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Abstract

Background: A better understanding of mechanisms underlying dose-effects of probiotics in their applications as
treatments of intestinal infectious or inflammatory diseases and as vaccine adjuvant is needed. In this study, we
evaluated the modulatory effects of Lactobacillus rhamnosus GG (LGG) on transplanted human gut microbiota
(HGM) and on small intestinal immune cell signaling pathways in gnotobiotic pigs vaccinated with an oral
attenuated human rotavirus (AttHRV) vaccine.

Results: Neonatal HGM transplanted pigs were given two doses of AttHRV on 5 and 15 days of age and were
divided into three groups: none-LGG (AttHRV), 9-doses LGG (AttHRY + LGG9X), and 14-doses LGG (AttHRV +
LGG14X) (n=3-4). At post-AttHRV-inoculation day 28, all pigs were euthanized and intestinal contents and ileal
tissue and mononuclear cells (MNC) were collected. AttHRV + LGG14X pigs had significantly increased LGG titers in
the large intestinal contents and shifted structure of the microbiota as indicated by the formation of a cluster that
is separated from the cluster formed by the AttHRV and AttHRV + LGGOX pigs. The increase in LGG titers concurred
with significantly increased ileal HRV-specific IFN-y producing T cell responses to the AttHRV vaccine reported in our
previous publication, suggesting pro-Th1 adjuvant effects of the LGG. Both 9- and 14-doses LGG fed pig groups
had significantly higher IkBa level and p-p38/p38 ratio, while significantly lower p-ERK/ERK ratio than the AttHRV
pigs, suggesting activation of regulatory signals during immune activation. However, 9-doses, but not 14-doses LGG
fed pigs had enhanced IL-6, IL-10, TNF-a, TLR9 mRNA levels, and p38 MAPK and ERK expressions in ileal MNC.
Increased TLR9 mRNA was in parallel with higher mRNA levels of cytokines, p-NF-kB and higher p-p38/p38 ratio in
MNC of the AttHRV + LGGOX pigs.

Conclusions: The relationship between modulation of gut microbiota and regulation of host immunity by different
doses of probiotics is complex. LGG exerted divergent dose-dependent effects on the intestinal immune cell
signaling pathway responses, with 9-doses LGG being more effective in activating the innate immunostimulating
TLR9 signaling pathway than 14-doses in the HGM pigs vaccinated with AttHRV.
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Background

Intestinal microbiota consists of approximately 10'* bac-
teria that can be classified into more than 1000 species
[1]. Intestinal microbiota clearly impact mucosal im-
mune responses in infants [2], yet our understanding of
how enteric immunity is modulated by gut microbes is
limited because of difficulties in performing such studies
in humans, especially in infants due to ethical reasons.
Germ-free pigs transplanted with human gut microbiota
(HGM) provide a model system that is ideal for the
study of the manifold effects of human microbiota on
health and disease [3]. Human gastrointestinal tract (GI)
can be colonized at birth by facultative anaerobes in-
cluding enterobacter, lactobacillus and streptococcus in
genus level, forming a reducing environment during the
first week of life enabling colonization by strict anaerobes
such as bacteroides, clostridium, bifidobacterium in genus
level [4]. This microbial colonization contributes to recruit-
ment of immune cells to the gastrointestinal tract and is a
major contributor to the development of the mucosal and
systemic immune systems in neonates [5]. Colonization in
early infancy is crucial in relation to the final composition
of the permanent microbiota in adults and also in inducing
immunological maturation in the intestine and shaping
future immune responses of the host [6].

Many previous studies have demonstrated that probiotic
Lactobacillus rhamnosus GG (LGQG) strain has beneficial
effects on intestinal function, including stimulating devel-
opment and mucosal immunity, maintaining and improv-
ing intestinal barrier function, and prolonging remission
in ulcerative colitis and pouchitis [7]. Studies have also
demonstrated the adjuvant effect of LGG in enhancing
the immunogenicity of rotavirus, influenza virus, polio-
virus, and Salmonella typhi Ty21a vaccines [8]. Probiotics
modulate immunity in the GI tract by interacting with a
range of receptors on intestinal epithelial cells (IEC),
M-cells and dendritic cells [9]. Probiotics also enhance im-
munity beyond the GI tract through interactions with the
common mucosal immune system.

