) = STIFFNESS MATRIX STORED IN COMPACED FORM

C V(NN) = RIGHT-HAND-SIDE VECTOR

C MAXA(NNM)= VECTOR CONTAINING ADDRESSES OF DIAGONAL
C ELEMENTS OF STIFFNESS MATRIX IN A

C NN = NUMBER OF EQUATIONS

C NWK = NUMBER OF ELEMENTS BELOW SKYLINE OF MATRIX
CNNM =NN +1

C KKK = INPUT FLAGE

C EQ. 1 TRIANGULARIZATION OF STIFFNESS MATRIX

C EQ. 2 REDUCTION AND BACK-SUBSTITUTION OF LOAD VECTOR
C IOUT = NUMBER OF OUTPUT DEVICE

C

C - OUTPUT VARIABLES -

C A(NWK) = D AND L - FACTORS OF STIFFNESS MATRIX

C V(NN) = DISPALCEMENT VECTORS

C

C

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST ABOVE
C CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

(@]

COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

DIMENSION A(NWK),V(1),MAXA(1)

C

C PERFORM L*D*L(T) FACTORIZATION OF STIFFNESS MATRIX

C

IF(KKK-2)40,150,150

40 DO 140 N=1,NN

KN=MAXA(N)

KL=KN+1

KU=MAXA(N+1) -1

KH=KU-KL

IF(KH)110,90,50

50 K=N-KH

IC=0
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KLT=KU

DO 80 J=1,KH

IC=IC + 1

KLT=KLT -1
KI=MAXA(K)
ND=MAXA(K+1) -KI-1
IF(ND)&80,80, 60

60 KK=MINo(IC,ND)
C=0.

DO 70 L=1,KK

70 C=C+A(KI+L)*A(KLT+L)
A(KLT)=A(KLT)-C

80 K=K+1

90 K=N

B=0.

DO 100 KK=KL,KU

K=K -1

KI=MAXA(K)
C=A(KK)/A(KI)

B=B +C*A(KK)

100 A(KK)=C
A(KN)=A(KN) -B

110 IF(A(KN)) 120,120,140
120 STOP

140 CONTINUE
RETURN

C

C REDUCE RIGHT-HAND-SIDE VECTOR
C

150 DO 180 N=1,NN
KL=MAXA(N) +1
KU=MAXA(N+1) - 1
IF(KU-KL)180,160,160
160 K=N

C=0.

DO 170 KK=KL,KU
K=K -1

170 C=C+A(KK)*V(K)
V(N)=V(N) -C

180 CONTINUE

C

C BACK-SUBSTITUTE
C

DO 200 N=1,NN
K=MAXA(N)

200 V(N)=V(N)/A(K)
IF (NN.EQ.1) RETURN
N=NN

DO 230 L=2,NN
KL=MAXA(N) + 1
KU=MAXA(N+1) - 1
IF(KU-KL)230,210,210
210 K=N

DO 220 KK=KL,KU
K=K -1

220 V(K)=V(K)-A(KK)*V(N)
230 N=N-1

RETURN

END
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C*************** * *

SUBROUTINE LOADV (R,NEQ)
C

C PROGRAM

C TO OBTAIN THE LOAD VECTOR

c

IMPLICIT REAL*8(A-H,0-Z)

c

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST ABOVE
C CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

c

COMMON /TAPES/ [ELMNT,ILOAD IIN,IOUT,ISTRESS

DIMENSION R(NEQ)

C

READ(ILOAD) R
C

RETURN

END

C * % ek R Aok kK
SUBROUTINE WRITE(DISP,ID,NEQ,NUMNP)

C

C PROGRAM

C TO PRINT DISPLACEMENTS

C

IMPLICIT REAL*8(A-H,0-Z)

C

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON
C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM
C OR UNIVAC MACHINES .ACTIVATE,DEACTIVATE OR ADJUST ABOVE
C CARD FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

C

COMMON /TAPES/IELMNT,ILOAD,IIN,IOUT,ISTRESS

DIMENSION DISP(NEQ),ID(3,NUMNP)

DIMENSION D(3)

C

C PRINT DISPLACEMENTS
C

IC=4

DO 100 II=1,NUMNP

IC=IC +1

IF(IC.LT.56) GO TO 105
IC=4

105 DO 110 I=1,3

110 D(I)=o0.

C

DO 1201=1,3

KK=ID(L,1II)

IL=I

120 IF(KK.NE.0) D(IL)=DISP(KK)
C

100 continue

RETURN

C

END

Ok e * koK ook ok
SUBROUTINE STRESS (AA)

C
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C PROGRAM

C TO CALL THE ELEMENT SUBROUTIME FOR THE COLCULATION OF STRESSES
c

COMMON /VAR/ NG, MODEX

COMMON /EL/ IND,NPAR(10),NUMEG ,MTOT,NFIRST,NLAST,ITWO
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

DIMENSION AA(1)

c

C LOOP OVER ALL ELEMENT GROUPS

C

REWIND IELMNT

C

DO 100 N=1,NUMEG

NG=N

o

READ(IELMNT) NUMEST,NPAR,(AA(I),I=1,NUMEST)

