
A MATHEMATICAL MODEL FOR THE DETECTION

OF DEEP SPACE OBJECTS

by

Susan R. Garrett

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Mathematics

APPROVED:

T. L. Herdman, Chairman

E. M. Cliff

May, 1987

Blacksburg, Virginia

J. A. Burns

M.A. Murray

A MATHEMATICAL MODEL FOR THE DETECTION

OF DEEP SPACE OBJECTS

by

Susan R. Garrett

(ABSTRACT)

The problem of detecting deep space objects with certain proba-

bilities was investigated. A mathematical model was then developed

from given problem specifications that deals with the trade-off of

various parameters involved in the detection problem.

A software package that allows the user to input data inter-

actively was written to implement the model. The completed program

as well as an analysis of the tested results are included.

ACKNOWLEDGEMENTS

This thesis is dedicated to my parents, Rev. and Mrs. William H.

Garrett, and my fiance, Karl Kalbaugh, who have been a constant source

of encouragement, support and love.

I would like to thank Dr. Terry Herdman, my committee chairman

and advisor, and Dr. John Burns for their help and encouragement

throughout this project. I would also like to thank Dr. Margaret

Murray and Dr. Eugene Cliff for consenting to be on my committee.

iii

TABLE OF CONTENTS

DESCRIPTION OF THE PROBLEM.

Introduction.

The Sensor • •

False Alarms •

Threshold Setting

Probability of Star Presence in a Pixel

Flip Probability of a Pixel with No Target Present •

Derivation of Q

DEVELOPMENT OF THE PROGRAM.

Major Calculations •

Evaluation of m

Evaluation of P (m) dm s vs vs

Evaluation of Jxx P Nf(m) P (m) dm O s vs s vs vs

Evaluation ~f Q

Other Subroutines

Flow of Control

Description of Routines

ANALYSIS OF TEST RUNS

Diameter - D •••

1

1

3

7

7

10

11

12

15

15

17

19

21

22

24

25

27

29

29

Target Magnitude - ~T. • • • • • • • • • • • • • • • • 31

iv

Probability of Detection - PD

X

Conclusions

BIBLIOGRAPHY

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

Star Numbers

Derivation of Flux

Definition of Variables

Program Code

V

Page

33

35

36

38

39

41

43

46

DESCRIPTION OF THE PROBLEM

Introduction

The purpose of this project is to develop a numerical scheme

that will effectively allow the user to trade-off various parameters

involved in the detection of space objects. The space objects are

referred to as targets because they are the target of detection. The

targets can be objects in some earth orbit or they can be missiles

with known launch and impact sites. In order to detect the targets,

a visual range telescope is used. The telescope, referred to as the

sensor, will be space-based, operating in orbit. Thus, we have a

sensor in some orbit about the earth that can view objects in space.

The view of the target through the sensor is nssumed to be against a

background of stars only. For simplicity, nothing else will be con-

sidered in the detection of the target other than the target and

stars.

This view of the target against the starfield background is

called the total field of view. Part of the actual hardware of the

sensor, is a fine mesh grid through which the total field of view can

be seen and divided. This is called the focal plane grid of detectors.

Each division of the grid is a square of equal size to the other

divisions. These divisions are called pixels and act as the detectors.

The sensor must have some device that does the actual detection

of a target. The sensor is equipped with an amplifier that can

collect or record the number of electrons of any object in the field

1

2

of view. The number of electrons collected in each pixel is

recorded and is assumed to follow a Gaussian distribution. This is

done more than once. Each time electrons are collected it can be

thought of as though a picture has been taken. Each one of these

"pictures" is referred to as an exposure and is of some given time

length. The whole problem comes down to finding out how many exposures

are needed and how much time each one should take in order to ade-

quately detect a target.

This method for detecting a target compares each subsequent

exposure. Since we assumed that the background is a starfield only,

the number of electrons collected from the target should move from one

pixel to the next in each exposure while the number of electrons

collected due to stars remains constant. It is assumed that the grid

can be oriented so that the target moves in a straight line from one

pixel to the next.

There are certain elements that come into play that make a target

harder to detect. Up to this point, we have only discussed collecting

electrons due to the target itself and to stars. Because they are

recorded through an amplifier, it is possible to pick up electrons due

to noise from the -amplifier. This must be taken into account. It is

also possible to detect what is called a false alarm. This happens

when a star is mistaken for a target. False alarms must also be taken

into account. One other thing that has not been mentioned is the

idea of a threshold level. The threshold level is a number below

which no electrons are recorded. This makes it possible to have a

target and not detect it because the number of electrons collected

3

from it falls below the threshold level. All of these things affect

the accuracy with which a target can be detected.

An overview of what is physically taking place is this: There

is a visual range telescope operating in an orbit about the earth. It

has the ability to take timed exposures of objects in its field of

view by collecting electrons from the objects. Each exposure is

compared to the one preceding it and the one succeeding it to find

out if the path of the target can be distinguished.

The rest of this chapter goes through the details of the problem

and the mathematical equations that arise. Chapter two deals with

the development of the computer program and the last chapter gives an

analysis of the tested results. A copy of the computer code of the

program can be found in Appendix D.

The Sensor

The sensor, operating in orbit about the earth, has the follow-

ing known orbit data supplied as input by the user:

a) Altitude of sensor at apogee (NM: nautical miles)

b) Altitude of sensor at perigee (NM) or in place of a) and

b)

• period of revolution (HR)

• eccentricity

c) Inclination (degrees)

d) Initial true anomaly (deg)

e) Longitude of ascending node with respect to Greenwich (deg)

f) Argument of perigee (deg) - if the orbit is non-circular

4

The aperture of the sensor is the diameter, D (meters), and is also

supplied on input by the user. Other input data that will be needed

includes the following:

1) Field of view, ~ (square degrees), of the sensor

2) Combined efficiency, E, of the optics and detectors in the

sensor

3) Total number of pixels, N, that make up the full focal plane

array of detectors in the sensor. The focal plane grid is

divided into squares which act as electron detectors.

4) Number of diffraction limited pixel diameters, K, that make

up an actual pixel

5) The galactic latitude, ~g (deg)

6) Standard deviation of the number of electrons due to noise,

a r

7) Visual magnitude of the target, t\,T or, if not known, the

following may be input:

Distance from the sensor to the target, R(m).

Reflectivity - area product, oR(m).

Sun angle subtended from sensor to target to sun, y(deg).

t\,T can then be found using the following formula from [3]:

(
oR F(Y)J

t\,T = - 26.78 - 2.5 log R2 (1)

where

F(y) = 2 [(rr - y) cosy+ sin y)
3rr 2

(2)

5

The sensor will try to detect a target in the field of view

that also contains stars. This is achieved by examining a time-

sequenced row of pixels yielding a number of electrons from an

amplifier read-out above a certain threshold level, n . In other
0

words, an exposure is made and each pixel outputs the number of

electrons exceeding the threshold level. For a detection to take

place, subsequent exposures are made showing adjacent "flipped"

pixels. A "flip" occurs when a pixel outputs electrons above the

threshold level. The number of exposures needed, Q, depends upon

given probabilities. The number of exposures needed is the major

calculation of the program and is therefore an important output data

item.

A detection is defined as a set of Q flips, one in each of the

adjacent Q exposures forming a straight line. On input, the proba-

bility of detection for a target in the field of view, PD, will be

required as input in order to obtain the probability of detection for

a target in a pixel field of view, pd. A lower bound on pd is ob-

tained by ignoring the enhancement effects of stars and readout noise.

Thus,

(3)

The time for each exposure is referred to as the stare time,

, (sec). The total stare time is denoted T exp stare Since each

exposure is of duration T , exp we have:

T = Q T stare exp (4)

6

During the total stare time, the stars remain fixed in the field of

view and a target moves across the field of view.

are also given as output.

-r and T stare exp

Since the total number of pixels, N, and the field of view of

the sensor, n, are given as input, the pixel field of view, ~n, can

easily be found:

n ~n = -N
(5)

For any value of 6n, T is to be computed so that the anticipated exp

target just crosses the pixel width. Thus,

!Mi. --= w
T

(6)
exp

where w is the angular rate of the target across the field of view.

w is calculated from the orbital input data.

The following additional assumptions have been made in order to

narrow down the scope of the problem:

1) The required statistics on the number of electrons relevant

to the detection of targets, stars, and noise can be

approximated by Gaussian distribution.

2) The focal plane grid geometry of the telescope is made up

of an array of square detectors.

3) A combined efficiency of the optics is approximately

constant over the wavelength.

4) The magnitude of the target does not vary significantly

over the time length of an exposure.

7

False Alarms

A false alarm occurs during a stare when a detection occurs and

a target is not present. This may be caused by some combination of

stars and/or noise resulting in an electron readout above the

threshold level. On input, the probability of a false alarm, Pfa' as

well as a number, X, between O and 1 representing the ability to re-

move stars as false alarm candidates (1 = worst) will be needed.