Microorganisms can be sensed via pattern recognition
receptors (PRRs) like Toll-like receptors (TLRs) to initi-
ates innate immune response, in GI tract, thus affecting
the development of the subsequent adaptive immune re-
sponse. Due to the heavy bacterial antigen load in the
lumen, the expression of PRRs is tightly regulated in IEC
[10]. The TLR pathways activate several different signal-
ing elements, including nuclear factor kB (NF-kB) and
extracellular signal-regulated kinase (ERK)/c-Jun-NH2-
kinase (JNK)/p38, which regulate many immunologically
relevant proteins [11]. NF-kB activation is essential for
eliciting protective antigen-specific immune responses after
vaccination [12, 13]. Modulation of the signaling pathway
will have significant impact on vaccine immunogenicity
and efficacy.
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In this study, we used HGM transplanted gnotobiotic
(Gn) pigs to investigate how two different dosing regimens
of LGG impacted the intestinal bacterial communities and
modulated the immune signaling pathway responses to
an oral attenuated human rotavirus (AttHRV) vaccine.
The knowledge will facilitate the selection of proper
dosage of probiotics in their applications as vaccine
adjuvants and as treatments of intestinal infectious or
inflammatory diseases.

Results

The LGG titers were the highest in AttHRV + LGG14X pigs
and increased over time in all pigs

The LGG titers were higher (PPD 10, 15 and 33) or sig-
nificantly higher (PPD 28) in the AttHRV +LGG14X
pigs than those of AttHRV and AttHRV + LGG9X pigs
(Fig. 1). The LGG titers increased over time from the be-
ginning of LGG feeding for both dosage groups. Interest-
ingly, for the non-LGG fed AttHRV pigs, the LGG titers
also increased. At PPD 33, the LGG titers were signifi-
cantly higher than at PPD 10 (the first sampling time
point) for all three pig groups.

Bacterial communities in feces of HGM transplanted pigs
The DGGE profile of the HGM transplanted Gn pigs at
PPD 33 are showed in Figs. 2 and 3. There is no signifi-
cant difference in species richness (DGGE band number,
Fig. 3a) and Shannon index of diversity (Fig. 3b) among
different treatment groups. However, there is a trend for
higher richness and diversity in the AttHRV + LGG9X
pigs than the other two groups. The similarity index of
the individual pigs ranged from 0.79 to 0.89.

Based on the similarity, the bacterial communities of
AttHRV + LGG14X pigs (Cluster A) is separated from
the bacterial communities of the AttHRV and AttHRV +
LGG9X pigs (Cluster B) (Fig. 3c). Thus, 14 doses of
LGG influenced the structure of the transplanted micro-
biota whereas 9 doses of LGG increased its richness and
diversity, although not statistically significant.

The IL-6, TNF-q, IL-10 and TLR9 mRNA levels in AttHRV +
LGGIX pigs were significantly higher than the other groups
The relative mRNA levels of the selected cytokine in ileal
MNCs were measured by real-time PCR. The IL-6 mRNA
levels were significantly higher in AttHRV + LGG9X pigs
than that in AttHRV pigs (Fig. 4a). No significant differ-
ences were found in IL-8 mRNA levels among different pig
groups. The mRNA levels of TNF-a and IL-10 in AttHRV
+ LGGIX pigs were also significantly higher than those in
AttHRV and AttHRV + LGG14X pigs.

The relative mRNA levels of TLR4 were slightly but
statistically higher in AttHRV + LGG9X pigs than that in
AttHRV pigs (Fig. 4b). The mRNA levels of TLRY in
AttHRV + LGG9X pigs were significantly higher than
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Fig. 1 LGG fecal shedding in HGM-tranplanted Gn pigs fed none (AttHRV), 9-dose (AttHRV + LGGOX) or 14-dose (AttHRV + LGG14X) of LGG. PID,
post-first-AttHRV-inoculation day. Different lowercase letters on top of bars indicate significant differences compared among time points for the
same treatment group; different capital letters on top of bars indicate significant differences compared among groups at each time point, while
shared letters indicate no significant difference (ANOVA-GLM, p < 0.05; n = 7-9)

those in AttHRV and AttHRV + LGG14X pigs. TLR2
mRNA levels showed the same trend but did not differ
significantly among the pig groups. Thus, 9 doses, but
not 14 doses of LGG significantly enhanced the innate
cytokine and TLR responses at transcriptional level in
the AttHRV-vaccinated HGM pigs.

