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ABSTRACT 
Previously the design of algorithms and parameter calibration for 
biosignal music performances has been based on testing with a small 
number of individuals - in fact usually the performer themselves. This 
paper uses the data collected from over 4000 people to begin to create 
a truly robust set of algorithms for heart rate and electrodermal activity 
measures, as well as the understanding of how the calibration of these 
vary by individual. 
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1. INTRODUCTION 
Biosignals in the arts and in particular for music performance 
have been present for over fifty years, since artists in the 1960s 
started to experiment with medical instrumentation to create 
novel compositions. However, musical performances that use 
biosignals are generally calibrated with heuristic methods carried 
out by the performers themselves. It has only been until the last 
two decades that low-cost technologies and off-the-shelf 
physiological measuring devices for musical applications [9] 
have given the field a new impetus. 
In this paper a new approach on the design of algorithms for bio-
inspired systems for musical applications is presented. The 
extensive physiological database collected during the Emotion in 
Motion (EiM) series of experiments [6,7] has allowed the design 
and calibration of automatic feature extraction tools, with special 
consideration to automatic artifact detection and removal 
techniques. 
 EIM is comprised of a series of experiments deployed in 
museums and galleries to collect large amounts of physiological 
and self-report data of people listening to music. The 
experiments are designed as a testbed to study emotional 
response to music stimuli, where multiple research questions can 
be explored by looking at selected subsets of the database. In 
particular, these experiments aim to understand the relationship 
between what listeners report as felt emotions induced by music 
and their physiological manifestations via electrodermal and 

cardiovascular measures. Overall, EiM has collected 
physiological data from over 4000 people listening to music, 
from multiple locations on the world. This unique physiological 
database has allowed us to advance in two main areas:  
 a) The calibration of automatic feature extraction tools, 
including artifact detection and removal. 
 b) Start to see and understand certain relationships between the 
music, people’s physiological reaction and their reported 
appraisal of the music content. 
 This paper focuses on the feature extraction tools developed 
using EiM database. To begin with, the two physiological 
channels utilized, electrodermal activity and heart rate are 
presented, describing their physiological origin, measurement 
techniques and the distinctive features that are extracted from 
them. To then continue with a thorough description of two 
physiological feature extraction tools developed to process 
biosignals, namely EDAtool and HRtool. Finally, the paper 
concludes summarizing the concepts presented in this document, 
and presents details on further work regarding these algorithms. 

1.1 Electrodermal Activity 
Electrodermal activity (EDA), also known as skin conductivity 
or galvanic skin response, is the measurement of electrical 
changes in the human skin. The psychophysiological origin of 
EDA is explained by the involvement of sweat glands in the skin, 
specifically the eccrine sweat glands, which are controlled by the 
sympathetic branch of the autonomic nervous system (ANS) 
[11,14]. Even though the primary function of the most eccrine 
glands is thermoregulation, the glands located on the palmar and 
plantar surfaces of skin have been suggested to be more 
responsive to psychological stimuli than to thermal [4]. 
Exosomatic measurements of EDA, usually preferred for being 
less invasive, involve passing a small electrical current through 
a pair of electrodes placed in the surface of the skin. The 
variation in skin resistance can be calculated by keeping the 
current or the voltage constant (and measuring the other), 
although most physiological recording systems use constant 
voltage [4]. 
 Figure 1 shows a plot of an EDA signal, recorded during the 
screening of a short horror video clip. The plot shows a typical 
EDA signal, which can be separated in two components: tonic 
and phasic, which are believed to be originated by two distinct 
neurophysiological states of the organism [12]. The phasic 
component consists of relatively fast changes in the signal, 
which is seen as a series of responses to specific stimuli [4]. Each 
one of these responses, with a characteristic Gestalt shape, is 
called an electrodermal response (EDR or SCR for fixed voltage 
measurements). 
 The tonic or electrodermal level (EDL or SCL) component, is 
a relatively slow change in the conductance of the skin, and is 
less understood, mainly due to it being less reactive to 
experimental conditions [3]. EDL is not completely independent 
from EDR (see Figure 1), Dawson et al. state that “It is common 
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for SCL to gradually decrease while subjects are at rest, rapidly 
increase when novel stimulation is introduced, and then 
gradually decrease again after the stimulus is repeated” [4:164]. 

 
Figure 1. Example of a typical EDA signal for a single 

person, recorded during the viewing of a horror film clip. 