C

CALL ELEMNT

C

100 CONTINUE

o}

RETURN

END

(4 ¢ L2 22
SUBROUTINE TRUSS

C

C PROGRAM

C TO SET UP STORAGE AND CALL THE TRUSS ELEMENT SUBROUTINE
fe)

COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK
COMMON /DIM/ N1,N2,N3,N4,N5,N6,N7,N8,N9,N10,N11,N12,N13,N14,N15
COMMON /EL/ IND,NPAR(10),NUMEG,MTOT NFIRST,NLAST,ITWO
COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

COMMON A(1)

c

EQUIVALENCE (NPAR(2),NUME),(NPAR(3),NUMMAT)
c

NFIRST=N6

IF(IND.GT.1) NFIRST=N5
N101=NFIRST

N102=N101 + 16*NUME
N103=N102 + 8*NUME*ITWO
N104=N103 + 8*NUME*ITWO
N105=N104 + NUMMAT*ITWO
N106=N105 + NUMMAT*ITWO
N107=N106 + NUMMAT*ITWO
N108=N107 + NUMMAT*ITWO
N109=N108 + NUMMAT*ITWO
N110=N109 + NUMMAT*ITWO
N111=N110 + NUME
NLAST=N111

c

IF (IND.GT.1) GO TO 100

IF (NLAST.GT.MTOT) CALL ERROR(NLAST-MTOT,3)
GO TO 200

100 IF (NLAST.GT.MTOT) CALL ERROR(NLAST-MTOT 4)
C

200 MIDEST=NLAST - NFIRST
C
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CALL RUSS (A(N1),A(N2),A(N3),A(N4),A(N4),A(N5),A(N101),A(N102),
1A(N103),A(N104),A(N105),A(N106),A(N107),A(N108),A(N109),A(N110))
C

RETURN
C
END

C » 3 ek * kK K
SUBROUTINE RUSS (ID,X,Y,Z,U,MHT,LM,XX,YY,A1,A2,A3,A4,A5,A6, MATP)
c

C PROGRAM

C TRUSS ELEMENT SUBROUTINE

C

IMPLICIT REAL*8(A-H,0-Z)

c

C THIS PROGRAM IS USED IN SINGLE PRECISION ARITHMETIC ON

C CDC EQUIPMENT AND DOUBLE PRECISION ARITHMETIC ON IBM

C OR UNIVAC MACHINES. ACTIVATE, DEACTIVATE OR ADJUST ABOVE
C CARDS FOR SINGLE OR DOUBLE PRECISION ARITHMETIC

C

COMMON /SOL/ NUMNP,NEQ,NWK,NUMEST,MIDEST,MAXEST,MK
COMMON /DIM/ N1,N2,N3,N4,N5, N6,N7,N8,N9,N10,N11,N12,N13,N14,N15
COMMON /EL/ IND,NPAR(10),NUMEG ,MTOT NFIRST,NLAST,ITWO
COMMON /VAR/ NG,MODEX

COMMON /TAPES/ IELMNT,ILOAD,IIN,IOUT,ISTRESS

COMMON A(1)

C

REAL A

C

DIMENSION X(1),Y(1),Z(1),ID(3,1),LM(16,1), MATP(1),U(1),MHT(1)
DIMENSION XX(8,1),YY(8,1),A1(1),A2(1),A3(1),A4(1),A5(1),A6(1)
DIMENSION DR(3),IPS(1)

DIMENSION EPSX(3,3),EPSY(3,3),GAMA(3,3)

DIMENSION S(136),55(16,16),UU(8),VV(8)

DIMENSION AX(3),H(3),E(8),F(8),PNXSI(8),PNXIT(8)

DIMENSION SI1GX(3,3),SIGY(3,3),TUXY(3,3)

C

EQUIVALENCE (NPAR(1),NPAR1),(NPAR(2),NUME),(NPAR(3),NUMMAT)
C

C ND = NUMBER DEGREE OF FREEDOM PER EACH ELEMENT

C AX = GAUSSIAN INTEGRATION POINTS

C H = GAUSSIAN INTEGRATION WEIGHTS

C XX = X COORDINATE OF NODE

CYY = Y COORDINATE OF NODE

C MTYP = NUMBER OF MATERIAL TYPE AT EACH ELEMENT

C NUMMAT= TOTAL NUMBER OF MATERIAL TYPES

C A1,A2,A3,A4,A5,A6 = A11,A12,A16,A22,A26,A66 ARE EXTENSIONAL MATRIX
C I1,12,13,14,15,16,17,18 ARE NODE ORDER STARTS FROM THE RIGHT-UPPER
C CORNER OF AN ELEMENT AND COUNTED COUNTER-CLOCKWISELY
C