False alarms caused by noise are due to the amplifier itself.

A certain number of electrons will be added or subtracted by the

amplifier. We assume that this noise has a mean of O and a standard

deviation of a r In dealing with false alarms due to stars, the

average number of stars per steradian in the magnitude decrement dm
V

is used (see Appendix A):

(7)

dz Also, measured values of are given in Appendix A and are dependent
dffiv

on the visual magnitude, m ' V

the factor, X, (7) becomes

X (:: J
V

dm ·,
V

and the galactic latitude, ~ • g Inserting

(8)

the effective number of stars per steradian in the magnitude decrement

dm.
V

Threshold Setting

It was previously stated that a pixel is said to have "flipped"

if the number of readout electrons exceeds some threshold value n .
0

8

The number of electrons is a combination of electrons from noise,

stars, and the target.

In order to calculate n, we need to examine a few things. The
0

number of electrons collected in a pixel due to the presence of an

object of visual magnitude m will be denoted as n(m) and the flux
V V

(photons/m 2/sec) at the sensor aperture will be denoted as F. Then,

the flux of photons corresponding to an object of visual magnitude m
V

is (see Appendix B):

10 -.92 mv F(m) = 5.76 x 10 e
V

Thus, the mean number of electrons collected is:

n(m)
V

nD2
4 E T F(m) exp v

or using equation (6):

n(m)
V

nD2 /iii, = ~ ~ E F(m)
4 W V

(9)

(10)

(11)

Going back to one of the original assumptions regarding the electrons

collected as following a Gaussian distribution, then:

pd 1 - 1
[-12 1 nTN - 0 T

Jno e 2 °eff
ffn

-oo

(12)
0eff

nTN is the number of electrons collected due to a target plus noise

during one exposure, nT is the expected mean from equation (11) where

the object is the target (i.e. m = Il\rT)' and 0eff is the effective
V

standard deviation of the numbei of electrons due to a target plus

noise.

9

(13)

where

CJT = ~. (14)

The lower limit on the integral in equation (12) should actually

be zero but the approximation of using -oo is very small (no larger

than that of assuming a Gaussian distribution). If s0 T is the number

of standard deviations of n0 below nT, then

~oT (15)

We can now write pd as:

soT

1
r /'I. 2

pd Loo
- X = 1 - - e dx ;; (16)

Using the Gaussian error function:

erf (x) 2
- Tn (17)

and noting that:

1 ' (18)

pd becomes:

(19)

Hence, from equation (3),

PDl/Q = _!_ + _!_ f [soT] 2 2 er F

10

(20)

Given the value of PD and Q, the value of s 0 T can be found using the

inverse error function. Once s0 T is known, n0 can be calculated

using equation (15).

Probability of Star Presence in a Pixel

The effective number of stars per steradian in the magnitude

decrement dm is vs X [d~J dmvs (see (8)) where m is the visual vs

magnitude of a star. If we let the probability, P, be i that a given

star will be in a given pixel, we can find P , the probability of
s

star presence in that pixel.

To calculate P , we add the probability of finding 1,2, ... ,20
s

stars in one pixel. The probabilities above 20 are extremely small

and the resulting exponents extremely large to be handled easily; there-

fore, we need only go as high as 20. Thus,

where mis the total number of stars at the given galactic latitude.

Equation (21) gives the probability of star presence in a pixel

where there are m stars in the total field of view. We will be

integrating this quantity over visual star magnitudes so that m should

be taken in a small magnitude decrement. Thus,

P (m) dm = X (P) dm s vs vs s vs (22)

11

It should be noted that m depends on m so that P is actually a vs s

function of m , P (m). vs s vs

Flip Probability of a Pixel with no Target Present

If we assume that no target is present in a pixel, the proba-

bility P fT is:

PfT = Prob (flip due to noise and no star)

+ Prob (flip due to star presence plus noise)

= p [l -Nf
roo
J P (m) dm] s vs vs

0

But, it must be noted that:

Joo P (m) dm
s vs vs

0
1 '

P Nf(m) P (m) dm
8[vs S vs vs

(23)

(24)

which makes the first term in equation (23) drop out. However, for

extremely large values of m (i.e. extremely dim stars), P (m) vs s vs

should eventually equal 1. This would make the integral in equation

(24) blow up (approach infinity). Therefore, once the star presence

in a pixel is equal to 1, we are no longer interested in whether or

not dimmer stars exist in the pixel. Thus, it suffices to find xx

such that:

Jxx
P (m) dm = 1

O s vs vs
(25)

Thus, equation (23) becomes:

12

p - = fxx p Nf(m) p (m) dm
fT O s vs s vs vs (26)

PsNf is the probability of a flip due to star presence plus readout

noise. We have already found an equation for P , now one must be
s

found for PsNf"

The number of standard deviations of n below n will be denoted
0 S

as~ N (m). Then:
SO vs

n - n (m)
0 S vs

losN
(2 7)

where n (m) is the mean number of electrons collected from a star s vs

with visual magnitude mvs (see equation (11)) and osN is the

standard deviation of the number of electrons due to star presence

plus noise:

o sN = / o s 2 + or 2

Then, as in equation (19):

Derivation of Q

0 s
.,-==-

= r n
s

(28)

(29)

The probability of a false alarm will be denoted by Pfa" PfT

and Pfa are related by Q, the number of exposures needed, by the

following equation:

(30)

13

We can now solve this equation for Q:

Q = (31)

The procedure for evaluating Q will be to first make an initial guess

of Q. Then, using equation (31), iterate until convergence is met.

The value or function PfT can be considered a function of Q. There-

fore, an initial guess is required in order to evaluate equation

(31). One or more convergence schemes may be needed. Once Q has

been found, calculate T from equation (4). stare

One other relationship should be mentioned. D, the diameter,

and 6Q, the pixel field of view, can be related by diffraction theory.

If we denote the field subtended by the entire central peak of the

diffraction pattern of a point object as 6~ 1 • then:

(32)

where A is the mean wavelength of the spectrum under consideration:

A,; 0.5 x 10- 6 (33)

Introducing K, the number of diffraction limited pixel diameters that

make up an actual pixel, we get:

6Q = K2
6~1 (34)

Thus,

6Q K2 4A2
= 2

n D /4
(35)

14

The computer program that will carry out all the calculations

presented in this chapter, will allow the user to estimate some of

the input parameters to see their effect on Q and T • The user stare

will then be able to trade-off any input values for another to see

the effects. The following items should be printed and presented to

user on output:

Number of exposures needed - Q

Exposure time - T exp

Total stare time - T stare

Threshold level - n
0

DEVELOPMENT OF THE PROGRAM

Major Calculations

The following are the major components of the program:

1) A main program structure

2) A subroutine for the purpose of allowing the user to

input data interactively

3) Additional subroutines to partition the major evaluations

into many shorter calculations

4) Output displayed for the user

5) The user should then be allowed to go back and alter any

of the original input data to see what effects the changes

make.

From Chapter One, the major calculation of the program is

(see equation (31)):

Q =
£n (~]

(36)
£n(PfT)

Pfa and N are entered on input so only PfT needs to be calculated. In

order to do this, the calculation of PfT can be broken down and

traced back through a series of equations. From the following list

of equations, PfT can be found from the input data:

P-fT = Jxx p Nf(m) p (m) dm
O s vs s vs vs

15

(37)

16

• P (m) dm x P dm s vs vs s vs

• Ps = (~) P(l-P)m-l +

+ (2~) p20 (l-P) m-20

• xx is such that fxx P (m) dm = 1
O s vs vs

1 1 • p Nf (m) = - - - erf s vs 2 2

n - n (m)
0 S vs

• n (m) s vs

• !:SI

0 sN

TI o2 Ifill
= ~- -~ E F(m)

4 w vs

K2 4 "I.2
=---

TI D2/4

(38)

(39)

(40)

(41)

(42)

(43)

(44)

• A= 0.5 x 10- 6 (45)

• F(m) = 5.76 x 1010 e-· 92 mvs (46) vs

• w is calculated from orbital

input data

• a s
= In

s

Ifill
--- E F(m)

w vT

(47)

(48)

(49)

(50)

17

• 0 eff + a r

• a = £ T T

2

c: = Ii erf-l (2 (PD//Q - .!.2)
• '-,OT

PfT is found using the following input data items:

PD , Q , o , St , N , E, m T , D , X , ¢ r V g

mis also needed to find P but is not input by the user. It is
s

(51)

(52)

(53)

calculated externally to the program itself and will be discussed in

the next section. Solving the equations above requires the use of

numerical integration and various convergence algorithms.