The signal pathway molecule expression in the ileal MNCs
Signal pathway molecular protein expression in the ileal
MNCs were detected by western-blot and presented in
Figs. 5 and 6. The relative levels of p-p38 were significantly
higher in AttHRV + LGG9X pigs than that in AttHRV pigs.
There is no significant difference in p38 among different
treatment groups. The AttHRV + LGG9X and AttHRV +
LGG14X pigs had significantly higher ratios of p-p38/
p38 than the AttHRV pigs; however, there was no signifi-
cant difference between AttHRV + LGG9X and AttHRV +
LGG14X pigs (Fig. 5a).

The levels of ERK were significantly higher in AttHRV
+ LGGI9X pigs than in AttHRV pigs. No significant differ-
ence was found in p-ERK among different treatment
groups. The ratios of p-ERK/ERK were significantly lower
in AttHRV + LGG9X and AttHRV + LGG14X pigs than
AttHRYV pigs; however, there was no significant difference
between AttHRV + LGG9X and AttHRV + LGG14X pigs
(Fig. 5b).

The level of p-NF-kB in AttHRV pigs did not differ
significantly from that in AttHRV + LGG9X and
AttHRV + LGG14X pigs (Fig. 6b). The levels of p-NF-kB
were significantly higher in AttHRV + LGG9X pigs than
in AttHRV + LGG14X pigs. IkBa were almost undetect-
able in AttHRV pigs (Fig. 6a). AttHRV + LGG9X and
AttHRV + LGG14X pigs had significantly higher IkBa
levels than AttHRV pigs; no difference was found be-
tween the AttHRV +LGG9X and AttHRV + LGG14X

pigs (Fig. 6c).

Immunohistochemistry for CD80, IFN-y, p38, p-p38, ERK
and pERK in ileal tissue

There is no significant difference in CD80 (Fig. 7a) or
IFN-y (Fig. 7b) expression levels among different treat-
ment groups in immunohistochemistry. Although there
is no significant difference in p38 observed among
different treatments in immunohistochemistry (Fig. 8a),
the AttHRV + LGG9X pigs had significantly higher p-
p38 expression levels than the AttHRV and AttHRV +
LGG14X pigs (Fig. 8b). The ERK expression levels of the
AttHRV + LGG9X pigs were higher than the AttHRV
pigs and significantly higher than the AttHRV +
LGG14X pigs (Fig. 8c). The AttHRV + LGG9X pigs had
significantly higher pERK expression level than the
AttHRV pigs (Fig. 8d).
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Fig. 2 DGGE of PCR products of V6-V8 regions of 16S rDNA from bacteria in large intestinal contents of HGM-transplanted Gn pigs fed none
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Discussion

Intestinal microbiota play critical roles in the development
of host immune responses [1]. The composition of
gut microbes differentially affects the host intestinal
mucosal immunity [3]. High levels of variation are ap-
parent in the microbiota of neonates over time and
between individuals [14]. Studies using Gn animals
have the advantages of highly controlled repeatable
experiment design, which reduces inter-individual vari-
ation [15]. In addition, Gn pigs with a humanized micro-
biota better mimic the human infants than the germ-free
pigs without gut microbiota. As reported in our previous
publications [16, 17], HGM from a single healthy newborn
infant was successfully transplanted into newborn Gn
pigs. In this study, we confirmed that the bacterial
communities in Gn pigs showed high similarity to the
human donor in DGGE band patterns. Previous research
indicated that human flora associated pigs vyielded
TGGE (temperature gradient gel electrophoresis) pat-
terns similar to each other as well as to the human

donor, but remarkably different from conventionally
raised pigs [18].