1.2 Heart Rate 
The heart, the central pump of the cardiovascular system, 
provides a consistent blood flow that reaches all the tissues of 
the body. Electrical waves cause the heart muscle to squeeze and 
pump periodically, on what is referred as the cardiac cycle. For 
centuries, humans have perceived in themselves and others the 
pulsations produced by the heart, and even associated these 
changes to emotionally significant experiences (e.g. fear) [5].  
Several techniques have been developed to observe and analyze 
the cardiac cycle, each measuring different signals (e.g. sound, 
electrical impulses, changes in pressure, etc.). This paper will 
expand on Electrocardiography (ECG or EKG) and Pulse 
Plethysmography (PPG), as they are the measurements that are 
processed by our tool. 

1.2.1 Electrocardiography (ECG) 
ECG measures the small electrical impulses that trigger a 
heartbeat. These waves can be sensed by electrodes attached to 
the skin employing an instrument called electrocardiograph. The 
body acts as a conductor of the wave depolarization that travels 
the heart, transmitting this electrocardiac signals to the body 
surface, which can be detected by measuring the difference in 
potential across two or more electrodes positioned at either side 
of the heart [13]. Using a proper lead configuration, the output 
of the electrocardiograph depicts the electrical waves P, Q, R, S, 
and T. Nonetheless, Berntson et al. [1] postulate that for most 
psychophysiological applications, a simplified configuration that 
yields a relatively large R-wave is sufficient. ECG is quite robust 
to motion [13], however movement can produce changes in the 
ECG baseline [8]. Additionally, ECG can be affected by power 
line interference (e.g. 50[Hz]), which can be reduced with notch 
filtering. 

1.2.2 Pulse Oximetry (POX) 
During the cardiac cycle, blood is ejected from the ventricles and 
a pulse of pressure travels 10-15 times faster than the blood flow 
to the peripheral circulatory system. This change in pressure 
causes vessel-wall displacement and can be measured using a the 
photoelectric technique named pulse oximetry (POX) [8]. This 
method consists on shining infrared light from an LED on the 
skin, and measuring its reflection or transmittance with a 
photoresistor. The increased blood flow produced during the 
cardiac cycle interferes with the light transmission or reflection, 
particularly in the infrared band, causing changes that are 
analogous to the ventricular pressure [13]. Additionally, with 
each pulsation, there is a change in oxygen saturation of 
hemoglobin in arterial blood, which produces fluctuations in the 
absorption of red and infrared lights emitted from an LED [2,8]. 
POX sensors are affected by movement artifacts, due to the 
mechanical distortion of the skin [8]. 

                                                                 
1 http://www.musicsensorsemotion.com/2012/06/21/edatool/  

2. Biosignal Algorithms 
Two tools were developed in MATLAB to extract features from 
the physiological signals described above: EDAtool and HRtool. 
The extraction of features includes detection and removal of 
artifacts and abnormalities in the data. The output from both 
tools delivers the processed feature vectors (e.g. phasic EDA or 
HR) as well as an accuracy index (Q) that is defined as the 
percentage of the signal that did not present artifacts. This value 
can be utilized later to remove cases from the analysis (or the 
live performance) that fall below a specified confidence 
threshold. The EiM data has been used to both design and 
evaluate these algorithms. 

2.1 EDAtool 
EDAtool is a function developed to pre-process the EDA signal. 
Its processing includes the removal of electrical noise and the 
detection and measurement of artifacts. Additionally, it separates 
the EDA signal into phasic and tonic components. The 
processing of the EDA signal has several stages, which are 
detailed in the following sections, and illustrated in Figure 2. 
Additionally, EDAtool is available online.1 

2.1.1 Revision of Input Parameters 
The function has several input variables: the raw EDA signal as 
a vector, the sample rate (SR) of the signal, and options to adjust 
the parameters of the EDA processing such as the signal range, 
threshold adjustments, and interpolation options. 

2.1.2 Pre-processing 
Initially, the EDA signal is resampled to 50[Hz], using 
decimation or interpolation, depending on the original SR 
entered to the tool. This standardization is implemented in order 
to keep the filter coefficients constant for every signal, with a 
bandwidth that allows the detection of artifacts. Subsequently, 
any sample outside the sensor’s range (specified in the input 
parameters) is limited, and counted as non-valid for accuracy 
purposes. Next, the start value of the signal is saved, and then the 
signal is shifted to start at zero in order to be filtered without DC 
component. Finally, the signal is normalized in accordance to the 
range of the EDA sensor specified by the user. 

2.1.3 Removal of Electrical Noise 
The next section removes any noise that is outside the EDA 
spectrum, typically electrical noise. For this, a 224 order low-
pass FIR filter is used, with a cut-off frequency of 0.5[Hz] (stop 
frequency of 1[Hz] at -60[dB]). 

