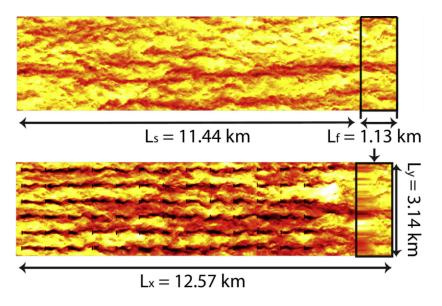
Characterizing Long-Time Variations in Fully Developed Wind-Turbine Array Boundary-Layers using Proper Orthogonal Decomposition

Claire VerHulst & Charles Meneveau

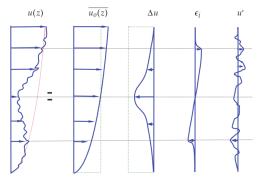
NAWEA Meeting in Blacksburg, VA Graduate Student Symposium June 8, 2015



Fully developed wind-turbine array boundary-layers

Photograph by Christian Steiness of UniFly A/S on February 12, 2008

Large-scale variations in the ABL


R.J.A.M. Stevens et al., Renewable Energy 68 (2014) 46-50

Sample basis

Degrees of freedom:

- ▶ LES: 1+ million gridpoints for each variable at each time
- ► The real physical system: ?? (not so many repeated info)

Example of a simplified, intuitive basis:

Trujillo et al., "Light detection and ranging measurements of wake dynamics.

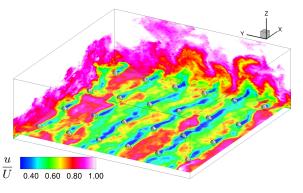
Part II: Two-dimensional scanning," Wind Energy, 2011.

A new basis from POD

Use such a basis to measure effect of the following:

- Modeling scheme
- ▶ Wind speed and direction
- ▶ Ambient turbulence
- ► Atmospheric stability
- ▶ ..

Compared to the sample basis (prev. slide), the POD basis is unambiguous and optimal (TKE capture), though less intuitive.


Possible uses:

- ▶ Validation of code/experiments (captures dynamics)
- ▶ Evaluation of the influence of a parameter or operating condition
- ▶ Identify flow structures

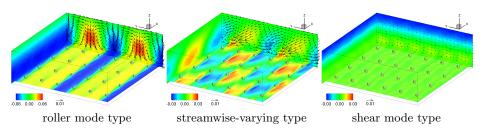
Review POD of 3D LES fields
Calculation of the POD mode time-coefficients
How well do the POD modes reconstruct the velocity fields?
How does each category of POD mode represent the flow?
Summary and future directions

LES dataset (input to the POD)

The following image is an instantaneous snapshot of streamwise velocity in a fully developed wind farm LES:

We see e.g. large-scale structures in the atmospheric flow and high- and low-speed streaks between turbine columns.

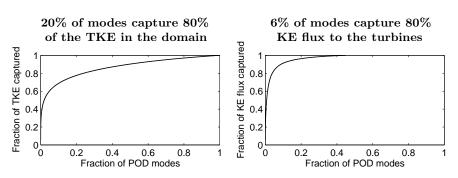
Input to the POD is a set of thousands of these 3D velocity fields.


3D Shapshot Proper Orthogonal Decomposition (POD)

The POD method is based on the following decomposition:

$$u_i(\mathbf{x}, t) = \bar{u}_i(\mathbf{x}) + \sum_{k=1}^{N} a^k(t) \psi_i^k(\mathbf{x})$$

- ▶ POD Input: $u_i(\mathbf{x}, t)$ is a single "snapshot" (3D velocity field)
- ▶ POD Input: $\bar{u}_i(\mathbf{x})$ is the time-averaged velocity
- ightharpoonup POD Input: N is the total number of snapshots
- ▶ POD Output: $a^k(t)$ is the time coefficient for the kth POD mode
- ▶ POD Output: $\psi_i^k(\mathbf{x})$ is the kth POD mode


The POD modes are an optimal basis for the fluctuating velocity field.

VerHulst and Meneveau, Physics of Fluids, 025113 (2014)

POD mode strength

The mode's strength, $\overline{a^k(t)a^k(t)} = \lambda^k$, represents average contribution to TKE in the domain. The modes are ordered so $\lambda^k > \lambda^{k+1}$.

