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Case Study

GIS-Based Method for Estimating Surficial Groundwater
Levels in Coastal Virginia Using Limited Information

R. D. Johnson'; D. J. Sample, M.ASCE?; and K. J. McCoy?®

Abstract: In many coastal areas, high water tables are present, complicating installation of some stormwater best management practices
(BMPs) that rely on infiltration. Regional estimates of the seasonal high water table (SHWT) often rely on sources such as soil surveys taken
over a decade ago; these data are static and do not account for groundwater withdrawals or other anthropogenic impacts. To improve estimates
of the SHWT, we developed a GIS-based methodology relying on surface water elevations. Data sources included a 1.5-m (5.0 ft) resolution
Lidar-derived digital elevation model (DEM), aerial imagery, and publicly available shapefiles of water boundaries. Twenty-six groundwater
monitoring wells were screened to eliminate well locations influenced by pumping, yielding 22 wells. In coastal Virginia, tidal water bodies
and ditches form terminal boundaries for discharge from the water-table aquifers and permit water table elevations to be fixed at the landward
boundaries of surface water bodies. Water table elevations interpolated from well data and boundary elevations were used to create a tri-
angulated irregular network representing the water table elevations for November 2012, which was the date of the DEM. An adjustment
factor, calculated from the highest recorded April water table depth from long-term groundwater monitoring data, was added to estimate the
SHWT elevation. SHWT elevations were subtracted from the DEM to yield SHWT depth, which was compared with long-term monitoring
well data, yielding an R? value of 0.91. Residual errors were random, although the method underpredicted the highest expected SHWT and
overpredicted the median SHWT. The SHWT depth map was validated by using water table depths from 57 soil borings at 10 different sites,
and consistently matched observations better than available soil survey estimates. The SHWT depth map could be useful for BMP siting and
feasibility studies in similar hydrogeological settings. DOI: 10.1061/(ASCE)IR.1943-4774.0001313. © 2018 American Society of Civil
Engineers.

Author keywords: Groundwater; Seasonal high water table; Geographic information system (GIS); Coastal geomorphology; Low-impact

development (LID); Digital elevation model (DEM).

Introduction

Water table depth is a critical design consideration in many
environmental projects, such as infiltrative stormwater best man-
agement practices (BMPs). These types of BMPs are becoming
more needed for low-impact development (LID), a development
strategy that seeks to replicate predevelopment hydrology. One ex-
ample of these LID practices is bioretention. In Virginia (Virginia
Department of Environmental Quality 2011), a minimum media
depth of 0.6 m is required, and in coastal Virginia, underdrains
are normally needed to compensate for subsoils with low infiltra-
tion capacity. Bioretention meets runoff volume reduction goals
more often, and has improved pollutant removal when the filtration
media is deeper, such as at 0.9 m (Brown and Hunt 2011).
However, bioretention units may not be viable in locations with
shallow groundwater. Intersection with the water table can increase
discharge of pollutant loads and may cause negative impacts by
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draining groundwater through the underdrain and altering the
groundwater flow regime (Brown and Hunt 2012). Furthermore,
water table proximity limits infiltrative capacity, and thus the
performance of BMPs (Susilo et al. 2009). Achieving stormwater
volume and quality goals through BMP application is only possible
if BMPs are designed and installed with adequate separation from
the water table.

Recently, several states, including Virginia, have mandated im-
plementation of LID. Virginia stormwater regulations use the run-
off reduction method (RRM) to estimate postconstruction runoff
volume and nutrient loads from sites (Battiata et al. 2010); the
RRM encourages the use of infiltration-based BMPs. The RRM
assumes compliance with BMP design specifications, which are
applied uniformly across Virginia, irrespective of physiographic
region (Virginia Department of Environmental Quality 2013a).
The coastal plain region of Virginia is characterized by flat terrain,
shallow water tables, and soils with low permeability that limit the
application of infiltration-based BMPs (Virginia Department of
Environmental Quality 2013b). The most limiting physical con-
straint in coastal Virginia, when locating, selecting, and designing
individual BMPs, is the depth to water table in shallow unconfined
settings. Thus, a method to estimate the seasonal high water table
(SHWT) depth is critical to narrowing the choice of BMPs in
coastal locations.

Direct SHWT measurements are often only sparsely available,
are resource intensive to collect, and may be unreliable (Sander
et al. 1996). Redoximorphic features (RMFs) of the soil, such as
low chroma colors, can be used as a SHWT indicator (Vepraskas
and Wilding 1983). Morgan and Stolt (2006) found that the SHWT
was often above horizons with common RMFs, and sometimes
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present in horizons with no RMFs. The authors also determined
that soil texture should be considered when making SHWT inter-
pretations based on RMFs. Humphrey and O’Driscoll (2011) cor-
roborated this finding, and found that low chroma colors were
better predictors of SHWT depth when SHWT depths were rela-
tively shallow. Overall, RMFs are a good starting point for making
SHWT predictions, particularly in loamy soils (Morgan and Stolt
2006). Coarse soils and soils with deep water tables require more
consideration for estimating the SHWT.