The relatively high titers of LGG found in feces and
LIC of pigs without LGG feeding indicate that there
were native LGG in the human donor stool. LGG are
often present in intestinal tract of humans [19, 20]. The
titers of LGG in LIC were significantly higher in the
AttHRV + LGG14x pigs than that in the AttHRV and
AttHRV + LGG9X pigs at PPD 28 (PID 23), thus the
high dose LGG feeding regimen increased the LGG fecal
recovery. The significantly higher LGG titers concurred
with significantly enhanced ileal HRV-specific IFN-y
producing T cell responses to the AttHRV vaccine com-
pared to AttHRV and AttHRV + LGG9X pigs reported in
our previous publication [16], suggesting the pro-Thl
adjuvant effect of LGG.

Probiotics are recognized to benefit the host through
improvement of the balance of intestinal microbiota and
through augmentation of host defense system [21, 22].
Probiotics can modulate the intestinal immune system
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Fig. 3 Bacterial community richness (a), diversity (b) and similarity index (c) of DGGE profiles in the large intestinal contents of HGM-transplanted
Gn pigs fed none (AttHRV), 9-doses (AttHRV + LGG9X) or 14-doses (AttHRV + LGG14X) of LGG. Pig No. 1-3 from AttHRV group; pig No. 4-6 from

by either directly affecting immune cell activities or
through the positive manipulation of the gut microbiota
[23]. A clinical study tested the impact of probiotics on
the microbiome structure in 6-month old infants fed
1x10° CFU/day of LGG and found that communities
containing high LGG levels clustered and were associ-
ated with a distinct bacterial community composition
[24]. In the current study, 14 doses of LGG feeding in-
fluenced the structure of the transplanted microbiota
whereas 9 doses of LGG slightly increased its richness
and diversity. Interestingly, the slightly increased rich-
ness and diversity of microbiota in the AttHRV +
LGGI9X pigs, but not the significantly increased LGG

fecal recovery in the AttHRV + LGG14X pigs were asso-
ciated with the enhanced cytokine and TLR mRNA
levels and signaling pathway activation in the ileal
MNCs of the HGM Gn pigs. The difference in the two
LGG feeding regimens for their timing in relation to
AttHRYV vaccine inoculation and euthanasia of the pigs
may also contribute to the difference besides the LGG
dosage. Further studies are needed to evaluate the effect
of timing/frequency of probiotic intakes on modulating
gut microbiome and immune responses.

Many in vitro studies showed that probiotic bacteria
stimulate innate immune cells (i.e., dendritic cells, mac-
rophages) to promote expression of various pro- and
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antinflammatory cytokines and TLRs [9, 22], but evi-
dence for this stimulatory effect in vivo, especially in
the small intestine is limited. In this study, we found
significantly higher mRNA levels of IL-6, TNF-a, and
IL-10 in the ileal MNCs of the 9 doses, but not 14
doses LGG fed pigs compared with the non-LGG fed
pigs. Our results concur with another dose response
study reporting that Lactobacillus rhamnosus ATCC
7469 feeding for one week at 1x 10° CFU/dose, but
not 1 x10"* CFU/dose upregulated mRNA levels of
jejunal IL-2, ileal TGF-B1 and ileal IL-10 after F4 + ETEC
challenge in piglets [25].

Toll-like receptors initiate NF-kB and MAPK cascades,
which are the defense-related transcriptional factors.
Their activation leads to the production of cytokines
[26]. Excessive immune responses in the intestinal epithe-
lium can be regulated via multiple mechanisms, including
modulations of various TLRs expression and localization,
or mediation of downstream immune-related cell signal-
ing activation like NF-kB pathway [27]. These mecha-
nisms are exerted synergistically to maintain immune
responses homeostasis in GI tract [27].

The role of TLR2 in the induction of innate responses by
probiotic lactobacilli including L. rhamnosus in immune
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cells has been extensively demonstrated. TLR2 recognizes
gram-positive bacterial lipoteichoic acid, peptidoglycan and
lipoproteins. A previous study showed that LGG enhanced
TLR2 mRNA level, and TLR2 was required for NF-kB acti-
vation in macrophages [28]. Another recent study con-
firmed the involvement of TLR2 signaling but not TLR9 in
the upregulation of IL-1f, IL-6, IFN-y and IL-10 mRNA
levels induced by L. rhamnosus in porcine intestinal anti-
gen presenting cells challenged with virus dsRNA analogue
poly (L:C) [29]. In the present study, no significant differ-
ence was found in the level of TLR2 mRNA level among
treatment groups. TLR9 recognizes bacterial CpG DNA
and synthetic unmethylated CpG oligonucleotide mimics
(CpG-ODN) [30]. It is known that the genomes of many
lactobacilli strains are rich in CpG islands [31]; therefore,
lactobacilli may exert a stimulating effect via activation of
TLR9 on immune cells. Expression of TLR2, TLRY, and
NOD1 mRNA is upregulated in the intestines of pigs pre-
treated with a low, but not a high, dose of L. rhamnosus

