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RESEARCH

Genomic selection (GS) is a method of marker-based selec-
tion that uses a large number of markers spread throughout 

the genome, such that every quantitative trait locus (QTL) 
affecting a trait is assumed to be in high linkage disequilib-
rium (LD) with at least one marker. As such, it is an extension 
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ABSTRACT
The majority of studies evaluating genomic 
selection (GS) for plant breeding have used 
single-trait, single-site models that ignore 
genotype ´ environment interaction (GEI) 
effects. However, such studies do not accu-
rately reflect the complexities of many applied 
breeding programs, and previous papers have 
found that models that incorporate GEI effects 
and multiple traits can increase the accuracy of 
genomic estimated breeding values (GEBVs). 
This study’s goal was to test GS methods for 
prediction in scenarios that simulate early-
generation yield testing by correcting for field 
spatial variation, and fitting multienvironment 
and multitrait models on data for 14 traits of 
varying heritability evaluated in unbalanced 
designs across four environments. Corrections 
for spatial variation increased across-environ-
ment trait heritability by 25%, on average, but 
had little effect on model predictive ability. 
Results between all models were generally 
equivalent when predicting the performance of 
newly introduced genotypes. However, models 
incorporating GEI information and multiple traits 
increased prediction accuracy by up to 9.6% 
for low-heritability traits when phenotypic data 
were sparsely collected across environments. 
The results suggest that GS models using 
multiple traits and incorporating GEI effects may 
best be suited to predicting line performance in 
new environments when phenotypic data have 
already been collected across a subset of the 
total testing environments.
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of the earlier method of marker-assisted selection, in 
which a few markers associated with trait QTLs are used 
to perform selection in combination with phenotypic 
information (Meuwissen et al., 2001). Genomic selection 
models typically use a training population (TP), which 
is both genotyped and phenotyped, to calculate genomic 
estimated breeding values (GEBVs) for individuals in 
a validation population (VP), which is only genotyped. 
The accuracy of a GS model could hypothetically be 
measured by the correlation coefficient between the VP’s 
GEBVs and true breeding values. However, the true 
breeding value is not known, and hence the correlation 
between the GEBVs and estimated breeding values (most 
commonly phenotypic means) is calculated instead. This 
correlation is referred to as a model’s predictive ability (Ould 
Estaghvirou et al., 2013). There are several properties of 
the TP, and its relationship to the VP, which are critical 
to achieving high prediction accuracy. These include 
the TP’s census (i.e., actual) population size, its effective 
population size, and the degree of relatedness between the 
TP and VP (Pszczola et al., 2013). The effective popula-
tion size is almost always lower than the census population 
size and may be defined as the number of individuals that 
would give rise to the observed level of inbreeding in an 
idealized population with random mating (Falconer and 
Mackay, 1996).

Various methods for increasing the predictive ability 
of GS models have been explored. One is the correction 
of field spatial variation. Methods for spatial correction 
include the use of blocking, with resolvable incom-
plete block designs such as the a-lattice (Patterson and 
Williams, 1976) being popular in early-generation testing. 
Additional methods use models to perform post hoc spatial 
corrections at a finer scale for field experiments employing 
a variety of designs. Cullis et al. (1998) reported that these 
methods can produce better estimates of genotypic effects 
than the use of blocking designs alone. A popular class 
of models for performing spatial corrections are the first-
order autoregressive (AR1) models (Gilmour et al., 1997). 
First-order autoregressive  functions model an exponential 
decay in the correlation between adjacent plots’ pheno-
typic values as a function of the number of intervening 
plots plus one (Piepho et al., 2015). Models incorporating 
an AR1 residual structure may correct for spatial variation 
in a single dimension, or in a separable two-dimensional 
fashion (AR1 ´ AR1), and may optionally include a 
“nugget” or unit residual term to partition out variation 
due to random measurement error (Cullis et al., 1998). 
Studies have presented varying results on the effects of 
spatial corrections on GS model predictive ability. Lado 
et al. (2013) found that correcting for spatial variation was 
crucial for increasing predictive ability. Bernal-Vasquez 
et al. (2014) reported that AR1 models generally did not 
significantly increase predictive ability and recommended 

simpler models fitting row and column effects. Elias et 
al. (2018) explored the use of multiple spatial parametric 
kernels in a cassava (Manihot esculenta Crantz) breeding 
trial and observed a median increase in predictive ability 
of 3.4% when accounting for spatial trends.

Several studies have also examined the possibility of 
increasing GS model predictive ability by incorporating 
genotype ´ environment (GEI) information to model 
relationships between environments. Early GS studies 
performed in plants typically used multienvironment 
ANOVA models to calculate adjusted means for geno-
types. Critically, an ANOVA model fit in this context 
ignores GEI by assuming a uniform covariance between 
pairs of environments (Isik et al., 2017). Burgueño et al. 
(2012) first incorporated GEI effects into a multienviron-
ment GS model using pedigree and genome-wide marker 
data. Subsequent studies have further investigated poten-
tial gains in GS accuracy enabled by the incorporation 
of GEI information. Guo et al. (2013) studied the traits 
leaf width and leaf length in a maize (Zea mays L.) nested 
association mapping panel and found that median multi-
environment model predictive ability was higher than 
the predictive ability of single-environment models both 
across and within populations. Jarquín et al. (2014) intro-
duced a reaction-norm model modeling GEI as functions 
of markers and environmental covariates. Their results 
demonstrated that the incorporation of GEI effects into the 
model could increase both across- and within-environ-
ment predictive ability, depending on the specific model 
specification and cross-validation procedure. Zhang et al. 
(2015) studied GS across multiple environments using a 
biparental maize population and found that complex traits 
such as grain yield benefitted the most from incorporation 
of GEI effects, whereas simpler traits such as anthesis date 
demonstrated more modest gains in predictive ability. 
Lado et al. (2016) evaluated GS for grain yield in wheat 
(Triticum aestivum L.) in a total of 35 environments. They 
used a strategy of performing GS prediction within mega-
environments to increase the ability to predict genotype 
performance in new environments.

Several studies have also performed GS using multiple 
traits. Studies using simulated datasets have suggested that 
multitrait models can be used to increase predictive ability 
for low-heritability traits that are correlated with higher-
heritability traits, or when a trait is simply too difficult or 
expensive to measure in all individuals within a population 
(Calus and Veerkamp, 2011; Jia and Jannink, 2012; Hayashi 
and Iwata, 2013; Guo et al., 2014). Several studies have 
subsequently assessed multitrait GS in datasets consisting 
of nonsimulated phenotypic data ( Jia and Jannink, 2012; 
Pszczola et al., 2013; dos Santos et al., 2016; Rutkoski et al., 
2016; Schulthess et al., 2016; Wang et al., 2016).

Thus far, the application of GS methods to preliminary 
yield tests (PYTs) has been understudied. Preliminary 
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Research and Extension Center in Warsaw, VA (Kempsville 
sandy loam [fine-loamy, siliceous, subactive, thermic Typic 
Hapludults]; 37.9879° N, 76.7770° W; 40 m asl). A generalized 
randomized complete block design with two replications was 
used in each environment.

Each experimental unit consisted of a seven-row plot with a 
length of 2.74 m, width of 0.91 m, row spacing of 15.2 cm, and a 
harvested area of 2.49 m2. All plots were sown with 70 g of seed. 
Seed was treated with Raxil MD fungicide (0.48% tebuconazole, 
0.64% metalaxyl; Bayer CropScience) at a rate of 2.95 mL a.i. 
kg−1 seed, and Gaucho 600 flowable insecticide (48.7% imida-
cloprid, Bayer CropScience) at a rate of 0.7 mL a.i. kg−1 seed . At 
each location, seeds were planted to roughly coincide with the 
average date of first frost (Supplemental Table S2).

At Blacksburg and Warsaw, several tiller counts represen-
tative of the test area as a whole were used to calculate ideal 
N application rates at Zadok’s growth stage 25 (Zadoks et al., 
1974) in the spring. Once plants reached Zadok’s growth stage 
30, tissue samples were collected by cutting handfuls of leaf 
material from roughly 25 randomly selected sites per environ-
ment. For each environment, collected leaf tissue was then 
mixed thoroughly and analyzed for N content by the Dumas 
method (reviewed in Muñoz-Huerta et al., 2013) to deter-
mine ideal additional N application rates, per standard regional 
recommendations from the Virginia Cooperative Extension 
Service (Alley et al., 1993). Chemicals were applied as needed 
to control lodging and pest pressure in each environment 
(Supplemental Table S2).