GIS have been used to bridge the gap between soil RMFs and
physical water table measurements with respect to groundwater
features. Multicriteria decision analysis (MCDA) based on remote
sensing (RS) and GIS information has been applied extensively
for the delineation of potential areas of groundwater development
and recharge zones (Agarwal and Garg 2016; Kumar et al. 2014;
Machiwal et al. 2011; Madani and Niyazi 2015; Patil and Mohite
2014; Sahoo et al. 2015). The MCDA technique involves overlay-
ing thematic layers of features that contribute to favorable condi-
tions for groundwater development, such as slope, soil, topography,
and rainfall. Each thematic layer is assigned a weight that deter-
mines influence when the thematic layers are combined into a sin-
gle groundwater potential map, which reports a qualitative measure
of groundwater potential. This technique is associated with greater
success when more thematic layers are used to generate the ground-
water potential map (Kumar et al. 2014). Similar multivariate tech-
niques have been used to assess factors controlling the distribution
of groundwater recharge, a controlling factor on water table mor-
phology, in other areas of Virginia (Sanford et al. 2015).

Few published studies are available that used GIS and RS tech-
nologies to quantitatively estimate groundwater levels with limited
information, short of a hydrogeologic modeling study. Vijay et al.
(2011) used kriging to interpolate the water table surface from
water elevations measured at 35 production wells north of the
Bay of Bengal in India and used it to characterize seasonal water
table fluctuations. Direct interpolation of water table measurements
is ideal when data are sufficiently dense, but indirect methods must
be used when monitoring data are sparse. The D.C. Water Resour-
ces Research Center (1995) used elevation points of surface water
bodies, groundwater monitoring well data, and soil boring data to
generate water table contours via kriging. Li et al. (2017) developed
a similar method by using quantile regression. McKenzie et al.
(2010) inferred water table levels from surface water elevations
when actual measurements were not available. When water level
measurements were too sparse to effectively construct a water table
surface, Peck and Payne (2003) used USGS monitoring data to
create a linear regression model that predicted the water table eleva-
tion on the basis of land surface elevation. They applied the linear
regression function spatially using GIS and set surface water ele-
vations as boundary points. These indirect studies investigated an
average water table condition. There is a need for a method to assist
in estimating the SHWT, rather than using an average condition,
with readily accessible spatial data for improving BMP siting
and design.

The objective of this study was to develop a GIS-based meth-
odology for estimating the SHWT elevation in a coastal setting of
the Mid-Atlantic using limited information gathered from readily
accessible GIS data. The resulting data can be used within the study
area to help planners identify where infiltration-based BMPs are
feasible. A BMP planning tool was recently developed by Johnson
and Sample (2017) using results of the GIS-based SHWT method,
described herein as input. The GIS-based SHWT method can be
used in similar hydrogeologic settings for BMP planning outside
of the study area.
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Fig. 1. (Color) Virginia Beach study area including elevation, relative
location, and prominent geographic features.

Study Area

The city of Virginia Beach is located in southeastern Virginia
adjacent to the Atlantic Ocean and the Chesapeake Bay, as noted
in Fig. 1, and encompasses 808 km? of coastal lowlands and wet-
lands. The barrier beach after which the city is named stretches
about 56 km from Cape Henry at the entrance of Chesapeake
Bay southward to the North Carolina border. The topography of
Virginia Beach is dominated by the north-south trending depositio-
nal morphology of ancient barrier-and-lagoonal environments
(Oaks and Coch 1973). Ancient barrier complexes form locally
high northward trending ridges at Oceana and Pungo that rise to
elevations 6.1-7.6 m above sea level. Sand dunes along the present
coastline rising more than 24.4 m above sea level are visible at Fort
Story near Cape Henry, Virginia. Topographic relief of Virginia
Beach is, however, generally low and flat, and the area has an aver-
age altitude of 3.7 m above sea level.

The water table fluctuates in response to precipitation, evapo-
transpiration, and anthropogenic activities at various temporal
scales (James and Fenton 1993). In Virginia Beach, long-term
records of groundwater levels show that the SHWT occurs in early
spring, with water level typically declining through summer
because evapotranspiration and use of the aquifer for irrigation in-
creases (Smith 2003). Seasonal pumping of confined or semicon-
fined aquifers at depths greater than 18.3 m can result in decline of
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groundwater levels by as much as 7.6 m below sea level during
summer months in Virginia Beach (Eggleston 2010). Few measure-
ments are available to assess the influence of pumping or climate on
shallower flow systems (<9.0 m depth) making spatial extrapola-
tion of observed SHWT depths difficult.

Methods

Long-Term Monitoring Data

The USGS monitors groundwater levels in the surficial aquifer at
shallow well locations in Virginia Beach. The shallow aquifer is
generally considered unconfined and representative of the water
table (Smith and Harlow 2002). Wells in the active groundwater
network with a top of screen less than 21.3 m (70 ft) below the
land surface were considered for use as comparison points. When
wells were located within 150 m of another well, the shallower
well was used. Wells were eliminated from use when data from
October 2010 or November 2012 was unavailable, or if the data
suggested the well was significantly influenced by localized
pumping. Twenty-two wells were chosen as representatives of
the water table and were used in further analyses. The well loca-
tions can be seen in Fig. 2, along with the surface elevation of the
area. The wells were identified using a simple integer code, which
is decoded in Table 1 with the site number, station name, and top-
of-screen depth.

10 km

® USGS Shallow Well
Elevation (m)

-2

2
1%,

Fig. 2. (Color) Locations of the active USGS shallow groundwater
wells in Virginia Beach, Virginia. The wells are spread across the city
and occupy a wide range of surface elevations. Refer to Table 1 for
additional information about the wells.
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Available Soil and Hydrography Data

The most readily available depth to water table information is
accessed from the widely used Soil Survey Geographic (SSURGO)
database. In 2011, SHWT depth was one of the most queried soil
properties from the USDA Natural Resources Conservation Service
Web Soil Survey (NRCS WSS), second only to hydrologic soil group
(HSG) (Thompson et al. 2012). The SHWT information in the soil
survey database is typically based on RMFs; however, it is recom-
mended that local water table monitoring be used to calibrate the
data (USDA NRCS 2015). No procedures for calibrating the data
were presented. Because many hydrologic models are designed to
read SSURGO data with minimal processing (Thompson et al.
2012), it can be assumed that calibration of the data seldom occurs.

