Intelligent Navigation of Autonomous Vehicles in an Automated Highway System: Learning Methods and Interacting Vehicles Approach

by

Cem Ünsal

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

John S. Bay, Chair Joseph A. Ball William T. Baumann Pushkin Kachroo Hugh F. VanLandingham

January 29, 1997

Blacksburg, Virginia

Keywords: AHS, Intelligent Vehicle Control, Stochastic Learning Automata, Reinforcement Schemes

Copyright 1997. Cem Ünsal

Intelligent Navigation of Autonomous Vehicles in an Automated Highway System: Learning Methods and Interacting Vehicles Approach

by

Cem Ünsal

Committee Chairman: John S. Bay The Bradley Department of Electrical Engineering

(ABSTRACT)

One of today's most serious social, economical and environmental problems is traffic congestion. In addition to the financial cost of the problem, the number of traffic related injuries and casualties is very high. A recently considered approach to increase safety while reducing congestion and improving driving conditions is Automated Highway Systems (AHS). The AHS will evolve from the present highway system to an intelligent vehicle/highway system that will incorporate communication, vehicle control and traffic management techniques to provide safe, fast and more efficient surface transportation. A key factor in AHS deployment is intelligent vehicle control. While the technology to safely maneuver the vehicles exists, the problem of making intelligent decisions to improve a single vehicle's travel time and safety while optimizing the overall traffic flow is still a stumbling block.

We propose an artificial intelligence technique called *stochastic learning automata* to design an intelligent vehicle path controller. Using the information obtained by on-board sensors and local communication modules, two automata are capable of learning the best possible (lateral and longitudinal) actions to avoid collisions. This learning method is capable of adapting to the automata environment resulting from unmodeled physical environment. Simulations for simultaneous lateral and longitudinal control of an autonomous vehicle provide encouraging results. Although the learning approach taken is capable of providing a safe decision, optimization of the overall traffic flow is also possible by studying the interaction of the vehicles.

The design of the adaptive vehicle path planner based on local information is then carried onto the interaction of multiple intelligent vehicles. By analyzing the situations consisting of conflicting desired vehicle paths, we extend our design by additional decision structures. The analysis of the situations and the design of the additional structures are made possible by the study of the interacting reward-penalty mechanisms in individual vehicles. The definition of the physical environment of a vehicle as a series of discrete state transitions associated with a "stationary automata environment" is the key to this analysis and to the design of the intelligent vehicle path controller.

This work was supported in part by the Center for Transportation Research and Virginia DOT under Smart Road project, by General Motors ITS Fellowship program, and by Naval Research Laboratory under grant no. N000114-93-1-G022.

To all the noble men and the knights fighting the demons of a binary world in their quest for artificial intelligence.

Acknowledgments

It has been a long ride since I received my M.S. degree. Many friends, local, cyber and dear, many engineering students, EE, ME, or CE, many professors, and others have seen me working through my dissertation. All of them, directly or indirectly, touched what is written in these pages.

First of all, I have to express my gratitude for my advisors, Dr. John S. Bay, most probably the best advisor this campus had ever seen and a legend in thesis/dissertation editing, and Dr. Pushkin Kachroo, *percussionist extraordinaire* (Isn't that what 'P.E.' stands for?). They were both genuinely understanding, and very supportive of me. I learned a great deal from them about control engineering (among other fields) and about academic life. Without their guidance, their advice, and their help, this dissertation would not have been completed.

Other members of my dissertation committee, Dr. William T. Baumann, Dr. Hugh F. VanLandingham, and Dr. Joseph A. Ball, who were also my professors at some point during my five and a half years at Tech, were kind enough to listen to me babbling about an intelligent controller.

On multiple occasions, I had the chance of talking about my research (and my life) to the other graduate students in the Machine Intelligence Laboratory. Doug, John, Mamun, and Ferat were some of the faces I got used to seeing almost everyday. Also, Paul and Kevin forced me every Wednesday afternoon to have my breakfast at Arnold's. I do have a feeling that I will miss that very much.

During my assistantship at Center for Transportation Research, I had the privilege of working with fellow students, researchers, and center's staff. Lisa, Terry and Christina were there to answer my unnecessary questions. Kaan Özbay was helpful in my starting to work at CTR, and I am grateful for his confidence in me. My only regret about CTR is not having been able to know Ashwin Amanna better; he is a true gentleman.

