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(ABSTRACT) 

The water distribution system design problem consists of finding a minimum cost com-

bination of network layout and sizes of system components so as to satisfy flow de-

mands, minimum and maximum head requirements and a reliability criterion. A two 

step procedure is proposed to find a near optimal design. The first step considers ob-

taining a near optimal tree layout using a heuristic tree search algorithm. Two different 

methods are followed for the tree search - one for single source networks and the other 

for multiple source networks. The second step adds loop forming redundant links to the 

tree layout in such a way that every demand node has two paths from source node(s). 

The methodology is applied to a single source network and a multiple source network. 

In both the cases better results arc achieved than those obtained previously by other 

researchers. 



Acknowledgements 

This work would not have been possible without the guidance and support of my prin-

cipal advisor, Dr. G. V. Loganathan. His sharp thinking, keen insights and encourage-

ment kept me going when everything seemed bleak. The training he has provided will 

stand me in good stead in my future pursuits. 

I would also like to express my sincerest gratitude to Dr. C. Y. Kuo and Dr. J. M. 

Wiggert for reviewing the manuscript. Their constructive criticisms and helpful sug-

gestions have gone a long way in improving the quality of this thesis. 

My thanks are also due to all my friends at Virginia Tech who have helped me from time 

to time. In particular, I would like to thank Hemang for spending his valuable time in 

helping me with the computer programs. The help extended by Asif and Nathan in proof 

reading is also appreciated. 

Last but not the least, I would like to thank my parents whose moral support has been 

a continuing source of encouragement in pursuing my goals. 

Acknowledgements iii 



Table of Contents 

1.0 Water Distribution Systems: An Overview ...................... , , . , , . , , . , . , 1 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 

1.2 Considerations in Planning a Water Distribution System ........................ 3 

1.3 Water Distribution System Analysis ....................................... 6 

1.3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

1.3.2 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

1.3.3 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IO 

1.3.4 Solution of Network Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IO 

1.4 Design of Water Distribution Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

1.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

1.4.2 Tree Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

l.4.3 Looped Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

1.5 Summary ......................................................... 20 

2.0 Optimization 1\-lodcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

2.2.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

Table of Contents iv 



2.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

2.3 Relaxed Problem ................................................... 27 

2.4 Algorithm TREESEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

2.4.1 Optimization of Tree Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

2.4.1. l Single Source Problem .................................... 44 

2.4.1.2 Multiple Source Problem .................................. 45 

3.0 Reliability Model ......... , . , ......... , ........... , ..... , , . . . . . . . . . . . 48 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

3.2 Selection of Redundant Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

3.3 Algorithm REDUNDANCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

3.3. l Construction of Reconnecting Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

3.4 Selection of Redundant Link Diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

4.0 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

4.2 Single Source Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

4.3 Multiple Source Network ............................................. 66 

5.0 Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . • . . . • • 70 

Refcrenct.'S . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . • . • . 72 

Appendix A. Convexity and Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . • . 76 

Appendix B. Graph Theory : Some Definitions . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . • . 81 

Table of Contents V 



Appendix C. Network Optimization by Nonlinear Programming . . . . . • • • . . . . • . • • • • . • . • 84 

Appendix D. Data and Results for the Single and Multi-source Networks . • . • • . • . • • . • . • • 88 

Vita ll5 

Table of Contents vi 



List of Illustrations 

Figure 1. Example Network ......................................... 8 

Figure 2. Redundancy of One Continuity Equation. . ..................... 11 

Figure 3. Example Net work from Rowell ( 1979) . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Figure 4. Illustration of Algorithm TREESEARCH ...................... 36 

rigure 5. Loop Detection ......................................... 41 

Figure 6. Network Showing Tree and Cotree ........................... 50 

Figure 7. Failure Analysis of Tree Links ............................... 52 

Figure 8. Network With Redundant Links ............................. 54 

Figure 9. Network for Procedure RECONNECT ........................ 60 

Figure IO. Convexity and Optimality .................................. 79 

Figure 11. Convex and Nonconvex Constraint Sets ....................... 81 

Figure 12. Graphs ................................................ 84 

Figure 13. Example From Jacoby ( 1968) ............................... 86 

Figure 14. Single Source Network .................................... 90 

Figure 15. Spanning Trees of the Single Source Network ................... 93 

Figure 16. Application of TREESEARCH and REDUNDANCY to the Single 
Source Net\vork ......................................... 97 

Figure 17. Multi-source Network .................................... 103 

Figure 18. Shortest Path Tree for the Multi-source Network ................ 107 

figure 19. Optimal Tree for the Multi-source Network from Rowell (1979) ..... 108 

List of Illustrations vii 



Figure 20. An Intermediate Solution for the Multi-source Network 109 

Figure 21. Optimal Tree From TREESEARCH for the Multi-source Network. 110 

Figure 22. Application of TREESEARCH and REDUNDANCY to the Multi-
source Network ......................................... 113 

List of Illustrations viii 



List ·of Tables 

Table l. Reconnecting Sets From the Cotree ........................... 53 

Table 2. Comparison of G RG Results With Jacoby (1968) ................. 88 

Table 3. Nodal Data for the Single Source Network ...................... 91 

Table 4. Cost Data for the Single Source Network ....................... 92 

Table 5. Optimal Flows and Link Lengths From TREESEARCH for the Single 
Source Network .......................................... 94 

Table 6. Optimal Heads From TREESEARCH for the Single Source Network .. 95 

Table 7. Reconnecting Sets for the Single Source Network ................. 96 

Table 8. Optimal Flows and Link Lengths from REDUNDANCY for the Single 
Source Network .......................................... 98 

Table 9. Optimal Heads from REDUNDANCY for the Single Source Network .. 99 

Table 10. Comparison of Flows with Fujiwara ct. al. ( 1987) ................ 
Table 11. Heads for the Network of Fujiwara ct. al. ( 1987) ................. 
Table 12. Cost Comparison for the Single Source Network IO e e e e et e e e e e I I e I 

Table 13. Nodal Data for the Multi-Source Network e O e I• e e e e e O I e e e • e e e e f 

Table 14. Link Data for the Multi-Source Network 

Table 15. Cost Data for the Multi-Source Network 

Table 16. Optimal Flows and Link Lengths from TREESEARCH for the Multi-

100 

101 

102 

104 

105 

106 

Source Nenvork ......................................... 111 

Table 17. Optimal Heads from TREESEARCH for the Multi-Source Network .. 112 

Table 18. Optimal Flows and Link Lengths from REDUNDANCY for the Multi-
Source Network ......................................... 114 

List of Tables ix 



Table 19. Optimal Heads From REDUNDANCY for the Multi-Source Network 115 

List of Tables x 



List of Symbols 

Symbol Chapters Definition 

A 2,3 Adjacency matrix 

A 1,2 Parameter in pump head equation 

adj(i) 2 Set of nodes adjacent to node i 

a .. IJ 2,3 Element of adjacency matrix 

B 1,2 Parameter in pump head equation 

C 2,4 aCifp 

CT 2,3 Set of cotree links 

C1 2,4 Cost parameter in link cost function 

C2 2,4 Exponent in link cost function 

C3 2,4 Cost parameter in pump cost function 

Chw Hazen-Williams coefficient 

cLk 2 Cost of kth diameter pipe per unit length 

Cp 2 Cost of pumping unit head 

Cs 2 Cost of elevating reservoir by unit head 

Cr 2 Cost of tree network T 

Cy 2 Set of nodes on a loop 

Cr") l,J 3 Cardinality llf reconnecting set RC(i,j) 

D Diameter of a pipe 

List of Symbols xi 



Symbol Chapters Definition 

D1 2 Set of available diameters 
{ d1, d2, ... ' dNo} 

Do.D 1,2 Diameter of link (i,j) 

deg(i) 2 Degree of node i 

F 1 Vector of constants for continuity and 
energy equations 

f. I 2 Fixed head at node i 

FL 2 Link cost function 

Fp 2 Pump cost function 

Fs 2 Storage cost function 

f 1 Darcy-Wcischbach friction factor 

f Number of fixed grade (head) nodes 

Ho 1,2 Parameter in pump head equation 

Hi 1,2 Head at node i 

lli 2 Minimum head at node i 

H· I 2 Maximum head at node i 

Hsi 2 Additional storage height 

Hr(i.i) 1,2 Friction headless in link (i,j) 

HL(i,j) 1,2 Total headless in link (i,j) 

Hm(i.j) 1,2 Minor headlos,; in link (i,j) 

Hr(i,i) 1,2 Pump head in link (i,j) 

~ Pressure head at node i 

J Jacobian of continuity and energy equations 

J 2,4 lly<lraulic gradient in a link 

Kr(i.i) 1,2 Coefficient in friction headless equation 

Kr(i.i) 2,4 Ci[ Kro.D/J]C2/P 

~ 1,2 Set of nodes adjacent to node i 

List of Symbols xii 



Symbol Chapters Definition 

~.CT 2 Set of nodes adjacent to node i in CT 

Lp 2 Set of links on a loop 

Le') 1,J 1,2,3 Length of link (i,j) 

!i' 1 Set of existing links 

!i' 2,3,4 Set of potential links 

l Number of links 

N 1,2,4 Set of nodes 

N1, N2 3 Two connected sets of nodes created by 
removal of a link from a tree 

No 2 Number of available diameters 

Nt 2 Number of demand patterns 

N(p,q) 3 Number of reconnecting sets in which link 
(p,q) occurs 

n 1,2 Number of nodes 

p 2 Set of links in which pumps can be located 

p 3 Parallel link indicator 

p 1 Number of independent cycles 

Q Vector of flows 

Q(i,j) 1,2 Flow in link (i,j) 

qi 1,2,4 External flow at node i ( demand or supply) 

R 3 Set of all reconnecting links (union of all 
reconnecting sets for a tree) 

RL 3,4 Set of redundant links 

Rmin 2 Minimum level of reliability 

RC('') 1,J 3,4 Reconnecting set for link (i,j) 

Rs 2 Measure of system reliability 

r Resistance coefficient = KrL/D~ 

List of Symbols xiii 



Symbol Chapters Definition 

s 2,3 Set of source nodes 

T 2,3 Set of tree links 

T* 2 Optimal tree 

t 2 Index indicating demand pattern 

V· I 1 Velocity of fluid at node i 

x(i.i)k 2 Length of diameter dk in link (i,j) 

z. 
I 1 Elevation head at node i 

a 1,2,4 Exponent of flow in friction head loss 
formula 

1,2,4 Exponent of diameter in friction head loss 
formula 

T\ 2 Pump efficiency 

y 2 Parameter in pump cost function 

<I> 2,3 Empty set 

E 1,2,3,4 Member of (or belongs to) 

v- 1,2,3,4 For all 

:E 1,2,3,4 Summation 

u 2,3 Union (of sets) 

2,3 Such that 

IXI 1,2,3 Absolute value 
Cardinality of X (number of elements 
in X) 

List of Symbols xiv 



1.0 Water Distribution Systems · An Overview 

1.1 Introduction 

A water distribution system can be defined as a utility service which taps water from 

nature and distributes it in a form suitable to the consumers through a network of 

interconnected facilities. Because of their size and complexity, the construction, opera-

tion and maintenance of water distribution systems require large capital outlays. Their 

impact on social and industrial growth is immense. A few facts about water distribution 

systems are in order : 

• the demand for water is generally increasing because of population and industrial 
growth (Goodman, 1984). 

• the timing and scale of investment decisions amounting to S 15 billion per year de-
pend on forecasts of future water use (Boland, 1980). 

• excessive amount of water is being lost through leaks in various cities : 17% in 
Boston, 15% in St. Louis, 14% in Pittsburgh, 14~10 in Tulsa (Choate and Walter , 
1981 ). 

• corrosion caused by aggressive water not only carries the threat of distribution sys-
tem deterioration but also poses a potential health hazard (Millette, et al., 1980). 

• deterioration of aging water supply systems in old urbanized areas and expansion 
of existing systems pose special problems and rehabilitation costs are in the order 
of $75 to SIIO billion in 1972 dollars (Mays and Cullinane, 1986). 
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The classical approach to steady state water distribution system problem involves the 

following subproblems : (i) planning, (ii) design and (iii) analysis. The planning aspect 

concerns itself with the determination of requirements of the system. At the planning 

stage, the water demand for the period under consideration is estimated. It also deter-

mines the level of service and the reliability that the system should provide. The tradi-

tional design involves the selection of topological layout and sizes of distribution system 

components. The analysis problem determines flows in each pipe ( or heads at different 

nodes) for a network configuration, specified pipe diameters and the flow demands. 

It is the design problem which is of particular concern in this study. Mays and Cullinane 

( 1986) have criticized the conventional trial and error design approaches by pointing out 

the lack of optimality of the design obtained. Such procedures also fail to quantify the 

reliability of the system. There is a definite need for improving the existing methodol-

ogies to ensure better service at low cost. In the present study, the layout and reliability 

aspects are incorporated in the design. Specifically, the present study is an attempt in 

answering the following question : 

Given Water demands at various locations, minimum and maximum allowable 

pressures and restrictions on locations of reservoirs, pumping stations and 

pipes 

To Find Locations and sizes of pipes, pumping stations, and reservoirs such that the 

cost of the system is minimized subject to the constraints on flows and pres-

sure heads; at the same time every demand node in the system has two paths 

from source nodc(s). 

In this chapter, various aspects of planning, analysis and design of water distribution 

systems arc discussed. A review of the past work is provided. The basic elements of the 
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proposed methodology are summarized at the end of this chapter. Subsequent chapters 

describe the complete design methodology. 