Phenotyping
Table 1 summarizes the phenotypic traits that were assessed 
across all environments, with their abbreviations, units of 
measure, and trait ontologies. Normalized difference vegetative 
index (NDVI) was measured for each plot at Zadok’s growth 
stage 25 as described by Phillips et al. (2004) using a Greens-
eeker handheld crop sensor (Trimble Agriculture). Heading 
date (HD) was recorded as the Julian date at which 50% of 
plant tillers within a plot had extruded heads from the boot. 
Physiological maturity date (MAT) was defined as the date at 
which 50% of peduncles within a plot had turned yellow. After 
plants reached maturity, a 0.914-m cutting of all aboveground 
plant material was taken from one of the three inner rows of 
each plot and placed inside a paper bag. The number of spikes 
per cutting were counted manually to derive an estimate of 
spikes per square meter (SSQM, count). Cuttings were then 
threshed on a plot combine (Wintersteiger) with settings opti-
mized to recover as much threshed seed as possible. Threshed 
seeds were weighed to derive an estimate of grain weight per 
meter of row (GW, g). The total number of seeds threshed from 
each cutting were then counted on a Count-A-Pak optical seed 
counter (Seedburo Equipment) to derive an estimate of grains 
per square meter (GSQM, count). The number of heads was 
divided by the number of seeds to derive an estimate of seeds 
per head (SPH, count). Thousand-kernel weight (TKW, g) was 
then calculated as

net weight of threshed seed
TKW= 1000

number of seeds
× 	 [1]

yield tests present several common challenges to the 
accurate assessment of genotype performance, including 
(i) a limited number of total testing environments, (ii) few 
or possibly no replications within each environment, 
(iii) unbalanced designs across environments (especially 
across years) due to annual selections and advancement, 
and (iv) limited seed availability. In this study, the predic-
tive ability of different GS models was evaluated under 
the conditions listed above for a variety of quantitative 
traits with varying heritability and genetic architectures. 
Endelman et al. (2014) examined the question of optimal 
PYT designs when genome-wide marker data are avail-
able by evaluating both genomic predictive ability and 
response to selection for a range of experimental designs. 
However, their study only focused on the trait grain 
yield and used biparental populations. Lado et al. (2016) 
studied the use of GS models incorporating GEI data 
to predict grain yield in highly unbalanced datasets, 
although they used a relatively large number of envi-
ronments. The objective of the present study was to 
evaluate the effects of several methods on GS model 
predictive ability, including correction for spatial varia-
tion, adoption of models incorporating GEI effects, and 
multitrait analyses. We additionally sought to evaluate 
the utility of GS models in panels representing more ad 
hoc assemblies of genotypes, rather than assemblies of 
large families of full or half-sibs.

MATERIALS AND METHODS
Germplasm Selection
The study was conducted over 2 yr and included a total of 
329 genotypes. Of these, 41 genotypes were tested in both 
years. Of the remaining genotypes, half (144) were tested only 
in the first year, and the other half (144) were tested only in 
the second year. All genotype–year combinations are listed 
in Supplemental Table S1. Within each year, genotypes were 
sourced from breeding programs in Illinois (31), Kentucky (30), 
Missouri (2), and Virginia (122). Seven genotypes were removed 
during quality filtering of the genotypic data, leaving a total of 
322 genotypes among both years used for further analysis. Five 
checks were included in the study, including ‘Bess’, ‘Branson’, 
IL00-8250, ‘Roane’, and ‘Shirley’. These lines were selected 
as they are soft wheat lines that have frequently been grown 
in production and used as parents in the mid-Atlantic and 
Midwest regions. With the exception of checks and several 
older cultivars, the majority of genotypes were either F4 or F5 
filial generation.

Experimental Design and Field Management
Experimental plots were planted in a total of four environments 
(two locations in 2 yr) in the 2013–2014 and 2014–2015 winter 
wheat growing seasons. Within each year, trials were planted 
at Kentland Farm near Blacksburg, VA (Guernsey [fine, mixed, 
superactive, mesic Aquic Hapludalfs]–Hayter [fine-loamy, 
mixed, active, mesic Ultic Hapludalfs] silt loams; 37.1965° N, 
80.5718° W; 531 m asl) and the Eastern Virginia Agricultural 
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Plant height (HT, cm) was averaged from two measurements 
within each plot and was recorded as the distance from the 
soil surface to the tip of the heads (excluding any awns if 
present). Plots were harvested at maturity using a Wintersteiger 
plot combine. Moisture content and test weight of harvested 
grain was measured using a GAC 2500-AGRI grain analysis 
computer (Dickey-John Corporation). Grain yield (YLD, kg 
ha−1) was derived from the yield of each harvested plot at 13.5% 
moisture equivalence.

Whole grain starch (STARCH, %), and protein (PROT, 
%) content were estimated via near-infrared (NIR) spec-
troscopy for subsamples from each plot using an XDS Rapid 
Content Analyzer (FOSS NIR Systems). Thirty samples, each 
consisting of 25 g of seed, were sent to Cumberland Valley 
Analytical Services (Hagerstown, MD) for wet-chemistry 
analysis of protein content (AOAC International, 2000) to 
generate calibration curves for the NIR data. Samples were 
chosen to represent the full range of observed NIR protein 
content values. The coefficient of determination of a regres-
sion between NIR and wet-chemistry-derived protein content 
values was 0.78 (data not shown). After phenotyping, the R 
package ‘gge’ (Wright and Laffont, 2016) was used to generate 
genotype + genotype-by-environment (GGE) interaction plots 
(Yan et al., 2000) for each trait using the 41 genotypes tested 
across all environments (Supplemental Figs. S6a–S6n).

Genotyping, Marker Filtering, and Imputation
Seeds of each genotype were germinated, and genomic DNA 
was isolated from the leaf tissue of 10-d-old seedlings on an 
LGC Genomics Oktopure robotic extraction platform, using 
sbeadex magnetic microparticle reagent kits. Genotyping-
by-sequencing was performed on an Illumina HiSeq after a 
PstI-MseI double restriction digest of genomic DNA (Poland et 
al., 2012). Single nucleotide polymorphism (SNP) calling was 
performed using TASSEL-GBS in TASSEL 5.2.24 (Bradbury 
et al., 2007; Glaubitz et al., 2014). Illumina reads were aligned 
to the International Wheat Genome Sequencing Consortium 
‘Chinese Spring’ v1.0 reference sequence (IWGSC et al., 2018) 

using the Burrows–Wheeler Aligner (Li and Durbin, 2009). 
The genotypic datasets for the 2013–2014 and 2014–2015 
material were then jointly filtered to remove SNPs with missing 
data frequencies >20%, mean sequencing depth less than four, 
heterozygous call frequencies >15%, and minor allele frequency 
<5%. After the initial filtering, missing data in the genotypic 
dataset were imputed and phased using Beagle 4.1 (Browning 
and Browning, 2007, 2016). After imputation, the dataset was 
once again filtered to remove SNPs with minor allele frequen-
cies <5%. The imputed genotypic dataset was then filtered in 
PLINK 1.9 (Chang et al., 2015) to remove all but one SNP in 
groups of SNPs within 64 bp of each other, to attempt to lessen 
the inclusion of SNPs misaligned between subgenomes, which 
typically exhibit low LD with surrounding SNPs. Finally, all 
but one SNP was removed from groups of SNPs in high LD 
(r2 > 0.8) using a 250-SNP sliding window, advancing by 
10 SNPs with each step. After filtering, a total of 7748 SNPs 
remained for further analysis. A random subset of 1000 SNPs 
were selected from the filtered genotypic data to calculate the 
effective population size of the testing panel using the formula 
from Hedrick (2011):

Ne = 1/(2r2)	 [2]

where the effective population size (Ne) is a function of the 
average linkage disequilibrium between SNPs located on 
different chromosomes (r2).

Spatial Corrections and Heritability Estimation
For each individual trait–environment combination, the 
following baseline model was fit:

Yi = m + Gi + ei	 [3]

where phenotypic response (Yi) is a function of the within-envi-
ronment mean (m), the fixed effect of the ith genotype (Gi), and 
residual error (ei). This model was then compared against several 
AR1 models accounting for spatial variation (Table 2). Models 
were compared based on several metrics, including the Akaike 
information criterion (Akaike, 1974), log-likelihood ratio tests, 

Table 1. Phenotypic traits assessed in Blacksburg and Warsaw, VA, during the 2013–2014 and 2014–2015 growing seasons.