[32]. In the present study, TLR9 mRNA level was signifi-
cantly increased in AttHRV + LGG9X pigs compared to
the other two groups. The significantly higher TLR9
mRNA level was associated with the significantly higher
IL-6, IL-10, and TNF-a mRNA expression in the AttHRV
+ LGGY9X pigs compared to the other groups, indicating
that CpG induced TLR9 signaling is likely one of the path-
ways that LGG stimulated the secretion of the cytokines.
Our results are consistent with the observation that L.
rhamnosus induced cytokine responses (IL-6, IFN-y,
TNF-a, and IL-10) in a TLR9-dependent manner in
human blood MNCs, but the role of TLR2 could not
be demonstrated [33].

TLR4 recognizes lipopolysaccharide from gram-negative
bacteria. In this study, the level of TLR4 mRNA in
AttHRV + LGG9X pigs was slightly but statistically higher
than that in the non-LGG fed AttHRV pigs. The effect of
LGG on TLR4 mRNA levels can only be indirectly since
LGG does not contain TLR4 ligands. In general, TLR4
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level is downregulated by anti-inflammatory probiotics
[34]. In the present study, the increase in TLR4 mRNA
levels is consistent with the increased pro-inflammatory
cytokine responses in the AttHRV + LGG9X pigs. The
possible reasons for the upregulated TLR4 can be the in-
creased richness and diversity of microbiota in the
AttHRV + LGGYX pigs and that certain bacteria species in
the microbiota promoted TLR4 expression.

In response to inflammatory signals, the MAPK cas-
cade is activated through phosphorylation of p38, ERK,
and JNK, which is associated with the activation and
translocation of NF-kB from the cytoplasm to the nucleus
[35]. NF-kB is known to play a central role in inflamma-
tory responses and is involved in transcriptional regulation
of many cytokine genes, including TNF-a [36]. Previous

research suggested that both NF-kB and p38 MAPK
signaling pathways were important for the production
of cytokines and chemokines induced by L. acidophilus
NCEFM ([37]. Inhibition of MAPKs family pathway, such as
ERK, p38, and JNK, alleviates the production of pro-
inflammatory cytokines [38]. Previous research also indi-
cated that p38 MAPK and ERK-1/2 cross-regulate each
other such that inhibition of one enhances activation of
the other and the effector functions induced in response
to different stimuli [39]. We therefore examined whether
LGG could induce cytokine responses by activation of p38
MAPK and ERK1/2. In western blot analysis, the AttHRV
+LGGY9X and AttHRV + LGG14X pigs had significantly
higher ratio of p-p38/p38, whereas lower p-ERK/ERK than
the AttHRV pigs. This result verified their reciprocal
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association. The IHC analysis generally verified the result
that AttHRV + LGG9X had the highest p-p38 and ERK1/2
in western blot. There was one exception for pERK that
the AttHRV + LGG9X pigs had significantly higher pERK
than the AttHRV pigs in IHC (Fig. 8d) but not in western
blot (Fig. 5b) analysis.

ERK pathway plays key regulatory functions in a di-
verse spectrum of biological processes such as cell
proliferation, differentiation, survival, and motility [40]
and has important immunoregulatory role in maintaining
homeostasis in the intestine [41, 42]. In this study, 9 doses
LGG increased levels of ERK and pERK as observed in
western blotting and IHC, respectively, indicating that the
activation of ERK pathway by LGG could have protective
role against viral infection-induced mucosal injury.