The USGS shallow wells were used to examine the reliability of
SHWT predictions from the soil survey. Virginia Beach SSURGO
data were obtained from the USDA NRCS WSS. The soil type at
each USGS shallow well was identified and the SHWT range for
that soil type was compared to the observed values at each well. In
some cases, the wells were located in soils that do not have an as-
sociated SHWT depth, such as the heavily disturbed Udorthent or
Urban soil types. In these cases, the nearest soil type with a SHWT
range was substituted at the well. The median of the SHWT range
obtained from SSURGO were compared to the highest recorded
April median at all 22 USGS shallow wells. A linear regression
was performed to characterize the ability of SSURGO data to
be used to predict the observed values. Residuals were inspected
for patterns.

Indirect Lidar-Based Interpolation

An indirect method of estimating the SHWT was formulated on
the basis of available spatial layers, including a digital elevation
model (DEM), water surface shapefiles, and aerial imagery.
The 1.5-m (5.0 ft) resolution DEM was derived from Lidar data

Table 1. Twenty-two wells selected for analysis on the basis of top-of-
screen depth, available data, and proximity to other wells

Map Top of screen
integer USGS site identifier USGS station name (m BLS)
1 364529076031501 62C 8 SOW 127 15.2
2 364613075583202 63C 3 SOW 100C 9.1
3 364721075591701 63C 19 7.6
4 364909076051101 62C 34 18.3
5 363812076021202 62B 16 SOW 208B 19.8
6 365045075585301 63C 20 11.9%
7 363537076061002 62A 3 SOW 097B 6.1
8 363310075594002 63A 4 15.2
9 365324075593202 62D 27 15.8
10 365327076080501 61D 6 SOW 124 7.6
11 363325076005201 62A 5 17.7
12 365307076055302 62D 25 18.3
13 365256076032002 62D 23 19.8
14 365212076091202 61C 46 SOW 212B 18.9
15 365046076041602 62C 33 SOW 211B 21.3
16 364920076093202 61C 28 SOW 174B 19.8
17 364745076004303 62C 11 SOW 172C 6.1
18 364352076005401 62B 9 15.8
19 364126076003501 62B 1 SOW 098A 6.1
20 364504076031301 62C 5 SOW 093 18.3
21 364715076030801 62C 3 SOW 092B 16.2
22 363337075595002 63A 2 5.2

05018004-3

Note: Refer to Fig. 1 for well locations. Top of screen is a depth given in
meters below the land surface.
“Value represents well depth because top-of-screen depth was unavailable.
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Fig. 3. Creation and conditioning of the shapefile input layers used to estimate the SHWT depth.

by Pictometry International Quality control investigations by the
City of Virginia Beach showed that the DEM was accurate within
15 cm (0.5 ft) (C. Meyer, City of Virginia Beach Center for
Geospatial Information Services, personal communication, 2015).
Lidar data were collected in November 2012, and aerial imagery in
April 2013.

A shapefile containing water surface features was obtained from
the City of Virginia Beach’s Open GIS website (Virginia Beach
City GIS 2014). The shapefile was split into three separate shape-
files according to water surface type: lakes and ponds (LP); inlets,
bays, and oceans (IBO); and rivers and canals (RC). These water
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features were inspected for accuracy and agreeance with the DEM
and aerial imagery using a combination of manual inspection and
GIS operations, described in the “Extracting Open Water Surface
Elevations” section. The water surfaces and their associated eleva-
tions were used to create a triangulated irregular network (TIN),
which was converted to a raster. An adjustment factor based on data
from the USGS shallow monitoring wells was added to the raster
and the result was subtracted from the DEM to yield SHWT depth.
All GIS work was conducted using ArcGIS 10.3 (ESRI 2016).
Figs. 3 and 4 illustrate the methodology used and provide insight
into the specific ArcGIS operations that were conducted.
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Fig. 4. Use of the shapefile input layers to generate the SHWT depth grid.

Extracting Open Water Surface Elevations

Visual evaluation of the lakes and ponds shapefile revealed that
many ponds were misidentified. While it is possible that a pond
previously existed in that location, or was planned for that loca-
tion, the DEM and aerial imagery did not show a pond in that
location. LP was in need of manual verification and editing to re-
duce the likelihood of false input data. Evaluation of the DEM
indicated that flat areas, i.e., areas of 0% slope, only occurred
at inland or closed water surfaces, thus areas with a slope of
0% verified the presence of an inland or closed water body at
the time the DEM was created. These areas with 0% slope were
matched with features in LP, and the matching features were not
included in manual verification. Only lake and pond features
with variation across their surface remained in LP for manual
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verification. Features were added and removed from LP on the
basis of indicators in the DEM and aerial imagery, such as pres-
ence of a depression in the DEM and noticeable water in the aerial
photo. Features with a surface area less than 0.04 ha (0.1 acre)
were removed. Once lake and pond locations were verified, the
locations of 0% slope were added back to the LP shapefile.
The median elevation across each feature was calculated and
added to LP. LP was included in creation of the TIN with elevation
at all points inside the polygon set to the same value, to model a
level surface. This approach is consistent with the representation
of surface water bodies as constant heads in previous groundwater
flow simulations (Smith 2003).