ND=16

C

AX(1)=0.774596669241483D0

AX(?):0.000000000000000DO

AX(3)=-0.774596669241483D0

H(1)=0.555555555555556D0

H(2)=0.8888838888888889D0

H(3)=0.555555555555556D0

C

GO TO (300,610,900),IND
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C

C READ AND GENERATE ELEMENT INFORMATION
C

300 DO 10 I=1,NUMMAT
READ(IIN,9000)N,A1(N),A2(N),A3(N),A4(N),A5(N),A6(N)
9000 FORMAT(15,6F11.0)

10 CONTINUE

C

N=1

100 READ(IIN,1020) M,11,12,13,14,15,16,17,I8 MTYP,KG
1020 FORMAT(1115)

IF (KG.EQ.0) KG=1

120 IF(M.NE.N) GO TO 200
MY=MTYP

KKK=KG

C

C SAVE COORDINATE SYSTEM
C

200 XX(1,N)=X(I1)
YY(1,N)=Y(I1)

XX(2,N)=X(12)

YY(2,N)=Y(I2)

XX(3,N)=X(I3)

YY(3,N)=Y(I3)

XX(4,N)=X(14)

YY(4,N)=Y(14)

XX(5,N)=X(I5)

YY(5,N)=Y(I5)

XX(6,N)=X(Is)

YY(6,N)=Y(I6)

XX(7,N)=X(17)

YY(7,N)=Y(I7)

XX(8,N)=X(18)

YY(8,N)=Y(I8)

C

MATP(N)=MY
C

C LM = DEGREE OF FREEDOM IN X,Y DIRECTIONS PER EACH NODE
C

DO 390 L=1,16

390 LM(L,N)=0

DO 391 LK=1,2
LM(LK,N)=ID(LK,I1)
LM(LK+2,N)=ID(LK,I2)
LM(LK+4,N)=ID(LK,I3)
LM(LK+6,N)=ID(LK,I4)
LM(LK+8,N)=ID(LK,I5)
LM(LK+10,N)=ID(LK,1I6)
LM(LK+12,N)=ID(LK,I7)
LM(LK+14,N)=ID(LK,]8)

391 CONTINUE

c

CALL COLHT (MHT,ND,LM(1,N))
c

IF (N.EQ.NUME) RETURN
N=N+1

I1=I1+KKK

12=124+KKK

I3=I3+KKK
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I4=I44+KKK
I5=I5+KKK
I6=I6+KKK
I7=I7+KKK
I8=I8+KKK

C

IF (N.GT.M) GO TO 100
GO TO 120

C

C DEVELOP STIFFNESS MATRIX OF EIGHT-NODED ELEMENT
C

610 DO 611 N=1,NUME
MY=MATP(N)
A11=A1(MY)
A12=A2(MY)
A16=A3(MY)
A22=A4(MY)
A26=A5(MY)
A66=A6(MY)
DO 612 I=1,16
DO 612 J=1,16
SS(1,J)=0.D0
612 CONTINUE
C

DO 102 L=1,3
XA=AX(L)

DO 102 K=1,3
YA=AX(K)

C

XJ11=0.DO

XJ12=0.DO

XJ21=0.D0

XJ22=0.D0

C

C PARTIAL PHI OVER PARTIAL XSI

C
PNXSI(1)=(2.D0*XA+YA+2.D0O*XA*YA+YA*YA)/4.DO
PNXSI(2)=(-2.D0*XA-2.D0O*XA*YA)/2.D0
PNXSI(3)=(2.D0*XA-YA+2.D0O*XA*YA-YA*YA)/4.D0
PNXSI(4)=(-1.D0+YA*YA)/2.DO
PNXSI(5)=(2.D0*XA+YA-2.DO*XA*YA-YA*YA)/4.D0O
PNXSI(6)=(-2.D0*XA+2.D0*XA*YA)/2.D0
PNXSI(7)=(2.D0*XA-YA-2.D0*XA*YA+YA*YA)/4.D0
PNXSI(8)=(1.D0O-YA*YA)/2.D0

C

C PARTIAL PHI OVER PARTIAL ETA

c
PNXIT(1)=(2.D0*YA+XA+XA*XA+2.D0*XA*YA)/4.D0
PNXIT(2)=(1.D0-XA*XA)/2.D0
PNXIT(3)=(2.D0*YA-XA+XA*XA-2.D0*XA*YA)/4.D0
PNXIT(4)=(-2.D0*YA+2.D0*XA*YA)/2.D0
PNXIT(5)=(2.D0*YA+XA-XA*XA-2.D0*XA*YA)/4.D0
PNXIT(6)=(-1.D0+XA*XA)/2.D0
PNXIT(7)=(2.D0*YA-XA-XA*XA+2.D0*XA*YA)/4.D0
PNXIT(8)=(-2.D0*YA-2.D0*XA*YA)/2.D0

C

C ELEMENTS OF JACOBIAN
C
DO 52 KK=1,8
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XJ11=XJ11+PNXSI(KK)*XX(KK,N)
XJ12=XJ12+PNXSI(KK)*YY(KK,N)
XJ21=XJ21+PNXIT(KK)*XX(KK,N)
XJ22=XJ22+PNXIT(KK)*YY(KK,N)
52 CONTINUE

c

C DETERMINANT OF JACOBIAN
C

AVXI=(XJ11¥XJ22)-(XJ12¥XJ21)