1.2 C~msiderations in Planning a Water Distribution System 

A water distribution system should be able to meet the projected water demand for a 

specified planning period with a specified level of reliability. Water demand is estimated 

based on the population projection. Next, a reliable source of water is located and then 

a distribution system is designed to transport water from the source to the demand 

nodes. Often the quality of water at the source may not meet the drinking water stand-

ards and suitable treatment facilities should be provided. A detailed account of the above 

aspects is given in Linsley and Franzini (1979). In this study, the design of water dis-

tribution system is of main concern which requires estimates of spatially disaggregated 

demands and pressure requirements. In the sequel, some general guidelines with regard 

to the input parameters of a water distribution system are outlined : 

I. A map of the water district is obtained showing contours and other characteristics 

like streets, buildings, etc., and the fire risks to be protected. 

2. Key locations (or nodes) are identified depending on the demand. Demarcation of 

districts is generally done on the basis of natural bonds between them. The probable 

flow demands are determined on the basis of population of the service area and the . 
land use type, e.g., commercial or residential (Goodman, 1984). 
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3. In determining service pressures, some rules of thumb are followed. Typically, ser-

vice pressures are maintained between 30 and I 00 psi, 40 to 50 psi provide good flow 

rates to 3 to 4 storeyed buildings. Municipalities typically require owners of tall 

buildings to install booster pumps in order to avoid the need for high pressures in 

the mains which can result in increased leaks and higher pumping costs. 

4. Fire protection requirements in terms of pressures and flows are estimated at the 

nodes. The rate of flow for fire fighting is given as Q = 1020JP(l - O. IJP) in 

which Q is in (gallons per minute) GPM and Pis the population in thousands (Davis 

and Sorensen, 1969). According to the recommendations of the National Board Of 

Fire Underwriters, a fire pressure (pressure required at the nozzle of a fire hose for 

protection against fire) of 75 psi is necessary where more than 10 buildings exceed 

3 stories in height, 60 psi in less risky areas and 50 psi in thinly populated areas. Fire 

hydrants should be located every 300 ft. in the mercantile and industrial areas, and 

every 600 ft. in the residential areas, so that every building in the city limits will be 

within 500 ft. of a hydrant (Texas Water Utility Association, 1979). 

5. Next, depending on the physical conditions like topography, street right of ways etc., 

all potential links ( a link is defined as a segment connecting two nodes and has no 

branches) of the network arc determined. The link lengths depend on how pipes are 

laid . Main pipes arc laid along the streets at some stan<lardized positions along the 

curbs. ror streets more than 40 to 50 ft. wide, it is more economical to install mains 

behind the curb on each side of the street as this reduces lengths of service pipes. 

Some of the rules for laying of water mains are reproduced here from the 

Washington Suburban Sanitary Commission manual (WSSC, 1981): 

• water mains shall be laid 7 ft. from the centerline of the street right-of-way on 
the side of the street on high ground. 
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• the curvature of the centerline of the mains shall not exceed an allowable max-
imum. The allowable values depend on diameter and material of the pipe. These 
values are given in WSSC (1981). 

• normal cover over water mains shall be a minimum of 4 ft. from the finished 
grade or the existing grade, whichever is lower. 

• minimum clearance of l ft. above the sewer shall be kept. 

Another important aspect in the water distribution system design is the level of service 

provided when failures occur which is assessed in terms of the reliability of the system. 

Reliability is generally defined as the probability that a system performs its mission , 

within specified limits for a given period of time in a specified environment. For a large 

system like the water distribution system, the calculation of overall reliability depends 

on the reliability of its subsystems like pipes, pumps, reservoirs etc.. In order to predict 

water distribution system reliability and help make maintenance decisions, theories are 

required to estimate the component failures quantitatively. Damelin, et al., ( 1972) have 

developed a simulation model to evaluate the reliability of supply systems in which 

shortfalls are caused by the failure of pumping equipment. Shamir and Howard (1981) 

( define a reliability factor in terms of the relative capacity lost due to failures and derived 

the probability distribution function (pdf) of the reliability factor based on the pdf oflost 

capacity. Such a pdf involves desired system capacity as a parameter and can be deter-

mined for a chosen reliability value. 

With regard to pipe line failures, the reasons for failures arc the soil movement, corro-

sion, temperature, stresses due to overburden and improper laying. Clark, et al. ( 1982) 

have conducted a repair frequency analysis of leaks and breaks for two systems and 

concluded that the maintenance rate of a pipe increases exponentially with time. Two 

regression equations were developed to relate the leak events to specific parameters like 

pipe type, diameter, soil type and pressure. They conclude that metallic pipes are more 
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reliable than reinforced concrete pipes and that larger diameter pipes have a longer pe-

riod before the first break. Kettler and Goulter (1985) point out that pipes with increased 

wall thickness perform better against corrosion. They also conclude that predominant 

mode of failure for asbestos cement pipes is circumferential cracking while cast-iron 

pipes mainly break at joints. 

The reliability analysis under pipe failures is of great interest recently. Morgan and 

Goulter (1985) define a reliable network as the one which has two independent paths 

from the sources to the demand nodes and the problem becomes deterministic. 

Andreou, et al. (1987a, 1987b) have presented a methodology for analyzing random pipe 

failures. They use a Proportional Hazard model to represent the early stage of few breaks 

and Poisson model to describe later stages of multiple breaks. A detailed review of the 

reliability concepts can be found in Mays and Cullinane (1986). 

1.3 Water Distribution System Analysis 

The problem of analysis of water distribution systems concerns itself with the evaluation 

of the flows and pressures in the system, given the layout and sizes of its components. 

Such an analysis is necessary to evaluate the performance of the system under changing 

demands. The analysis problem can be stated as the one of solving a set of simultaneous 

nonlinear equations based on the energy equation and linear equations based on the 

continuity equation. 
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1.3.1 Terminology 

A water distribution network will be assumed to consist of n nodes numbered 1 through 

n and a set of I links connecting specified pairs of nodes. The set of nodes will be denoted 

by N and the set of links by 2. A link connecting nodes i and j will be denoted by {i,j). 

For example, pipe network shown in Fig. l{a) consists of four nodes N = { 1,2,3,4} and 

five links 2 = {(1,2), (2,3), (3,4), (4,1), (4,2)}. Removal of link (1,2) results in Fig.l(b). 

Removal of node 1 results in Fig. l(c). 

The flow Q(i,i) in link (i,j) is considered positive if it is from node i to node j and negative 

otherwise. The energy head at node i, Hi, is expressed as : 

v~ 
I-J. = z. + h• + - 1 

I I I 2g (1.1) 

Where elevation head Zi is the vertical height of node i above an arbitrary datum, ~ is 
vl 

the pressure head (fluid pressure divided by specific weight of the fluid), 2~ is the ve-

locity head, and g is the acceleration due to gravity. 

1.3.2 Energy Equation 

The algebraic sum of the head losses along a path defined by the set of nodes and links 

difference between the head at node i1 and that at node im 

m 
1-I· - I-1· = .!11-I = r BL(' · ) 11 1m k= 2 1k-1• 1k 

(1.2) 
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(a) Given Network 

(b) Removal of link (1,2) (c) Removal of node 1 

Figure 1. Example Network 
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In which HL. . = head loss in link (ik-l• ik) which is positive if the flow is from 
(1k-l• 1k) 

node ik-l to node ik. For a loop, i1 =~.so that .!1H = 0. 

The headless, HL(i,j) between two nodes i and j of a link (i,j) is equal to the sum of fric-

tional hcadloss Hr(i,j) and minor headlosses Hm(i,j) minus the head gained due to pump-

ing, Hp(i,j)· This may be written as 

for all {i,j) e ft' (1.3) 

These losses ( or gains) are expressed as functions of flow Q(i,j), length L(i,j) and diameter 

D(i,j) of link (i,j) : 

_ I I a-1 13 Hr(i.j) - Kr(i,j)L(i,j)Q(i,j) Q(i,j) /Dci.j) 

Hm(i,j) = Km(i,j) I Q(i,j) I Q(i,j)/Dtj) (1.4) 

Hp(i.i) = H0 + A I Q(i.i) I + B I Q(i,i) I Q(i,i) 

The values of Kr, a and p depend on the type of frictional head loss formula and the 

system of units used. If the empirical Hazen-Williams formula and SI system of units 

are used then a = 1.852, p = 4.87 and Kr = 10.7/CA~52, where Chw is the Hazen-

Williams coefficient which depends on the age and material of the pipe. Hazen-Williams 

formula is widely used in practice because of its simplicity. However, it is valid only for 

water. Analytical equations like Darcy-Weishbach equation are also available which 

hold good for any fluid. For Darcy-Weischbach equation a = 2, p = 5 and 

Kr = 8f/1t2g, where f is the Darcy-Wcischbach friction factor which is a function of flow 

Q(i,j) , diameter D(i,j) , fluid viscosity and pipe roughness. Because of this dependence 

on flow the friction factor, f, has to be updated as Q(i,j) changes whereas in the Hazen-

Williams formula Chw is treated as a constant. The coefficient Km depends on the type 
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of bend, valve or fitting. Minor losses are generally negligible except when the valves 

are present. The equation for pumping head is valid only for centrifugal pumps which 

are widely used in water distribution systems. The parameters H0, A and B depend on 

the pump used (Walski, 1984). 

1.3.3 Continuity Equation 

The Continuity equation is given as 

I Q(k ') + q· = 0 for all i e N 
ktk· ,I I 

I 

(1.5) 

Where Q(k,i) is the flow in the link (k,i), considered to be positive if the flow is from node 

k to node i ; ~ = set of nodes adjacent to nodes i ( a node is said be adjacent to another 

one if a link exists between them) ; qi is the external flow at node i, considered positive 

if the flow is entering node i (supply) and negative otherwise (demand). 

l.3.4 Solution of Network Equations 

For a balanced network (i.e. supply equals demand) if there are no reservoirs then one 

of the continuity equations becomes redundant because the continuity equation for the 

last node can be generated by simply taking the difference of the sum of the incoming 

and outgoing flows for the remaining nodes (sec Fig. 2). From graph theory (see Ap-

pendix 8) for a network (simple graph) with n nodes and l links, the number of primary 

loops (independent cycles) denoted asp can be written as (Harary, 1972; Berge, 1985) 

p=l+l-n (1.6) 
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0(1,2) + 0(1,4) 

0(2,3) + 0(2,5) + 0(2,4) - 0(1,2) 

0(3,5) - 0(2,3) 

0(4,5) - 0(2,4) - 0(1,4) 

0(2,5) + 0(4,5) + 0(3,5) 

100 

-10 

-20 

= -30 

40 

Figure 2. Redundancy of One Continuity Equation. 
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For a system with j junction nodes and f fixed grade nodes, n = + f and therefore 

Eqn. ( 1.6) can be written as 

l=j+f+p-1 (1.7) 

There are l number of Q's to be computed. Based on Equations ( 1.2) and (1.5) one can 

write j continuity equations and (f + p) energy equations. Of course, one of these 

equations will be redundant. Various methods arc available for solving these equations, 

notable among them arc the Hardy-Cross method, the Newton-Raphson method and 

the linear theory method (Wood and Charles, 1972). The Hardy-Cross method selects 

initial flows based on Eqn. ( 1.5). Because there arc more unknowns than the number 

of equations of the type Eqn. ( 1.5) there are infinite number of such initial solutions. 

Let Q?, Q~, ... , og be the initial flows in p pipes in path P. The essence of the method 

is to adjust Qk 's so that they will also satisfy the energy equations, Eqn. (1.2). It is 

achieved by perturbing each Q~ by some .:lQ. Let the perturbed flow be given as 

( 1.8) 

where the ( ± ) sign depends on the direction of Q~. 

For simplicity, taking into account only the friction losses, from Eqs.(1.2) and (1.4) one 

gets 

( 1.9) 

in which rk = KrL/OP is the resistance coefTicient. By using Eqn.( 1.8) in Eqn.( 1.9) and 

expanding by Taylor series about Qr for the first two terms of the series Eqn.(1.9) be-

comes 
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for path P (1.10) 

which can be solved for .1Q. It should be noted that in Eqn.( 1.10) the same step size, 

.1Q is used for all Q~ for the perturbation, for a fixed path. This .1Q will in general vary 

for different paths and new estimates of Qo are obtained from Eqn.( 1.8). 

For the Newton-Raphson method Eqn.(1.10) is written as 

for path P (1.11) 

From Eqn.(1.11) it is seen that the Newton-Raphson method uses a variable step size in 

terms of (Qk - Q~) which in general improves the convergence rate. However the 

Newton's method may not converge for all starting points. It is observed that in 

Eqn.(1.11) the second sum is simply the directional derivative in the direction (Q - QD ). 

If there are p energy and continuity equations, then Eqn.( 1.11) can be written separately 

for the energy equations and together with the continuity equations can be written in the 

matrix form as 

( 1.12) 

In which J is the Jacobian (matrix of first derivatives for the p continuity and energy 

equations) and F is the vector of constants from the continuity and energy equations. 

The solution to Eqn.(1.12) is used as new Q0 and depends on the nature of [J]. It must 

be nonsingular. 
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It is noted that in the Hardy-Cross method Eqn.(1.10) can be solved for the only un-

known dQ from just one energy equation whereas in the Newton's method Eqn.(1.11) 

involves p unknown Qk 's and therefore requires all p continuity and energy equations 

and the matrix inversion in Eqn.(1.12). The implication is that the Hardy-Cross method 

can be applied by hand whereas the Newton's method is not suitable for hand calcu-

lations. 

The linear theory method uses a linearization of the form 

a a-1 rQ = rQ0 Q (1.13) 

in which Q0 is a chosen point of linearization and r is a known resistance coefficient. 