Evaluation of m

mis the number of stars at a given galactic latitude for some

visual magnitude decrement. For each run of the program,¢ remains g

constant. Thus, m can be thought of as a function of visual star

magnitude: m = m(m). vs Because we will be integrating over all

visual star magnitudes in the integral of P , it will be helpful to
s

find the function m(m). For any given value of¢ , there is one vs g

function m(m). Hence, in order to save computing time, a function vs .

m(m) was calculated for specific values of¢ and stored. For this vs g
reason, the user is given a list of values for¢ to choose from. g

The list is reasonable and should enable the user to find an ap-

propriate ¢ g The choices are:

0°, ± 5°, ± 10°, ± 20°, ± 30°, ± 40°, ± 50°, ± 60°,

± 70°, ± 80°, ± 90° .

18

In order to find m(m), the table of star numbers from [l] vs

found in Appendix A was used. It shows the logarithm of the number

of stars per square degree brighter than some photographic magnitude

m (this m is not the same as the function m(m)). For each of the vs
values in the table, 10value was calculated to get the actual number

of stars. These new values were then shifted up by • 7 to take into

account visual rather than photographic magnitudes. Then each value

was subtracted from its immediate predecessor to obtain the number of

1 1 stars per square degree within the brightness range m + 2 tom - 2 .

The logarithm of these values was then taken. It is known that the

graph of the logarithm of these values forms a straight line. Thus,

using a straight forward least squares routine, a straight line was

fit to each set of values at each galactic latitude. The values at

the extremes of the table were disregarded to alleviate possible

error. The slope and intercept of each line for each galactic latitude

are stored in the file LINES.DAT. At the start of the program, once

the galactic latitude has been input, the appropriate slope and

intercept are read into the variables SLOPE and YCEPT. Thus,

m(m) = SLOPE(m) + YCEPT • (54) vs vs

With the value mas a known function, P is now a known function of
s

the visual star magnitude.

(see Appendix D, D23).

P is calculated in the subroutine PS
s

19

Evaluation of Jxx P (m) dm
O s vs vs

Once P is found as a function of m , JP (m) dm can be
S VS S VS VS

evaluated. xx needs to be found such that Jxx P (m) dm - 1. This
O s vs vs

was achieved in two steps. The subroutine LOWBND (see Appendix D,

D20) is used to bracket the integral value 1 between two successive

unit increments. Initially, J1 P (m) dm is evaluated. The
O s vs vs

integral is then evaluated with an upper limit of 2. The upper limits

are increased by 1 each time until the values of the integral at two

successive upper limits bracket the value 1. Testing the integral at

various galactic latitudes showed that, generally, a value between 10

and 20 for the upper limit yielded an integral value close to 1.

Because these values for xx are visual star magnitudes this is

expected. 20 is an extremely dim magnitude. The reason for bracketing

the value 1 in this way is to insure better results when getting the

integral to be sufficiently close to 1.

Newton's method is used in the subroutine UPLIMIT (see Appendix

D, D22) to achieve convergence. Newton's method was chosen for two

reasons. First, using the subroutine LOWBND gives a good initial

estimate for Newton's method which greatly increases its rate of

convergence. The lower of the two successive unit increments is used

as the initial estimate. Secondly, Newton's method requires that the

derivation of the function involved be calculated. Because we are

20

dealing with a definite integral as our function, the derivative is

easily found:

f(x) = I: p (m) s vs dm vs - 1 (55)

and

f'(x) = p (x) s (56)

The added time involved using the subroutine LOWBND is minimal and is

offset by the increase in the rate of convergence using Newton's

method. The algorithm for Newton's method used in the subroutine

UPLIMIT is adapted from [4].

In order to evaluate the integral, the subroutine GAUSS (see

Appendix D, D21) is called. GAUSS uses the Gaussian Quadrature method

of integration and was adapted from a previously written subroutine,

GAUSSQ.

Once the root of f(x) (see equation (55)) has been found (i.e.

convergence has been met) in the subroutine UPLIMIT, the root, X, is

returned in the variable xx. xx is the upper limit of the integral •

. fxx
xx is then used in the evaluation of P Nf(m) P (m) dm O s vs s vs vs

The subroutine GAUSS will be used in the evaluation of this integral

also. PsNf must now be evaluated.

21

Jxx
Evaluation of 0 P Nf(m) P (m) dm s vs s vs vs

In order to evaluate P Nf(m) P (m) dm , it is necessary s vs s vs vs

to find a function for P Nf(m). There are many calculations in-s vs

valved in finding PsNf as can be seen in the list of equations in the

first section of this chapter. Some of these calculations are straight

forward and need no explanation. The following is a list of variables

and the subroutine or function where they are evaluated:

Variable Routine Appendix D

6l] PFIELDV DS

w DOMEG Dl7

nT MEANT D9

~T TARMAG D4

0 eff SDEV D8

SOT SDEVOT D6

n THRESH D7
0

ns' 0 s' 0 sN PSNF D24

Some of the ·variables used in the evaluation of PsNf' such as

ssNo and F(M) are never actually defined in the program. Rather, their

equivalent form is used and never named. For example, in place of the

variable ssNo'
n - n
~ 0~~-s- is used and never named as a single value.

0 sN

It should be noted that in order to calculate w using DOHEG, the

position and velocity vectors of both the sensor and the target are

22

needed. The subroutine, SBSIN (see Appendix D, D15) prompts the user

for orbital data for both the sensor and a non-missile target. It

then calculates the position and velocity vectors for both. The

requested input data is listed as a) through f) in the second section

of the first chapter. In the case where the target is a missile, the

subroutine MISSIL (see Appendix D, D16) prompts the user for launch

and impact information and calculates the position and velocity

vectors. The required input data is:

Launch site: latitude (deg)

longitude (deg)

altitude (ft)

Impact site: latitude (deg)

longitude (deg)

altitude (ft)

DOMEG, SBSIN, MISSIL are all previously written and tested subroutines

that are used only in the calculation of w.

The function SDEVOT calls the function INVERF (see Appendix D,

D18) which evaluates the inverse error function. The function ERF

(see Appendix D, D19) eviluates the error function. ERF is used in the

function PSNF since PsNf 1 1 = 2 - 2 erf Both INVERF and ERF

were adapted from previously written and tested routines.

Evaluation of Q

Once PsNf and Ps have been found, using an initial estimate for

Q, the next value for Q can be evaluated. The main objective of the

23

program from a mathematical viewpoint is to find the convergent value

of Q. Because the program fails to yield any information if Q does

not converge, two separate converging routines are used. The second is

used in case the first fails. The two subroutines are CONVERGl (see

Appendix D, Dll) and CONVERG2 (see Appendix D, D12).

CONVERGl uses the x = G(x) method, also known as the method of

iteration. This method was chosen because of the nature of the

equation. It is already of the correct form:

Q=1n[P~·]=
G(Q) • (57)

£n (PfT)

PfT is dependent upon Q, therefore, using the notation, G(Q), is valid.

CONVERGl calls the function QFUN (see Appendix D, D13) to do the

actual calculation of G(Q). QFUN then calls the other functions and

subroutines previously mentioned in the evaluation of PfT" CONVERGl

was adapted from the program, PXGXIT, found in [4].

In case CONVERGl fails to yield convergence, the subroutine

CONVERG2 is used as a second attempt to reach convergence. This sub-

routine uses Newton's method with an initial estimate from the original

input guess for Q~ Since Q is expected to be approximately between 1

and 10, using the initial input guess provides an adequate estimate.

The method used here is a similar adaptation of the one used earlier

taken from [4].

Once a value of Q has been reached, the results are output and

control is transferred back ta the user.

24

Other Subroutines

Some of the subroutines that have not been mentioned yet do not

directly effect the value of Q, although they do effect the output.

The functions TEXP (see Appendix D, D10) and TSTARE (see Appendix D,

D3) evaluate T and T respectively. These are both straight exp stare

forward calculations (see equations (6) and (4)) and the results are

included in the output.

The subroutine INPUT (see Appendix D, D2) is called from the

main program to prompt the user for the needed input data. INPUT per-

forms two initial calculations; that of Il\rT and w. Both Il\rT and ware

calculated directly from the input data.

After the following items are displayed as output to the user:

• number of exposures needed - Q

• exposure time - T exp

• total stare time - T stare

• threshold level - n ,
0

the user then has the opportunity to make any changes in the input data

and run the program again.

The charts on the following pages show the transfer of control

throughout the program. They briefly show the order in which the

program flows and therefore all the subroutines are not present. A

brief description of all the routines in the program follows.