C

C INVERSE OF JACOBIAN

¢

STJ11=XJ22/AVXJ
STJ12=-XJ12/AVXJ
STJ21=-XJ21/AVX]J
STJ22=XJ11/AVXJ

C

C E(I): PARTIAL PHI OVER PARTIAL X
c

DO 12 I=1,8
E(I)=STJ11*PNXSI(I)+STJ12*¥*PNXIT(I)
12 CONTINUE

C
C F(I): PARTIAL PHI OVER PARTIAL Y
C

DO 131=1,8

F(I)=STJ21*PNXSI(I)4STJ22*PNXIT(I)

13 CONTINUE

C

C STIFFNESS MATRIX OF EIGHT-NODED ELEMENT: 16 BY 16
C

DO 90 I=1,8

DO 90 J=1,8

KI=I*2-1

KJ=J*2-1
SS(KLKJ)=SS(KLKIJI)+(A11*E(I)*E(J)+A16*F(I)*E(J)+
*A16*E(I)*F(J)4+ A66*F(I)*F(J))*AVXJ*H(L)*H(K)
SS(KI+1,KJ)=SS(KI+1,KJ)+(A12*F(I)*E(J)+ A16*E(I)*E(J)+
*A26*F(I)*F(J)+A66*E(I)*F(J))*AVXJ*H(L)*H(K)
SS(KI,KJ+1)=SS(KL,KJ+1)+(A16*E(I)*E(J)+A66*F(I)*E(J)+
*A12*E(I)*F(J)+A26*F(I)*F(J))*AVXJ*H(L)*H(K)
SS(KI+1,KJ+1)=SS(KI4+1,KJ+1)+(A26*F(I)*E(J)+A66*E(I}*E(J)+
*A22*F(I)*F(J)+A26*E(1)*F(J))*AVXJ*H(L)*H(K)

90 CONTINUE

102 CONTINUE

C

C TRANSFORM SS(I,J) INTO S(1J)

C

1J=0

DO 95 I=1,16

DO 95 J=I,16

LI=IJ+1

S(13)=Ss(1,J)

95 CONTINUE

C

CALL ADDBAN (A(N3),A(N2),S,LM(1,N),ND)

C

611 CONTINUE

RETURN
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C

C STRESS CALCULATION
C

C EPSX = EPSILON X
C EPSY = EPSILON Y
C GAMA = GAMA XY
C SIGX = SIGMA X

C SIGY = SIGMA Y

C TUXY = TAU XY

C

900 DO 663 N=1,NUME
C

DO 664 1=1,8
UU(1)=0.DO
VV(I)=0.D0

664 CONTINUE

C

DO 666 I=1,3

DO 666 J=1,3
EPSX(I,J)=0.Do
EPSY(1,J)=0.D0
GAMA(I,J)=0.D0

666 CONTINUE

C

MY=MATP(N)
Al1=A1(MY})
A12=A2(MY)
A16=A3(MY)
A22=A4(MY)
A26=A5(MY)
A66=A6(MY)

C

DO 655 L=1,3
XA=AX(L)

DO 655 K=1,3
YA=AX(K)

C

XJ11=0.DO

XJ12=0.D0

XJ21=0.D0

XJ22=0.D0

C

C PARTIAL PHI OVER PARTIAL XSI

(o]
PNXSI(1)=(2.D0*XA+YA+2.DO*XA*YA+YA*YA)/4.DO
PNXSI(2)=(-2.D0*XA-2.D0*XA*YA)/2.D0
PNXSI(3)=(2.D0*XA-YA+42.DO*XA*YA-YA*YA)/4.DO
PNXSI(4)=(-1.D0+YA*YA)/2.D0O
PNXSI(5)=(2.D0*XA+YA-2.D0O*XA*YA-YA*YA)/4.D0
PNXSI(6)=(-2.D0*XA+2.D0*XA*YA)/2.D0
PNXSI(7)=(2.D0*XA-YA-2.DO*XA*YA+YA*YA)/4.DO
PNXSI(8)=(1.D0-YA*YA)/2.DO

C

C PARTIAL PHI OVER PARTIAL ETA

C
PNXIT(1)=(2.D0O*YA+XA+XA*XA+2.D0*XA*YA)/4.D0
PNXIT(2)=(1.D0-XA*XA)/2.D0
PNXIT(3)=(2.D0*YA-XA+XA*XA-2.D0*XA*YA)/4.D0
PNXIT(4)=(-2.D0*YA+2.D0*XA*YA)/2.D0
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PNXIT(5)=(2.D0*YA+XA-XA*XA-2.D0*XA*YA)/4.D0
PNXIT(6)=(-1.D0+XA*XA)/2.D0
PNXIT(7)=(2.D0*YA-XA-XA*XA+2.D0*XA*YA)/4.D0
PNXIT(8)=(-2.D0*YA-2.D0*XA*YA)/2.D0

C

C ELEMENTS OF JACOBIAN

C

DO 53 KK=1,8
XJ11=XJ11+PNXSI(KK)*XX (KK,N)
XJ12=XJ12+PNXSI(KK)*YY(KK,N)
XJ21=XJ21+PNXIT(KK)*XX (KK,N)
XJ22=XJ22+PNXIT(KK)*YY(KK,N)
53 CONTINUE

C

C DETERMINANT OF JACOBIAN
c

AVXI=(XJ11*XJ22)-(XJ12*XJ21)