Trait Abbreviation Units Trait ontology† Ontology description
Heading date HD Julian d TO:0000137 Days required for 50% of heads to emerge from boot

Physiological maturity MAT Julian d TO:0000469 Days required for 50% of peduncles to lose green color

Flag leaf stay green FLSG d TO:0000249 Days between heading and flag leaf senescence

N�DVI at Zadok’s growth stage 25 NDVI – CO_321:0000301 Wheat canopy normalized difference vegetation index (NDVI) trait

Mature plant height HT cm TO:0000207 Height of plant from soil surface to tip of spike excluding awns

Grain weight GW g dry wt. m−1 row TO:0000589 Grain yield (g dry weight) from 1-m row cut at physiological 
maturity

Grains per square meter GSQM grains m−2 CO_321:0000017 Number of grains threshed from 1-m row cutting, converted 
to square meters

Spikes per square meter SSQM spikes m−2 CO_321:0000166 Number of spikes (fertile culms) per unit area, sample or plant

Seeds per head SPH count TO:0002759 Number of grains within an inflorescence

Thousand-kernel weight TKW g TO:0000382 Seed weight estimated by weighing 1000 seeds

Test weight TWT g L−1 TO:0000612 Weight per unit volume of grain at standard moisture level

Yield, 13.5% moisture YLD kg ha−1 TO:0000396 Grain yield standardized to 13.5% moisture equivalence

Near-infrared whole-grain starch STARCH % TO:0000696 Amount of starch present in the plant or plant part

Near-infrared whole-grain protein PROT % CO_321:0000073 Content of protein (corrected to 13.5% moisture basis) in 
whole wheat grain samples

† Matching trait ontologies in the Planteome database: http://browser.planteome.org/amigo/search/ontology.
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interaction (GEij) and the residual error (eijk). Note that this 
model assumes independence between each factor (Isik et 
al., 2017). The across-environment genotypic BLUPs were 
then used as inputs to perform GBLUP using the R package 
‘rrBLUP’ (Endelman, 2011). Briefly, GBLUP solves the 
following mixed model for u:

y = Xb + Zu + e	 [6]

where y is a vector (n ´ 1) of phenotypic observations, b is a 
vector (p ´ 1) of fixed effects, u is a vector (q ´ 1) of random 
effects, and e is a vector (n × 1) of residuals. X and Z are inci-
dence matrices that relate the elements of b and u to y, with 
dimensions (n ´ p) and (n ´ q), respectively. Note that in the 
case of no additional fixed effects being supplied, Xb is equiva-
lent to an n ´ 1 vector of genotypic means (m), such that Eq. [6] 
is equivalent to

y = m + Zu + e	 [7]

The variance structure of u is ?N(0, G 2
us ), where G is an 

n ´ n matrix of additive genetic relationships estimated from 
marker data, and 2

us  is the variance of the random effects. The 
G matrix was estimated using the R package ‘pedigree’ (Coster, 
2012). The variance structure of e is ?N(0, I 2

es ), where I is an 
n ´ n identity matrix, and 2

es  is the error variance. Package 
‘rrBLUP’ uses the efficient mixed model association (EMMA) 
method for solving mixed linear models (Kang et al., 2008), 
which is computationally efficient, but limited to the use of a 
single random term (u, the random genotype effect) in addition 
to the residual error.

Two-Step Stratified Model
The stratified model, hereafter abbreviated GBLUPS, is a 
simplistic approach to producing within-environment perfor-
mance predictions when limited to a numerical method for 
solving mixed linear models that can only support a single 
random term, such as EMMA. The GBLUPS model handles 
each environment separately and includes a first step of gener-
ating within-environment means, followed by a second step 
of calculating environment-specific GEBVs. As entries within 
each environment were balanced with low levels of missing 
data, the within-environment means were simply calculated as 
the simple arithmetic mean of the replications. The within-
environment means were then used as input to perform GBLUP 
within each environment separately using package ‘rrBLUP’ as 
described by Eq. [7]. Note that a separate G matrix was fit for 
each environment for the GBLUPS model, as not all genotypes 
were present in all environments.

the standard error of the variance for differences among geno-
types within an environment, and visual inspection of plot-level 
heatmaps of residuals. The selected best-fitting models were 
often consistent across environments for a given trait, though this 
was not always the case (Supplemental Table S3).

After model selection for spatial trend correction, herita-
bility was estimated for each trait–environment combination 
using the method of Cullis et al. (2006), treating genotype as a 
random effect:

2 tt
g 2

G

1
2

A
h

s
= − 	 [4]

where the generalized heritability ( 2
gh ) is a function of the average 

pairwise prediction error between pairs of genotypes within an 
environment (Att), and the genotypic variance ( 2

Gs ). This proce-
dure was performed for both the baseline model described in 
Eq. [3], and for the selected best-fitting spatially adjusting model 
selected for each trait–environment combination.

Phenotypic Modelling and Genomic Selection
Four models were fit to test various methods of predicting pheno-
typic performance using data across multiple environments or 
traits. For all models, genomic prediction was performed using 
the genomic best linear unbiased predictor (GBLUP) method 
(VanRaden, 2007, 2008). Each location–year combination was 
considered a separate environment, and models were fit using 
both raw plot-level data, and plot-level fitted values generated 
from the spatial-adjusting models described above. We followed 
the advice of Piepho et al. (2015) and retained a model term for 
replication effect when using the spatially adjusted data. The 
four models are described below.

Two-Step Adjusted Means Model
The first model is hereafter abbreviated as GBLUPM and 
included a first step implementing a mixed linear model in 
which adjusted means (i.e., genotypic best linear unbiased 
predictions [BLUPs]) across all environments were calculated, 
followed by a second mixed linear model in which GEBVs were 
calculated. For this model, genotypic BLUPs were first esti-
mated with the R package ‘lme4’ (Bates et al., 2015) using an 
ANOVA model:

( ) GE
j

ijk i j ij ijkk E
Y G E Rm e= + + + + + 	 [5]

where the phenotypic response (Yijk) is a function of the 
overall mean (m), and the random effects of the ith genotype 
(Gi), the fixed effect of the jth environment (Ej), the random 
effect of the kth replication nested within the jth environment 
[ ( )jk E
R ], the random effect of the genotype ´ environment 

Table 2. Baseline and spatial-correction models tested for each trait–environment combination.

Model Fixed term Random terms Residual structure†
Baseline Genotype – IID

Randomized complete block Genotype Replication IID

Two-dimensional first-order autoregressive Genotype – AR1 (rows) ´ AR1 (columns)
Two-dimensional first-order autoregressive plus units Genotype – AR1 (rows) ´ AR1 (columns) + UNITS
Row-wise first-order autoregressive plus units Genotype – AR1 (rows) ´ ID (columns) + UNITS
Column-wise first-order autoregressive plus units Genotype – ID (rows) ´ AR1 (columns) + UNITS

† IID, independently and identically distributed in row and column directions; AR1, first-order autoregressive; UNITS, “nugget” unit residual variance; ID, identically distributed.
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Single-Step Multienvironment Model
A multienvironment model incorporating GEI effects, abbrevi-
ated as GBLUPGEI, was fit to plot-level data in a single step using 
ASreml-R (Butler et al., 2009). This model treats measurements 
of the same trait across different environments as separate traits 
(Falconer and Mackay, 1996), and has the general form

( )GE
j

ijk j ij ijkk E
E Rm e= + + + +Y 	 [8]

The phenotypic response (Yijk) is a vector consisting of concat-
enated subvectors (y1, y2, …, ym) for phenotypes measured in 
each of m environments and is a function of the overall mean 
(m), the fixed effect of the jth environment (Ej), and the random 
effects of the genotype ´ environment interaction term (GEij), 
the kth replication nested within the jth environment [ ( )jk E

R ], 
and the residual error (eijk). Note that genotypic main effects 
are still estimable, despite not being explicitly included in the 
model formula. For the multienvironment model, var(GE) is 
defined as the Kronecker product (Ä) between the G matrix 
and the genetic variance–covariance matrix between environ-
ments (r), such that var(GE) ? N[0, (G Ä r) 2

GEs ] where 2
GEs  

is the variance due to genotype ´ environment interaction. 
The resulting square matrix has dimensions (n ´ m) ´ (n ´ m). 
Various forms of r, entailing different model assumptions and 
numbers of parameters to estimate, may be fit. For instance, 
defining a r matrix with a single uniform variance for all envi-
ronments ( 2