AttHRV + LGG9X pigs had significantly higher levels
of p-NF-kB than the AttHRV + LGG14X pigs; but nei-
ther pig group significantly differed from the AttHRV
pigs. The result indicates that 9 doses LGG further
activated the NF-kB, but 14 doses prevented the further
NF-kB activation. NF-kB is located in the cytoplasm as an
inactive complex bound to IkBa, which is phosphorylated
and subsequently degraded, and the degradation of IkBa
results in the dissociation of activated NF-kB from IkBa
[43]. Pre-treatment of HT29 and T84 polarized cell mono-
layers using purified DNA from LGG delayed NF-kB acti-
vation, stabilized levels of IkBa, and attenuated IL-8
secretion in response to stimulation by Salmonella DNA

or TNF-a [44]. In the present study, both LGG dosing
regimens significantly increased the IkBa level, which
indicates that LGG may have inhibited inflammation
by increasing the IkBa level to balance the activation
of NF-kB [35]. Therefore, the reduced transcription of
TNF-a, IL-6 and IL-10 in the AttHRV + LGG14X pigs
may not be due to the lack of impact of LGG on the
signaling pathways, rather it reflected the active effect of
the higher dose LGG in attenuation of NF-kB activation.
Adequate pro-inflammatory cytokine responses contrib-
ute to clearance of pathogen, but excessive inflammatory
immune responses lead to tissue injuries. Therefore, an
appropriate balance between pro-inflammatory and anti-
inflammatory mediators is crucial for an effective and safe
response against infection [45]. IL-10 is a potent immuno-
regulatory cytokine that might be beneficial in the course
of infection by attenuating the excessive host inflamma-
tory response induced by upregulated pro-inflammatory
cytokines and thus controlling immunopathology. Several
studies have demonstrated that induction of the regulatory
IL-10 by probiotic lactobacilli such as L. rhammnosus plays
an important role in controlling inflammatory process
upon a viral infection to minimize tissue injury [46]. In
the present study, we showed that 9 doses LGG induced
higher mRNA level of both pro-inflammatory cytokines
(TNF-«, IL-6) and anti-inflammatory cytokine IL-10
when compared with AttHRV and AttHRV + LGG14X.
Therefore, the improved production of IL-10 induced
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Fig. 8 LGG treatment modulates specific MAPK family members in ileal tissues of the HGM-transplanted Gn pigs. The levels of p38 (a), pp38 (b),

ERK (c), and pERK (d) were evaluated using semi-quantitative histopathology image analysis (ImageJ) following immunohistochemistry staining of
paraffin embedded ileum sections. AttHRV, n = 3; AttHRV + LGG9X, n =4; and AttHRV + LGG14X, n =4. See Fig. 4 legend for statistical analysis
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by appropriate dose of LGG would allow an efficient
regulation of the inflammatory response and avoid tissue
damage during intestinal viral infections. Modulation of
the NF-kB and p38 MAPK signaling pathways may also
have a significant impact on AttHRV vaccine immunogen-
icity and efficacy via upregulating cytokine productions.
Indeed, the increased IL-6 and TNF-a mRNA levels were
associated with significantly enhanced intestinal IgA re-
sponses in the AttHRV + LGG9X pigs postchallenge as we
reported previously [16]. Although the vaccine-induced
protection over all did not differ significantly among
AttHRV only, AttHRV + LGG9X and AttHRV + LGG14X

groups, the AttHRV + LGG9X pigs had the shortest mean
duration of diarrhea and virus shedding and significantly
lower cumulative fecal diarrhea scores [16].

There is an apparent discrepancy between the signifi-
cantly increased HRV-specific IEN-y producing T cell re-
sponses in the 14 doses, but not 9 doses, LGG fed HGM
pigs [16] and the significantly stronger cytokine, TLR4,
TLR9 and p38 MAPK signaling pathway responses in
the 9 doses, but not 14 doses, LGG fed HGM pigs. It is
important to note the difference in the cell populations
studied for the T cell responses (CD3 + CD4+ and CD3
+ CD8+ T cells) versus the signaling pathway responses
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(total MNC and whole ileum tissues). It might have
made interpreting the results and discrepancy easier if
our studies were performed using sorted T cells and
dendritic cells. An in vitro study using human dendritic
cells showed that LGG significantly down-regulated p38
expression and negatively regulated NF-kB through
down-regulatory effect on miR-146a expression [47]. Al-
though the role of NF-kB pathway in T cell development
and function has been well studied [48], the relationship
between p38 MAPK signaling pathway and T cell develop-
ment is not so clear. Further studies are needed to explain
the observed discrepancy.