C

STJ11=XJ22/AVX]J
STJ12=-XJ12/AVXJ
STJ21=-XJ21/AVXJ
STJ22=XJ11/AVXJ

C

C E(I): PARTIAL PHI OVER PARTIAL X
c

DO 771 1=1,8
E(I)=STJ11*PNXSI(I)+STJ12*PNXIT(I)
771 CONTINUE

c

C F(I): PARTIAL PHI OVER PARTIAL Y
C

DO 772 I=1,8
F(I)=STJ21*PNXSI(I)+STJ22*PNXIT(I)
772 CONTINUE

C

C CALCULATION OF STRAIN

c

KK=LM(1,N)

IF (KK.EQ.0) GO TO 801
UU(1)=U(KK)

C

801 KK=LM(2,N)

IF (KK.EQ.0) GO TO 802
VV(1)=U(KK)

C

802 KK=LM(3,N)

IF (KK.EQ.0) GO TO 803
UU(2)=U(KK)

C

803 KK=LM(4,N)

IF (KK.EQ.0) GO TO 804
VV(2)=U(KK)

C

804 KK=LM(5,N)

IF (KK.EQ.0) GO TO 805
UU(3)=U(KK)

C

805 KK=LM(6,N)
IF (KK.EQ.0) GO TO 806
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VV(3)=U(KK)
c

806 KK=LM(7,N)
IF (KK.EQ.0) GO TO 807
UU(4)=U(KK)

c

807 KK=LM(8,N)

IF (KK.EQ.0) GO TO 808
VV(4)=U(KK)

c

808 KK=LM(9,N)

IF (KK.EQ.0) GO TO 809
UU(5)=U(KK)

c

809 KK=LM(10,N)

IF (KK.EQ.0) GO TO 810
VV(5)=U(KK)

C

810 KK=LM(11,N)

IF (KK.EQ.0) GO TO 811
UU(6)=U(KK)

C

811 KK=LM(12,N)

IF (KK.EQ.0) GO TO 812
VV(6)=U(KK)

C

812 KK=LM(13,N)

IF (KK.EQ.0) GO TO 813
UU(7)=U(KK)

c

813 KK=LM(14,N)

IF (KK.EQ.0) GO TO 814
VV(7)=U(KK)

c

814 KK=LM(15,N)

IF (KK.EQ.0) GO TO 815
UU(8)=U(KK)

C

815 KK=LM(16,N)

IF (KK.EQ.0) GO TO 816
VV(8)=U(KK)

C

816 DO 655 LK=1,8

EPSX(L,K)=EPSX(L,K)+UU(LK)*E(LK)
EPSY(L,K)=EPSY(L,K)+VV(LK)*F(LK)
GAMA(L,K)=GAMA(L,K)+(UU(LK)*F(LK)+VV(LK)*E(LK))
655 CONTINUE

C

C STRESS-STRAIN RELATIONSHIP

C

DO 667 L=1,3

DO 667 K=1,3
SIGX(L,K)=A11*EPSX(L,K)+A12*EPSY(L,K)4+A16*GAMA (LK)
SIGY(L.K)=A12*EPSX(L.K)+A22*EPSY(L.K)+A26*GAMA (LK)
TUXY(L,K)=A16*EPSX(L,K)+A26*EPSY(L,K)+A66*GAMA(L,K)
667 CONTINUE

C

LK=0

DO 668 L=1,3
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DO 668 K=1,3

LK=LK+1

if (LK.eq.5) THEN
WRITE(16,9095)N,EPSX(L,K),EPSY(L,K),GAMA(L,K)
9095 FORMAT(1X,1X,15,3E18.6)

endif

668 CONTINUE

C

663 CONTINUE

9090 FORMAT(///,32X,26H STRESS RESULTANTS ,28X,
122H STRAINS ,//7HELEMENT,1X,5H NODE,5X,

214H ** N-X ** 4X,14H ** N-Y ** 4X 14H ** N-XY ** 2X,
314H * EPSILON-X *,5X,14H * EPSILON-Y *,3X,14H * GAMA-XY *)
RETURN

END

c *kkR Aok Kk
SUBROUTINE SECOND(TIM)

(o]

C SUBROUTINE TO OBTAIN TIME

C

TIM=FLOAT(II)

RETURN

END

C * Fkx K

C Aok 4 2 ke e 4o e e e * K

C * MAIN PROGRAM *

C * Xk

C * .Ite: Number of iteration needed to align the principal*
C * stress direction with the fiber angle in the C plie *

C * .Palf(i): fiber angle in the C ply for elemenet i *

C * .QIf(i): principal stress direction for the element i *

C * .T: transformation matrix *

C * EPS: strain *

C * SIG: stress *

* .S: Compliance matrix *

* .Q: Stiffness matrix *

* .QT: Reduced stiffness matrix *

* .E1, E2, v12, G12: material properties *

C 4 e Ak *
C SUBROUTINE TO COMPUTE THE ANGLES
SUBROUTINE ANGLE(Palf,Qlf,Ite)

double precision QIf,Palf,S,Q,T,INVT,QT,0,EPS,STR,E1,E2,v12,G12,
- A EPS1,EPS2,EPS3,Qalf,Sub,Qnge,SIG1,SIG2,SIG3
DIMENSION EPS1(200),EPS2(200),EPS3(200),QIf(200),Palf(200),
- Qalf(200),Sub(200),Qnge(200),5(3,3),Q(3,3),T(3,3),