Es ) on diagonal elements, and a single uniform 
covariance between all pairs of environments [cov(E)] on off-
diagonal elements yields a “compound symmetry” model, 
which is equivalent to a traditional multisite ANOVA model as 
described in Eq. [5] (Isik et al., 2017):
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In addition to the compound symmetry model, we eval-
uated several other variance–covariance structures. Fitting 
a heterogeneous variance model relaxed the assumption of 
homoscedasticity of the compound symmetry model, allowing 
for unequal variances for each environment from 1 to m within 
the r matrix:
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as well as allowing unequal variances for the ( )jk E
R  replica-

tion nested within environment effect. An unstructured model 
is similar to the heterogeneous variance model except that it 
allows for fitting unequal covariances between environments 
in the r matrix in addition to unequal variances within envi-
ronments. However, multienvironment models containing 
unstructured variance–covariance matrices can easily become 
overparameterized, causing restricted maximum likelihood 

variance component estimates to fail to converge, particularly 
as the number of environments increases (Oakey et al., 2016). 
Although unstructured models were selected as the best-fitting 
models for several traits, they often led to sporadic convergence 
failures during cross-validation. Multiplicative models using 
a factor-analytic variance–covariance structure (Smith et al., 
2001) are often used as a substitute for unstructured models, and 
a factor-analytic model with a single factor (FA1) was used for 
the traits HD and STARCH. Factor analysis seeks to identify 
common factors which give rise to correlations between vari-
ables; in a GEI context, there may be up to (n genotypes) − 1 
or (m environments) − 1 factors, whichever is less (reviewed in 
Meyer, 2009). To calculate the covariance matrix r, let G be 
an m ´ k matrix of factor loadings l, where k is the number of 
factors, and let y be a heterogeneous diagonal matrix of specific 
variances. For the case of a single factor, as used in this study, 
G becomes a vector:
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The r matrix may then be calculated as
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Residual variance for the GEI model is ?N[0, (R0 Ä I) 2
es ],  

where R0 is an m ´ m matrix of residuals across environments, 
with diagonal elements as the residual variance ( 2

es ) within each 
environment, and off-diagonal elements equal to zero:
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In the case of the compound symmetry model, all vari-
ances in R0 are assumed equal ( )2 2 2

1 2 me e es s s= = = . The 
heterogeneous variance and factor analytic models relaxed the 
assumption to allow for different residual variances within each 
environment. I is an identity matrix of dimensions n ́  n. Thus, 
the full matrix modeling the residual variance has dimensions 
(m ´ n) ´ (m ´ n). Models were selected for each trait based on 
multiple criteria, including the Akaike information criterion, 
log likelihood estimates, and model parsimony (Supplemental 
Table S4).

Single-Step Multienvironment, Multitrait Model
Finally, a multienvironment, multitrait model, abbreviated as 
GBLUPMV, was fit to plot-level data using ASreml-R. This 
was an ANOVA model as described in Eq. [5], except that 
the response, Yijk, consisted of a matrix of dimensions n ´ t, 
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with n being the number of plot-level observations, and t being 
the number of traits included in the analysis. Unstructured 
variance–covariance matrices were used to model the relation-
ships between traits for residuals, genotypic main effects (Gi), 
and genotype ´ environment interaction (GEij). The replica-
tion nested within environment effect [ ( )jk E

R ] was assumed to be 
independent between traits. Note that mixed linear modeling 
software such as ASReml cannot directly estimate separable 
three-way variance–covariance structures (i.e., genotype Ä 
environment Ä trait) when each of the contributing factors 
itself has a complex variance–covariance structure. Model-
ling systems with this degree of complexity is a more involved 
process. Bayesian methods for handling complex three-way 
variance–covariance structures have been proposed for contin-
uous data (Montesinos-López et al., 2016) and count data 
(Montesinos-López et al., 2017). Subsequently, a more compu-
tationally efficient method for producing ratings of genotypes 
for multitrait, multienvironment datasets using recommender 
systems has been proposed (Montesinos-López et al., 2018).

Cross-Validation
Random subset cross-validation was used to assess model 
predictive ability by correlating the GEBVs generated by all 
GBLUP models for lines in the VP against their phenotypic 
adjusted means (i.e., BLUPs), which were calculated by first 
running each model with all available data, assuming indepen-
dence between genotypes. For each model, the cross-validation 
process was then repeated 50 times, randomly dividing the total 
phenotypic observations into a TP and VP, omitting pheno-
typic data for observations in the VP, predicting GEBVs for 
the VP from the training set, correlating GEBVs with geno-
typic BLUPs, and finally averaging across the cross-validation 
replicates. Note that random subset cross-validation is nonex-
haustive (i.e., a single cross-validation replication consists of 
a single random training–validation split). For the GBLUPS 
model, the cross validation entailed 50 replications within 
each environment. For the two-step models (GBLUPM and 
GBLUPS), observations consisted of genotypes, and only the 
predictive ability for main genotypic effects were recorded.

For the one-step models (GBLUPGEI and GBLUPMV), obser-
vations consisted of plot-level data, and predictive ability for both 
genotypic main effects and genotype ´ environment interaction 
effects were recorded. For these models, two separate cross-vali-
dation schemes introduced by Burgueño et al. (2012), CV1 and 
CV2, were used (Supplemental Table S5a). For CV1, genotypes 
were assigned to either the TP or the VP across all environments. 
Therefore, CV1 simulates the introduction of new genotypes 
into a breeding program. For the CV2 cross-validation scheme, 
specific genotype–environment combinations were assigned to 
the TP, ensuring that for each genotype only the phenotypic data 
from at most a single trait or environment would be assigned to 
the validation population. Therefore, the CV2 cross-validation 
scheme simulates a scenario in which data on a particular trait 
is collected in some environments but not others. Given the 
unbalanced experimental design used, the CV2 cross-validation 
scheme primarily simulated a scenario in which phenotypic data 
is available for a particular genotype across some locations within 
a year, but not across years (Supplemental Tables S5a and S5b). 
For both the GBLUPGEI and GBLUPMV models, nomenclature 

will be used to designate the model and cross-validation scheme 
combination, so that, for instance, GBLUPGEI/CV1 will refer to 
the use of the GEI model with the CV1 cross-validation scheme, 
whereas GBLUPMV/CV2 will refer to the use of the multitrait, 
multienvironment model with the CV2 cross-validation scheme.

Satisfactory predictions of genotype performance cannot 
be obtained when using CV1 cross-validation without the use 
of a relationship matrix (estimated either from pedigree or 
from genome-wide markers); otherwise, predictions simply 
consist of the mean value of genotypes within each environ-
ment. However, preliminary analyses suggested that in the 
case of using CV2 cross-validation, meaningful predictions of 
genotype performance across and within environments could 
be formed without any knowledge of relationships among 
genotypes. Therefore, for the GBLUPGEI model using CV2 
cross-validation, we compared the predictions generated from 
a compound symmetry model fitting the genomic relationship 
matrix (GRM) against the predictions generated from the same 
model fitting an identity matrix (I) in place of the GRM to 
assume independence among genotypes.

For the multitrait, multienvironment model, the CV2 cross-
validation scheme was performed in both a “linked” manner 
(i.e., the same genotype–environment combinations were 
assigned to the VP for each trait), and in an “unlinked” manner 
(i.e., genotype–environment combinations were randomly 
assigned to the VP for each trait; Supplemental Table  S5b). 
The CV1 cross-validation scheme was always performed in a 
“linked” fashion for the multitrait, multienvironment model, 
as it simulates a scenario in which new genotypes lacking any 
phenotypic data across environments or traits are introduced 
into a breeding program.

A TP/VP ratio of 80:20 was used for all cross-validation 
replications. For the CV2 cross-validation scheme, the TP/
VP ratio was weighted equally, such that 80% of observa-
tions within each environment were used for training. For the 
GBLUPM model and the GBLUPGEI or GBLUPMV models using 
CV1 cross-validation, the 80:20 TP/VP split entailed assigning 
258 genotypes to the TP for each trait, and the remaining 64 to 
the VP. For the GBLUPGEI and GBLUPMV models using CV2 
cross-validation, this entailed assigning 581 of the 726 total 
genotype–environment combinations to the TP, whereas the 
remaining 145 observations were assigned to the VP. Finally, 
?185 genotypes were present in each environment (with some 
slight variation due to genotyping failures), so that using an 
80:20 TP/VP ratio with the GBLUPS model entailed assigning 
?148 genotypes within each environment to the TP, with the 
remaining 37 genotypes being assigned to the VP.