Flow of Control

25

MAIN

CALL INPUT
• User inputs dat
• Initial calcu-

lations

CALL CONVERGl
• Iterate with

initial Q
• Call CONVERG2 i

CONVERGl fails

OUTPUT DATA
• Allow user ~o

re-run with new
input

26

,----~========::--------------------·--- ---

CALL QFUN
• Evaluate Q

CALL GAUSS

• Evaluate PfT

CALL PS
• Evaluate P s

CALL PSNF

• Evaluate
p * p sNf s

Evaluate Q

CALL SDEVOT

• Evaluate ~oT

CALL THRESH
• Evaluate n

0

CALL CONVERG2
• Follow same

procedure as
above

I
I

V

27

Description of Routines

Subroutines

INPUT

CONVERGl

CONVERG2

SBSIN

HISSIL

LOWBND

UPLIMIT

TSTARE

TARMAC

PFIELDV

THRESH

Prompts user for needed input data and performs pre-

liminary calculations

Performs method of iteration (or x = G(x)) to achieve

convergence of Q

Performs Newton's method if CONVERGl fails

Prompts user for orbital data and calculates position and

velocity vectors for both the sensor and a non-missile

target - previously written

Prompts user for launch and impact data and determines

position and velocity vectors for a missile target -

previously written

Finds an initial estimate to be used with Newton's method

in UPLIMIT

Performs Newton's method with an initial estimate from

LOWBND to get JxOx P (m) dm sufficiently close to 1. s vs vs

Functions

Calculates total stare time - T stare

Calculates target magnitude, if not input - ~T

Calculates pixel field of view - 6Q

Calculates threshold level - n
0

SDEVOT

SDEV

MEANT

TEXP

QFUN

QDER

PS

PSNF

DOMEG

INVERF

ERF

GAUSS

28

Calculates the number of standard deviations of n below
0

~ - ~oT

Calculates the effective standard deviation of electrons

due to target plus noise - oeff

Calculates the mean number of electrons due to the target - .

Calculates exposure time - T exp

Calculates a new value for Q at every iteration in the

convergence subroutines. Calls functions to do other

calculations affected by a new value of Q.

Calculates the derivative of QFUN - Q when Newton's method

of convergence is used in CONVERG2.

Calculates the probability of a flip due to star presence -

p
s

Calculates the probability of a flip due to star presence

plus readout noise

Calculates the angular rate of motion of the target through

the sensor view - previously written

Calculates the inverse error function - previously written

Calculates the error function - previously written

Performs Gaussian Quadrature integration - previously

written

ANALYSIS OF TEST RUNS

In order to test the validity of the output, the program was run

numerous times with varying data. The computer used was an IBM PC XT.

This XT was equipped with 640K memory, removable hard disk drives,

two floppy disk drives, a math coprocessor chip, and the IU-1-Fortran

Compiler (Ryan McFarland's version of Fortran). From one run to the

next, all the input parameters were held constant except one. The pur-

pose of this was to examine the effect that each individual parameter

had on the output. This form of testing was chosen since the main

goal of the program was to allow the user to trade-off various

parameters and see their effect on the output.

The input data for the test cases is chosen from a range of

realistic values. For example, the probability of false alarm, Pfa'

should not realistically exceed .5. If it did, it would not be

reasonable to expect to adequately detect a target regardless of the

other input values. In each of the following cases only one of the

input values varies from one run to the next. The resulting output

and an analysis as to whether the output is physically reasonable are

included with the input data.

Diameter - D

D

K

Initial Input Data

.2

5

29

Il\rT
PD

E:

ar

¢g

X

p fa

N

Q (initial guess)

Orbital Data

a) altitude at apogee

b) altitude at perigee

c) inclination

d) initial true anomaly

e) longitude of ascending

node with respect to

Greenwich

T exp

30

7

.6

.09

3

0

.1

.005

50,000

7

Sensor

500

500

45

0

0

Target

19,000

19,000

0

0

0

T stare

Output (D .= • 2)

0.171 sec

0.636 sec

Q

n
0

3.708 exposures

44,317.403 electrons

T exp

Q

n
0

31

Output (D = 1.5)

0.023 sec

0.085 sec

3.708 exposures

333,519.074 electrons

Increasing the diameter, D, of the sensor should make it easier

to detect a target. As a detection becomes easier, it is reasonable

to expect that less time is needed for each exposure. The fact that Q

remained unchanged is not unreasonable since the same number of

exposures but with smaller time lengths still yields a smaller total

stare time, T t • T is a direct result of T and Q. With an s are stare exp
easier detection, the threshold level, n, would be expected to in-o

crease. A higher threshold level allows fewer false alarms to be

detected. The threshold level, therefore, need not be as low with an

easier target detection.

Target Magnitude - Il\rT

Initial Input Data

D 1.5

K 41

Il\rT 10

PD .6

E .09

0 3 r

~ 0 g

X

pfa

N

Q

Orbital

T exp

T stare

Q

n
0

T exp

'stare

Q

n
0

a)

b)

c)

d)

e)

Data

32

.1

.005

50,000

7

Sensor

500

500

45

0

0

Output (1\TT = 10)

0.187 sec

1.137 sec

Target

19,000

19,000

0

0

0

6.070 exposures

172,850.519 electrons

Output (1\TT = 18)

0.187 sec

2.135 sec

11.396 exposures

91.682 electrons

If the visual magnitude of the target, 1\TT' increases, it gets

dimmer, harder to detect. As a result, it has fewer detectable

electrons. (In relation to visual star magnitudes, 18 is an

extremely dim magnitude.) The number of exposures, Q, increased, not

33

unexpectedly, in order for a detection to occur with the given proba-

bilities. As stated, the target with the larger magnitude has far

fewer detectable electrons. Thus, in order for the target to be

detected, the threshold level must be lowered. The exposure time re-

mains unchanged mathematically, m..T has no effect on T • The total v exp

stare time, T , increased as a direct result of the increase in Q. stare

Probability of Detection - PD

Initial

D

K

~T

PD

E:

(J r
cp

g

X

pfa

N

Q

Orbital Data

a)

b)

c)

Input

1.5

41

10

.85

.09

3

0

.1

.005

50,000

7

Sensor

500

500

45

Data

Target

19,000

19,000

0

d)

e)

T exp
T stare

Q

n
0

T exp

Tstare

Q

n
0

34

0

0

0

0

Output (PD= .85)

0.187 sec

1.137 sec

6.070 exposures

172,627.320 electrons

Output (PD= .999)

0.187 sec

1.137 sec

6.070 exposures

171,938.249 electrons

Increasing the probability of detection, PD, resulted in a

decrease in the threshold level but left the other input data unchanged.

A higher value of PD implies that the user would like more assurance

that the target will be detected.

allows for this higher probability.

The resulting lower value of n,
0

It is not unreasonable that the

number of exposures and the exposure time were unaltered. The lower

threshold yielded the required probability of detection and no other

adjustments were needed.

X

D

K

1\rr
PD

E:

cr r
<I> g

X

pfa

N

Q

Orbital Data

a)

b)

c)

d)

e)

T exp

Tstare

Q

n
0

35

Initial Input Data

1.5

41

10

.85

.9

40

90

.5

.005

50,000

7

Sensor

500

500

45

0

0

Output (X = .5)

0.187 sec

1.450 sec

Target

19,000

19,000

0

0

0

7.739 exposures

1,731,652.128 electrons

T exp

T stare

Q

n
0

36

Output (X = .9)

0.187 sec

1.908 sec

10.181 exposures

1,731,506.301 electrons

The value of Xis an estimate of the ability to remove stars as

false alarm candidates where 1 is the worst possible case. (Xis

between O and 1). An increase in the value of X means that more

false alarms will show up in the detection. As a result, the

threshold level was lowered. Lowering the threshold level allows more

false alarms in the detection. More possible false alarms make it

reasonable to expect that the value of Q would increase. The more

false alarms with the same probability of a false alarm makes a

detection harder. The more difficult a detection is, the more

exposures it takes.

Conclusions

The above cases along with many other similar test runs lead to

the conclusion that the output is indeed accurate. The output was also

checked mathematically, i.e., the equations themselves were checked to

see if they justified the increase or decrease of the output data.

The results were not included in this paper. They were straight

forward and do not require an explanation. An example of how the

equations were checked can be seen in the first case in this chapter;

the change in the diameter. From equation (44), we see that Dis

inversely proportional to~~. Thus, as D increases,~~ decreases.

37

~Q is proportional to, (see equation (6)) and therefore as exp

decreases, , decreases. Hence, from this viewpoint, , is exp exp

expected to decrease with an increase in D and this is indeed the case

as can be seen in the output values of, exp

BIBLIOGRAPHY

[1] C. W. Allen, Astrophysical Quantities, Athlone Press, University
of London, 1963.

[2] K. R. Lang, Astrophysical Formulae, Springer Verlag, Berlin, 1974,
pp. 559-560.

[3] G. A. McCue, J. G. Williams, and J.M. Morford, ''Optical
Characteristics of Artificial Satellites," Planetary and Space
Science, Vol. 19, 1971, pp. 851-868.

[4] Curtis F. Gerald and Patrick O. Wheatley, Applied Numerical
Analysis, Addison-Wesley Publishing Co., Reading, MA, 1984,
pp. 62-67.

38

APPENDIX A: Star Numbers

39

40

Star Numben ,
~ • • number ot ,tan per IC{UAN degree brights than magnitude ,,.