Once Q0 is chosen, equations of the form Eqn.( 1.12) can be constructed and solved for 

the new estimates of Q0. However it is to be noted that the lincarization in Eq.( 1.13) 

lacks theoretical support. 

Dillingham and Cleasby ( 1965) have reported that the Hardy Cross method may lead to 

divergence in flow computations and no solution can be obtained. Collins (1980) has 

presented a simple example wherein the linear theory method fails to converge while 

Ncwton-Raphson technique converges faster. Moreover Collins, ct al. ( 1979) point out 

that the solution of the analysis problem will be nonunique if the pumps in the system 

have nonmonotonic head-discharge characteristic curves. They claim that such pumps 

are not uncommon. In general it is a good practice to use several different algorithms 

to verify the solution and with different starting points. The above remarks are meant 

to emphasize the complexity of the pipe network problems in general. However all these 

methods have worked very well for most practical problems. For further details on these 

three methods the reader is referred to Jeppson (1976). 
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1.4 Design of Water Distribution Systems 

1.4.1 Preliminaries 

Traditional approach in pipe network design was mainly based on engineering judgement 

and certain rules of thumb. Several different sets of pipe sizes are guessed and for each 

guess the performance of the system under various conditions of demand, pipe breakages 

etc., is simulated by using a I lardy-Cross type network solver. The solution giving the 

least cost is selected. This type of trial and error approach does not guarantee an optimal 

solution. 

More recent work on design has focussed on the use of mathematical optimization 

techniques. The structure of a mathematical program can be characterized by an objec-

tive function and a set of constraints. Objective function expresses the criterion of design 

and the constraints express the requirements of the system. A verbal statement of the 

water distribution design problem can be stated as : 

subject to 

Minimize : Cost of the system 

1. continuity cq uations 

2. energy equations 

3. the heads at the nodes should lie within minimum and maxi-
mum permissible bounds 

4. the system should have "sufficient" reliability 

The cost of the system includes pipe, pumping, operation and maintenance costs. These 

costs are functions of pipe diameters, pumping heads etc. which depend on the flow and 
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other requirements of the system. The best combination of decision variables like di-

ameters, pumping heads etc., which satisfy the constraints while yielding the best ob-

jective function value is called the optimal solution. 

1.4.2 Tree Networks 

For rural distribution systems where the reliability is not a ma1or issue, tree-like 

topologies are satisfactory. The design of tree networks involves two decisions : the 

selection of the tree layout from a given set of potential links, and the sizes of the links. 

The problem of selecting the sizes for a given tree layout is a relatively easier one to 

solve. A tree with n nodes has (n-1) links. If the tree network has only a single source, 

and if the demands at the remaining (n-1) nodes are known, then (n-1) independent 

continuity equations can be solved for the (n-1) link flows. These flows can then be 

substituted into energy equations to choose the optimal diameters to satisfy the pres-

sure head constraints. For fixed flows and diameters the head loss expression is linear 

in pipe length. In such cases the constraints and the objective function arc linear and 

the resulting problem can be solved by linear programming techniques. The simul-

taneous selection of layout and pipe sizes is a difficult problem because of the large 

number of tree layouts which can be generated from a given set of nodes. It is also 

observed that in an optimal tree it is quite likely that each node will be connected to its 

nearest neighbors. By perturbing such trees in a systematic way (Rothfarb, et al., 1970) 

a near optimal tree can be found without too much computational burden. 
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1.4.3 Looped Networks 

For a large towns and cities, tree networks are not reliable because many nodes can be 

cutoff from supply even if one link fails. Thus redundancy has to be provided by loop 

forming links. As pointed out in the previous section the continuity equations are 

sufficient to solve for the flows in single source tree networks. However in looped net-

works in addition to continuity equations energy equations are needed. The energy 

equations are nonlinear and the problem in general becomes one of minimizing a non-

linear objective function over a nonconvex constraint set (see Appendix A). At present 

algorithms are not available which can guarantee a globally optimum solution for this 

problem. Moreover, if the reliability constraint is not included, then optimization by its 

very nature, removes_rcdundancy from the network (Templeman, 1982). In fact, it can 

be shown that the optimization of a looped network results in a tree layout by making 

the flows zero in the loop forming links (Delfino, 1973). Jacoby (1968) has presented 

examples with looped layouts. The loop structure is maintained by specifying certain 

minimum diameter for pipes. One of the example problems is solved by this author by 

relaxing the minimum diameter condition with the use of G RG2 code (Lasdon and 

Waren, 1982). As expected, the solution resulted in a tree layout with less cost. The 

details of the solution are given in Appendix C. The traditional methods of specifying 

minimum diameter or minimum flows to obtain looped layouts do not provide for a 

truly optimal design because in such procedures the redundancy is forced in the system 

rather than brought forth naturally through a reliability constraint. 

The past research in this area can be grouped into two categories : 
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A) approaches which have focussed on optimization of fixed looped networks, wherein 

redundancy is provided by specifying minimum diameters or flows or, by considering 

various demand patterns. 

B) more recent approaches which have addressed the combined optimization-

reliability-layout problem in which the layout is not fixed but to be determined opti-

mally. The reliability is incorporated explicitly by considering link failures and multiple 

demand patterns. A brief review of some of the models in each category is given here. 

Group A : Methods for given layouts 

Gradient search techniques are widely used for the solution of nonlinear optimization 

problems. In gradient search techniques, typically the solution procedure starts with an 

initial feasible solution. A move to another feasible solution is made by taking a suit-

able step in the direction of improvement of the objective function value. The direction 

is obtained from the gradient of the objective function. The procedure is continued until 

no improvement in the objective function value is found. Because of the nonconvexity 

of the looped network optimization problem, if the move is always made in the direc-

tion of improvement, the procedure may terminate at a local optimum (Jacoby, 1968). 

Jacoby therefore used a solution technique in which the step size and the direction at 

every iteration were adjusted in a random fashion. The pipe diameters were rounded 

off to the nearest integers and the solution was checked with a Hardy-Cross analyzer. 

A Linear Programming Gradient (LPG) search technique was presented by Alperovitz 

and Shamir ( 1977). Their approach consists in converting the nonlinear program to a 

linear one by specifying the initial flows and assuming each link to be further split up 

into different known diameter pipes of unknown lengths. The solution from the linear 

program is then utilized in calculating the negative gradient direction (steepest descent) 
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with regard to a perturbation vector of flows and a fixed step size is used for further 

movement. Quindry, et al. (1979) suggested a correction to the gradient expression 

used by Alperovitz and Shamir. Fujiwara, et al. ( 1987) presented a rigorous approach 

for the LPG technique based on the sensitivity theorem of Fiacco ( 1983, theorem 3.4. l ). 

They also pointed out the deficiencies of the steepest descent direction method and 

suggested the use of a quasi-Newton method with variable step size. 

Heuristic search techniques offer another avenue for optimization. Ormsbee and Con-

tractor ( 1981) used the Complex method of Box ( 1965). For higher dimensional prob-

lems the complex method performs poorly. Gessler ( 1983) used an enumeration 

technique in which various guesses were examined systematically. The examination 

was based on a property - if a set S of pipe sizes is not feasible then all sets which have 

pipe sizes equal to or less than the corresponding sizes in set S cannot be feasible either. 

Such enumeration searches can be computationally burdensome if many possibilities 

cannot be discarded a priori. Bhave (1983a, 1983b) used shortest paths from source 

nodes to demand nodes to arrive at a "design tree". Redundant links, whose positions 

were assumed to be known, were added by specifying a minimum diameter or minimum 

flows. Optimal sizes were then obtained using a linear program. The shortest path tree 

being the optimal layout can be proved if one assumes the hydraulic gradient to be 

constant for all links and no external energy is supplied (Rowell, 1979). In a general 

case, it need not be an optimal tree. 

Group B : Methods which include layout selection 

Rowell and Barnes ( 1982) used a two-step procedure : the identification of the optimal 

tree layout from a given set of potential links and, the addition of redundant links to 

the tree layout. First, a tree layout was selected by solving a nonlinear programming 
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(NLP) problem. The NLP model was formulated by assuming constant hydraulic gra-

dient for all links. The redundant links were then added to the tree layout by performing 

a failure analysis of the tree layout. The diameters of the redundant links were opti-

mized using an integer program. The selection of redundant links was based on flow 

demands only and failed to take into account the hydraulics of the network as a whole. 

Moreover, hydraulic gradients need not remain constant when the redundant links are 

added (Goulter and Morgan, 1982). 

Morgan and Goulter (1985) devised an LP based heuristic procedure for the least cost 

design of looped systems. They combined a linear program with a Hardy Cross solver. 

The sizes were assumed first and the flows were obtained using the network solver. 

Knowing the flows the sizes were then revised using a linear program. This process was 

repeated until no improvement was found. At every iteration, uneconomical pipes were 

removed from the network based on the flows in various links. 

1.5 Summary 

Based on the literature review, it is clear there is a need for development of new models 

which can address the following problems simultaneously 

1. selection of the layout and sizes of the components 

2. incorporation of sufficient reliability to address the link failure problem. 

It is difficult to achieve a global optimal solution of the water distribution problem 

because of its nonconvexity. Also, such an optimization removes the redundancy from 
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the system yielding a tree layout if suitable reliability constraints are not imposed. 

However, if a near optimal tree layout can be identified by using an efficient search 

technique then the redundant links can be added to the tree layout to insure service in 

case of failure of tree links. Such a two step procedure is developed in Chapters 2 and 

3. The first step is the Optimization Model in which a tree layout is obtained through 

a heuristic tree search algorithm. Two avenues are followed for obtaining the tree lay-

out : one for single source networks and the other for multiple source networks. The 

Optimization Model is discussed in Chapter 2. The second step is the Reliability Model 

in which the redundant links are superimposed on the tree network obtained from the 

Optimization Model in such a way that every demand node has two paths from source 

nodes. The Reliability Model is discussed in Chapter 3. In Chapter 4 applications to a 

single source network and a multiple source network are described. In both the cases 

better solutions are obtained than those obtained by previous researchers. 
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2.0 Optimization Model 

2.1 Introduction 

This introduction presents an overview of the chapter. In section 2.2 a general formu-

lation of the water distribution system optimization problem is presented. Because the 

problem is nonconvex only local optima can be obtained (see Appendix A). A relaxed 

water distribution system optimization problem without the reliability constraint of the 

general formulation is presented in section 2.3 and pertinent literature is reviewed. Be-

cause optimization does not permit redundancy, the local optima should be tree layouts 

unless suitable reliability constraints are imposed to obtain looped layouts. Since a tree 

layout would qualify to be an optimal solution to the relaxed problem, an efficient tree 

search algorithm can be adopted without much computational burden. Sc;ction 2.4 

presents such a tree search algorithm which systematically perturbs tree layouts to ob-

tain an optimal tree layout without exhaustive enumeration. The algorithm also em-

ploys a linear program to optimize the sizes of the system components for each newly 

generated layout. After sufficient exploration, current best tree layout with its optimal 

system components is declared as near optimal. 
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2.2 Problem Statement 

Fallowing parameters are assumed to be known before the design is carried out : 

l. A set of nodes, N, steady state flow demands and minimum/maximum pressure 

requirements at each node. Variations in demand can be considered by allowing 

for various demand patterns (peak, average etc.). In this study only single demand 

pattern is considered. The distances between the nodes are also known. Circular 

pipes are to be used to join the nodes. 

2. Location of reservoirs and potential locations of pumping stations are known. The 

cost of elevating a reservoir and the cost of pumping for unit head at a specified 

discharge is also known. 

3. The reliability criterion should be specified. In the present study, the criterion used 

is that every demand node should have at least two paths from source node(s). 

The problem is to select a near optimal layout based on the above information i.e., to 

select near optimal links from a set of candidate links. For such a layout the decision 

variables of the problem arc the diameters of the pipes, the flow in each link, head at 

each node, the reservoir heads and the pump heads. The general optimization problem 

is formally stated as follows : 
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Problem Pl 

subject to 

VieN, Vt 

Hi - Hj = Hr(i,j)(t) + Hm(i,j)(t) - Hp(i,j)(t) V(i,j) e .sf, Vt 

Hr(i,j)(t) = Kr(i,j)L(i,j)Q(i,j)(t) I Q(i,j)(t) I a-I /D~.i) V(i,j) e .sf 

Hm(i,j)(t) = Km(i,j) I Q(i,j)(t) I Q(i,j)(t)/D6,j) V(i,j) e .sf 

Hp(i,D(t) = H0 + A I Q(i,D(t) I + BI Q(i,D I Q(i,i)(t) V(i,j) e .sf 

Hi= Fi+ Hsi VieS 

H.:5:H.:5:H· I I I VieN 

Rs;;;:: Rmin 

D(i,j) e D1 V ( i,j) e .sf 

Hp(i,i)(t) ;;;:: 0 V(i,j) e P, Vt 

Hsi;;;:: 0 Vie S 

Where: 

N = set of all nodes = { I, 2, 3, ... n} 
n = number of nodes 

.sf = set of all potential links 
S = set of reservoir nodes 
P = set of links on which pumps can be located 
ki = set of nodes which arc adjacent to node i 
t = index indicating demand pattern = I, 2, 3, ... ,Nt 

Nt = number of demand patterns 
D1 = set of available diameters = { d1, d2, d3, .... , dN0 } 

N 0 = number of available diameters 
D(i,i) = diameter of link (i,j) 

Optimization Model 

(2.2) 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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L(i,i) = length of link (i,j) 
Q(i,i)(t) = flow in link (i,j) for pattern t with the notation Q(i,j)(t) ;:: 0 

if flow is from node i to node j , Q(i,i){t) < 0 otherwise 
Hr(i,j)(t) = friction head loss in link (i,j) for pattern t 

Hm(i,j)(t) = minor head loss in link (i,j) for pattern t 
Hp(i,i)(t) = pump head in link (i,j) for pattern t 

Hi = energy head at node i 
Hsi = additional elevated reservoir head at node i 

Fi = fixed head at (reservoir) node i 
qi(t) = external flow at node i for pattern t, ;:: 0 

if it is into the node ( supply), < 0 otherwise ( demand) 
FL = cost of link (i,j), a function of its diameter and length 
F p = cost of pumping a head Hp(i,i) in a link (i,j), 

a function of the head and Q(i,i) 
Fs = cost of raising a reservoir at node i by a height of 

Hsi , a function of Hsi 
Hi = minimum head required at node i 
Hi = maximum head permitted at node i 
R5 = a measure of reliability of the system; a function 

of the decision variables 

The parameters Kr, a, and, p for the friction headloss depend on the formula and the 

system of units us~d. Km, the minor loss coefficient, depends on the type of,bend, valve 

etc. It is generally neglected. The parameters H0, A and B for the pump head depend 

on the type of pump used. 