Comparisons among Models
The across-environment predictive abilities were compared 
between the GBLUPM model and the GBLUPGEI model 
using the CV1 cross-validation schemes. Within-environment 
prediction accuracies were generated by the GBLUPGEI/CV1 
model, although these predictions could not be produced by 
the GBLUPM model. Within-environment predictive abili-
ties were compared for the GBLUPGEI model using CV2 
cross-validation without inclusion of a GRM (i.e., assuming 
independence between genotypes), the same model and 
cross-validation scheme with the inclusion of a GRM, and 
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the GBLUPS model. Across-environment predictions were 
compared for the GBLUPGEI/CV2 with and without the inclu-
sion of a GRM; note that across-environment predictions could 
not be directly estimated from the GBLUPS model. Finally, 
the predictive ability of the GBLUPMV model was compared 
against the predictive ability of the corresponding individual-
trait GBLUPGEI models for both CV1 and CV2 cross-validation 
schemes, using both a set of highly-correlated traits (GW, 
MAT, and YLD), and a set of statistically uncorrelated traits 
(flag leaf stay green [FLSG], NDVI, and test weight [TWT]). 
Both of these sets were selected to contain traits with a range of 
heritability (Table 3).

RESULTS
General Genotype Performance 
and Correlation of Traits
For reference, trait names and their abbreviations are 
shown in Table 1. The GRM calculated from the geno-
typic data showed several groups of highly interrelated 
genotypes present within the Virginia and Illinois germ-
plasm (Supplemental Fig. S1), and a principal component 
analysis of the SNP matrix showed that Virginia geno-
types formed a large cluster, with a second, overlapping 
cluster forming from a combination of Kentucky and 
Illinois genotypes (Supplemental Fig. S2). Mean across-
environment heritability ranged from 0.2 or 0.34 for GW 
with uncorrected data or spatially corrected data, respec-
tively, to 0.95 or 0.96 for TKW with raw data and spatially 
corrected data (Table 3). Many traits demonstrated strong 
positive phenotypic and genetic correlation (e.g., YLD, 
MAT, and GW), as well as strong negative correlation 
(e.g., TKW and GSQM; Fig. 1).

Effect of Spatial Adjustments
The use of various AR1 residual structures to correct for 
spatial phenotypic trends (Table 2) generally resulted in an 
increase in trait heritabilities within environments, as well 
as an increase in the mean heritability across environments 

Table 3. Trait descriptive statistics, within-environment and mean across-environment heritability estimates from raw 
phenotypic data, and within-environment and mean across-environment heritability estimates from spatially corrected data 
for lines grown in Blacksburg, VA, and Warsaw, VA, for the 2013–2014 and 2014–2015 growing seasons.

Descriptive statistics Raw data heritability† Spatially corrected data heritability†
Trait‡ Units Min. Mean Max. SD 14Bb 14War 15Bb 15War Mean 14Bb 14War 15Bb 15War Mean
FLSG d 21 28.69 38 2.76 0.26 0.80 0.75 0.55 0.59 0.55 0.83 0.77 0.74 0.72

GSQM grains m−2 8460 1.85 ´ 104 3.13 ´ 104 3277 0.62 0.50 0.51 0.58 0.55 0.70 0.51 0.59 0.66 0.62

GW g dry wt. m−1 row 47.68 96.64 157.9 16.53 0.19 0.14 0.44 0.05 0.20 0.42 0.14 0.57 0.25 0.34

HD Julian d (1 Jan.) 121 128 136 3.21 0.75 0.94 0.95 0.96 0.90 0.83 0.95 0.96 0.96 0.92

HT cm 59.69 85.43 119.4 9.29 0.85 0.85 0.84 0.86 0.85 0.91 0.88 0.87 0.87 0.88

MAT Julian d (1 Jan.) 151 159.3 171 4.72 0.83 0.87 0.86 0.76 0.83 0.89 0.91 0.89 0.90 0.90

NDVI – 0.26 0.54 0.75 0.08 0.06 0.39 0.41 0.41 0.32 0.57 0.66 0.69 0.64 0.64

PROT % 9.67 12.34 16.04 1.01 0.66 0.38 0.63 0.74 0.60 0.83 0.47 0.71 0.76 0.69

SPH count 8.54 21.94 33.29 3.04 0.86 0.82 0.77 0.81 0.82 0.87 0.83 0.77 0.84 0.82

SSQM spikes m−2 459.3 853 1485 161.2 0.60 0.62 0.45 0.52 0.55 0.65 0.65 0.52 0.92 0.69

STARCH % 46.88 52.51 56.49 1.41 0.46 0.71 0.19 0.69 0.51 0.81 0.72 0.72 0.84 0.77

TKW g 24.1 34.57 91.6 3.98 0.96 0.97 0.94 0.93 0.95 0.97 0.98 0.94 0.96 0.96

TWT g L−1 652.6 759 810.9 19.7 0.96 0.92 0.91 0.93 0.93 0.97 0.96 0.93 0.96 0.95

YLD kg ha−1 3579 6627 9053 1027 0.63 0.45 0.73 0.46 0.57 0.83 0.80 0.78 0.82 0.81

† 14Bb, 2014 Blacksburg, VA; 14War, 2014 Warsaw, VA; 15Bb, 2015 Blacksburg, VA; 15War, 2015 Warsaw, VA.

‡ FLSG, flag leaf stay green; GSQM, grains per square meter; GW, grain weight; HD, heading date; HT, plant height; MAT, physiological maturity date; NDVI, normalized 
difference vegetation index at Zadok’s growth stage 25; PROT, whole-grain protein content; SPH, seeds per head; SSQM, spikes per square meter; STARCH, whole-grain 
starch content; TKW, thousand-kernel weight; TWT, test weight; YLD, grain yield.

Fig. 1. Correlations among traits calculated from genotypic best 
linear unbiased predictions (BLUPs). Phenotypic correlations are 
below the diagonal; genetic correlations are above. Numbers 
in the diagonal are each trait’s generalized heritability averaged 
across all environments. PROT, whole-grain protein content; 
TKW, thousand-kernel weight; TWT, test weight; SSQM, spikes 
per square meter; HT, plant height; NDVI, normalized difference 
vegetation index at Zadok’s growth stage 25; SPH, seeds per 
head; STARCH, whole-grain starch content; FLSG, flag leaf stay 
green; HD, heading date; GSQM, grains per square meter; GW, 
grain weight; MAT, physiological maturity date; YLD, grain yield. * 
Significant at the 0.05 level. ** Significant at the 0.01 level.
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(Table 3). There were a few exceptions—for example, the 
heritability of the trait GW in Warsaw in 2014 was 0.14 
with or without correction for spatial variation. Despite 
the increase in heritability, the use of fitted values from 
the AR1 models as input often did not significantly 
increase the predictive ability of the GBLUPM or the 
GBLUPGEI/CV1 models, with the exception of the traits 
NDVI, for which predictive ability significantly increased 
from using spatially adjusted values, and MAT, for which 
the use of spatially adjusted values led to lower predic-
tive ability in the GBLUPM model (Fig. 2). Confidence 
intervals for the GBLUPGEI model using CV2 cross-vali-
dation tended to be much smaller than those produced by 
either the GBLUPM or GBLUPGEI/CV1 models, and the 
use of spatially adjusted phenotypic values significantly 
increased predictive ability for the traits GW and NDVI. 
Significant, though perhaps not meaningful, increases in 
predictive ability were also observed for the traits PROT, 
STARCH, and YLD using CV2 cross-validation.

Prediction of Genotype Effects 
across Environments
A main effect for genotype performance across environ-
ments could be predicted from the GBLUPM model and 
the GBLUPGEI model using both the CV1 and CV2 cross-
validation schemes. Across-environment predictive ability 

was generally equivalent between the GBLUPM model and 
the GBLUPGEI model using CV1 cross-validation (Table 4, 
Fig. 3A). In addition, the across-environment predictive 
ability was generally equivalent between the GBLUPGEI/
CV2 model run with and without a GRM (Supplemental 
Table S6, Fig. 3B). The exceptions were the traits GW and 
PROT, for which mean predictive abilities were signifi-
cantly lower when including the GRM. Mean predictive 
ability for GW was 0.79 and 0.84 when running the model 
with and without a GRM, respectively; predictive ability 
for PROT was 0.84 and 0.88 when running the model with 
and without a GRM. In general, heritability explained a 
moderate to high portion of the accuracy of GEBVs gener-
ated by the three model–cross-validation combinations 
(Fig. 4), with coefficients of determination between mean 
across-environment heritability and mean predictive ability 
of 0.33, 0.42, and 0.87 for the GBLUPM and the GBLUPGEI 
models using the CV1 and CV2 cross-validation schemes, 
respectively. The trait with the highest heritability, TKW, 
consistently had the highest predictive ability in both the 
GBLUPM and GBLUPGEI models, whereas the trait with 
the lowest heritability, GW, had the lowest predictive 
ability in the GBLUPGEI/CV2 model. The trait PROT had 
a mean, across-environment heritability nearly twice that 
of GW (0.69 vs. 0.34) but had the lowest predictive ability 
in the GBLUPM and GBLUPGEI/CV1 models.