"' o• ±5"

O;O
l·O
!·O !·18
10 !-es
t·O !-!IS !· 11
6·0. !·72 2e,
6·0 l·l8 J.10
7·0 1·81 1·114
8·0 0·05 I 99
9·0 0-,2 0·43

10·0 0·97 0·88
11·0 1-43 1-33
l'.?O 1-88 1-77
13 0 2·30 2·19
U·O 2·72 2111
15·0 ,3· 12 300
ltl·O 3·40 3·41
17·0 3·83 ·:M8
18·0 t-20 t·IO
19·0 4·6 4·4
%0·0 4·7 4·7
11·0 5·0 4·1

V c.arioho,t o/ N • ~ paloctic lalintcu
logN.

~l&Utooe

± 101 ± 20· ±30 1:40 :t l!-0 :t At~± 70

pho'°(ni)luo ~ tuo.e

1 ,.11 1-1
!·tT !-O

!·It !·85 !•'flS 5·70 hi !·84
~ 57 ! " !·3! !·U !·!O !-17 !·14
To, ! QO ~-78 !1·71 ,~ !n ! 112
J-47 1·3' 1·!3 l·le 1· 11 I 08 I 1tt1
l-91 I 78 I-es ho I 115 1111 1·49
0·311 0·2% O·U 0·04 1·99 I~ J.91
0·80 o-ee 0·114 0·4tl (HO 0-!!5 0·31
Ml 1·08 0·911 0-87 0·80 0-711 0·70
I-fl~ l·W 1-37 MIi 1·19 HI 1·08
2·07 1-90 1-711 1·84 I ·64 1·47 l·U
2·48 2-28 !·U Ml 1·88 1-79 1-75
2·88 ! 6!5 %·411 !·31 1·20 !·10 1·03
3.24 300 2·77 ! fll 2·48 2·38 %·%8
3·60 3-33 3-0t 1·89 M!5 '" !·56
3·93 3·63 3-36 3·14 1·99 117 2·78
4·3 n 3·6 3' u M 3·0
4·1. u H H ,., 3-1 1·1 , .. 4·5 4-0 M H H ...

±IH) ±90'

J.n J II()
!-1~ 2· 11
! ro 2·118
I°' Io:,
1·47 1·49
1·89 1-flll
o-n 0·%7
O·~ O·M
1·04 I 03
HO 1·39
1-71 1-71
%00 1·97
!·25 %·7'
2-112 2·48
!·76 M!
u u
3-l 1-1 ... l·I

H-a ,._
o• o•

to QO" to 91•

,.;.,....i
ff.7
i·•

i-~ i lit
! 40 I IHI
~ RV !·11
~ 37 !-110
2-se T 01
I 31 l-11,
1·75 0 l)Q
(},19 0·411
Ofll 0·111
1·05 l·H
Hf! 1·77
l-!17 1·17
% 211 11111
! Ill I 11,
! 98 l·t<l
3·33 l·M
3-~ 1-ve
3·~ 4·!0
H7 t·U
4·4

APPENDIX B: Derivation of Flux

41

42

Let S(A) be the energy flux per unit wavelength (erg cm -2 -1 sec
0-1 A). Then, for an object of visual magnitude mv, as fixed by the zero

point of the magnitude system (see [2]),

0
log S (5500 A)= - 8.42 - 0.4 m

V

If one converts to metric units and specifies quantum rather than

-2 -1 -1 energy flux per unit wavelength (photons m sec m), then

-6 log S (0.55 x 10 m) = 17.02 - 0.4 m
V

The width (at half height) of the sunlight spectrum is

-6 0.55 X 10 m. Thus, the quantum flux of the sunlight spectrum

(including nearby skirts) is:

F(m)
V

S (0.55 x 10- 6 m) ~A

= 5.76 x 10-lO e- 0 •92 mv (photons/m- 2 sec- 1) •

APPENDIX C: Definition of Variables

43

44

DEFINITION OF VARIABLES

D - Diameter of sensor (m)

K - Number of diffraction limited pixel diameters that make up

an actual pixel

~T - Visual magnitude of target

y - Sun angle subtended from sensor to target to sun (deg)

aR - Reflectivity - area product (m)

R - Distance from sensor to target (m)

PD Probability of detection for a target in the field of view

E - Combined efficiency of optics and detectors in sensor

a - Standard deviation of the number of electrons due to noise r

~ - Galactic latitude (deg) g

X - A number between O and 1 that represents ability to remove

stars as false alarm candidates (1 = worst)

Pfa - Probability of a false alarm

N - Total numbef of pixels

Q - Number of exposures needed

w Angular rate of the target through the sensor view (rad/sec)

~ - Expected ·mean of the number of electrons due to the target

n - Threshold level (number of electrons above which anything is
0

recorded)

Pixel field of view (steradians)

- Total sensor field of view (steradians)

0 eff - Effective standard deviation of the number of electrons due

to a target plus noise

45

C - Number of standard deviations of no below nT ~oT

PfT - Probability of a flip when no target is present

T - Exposure time (sec) exp

T - Total stare time (sec) stare

A - Mean wavelength of the visible spectrum (m)

P - Probability of a flip due to star presence s

PsNf Probability of a flip due to star presence plus noise

APPENDIX D: Program Code

46

47

*** Dl ***
PROGRAM SURPAR

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

EXTERNAL PFIELDV,SDEV,MEANT,TEXP,TSTARE,TARMAG

DOUBLE PRECISION PFIELDV,SDEV,MEANT,TEXP,TSTARE,TARMAG

DIMENSION SBSSEN(2,6)

COMMON/ORB/SBSSEN

COMMON/MAG/MVT

COMMON/MAGS/SUNA,RCS

COMMON/CONSTl/PI,TPI,WL

COMMON/CONST2/XTOL,FTOL,NLIM

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

COMMON Q

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT

COMMON/LINE/SLOPE,YCEPT

COMMON/PROB/X,N

LOGICAL CONV,CONVG,FLAG

CHARACTER *1 ANSW,AN,AA

INTEGER MM,GL

DOUBLE PRECISION NT,NO,N,MVT

C

C * * * * * * * * * * * VARIABLE DEFINITIONS * * * * * * * * * * * *

C *
C -- VARIABLES -- *
C ARATE: Angular rate of motion of target through the sensor view *

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

D:

EFF:

EOT:

FOV:

GL:

K:

MVT:

N:

NO:

NT:

PD:

PFA:

PFOV:

PFT:

Q:

R:

RCS:

48

Aperture of the sensor (m)

Combined efficiency of optics and detectors

Number of standard deviations of NO below NT

Field of view of sensor (steradians)

Galactic latitude (deg)

of diffraction limited pixel diameters that make up an

actual pixel

Visual magnitude of the target

Number of pixel detectors

Threshold level(# of electrons above which anything is

recorded)

Expected mean of the number of electrons due to the target

Probability of detection for a target in the field of view

Probability of a false alarm

Field of view of a pixel (steradians)

Probability of a flip assuming no target is present in a

pixel

Number of exposures needed

Distance from sensor to target (m)

Reflect~vity-area product (reflection cross section) (m)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

C SDEFF: Effective standard deviation of the# of electrons due to a*

C

C SDR:

C SUNA:

target plus noise

Standard deviation of the# of electrons due to noise

Sun angle subtended from sensor to target to sun (rad)

C TEXP: Exposure time (sec)

C TSTARE: Total stare time (sec)

*
*
*
*
*

49

C X: A number between O and 1 that represents ability to remove *
C stars as false alarm candidates *
C FIXED PARAMETERS -- *
C CONV,CONVG,FLAG: Tell whether of not convergence has been met *
C DEGRAD: Radians per degree *
C DMU: Gravitational constant (m**2/sec**3)

C

C

C

C

C

C

NLIM: Upper limit on# of iterations in the convergent routines

PI,TPI: Pi and 2*Pi

RADDEG: Degrees per radian

RE: Radius of the Earth (m)

STERSD: Steradians per square degree

WE: Angular rate of the Earth (rad/sec)

C WL: Mean wavelength of spectrum under consideration (visible)

Meters per nautical mile C XMNM:

*
*
*
*
*
*
*
*
*

C XTOL,FTOL: Used in convergence subroutines to test closeness to O *
C *
C *
C

C Initialization

C

PFT=O.O

C

C Call subroutine to ask user for input parameters

C

CALL INPUT(ARATE,MVT)

C

C

50

WRITE(6,*) 'Enter an initial guess for the number of exposures',

&' that will be needed.

READ(*,*) Q

PRINT*, I

C Do initial calculations

C

101 NT=MEANT(MVT,D,K,EFF,ARATE)

SDEFF=SDEV(NT,SDR)

PFOV=PFIELDV(K,D)

FOV=N*PFOV

WRITE(6,*) 'THE STARTING VALUE OF Q IS: ',Q

C

C Read in slope and y-intercept for appropriate galactic level. A Least

C Squares routine was used to fit the log of the Amv values for each

C galactic latitude to a straight line.