2.2.1 Objective Function 

Only the link, pump and reservoir elevation costs have been considered. If the diameters 

of the links arc taken as decision variables then the link cost can be expressed as 

(Rowell and Barnes, 1982): 

(2.10) 
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where C1 and C2 are cost parameters. In practice, however, the cost of the pipes are 

specified per unit length for a particular diameter. Thus if a link is assumed to consist 

of different diameters, then the lengths become decision variables and the objective 

function becomes linear. This will be dealt with later. The pump cost function can be 

expressed as (Alperovitz and Shamir, 1977) : 

(2.11) 

where C3 is the unit power cost, y is a coefficient which depends on the pump used, and 

Tl is the efficiency. y is computed to reflect the total length of time that the specific 

loading condition is assumed to prevail. The cost of elevating reservoirs can be ex-

pressed as (Rowell and Barnes, 1982): 

(2.12) 

2.2.2 Constraints 

Constraints (2.2) are linear continuity equations for all loading patterns indexed by t. 

Constraints (2.3a) arc the energy equations for all links. The friction and minor losses 

and pump head are functions of flow and diameter in the links (Eqs. 2.3b to 2.3d). 

Constraint (2.6) is the reliability constraint. By incorporating constraint (2.7) the di-

ameters arc restricted to commercially available sizes. It is to be noted that by allowing 

for zero diameter the model will have the capability of eliminating uneconomical links. 

However, if Eqn. (2.10) is used for the link cost function, it is difficult to model con-

straint (2. 7) unless (0, 1) integer variables are used (Arlina, 1973) in which case the sol-
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ution becomes computationally burdensome. This problem can be overcome by using 

the lengths of pipes of particular diameters as decision variables. 

Two main difficulties in solving the problem Pl are : (1) The difficulty of modeling the 

reliability constraint - if one specifies minimum diameter or minimum flows, the model 

does not have the capability of eliminating any link. Thus, the system becomes over 

redundant. (2) Even if the reliability constraint is not included, obtaining a solution to 

the mathematical program is a formidable task. The objective function and the energy 

equations are nonlinear. In general, the presence of nonlinear equality constraints 

makes the feasible space nonconvex. Since the energy constraints are equality con-

straints, the problem becomes one of minimizing a nonlinear objective function over a 

nonconvex constraint set. At present, no satisfactory algorithms are available which 

can guarantee a global optimum solution to this problem. 

2.3 Relaxed Problem 

In this section a methodology is presented for solving the optimization problem (Pl) 

without the reliability constraint for steady state single demand pattern. It is known that 

the solution to this problem results in a tree layout by making the flows zero in the 

nontree links (Delfino, 1973). Thus the problem consists in finding the tree layout and 

the pipe sizes of that layout. However finding an optimal solution to Problem Pl even 

after omitting the reliability constraint is difficult as discussed below: 
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Problem P2 

No 
Minimize I: I: cLkx(i,j)k + .I: C3y I Qei.j) I Hp{i,j)/11 + .I: Csf-lsi (2.13) 

(i,j)e2' k = I (i,J)e2' 1eS 

subject to 

VieN (2.14) 

H· - H, = Kfi(' ')Q(i ') I Qe· ')Ia- I Ni x(i,j)k + K e· ') I Qe· ') I Qe· ') i'-1-
l J t,J t,J t,J k=l df m t,J t,J t,J k=l df (2.15) 

- H0 - A I Qei,D I - B I Q(i,D I Qei.i) V {i,j) e 2' 

H = F· + Hs· Vi e S l l l 

H,::;;H,::;;}-1. VieN 
l I l 

No 
l: Xe·· 1')k = Le·· 1') V (i,j) E 2', V k k=l ' . 

Hpei,j) ~ 0 V(i,j) e P 

Hsi~ 0 Vie S 

x(i,j)k ~ o 
Where: 

V(i,j) e 2', Vk 

N = set of all nodes = { 1, 2, 3, ... n} 
n = number of nodes 

2' = set of all potential links 
S = set of reservoir nodes 
P = set of links on which pumps can be located 
k; = set of nodes which are adjacent to node i 
dk = known diameter from the list {d1, d2, ... , dN0 } 

N 0 = number of available diameters 
L(i,j) = length of link (i,j) 
Q(i,j) = flow in link (i,j) with the notation Q(i,i) ~ 0 

if flow is from node i to node j , Q(i,j) < 0 otherwise 
Hp(i.j) = pump head in link (i,j) 

Hi = energy head at node i 
Hsi = additional elevated reservoir head at node i 

Optimization Model 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 
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Fi = fixed head at (reservoir) node i 
qi = external flow at node i ::::: 0 

if it is into the node ( supply), < 0 otherwise ( demand) 
Hi = minimum head required at node i 
Hi = maximum head permitted at node i 

X(i,j)k = length of klh diameter pipe in link (i,j) 

CLk = cost per unit length of klh diameter pipe 

The constraints of Problem P2 are the same as those of Problem Pl except the con-

straint (2.18). To restrict the pipe diameters to commercially available ones each link 

is assumed to be split into as many subsections as the number of different but known 

diameter pipes of unknown lengths. For example, if No different diameters are avail-

able, then link (i,j) is assumed to consist of No different pipes such that 

No 
k Xe· ")k = L(i ") k= I t,J t,J (2.22) 

where X(i,j)k is the unknown length of klh diameter pipe in link (i,j). It is noted that the 

diameters dk 's associated with the respective pipe lengths X(i,j)k 's arc known. It is also 

noted that for given Q(i,j) 's Problem P2 becomes a linear program. Such a strategy is 

adopted in the tree search algorithm described in section (2.4). 

However for unknown Q(i,j) 's it is difficult to obtain an optimal solution to Problem 

P2 because of the nonconvexity. The problem is further compounded by large number 

of decision variables involved. For example, for a system with 20 nodes and 30 links, 1 

elevated reservoir, l pump and 10 diameters, there are 352 decision variables (30xl0 

lengths, 30 Oows, l pump head, 1 reservoir head and 20 heads). Gradient search tech-

niques like Generalized Reduced Gradient (GRG) method (Abadie, 1970) require 

specification of initial feasible solution. Since large number of variables are involved, it 
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is difficult to guess such a solution. Linear Programming Gradient (LPG) technique 

(Alperovitz and Shamir, 1977; Quindry, et al., 1981 ; Fujiwara, et al., 1987) requires 

specification of flows only. However, obtaining a feasible flow distribution itself is a 

difficult task. This procedure also yields a local optimum. Rowell and Barnes (1982) 

reduced the nonconvexity of Problem P2 by assuming that hydraulic gradients remain 

constant in each link which converts the problem to a concave minimization problem 

for which only a local optimum solution, which is either a single tree or a set of dis-

connected trees, can be found. The set of disconnected trees called a forest may result 

only if the system has multiple sources. In such cases if one connects the various trees 

by links for better reliability, a single tree can be obtained. Therefore taking some lib-

erty one might say that the optimal solution to Problem P2 is a tree. Based on the 

above remarks it is seen that there is a need for an alternative approach for obtaining 

the tree layout. 

A naive way of obtaining an optimal tree layout is to search all possible trees. However, 

this can be computationally burdensome because the number of trees that can be gen-

erated from a set of potential links can be very large. For example, a 20 node, 28 link 

network of Fig. 3 has 135,320 possible trees (Rowell, 1979 ; see also Christofides ( 1975) 

pp.125-133, for a method to enumerate all the possible trees). Rothfarb, et al. ( 1970) 

have suggested a heuristic to obtain a near optimal tree layout without exhaustive 

enumeration. The tree search technique has two main advantages over the gradient 

based optimization methods : 

1. For the tree search, shortest path tree can serve as a very good initial tree. In fact, 

the shortest path tree can be shown to be the optimal tree if no external energy is 

supplied and hydraulic gradients are assumed to be constant for each link (Rowell, 
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Figure 3. Example Network from Rowell ( 1979) 
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1979 ; see also Bhave, 1979). Efficient algorithms are available to obtain a shortest 

path tree (Dijkstra, 1959; Ravindran, et al., 1987). 

2. The tree search technique does not require computation of gradients or step sizes. 

Therefore this approach can be applied to situations where analytical expressions 

for the gradients are not possible. 

Also, it should be noted that for water distribution networks many potential links are 

eliminated from consideration because of restrictions of public right of way, topography 

and presence of other structures which reduce the number of trees to be examined. 

2.4 Algorithm TREESEARCH 

Addition of a link to a tree creates exactly one loop (Fig. 4). Different trees can be 

generated by deleting links from the loop one by one. Addition of a link at a node and 

deletion of a link from the loop to form a new tree is called an elementary transforma-

tion. Algorithm starts by performing an elementary transformation at a node. If after 

performing an elementary transformation the new tree is found to have a lower cost, 

then it is preserved and an elementary transformation at a new node is performed. If 

the new tree has higher cost then a different tree is generated by deleting another link 

from the same loop. Algorithm ends when the transformations have been performed 

at every node. 

Let T denote the set of links which form a tree. Let !i' denote the set of potential links. 

Let CT denote the set of links (cotree) which are not in T (i.e., CT = !i' - T). Let 

k;,cr denote a set of nodes such that 
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~.er = {j I (i,j) e CT} 

The algorithm can be summarized as follows: 

Algorithm TREESEARCH 

Purpose: To find a near optimal tree layout. 

Input: initial tree, T; set of nodes, N; Set of sources, S; 

set of links with pumps, P; set of diameters, {d1, ... , dN0 }; 

set of potential links, !i'; link lengths, { L(i,i), (i,j)e!i'}; 

demands, maximum and minimum heads,{% Hi, Hi, ieN}; 

fixed heads, { Fi, ieS}; unit link costs for each diameter, {CLk, k = 1, ... , N 0 }; 

pumping cost, Cp; reservoir elevation cost, Cs 

Output: Optimal tree layout, T•; link flows, {Q(i,i)• ¥(i,j) e T•}; 

pumping heads, { Hp(i.i)• ¥ (i,j) e P}; pipe lengths, X(i,j)k, of diameter dk; 

heads, {Hi, ¥i e N}; additional reservoir heads, {Hsi, i e S} 

Method: 

l. Initialization 

Seti = 0 

Find cost CT of the tree T by optimization ( sec section 2.4. 1) 

T• = T, best = CT 

2. Visit a new node; if all the nodes have been visited then declare the best tree 

found as the optimal tree 

i = i + 1 

if i > n then 
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declare T* as the optimal tree; STOP 

3. If possible, add a link from the cotree to node i to form a loop. If not, visit 

a new node. 

If ~.er = <I> then { cannot add a link at node i} 

go to step 2 

Else 

a. Find a link (i,j) such that j e ~.er 

b. T = T U {(i,j)} 

c. ~.CT = ~.CT - {j} 

4. Detect the loop formed by the addition of (i,j) by using procedure LOOP. 

Let Lp denote the set of links on the loop except link (i,j) 

5. If possible, delete a link from Lp to form a new tree. If not, then visit a new 

node after deleting the added link (i,j) 

If Lp *- <l> then 

a. Find a link (r,s) e Lp 

b. Lp = Lp - {(r,s)} 

c. T = T - {(r,s)} 

Else 

a. T = T - {(i,j)} 

b. go to step 3 

6. Optimize the current tree, T; find the cost Cr, If the cost is less than the 

best cost so far, then save this tree and visit a new node; else try deleting 

another link from the loop 

Optimization Model 34 



Else 

Optimize T to find CT 

If CT s: best then 

a. best= CT 

c. go to step 2 

a. T = T + {{r,s)} {replace the deleted link} 

b. go to step 5 

End of TREES EAR CH 

Example (Fig. 4) 

Step 1 (Fig. 4a) 

Step 2 

Step 3 

T = {(1,2), (2,3), (2,5), (1,4)} 
CT = {(1,3), (3,4), (3,5), (4,5)} 

i = 0 
CT = 500 (say) 

.. 
T = T 

best = 500 

i = 1 < 5 
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(a) 

I 
~c) 

Starting tree 
-- Cotree 
Cost= 500 

(e) Cost = 425 > 400 

(b) Loop formation 

(d) Cost = 400 { 500 
save; visit node 2 

(f) Cost= 600; 400 

Figure 4. Illustration of Algorithm TREESEARCH 
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Step 4 

Step 5 

Step 6 

Step 2 

Step 3 

Step 4 

Step 5 

k1,CT = {3} i: <I> 

(l,3) e CT; 3 e k1,CT 

T = {(l,2), (2,3), (2,5), (1,4), (1,3)} 

k1,CT = <I> 

Lp = {(1,2), (2,3)} 

(2,3) e Lp 

Lp = {(1,2)} 

T = {(2,3)! (2,5), (1,4), (1,3)} {Fig. 4c} 

CT = 400 (say) < best 
best = 400 

• T = T {Fig. 4c} 

i = 2 

k2,CT = {3} ~ } 

(i,j) = (2,3) 
T = {(1,3), (1,4), (2,5), (1,2), (2,3)} 

k2,CT = <I> 

Lp {(1,3), (l,2)} {Fig. 4<l} 
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Step 6 

Step 5 

Step 6 

Step 5 

(r,s) = (1,2) 
Lp = {(1,3)} 
T = {(1,3), (1,4), (2,3), (2,5)} {Fig. 4e} 

CT = 425 > best 
T = {(1,3), (1,4), (2,5), (1,2), (2,3)} 

Lp = {(1,3)} 
(r,s) = (1,3) 

Lp = <p 
T = {(1,4), (1,2), (2,5), (2,3)} {Fig 41} 

CT = 600 > best 
T = {(1,3), (1,4), (1,2), (2,5), (2,3)} 

Lp = <1> 

T = {(1,3), (1,4), (1,2), (2,5)} {Fig. 4c} 

Algorithm proceeds till node 5 is visited. 