Local Turks, Simge, Erkan, Bahadır, Levent, Oya, Bahar, Kutsal, and others, suffered indirectly from my research efforts. Sorry guys!

My parents, Aydın and Ayhan, watched me from a distance while I worked toward my degree, missing most of the last three years of my life. The completion of this dissertation will mean "seeing more of me" to them, I hope. I believe that my sister Gün will not make the mistakes I have made in becoming an electrical engineer. Watching her catching up with me makes me confused and very proud.

Probably, the people who heard the most about my dissertation and graduate life are the members of KM (*Kelek Muhabbet*). This e-mail distribution list came to life sometime in 1992 and grew to a much larger and diverse group. Some of the members are my close friends from the early years of my academic venture, some of them are people whom I met on the Net, some of them I have not seen yet. They also watched me getting tired of this lovely town of Blacksburg; some even visited me here more than once. I could not, cannot and do not want to imagine going a week without receiving e-mail from KM.

I am also grateful to Berrak Pinar for helping me tremendously during the last two hectic weeks of my dissertation work.

Finally, to the person who borrowed the Proceedings of the 1995 Intelligent Vehicles Symposium, and refused to return it to the library since July 1996: You have been *acknowledged*!

This work is dedicated to all scientists and engineers who work on artificial intelligence, and know exactly what I went through.

Table of Contents

A	bstract		ii
A	cknowled	Igments	V
Т	able of C	ontents	vii
L	ist of Fig	ures	X
L	ist of Tab	les	xiv
1	Introduc	ction	1
	1.1	Motivation	1
		1.1.1 ITS and AHS	2
		1.1.2 Intelligent Vehicle Control	3
	1.2	Context	4
		1.2.1 Different Approaches to Intelligent Vehicle Control	4
		1.2.2 Learning Automata as an Intelligent Controller	6
	1.3	Scope and Structure of Dissertation	7
2	Automa	ted Highway Systems	9
-	2.1	AHS Program Phases and the National Automated Highway Systems	-
		Consortium	11
	2.2	Vehicle Control	13
		2.2.1 Lateral Control	13
		2.2.2 Longitudinal Control	14
		2.2.3 Combined Lateral and Longitudinal Control	15
	2.3	Hierarchical Control Structure	15
	2.4	Other AHS Issues	17
		2.4.1 Sensors and Communication	17
		2.4.2 Safety and Fault Tolerance	18
		2.4.3 Human Factors	18
	2.5	An Experimentation and Evaluation Framework for AHS	19
		2.5.1 FLASH Laboratory	20
		2.5.2 Smart Road	23
	2.6	A Simulation Tool for AHS Systems: <i>DYNAVIMTS</i>	24
		2.6.1 Software System Architecture	24
		2.6.2 Components of DYNAVIMTS	25
3	Stochast	ic Learning Automata	29
5	3.1	Earlier Works	30
	3.2	The Environment and the Automaton	31
	33	The Stochastic Automaton	33
	3.4	Variable Structure Automata and Its Performance Evaluation	34

		3.4.1 Norms of Behavior	35
		3.4.2 Variable Structure Automata	36
	3.5	Reinforcement Schemes	37
		3.5.1 Linear Reinforcement Schemes	38
		3.5.2 Nonlinear Learning Algorithms: Absolutely Expedient Schemes	39
	3.6	Extensions of the Basic Automata-Environment Model	41
		3.6.1 S-Model Environments	41
		3.6.2 Nonstationary Environments	42
		3.6.3 Multi-Teacher Environments	44
		3.6.4 Interconnected Automata	45
4	Applica	tion of Learning Automata to Intelligent Vehicle Control	46
	4.1	The model	47
	4.2	Sensor/Teacher Modules	49
	4.3	Nonlinear Combination of Multiple Teacher Signals	52
	4.4	The algorithms	54
	4.5	Simulation Results	55
	4.6	Discussion of the Results	60
5	More In	telligent Vehicles: Extending the Capabilities	62
	5.1	More Complex Sensors and Sensor Modules	62
		5.1.1 Front Sensor	63
		5.1.2 Side Sensors	68
	5.2	Additional Sensors and Inter-vehicle Communications	72
		5.2.1 Lane Detection	72
		5.2.2 Pinch Condition Detection	73
	5.3	Higher Level Additions: More Intelligent Teachers	77
		5.3.1 Lane flag	77
		5.3.2 Speed flag	78
		5.3.3 Additional rules	79
	5.4	Results and Discussion	81
		5.4.1 Overall Structure	82
		5.4.2 Effect of Parameters	83
		5.4.3 Encountered Problems and	90
		5.4.3.1 Environment Model	90
		5.4.3.2 Information Content and Other Issues	90
6	New Rei	inforcement Schemes for Stochastic Learning Automata	92
	6.1	A Linear Reinforcement Scheme: Linear Reward-Penalty with Unequal	
		Parameters, L_{R-P}^{\neq}	93
		6.1.1 Proof of convergence for linear reward-penalty scheme $L^{*}_{P,P}$	100
		6.1.2 Notes on the "ideal environment" and penalty probabilities	109
	6.2	A Nonlinear Reinforcement Scheme: NL_H	110