2.1.4 Artifact Detection and Removal 
EDA artifacts are typically caused by problems with the 
electrode-to-skin connection, which results in a discontinuity or 
rapid change in the conductivity measured by the sensor. 
Boucsein [3:140] gives a thorough overview of the 
physiologically and recording based artifact causes. He argues 
that due to the multiple origins of artifacts (e.g. loss of contact, 
change in contact pressure, subject’s temperature, respiration 
induced SCRs, etc.), artifacts should be identified and corrected 
manually by researchers, yet this requires a significant amount 
of time for databases such as the EiM, and is not feasible for real-
time applications. For this reason, automatic detection and 
removal of EDA artifacts induced by motion has been developed 
as part of the EDAtool. With regard to other source of artifacts, 
such as respiration induced SCRs or temperature, this needs to 
be controlled with additional sensors (e.g. thermistors), and are 
not currently considered in this tool. 

 
 

 Tonic – EDL 

Phasic – EDR 
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Figure 2. Stages of the EDAtool on an electrodermal signal. 
The detection of artifacts consists of evaluating the gradient 
between the edges of a sliding window against a fixed threshold. 
Because the changes in EDA are slower than changes produced 
by artifacts, it is possible to separate both events with this 
method. If an artifact is detected, the algorithm replaces the 
adjacent samples with non-valid values using a 1.5[s] window, 
centered on the artifact. 
 A confidence index (Q) is obtained by calculating the ratio of 
non-valid values versus valid samples in the signal. After 
evaluating the values of Q against multiple examples of the EiM 
database, another variable was factored into the confidence 
index. It was noticed that on certain cases, the baseline of the 
EDA signal was shifted significantly before and after an artifact 
(see Figure 3). This may be due, for example, to the electrode 
not making a good connection initially, and after an adjustment 
(which triggers an artifact) the signal settles to the correct 
baseline. Instead of artificially correcting this difference, it was 
decided to consider this factor in the calculation of Q by 
decreasing its value proportionally to the difference between the 
EDA signal before and after the artifact. 

2.1.5 Artifact Interpolation 
If requested, the EDAtool interpolates between the detected 
artifacts. For this, the algorithm searches for any non-valid 
sample in the signal, identified during the previous sections, and 
implements a linear interpolation between the values before and 
after the non-valid sample. 

 
Figure 3. Example of a baseline shift in EDA before and 

after an artifact (circled). 

2.1.6 Tonic and Phasic EDA 
After testing several Finite Impulse Response (FIR) filters to 
separate the EDA signal into its tonic and phasic components, it 
was observed that the filter orders required to obtain the desired 
signals were producing extremely long latencies (over 15 
seconds) with high processing demand. This created a problem 
for the EiM database analysis, which meant the loss of 
significant sections of the EDA vector, and also for any potential 
real-time applications that require faster processing times. 
 The solution was then to design an Infinite Impulse Response 
(IIR) Butterworth low-pass filter with a cut-off frequency of 
0.001[Hz] (stop frequency of 1[Hz] at -60[dB]). Even though 

                                                                 
2http://infusionsystems.com/catalog/product_info.php/products

_id/203 

this option involves the inherent stability and phase (time 
dispersion) issues associated with IIR filters, the filter 
coefficients were manually calibrated against the EiM database 
in order to obtain stable results. Moreover, this filter is executed 
after the artifact and noise removal stages; hence it is applied to 
EDA signals with a similar frequency content, which will 
produce a similar dispersion from the IIR filter. 
 The tonic component is then extracted from the output of the 
IIR filter, while the phasic component is obtained from the 
difference between the original signal (supplied to the IIR filter) 
and the tonic component (see Figure 2 bottom plot). 

2.1.7 EDAtool outputs 
The final section of EDAtool returns each EDA vector to the 
original baseline (stored in the pre-processing section), and 
resamples each vector to the original SR (if requested by user). 
Originally, the output signals were all set to start in zero, but the 
relationship between the EDA baseline and the amplitude of 
phasic changes confirmed the importance of evaluating the 
changes in the EDA signal with respect to its absolute level [6]. 

2.1.8 EDAtool Parameters 
The EDAtool parameters were calibrated using EDA signals 
from the EiM database. The range was set at the values of opened 
and closed circuit configurations of the BioControl sensor used.2 
The size of the artifact window, as well as the threshold levels 
were chosen after reviewing hundreds of signals, manually 
identifying artifacts and changing these parameters until they 
were recognized by the EDAtool. 