But the mode strength says nothing about *when* a POD mode is strongly present in the flow, or the *time scales* over which it varies in magnitude.

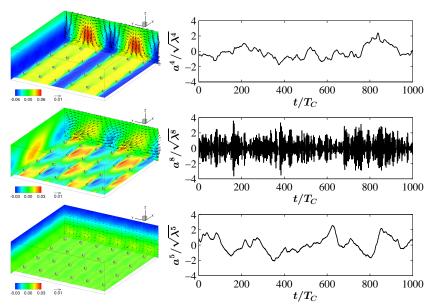
VerHulst and Meneveau, Physics of Fluids, 025113 (2014)

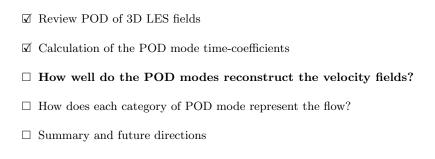
V	Review POD of 3D LES fields
	Calculation of the POD mode time-coefficients
	How well do the POD modes reconstruct the velocity fields?
	How does each category of POD mode represent the flow?
	Summary and future directions

Calculation of the POD mode time-coefficients

Recall the decomposition:

$$u_i'(\mathbf{x},t) = u_i(\mathbf{x},t) - \bar{u}_i(\mathbf{x}) = \sum_{k=1}^N a^k(t)\psi_i^k(\mathbf{x}).$$


Note also that the POD modes are ortho-normal: $\langle \psi_i^k(\mathbf{x}) \psi_i^l(\mathbf{x}) \rangle_{xyz} = \delta_{kl}$.


The coefficients $a^k(t)$ are calculated by projecting the fluctuating velocity field onto each POD mode:

$$a^k(t) = \langle \psi_i^k(\mathbf{x}) u_i'(\mathbf{x}, t) \rangle_{xyz}.$$

POD time coefficients, three examples

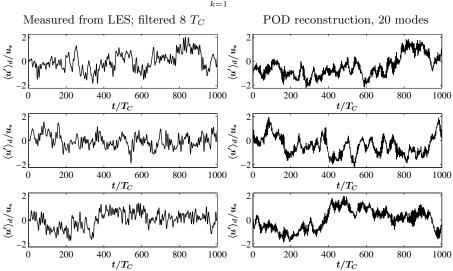
Normalized $a^{k}(t)$ for three modes (with T_{C} avg. inter-row convective time):

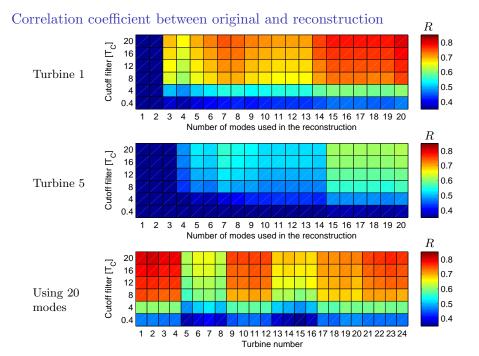
Partial reconstructions at hub height

Instantaneous reconstruction of streamwise velocity field at hub height

$$u'(\mathbf{x},t) = u(\mathbf{x},t) - \overline{u}(\mathbf{x}) \approx \sum_{k=1}^{50} a^k(t) \psi_u^k(\mathbf{x})$$
LES field
$$u'/u_*$$

$$3\pi/4$$


$$= \frac{\pi}{3\pi/4}$$


$$0 = \frac{\pi}{3\pi/4}$$

POD modes 1-50 capture some large-scale features in the atmospheric flow but miss small-scale fluctuations.