- INVT(3,3),QT(3,3),EPS(3),STR(3),51G1(200),S1G2(200}),
- SIG3(200)

open(16,file="ISTRESS’)

open(25,file="angle’)

numele=200

C

E1=130.E9

E2=10.66E9

V12=0.263

G12=3.88E9

CALL PUTZERO(S)

S(1,1)=1./E1

S(2,2)=1./E2

5(3,3)=1/G12
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S(1,2)=-V12/E1
S(2,1)=S(1,2)

CALL PUTZERO (Q)
A=S(1,1)*5(2,2)-5(1,2)*S(1,2)
Q(1,1)=8(2,2)/A
Q(1,2)=-S(1,2)/A
Q(2:1)=Q(1,2)
Q(2,2)=S(1,1)/A
Q(3,3)=G12

C

do 406 i=1,numele

C

O=Palf(i)*3.1415926/180
Call PUTZERO (QT)

CALL CALCUL(T,0)

CALL INVERT(T,INVT)
CALL PROD(Q,INVT,QT)
READ(16,*)ki,EPS1(i),EPS2(i),EPS3(i)
do 12 j=1,3

EPS(j)=0

STR(j)=0

12 Continue
EPS(1)=EPS1(i)
EPS(2)=EPS2(i)
EPS(3)=EPS3(i)

call PRODMV(EPS,QT,STR)
SIG1(i)=STR(1)
SIG2(i)=STR(2)
SIG3(i)=STR(3)

Qlf(i)=0

PP=2*SIG3(i)
QQ=SIG1(i)-SIG2(i)

if (QQ.eq.0) GOTO 406
Qalf(i)=0.5*ATAN2(PP,QQ)
Sub(i)=Qalf(i)-Palf(i)

If (Sub(i).le.0.005.and.Sub(i).ge.-0.005) Then
k=k+1

Qlf(i)=Palf(i)

Endif

If (Sub(i).ge.0.005.0r.Sub(i).le.-0.005) Then
QIf(3)=Qalf(i)

Endif

406 Continue

If (k.ge.195) Then

do 408 i=1,200
Qnge(i)=QIf(i)*180/3.145
408 write(25,407)i,Qnge(i),Ite
407 format(15,13.3,I5)

stop

Endif

C

C do 501 i=1,200

C 501 write(16,502)i,QIf(i)*180/3.145
C 502 format(15,f13.3)

C

close(16)

close(25)

RETURN

End
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fo) * > dokeok ook K ok
C**

c * Program to convert ABAQUS input file to FEM2D *

c * input file. *

c**

c Kook K HHok ok Rk Hokkk

SUBROUTINE PRG(TE)
integer L1,1.2
double precision EE1,E2,V12,G12,5,Q,T,TT,
- ST,QT,INVT,MA,TETA,O,TE
dimension x(663),y(663),2(663)
dimension m1(200),m2(200),m3(200),m4(200),
1 m5(200),m6(200),m7(200),m8(200)
dimension num(200),bc(200),ind(200),nbcx(700),
- nbcy(700),nbcz(700),ifnod(17),jfd(17),fnor(17)
dimension 5(3,3),Q(3,3),T(3,3),TT(3,3),INVT(3,3),
- ST(3,3),QT(3,3),2Z(100),EE1(200),E2(200),
- V12(200),G12(200), TETA(200), TE(300),MA (3,3),
- N(200)
open(15,file="datal’)
open(3,file='data2’)
numele=200
numnod=663
numf=17
numbc=104
" njunk=1
kcode=0
write (3,9)
9 format(’first try to write the main program which will be able to
1d’)
read(15,*)numnod,njunk,njunk,njunk
write(3,10)numnod ,njunk,njunk,njunk
10 format(i5,i5,i5,i5)
do 100 k=1,numnod
100 read(15,*)k,nbex(k),nbey(k),nbcz(k),x(k),y(k),z(k) kcode
read(15,*)in,numf
do 112 i=1,numf
112 read (15,*) jfnod(i),jfd(i),fnor(i)
do 400 k=1,numele
400 read(15,*)k,m1(k),m2(k),m3(k),m4(k),
1 m5(k),m6(k),m7(k),m8(k) k,kcode
do 600 k=1,numnod
600 write(3,620)k,nbcx(k),nbcy(k),nbcz(k),x(k),y(k),z(k) kcode
620 format (4i5,3f10.8,i5)
write(3,650)1,numf
650 format(2I5)
do 630 k=1,numf
630 write(3,640)jfnod(k),jfd(k),fnor(k)
640 format(215,f15.5)
write(3,660)1,numele,numele
660 format(315)
DO 144 1=1,176
N(I):].G
144 CONTINUE
DO 155 I=177,200
N(I)=56
155 CONTINUE
H=0.00028
DO 44 L1=1,16
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EE1(L1)=130.E9
E2(L1)=10.66E9
V12(L1)=0.263
G12(L1)=3.88E9