Loop Detection 

Let {p,q) be a link from the cotree CT which is added to the tree T. This creates exactly 

one loop. Clearly, link (p,q) is one of the links on the loop. The procedure starts at node 
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q. Nodes which are connected to node q are visited. If a pendant node (a node con-

nected to only one link) is reached then we move back to the previously visited node 

and visit other nodes connected to it. The visited nodes are stored sequentially in a set 

Cy. Those nodes which become pendant are removed from Cy. The procedure ends 

when node p is visited and at that time Cy contains only those nodes which are on the 

loop. 

Let adj(i) denote a set of nodes which are adjacent to node i in T. adj(i) can be found 

easily from adjacency matrix A of T. The element aij of A = l if the nodes i and j are 

adjacent; else aij = 0. Thus 

adj(i) = {j I aij = l} 

The cardinality of set adj(i) is called the degree of node i. Let deg(i) denote the degree 

of node i. 

deg(i) = I adj(i) I 

Procedure LOOP 

Purpose: To detect the set of links Lp in the loop formed by 

addition of a link (p,q) to a tree T. 

Input: (p,q), T 

Ow put: Set of links on the loop, Lp 

Method: 

l. Initialization: Cy stores the set of nodes on the loop. prev(i) is a node 

which has been visited previous to node i. 

Cy = {p,q} 
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j = q 

prev(i) = p 

T = T U {{p,q)} 

2. Select a node k adjacent to the current node, other than the previous node. 

If k is not a pendant node, then store it in Cy ; else remove it from Cy and 

delete the link connected to it. Loop is found if node p is visited. 

Until j ·* ·p do: 

(i) Find k e adj(j) but k * prcv(j) 

(ii) prev(k) = j 

(iii) If deg(k) * l then 

Cy = Cy U {k} 

Else {remove all pendant nodes and links} 

Until deg(i) = 1 do: 

a. T = T - {(prev(k), k)} 

b. Cy = Cy - {k} 

c. k = prcv(k) 

(iv) j = k 

3. Cy contains the set of nodes on the loop. Convert it to a set of links. 

Lp = {(Y1,Y2), (Y2, Y3), .... , (Yr-1• Yr)} 

where y 1, y2, ... , Yr arc the members of Cy m that order. Note that 

Yt = P, Y2 = q, and Yr = P· 

End of LOOP 

Example (Fig. 5) 
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Figure 5. Loop Detection 

Optimization Model 
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Step 1 

Step 2 

Optimization Model 

Cy = {3,4} 

j = 4 

prev(4) = 3 

T = T U {(3,4)} 

(i) adj(4) = {3,5,6} 

k=6(say) 

(ii) prev( 6) = 4 

(iii) deg( 6) = 1 ' 

a. T = T - {(4,6)} [(4,6) deleted] 

b. Cy = {3,4} 

C. k = 4 

(iv) j = 4 

(i) a<lj(4) = {3,5} 

k = 5 

(ii) prev(5) = 4 

(iii) dcg(5) = 2 

Cy = {3,4,5} 

(iv) j = 5 

(i) a<lj(5) = { 1,4} 

k = l 

(ii) prcv(l) = 5 

(iii) deg( 1) = 3 
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Optimization Model 

Cy = {3,4,5,l} 

(iv) j = 1 

(i) adj{l) = {2,5,7} 

k = 7 (say) 

(ii) prev(7) = 1 

(iii) deg(7) = 2 

Cy = {3,4,5,1,7} 

(iv) j = 7 

(i) adj(7) = { 1,8} 

k = 8 

(ii) prev(S) = 7 

(iii) deg( 8) = 1 

a. T = T - {(7,8)} [(7,8) deleted] 

b. Cy = {3,4,5,1,7} 

c. k = 7 

deg(7) = 1 

a. T = T - {(1,7)} [(1,7) deleted) 

b. Cy = {3,4,5,l} 

C. k = l 

deg( l) = 2 

(iv) j = 1 

(i) adj(l) = {2,5} 

k = 2 
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Step 3 

(ii) prev(2) = 1 

(iii) deg(2) = 2 

Cy = {3,4,5,1,2} 

(iv) j = 2 

(i) adj(2) = { 1,3} 

k = 3 

(ii) prev(3) = 2 

(iii) deg(3) = 2 

Cy = {3,4,5,1,2,3} 

(iv) j = 3 = p 

Lp = {(3,4), (4,5), (5,1), (1,2), (2,3)} 

2.4.1 Optimization of Tree Networks 

Tree Network Optimization is an integral part of Algorithm TREESEARCH. It is 

noted that Problem P2 becomes a linear program if the link flows are known. The 

methods for optimization either iterate between a flow finding step and the linear pro-

gramming step or perform these steps independently. 

2.4.1.1 Single Source Problem 

(1) solve the continuity equations (this can be done exactly for single source tree 

networks) 
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(2) use the linear program 

2.4.1.2 Multiple Source Problem 

For the multiple source networks the continuity equations cannot be solved exactly if 

the supply rates at the sources are unknown. Hence Problem P2 remains nonlinear. 

Alternative strategies are discussed to overcome this problem: 

(a) Approach based on that of Goulter and Morgan ( 1985) : 

(I) assume the diameters of each link in the tree, use a network analyzer to solve 

for the flows in each link 

(2) using the flows from step I optimize the diameters by a linear program. If there 

is no improvement in the cost over the previous cost, stop; else go to step 1. 

This procedure, however, docs not have any theoretical support. 

(b) The Linear Programming Gradient (LPG) method (Fujiwara, et. al., 1987): 

(I) assume a feasible flow distribution 

(2) use the linear program to optimize the cost 

(3) use the dual solution of the linear program to construct the gradient with re-

spect to the perturbed flows. Take a step in the direction of the negative gradient 

to obtain a new feasible flow distribution. If the new flow distribution is close to 

the previous one or, if the gradient is zero, stop; else go to step 2. 
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Fujiwara, et al. provide a mathematical basis for such a procedure and it is shown that 

the procedure should terminate at a local optimum. 

(c) Approach based on Nonlinear Minimum Cost Flow Model (NMCF) (Rowell, 

1979) : 

(1) use NMCF model to identify the supplies at the sources. Once the supplies 

are known, solve the continuity equations to obtain the link flows. 

(2) use the linear program to optimize the cost. 

It is shown that the Problem P2 for a potential looped network can be simplified to the 

NM CF model if the hydraulic gradients arc assumed to be constant in each link. A 

statement of the NMCF model is the following: 

Minimize - C :E K,,(. ·)Le· ·) I Qc· ·) I 111,J 1,J 1,J 
(i,j)E2' 

(2.23) 

subject to 

(2.24) 

where Kr(i.j) = Ci[Kr(i,j)/JJC2il3 , C = aC 2/p, C 1 and C2 are the link cost parameters 

(Eqn. 2.10), p is the exponent in the friction head loss equation (Eqn. 1.4) and J is the 

hydraulic grad:cnt in each link. Minor losses arc neglected. The objective function is 

concave and the constraints arc linear. The solution to this problem not only gives the 

unknown supply rates at the sources but also a near optimal tree layout. 
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(d) Linear Minimum Cost Flow (LMCF) model (Rowell, 1979): 

(1) use LMCF model to identify the supplies at the sources and solve the conti-

nuity equations to obtain the link flows. 

(2) use the linear program to optimize the cost. 

LMCF is used to obtain a shortest path tree for multiple source networks. This model 

assigns each demand node to a particular source, as a result of which, the supply at 

each source is determined. The assignment is based on source capacities, nodal de-

mands, and the distances between each source and demand node. A statement of the 

model is presented below : 

subject to 

Minimize . . r L(i,j) I Q(i,j) I 
(1,J)e2' 

(2.25) 

(2.26) 

This is a linear program in which the decision variables are the flows in each link (i,j) 

of the full potential network and the supply rates ( qi, Vi E S ) at the sources. This 

model in essence, is the linear approximation to the NMCF model where the exponent 

C in the objective function is taken to be unity. Since the shortest path tree is a near 

optimal tree (in terms of layout) , the use of this approximate model seems appropriate 

to allocate the various sources to demand nodes. Moreover the problem can be effi-

ciently solved even for a large sized problems. This procedure is used for an example 

problem in Algorithm TREESEARCH. The application is described in Chapter 4. 
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3.0 Reliability Model 

3.1 Introduction 

The tree network obtained from the Optimization Model in Chapter 2 is vulnerable 

because even if one link fails, many demand nodes can be cutofT from supply. Thus it 

is necessary to provide loop forming redundant links in such a way that the demand 

nodes remain connected to the sources in case of a tree link failure. Loop forming links 

also provide better circulation and help avoid accumulation of sediments. The reli-

ability model employed in this study involves two steps: (I) selection of redundant links 

and (2) selection of diameters of redundant links. When a link in a tree fails, two con-

nected components arc created. Therefore any link from the cotree (complement of the 

given tree from the potential link set) having adjacent nodes in the respective connected 

components should qualify to be a candidate redundant link. Of course difTerent such 

reconnecting cotree links denoted as RC(i,j) will qualify for each link (i,j) of the given 

tree. Therefore a judicious choice would involve the selection of subsets of these 

RC(i,j) 's with a minimum number of reconnecting links i.e., to pick the the most com-

mon of all reconnecting links such that two different paths are provided between 
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sources and demand nodes for each link failure in the tree. Algorithm REDUNDANCY 

presented in section 3.3 generates such reconnecting links from the cotree. Section 3.4 

provides some general guidelines for selecting diameters for the redundant links. 

3.2 Selection of Redundant Links 

Optimal tree layout is selected by the Algorithm TREESEARCH discussed in section 

2.4. Let T denote the set of links in the optimal tree layout. All the links which are not 

in T constitute the cotree, denoted by the set CT = {(i,j) e !i' - T} in which !i' is the 

set of all links. The problem of finding the redundant links which satisfy the reliability 

criterion can be formally stated as follows: Given a network with a set of nodes N, a 

set of source nodes S, a set of candidate links !i' and the optimal tree T, find a subset 

RL of redundant links from the cotree CT in such a way that RL contains minimum 

number of links and the new network formed by the set of links (T U RL) and the as-

sociated nodes has the following property : 

All ( or most) nodes of the new network which are disconnected from the sources 

because of a failure of any link in T arc reconnected to the sourcc(s) because of 

addition of the set RL from the cotree CT. 

The solution procedure for this problem is explained with an example. Consider a net-

work shown in Fig. 6. The network has N = { 1, 2, 3, ... ,8 } ; !i' = { ( 1,2), ( 1,5), ( 1,6), 

(2,3 ), (2,5), (3,4), (3,5), ( 4,8), ( 5,6), ( 5, 7), ( 5,8), ( 6, 7), (7 ,8)} ; T = { ( 1,2), (1,5), ( 1,6), 

(2,3), (3,4), (6,7), (7,8)} as shown by the dark lines and CT = {(2,5), (3,5), (4,8), (5,6), 

(5,7), (5,8)} as shown by the dotted lines. Node 2 is the source. Fig. 7a shows the 

failure of link (1,6) ofT. Clearly this disconnects the set of nodes N 1 = {6, 7, 8} from 

Reliability Model 49 



/ I 

/ I 
,# I / 

/ I 

/ I 
/ 

/ I 

/ I 

I 

I 

I 
I 

I 

I 
I 

I --I ------

Figure 6. Network Showing Tree and Cotree 

/ 

/ 

/ 

-

---

/ 

/ 

/ 
/ 

-- -

--

Tree 
------

Cotree 

Reliability Model SO 



the set of nodes N 2 = {I, 2, 3, 4, 5} which contains the source. Inspection of cotree 

links show that any one of the links {(4,8), (5,6), (5,7), (5,8)} will reconnect all the nodes 

back to the source. Such reconnecting set of links, RC(i,j)• can be found for failure of 

each link (i,j) of T (Figs. 7a through 7d). It may so happen that corresponding to the 

failure of a link, it is not possible to find any reconnecting link. For example, if link 

( 4,8) were not present in the co tree, for the failure of (3,4) we will not be able to find 

any link which reconnects node 4 to the source. Also, situations may arise when no link 

is required to reconnect. For example, if node 7 were also a source node, then corre-

sponding to failure of link ( 1,6), all the nodes remain connected to one source or the 

other. Reconnecting sets corresponding to such situations are empty and contain no 

useful information. A trivial situation may arise when all the reconnecting sets are 

empty. Clearly, such situations arise when all the nodes are sources or when the cotree 

is empty. In such cases either no redundant link is required (all nodes sources) or no 

solution can be found ( co tree empty) in which case, alternative strategies like adding 

links parallel to the existing links have to be resorted to. 