6.2.1 Function <i>H</i> and the Conditions for Absolute Expediency 6.2.2 Comparison of NL_H with General Absolutely Expedient Scheme	111 114
7 Interacting Vehicles: Rules of the Game	116
7.1 Interconnected Automata and Games	116
7.2 Interacting Automata and Vehicles	118
7.2.1 Interacting Automata in an Autonomous Vehicle	118
7.2.2 Interacting Vehicles	120
7.3 States of the Switching Automata Environment	122
7.4 Highway Scenarios as State Transitions	124
7.4.1 Scenario 1: Two Vehicles on a Three-Lane Highway	128
7.4.2 Scenario 2: Three Vehicles on a Three-Lane Highway	131
7.4.3 Scenario 3: Four Vehicles on a Three-Lane Highway	134
7.5 Discussion	138
8 Conclusion	139
8.1 Discussion	139
8.1.1 AHS as a Social Issue	139
8.1.2 Technical Feasibility of AHS	141
8.1.3 Reinforcement Learning	143
8.2 Results and Contributions	144
8.3 Recommendations	147
Bibliography	149
Appendix A. Glossary	165
A.1 Notations and Definitions	165
A.2 Acronyms and Abbreviations	166
Appendix B. Proof of Convergence of the Optimal Action with Linear	
Inaction-Penalty Scheme <i>L_{I-P}</i>	167
	170
Appendix C. Simulation	170
C.1 The Program	170
	1/ð
Appendix D. States for Multiple Vehicle Interactions	179
Vita	185

List of Figures

Figure 2.1	Four-block evaluation and experimentation framework for AHS	19
Figure 2.2	Automated FLASH Car: Test Model.	21
Figure 2.3	Driving Station.	22
Figure 2.4	Test tracks and the control station in the FLASH Laboratory	22
Figure 2.5	Location of the Smart Road.	23
Figure 2.6	Software System Architecture	25
Figure 2.7	Components of DYNAVIMTS simulation package	27
Figure 2.8	Opening screen of DYNAVIMTS	28
Figure 3.1	The automaton and the environment	32
Figure 4.1	Automata in a multi-teacher environment connected to the physical layers	48
Figure 4.2	Memory vector/buffer in regulation layer.	49
Figure 4.3	Sensor ranges for an autonomous vehicle	50
Figure 4.4	The definition of the mapping <i>F</i>	54
Figure 4.5	Positions of nine vehicles: gray colored vehicle is autonomous, black	
	colored vehicles are cruising at constant speed.	56
Figure 4.6	Automated vehicle's lane position and speed.	57
Figure 4.7	An automated vehicle following a slow moving vehicle in lane 2	57
Figure 4.8	Headway distance and speed of an autonomous vehicle following another slowly moving vehicle	58
Figure 4.9	Headway distance and speed of an autonomous vehicle following another	50
i iguio iij	slowly moving vehicle	58
Figure 4.10	Initial and final positions, numbers, and speeds of ten automated vehicles	50
1.5010	traveling on a 3-lane 500-meter circular highway [mpeg]	60
Figure 5.1	Extended definitions of front and side sensor ranges	64
Figure 5.2	Headway distance and speed of an autonomous vehicle following another	01
1 18010 0.2	slow-moving vehicle: sensor parameters are $d_1 = 10m$, $d_2 = 20m$, and	
	fsr = 30m.	65
Figure 5.3	Headway distance and speed of an autonomous vehicle following another	
8	slow-moving vehicle: sensor parameters are $d_1 = 10m$, $d_2 = 15m$, and	
	fsr = 20m	65
Figure 5.4	Headway distance and speed of an autonomous vehicle following another	
8	slow-moving vehicle: sensor parameters are $d_1 = 12$ m, $d_2 = 15$ m, and	
	fsr = 18m	66
Figure 5.5	Headway distance and speed of an autonomous vehicle following another	
<i>G</i> =	slow-moving vehicle: sensor parameters are $d_1 = 14$ m, $d_2 = 15$ m, and	
	<i>fsr</i> = 16m	67