Fig. 2. Comparison of mean predictive ability across 50 replications of random-subsetting cross-validation calculated using either 
spatially adjusted or raw phenotypic values. Genomic estimated breeding values (GEBVs) were calculated with a model utilizing across-
environment adjusted means (GBLUPM), and a multienvironment model (GBLUPGEI) using either the CV1 or CV2 cross-validation 
schemes. Bars represent 95% confidence intervals. FLSG, flag leaf stay green; GSQM, grains per square meter; GW, grain weight; HD, 
heading date; HT, plant height; MAT, physiological maturity date; NDVI, normalized difference vegetation index at Zadok’s growth stage 
25; PROT, whole-grain protein content; SPH, seeds per head; SSQM, spikes per square meter; STARCH, whole-grain starch content; 
TKW, thousand-kernel weight; TWT, test weight; YLD, grain yield.
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Table 4. Mean predictive ability and 95% confidence intervals (CIs) across all environments included in the study for the two-
step adjusted means model (GBLUPM) and the multienvironment model using the CV1 cross-validation scheme (GBLUPGEI/
CV1). For the multienvironment model, genotypic main effect (i.e. across-environment) predictions were generated in addition 
to within-environment predictions. For the two-step model, only main effect predictions were generated. Summary statistics 
were calculated across 50 replications of random subsetting cross validation, with 80% of observations used for training, and 
the remaining 20% used for validation.

GBLUPM† GBLUPGEI/CV1†
Across envs Across envs 14Bb 14War 15Bb 15War

Trait‡ Mean CI§ Mean CI Mean CI Mean CI Mean CI Mean CI
FLSG 0.56 0.019 0.51 0.023 0.30 0.035 0.50 0.032 0.53 0.032 0.55 0.026
GSQM 0.37 0.029 0.39 0.027 0.49 0.033 0.33 0.037 0.25 0.045 0.47 0.034
GW 0.34 0.024 0.32 0.027 0.30 0.041 0.21 0.034 0.40 0.033 0.38 0.036
HD 0.54 0.023 0.54 0.025 0.37 0.042 0.47 0.038 0.64 0.022 0.62 0.022
HT 0.57 0.024 0.57 0.025 0.49 0.038 0.45 0.038 0.67 0.025 0.57 0.030
MAT 0.43 0.020 0.45 0.019 0.32 0.029 0.34 0.030 0.58 0.030 0.55 0.030
NDVI 0.50 0.025 0.50 0.029 0.43 0.036 0.43 0.038 0.39 0.046 0.52 0.033
PROT 0.29 0.026 0.29 0.027 0.30 0.044 0.19 0.045 0.39 0.038 0.36 0.036
SPH 0.35 0.029 0.37 0.026 0.45 0.040 0.37 0.041 0.35 0.037 0.40 0.037
SSQM 0.47 0.019 0.45 0.028 0.41 0.039 0.42 0.037 0.45 0.036 0.48 0.036
STARCH 0.48 0.022 0.52 0.021 0.53 0.028 0.52 0.030 0.55 0.028 0.53 0.028
TKW 0.65 0.022 0.67 0.017 0.66 0.027 0.71 0.026 0.66 0.028 0.67 0.026
TWT 0.61 0.017 0.60 0.013 0.63 0.023 0.52 0.024 0.65 0.017 0.65 0.015
YLD 0.36 0.021 0.37 0.027 0.43 0.032 0.34 0.036 0.40 0.036 0.48 0.033

† Across envs, across environments; 14Bb, Blacksburg, VA, 2014; 14War, Warsaw, VA, 2014; 15Bb, Blacksburg, VA, 2015; 15War, Warsaw, VA, 2015.

‡ FLSG, flag leaf stay green; GSQM, grains per square meter; GW, grain weight; HD, heading date; HT, plant height; MAT, physiological maturity date; NDVI, normalized 
difference vegetation index at Zadok’s growth stage 25; PROT, whole-grain protein content; SPH, seeds per head; SSQM, spikes per square meter; STARCH, whole-grain 
starch content; TKW, thousand-kernel weight; TWT, test weight; YLD, grain yield.

§ CI radius (i.e. margin of error) of 95% confidence interval.

Fig. 3. Predictive abilities for main genotypic effects across environments for (A) CV1 cross-validation using the two-step adjusted means 
model (GBLUPM) vs. the one-step multienvironment model (GBLUPGEI), and (B) CV2 cross-validation using the one-step multienvironment 
model, either assuming independence between genotypes (ID) or using a realized genomic relationship matrix (GRM) to model 
relationships between genotypes. FLSG, flag leaf stay green; GSQM, grains per square meter; GW, grain weight; HD, heading date; HT, 
plant height; MAT, physiological maturity date; NDVI, normalized difference vegetation index at Zadok’s growth stage 25; PROT, whole-
grain protein content; SPH, seeds per head; SSQM, spikes per square meter; STARCH, whole-grain starch content; TKW, thousand-
kernel weight; TWT, test weight; YLD, grain yield.
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Prediction of Genotype Effects 
within Environments
Predictions of phenotypic performance within environ-
ments are not estimable using the GBLUPM model but can 
be obtained from the GBLUPGEI model, whether using CV1 
or CV2 cross-validation. The within-environment predic-
tions generated by the GBLUPGEI/CV1 model for a given 
trait were generally closely related to the corresponding 
across-environment predictions (Table 4), with some occa-
sional larger deviations. For instance, the across-environment 
prediction accuracy for MAT was 0.43, whereas the predic-
tion accuracies within environments for this trait ranged 
from 0.34 in Warsaw in 2014, to 0.58 in Blacksburg in 2015.

Within-environment model prediction accuracies were 
also tested for the CV2 scenario in which data is collected 
for a particular trait in some environments but not others. 
Specifically, the within-environment prediction accura-
cies generated by the GBLUPS model run with a GRM 
were compared against those produced by the GBLUPGEI/
CV2 model, run either with or without the inclusion of 
a GRM (Supplemental Table S6). The GBLUPS model 
underperformed the GBLUPGEI for nearly all trait–envi-
ronment combinations, whether the GBLUPGEI model was 
run with or without the inclusion of the GRM (Fig. 5). 
Exceptions to this were the trait STARCH tested in Blacks-
burg in 2015, where the GBLUPS model outperformed 
the GBLUPGEI/CV2 model run without a GRM, but 

underperformed the GBLUPGEI/CV2 model when a GRM 
was included. In addition, the GBLUPS model’s predictive 
ability was statistically equivalent to that of the GBLUPGEI/
CV2 model run without a GRM for STARCH and NDVI 
in Warsaw in 2015, and for GW in Blacksburg in 2015, 
although the GBLUPGEI/CV2 model run with a GRM 
once again outperformed the GBLUPS model for this trait. 
In general, the GBLUPGEI/CV2 model run with a GRM 
produced statistically higher prediction accuracies than the 
same model assuming independence between genotypes 
for roughly two-thirds of trait–environment combinations, 
and the two produced statistically equivalent prediction 
accuracies for the remaining trait–environment combina-
tions. The exceptions were GSQM and PROT tested in 
Warsaw in 2014, and GSQM, SSQM, and YLD tested in 
Blacksburg in 2015, for which the use of the GRM led to 
significantly lower prediction accuracies.

As with the across-environment predictions, 
heritability explained a moderate to high portion of within-
environment predictive ability. For the GBLUPGEI/CV2 
model fitting a GRM, the coefficients of determination 
between within-environment prediction accuracies and 
corresponding within-environment heritability estimates 
(generated from spatially adjusted phenotypes) were 0.56, 
0.77, 0.70, and 0.45 for the environments Blacksburg in 
2014, Warsaw in 2014, Blacksburg in 2015, and Warsaw 
in 2015, respectively (Supplemental Fig. S3).