For the present example, the reconnecting sets for each of the tree links are shown in 

Table 1. If any empty set were present, it should be discarded from further analysis. 

First, sets of lowest cardinality are selected. The set RC(J,4) has the lowest cardinality 

1. Since (4,8) is the only member of this set, it must be selected. If more than one re-

connecting link is present, then the link which has more number of occurrences in other 

reconnecting sets can be chosen. If a tie occurs in the number of occurrences, the link 

with smaller length is selected. Sets of higher cardinality are then examined to see if they 

contain any link which has been selected before from the sets of luwer cardinality. If 

they do, then no link needs to be selected from those sets. Sets 

RC(l,2)• RC(l,6)• RC(2,3)• RC(6,7) and RC(7,S) contain (4,8) hence no link is selected 
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Table 1. Reconnecting Sets From the Cotree 

Failing Link Reconnecting set Cardinality 

(i,j) RC(iJ) I RC(iJ) I 

(I,2) { (2,5), (3,5), ( 4,8)} 3 

(1,6) { ( 5,6), ( 5, 7), ( 5,8), ( 4,8)} 4 

( 1,5) {(5,6), (5,7), (5,8), (3,5), (2,5)} 5 

(2,3) {(3,5), (4,8)} 2 

(3,4) {(4,8)} 1 

(6,7) {(5,7), (5,8), (4,8)} 3 

(7,8) {(5,8), (4,8)} 2 

Reconnecting link Number of occurcnces 

(i,j) N(iJ) 

(2,5) 2 

(3,5) 3 

(4,8) 6 

(5,6) 2 

(5.7) 3 

(5,S) 4 
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from these sets. The set RC(l,S) does not contain (4,8). Hence a link has to be selected 

from this set. Because the number of occurrences of (5,8) is the most in all the other 

sets, it is chosen. Since all the sets are exhausted, the procedure stops here. The solution 

for this problem is RL = {(4,8), (5,8) }, as shown in Fig. 8. 

3.3 Algorithm REDUNDANCY 

This section gives a step by step algorithm for obtaining redundant links. The algorithm 

uses procedure RECONNECT for obtaining reconnecting sets which is described in the 

subsequent section. 

Algorithm REDUNDANCY 

Purpose: To find a set of redundant links, RL. 

Input: tree, T; set of potential links, !L'; link lengths, { Lci.i)• V-(i,j) e 2'} 

Output: RL 

Method: 

I. Initialization 

RL = <I> 

2. For each reconnecting set RC(i,i) of tree link (i,j) record the cardinality 

Cc·") 1,J 

V-(i,j) e T do : 

a. Find RC(i.i) using procedure RECONNECT 

b. set Cc· ·) = I RCc· ·) I 1,J 1,J 
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3. Find the set of all reconnecting links, R. Check for the case of all recon-

necting sets being empty; remove empty reconnecting sets from further 

analysis {this is equivalent to removing the corresponding tree links). Ini-

tialize number of occurrences, N(p.q)• of each reconnecting link (p,q) e R. 

R = U RC(··) r. .) T i,J \1,J e 

If R = <I> then STOP 

V-{p,q) e R do: 

N(p,q) = 0 

V-(i,j) e T do: 

If RC(i,j) = <I> then T = T - {(i,j)} 

4. Let N(p,q) be equal to the number of reconnecting sets in which (p,q) oc-

curs. 

V-{p,q) e R do: 

V(i,j) e T do: 

If (p,q) e RC(i,j) then N(p,q) = N(p,q) + I 

5. Find the redundant links by checking reconnecting sets in ascending order 

of cardinality. If two or more links in a reconnecting set have the same 

(max) number of occurrences, then choose. the one amongst them having 

the minimum length. If the lengths also happen to be the same, then the 

selection is arbitrary. 

Until T = <I> do: 

Reliability Model 

a. select (i',j')eT, such that C(i',j') = ~n {C(i.j)} 
(1,J)ET 

b. nm = O; X = <I> 

c. V-(p,q) e RC(i', i') do: 
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If N(p,q) = max {N(r,s)} then 
(r,s)eRC(i', j') 

(i). nm = Ilm + 1 

(ii). X = X U {(p,q)} 

d. If flm = I then {there is a unique link X = {p,q} having max 

occur.} 

(i). RL = RL U X 

(ii). V-(i,j) e T do: 

If X e RC(i, i) then T = T - {(i,j)} 

Else {there are two or more links with max occur.} 

(i). RL = RL U {(u,v)I L(u,v) = min {L(r,s)}} 
(r,s)eX 

(ii). V-(i,j) e T do: 

if(u,v) e RC(i,i) then T = T - {(i,j)} 

End of REDUNDANCY 

3.3.1 Construction of Reconnecting Sets 

Deletion of link (p,q) from a tree T disconnects N, the set of all nodes, into two con-

nected components N 1 and N2 = N - N 1 (Fig. 7). Let the nodes be numbered from 

1 to n. To find N 1 (and hence N2 ) it is convenient to represent T by an (n x n) 

adjacency matrix A whose elements aii = 1 if link (i,j) is in T, aii = 0 otherwise (Smith, 

1982). N 1 is obtained based on the following principle : if i is connected to j and j to 

k, then i is connected to k. This can be expressed in terms of logical addition of the jth 

row to the ith row and jth column to the i1h column of the adjacency matrix. The rules 

for the logical addition arc : (0 + 0) = 0, ( 1 + 0) = (0 + 1) = ( 1 + 1) = 1. Once 

N 1 is found the reconnecting set is obtained by recording links from the cotree, CT, 
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whose one end (node) lies in N 1 and the other in N 2. It is noted that if both 

N 1 and N2 contain a source, then no reconnecting link is required. If a reconnecting 

link cannot be found then a link parallel to link (p,q) (if possible) is taken as a recon-

necting link. 

Procedure RECONNECT 

Purpose: To find reconnecting set RC(p,q)• for the failing link (p,q) of a given tree T 

Input: Tree, T; cotree, CT; node set, N; link (p,q); set of sources, S; 

parallel link indicator, P. If P = 1 then link (p, q) parallel to (p,q) is possible 

else it is not. 

Output: RC(p,q) 

Method: 

1. Construct the adjacency matrix of T and denote it as A; initialize 

N 1 and RC(p,q) and remove the failing link (p,q) 

a,, = a·· = I if (i 1') e T IJ JI ' 

a .. = a .. = 0 IJ JI otherwise 

set apq = aqp = 0 

set i = I, N1 = {i} and RC(p,q) = <I> 

2. Find all the nodes which are connected to node i and add them to the 

component N 1 

Reliability Model 

j = i + I 

Until j > n do: 

a. If aij * 0 then 

(i). logically add row j to row i and column j to column i 

and delete row j and column j from A 

(ii). N 1 = N1 U {j} 
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b. j = j + I 

N2 = N - N 1 

3. Check if both the components contain a source. If they do, then no recon-

nection is required; else find links from the cotree whose nodes are adjacent 

in N 1 and N2 

If {N 1 n S =;<I> or N2 n S = <I>} then 

RC(pq) = { U (i,j)l(ieN 1 andjeN 2)or(ieN 2 andjeN 1)} 
' (i,j)eCT 

If { RC(p,q) = <I> and P = 1 } then 

RC(p,q) = RC(p,q) U {{p, q)} 

End of RECONNECT 

Example Consider the network shown in Fig. 9. Let the failing link, {p,q) = (1,2). S 

= { I}. 

Step I: 

Reliability Model 

A= 

0 I 

I O O 0 

I O O 0 

I O O O 

setting a 12 = a21 = 0, 

0 0 

0 0 0 0 
A= 

0 0 0 

0 0 0 
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Figure 9. Network for Procedure RECONNECT 
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Step 2: 

Step 3: 

Reliability Model 

i = I, N1 = {I}, RCc1.2) = {<I>} 

A= 

A= 

a13 = 1 -:/= 0 

I 0 -
0 0 -

-
I 0 -

N1 = {l,3} 

I 0 

0 0 

I 

0 

- . 

0 

N 1 ={1,3,4}; N 2 ={2} 

N2 docs not contain a source. 

(2,3) e CT; 2 e N2 and 3 e N 1 

(3,4) e CT; but 3 and 4 ¢N2 

therefore RC(l,l) = {(2,3)} 
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3.4 Selection of Redundant Link Diameters 

Since the role of redundant links is to provide an alternate path in case of a tree link 

failure, it seems reasonable to provide minimum diameter for them. However, since 

higher diameter pipes have longer life (Clark, et al., 1982 ; Andreou, et al., 1987a, 

1987b) it may be desirable to provide higher diameters. Again, the diameter selection 

depends on how much of unsatisfied demand in case of failure needs to be met. A high 

level of service may require large diameters for the redundant links. 

Moreover, since the role of the redundant links is also to provide better circulation and 

avoid sedimentation (Rowell, 1979), it is desirable to keep them in operating condition 

most of the time. Thus when the redundant links are added, the whole network should 

be able meet the demands at specified pressure levels. In this study, a trial and error 

procedure is used to obtain the diameters of the redundant links : 

1. Assume a minimum diameter for all the redundant links. 

2. Analyze the full network. If all the pressure requirements are met then STOP. 

3. Check the number of trials for adjusting the diameters of the redundant links; if the 

number of trials are less than that specified, revise the diameters, go to step 2. 

Otherwise go to step 4. 

4. Redesign the optimal tree using the Enear program (Problem P2) by increasing the 

minimum head requirements at the nodes at which the requirements are violated. 

Go to step 1. 

Reliability Model 62 



This type of procedure was found to converge to a feasible solution in about five to six 

trials for the networks studied by this author. Chapter 4 discusses the application of the 

this procedure for two networks. In the first problem, a small single source network is 

considered wherein the minimum diameter for the redundant links suffice. In the second 

large size multiple source network problem, tree network needed to be redesigned using 

the linear program. However the additional cost of raising the minimum head require-

ment is minimal. 
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4.0 Application 

4.1 Introduction 

In this chapter two example problems are solved using the methodology developed in 

Chapters 2 and 3. The first one is a single source problem and the second is a multiple 

source problem. The single source problem is taken from Alperovitz and Shamir ( 1977) 

who solved the problem using the Linear Programming Gradient (LPG) technique. 

Quindry, et. al. ( 1981) and Fujiwara, et al. ( 1987) have successively improved the LPG 

technique and have obtained better solutions with lesser costs. The solution obtained 

by Algorithm TREESEARCI-1 is even better than the last two. The second example is 

adapted from Rowell and Barnes ( I 982). The size of this problem is representative of 

a real life water distribution system. The optimal tree obtained from Algorithm 

TREESEARCI I has lower cost than the shortest path tree and the tree obtained by the 

Nonlinear Minimum Cost Flow model of Rowell and Barnes (1982) which is briefly 

described in section 2.4.1.2. The selection of redundant links and their diameters for 

these two networks is demonstrated. The results and Figures are given in Appendix 

D. 
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4.2 Single Source Network 

The network has 8 candidate links and 7 nodes (Fig. 14). It is fed by gravity from a 

constant head reservoir at node 1. It is assumed that parallel links are not possible. The 

minimum head requirements and flow demands at each node are shown in Table 3. 

Available diameters and their costs are given in Table 4. Length of each link is 1000 

m. A Hazen- Williams coefficient of 130 is to be used for each link. No pumps are to 

be installed in the system. Minor losses arc neglected. 

From this network fifteen different spanning trees can be generated as shown in Fig. 

15 ( Rowell, 1979). The first four trees are the shortest path trees. First two trees were 

used as initial guesses for the algorithm TREESEARCH. The costs of these two trees 

were found to be 413,918 and 430,386 respectively. The implementation of algorithm 

TREESEARCH for each initial guess resulted in the same optimal tree layout, tree 

number 3 of Fig. 15, which has a cost of 399,667 units. The results for this tree are 

shown in Tables 5 and 6. For this tree layout the failure analysis gives reconnecting sets 

for each link as shown in Table 7. Clearly, link (5,7) from RCc6,7) has to be chosen. 

Since all other reconnecting sets contain (5,7) (except RC(l, 2) which is empty and hence 

discarded), link (5,7) is the only redundant link required. A l inch diameter was as-

sumed for this link and the network was analyzed using the computer program 

KYPIPEF (Wood, 1985). All the constraints were satisfied. The complete network is 

shown in Fig. 16 and th~ results are shown in Tables 8 and 9. The network has a total 

cost of 401,667 units which is less than 415,271 which was obtained by Fujiwara, et. 

al. (1987). 
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Fujiwara, et al. imposed the requirement that the hydraulic gradients for each link 

should lie between 0.0005 and 0.05 and that every link should have a minimum flow 

of 1 m3/ hr .. Thus no link could be eliminated. To make a better comparison with 

Fujiwara's results, both the remaining links (4,5) and (5,7) were added to the tree. A 

minimum diameter of ~ inch was assumed for each link. the resulting network was an-

alyzed using KYPIPEF and the pressures were found to be within the bounds. Table 

10 gives a comparison of flows with those of Fujiwara et. al. and also shows the optimal 

link lengths. Optimal heads are given in Table 11. A comparison of the cost of this 

solution with the costs obtained by previous researchers is given in Table 12. The cost 

of 403,667 units is less than that obtained by Fujiwara, et. al. 

For each initial tree, 8 different trees were visited. This means solution of 8 linear pro-

grams, each time. Fujiwara's results show that 33 linear programs were required for the 

LPG method for a particular initial feasible flow distribution. However, for this ex-

ample it is not possible to show the full power of algorithm TREESEARCH because 

there are only 15 possible trees and almost any starting tree will suffice to arrive at the 

optimal tree. A large size network is therefore considered in the next example. The 

purpose of the next example is also to show the application to a multiple source net-

work. 