A similar process was used for determining elevation of the
shapes in the inlets, bays, and oceans shapefile. All but two features
had a median elevation of 0.0 m, or mean sea level. Those two
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features were small and had median elevations of less than 0.3 m.
IBO was also used in TIN creation with elevation at all points inside
the polygon set to the same value, to model a level surface.

Rivers and canals do not have a static elevation across the water
surface, so the median elevation method used on LP and IBO was
not viable for assigning elevation to the features in the rivers and
canals shapefile. To capture the water surface elevation change
along the channel, RC ultimately needed to exist as a series of
points rather than polygons or polylines. Stream centerlines were
found unlikely to intersect the bank and give an erroneous water
surface elevation.

ArcScan was used to generate centerlines from the RC shapefile
using a process known as centerline vectorization, in which a poly-
line centerline is generated from contiguous sections of a binary
raster. The resulting polyline file was manually checked for accu-
racy and edited. Features were added on the basis of proximity to
other features or altered on the basis of intersection with bridges or
the channel bank. Many features that were short and adjacent to an
estuary were removed entirely, because those features did not re-
present a meaningful water surface. The edited polyline file was
used as a raster mask to extract elevations from the DEM at the
location of the polyline. Those elevations were converted to a point
shapefile, and were then incorporated into the TIN.

In addition to the RC elevation points, and the LP and IBO
elevation polygons, the political boundary of the city was incorpo-
rated to ensure all portions of the city were included in the resulting
TIN without affecting the surface shape. The TIN was an estimate
of the Virginia Beach water table elevation in November 2012,
which was the date of the DEM. Using natural neighbors’ interpo-
lation, the TIN values were converted to a raster with resolution
matching the DEM, yielding a grid that represented the water table
elevation in November 2012.

Adjusting for the Seasonal High

In November, the groundwater elevation has typically recovered
from midyear pumping but is still not as high as expected
during the seasonal high window from late winter to early spring.
When geotechnical evaluation takes place outside of the seasonal
high window, the groundwater elevation is often adjusted using
USGS monitoring data to estimate the SHWT in that location
(G. Johnson, City of Virginia Beach Public Works, personal com-
munication, 2015). Similarly, seasonal high data from USGS shal-
low monitoring wells were used to adjust the November 2012 water
table elevations to the seasonal high. Without an adjustment, the
groundwater elevation grid created by the TIN would not have been
consistent with the high groundwater condition used in LID plan-
ning and design. An adjustment factor was found for each USGS
shallow well location and interpolated to create a grid of adjustment
factors. To convert the November 2012 water table elevation grid to
a grid that represented the SHWT elevation, the interpolated adjust-
ment factor grid was added to the November 2012 water table
elevation grid.

The availability of groundwater depth data was highly variable
across all wells. April was the most sampled month during the sea-
sonal high window for the eight wells with the least data. Of the
remaining 14 wells, 5 had their highest recorded daily median in
April. The other nine wells had the highest recorded daily median
earlier in the season, typically in February or March. While April
may not represent the highest depths at all well locations, depths are
consistently high during this month for all wells. The available
April data at each well were consolidated into median April values
for each year during the period of record. These median values were
used to describe the SHWT in further analyses.
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Table 2. Values used to determine the adjustment factor at each of the
USGS shallow monitoring wells

November 2012 Highest April AF
Station name median (m BLS)  median (m BLS) (m BLS)
62C 8 SOW 127 2.99* 1.91 1.09
63C 3 SOW 100C 1.62% 1.16 0.46
63C 19 1.66* 1.08 0.58
62C 34 1.96* 1.31 0.65
62B 16 SOW 208B 2.94% 2.51 0.43
63C 20 2.33* 1.79 0.53
62A 3 SOW 097B 0.33* 0.10 0.23
63A 4 2.07% 1.80 0.27
62D 27 0.91* 0.71 0.19
61D 6 SOW 124 2.21 1.17 1.03
62A 5 4.56" 2.81 1.76
62D 25 5.26 5.16 0.10
62D 23 4.50* 3.74 0.77
61C 46 SOW 212B 3.81 3.25 0.56
62C 33 SOW 211B 2.78 2.58 0.20
61C 28 SOW 174B 2.41 1.83 0.58
62C 11 SOW 172C 1.98 1.65 0.34
62B 9 1.31 1.26 0.05
62B 1 SOW 098A 0.57 0.31 0.26
62C 5 SOW 093 1.36 0.92 0.44
62C 3 SOW 092B 2.24 1.47 0.78
63A 2 1.08 0.90 0.18

Note: The AF is the difference between the November 2012 median and the
highest April median water level depths BLS recorded at each well.
“Used October 2012 median because November 2012 median was not
recorded.

The adjustment factor for each USGS shallow well was based
on the difference between the observed USGS median depth to the
water table in November 2012 and the observed USGS highest
April median water depth at each well. The highest April median
was used because it yields the highest expected SHWT across the
city, which is useful for conservative siting of BMPs. Additionally,
use of the highest April median mitigates the effects of the inter-
polation method, which results in lower-than-expected water table
elevations for reasons which are assessed in the “Discussion” sec-
tion. The difference between the observed USGS November 2012
median well depth and the observed USGS highest April median
well depth is noted as the adjustment factor (AF) in Table 2. At 11
of 22 wells, the observed USGS October 2012 median well depth
was substituted for the observed USGS November 2012 median
well depth due to lack of November 2012 data.