Fig. 4. Mean across-environment heritability estimates vs. mean predictive ability for the multienvironment model (GBLUPGEI) using CV1 
and CV2 cross-validation, and the two-step adjusted means model (GBLUPM). FLSG, flag leaf stay green; GSQM, grains per square 
meter; GW, grain weight; HD, heading date; HT, plant height; MAT, physiological maturity date; NDVI, normalized difference vegetation 
index at Zadok’s growth stage 25; PROT, whole-grain protein content; SPH, seeds per head; SSQM, spikes per square meter; STARCH, 
whole-grain starch content; TKW, thousand-kernel weight; TWT, test weight; YLD, grain yield.
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Multitrait Genomic Prediction
In this study, the multitrait, multienvironment model offered 
no advantage over corresponding single-trait, multienviron-
ment models when using the CV1 cross-validation scheme to 
predict genotype performance across environments, whether 
using highly correlated traits or uncorrelated traits (data 
not shown). In contrast, the use of a multiple-trait model 
did significantly increase predictive ability compared with 
corresponding single-trait models when using CV2 cross-
validation if traits were correlated (Fig. 6). The degree of 
this increase in predictive ability was proportional to trait 
heritability, with lower-heritability traits (e.g., GW) exhib-
iting a larger increase. The high-heritability trait MAT did 
not exhibit any statistically significant increase in accuracy 
from the use of the multitrait model. This was not the case 
for uncorrelated traits, for which the multitrait model offered 
no benefits over single-trait models. The use of a multi-
trait model also significantly increased within-environment 
predictive accuracies for lower-heritability traits in the set of 
highly correlated traits (Supplemental Fig. S4). In addition, 
the use of an unlinked CV2 cross-validation scheme led to 
slightly lower prediction accuracies compared with the use of 
a linked CV2 scheme for the traits GW (0.85 for unlinked 
CV2 cross-validation vs. 0.87 for linked CV2) and YLD (0.91 
for unlinked CV2 cross-validation vs. 0.92 for linked CV2).

DISCUSSION
The results of this study suggest various scenarios in prelim-
inary wheat breeding trials for which multienvironment 
and multitrait GS models are and are not well suited. The 

introduction of new genotypes into a breeding program 
was simulated through cross-validation using either the 
two-step adjusted means model (GBLUPM), or the multi-
environment or multitrait + multienvironment models 
using the CV1 cross-validation scheme (GBLUPGEI/CV1 
and GBLUPMV/CV1). The present study suggests little 
reason to favor more complicated and computationally 
intensive multienvironment or multitrait models when 
attempting to predict the main genotypic effects of untested 
genotypes, as the GBLUPM, GBLUPGEI, and GBLUPMV 
models all performed nearly equivalently under this 
scenario. As newly introduced genotypes are unpheno-
typed across all environments, multienvironment models 
have no additional information to leverage for increasing 
prediction accuracies in CV1 scenarios (Burgueño et al., 
2012). Jarquín et al. (2014) similarly observed no signif-
icant increase in CV1 predictive ability when adding a 
GEI effect to a model incorporating genotype, environ-
ment, and environmental covariate main effects, though 
they did observe a significant increase when genotype 
´ environmental covariate effects were incorporated in 
addition to the GEI effects. Multienvironment models 
do have the obvious practical advantage of allowing for 
direct prediction of genotype performance across and 
within environments simultaneously, and they generally 
produced within-environment predictions that were on 
par with corresponding across-environment predictions 
in the CV1 scenario. There were certain trait–environ-
ment combinations for which prediction accuracy was far 
higher or lower than the across-environment accuracy 

Fig. 5. Difference in mean within-environment prediction accuracies between a multienvironment model using a CV2 cross-validation 
scheme and assuming independence between genotypes, the same model including a genomic relationship matrix to estimate 
relationships between genotypes, and a stratified model. Numeric values represent the percentage difference between the listed model, 
environment, and trait combination and the corresponding environment and trait combination as evaluated by the multienvironment 
model assuming independence. H2, generalized heritability averaged across environments; GBLUPGEI/CV2, multienvironment model 
using CV2 cross-validation scheme, GBLUPS stratified model; 14Bb, Blacksburg, VA, 2014; 14War, Warsaw, VA, 2014; 15Bb, Blacksburg, 
VA, 2015; 15War, Warsaw, VA, 2015. † FLSG, flag leaf stay green; GSQM, grains per square meter; GW, grain weight; HD, heading 
date; HT, plant height; MAT, physiological maturity date; NDVI, normalized difference vegetation index at Zadok’s growth stage 25; 
PROT, whole-grain protein content; SPH, seeds per head; SSQM, spikes per square meter; STARCH, whole-grain starch content; TKW, 
thousand-kernel weight; TWT, test weight; YLD, grain yield. * Significant at the 0.05 level. **Significant at the 0.01 level.
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(e.g., FLSG and SPH in Blacksburg in 2014). However, 
the patterns of GEI calculated from the genotypes tested 
across all environments (Supplemental Figs. S6a–S6n) did 
not appear to closely reflect the observed differences in 
prediction accuracy between environments.

Multienvironment models offered more tangible 
advantages when genotypes were tested in some envi-
ronments and not others, a scenario simulated in the 
CV2 cross-validation scheme. This is a clear benefit in 
the setting of early-generation yield trials, as it allows for 
the optimization of sparse resource allocation. It should 
be noted that in this setting a multienvironment model 
can provide quite high predictive ability without the 
inclusion of marker data. The present study found that 
a multienvironment model including a GRM provided 
genotype main effect estimates that were approximately 
equivalent to those produced by the same model assuming 
independence between genotypes. Rutkoski et al. (2016) 
reported similar findings in the context of multitrait 
models (note that the multitrait model used in the present 
study was only tested with the inclusion of a GRM). This 
suggests that within a setting in which sparse testing of 
genotypes is occurring across environments, reasonably 
accurate across-environment predictions can be generated 
without any genotyping. However, the use of a GRM to 
model relationships among genotypes increased within-
environment prediction accuracies for many traits. The 
question of a potential tradeoff point for early-generation 
yield trials, where the added cost of genotyping is offset 
by additional genetic gain, is explored by Endelman et al. 
(2014). Their work suggests that differences in predictive 

ability between models incorporating a GRM and those 
assuming independence between genotypes will be more 
pronounced as TP size increases. Therefore, it is possible 
that the similar predictive ability observed in this study 
when using a GRM vs. assuming independence was 
simply due to sample size.

The multienvironment models for several traits 
(GSQM, GW, PROT, and SPH) could only reliably 
converge when using a compound symmetry variance–
covariance structure (Supplemental Table S4). As this 
model is equivalent to a classical across-environment 
ANOVA model, we would likewise expect equiva-
lent results to using the two-step approach of running 
the ANOVA model followed by the model described in 
Eq. [7]. Despite more complex models being selected as 
better fitting for several traits, the use of heterogeneous 
variance and factor analytic models rarely produced 
an improvement in predictive ability over the simpler 
compound symmetry model (Supplemental Figs. S5a and 
S5b). Burgueño et al. (2011) found that the use of factor-
analytic variance–covariance structures could increase 
prediction accuracy up to 6% compared with simpler 
linear models when GEI is significant. Otherwise, factor-
analytic models offered no advantage over the simpler 
models. This suggests that the environments used in this 
study may have been similar enough for most traits to 
safely ignore GEI. More importantly, it suggests that in 
an applied setting, cross-validation of the TP should be 
used for the purposes of model selection, as suggested by 
Bernal-Vasquez et al. (2014), in addition to classical model 
selection criteria such as the Akaike information criterion.