C

IF (GL.EQ.O) THEN

I=l

ELSEIF (IABS(GL).EQ.5) THEN

I=2

ELSE

I=IABS(GL)/10 + 2

ENDIF

OPEN (11,STATUS='OLD' ,FILE='LINES.DAT')

C

DO 10 J=l,I-1

READ(11,*)

10 CONTINUE

READ(ll,*) SLOPE,YCEPT

CLOSE (11)

FLAG=.FALSE.

CALL LOWBND(XX,FLAG,CONVG)

51

WRITE(6,*) 'AFTER LOWBND XX= ',XX

IF (.NOT.FLAG) CALL UPLIMIT(XX,CONVG)

IF (.NOT.CONVG) THEN

WRITE(6,*) 'Integral did not converge to 1. Re-run.'

GO TO 999

ENDIF

C Call subroutine to get a better estimate for the number of exposures

C

CALL CONVERGl(CONV,XX)

IF (.NOT. CONV) THEN

CALL CONVERG2(CONV,XX)

IF (.NOT. CONV) THEN

WRITE(6,*) 'No convergence with two different methods.'

WRITE(6,*) 'Do you want to try another value of your',

& ' initial guess of the number of exposures needed (Y/N)?

READ(*,111) ANSW

IF (ANSW.EQ. 'Y') THEN

WRITE(6,*) 'Enter guess

C

C

100

READ(*,*) Q

GO TO 101

ENDIF

ENDIF

ENDIF

IF (CONV) THEN

TT=TEXP(PFOV,ARATE)

WRITE(6,100) TT

52

FORMAT(' ','The exposure time is

TS=TSTARE(Q,PFOV,ARATE)

WRITE(6,200) TS

',F6. 3,' sec')

200 FORMAT(' ','The stare time is I ',F7.3,' sec')

WRITE(6,*) 1 SDEFF= ',SDEFF,' NT= ',NT,'EOT= ',EOT

NO=THRESH(SDEFF,EOT,NT)

300

400

WRITE(6,300) NO

FORMAT(' ','The threshold value is

WRITE(6,400) Q

',F12.3,' electrons')

FORMAT(' ','The number of exposures needed is ',F6. 3/T3)

WRITE(6, *) 'PFT ' , PFT

WRITE(6,*) 'Do you want to run this program again with any new

¶meters (Y/N)?

READ(*, 111) AN

IF (AN . EQ. I y') THEN

110 WRITE(6,*) 'Enter the number beside the parameter'

C

53

WRITE(6,*) 'Aperture of sensor (meters) - 1

WRITE(6,*) '# of diffraction limited pixel diameters - 2

WRITE(6,*) 'Visible magnitude of target - 3

WRITE(6,*) 'Sun angle subtended from sensor-target-sun',

& ' (degrees) - 4

WRITE(6,*) 'Reflectivity-area product (meters) - 5

WRITE(6,*) 'Probability of detection of target - 6

WRITE(6,*) 'Combined efficiency of optics and detectors',

& I -]

WRITE(6,*) 'Standard deviation of noise electrons - 8

WRITE(6,*) 'Galactic latitude (degrees) - 9

WRITE(6,*) 'A number between O and 1 that represents your'

WRITE(6,*) ' ability to remove stars as false alarm'

WRITE(6,*) ' candidates (l=worst) - 10

WRITE(6,*) 'The probability of false alarm - 11

WRITE(6, ~'I') 'The # of pixels - 12

WRITE(6,*) 'A new estimate of the number of exposures',

& ' needed - 13

WRITE(6,*) 'Sensor orbital data - 14

WRITE(6,*) 'Target orbital data (missile) - 15

WRITE(6,*) 'Target orbital data (non-missile) - 16

READ(*,*) MM

IF (MM .LE. 13) THEN

WRITE(6,*) 'Enter new value

ENDIF

IF (MM . EQ. 1) THEN

READ(*,*) D

ELSEIF (MM .EQ. 2) THEN

READ(*,*) K

ELSEIF (MM .EQ. 3) THEN

READ(*,*) MVT

ELSEIF (MM .EQ. 4) THEN

READ(*,*) SUNA

MVT=TARMAG(SUNA,RCS)

ELSEIF (MM .EQ. 5) THEN

READ(*,*) RCS

MVT=TARMAG(SUNA,RCS)

ELSEIF (MM .EQ. 6) THEN

READ(*,*) PD

ELSEIF (MM .EQ. 7) THEN

READ(*,*) EFF

ELSEIF (MM .EQ. 8) THEN

READ(*,*) SDR

ELSEIF (MM .EQ. 9) THEN

READ(*,*) GL

54

ELSEIF (MM .EQ. 10) THEN

READ(*,*) X

ELSEIF (MM .EQ. 11) THEN

READ(*,*) PFA

ELSEIF (MM .EQ. 12) THEN

READ(*,*) N

55

ELSEIF (MM .EQ. 13) THEN

READ(*,*) Q

ELSEIF (MM .EQ. 14) THEN

CALL SBSIN(SBSSEN,1)

ARATE=DOMEG(SBSSEN)

ELSEIF (MM. EQ. 15) THEN

CALL MISSIL(SBSSEN,2)

ARATE=DOMEG(SBSSEN)

ELSE

CALL SBSIN(SBSSEN,2)

ARATE=DOMEG(SBSSEN)

ENDIF

IF (MM .GE. 14) THEN

WRITE(6,*) 'If you have previously entered the magnitude'

WRITE(6,*) ' of the target directly, enter Y, otherwise',

&' enter N

READ(*, 111) AA

IF (AA .EQ. 'N') MVT=TARMAG(SUNA,RCS)

ENDIF

WRITE(6,*) 'Do you want to change any other parameters '

WRITE(6,*) 'before this program is run again (Y/N)?

READ(*, 111) AN

IF (AN .EQ. 'Y') GO TO 110

GO TO 101

ENDIF

ENDIF

999 CONTINUE

111 FORMAT (Al)

STOP

END

56

57

*** D2 ***

SUBROUTINE INPUT(ARATE,MVT)

C

C This subroutine asks the user for the required input parameters

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

EXTERNAL TARMAG,DOMEG

DOUBLE PRECISION TARMAG,DOMEG

DIMENSION SBSSEN(2,6)

COMMON/MAGS/SUNA,RCS

COMMON/ORB/SBSSEN

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV

COMMON/PROB/X,N

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

CHARACTER ANS*l

INTEGER IM, GL

DOUBLE PRECISION N,MVT

WRITE(6,*) 'Enter the aperture of your sensor (meters)

READ(*,*) D

WRITE(6,*) 'Enter the# of diffraction limited pixel diameters '

& 'that make up an actual pixel

READ(*,*) K

WRITE(6,*) 'Do you know the visual magnitude of the target (Y/N)'

READ(*,112) ANS

IF (ANS.EQ. 'Y') THEN

WRITE(6,*) 'Enter the value

READ(*,*) MVT

ELSE

58

WRITE(6,*) 'Enter the sun angle subtended from sensor to target

& to sun (degrees)

READ(*,*) SUNA

WRITE(6,*) 'Enter the reflectivity-area product (reflection'

& 'cross section) (meters)

READ(*,*) RCS

ENDIF

WRITE(6,*) 'Enter the probability of detection for a target in

& 'the field of view

READ(*,*) PD

WRITE(6,*) 'Enter the combined efficiency of optics and',

& ' detectors

READ(*,*) EFF

WRITE(6,*) 'Enter the standard deviation of the# of electrons due

& to noise

READ(*,*) SDR

WRITE(6,100)

100 FORMAT(' ','Enter the galactic latitude, choosing one of the',

&'following: 1 /T3,'0,5,-5,10,-10,20,-20,30,-30,40,-40'/T3,'50 1 ,

&' ,-50,60,-60,70,-70,80,-80,90,-90 1)

READ(*,*) GL

WRITE(6,*) 'Enter a numbe~ between O and 1 that represents your'

WRITE(6,*) 'ability to remove stars as false alarm candidates '

WRITE(6,*) '(1 = no discrimination between stars and a target)

59

READ(*,*) X

WRITE(6,*) 'Enter the probability of a false alarm

READ(*,*) PFA

WRITE(6,*) 'Enter the# of pixels

READ(*,*) N

WRITE(6,*) 'Input the following orbit data with respect to your',

&' sensor'

CALL SBSIN(SBSSEN,1)

WRITE(6,*) 'If your target is a missile - input 11

WRITE(6,*) 'otherwise - input 2

READ(*,*) IM

IF (IM .EQ. 1) CALL MISSIL(SBSSEN,2)

IF (IM .EQ. 2) CALL SBSIN(SBSSEN,2)

ARATE=DOMEG(SBSSEN)

IF (ANS .EQ. 'N') MVT=TARMAG(SUNA,RCS)

112 FORMAT (Al)

RETURN

END

60

*** D3 ***

DOUBLE PRECISION FUNCTION TSTARE(Q,PFOV,ARATE)