The AF was interpolated between the 22 wells using inverse
distance weighted (IDW) interpolation with the default ArcGIS
10.3 settings, yielding an approximate adjustment factor for each
cell in the city boundary. The interpolated AF grid was added to the
November 2012 water table elevation grid, effectively raising the
water table. The result was a water table elevation grid that had
been adjusted to estimate the SHWT elevation. The SHWT depth
model was created by subtracting the SHWT elevation from the
DEM. The water surfaces used to generate the SHWT model were
empty cells in the final map.

Comparison to Flooding Data

Areas of shallow groundwater (<0.6 m) were expected to have a
high frequency of reported flooding during the seasonal high
months. The Virginia Beach Department of Public Works Opera-
tions Management (2016) provided citizen-reported flooding
data from October 2007 to March 2016. Flooding reports from
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January to April were counted and consolidated by location during
the observations time period. The flooding frequency data were
geocoded in ArcGIS 10.3 (Esri 2016) using address locators built
from parcel and street information obtained from the City of
Virginia Beach Open GIS Data website (City of Virginia Beach
2016). The geocoded points were then filtered; points were retained
only if 100% of their associated flooding reports occurred between
January and April. A total of 311 flood report points were used to
create a point density map based on a 0.75-km circular neighbor-
hood radius. Areas with a density greater than two reports per
square kilometer were visually examined for patterns.

Statistical Analysis

Simple statistical methods were applied on the results to assess
trends and quantify errors. A box plot was used to assess and com-
pare frequency of results. A simple linear regression was performed
to test the relationship between the SHWT model and observed val-
ues, residual errors were assessed using root mean square (RMSE)
and sum of squared residuals (SSR). A normal distribution plot was
used to test normality, which is a requirement of linear regression.

Results

Evaluation of SSURGO Water Table Estimates

Investigation of SSURGO data for the city of Virginia Beach,
Virginia, revealed that 82% of the land area was estimated to have
a SHWT within 0.9 m of the land surface, and 64% of the land area
was estimated to have a SHWT within 0.3 m of the land surface;
11% of the land area in Virginia Beach has no listed water table
information. These results suggest that use of infiltration-based
BMPs in Virginia Beach is tightly constrained by the SHWT be-
cause the SHWT is not adequately deep to allow appropriate BMP
construction and performance.

Comparison of the highest observed April median depths to the
median of the SSURGO-predicted range shows that the SSURGO
values are a poor (R?> = 0.19) predictor of the actual SHWT depth
at well locations. A simple linear regression was performed on the
data (Fig. 5), and residuals (the difference between the observed
USGS and predicted SSURGO values) are shown in Fig. 6. The
residuals exhibit wide variability for the same predicted value
and are concentrated above the x-axis, with a mean residual value
of 1.4 m and a 1.7 m root mean square error. The observed SHWT
depth was at least 0.9 m deeper than the SSURGO-predicted values
at 15 of the 22 wells.

Statistical and visual inspection indicate that the SSURGO data
overpredict SHWT elevations at well locations in Virginia Beach.
This is in contrast to the literature, which suggested the SHWT is
often higher than soil RMF indicators (Humphrey and O’Driscoll
2011; Morgan and Stolt 2006). A likely explanation for the differ-
ence is that the RMFs used to predict the SHWT depth are relict
features formed before some process locally lowered the water
table (Daniels et al. 1971). In many places, groundwater levels in
Virginia Beach are lowered by pumping for irrigation or dewatering
by drainage ditches, surface mines, and sand pits (Smith 2005). The
USDA NRCS (2015) cautions that some conditions may alter the
usual correspondence between soil morphology and hydrology
and, in such cases, recommends calibrating the RMFs with mon-
itoring data or the presence of reducing conditions. The SSURGO
data were determined to be unreliable for predicting the SHWT in
Virginia Beach, Virginia, because the data likely ignore drawdown
effects.
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Fig. 5. (Color) Observed water depths at USGS wells versus predicted
depths comparing the highest April median depths to the median
SSURGO-predicted depths. The linear regression confirms that
SSURGO is a poor predictor of actual SHWT depths in Virginia Beach,
Virginia.
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Fig. 6. (Color) Residual plot of the difference between the USGS shal-
low well observations and SSURGO predictions. SSURGO predicts
the SHWT as much higher than observed.

Visual Evaluation of the GIS-Based SHWT Model

The final SHWT model can be seen in Fig. 7. The SHWT elevation
grid can be seen in Fig. 8. The grid shows the expected pattern in
water table depth across the city. Northern elevations are relatively
high with surrounding water bodies at a relatively low elevation,
which suggested a deeper SHWT. Wetlands dominate the southern
watersheds and a SHWT near the surface is expected (Smith 2003).
Water tables extending above the land surface [<0 m below land
surface (BLS)] are predicted in some portions of the developed city,
particularly in street depressions.

In November 2012, Virginia Beach received lower-than-average
rainfall—3.17 cm compared with the average 7.36 cm—following
Hurricane Sandy in October 2012 (Northeast Regional Climate
Center 2015). The drier-than-normal conditions suggest that some
water surface elevations were more representative of the water table
because they were not storing much runoff. However, other water
bodies could have been fuller than expected because the aquifers
were slow to dewater after Hurricane Sandy and subsequent rain
events. An understanding of water table response to precipitation
events of varying intensity is not clear, but may account for the
higher-than-expected SHWT prediction at some locations and
not others.

