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(ABSTRACT)

One of today’s most serious social, economical and environmenta problems is traffic
congestion. In addition to the financial cost of the problem, the number of traffic related injuries
and casudlties is very high. A recently considered approach to increase safety while reducing
congestion and improving driving conditions is Automated Highway Systems (AHS). The AHS
will evolve from the present highway system to an intelligent vehicle/highway system that will
incorporate communication, vehicle control and traffic management techniques to provide safe,
fast and more efficient surface transportation. A key factor in AHS deployment is intelligent
vehicle control. While the technology to safely maneuver the vehicles exists, the problem of
making intelligent decisions to improve a single vehicle's travel time and safety while optimizing
the overal traffic flow is still a stumbling block.

We propose an artificia intelligence technique called stochastic learning automata to
design an intelligent vehicle path controller. Using the information obtained by on-board sensors
and local communication modules, two automata are capable of learning the best possible (latera
and longitudinal) actions to avoid collisions. This learning method is capable of adapting to the
automata environment resulting from unmodeled physical environment. Simulations for
simultaneous lateral and longitudina control of an autonomous vehicle provide encouraging
results. Although the learning approach taken is capable of providing a safe decision, optimization
of the overal traffic flow is also possible by studying the interaction of the vehicles.

The design of the adaptive vehicle path planner based on local information is then carried
onto the interaction of multiple intelligent vehicles. By analyzing the situations consisting of
conflicting desired vehicle paths, we extend our design by additional decision structures. The
analysis of the situations and the design of the additiona structures are made possible by the study



of the interacting reward-penalty mechanisms in individua vehicles. The definition of the physica
environment of a vehicle as a series of discrete state transitions associated with a “ stationary
automata environment” is the key to this analysis and to the design of the intelligent vehicle path
controller.

This work was supported in part by the Center for Transportation Research and Virginia
DOT under Smart Road project, by General Motors ITS Fellowship program, and by Naval
Research Laboratory under grant no. N0O00114-93-1-G022.
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