C

C This function caluculates the stare time given the calculated exposure

C time and the current value of Q

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

EXTERNAL TEXP

DOUBLE PRECISION TEXP

T=TEXP(PFOV,ARATE)

TSTARE=Q*T

RETURN

END

61

*** D4 ***

DOUBLE PRECISION FUNCTION TARMAG(SUNA,RCS)

C

C This function calculates the visual magnitude of the target given the

C sun angle (sensor-target-sun), the reflectivity-area product and the

C sensor-target distance

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CONSTl/PI,TPI,WL

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

COMMON/ORB/SBSSEN

DIMENSION SBSSEN(2,6)

XDIF=SBSSEN(l,1)-SBSSEN(2,1)

YDIF=SBSSEN(l,2)-SBSSEN(2,2)

ZDIF=SBSSEN(l,3)-SBSSEN(2,3)

R=DSQRT(XDif1:XDIF+YDIF·kYDIF+ZDIP'<'ZDIF)

SUNA=SUNA/RADDEG

F=2/(31(PI*PI)*((PI-SUNA)*DCOS(SUNA)+DSIN(SUNA))

TARMAG=-26. 78-2.S*DLOGlO((RCS*F)/(R*R))

RETURN

END

62

*** DS ***

DOUBLE PRECISION FUNCTION PFIELDV(K,D)

C

C This function calculates the field of view of the pixel in steradians

C given the aperture of the sensor, the mean wavelength of

C the spectrum and the value of K

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CONSTl/PI,TPI,WL

PFIELDV=K1rK*l6. *WUrWL/(PI*D*D)

RETURN

END

63

*** D6 ***
DOUBLE PRECISION FUNCTION SDEVOT(PD,Q)

C

C This function calculates the standard deviation of NO below NT given

C the probability of detection of the target and the current value of Q

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

EXTERNAL INVERF

DOUBLE PRECISION INVERF

SDEVOT=INVERF(2. O*PD•""*(l. O/Q)-1. O)*SQRT(2. 0)

RETURN

END

64

*** D7 ***
DOUBLE PRECISION FUNCTION THRESH(SDEFF,EOT,NT)

C

C This function calculates the threshold value given the effective

C standard devlation of electrons due to target plus noise, the mean

C number of electrons due to the target

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DOUBLE PRECISION NT

THRESH=-SDEFF~'rEOT+NT

RETURN

END

65

*** DB ***
DOUBLE PRECISION FUNCTION SDEV(NT,SDR)

C

C This function calculates the effective standard deviation of electron

C due to target plus noise given the mean number of electrons due to th

C target and the standard deviation of elctrons due to the target alone

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DOUBLE PRECISION NT

SDEV=DSQRT(NT+SDR*SDR)

RETURN

END

66

*** D9 ***
DOUBLE PRECISION FUNCTION MEANT(MVT,D,K,EFF,ARATE)

C

C This function calculates the mean number of electrons due to the

C target given the diameter of the sensor, the value of K, the wave-

C length of the spectrum, the angular rate of the sensor, the combined

C efficiency and the visual magnitude of the target

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CONSTl/PI,TPI,WL

DOUBLE PRECISION MVT

E=DEXP(-.92*MVT)

MEANT=DSQRT(PI)'"'D~'<'K'l'•WL*EFF / ARATE*(5. 76ElO)*E

RETURN

END

67

*** DlO ***

DOUBLE PRECISION FUNCTION TEXP(PFOV,ARATE)

C

C This function calculates the exposure time given the field of view

C and the angular rate of the sensor

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

WRITE(6,*) 'IN TEXP, PFOV= ',PFOV,' ARATE= ',ARATE

TEXP=DSQRT(PFOV)/ARATE

RETURN

END

68

*** Dll ***
SUBROUTINE CONVERGl(CONV,XX)

C

C This subroutine uses the x=G(x) method (or the method of iteration) of

C convergence using the initial estimated input value of Q

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CONST2/XTOL,FTOL,NLIM

COMMON Q

EXTERNAL QFUN

DOUBLE PRECISION QFUN

LOGICAL CONV

CONV=.TRUE.

J=l

SAVEQ=Q

Q=QFUN(Q,XX)

DELl=DABS(SAVEQ-Q)

IF (DELl .LE. XTOL) RETURN

DO 20 J=2,NLIM

SAVEQ=Q

WRITE(6,*) 'A NEW Q IS NOW BEING EVALUATED'

Q=QFUN(Q,XX)

DEL2=DABS(Q-SAVEQ)

IF (DEL2 .LE. XTOL) RETURN

IF (J .EQ. 2) THEN

IF (DELl .LE. DEL2) THEN

CONV=.FALSE.

RETURN

ENDIF

ENDIF

20 CONTINUE

C

69

C If NLIM is exceeded CONV returns a value of false

C

CONV=. FALSE.

RETURN

END

70

*** D12 ***
SUBROUTINE CONVERG2(CONV,XX)

C

C This subroutine uses Newton's method of convergence if the first

C method fails with the original input value of Q (INIT)

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CONST2/XTOL,FTOL,NLIM

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT

COMMON Q

DOUBLE PRECISION NT,NO

LOGICAL CONV

EXTERNAL QFUN,QDER

DOUBLE PRECISION QFUN,QDER

CONV=. TRUE.

QQ=QFUN(Q,XX)

QX=QQ-Q

DO 30 J=l,NLIM

DELQ=QX/QDER(QQ,XX,PFT)

Q=Q-DELQ

QQ=QFUN(Q,XX)

QX=QQ-Q

IF (DABS(DELQ) .LE. XTOL) RETURN

IF (DABS(QX) .LE. FTOL) RETURN

30 CONTINUE

C

71

C If NLIM is exceeded CONV returns a value of false

C

CONV=. FALSE.

RETURN

END

72

*** D13 ***
DOUBLE PRECISION FUNCTION QFUN(Q,XX)

C

C This function calculates Q as a function of Q to be used in the

C convergent routines

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV

COMMON/CONSTl/PI,TPI,WL

COMMON/PROB/X,N

DOUBLE PRECISION NOT,NT,NO

EXTERNAL THRESH,SDEVOT,GAUSS,PSNF

DOUBLE PRECISION THRESH,SDEVOT,GAUSS,PSNF

INTEGER GL

DOUBLE PRECISION N

EOT=SDEVOT(PD,Q)

NO=THRESH(SDEFF,EOT,NT)

PFT=GAUSS(SO,PSNF,O. ,XX)

QFUN=DLOG(PFA/N)/DLOG(PFT)

RETURN

END

73

*** D14 ***

DOUBLE PRECISION FUNCTION QDER(QQ,XX,PFT)

C

C This function evaluates the derivative of QFUN-Q to be used only if

C the CONVERG2 routine is needed

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

EXTERNAL GAUSS,PSNF

DOUBLE PRECISION GAUSS,PSNF

DPFT=PSNF(XX)

QDER=-QQ*DPFT/(DLOG(PFT)*PFT)-1.

RETURN

END

74

*** D15 ***

SUBROUTINE SBSIN(SBSSEN,L)

C

C This subroutine requests input for determining the orbits

C of satellites when the Keplerian Propagator will be used.

C It has been previously written.

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DIMENSION SBSSEN(2,6),0RB(6),X(3),Y(3),H(3),XMNAN(2)

COMMON/CONSTl/PI,TPI,WL

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

ORB(6)=0.0

WRITE(6,100)

100 FORMAT(' '/T3, 1 Six pieces of data are needed to propagate the',

&'satellites. 1 /T3,'For Circular orbits, only five pieces of data',

&'are input. '/T3,'Input 1 if you wish to input apogee and perigee',

&' altitudes,'/T3,'2 if you wish to input period and eccentricity')

WRITE(6,*) ' '

READ(*,'"') ITYPE

IF (ITYPE .EQ. 1) THEN

WRITE(6,120)

120 FORMAT(' '//T3,'Input Altitude at ',

& 'Apogee (NM)'/T3,'Altitude at Perigee (NM)1 /T3,'Inclination (deg

&)')

ELSE

WRITE(6,110)

75

110 FORMAT(' ',/T3,'Input Period (hours),',

& ' Eccentricity, Inclination (degrees)')

ENDIF

WRITE(6,130)

130 FORMAT(' '/T3,'Initial true anomaly (deg)'/T3,'Longitude of',

& ' ascending node with respect to Greenwich (deg)'/T3,

& 'Input last ascending node before Epoch'/T3)

READ(*,*) (ORB(I),I=l,5)

IF (DABS(ORB(2)-0RB(l)) .LT. 1.E-2 .OR. ORB(2).LT. 1.E-5) GO TO 35

WRITE(6,*) ' Input argument of Perigee (degrees), '

& '-180<=argument<180'

WRITE(6,*) ' '

READ(*,*) ORB(6)

35 IF (!TYPE .EQ. 2) THEN

ORB(1)=((ORB(1)*3600. /2. /PI)**2*DMU)*'"(1. /3.)