Figure 5.6	Headway distance and speed of an autonomous vehicle following another slow-moving vehicle: sensor parameters are $d_1 = 12$ m, $d_2 = 15$ m, and	
	<i>fsr</i> = 16m	67
Figure 5.7	Positions of five automated vehicles: gray colored vehicle attempts to	
	shift to the right lane by slowing down	70
Figure 5.8	Positions of five automated vehicles: gray colored vehicle attempts to	
	shift to the right lane by slowing down	71
Figure 5.9	Headway distances in the platoon; lane change occurs at $t \approx 8.5$ sec	71
Figure 5.10	Speed and space-time trajectory of five automated vehicles	72
Figure 5.11	The lane module	73
Figure 5.12	Pinch condition: two vehicles decides to shift to the same lane	
	simultaneously	74
Figure 5.13	Memory vector/buffer: If an action fills half of the buffer, it is "signaled."	74
Figure 5.14	Initial positions and trajectories of two vehicles.	75
Figure 5.15	Lane and speed of two vehicles from $t = 0$ to $t = 4$ sec	75
Figure 5.16	The output of the pinch module and the actions in the memory buffer	
	versus time for vehicle 1 and 2	76
Figure 5.17	Initial and final situation, speed, and lane positions of three automated	
	vehicles traveling on a 3-lane 500-meter circular highway [mpeg]	78
Figure 5.18	Snapshots, speed and lane positions of two automated vehicles traveling	
	on a 3-lane 500-meter circular highway	79
Figure 5.19	The new definition of the mapping <i>F</i>	81
Figure 5.20	Automata in a multi-teacher environment with new definitions of mapping	
-	functions and flag structures.	82
Figure 5.21	Average platoon speeds for simulations 1-4.	85
Figure 5.22	The distance between vehicles for simulations 1-4.	86
Figure 5.23	Initial and final positions, and speeds of automated vehicles in four	
	ten-vehicle platoons [mpeg]	87
Figure 5.24	Simulations 5 and 6: average speed for a platoon of ten automated	
	vehicles.	88
Figure 5.25	Simulations 5 and 6: distances between vehicles for a platoon of ten	
-	automated vehicles.	88
Figure 5.26	Initial and final positions, and speeds of automated vehicles in four	
-	ten-vehicle platoons [mpeg].	89
Figure 5.27	Simulations 7 and 8: <i>mpeg</i> movies of two simulations of 10-vehicle	
C	platoons with lead vehicle decelerating to 75mph [mpeg]	90
Figure 6.1	Number of steps needed for p_{out} to reach 0.995 for different values of	
C	learning parameters <i>a</i> and <i>b</i>	95
Figure 6.2	For some parameter values, convergence is not obtained for all 500 runs.	97
Figure 6.3	Number of steps needed for p_{out} to reach 0.995 for different values of	
C	learning parameters <i>a</i> and <i>b</i>	99
Figure 6.4	Number of steps needed for p_{out} to reach 0.995 for different values of	
<u> </u>	learning parameters <i>a</i> and <i>b</i>	100