2.2 HRtool 
HRtool is a function developed to convert the data from an ECG 
or POX signal into a HR vector. The function identifies heart 
pulses in the input signal discarding artifacts and ectopic beats, 
to then generate a two dimensional matrix with the BPM value 
of each pulse and its relative location in time. The HRtool 
function and documentation are available online.3 

 
Figure 4. Stages of the HRtool on an ECG signal. 

HRtool takes five input variables: The ECG or POX signal, the 
SR of this signal, a debug option, a parameter vector and the type 
of input signal. The parameter vector contains the minimum and 
maximum acceptable heart rate values, the maximum change 
ratio between two consecutive beats, and the threshold for beat 
detection; defined as the ratio between the beat values and the 
standard deviation of the ECG signal within a moving window. 
It outputs a vector with the HR values and the time in seconds 
where they occurred, relative to the start of the vector. 

3 http://www.musicsensorsemotion.com/2012/06/21/hrtool/ 
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Additionally, it outputs the mean HR and confidence index Q. 
After checking input variables, the function processes the signal 
in three steps, described below and illustrated in Figure 4. 

2.2.1 Pre-Processing 
The first step for either signal, ECG or POX, is to remove any 
baseline trends in the signal. This is accomplished by subtracting 
the best straight-line fit trend from the vector. 
 For ECG, the signal is filtered using an FIR high-pass Kaiser 
Window, with cut-off frequency of 3[Hz] (stop frequency of 
2[Hz] at -60[dB]). The filter coefficients are calculated each time 
the function is called, and they depend on the SR of the signal. 
After filtering, the ECG signal is time shifted to compensate for 
the filter’s latency. 

2.2.2 Threshold Calibration 
For TTL POX signals, the algorithm computes a threshold for 
peak detection by calculating the signal’s standard deviation plus 
a 20%. 
 The ECG signal is scanned by a moving window of 2-second 
duration. The signal for each window is z-normalized and the 
threshold is calculated by adding the mean value of the ECG 
signal inside the window with the product of the standard 
deviation and the threshold entered by the user. This allows 
having a dynamic threshold across the duration of the signal, as 
can be seen in Figure 4, 2nd plot from the top. 

2.2.3 HR Extraction 
In order to find peaks in the ECG signal, HRtool creates a sliding 
window of a size equivalent to the minimum beat-to-beat 
distance obtained from the maximum HR value entered by the 
user. The algorithm then searches for the highest value in the 
window (the R wave) and saves its position, to then calculate the 
interval with the subsequent peak value. For TTL POX signals, 
the first sample above the threshold is utilized.  
 After measuring the RR intervals between pulses and 
calculating each corresponding HR value in BPM, the algorithm 
evaluates the HR vector replacing any values that are outside the 
ranges entered by the user (e.g. values within the maximum and 
minimum HR range, and within the maximum change ratio 
between two consequent pulses). 
 Finally, the confidence index Q is obtained by calculating the 
ratio of replaced beats against normal beats. 

2.2.4 HRtool Parameters 
The HRtool parameters were set with the following boundaries 
for the processing of the EiM signals: Any RR intervals lower 
than 50[BPM] or higher than 130[BPM] were discarded. The 
maximum allowed change for a new beat with respect to the 
previous one was set to 20%. Regarding the decision on these 
parameters, the literature states that up to this date there is no 
clear standardization for short-term measurements of heart rate 
variability [15], and neither for which method should be used for 
interpreting ectopic beats and artifacts [18]. Moreover, the 
majority of the methods proposed in the literature use statistics 
extracted from the total duration of the recorded data to identify 
abnormal beats [10], which is incompatible with the real-time 
implementations intended to be used in musical applications. 
Nevertheless, there has been a thorough manual examination of 
the HR feature extraction tool, screening hundreds of different 
cases presented in the EiM database, in order to test the correct 
application of the above parameters. 

3. CONCLUSIONS 
This paper has introduced the development of two novel 
processing tools for bio-inspired musical applications, detailing 
the pre-processing, filtering, artifact detection and removal, and 
feature extraction process for both signals. 

We believe that the tools presented in this paper offer a 
significant improvement to the creation of biosignal algorithms 
for musical performance applications, as well as for other artistic 
projects, as they have been calibrated and evaluated using the 
extensive physiological database from EiM. 
 The authors have been exploring the co-creation of music 
using audience’s physiological response [10]. To increase the 
accuracy of these measurements, versions of the EDAtool and 
HRtool have been adapted for Max/MSP for real-time 
applications. These have been tested and successfully utilized in 
interactive concerts and in feedback for the EiM terminal. 
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