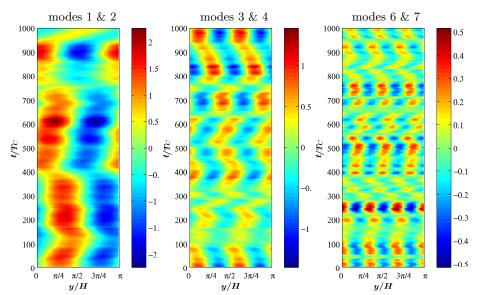
Reconstructions of disk velocity using 20 POD modes (0.3% of total)

$$\langle u'(\mathbf{x},t)\rangle_d \approx \sum_{k=1}^{20} a^k(t) \langle \psi_i^k(\mathbf{x})\rangle_d$$

☑ Review POD of 3D LES fields
 ☑ Calculation of the POD mode time-coefficients
 ☑ How well do the POD modes reconstruct the velocity fields?
 ☐ How does each category of POD mode represent the flow?
 ☐ Summary and future directions

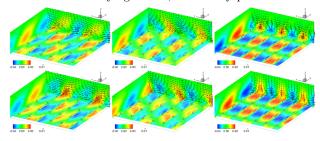
(1) Roller modes

Examples of roller modes, ordered by pair:



Effects of the roller modes:

- These roller modes capture the majority of the TKE and KE flux in the domain
- Roller mode pairs create meandering streaks in the flow

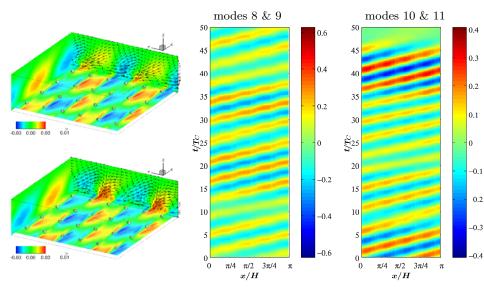

(1) Roller modes

Spanwise cut as function of time; reconstruction from mode pairs

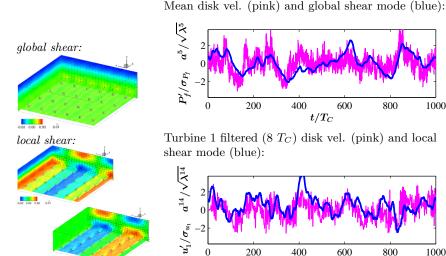
(2) Streamwise-varying mode pairs

Examples of streamwise-varying modes, ordered by pair:

Example time-series for one pair:



Effects of the streamwise-varying modes:


▶ Represent advection of velocity perturbations with mean flow

(2) Streamwise-varying mode pairs

Streamwise cut as function of time; reconstruction from mode pairs

(3) Shear modes

1000

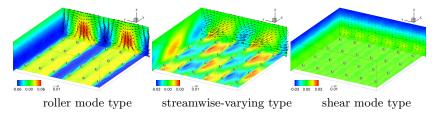
1000

Effects of the shear modes:

► Captures much of the long-time variations in velocity (power)

 t/T_C

- ☑ Review POD of 3D LES fields
- \square Calculation of the POD mode time-coefficients
- ✓ How well do the POD modes reconstruct the velocity fields?
- ☑ How does each category of POD mode represent the flow?
- \square Summary and future directions

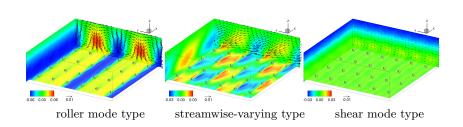

Summary and future directions

Summary:

- ▶ Considered POD temporal variation and partial reconstructions
- ▶ Most energetic POD modes capture long-time variation
- ▶ Roller modes (majority TKE and KE flux): streak meandering
- ▶ Streamwise-varying modes: advective transport
- ▶ Shear mode: global streamwise velocity variation

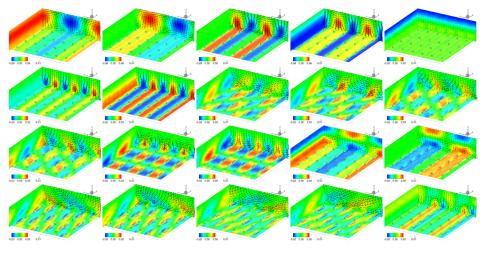
Possible future directions:

- ▶ Correlation with "important events" in the flow?
- Stochastic model for POD amplitudes (reduced order model for large-scale velocity variations)



Summary and future directions

Thank you for your attention.



Top 20 POD-A (aligned) modes

The ordering is from left to right, then down.