44 CONTINUE

DO 55 L2=17,56
EE1(L2)=23.58E9
E2(L2)=23.58E9
V12(L2)=0.09176
G12(L2)=4.14E9

55 CONTINUE

DO 222 K=1,numele
TETA(1)=45
TETA(2)=-45
TETA(3)=TE(K)
TETA(4)=TE(K)
TETA(5)=0

TETA(6)=90
TETA(7)=TE(K)
TETA(8)=TE(K)
TETA(9)=TE(K)
TETA(10)=TE(K)
TETA(11)=90
TETA(12)=0
TETA(13)=TE(K)
TETA(14)=TE(K)
TETA(15)=-45
TETA(16)=45

DO 133 J=17,56
TETA(J)=0

133 CONTINUE

CALL PUTZERO(MA)
CALL PUTZERO(S)

DO 70 L=1,N(K)
S(1,1)=1.0/EE1(L)
5(2,2)=1./E2(L)
S(3,3)=1./G12(L)
5(1,2)=-V12(L)/EE1(L)
S(2,1)=5(1,2)
A=8(1,1)*5(2,2)-S(1,2)*S(1,2)
Q(L,1)=5(2,2)/A
Q(1,2)=-5(1,2)/A
Q(2,1)=Q(1,2)
Q(2:2)=8(1,1)/A
Q(3,3)=G12(L)
O=TETA(L)*3.1415926/180
CALL CALCUL(T,0)
CALL INVERT(T,INVT)
CALL TRANS(T,TT)
CALL PROD(S,TT,ST)
CALL PROD(Q,INVT,QT)
DO 111 1=1,3

DO 101 J=1,3
MA(LJ)=MA(L,))+QT(L,J)*H
101 CONTINUE

111 CONTINUE

70 CONTINUE

WRITE (3,700) K,MA(1,1),MA(1,2),MA(1,3),
- MA(2,2),MA(2,3),MA(3,3)
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700 FORMAT (15,6£11.0)

222 CONTINUE

do 800 k=1,numele

800 write(3,810)k,m1(k),m2(k),m3(k),m4(k),

1 m5(k),m6(k),m7(k),m8(k),k,kcode

write(3,803)

803 format ('first try to write the may program which will be able to
1d’)

write(3,804)0,0,0,0

804 format (415)

810 format(11i5)

close(15)

close(3)

RETURN

END

C**** TO INITIALIZE THE MATRIX AT ZERO * *
C

SUBROUTINE PUTZERO (B)

C

DOUBLE PRECISION B

dIMENSION B(3,3)

C

DO 10 I=1,3

DO 20 J=1,3

B(1,J)=0

20 CONTINUE

10 CONTINUE

RETURN

END

C

C**** TO COMPUTE THE TRANSFORMATION MATRIX * *
C

SUBROUTINE CALCUL(T,0)

DOUBLE PRECISION T,SN,C,0

DIMENSION T(3,3)

SN=DSIN(O)

C=DCOS(0)

T(1,1)=C*C

T(1,2)=SN*SN

T(1,3)=2*SN*C

T(2,1)=T(1,2)

T(2,2)=T(1,1)

T(2,3)=-2*SN*C

T(3,1)=-SN*C

T(3,2)=-T(3,1)

T(3,3)=C*C-SN*SN

RETURN

END

C

C**** TO INVERT T HoHokk HRERK
C

SUBROUTINE INVERT(B,INVB)

DOUBLE PRECISION 71,Z2,B,DET,INVB,COF

DIMENSION B(3,3),INVB(3,3),COF(3,3)

C
Z1=B(1,1)*B(2,2)*B(3,3)+B(2,1)*B(3,2)*B(1,3)+B(3,1)*B(1,2)*B(2,3)
72=B(3,1)*B(2,2)*B(1,3)+B(2,1)*B(1,2)*B(3,3)+B(1,1)*B(3,2)*B(2,3)
DET=Z1-Z2

COF(1,1)=B(2,2)*B(3,3)-B(3,2)*B(2,3)
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COF(1,2)=B(3,1)*B(2,3)-B(2,1)*B(3,3)
COF(1,3)=B(2,1)*B(3,2)-B(3,1)*B(2,2)
COF(2,1)=B(3,2)*B(1,3)-B(1,2)*B(3,3)
COF(2,2)=B(1,1)*B(3,3)-B(3,1)*B(1,3)
COF(2,3)=B(3,1)*B(1,2)-B(1,1)*B(3,2)
COF(3,1)=B(1,2)*B(2,3)-B(2,2)*B(1,3)
COF(3,2)=B(2,1)*B(1,3)-B(1,1)*B(2,3)
COF(3,3)=B(1,1)*B(2,2)-B(2,1)*B(1,2)
DO 10 I=1,3

DO 20 J=1,3
INVB(1,J)=COF(J,I)/DET

20 CONTINUE

10 CONTINUE

RETURN

END

C

C*** TO TRANSPOSE T ***%%%x* * Xk Hok
C

SUBROUTINE TRANS(B,BT)

C

DOUBLE PRECISION B,BT
DIMENSION B(3,3),BT(3,3)