Conclusions

In conclusion, the two different LGG doses exerted di-
vergent effects on gut microbiota structure and on intes-
tinal immune responses. These results are important
since they revealed that the relationship between modu-
lation of gut microbiota and regulation of host immunity
using probiotics is complex. More in vivo studies are
needed to better understand mechanisms of action of this
probiotic strain in its applications as treatment of intes-
tinal infectious or inflammatory disease and as a vaccine
adjuvant. An improved understanding of the molecular
mechanisms of immunomodulation will facilitate the de-
velopment of next-generation probiotics and will enhance
our understanding of host-microbial interactions.

Methods

Attenuated HRV vaccine and LGG

The cell-culture adapted AttHRV Wa strain (G1P1A [8])
was used as the vaccine at a dose of 5 x 107 fluorescent
focus forming units (FFU) [49]. The virus titer was de-
termined by using cell culture immunofluorescence
(CCIF) assay and was expressed as FFU/ml as described
previously [50]. Probiotic LGG (ATCC# 53103) was
propagated in lactobacilli MRS broth (Weber, Hamilton,
NJ, USA). LGG inoculums were prepared and titrated as
we previously described [51].

Experimental design

Pigs were derived by surgery from near-term sows
(Large White cross bred) and maintained in germfree
isolator units as described [52]. All pigs were orally inoc-
ulated at 1, 2 and 3 day of age with 1 ml of 5 % human
stool suspension (a pool collected from a healthy infant
at 17-23 days of age) as we described previously [16].
The HGM Gn pigs (both males and females) were ran-
domly assigned to three LGG treatment groups with four
pigs in each group as follows: no LGG (AttHRV), 9 doses
LGG (AttHRV + LGG9X), and 14 doses LGG (AttHRV +
LGG14X). Daily LGG feeding started at 3 days of age for
9 days (3—11 days of age) from 10° to 10° colony forming
units (CFU)/dose or for 14 days (3—16 days of age) from
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10° to 10” CFU/dose in AttHRV + LGG9X and AttHRV +
LGG14X groups, respectively, with 10-fold incremental
LGG dose increase every day. Non-LGG fed pigs were
given 3 ml of 0.1 % peptone water as we described
previously [53].

All pigs were orally inoculated with two doses of the
AttHRV vaccine at 5 and 15 days of age. At post
AttHRYV inoculation day (PID) 28 which is post-partum
day [PPD] 33, pigs from each group was euthanized to
collect intestinal contents and intestinal tissue for im-
munohistochemistry (IHC) and for the isolation of
mononuclear cells (MNC) from the distal portion of the
small intestine (ileum) to study the immune pathway
responses.

LGG counting by real-time PCR

Rectal swabs were collected at PPD10 (PID 5), 15 (PID
10) and 28 (PID 23) and large intestinal content (LIC)
were collected at PPD 33 (PID 28) for detection of LGG
shedding in the HGM pigs. The fecal samples were
treated according to the method by [54].

The strain-specific primers for LGG 16S rDNA are
listed in Additional file 1: Table S1. The PCR reaction
solution (20 ul) contains 10 ul 2 x SYBY, 0.5 ul 10 pmol/
ml Primer (F) and 10 pmol/ml Promer (R), 2ul DNA
template, 7 ul HyO. The real-time PCR condition is 94 °C
5 min, with a further 40 cycles at 94 °C 15 s, 60 °C 15 s,
72 °C 30s. Fluorescence was measured at start of 72 °C.
The pure LGG culture with a known titer was used to pre-
pare standard curve.

PCR-DGGE analysis

Genomic DNA was obtained as described above. Primer
U968-GC and L140Ir [55] were used to amplify V6-V8
regions of 16S rDNA. PCR-DGGE was performed and
analyzed as we previously described [56]. The Shannon
index, H’ of general diversity was calculated according to
a previous described method [57] as a parameter for the
structural diversity of the microbial community.