The final flood report density map (Fig. 9) was used to evaluate
the likelihood of predicted shallow water tables, including ground-
water flooding of street depressions. Areas with report density
greater than two per square kilometer were used to filter the SHWT
model for visual inspection, shown in Fig. 10. Clusters of points not
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Fig. 7. (Color) Final SHWT depth grid in meters below the land sur-
face (BLS). Depths of <0 m BLS are locations where the SHWT may
rise above the land surface elevation.

adjacent to tidal-influenced water bodies tended to have predicted
depths less than 1.5 m, with depths less than 0.6 m under street
depressions. Three locations along the northern boundary adjacent
to estuaries and the Chesapeake Bay showed similarly high SHWT
predictions. The remaining clusters adjacent to tidal-influenced
water bodies showed SHWT predictions greater than 1.5 m.
Because tidal-influenced water bodies had surface water elevations
at mean sea level (0 m) in the DEM, these areas may underpredict
the SHWT. However, they may also be prone to flooding owing
simply to proximity of tidal-influenced waters. Similarly, areas
not adjacent to tidal waters with SHWT predictions greater than
1.5 m tended to be in proximity to ponds.

Reports in the southern watersheds were very infrequent despite
shallow SHWT predictions in those areas. Population density and
development are much lower in the southern watersheds and were a
likely explanation for low or no reporting. Two areas with predicted
street depression springs in the northern, developed watersheds
were not represented in the flood density map.

The flooding comparison was not expected to perfectly correlate
with the shallow groundwater predictions. A number of factors be-
yond groundwater proximity influence flooding, including the stor-
age capacity of nearby ponds, tidal influence, antecedent moisture,
and storm size, among others. The flooding frequency map was
based on citizens’ reports and carried self-reporting biases, includ-
ing influence from population density, lack of reports due to apathy
or nonconcern, or false reports. Overall, the flooding frequency
map provides some general insight via real-world correlations,
at least for the developed area.
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Fig. 8. (Color) Final SHWT elevation grid in m (NAVD 88 North
American Vertical Datum).

Comparison to Long-Term Monitoring Data

The observed highest April median depths and the SHWT estimates
were compared using linear regression [Fig. 11(a)] and residual
analysis [Fig. 11(b)]. The observed values are the highest April
median depths at each shallow USGS monitoring well, and the
predicted values are the SHWT model value at each well location.
The grid values are a strong predictor (R> = 0.91) of the observed
highest SHWT depths. The regression residual plot shows no
obvious pattern but does indicate a slight negative bias, meaning
the grid tends to predict the SHWT deeper than the highest ob-
served values at the well locations. The negative bias occurs despite
using the highest April median to calculate the adjustment factor.
Underestimation of the highest expected water table is acceptable,
because the highest recorded SHWT was not the most commonly
observed SHWT depth.

The residuals were symbolized by magnitude and direction of
divergence and displayed at the well locations in Fig. 12. The great-
est magnitude residuals (—0.67 and 0.56 m) both occurred in the
northwest section of the city, but magnitudes were otherwise well
dispersed. Positive residuals only occurred in the western half of the
city, but negative residuals occurred throughout. Overall, there were
no obvious and major spatial pattern in the residuals. The greatest
magnitude residual was at the northernmost well, 61D 6 SOW 124,
or Well 10, which is identified in Fig. 12. This well was farthest
from any body of water used in the creation of the SHWT model,
suggesting that the grid may not give reliable results in areas farther
than 460 m from open water hydrogeological boundaries. Other
high-magnitude residuals, however, occurred in close proximity
to water surfaces.
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Fig. 9. (Color) Flood report density map generated from citizen reports
of flooding between January and April for the years 2008 through
2016. Land and water surfaces used to create the SHWT depth grid
are shown for convenience. Areas with zero reports are not shown.

Ideally, BMP siting analysis would use a conservative estimate
of the SHWT—above the median expected SHWT but within
the range of expected SHWT depth. The SHWT model value
was plotted alongside a boxplot of the recorded April medians
at each well in Fig. 13(a). Predictions at 10 wells meet the criteria
for conservative BMP siting: above the median but within the range
of data observed at the well. Predictions for six of the wells exceed
the highest observed SHWT median, while two predictions fall be-
low the lowest observed SHWT median. The remaining predictions
are in the range of observed values at each well.

Comparison of Predictions to the Median April Median

Both the SSURGO and SHWT model values were compared with
the median of observed medians at each well as a residual plot in
Fig. 13(b) with descriptive statistics in Table 3. As before, the
SSURGO residual was calculated using the difference between
the USGS shallow well data and the median of SSURGO depth
range at the well location. Residual comparison of the SHWT
model and the SSURGO-predicted values demonstrates that the
SHWT model provides a more realistic estimate across the city,
even for average SHWT conditions. As expected, the SHWT model
is consistently more reliable for estimating the SHWT depth. Both
show positive bias, indicating that their predictions are higher than
the observed median SHWT depth. The residual mean was 1.9 m
for SSURGO and 0.3 m for the grid, indicating that the SSURGO
data has a larger positive bias. The SSURGO data had a RMSE of
2.2 m, while the SHWT model RMSE was 0.6 m. From the RMSE
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Fig. 10. (Color) SHWT depth grid filtered according to flood report
density greater than 2 perkm? during the seasonal high window.
BLS = Below land surface.
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Fig. 11. (Color) (a) Linear regression of the USGS-observed highest
April median water depths and the SHWT grid depth. The R? value is
0.91; the SHWT depth grid is a good predictor of the highest expected
SHWT depths; and (b) the residual plot for the observed highest April
median depths and the SHWT depth grid predictions. The residuals
show no obvious pattern, but there is a slight negative bias.
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Fig. 12. (Color) Residuals symbolized by magnitude and sign at each
USGS shallow monitoring well location. The greatest magnitude resi-
duals in both directions occur in the northwest portion of the city. There
is no obvious pattern or grouping of residuals.

comparison, the SHWT model is a much better predictor of the
average expected SHWT depth at the well locations than SSURGO
data.