Figure 6.5	The region for asymptotic convergence to pure optimal strategy	106
Figure 6.6	Probabilities and cumulative average of the probabilities of the non-	100
	optimal actions for a 3-action automata with L_{R-P}^{*} ($a = 0.2, b = 0.1$)	106
Figure 6.7	Sketch of the function <i>H</i>	112
Figure 7.1	Longitudinal automaton determines the lateral automaton's environment	118
Figure 7.2	Multiple vehicles interacting through the physical environment	121
Figure 7.3	Situations for two interacting vehicles and combined environment	
	responses	123
Figure 7.4	Changes in the physical (left) and automata environments (right): vehicle	
	1 shifts to the middle lane.	124
Figure 7.5	Possible physical environment states for 2 vehicles in 3-lane highway	126
Figure 7.6	State transition diagram for two vehicles on a 3-lane highway; reflexive	
	transitions are not shown	126
Figure 7.7	Scenario 1: Two vehicles with conflicting desired paths	129
Figure 7.8	Possible chains for Scenario 1 (reflexive transitions are not shown; two	
-	chains are distinguished with dashed and solid lines)	130
Figure 7.9	Possible penalty-reward structures to force physical environment to	
	switch to states B1 or C1 from current state A1	131
Figure 7.10	Scenario 2: Three vehicles with conflicting desired paths.	132
Figure 7.11	A possible chain for Scenario 2: lane flag forces vehicles 1 and 2 to slow	100
F' 7 10	down	132
Figure 7.12	Infee-venicle transition diagram can be written as three separate two-	100
F' 7 1 2	venicle transition diagrams using the definitions in Figure 7.8.	133
Figure 7.13	I nree-venicle transition diagram is equivalent to two separate two-venicle	124
Eigenee 7 14	diagrams for the example in Section 5.5.1.	134
Figure 7.14	Scenario 3: Four venicies with conflicting desired speeds.	133
Figure 7.15	I wo possible solutions to a situation with 4 venicles.	133
Figure 7.10	Drobabilities of five actions in the L schemet only $a = 0$	13/
Figure D.1	Probabilities of five actions in the L_{I-P} scheme; only $C_1 = 0, \dots, N$	109
Figure C.1	The simulation	172
Figure C.2	Graphic User Interface	173
Figure C.3	GIII for data visualization	174
Figure C 5	"Trajectory" command for relative position plots	175
Figure C 6	Scenario window: Clickable buttons initialize several different scenarios	176
Figure C 7	Timed snapshots of a simulation run	170
Figure D 1	All possible immediate neighborhood situations for two vehicles	180
Figure D.2	Combined states for two vehicles: states not shown are identical to those	100
1 16010 10.2	given here	180
Figure D 3	Further simplified states.	181
Figure D 4	All possible immediate neighborhood situations for three vehicles in a	101
0	three-lane highway.	182

Figure D.5	Combined states for three vehicles: states not shown are identical to those	
	indicated	183
Figure D.6	Possible states for four vehicles — actually a two-vehicle situation	184

List of Tables

Table 2.1	Comparison of different stages.	20
Table 4.1	Possible action pairs.	47
Table 4.2	Output of the left/right sensor modules	50
Table 4.3	Output of the Front Sensor block	51
Table 4.4	Output of the Speed Sensor Module.	51
Table 4.5	Action - Sensor Module matrix.	52
Table 4.6	Possible longitudinal action-sensor output scenarios	53
Table 4.7	Properties of the reinforcement schemes.	55
Table 4.8	Parameter settings for simulations.	59
Table 5.1	Output of the Front Sensor block	63
Table 5.2	Front sensor parameters for simulations	64
Table 5.3	Output of the left and right sensor modules	69
Table 5.4	Possible lateral action-sensor output combinations.	80
Table 5.5	Parameter settings for simulations.	83
Table 6.1	Behavior of the automata under general L_{R-P} scheme	96
Table 6.2	Behavior of the automata under general L_{R-P} scheme	98
Table 6.3	Effect of number of actions on behavior of the automata using general	
	L _{R-P} scheme.	99
Table 6.4	Convergence rates for a single <i>optimal</i> action of a 3-action automaton	
	in a stationary environment.	114
Table 7.1	Assumed probabilities of penalty for each action based on the front and	
	side sensors	119
Table 7.2	Probability of sensing a vehicle in the sensor range.	119
Table 7.3	Action-transition pairs for state A1	127
Table 7.4	Possible transitions for Scenario 1	129
Table C.1	Description of the subroutines and functions for multiple lane, multiple	171
	automata intelligent vehicle simulation.	
Table C.2	Description of the situations and simulation files [mpeg]	178