Isolation of MNCs from lleum

Ileum from all pigs were collected on the day of euthan-
asia and processed for isolation of MNC as previously
described [49]. MNCs for quantitative RT-PCR (cytokine
and Toll-like receptors expression) and Western-blot
(signal pathway molecular) were subjected to the as-
says immediately after the isolation of the cells in
the same day.

RNA isolation and real-time RT-PCR for IL-6, IL-8, IL-10,
TNF-a, TLR2, TLR4 and TLR9

Total RNA was extracted from the MNC cells (2 x 107)
using Trizol LS Reagent (no. 10296-028, Invitrogen) ac-
cording to manufacturer’s protocols. cDNA was obtained
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using an Tetro cDNA Systhesis Kit (no. 65043, Bioline
USA Inc.). The primers for quantification are shown in
Additional file 1: Table S1. The real-time quantitative RT-
PCR was done using Sensimix SYBR & Fluorescein Kit
(no. QT615-05, Bioline USA Inc.) in a final volume 20 ul,
which contained 10 ul 2 x SYBY mix, 1ul RT mix, 0.5 ul 10
pmol/ml of each primer for detection of IL-6, IL-8, IL-10,
TNEF-«, TLR2, TLR4, TLRY, and B-actin which was used as
a housekeeping gene. All PCR reactions were done in du-
plicated on an iQ5 thermocycler (Bio-Rad). The relative
levels of different transcripts were calculated using the
AACt method, and results were normalized based on the
expression of 3-actin within the same experimental setting.

Western-blot for detection of signal pathway molecular
The MNC (2 x 10”) were resuspended in cell lysis buffer
(NP40 Cell Lysis Buffer, Invitrogen) and subjected to
SDS-PAGE (Invitrogen). The protein bands were trans-
ferred to a nitrocellulose membrane using iBlot® Transfer
Stack (Invitrogen) and subjected to immunoblot analysis
with the antibodies. Anti-p38 (no. 8690), p-p38 (no. 4511),
ERK (no. 4695), p-ERK (no. 4370), p-NF-kB p65 (no.
3033), IkBa (no. 4814), B-actin (no. 4970) antibodies were
obtained from Cell Signaling Technology (Danvers, MA,
USA). The alkaline phosphatase (AP) linked anti-rabbit
IgG (no. 550321B), anti-mouse IgG (no. 550321A), AP
chemiluminescent substrate (no. 1208012) and its enhan-
cer were purchased from Invitrogen.

Immunohistochemistry for detection of signaling pathway
molecules in ileal tissue

According to previous methods [58], ileum tissue from
Gn pigs were fixed in buffered formalin, embedded in
paraffin, and cut into serial sections (4 pum). Deparaftfi-
nized and rehydrated sections were boiled in 10 mM so-
dium citrate buffer (pH = 6.0) for 10 min. After washing
twice with Tris-buffered saline with Tween-20 (TBST),
sections were blocked with 10 % normal goat serum in
TBST for 1 h at room temperature. Sections were incu-
bated with primary IFN-y (1:300 v/v, Cell Sciences, Canton,
MA, USA), CD80 (1:200 v/v, Ancell, Bayport, MN, USA),
p38, p-p38, ERK or p-ERK antibodies (1:300 v/v, Cell
Signaling Technology, Danvers, MA, USA) overnight
at 4 °C. After washing three times with TBST, the
HRP-conjugated secondary antibody (Jackson ImmunoRe-
search, West Grove, PA, USA) was added and the
sections were incubated for 1 h at room temperature.
The Diaminobenzidine-HRP detection system was added
and sections were incubated at room temperature. All in-
cubation steps were conducted in a humidified chamber.
Sections were then counterstained with hematoxylin,
dehydrated, and cover-slipped. Assessment of positivity of
IHC staining [59] were conducted under a microscope
(ECLIPSE Ti, Nikon Corp., Tokyo, Japan).
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Statistical analysis

Kruskal-Wallis rank sum test was performed to compare
all data, except for the LGG titers, which were compared
among treatment groups and time points using Analysis
of Variance (ANOVA-GLM) on logl0 transferred titers.
Statistical significance was assessed at p < 0.05. All statis-
tical analysis was performed using SAS program 9.2
(SAS Institute, INC, USA).

Additional file

[ Additional file 1: Table S1. The primers used in this study. (PDF 54 kb) ]
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