Comparison with Geotechnical Evaluation Data

To validate the created SHWT model, geotechnical evaluations
were obtained and digitized. Data availability was highly limited.
Only evaluations occurring during the fall, winter, or spring months
were considered because the high drawdown during summer
months makes it difficult to reliably predict the seasonal high.
There were 57 validation points available, representing data from
10 different sites located in the most developed sections of the city,
shown in Fig. 14. Only one point was taken during the seasonal
high. The remainder of the points were adjusted to the SHWT
by the geotechnical evaluator; the final SHWT recommendations
were used as validation points. The final recommendations are only
an estimate of the actual SHWT depth, but were assumed to be the
actual SHWT depth for the purposes of grid validation.

The validation point residuals are summarized with basic statis-
tics in Table 4. Again, positive residuals mean that the grid esti-
mates the SHWT to have a shallower surface than observed,
while negative residuals indicate the grid estimates the SHWT to
be deeper than observed. The residuals are plotted in Fig. 15(a),
showing no obvious pattern and no positive or negative bias,
supported by a mean residual near zero. Residuals were normally
distributed [Fig. 15(b)]. The residual RMSE was 0.5 m, thus
the SHWT model was expected to be accurate within 0.9 m at a
95% confidence interval. Note that the accuracy relies on the
assumption that the given seasonal high in the geotechnical evalu-
ation reports was indicative of the expected SHWT at each location.
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Fig. 13. (Color) (a) Comparison of the SHWT depth grid value to the
overall range of April median data for each USGS shallow well; and
(b) residual comparison of SSURGO and SHWT depth grid predictions
to the median observed SHWT depth.

Table 3. Descriptive statistics comparing SSURGO and the SHWT model
residual values

Statistic SSURGO SHWT depth grid
Residual mean (m) 1.9 0.3
SSR (m?) 102 8.3
RMSE (m) 2.2 0.6

Although an accuracy of +0.9 m appears to be a wide margin of
error, the error was reasonable considering the simplicity and pit-
falls of the method, addressed in the “Discussion” section.

Discussion

Effective use of the SHWT model necessitates an understanding of
the grid’s limitations and sources of error. The source of greatest
error is the simplification of complex hydrologic processes that de-
termine water table elevation. The SHWT model was created from
the elevations of water surfaces. The water surface elevations
implicitly include past rainfall, evapotranspiration, and anthropo-
genic impacts at the time the Lidar was taken, although any effects
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Fig. 14. (Color) Locations of the geotechnical evaluation points used
for validating the SHWT depth grid. There are 57 points at 10 different
sites, all in the northern half of the city.

Table 4. Summary statistics for the residuals of the validation points

Statistic Value Unit
n 57 —
Minimum —-0.9 m
Maximum 1.2 m
Minimum magnitude 0.0 m
Maximum magnitude 1.2 m
Mean 2 cm
SSR 12 m?
RMSE 0.5 m

on the result are unknown. In this study, the water table elevation
beneath the land surface is the product of linear interpolation from
one water surface to another. Such interpolation results in a linear
gradient between water bodies that disregards soil properties and
land surface elevations. In reality, the water table follows a subdued
version of surface topography due to a combination of pressure
forces and capillary action, limited by soil properties and other geo-
logic features (Peck and Payne 2003). Fig. 16(a) demonstrates how
this concept translates to the actual SHWT model. The SHWT
elevation was estimated irrespective of the surrounding soil, geol-
ogy, and land surface condition. The predicted SHWT elevation
clearly lacks features of the surrounding topography, including
the ridge. The SHWT elevation should rise with the ridge rather
than exhibit a steady decline toward the estuary in the east. The
grid estimate of the water table would remain unchanged if the land
elevation between the water bodies were altered, as conceptualized
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Fig. 15. (Color) (a) The residual plot in which the observed values are
the geotechnical evaluation final recommendations and the predicted
values are from the SHWT depth grid; and (b) the normal probability
plot used to verify the distribution of validation residuals.

in Figs. 16(b and c). In effect, the accuracy was limited by the con-
centration of water bodies across the land surface. More water
bodies result in more input points, which allow the predicted water
table surface to follow the land surface more closely. Because there
are no water bodies on the highest points of the ridge, the results
along the ridge and similar areas likely overestimate the SHWT
depth. A potential remedy for this would be to incorporate ground-
water readings from ridges directly into creation of the TIN, being
careful to choose readings from the same season as the DEM.

Streets and other artifacts from the DEM were very evident in
the SHWT model. Minor streets are often 15 cm below the sur-
rounding land. The height difference was readily reflected in the
SHWT model because the streets were 15 cm closer to the water
table than their adjacent areas. Streets and other land surface de-
pressions did not, however, impact the SHWT elevation estimates.
Streets or other artifacts may not be desired in the depth grid be-
cause they may skew results when, for example, finding the average
water table depth in a drainage area. To correct for this, the DEM
may be modified in some way to hide street footprints, then the
SHWT elevation grid could be subtracted from the modified
DEM and a new SHWT model would result that does not contain
such artifacts.