4.3 rvlultiple Source Network 

An application 0f algorithm TREESEARCI-1 using Linear Minimum Cost Flow Model 

(LMCF) described in section 2.4.1.2 is considered here. The network consists of two 

elevated reservoirs, nodes l and 2. There are 24 demand nodes and 51 potential links 
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(Fig. 17). It is assumed that parallel links are not possible. The nodal demands and 

minimum head requirements at the nodes are given in Table 13. Link lengths and cost 

data are given in Tables 14 and 15 respectively. The supply rates at the reservoirs are 

treated as unknowns. It is not possible to elevate the reservoir at node 2. There are 

more than 6.5 x 1010 trees for this network (Rowell, 1979) which makes the exhaustive 

enumeration impossible. 

(a) Identification of supplies and the shortest path tree: 

The LMCF model (section 2.4.1.2) was solved by using the linear programming code 

LINDO (Schrage, 1986). This identifies supply rates of 4,500 GPM at source node 1 

and 10,500 GPM at the source node 2. The solution also allocates nodes 16-24 to 

source node 1 and the remaining nodes to source node 2 thus resulting in two discon-

nected shortest path trees as shown in Fig. 18. The two disconnected trees so formed 

are connected by link (14,18) which forms the shortest path between the two sources 

( Rowell, 1979). This is taken as the shortest path tree for the whole network ( Fig. 18). 

The tree was optimized using the linear program (Problem P2) which gave a cost of 

S64,300. 

(b) Solution from Nonlinear Minimum Cost Flow (NMCF) model (section 2.4.1.2): 

The solution of NMCF depends on 

(i). nodal demands and supplies { % Vi e N } 

(ii). link lengths { L(i,i)• V ( i,j) e 2' } 

(iii). parameters C and Kr(i.i) 

The values of the above parameters for the present problem are the same as in Rowell 

( 1979), except the parameter Kr(i.j)· Rowell used a constant value of 
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1.286 X 10- 3 
Kr(i.i) = V(i,j) e ~ 

IJ I 

where J is the constant hydraulic gradient. In the present case, 

8.914 X 10- 6 
Kr(i.i) = V ( i,j) e ~ 

I JI 

Since this value is simply a constant multiple of that of Rowell, the objective function 

of NMCF model is simply scaled by a positive number. Thus the solution remains the 

same as given in Rowell. This tree is shown in Fig. 19. Rowell used Linear Program-

ming Gradient (LPG) technique to optimize the tree. Since the link flows for this tree 

are determined from continuity equations (supplies and demands are known), the LPG 

technique (section 2.4.1.2) is equivalent to solving a single linear program, Problem P2. 

The tree was optimized using this linear program and the cost was found to be $58,500. 

(c) Solution from TREESEARCII: 

The shortest path tree (Fig. 18) was used as an initial guess for the TREESEARCH and 

a tree was found (Fig. 20) which has a cost of$ 58,400. This tree was used as an initial 

guess and a still cheaper tree was found (Fig. 21) with a cost of $58,100. The results for 

this tree arc given in Tables 16 and 17. 

( d) Superposition of redundant links: 

The tree obtained from TREESEARCI I was adopted as the optimal tree and the failure 

analysis was performed using the algorithm REDUNDANCY. The results of the com-

puter program written for this purpose gives RL = {(9,15), (10,25), (11,12), (20,22), 
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(22,23), (3,26)}. First a minimum diameter of 6 inches was assumed for all the redun-

dant links and the resulting network was analyzed using KYPIPEF and the minimum 

head requirement at node 9 was violated. Various diameters were subsequently tried 

for all the redundant links but minimum head requirement at node 9 was still violated. 

To overcome this problem, the minimum head requirement at node 9 was increased to 

1309 ft. from 1302 ft. and the optimal tree was redesigned using the linear program. 

The cost of the tree increased by $400. Again a minimum diameter of 6 inches was as-

sumed for all the redundant links and the network was analyzed. All the head require-

ments were met. The final network is shown in Fig. 22. The results are shown in Tables 

18 and 19. It has a cost of $72,724 ($58,500 for the tree which includes $8,955 for the 

reservoir elevation at node 1, and $14,224 for the redundant links). 
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5.0 Conclusions and Recommendations 

The principal contribution of this thesis is the heuristic optimization procedure made 

up of algorithms TREESEARCH and REDUNDANCY. Even in large water distrib-

ution systems, the number of redundant pipes is not large. Right of way decisions and 

increased cost tend to reduce the number of redundant pipes. In such networks the cost 

is dominated by the tree links which is ideal for the TREESEARCH algorithm. The 

results from the example problems from literature tend to accentuate this conclusion. 

The REDUNDANCY algorithm provides alternate paths between source nodes and 

demand nodes in case of failures. Both the algorithms combined together form a pow-

erful methodology for water distribution system design. 

With regard to future research two suggestions are offered. The first one is related to 

the multiple source application in which a Linear Minimum Cost Flow (LMCF) model 

is used to identify the supply quantities at the sources. The LMCF model does not take 

into account the __ pressure constraints. One may consider using Linear Progranuning 

Gradient (LPG) technique in place of LMCF within Algorithm TREESEARCI-1. This 

will result in increased computational burden and numerical experimentation is required 
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to evaluate the trade-off between computational effort and the improvement in the 

optimal solution obtained. 

Secondly, Algorithm REDUNDANCY treats link failures deterministically and inde-

pendent of pipe and soil properties. Some of the recent studies (Andreou et. al., 1987a, 

1987b) address the pipeline failures probabilistically and distributional properties are 

derived based on pipe and soil properties and the age of the pipes. Such a random 

failure model should be included within the methodology. 
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Appendix A. Convexity and Optimality 

Convex Sets 

A set S is said to be a convex set if for any two points in the set the line joining those 

points is also contained in the set. Mathematically, S is a convex set if for any two 

vectors xl and x2 in S, the vector x = 11.xl + (1 - 11.)x2 is also in S for any number 11. 

between O and l. Fig. lO(a) shows a convex set while Fig. lO(b) illustrates a nonconvex 

set. 

Convex and Concave Functions 

A function f{x) is said to be a convex function if and only if for any two points xl and 

x2 and O ~ 11. ~ 1 

A function g is a concave function if and only if -g is a convex function. Fip. l 0( c) and 

10( d) illustrate a convex function and a concave function respectively. A linear function 

shown in Fig. lO(e) is both concave and convex. 
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Optimality 

Mathematical programming is concerned with solving an optimization problem of the 

form 
Problem PO: mmmuze f{x) 

subject to : XEX 

where x is an n-vector of decision variables, f is a real-valued function of x and X is a 

constraint set. Solving PO means, finding xOEX such that 

f{x°) ~ f{x) Vx E X (1) 

The point x0 is said to be a global optimum of Problem PO. If strict inequality holds in 

(1), xO is the unique global optimum of PO. If (I) holds only for some neighborhood of 

x0, then xO is a local optimum of PO. If ( 1) holds for several xOEX, then PO has alternate 

optima. Examples are shown in Figs. lO(f)-lO(h). 

Convex Programming Problem : Minimizing a convex function or maximizing a con-

cave function over a convex constraint set is called a convex programming problem. 

Theorem For a convex program, every local optimum is also a global optimum. 

From the Theorem it follows that for a bounded convex program, any iterative opti-

mization procedure, which in each iteration improves the objective function value, will 

eventually reach a global optimum. Nonconvex optimization problems may have local 

optima. In that case, if an iterative procedure reaches a local optimum all the neigh-

boring points will show an inferior value of the objective function and the procedure 

would end. In most cases there is no criterion to find out whether the procedure ended 

at a global or local optimum. 
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(a) Convex Set 

(c) Convex Function 

(e) Both Convex and 
Concave 

(g) Local Optimum 

Figure 10. Convexity and Optimality 
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(b) Nonconvex Set 

(d) Concave Function 

(f) Global Optimum 

\_j 

(h) Alternate Optimum 
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Example 1 Consider the following optimization problem: 

Minimize: f{x) = X1 + X2 

subject to: 

f1(X) = X1 + X2 ~ 1 

f2(x) = 2x1 - x2 ~ 0 

f3(X) = X1 ~ 0 

The constraint set formed by these linear constraints is convex (see Fig. 1 la). The point 

A is the global optimum. In general, linear constraints form a convex feasible region. 

Example 2 Objective function is convex but constraint set is nonconvex (see Fig. llb). 

Minimize: f{x) = - x1 

subject to: 

f1(x) = x~ - x1 ~ 1 

f2(X) = X2 ~ 1 

f3(X) = X2 ~ -1/2 

fix)= X1 ~ 0 

Point A is a global optimum but point B is a local optimum. 
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(a) Convex Constraint Set 

(b) Nonconvex Constraint Set 

Figure 11. Conrex and Noncomex Constraint Sets 
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Appendix B. Graph Theory · Some Definitions 

A simple graph (or a network; referred to as a graph subsequently) G is a pair {N, .Ii') 

where N is a non-empty finite set of elements called nodes (or vertices or points) and 

.Ii' is a finite set of unordered pairs of distinct elements of N called links ( or edges or 

lines). Two nodes u, v of a graph are said to be adjacent if the link {u,v) is in .Ii'. A graph 

in which every pair of distinct nodes are adjacent is called a complete graph. A graph 

G5(N5 , .Ii' 5) where N5 is a subset of N and 2' 5 is a subset of .Ii' , is called a subgraph of 

G(N, 2' ). For a partial graph, N5 = N and 2' 5 is a subset of 2'. 

A path between nodes i1 and i2 of a graph is an alternating sequence of nodes and links 

{ i1, (i1, i2), i2, ... ,(im-l• im), im }. A path becomes a cycle (or loop) ifi 1 =~-Each 

link is associated with a weight ( e.g., length). Length of a path is the sum of the lengths 

of all the links on the path. A graph is said to be connected if for every pair of nodes 

a path exists; otherwise it is said to be disconnected. Union of two graphs G 1 (N 1, .Ii' 1) 

and G2(N 2, 2' 2) is defined as a graph G[(N 1 U N2), (2' 1 U 2 2)). A disconnected 

graph can be expressed as a union of a finite number of connected graphs; each such 

connected graph is called a connected component ( or component). 

Example Consider the graph shown in Fig. 12(a). For this graph, 
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• N = { 1,2, ... ,8} 

• 2 = {(1,2), (3,4), (4,5), (5,7), (3,6), (6,7), (4,8)}. 

• {3, (3,4), 4, ( 4,5), 5, (5,8), 8} is a path between the nodes 3 and 8. 

• {4, (4,5), 5, (5,8), 8, (8,4), 4} is a cycle. 

• the graph is disconnected because no path exists between any node in { 1,2} and any 
node in {3,4, ... ,8 } 

• G1(N1, 2 1) where N 1 = {1,2} and 2 1 = {(1,2)} is a component of G. 

Trees 

A forest is defined as a graph having no cycles, a connected forest is a tree 

(Fig.12b-12c). A tree has the following properties: 

(i). a tree with n nodes has (n-1) links 

(ii). a unique path exists between any two nodes of a tree 

(iii). addition of a new link to a tree creates exactly one cycle. 

(iv). removal of a link from a tree results in two disjoint trees. 

A shortest path tree of a graph G with a source node s is a partial graph of G formed 

by those links which yield the shortest path between s and every other node of G. 
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(a) Graph 

@ (c) Tree 

(b) Forest 

Figure 12. Grapl1s 
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Appendix C. Network Optimization by Nonlinear 

Programming 

In this section, example 1a of Jacoby (1968) is solved using the Generalized Reduced 

Gradient (GRG) (Abadie, 1970) technique. The network is shown in Fig. 13(a). It is fed 

through a pump at node I. The objective is to minimize the link and pumping costs: 

Minimize ~. (25.7D(i.i) -3.9)L(i.i) + 435HP 
V (1.J) 

(1) 

where D(i,i) and L(i,i) are the diameter and the length of a link (i,j); HP is the pumping 

head at node 1. 

The constraints are the continuity equations and the energy equations. The Darcy-

Weishbach formula is used for the headless: 

2 
Q(i,j) 

HL(' ') = f.c· ·)Lc· ') __ _ 1,J 1,J 1,J 5 
39.7D(i.i) 

where f(i.i) is given by the Colebrook-White equation: 
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3 ft /sec 

L = 330 ft 330 

165 220 250 

400 330 

(a) Jacoby's Network 

2 3 """""'"-0-.-6-2_4_ ..... 4 

0.825 

,---..----c6---s 
0.816 0.608 

(b) Tree from GRG2 

Figure 13. Example From Jacoby ( 1968) 

Appendix C. Network Optimization by Nonlinear Programming 85 



1 [ 2k5 J = 1.74 - 2.00 log10 -0 .. 
.Jf(i,j) (t,J) 

(3) 

a value of 0.0 l is assumed for the roughness factor kg. Since the friction factor f(i,i) is 

dependent on the decision variable D(i,j) , Eqn. (3) is also included as a constraint. 

Jacoby implicitly used a minimum diameter of 0.2 ft. Here, this restriction is relaxed; 

diameters are allowed to take zero values. 

The solution is achieved through G RG2 code (Lasdon and Waren, 1982). The tree 

network obtained is shown in Fig. 13(b). The total cost is $25,942 ($21,042 for links, 

$4,902 for pumping) as opposed to $28,703 obtained by Jacoby ($23,756 for links, 

$4,947 for pumping). The results are compared in Table 2. 