Fig. 6. Mean predictive ability of single trait and multitrait models using CV2 cross-validation schemes for (A) highly correlated traits, and 
(B) statistically uncorrelated traits. All models shown fit data from multiple environments in a single step. Cross-validation for the multitrait 
model was performed either in a linked fashion, in which the genotype–environment combinations assigned to the validation population 
(VP) were constant across traits, or in an unlinked fashion, in which the genotype–environment combinations assigned to the VP varied 
randomly between traits. All models were tested using 50 cross-validation replications with a 80:20 training population (TP)/VP ratio. 
Bars represent 95% confidence intervals. GW, grain weight; MAT, physiological maturity date; YLD, grain yield; FLSG, flag leaf stay green 
duration; NDVI, normalized difference vegetation index at Zadok’s growth stage 25; TWT, test weight.
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Several previous studies reported that multitrait GS 
models could be used to increase predictive ability for low-
heritability traits that are highly correlated with auxiliary, 
higher-heritability traits (Jia and Jannink, 2012; Rutkoski et 
al., 2016; Schulthess et al., 2016; Wang et al., 2016). In the 
present study, the predictive ability of the GBLUPMV model 
was greater than that of corresponding single-trait models 
for intercorrelated traits when using the CV2 cross-vali-
dation scheme (Fig. 6). It is possible that model predictive 
ability could be further increased by including additional 
traits. Wang et al. (2016) observed much higher predictive 
accuracies for some traits when the number of traits included 
in the model was increased from two to eight. However, the 
addition of each trait greatly increases computing time and 
model complexity. One finding that was against expectation 
was that the use of an unlinked CV2 cross-validation scheme 
with the GBLUPMV model did not affect predictive ability 
compared with using a linked CV2 cross-validation scheme. 
In addition, the use of unlinked CV2 led to slightly lower 
prediction accuracies for the lower-heritability traits (GW 
and YLD) included in the GBLUPMV model when using 
intercorrelated traits. The reason for this is not immediately 
clear, and we are not aware of other studies that have tested 
this exact cross-validation scenario. Montesinos-López et al. 
(2016) tested one cross-validation scheme that was equiva-
lent to our CV2 linked scheme. The second cross-validation 
scheme they used did not resemble either of our CV2 
methods, as it simulated a scenario in which a trait is not 
assessed in all lines within one environment but is assessed 
in all other environments. The GBLUPMV model offered 
few advantages over the GBLUPGEI model when using 
uncorrelated traits and/or the CV1 cross-validation scheme. 
Rutkoski et al. (2016) and Pszczola et al. (2013) reported 
similar findings, in which the use of a multitrait model 
including secondary traits had no influence on prediction 
accuracy if secondary trait phenotypes were not collected 
for the VP. Jia and Jannink (2012) found some scenarios in 
simulated datasets in which a multitrait model could outper-
form corresponding single-trait models in a CV1 scenario, 
in particular when a very low-heritability trait (h2 = 0.1) 
exhibited moderate genetic correlation (r = 0.5) with a 
moderate-heritability trait (h2 = 0.5), when these traits were 
each influenced by a low number of QTLs. In practice, it is 
not clear how often similar conditions would be encoun-
tered in applied settings, and indeed the same paper reported 
little difference in prediction accuracies between multitrait 
and single-trait models under a CV1 scenario when using 
real pine tree (Pinus spp.) disease resistance data.

The present study also examined the effect of post hoc 
spatial corrections on predictive ability. Although this study 
selected the best-fitting model for each individual trait–
environment combination, the separable two-dimensional 
AR1 model with “nugget” unit residual effect (AR1 ´ 
AR1 + units) was often selected as the best-fitting model. 

For practical reasons, it may be beneficial to select a single, 
robust model accounting for spatial variability for use across 
all environments, thereby allowing for fitting the residual 
structure as part of the one-step model fitting process. 
Gilmour et al. (1997) suggested that no single model is 
appropriate for correcting spatial trends in all environments 
but recommended using AR1 ´ AR1 models as a default 
starting point to assess spatial variation. The present study 
found that heritability was usually increased by accounting 
for spatial variation, but that there was often little corre-
sponding effect on predictive ability. Bernal-Vasquez et al. 
(2014) found that various autoregressive models correcting 
for spatial variation generally did not increase predic-
tive ability in a rye (Secale cereale L.) dataset. They instead 
found that a model fitting simple row and column effects 
produced better improvements in accuracy and noted that 
AR1 models may often present convergence difficulties. 
Our findings suggest that although AR1 models have the 
appealing effect of increasing heritability, the modest gains 
in predictive ability may not justify the added complexity 
of fitting them in a GS setting.

For achieving prediction accuracies >0.5 in wheat, 
Bassi et al. (2016) recommended a TP size of at least 50 
individuals if entries of the VP are full-sibs of entries in 
the TP, 100 individuals for half-sibs, and 1000 individ-
uals for less related TPs and VPs. The models used in the 
present study produced predictive accuracies exceeding 
0.5 for many traits, despite a relatively modest overall 
panel size of 329. The panel used in this study consisted 
of an ad hoc assembly of elite soft winter wheat breeding 
germplasm; although it was not created specifically for 
performing GS, it contained some sets of full and half-
sibs, and the genotypes included in the panel generally 
were highly interrelated due to historical germplasm 
exchanges between public soft wheat breeding programs. 
Using Eq. [2], the effective population size for the testing 
panel was estimated at 70 (roughly one-fifth the census 
panel size). Several studies suggest that GS prediction 
accuracies in small grains plateau for many traits at rela-
tively small TP sizes. For example, a genomic prediction 
study for multiple Fusarium head blight-related traits in 
advanced midwestern and eastern US wheat breeding 
lines found that predictive ability generally plateaued 
at a nominal TP size of 192 genotypes (Arruda et al., 
2015). Lorenz et al. (2012) similarly found that predic-
tion accuracies for Fusarium head blight-related traits in 
barley (Hordeum vulgare L.) plateaued at ?200 genotypes. 
Breeding programs will likely steadily expand TPs over 
time as additional genotypes are tested, but our findings 
suggest that satisfactory predictions can be generated for 
many moderate and high-heritability traits with relatively 
modest numbers of genotyped lines.

Problems experienced with convergence for several 
traits highlight one practical limitation to the technique 
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of using mixed linear models with data collected across 
environments and traits. As the number of environments 
increases, so too does the number of parameters that must 
be estimated during model fitting. This problem is further 
compounded in multitrait, multienvironment models. 
There are several strategies to address this issue. First, this 
study indicated that many traits did not require complex 
covariance structures to model GEI; our recommendation 
is to favor more parsimonious models so long as model fit 
is not compromised. In addition, as previously mentioned, 
factor-analytic covariance structures can be used to capture 
much of the covariance modeled by an unstructured matrix 
while requiring the estimation of far fewer parameters. The 
complexity reduction due to adopting a factor-analytic 
structure was limited in this study due to the low number 
of environments, but this benefit increases with the number 
of environments included. Another strategy is to group 
environments into mega-environments and subsequently 
perform GS within mega-environments where GEI is more 
limited. Lado et al. (2016) identified mega-environments 
in a large, unbalanced, multienvironment dataset prior to 
performing GS by using multiplicative models including 
the additive main and multiplicative interactive (AMMI) 
model (Gauch and Zobel, 1988; Zobel et al., 1988) and the 
GGE model (Yan et al., 2000). Similar analyses to identify 
mega-environments may be performed using factor-
analytic mixed models (Burgueño et al., 2008). Finally, 
models that fit a marker ´ environment interaction (MEI) 
term may succeed where traditional GEI models fail to 
converge. Such MEI models were first used by Heslot et al. 
(2013) to characterize environments and were extended by 
Lopez-Cruz et al. (2015) and Crossa et al. (2016). An advan-
tage of MEI models is that marker effects are always present 
in every environment, in contrast with the extreme imbal-
ance that is often witnessed in multienvironment breeding 
trials when considering GEI (Rutkoski et al., 2017).

CONCLUSION
This study examined methods for increasing the predic-
tive ability of GS methods in early-generation yield trials 
representing ad hoc assemblies of genotypes from various 
crosses, producing several key findings:

1. The use of AR1 models for correcting spatial vari-
ability led to large increases in trait heritability, 
but generally modest or nonsignificant increases 
in predictive ability. However, the correction of 
spatial effects only produced lower accuracies for 
one trait in the two-step model, so there is gener-
ally little risk in attempting to use AR1 models for 
spatial correction.

2. Prediction of across-environment genotype main effects 
were generally equivalent between a two-step model 
using adjusted means across environments and one-step 

multienvironment models using CV1 cross-validation, 
although the latter has the advantage of also producing 
within-environment performance predictions.

3. The use of a realized genomic relationship matrix 
with one-step multienvironment models in a CV2 
cross-validation scenario can increase within-envi-
ronment prediction accuracies over similar models 
that assume independence among genotypes. 
Across-environment prediction accuracies will be 
similar in this setting, with or without the inclusion 
of a realized relationship matrix.

4. The use of a multitrait, multienvironment model can 
increase predictive ability for low-heritability traits 
in a CV2 cross-validation setting.

This experiment additionally suggests that there is room 
for further work studying the optimization of early-gener-
ation field breeding trials using a variety of germplasm 
panel compositions beyond biparental crosses.
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