Additional sources of error leading to the predicted street de-
pression spring locations include the open water surfaces used
as inputs for the initial November 2012 water table elevation esti-
mate. Including a pond or other water body that was not reflected in
the DEM would result in a much shallower prediction, including
the prediction of a spring in street depressions and other areas
where the DEM was lower than average. It was more likely that
the water table under street depressions was high, but not so high
that the groundwater threatened to well up from the surface peri-
odically. Drainage intervention may also have dewatered ground-
water flooding in these areas. Accounting for the underlying soil
and geology could alter the SHWT depth estimate in those areas
and provide a more accurate prediction.
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Fig. 16. (Color) (a) A comparison of the land surface elevation and the SHWT elevation at a portion of Oceana Ridge (shown as cross section A-A”) in
the city of Virginia Beach. The ridge is around 3.0 m higher than the surrounding land. The SHWT elevation does not reflect surface topography, as
would be expected; (b) plot of the SHWT depth grid along cross section A-A’ for original conditions; (c) plot of the SHWT depth grid along cross
section A-A’ for raised land conditions. A cross-sectional representation of how the SHWT depth grid ultimately represents the physical character of
the water table; and (c) demonstration of how the predicted water table elevation does not respond as expected when the land surface elevation is
increased from the original condition. The SHWT model predicts a water table deeper than expected, especially at locations far from water bodies, due
to inability to account for land surface elevation and geologic conditions, including soils.

The methodology used to create the SHWT model ignores the
underlying soil and geology in other ways. Although November
2012 was drier than usual, the soils underneath the lakes and ponds
would affect the rate of dewatering; some ponds would therefore
contain more stormwater than other ponds, elevating the water sur-
face and effectively increasing the estimated SHWT elevation in
those locations. In addition, the presence of perched water tables
was neglected by this methodology, as are areas of highly localized
anthropogenic impacts that are not reflected in adjacent water
surfaces.

The method and parameters chosen to interpolate the AF grid
have potential to significantly impact results. IDW interpolation
was used because it directly incorporates the input points in the
final surface, and the resulting IDW surface does not exceed
the lowest or highest values from the input data set. Considering the
use of the end product as part of a preliminary site planning tool,
operating within the bounds of the known data was deemed an
acceptable approach. Other, more rigorous geostatistical methods
could be adapted to this application, assuming sufficient data
are available and result bounds are acceptable.

The highest observed April median was used to calculate the
AF, rather than an average observed April median, in order to gen-
erate a surface that would ideally represent the highest potential
SHWT at all points for conservative BMP siting. The highest ob-
served April medians did not occur at the same point in time owing
to spatial variability in soil conditions, precipitation, anthropogenic
influences, and other complicating factors. The surfaces are not
representative of a specific or average year condition and should
not be used as such. Although the SHWT model was created using
the highest observed April median, the final grid presents a mod-
erate surface with accuracy of 0.9 m at a 95% confidence interval.
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Lack of available long-term monitoring data may limit the full
implementation of this methodology outside of the study area.
However, if the Lidar data were obtained between January and
April, interpolation of water surfaces without an adjustment factor
would provide comparable results, suitable for preliminary BMP
siting.

Conclusion

A method for estimating SHWT was developed using readily avail-
able soil and hydrography data sets, and was evaluated for accuracy
by comparing them to long-term monitoring data. Surface water
elevations were obtained from available GIS data sets and used
as boundaries to estimate the SHWT. Surface water elevations were
interpolated and the results adjusted to seasonal high values on the
basis of the highest April median from long-term monitoring data.
The resulting SHWT model was compared to the median April
median from long-term monitoring data, available soil and hydrog-
raphy data sets, and available water table measurements from con-
struction soil bores. This method was shown to produce a more
accurate estimate than available RMF-based SHWT data, and
was found to be representative of SHWT estimates from soil bores.
The methodology requires easily accessible spatial layers, is
straightforward to implement, and could be used to more accurately
predict the SHWT in other coastal locations with similar geological
characteristics.

A representative surface for a specific or average year could be
created by altering the AF—for example, by finding the difference
between the November 2012 median and the mean April median,
rather than the highest April median. Within the confines of the
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current methodology, the SHWT model could be improved by al-
tering the input data. Because the predicted water table elevation is
dependent on the presence of water surfaces, areas with more water
surfaces are likely more accurate than areas with fewer water sur-
faces. Identifying missed ponds or reaches in areas relatively far
from other water bodies and incorporating them into the input data
could improve prediction accuracy. Wetland boundaries could pro-
vide valuable input data points, although the elevation of wetland
boundaries would already represent the SHWT and would not need
to be adjusted. Of course, there is much room for expansion of the
methodology, such as obtaining more geotechnical evaluation data
and directly incorporating that information into the SHWT model,
utilizing soil properties and other thematic layers to modify the
initial elevation estimate, or development and calibration of a hy-
drogeologic model, but all are beyond the scope of the limited in-
formational resources available.

Despite the linear representation of the physical character of the
water table, it was concluded that the SHWT model provided a
more accurate estimate of the SHWT depth throughout the city than
the available SSURGO data, which likely did not account for the
substantial anthropogenic impacts on the water table in Virginia
Beach. The SHWT model should be used with caution, however.
The grid is not a substitute for direct measurement and is meant
only for planning purposes. All predicted water table depths should
be verified in situ.
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