It is possible to obtain the tree network using GRG2 for such small size networks; 

however, for large realistic problems it is difficult to obtain a near optimal tree because 

of the nonconvexity of the constraint set. 
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Table 2. Comparison of G RG Results With Jacoby (1968) 

Link Diameter(ft) Flow(ft 3 /s) 

GRG Jacoby GRG Jacoby 

( 1,2) 0.825 0.834 2.44 2.31 

(2,3) 0.691 0.667 1.44 1.31 

(3,6) 0.014 0.200 0.00 -0.01 

(3,4) 0.624 0.584 1.00 0.88 

(4,5) 0.334 0.011 0.00 -0.12 

(5,6) 0.608 0.667 -1.00 -1.12 

(6,1) 0.816 0.834 -2.44 -2.58 
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Appendix D. Data and Results for the Single and Multi-source 

Networks 
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"Source" 

Figure 14. Single Source Network 
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Table 3. Nodal Data for the Single Source Network 

Node Demand Min. Head 

1 (cu. m/hr) (m) 

1 -1120 210* 

2 100 180 

3 100 190 

4 120 185 

5 270 180 

6 330 195 

7 200 190 

* fixed head node 
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Table 4. Cost Data for the Single Source Network 

Diameter Cost/meter Diameter Cost/meter 

(inch) (inch) 

1 2.0 2 5.0 

3 8.0 4 11.0 

6 16.0 8 24.0 

10 32.0 12 50.0 

14 60.0 16 18.0 

18 130.0 20 170.0 

22 300.0 24 550.0 
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l 2 3 4 

5 6 , 7 8 

9 10. 11 12 

13 14 15 

Figure 15. Spanning Trees of the Single Source Nchrnrk 
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Table 5. Optimal Flows and Link Lengths From TREESEARCH for the 

Single Source Network 

Link Flow Length Diameter 

(i,j) (cu.m/hr) (m) (inch) 

(1,2) 1120.00 1000.00 18.00 

(2,3} 370.00 780.34 10.00 

219.66 12.00 

(2,4) 650.00 1000.00 16.00 

(3,5) 270.00 90.86 8.00 

909.14 10.00 

(4,6) 530.00 314.96 14:00 

685.04 16.00 

(6,7) 200.00 13.87 8.00 

986.13 10.00 
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Table 6. Optimal Heads From TREESEARCH for the Single Source Net-

work 

Node I-lead 

(i) (m) 

l 210.00 

2 203.24 

3 190.00 

4 198.87 

5 180.00 

6 195.00 

7 190.00 
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Table 7. Reconnecting Sets for the Single Source Network 

failing Link Reconnecting set Cardinality 

(i,j) RCUJ) I RC(iJ)' 

(1,2) <I> 0 

(2,3) {(4,5), (5,7)} 2 

(2,4) {(4,5), (5,7)} 2 

(3,5) {(4,5), (5,7)} 2 

(4,6) {(5,7)} 1 

(6,7) {(5,7)} l 
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"Source" 

\--------, 2 1---------t 

Figure 16. Application of TREESEARCH and REDUNDANCY to the Single 
Source Network 
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Table 8. Optimal Flows and Link Lengths From REDUNDANCY for the 

Single Source Network 

Link Flow Length Diameter 

(i,j) (cu.m/hr) (m) (inch) 

(1,2) 1120.00 1000.00 18.00 

(2,3) 368.92 780.34 10.00 

219.66 12.00 

(2,4) 651.21 1000.00 16.00 

(3,5) 269.04 90.86 8.00 

909.14 10.00 

(4,6) 530.95 314.96 14.00 

685.04 16.00 

(6,7) 200.76 13.87 8.00 

986.13 10.00 

(5,7)* 1.02 1000.00 1.00 

* Redundant link 
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Table 9. Optimal Heads from REDUNDANCY for the Single Source Network 

Node Head 

(i) (m) 

1 210.00 

2 203.23 

3 190.03 

4 198.84 

5 180.06 

6 195.00 

7 190.00 
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Table 10. Comparison of Flows With Fujiwara et. al. ( 1987) 

Link Flow(m 3 /hr) Length(m) Diameter(in) Hydraulic 
Gradient 

Present Fujiwara 

(1,2) 1120.00 1120 1000.00 18.00 0.0068 

(2,3) 367.90 334.23 780.34 10.00 0.0132 

219.66 12.00 

(2,4) 652.23 685.68 1000.00 16.00 0.0044 

(3,5) 268.03 234.32 90.86 8.00 0.0099 

909.14 10.00 

(4,6) 530.95 531.01 314.96 14.00 0.0038 

685.04 16.00 

(6,7) 200.76 201.01 13.87 8.00 0.0050 

986.13 10.00 

(7,5)"' 1.02 1.01 1000.00 1.00 0.0098 

(4,5)* 1.02 34.67 1000.00 1.00 0.0186 

* Redundant links 

Note: Link flows arc above 1.00 m3 /hr and the hydraulic gradients are within the 

specified limits of 0.0005 to 0.05. 
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Table 11. Heads for the Network of Fujiwara et. al. ( 1987) 

Node Head 

(i) (m) 

1 210.00 

2 203.23 

3 190.09 

4 198.83 

5 180.20 

6 195.00 

7 190.00 
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Table 12. Comparison of Cost for the Single Source Network With Previous 

Studies 

Study Cost 

Alperovitz and Shamir ( 1977) 479,525 

Quindry et. al. ( 1979) 441,522 

Fujiwara et. al. ( 1987) 415,271 

Present 403,667 
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Figure 17. Multi-source Network 
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Table 13. Nodal Data for the Multi-Source Network 

Node Demand Min. Head 
1 (GPM) (ft) 

l* - 1404.0 
2* - 1347.50 
3 800 1310.0 
4 1150 1305.0 
5 850 1339.0 
6 290 1346.0 
7 550 1319.0 
8 750 1308.0 
9 1040 1302.0 
10 530 1306.0 
11 560 1330.0 
12 1060 . 1290.0 
13 450 1305.0 
14 530 1306.0 
15 1050 1290.0 
16 490 1420.0 
17 610 1326.0 
18 240 1317.0 
19 590 1288.0 
20 580 1279.0 
21 770 1314.0 
22 190 1312.0 
23 810 1305.0 
24 220 1316.0 
25 520 1330.0 
26 370 1324.0 

* source node 
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Table 14. Link Data for the Multi-Source Network 

Link Length Link Length 
(i,j) (ft) (i,j) (ft) 

(1, 17) 450.0 (12,13) 1370.0 
(2, 5) 60.0 (12,16) 2990.0 
(3, 4) 2685.0 (13,14) 1560.0 
(3, 5) 2400.0 (13,16) 3120.0 
(3,25) 2250.0 (13,18) 4020.0 
(3,26) 1555.0 (14,15) 3010.0 
(4, 7) 5820.0 (14,18) 2510.0 
(4, 9) 3480.0 (14,19) 3960.0 
(5, 6) 1800.0 (15,19) 4490.0 
( 5, 11) 2510.0 (15,20) 5620.0 
(5,25) 1535.0 (16,17). 1380.0 . 
(6, 7) 1260.0 (16,18) 2500.0 
( 6, 11) 1210.0 (17,23) 5110.0 
(6,12) 2920.0 (17,24) 4710.0 
(7, 8) 1695.0 (18,19) 2750.0 
(7, 12) 2210.0 ( 18,21) 2840.0 
(7,13) 1780.0 (19,20) 1440.0 
(8, 9) 4330.0 (19,21) 2720.0 
(8,13) 1660.0 (l 9,22) 5180.0 
(8,14) 1840.0 (20,22) 5570.0 
(8, 15) 2500.0 (21,22) 2200.0 
(9, 15) 3850.0 (21,23) 4040.0 
(10,ll) 1790.0 (22,23) 3510.0 
(10,25) 2490.0 (23,24) 1800.0 
( 11, 12) 2510.0 (25,26) 1650.0 

( 1,25) 3900.0 
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Table 15. Cost Data for the Multiple Source Network 

Diameter Cost/ft 

(inch) (S) 

6 0.73 

8 1.06 

10 1.41 

12 1.78 

14 2.17 

16 2.58 

18 3.00 

20 3.44 

22 3.89 

24 4.35 

26 4.82 

28 5.30 

30 5.80 

reservoir elevation cost = S508.34/ft 

The tabulated unit link cost values correspond to the following relationship 

( eqn. 2.10): 

where C 1 = 0.0725 and C2 = 1.29 for length in feet, diameter in inches and 

cost in dollars. 
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Figure 18. Shortest Path Tree for the l\lulti-source Network: Link (14,18) is the 
connecting link between the two components 
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Figure 19. Optimal Tree for the Multi-source Network from Rowell (1979) 
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Figure 20. An Intermediate Solution for the Multi-source Network 
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Figure 21. Optimal Tree From TREESEARCH for the Multi-source Network. 
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Table 16. Optimal Flows and Link Lengths From TREESEARCH for the 
Multi-Source Network 

Link Flow Length Diameter 
(i,j) (GPM) (ft) (inch) 

(3,4) 2190.00 2685.00 8.00 
(2,5) 10500.00 60.00 22.00 
(3,5) -2990.00 2400.00 10.00 
(5,6) 5770.00 1266.41 18.00 

533.59 20.00 
(6,7) 4390.00 1260.00 12.00 
(7,8) 1800.00 1289.64 6.00 

405.36 8.00 
(4,9) 1040.00 1045.40 6.00 

2434.60 8.00 
( 6, 11) 1090.00 1210.00 6.00 
(10,11) -530.00 1790.00 6.00 
(7,12) 1060.00 2210.00 6.00 
(7,13) 980.00 1152.83 6.00 

627.17 8.00 
(13,14) 530.00 1560.00 6.00 
(8, 15) 1050.00 2500.00 6.00 
(l, 17) 4500.00 450.00 16.00 

( 16,17) 2860.00 1380.00 14.00 
(14,18) 0.00 2510.00 6.00 
(16,18) 2370.00 2500.00 6.00 
(18,19) 1170.00 2750.00 6.00 
( 19,20) 580.00 1440.00 6.00 
(18,21) 960.00 1784.00 6.00 

1056.00 8.00 
(21,22) 190.00 2200.00 6.00 
( 17,24) 1030.00 4710.00 6.00 
(23,24) -810.00 1800.00 6.00 
(5,25) 890.00 1535.00 6.00 
(25,26) 370.00 1650.00 6.00 
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Table 17. Optimal Heads From TREESEARCH for the Multi-Source Net-

work 

Node Head Node Head 

(i) (ft) {i) (ft) 

1 1421.62 14 1328.09 

2 1347.50 15 1290.00 

3 1336.16 16 1420.00 

4 1315.16 17 1421.16 

5 1347.44 18 1328.09 

6 1346.00 19 1300.74 

7 1341.04 20 1296.84 

8 1310.35 21 1314.00 

9 1302.00 22 1313.24 

to 1331.34 23 1375.10 

11 1335.44 24 1384.16 

12 1322.73 25 1338.24 

13 1331.67 26 1336.29 

additional head at source node 1 = 17.617 ft. 
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"Optimal tree" 

"Redundant links" 

Figure 22. Application of TREESEARCI-1 and REDUNDANCY to the l\lulti-source 
Net\\ork 
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Table 18. Optimal Flows and Link Lengths From REDUNDANCY for the 
Multi-Source Network 

Link Length Flow Diameter 
(i,j) (ft) (GPM) (inch) 

( 1, 17) 450.0 4774.48 16.0 
(2,5) 60.0 10225.52 24.0 
(5,3) 2400.0 3248.53 10.0 
(3,4) 2554.2 2343.26 8.0 

130.8 10.0 
(4,9) 3480.0 1193.26 8.0 

(5,25) 1535.0 1040.17 6.0 
(5,6) 1325.3 5086.82 18.0 

474.7 20.0 
(6,7) 1260.0 3661.26 12.0 
( 6, 11) 1210.0 1135.56 6.0 
(7,12) 2210.0 759.00 6.0 
(7,8) 1289.6 1646.74 6.0 

405.4 8.0 
(7,13) 1152.8 705.52 6.0 

627.2 8.0 
(8,15) 2500.0 896.74 6.0 
(10,11) 1790.0 -274.56 6.0 
(13,14) 1560.0 255.52 6.0 
(14,18) 2510.0 -274.48 6.0 
(16,18) 2500.0 2225.82 6.0 
(18,19) 2750.0 857.51 6.0 
(16,17) 1380.0 -2715.82 14.0 
(17,24) 4710.0 1448.66 6.0 
(18,21) 1784.0 853.83 6.0 

1056.0 8.0 
(l 9,20) 1440.0 267.51 6.0 
(21,22) 2200.0 83.83 6.0 
(23,24) 1800.0 -1228.66 6.0 
(25,26) 1650.0 264.73 6.0 
(9, 15)* 3850.0 153.26 6.0 
(3,26)* 1555.0 105.27 6.0 
(25,10)* 2490.0 255.44 6.0 
< 12. 11r 2510.0 -301.00 6.0 
(20,22)* 5570.0 -312.49 6.0 
(23,22)* 3510.0 418.66 6.0 

* Redundant Links 
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Table 19. Optimal Heads From REDUNDANCY for the Multi-Source Network 

Node Head Node Head 

(i) (ft) (i) (ft) 

1 1421.62 14 1336.77 

2 1347.50 15 1301.67 

3 1334.35 16 1420.06 

4 1311.37 17 1421.11 

5 1347.46 18 1338.47 

6 1346.31 19 1323.13 

7 1342.77 20 1322.20 

8 1316.82 21 1327.15 

9 1302.56 22 1326.99 

10 1333.74 23 1332.18 

11 1334.95 24 1351.72 

12 1332.94 25 1335.22 

13 1337.69 26 1334.17 

additional head at source node 1 = 17.617 ft. 
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