DO 10 I=1,3

DO 20 J=1,3

BT(I,J)=B(J,I)

20 CONTINUE

10 CONTINUE

RETURN

END

C

C*¥*¥** TO COMPUTE THE PRODUCT OF 3 MATRIX Foex TorweR
C

SUBROUTINE PROD (B,D,E)
DOUBLE PRECISION B,D,E
DIMENSION B(3,3),D(3,3),E(3,3)

DO 10 1=1,3

DO 20 J=1,3

E(1,J)=0

DO 30 K=1,3

DO 40 L.=1,3
E(1,3)=E(1,J)+D(ILK)*D(J,L)*B(K,L)
40 CONTINUE

30 CONTINUE

20 CONTINUE

10 CONTINUE

RETURN

END

C

C Hokok ok . * *xk ok *
SUBROUTINE PRODMV (VA ,MAT,VB)
C

DOUBLE PRECISION VA,VB,MAT
DIMENSION VA(3),VB(3),MAT(3,3)
C

DO 800 I=1,3

VB(I)=0

DO 801 J=1,3
VB(I)=MAT(IL,J)*VA(J)+VB(I)

801 CONTINUE
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800 CONTINUE
RETURN

END



Appendix B

Sample of an ABAQUS input file

This appendix contains an ABAQUS input file used to study the postbuckling response of
the straight fiber plate having two edges clamped. This input file is known to be compatible
with ABAQUS version 5.2.

*HEADING
BUCK
** NEUTRAL FILE GENERATED ON: 23-SEP-94 16:33:14 PATABA VERSION: 3.1A

L3

** NODE DEFINITIONS

%%

*NODE

1, .457300007E+00, .215000004E+00, .000000000E+00
2, .457392931E4-00, .211236179E+-00, .000000000E+00
3, .457672894E+00, .207468569E+00, .000000000E+-00
4, .458135098E+00, .203747571E+00, .000000000E+00
5, .458777696E+-00, .200064704E 400, .000000000E+00

529, .479750007E+00, .000000000E+00, .000000000E +00
530, .493187517E+00, .000000000E+00, .000000000E+00
531, .506624997E+00, .000000000E+00, .000000000E+00
532, .520062506E+00, .000000000E-+00, .000000000E+00
533, .533500016E+00, .000000000E+00, .000000000E+00
A%k

** NODE SETS FROM NAMED COMPONENTS

152
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Lk

*NSET, NSET=SNODE
261 262 263 264 265 266 267 268 270 271 272 273 274 275 276
277

* ok

** ELEMENT DEFINITIONS

Bk

*ELEMENT, TYPE=S8R5 , ELSET=PID0
1, 3,1, 27, 29, 2, 18, 28, 19

2, 5, 3, 29, 31, 4, 19, 30, 20

3,7, 5, 31, 33, 6, 20, 32, 21

4,9, 7,33, 35, 8, 21, 34, 22

5,11, 9, 35, 37, 10, 22, 36, 23

155, 499, 497, 521, 523, 498, 511, 522, 512
156, 501, 499, 523, 525, 500, 512, 524, 513
157, 503, 501, 525, 527, 502, 513, 526, 514
158, 505, 503, 527, 529, 504, 514, 528, 515
159, 507, 505, 529, 531, 506, 515, 530, 516
160, 509, 507, 531, 533, 508, 516, 532, 517
*EQUATION

2

SNODE,1,-1.0,269,1,1.0

** ELEMENT PROPERTIES

* SHELL SECTION, ELSET=PID0, COMPOSITE
0.000252,3,MAT PL45

0.000252,3, MAT,PLM45
0.000756,3,MAT,ZERO
0.000252,3,MAT,PL90
0.001008,3,MAT,ZERO
0.000252,3,MAT,PL90
0.000756,3,MAT,ZERO
0.000252,3,MAT,PLM45
0.000252,3,MAT,PL45

* MATERIAL, NAME=MAT

* ELASTIC, TYPE=LAMINA
130E9,10.66E+09,0.263,3.88E+09,3.88E+09,3.5E+09
* ORIENTATION, NAME=PL45
1,0,0,0,1,0

3,45

* ORIENTATION, NAME=PLM45
1,0,0,0,1,0

3,-45

* ORIENTATION, NAME=ZERO
1,0,0,0,1,0

3,0

* ORIENTATION, NAME=PL90
1,0,0,0,1,0

3,90

*ok

** LOAD CASE 1
%k
*STEP,NLGEOM
LOAD CASE 1
*STATIC

.08, 1.

Ak
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*CLOAD, OP=NEW
269, 1, 50000.0000
422, 3, -25.0000

* %k

*BOUNDARY, OP=NEW
1, 2,,0.0

1, 4,, 0.0

1, 6,, 0.0

18, 2,, 0.0

18, 4,, 0.0

532, 5,, 0.0

533, 1,, 0.0

533, 3,, 0.0

533, 5,, 0.0

533, 6,, 0.0

*NODE FILE, SUMMARY=NO
U

*NODE FILE,SUMMARY=NO
CF

*NODE PRINT, SUMMARY=NO
U,CF1

*END STEP
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