ELSE

ORB(l)=ORB(l)*XMNM

ORB(2)=0RB(2)*XMNM

A=(ORB(l)+ORB(2)+RE*2.)/2.

ORB(2)=(0RB(l)+RE)/A-1.

ORB(l)=A

ENDIF

DO 10 K=3,6

ORB(K)=ORB(K)/RADDEG

10 CONTINUE

B=DC0S(ORB(3))

C

C=DSIN(ORB(3))

D=DC0S(ORB(4))

E=DSIN(ORB(4))

F=DCOS(ORB(S))

G=DSIN(ORB(S))

P=DC0S(ORB(6))

Q=DSIN(ORB(6))

76

R=ORB(l)*(l. -ORB(2)**2)/(1.+0RB(2)*D)

V=DSQRT(2.*(DMU/R-DMU/(2.*0RB(l))))

ANGMOM=DSQRT((1. -ORB(2)**2),'rDMU'"'ORB(1))

H(l)=ANGMOM*G*C

H(2)=-ANGMOM*F*C

H(3)=B*ANGMOM

XW=R'lrD

YW=R*E

PX=P*F-Q*G'"'B

PY=P*G+Q,'rf,'rB

PZ=Q*C

QX=-Q*F-P*G*B

QY=-Q*G+P*F*B

QZ=P*C

RX=XW*PX+YW*QX

RY=XW*PY+YW*QY

C Find Z-component of position vector

C

77

SBSSEN(L,3)=XW*PZ+YW*QZ

C

C Consider earth rotation between epoch and ascending node.

C

TRUEA=DABS(ORB(6))

DO 20 I=l, 2

RPER=ORB(l)*(l. -ORB(2)*0RB(2))/(1.+0RB(2)*DCOS(TRUEA))

IF (DABS(ORB(2)).LT.0.0001) THEN

ECCAN=TRUEA

ELSE

ECCAN=DACOS((l. -RPER/ORB(l))/ORB(2))

ENDIF

IF (TRUEA .GT. PI) ECCAN=TPI-ECCAN

XMNAN(I)=ECCAN-ORB(2)irDSIN(ECCAN)

TRUEA=ORB(4)

20 CONTINUE

Cl=DSQRT(DMU/ORB(1)''<'*3)

ANG=ORB(4)+0RB(6)

IF (ANG .GE. TPI) THEN

DMEAN=XMNAN(l)+XMNAN(2)-TPI

ELSE

IF (ORB(6) .LT. 0.) DMEAN=XMNAN(2)-XMNAN(l)

IF (ORB(6) .GE. 0.) DMEAN=XMNAN(2)+XMNAN(l)

ENDIF

DT=DMEAN/Cl

EROTl=DCOS(WE*DT)

78

EROT2=DSIN(WE*DT)

C

C Find X,Y-components of position vector

C

SBSSEN(L,l)=RX*EROT1+RY*EROT2

SBSSEN(L,2)=RY*EROT1-RX*EROT2

HO=H(l)

H(l)=HO*EROT1+H(2)*EROT2

H(2)=H(2)*EROT1-HO*EROT2

GAM=DACOS(ANGMOM/(V*R))

DO 30 I=l,3

Y(I)=SBSSEN(L,I)/R

30 CONTINUE

X(l)=SBSSEN(L,3)*H(2)-SBSSEN(L,2)*H(3)

X(2)=SBSSEN(L,l)*H(3)-SBSSEN(L,3)*H(l)

X(3)=SBSSEN(L,2)*H(l)-SBSSEN(L,l)*H(2)

DO 40 I=l,3

X(I)=X(I)/(XMNM**3)

40 CONTINUE

XMAG=DSQRT(X(1)**2+X(2)**2+X(3)**2)

DO SO I=l,3

X(I)=X(I)/XMAG

50 CONTINUE

VCOSG=V*DCOS(GAM)

VS ING=V'l'rDS IN(GAM)

C

C Find velocity vector

C

79

SBSSEN(L,4)=VC0SG*X(1)+VSING*Y(1)

SBSSEN(L, 5)=VCOSG•'•X(2)+VSING*Y(2)

SBSSEN(L,6)=VCOSG*X(3)+VSING*Y(3)

RETURN

END

*** D16 ***

SUBROUTINE MISSIL(TRGT,L)

C

80

C This subroutine determines orbit elements for missile launches.

C Inputs are locations of launch and impact. The routine

C determines the orbit from two position vectors, using the minimum

C energy trajectory.

C REFERENCE: Cornelisse, Schayer, Wakker: Rocket Propulsion and

C Spaceflight Dynamics, CH. 13.

C It has been previously written.

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

DIMENSION TRGT(2,6),0RB(6),RL(3),RI(3)

COMMON/CONSTl/PI,TPI,WL

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

WRITE(6,*) ' Note that the missile orbit determination is '

& 'Keplerian.'

WRITE(6,*) ' Use the Keplerian Propagator only.'

WRITE(6,100)

100 FORMAT(' '/T3,'Input the Latitude (deg), Longitude (deg) of the',

& ' launch site,'/T3,'Altitude of launch site (ft).',

&//T3,'Southern latitudes and/or Western longitudes',

& ' should be input with a '/T3,'minus sign. '/T3)

READ(*,*) ORB(l),ORB(2),0RB(3)

WRITE(6,110)

110 FORMAT(' '/T3,'Input the Latitude (deg), Longitude (deg) of the',

C

81

& ' impact site,'/T3,'Altitude of impact site (ft)'/T3)

READ(*,*) ORB(4),0RB(5),0RB(6)

ORB(l)=ORB(l)/RADDEG

ORB(2)=0RB(2)/RADDEG

ORB(3)=0RB(3)*.3048

ORB(4)=0RB(4)/RADDEG

ORB(5)=0RB(5)/RADDEG

ORB(6)=0RB(6)*.3048

RLCH=RE+ORB(3)

RL(1) =RLCH-lrDCOS (ORB (1)) *DCOS (ORB (2))

RL(2)=RLCH*DC0S(ORB(1))-lrDSIN(ORB(2))

RL(3)=RLCH~'rDSIN(ORB(1))

TOLD=O.

DELTAT=O.

C Iterate to find exact parameters with rotating earth.

C

C

10 ORB(5)=0RB(5)+WE*DELTAT

RIMP=RE+ORB(6)

RI(1)=RIMP*DC0S(ORB(4))*DCOS(ORB(5))

RI(2)=RIMP*DC0S(ORB(4))*DSIN(ORB(5))

RI(3)=RIMP*DSIN(ORB(4))

C Length of chord between launch and target sites.

C

82

D=DSQRT((RL(l)-RI(1))**2+(RL(2)-RI(2))**2+(RL(3)-RI(3))**2)

C

C Lenth of major axis.

C

S=(D+RIMP+RLCH)/2.

C S=D+RIMP+RLCH

C

C Compute minimum energy flight time.

C

C

B=l. -D/S

C=DSQRT(B)

TF=DSQRT((S/2.)**3/DMU)*(PI-2.*DASIN(C)+2.*C*DSQRT(l. -B))

DELTAT=TF-TOLD

IF (DABS(TOLD-TF) .LT. 1.E-1) GO TO 20

TOLD=TF

GO TO 10

20 A=S/2.

VI=DSQRT(2.*(DMU/RLCH-DMU/S))

SIG=DACOS((RLCH'"'*2+RIMP**2-D**2)/2. /RIMP/RLCH)

GAMI=(PI-SIG)/4.

E=TAN(GAMI)

C Following derivation taken from Escobal, Methods of Orbit

C Determination, p. 197.

C

ECCl=DACOS((l. -RLCH/A)/E)

83

ECC2=2.*PI-DACOS((l. -RIMP/A)/E)

DELTAE=ECC2-ECC1

F=l. -A/RLCH*(l. -DCOS(DELTAE))

G=TF-DSQRT(A**3/DMU)*(DELTAE-DSIN(DELTAE))

DO 30 K=l,3

TRGT(L,K)=RL(K)

TRGT(L,K+3)=(RI(K)-F*RL(K))/G

30 CONTINUE

RETURN

END

84

*** D17 ***

DOUBLE PRECISION FUNCTION DOMEG(SBSSEN)

C

C This function calculates the angular rate of motion

C It has been previously written.

C

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DIMENSION SBSSEN(2,6),DR(3),DV(3)

DO 10 I=l,3

DR(I)=SBSSEN(2,I)-SBSSEN(l,I)

DV(I)=SBSSEN(2,I+3)-SBSSEN(l,I+3)

10 CONTINUE

DRMAG=DSQRT(DR(l)*DR(l)+DR(2)*DR(2)+DR(3)*DR(3))

DVMAG=DSQRT(DV(l)*DV(l)+DV(2)*DV(2)+DV(3)''<"DV(3))

DRDOTDV=DR(l)*DV(l)+DR(2)*DV(2)+DR(3)1rDV(3)

P=DRDOTDV/DRMAG/DVMAG

THETA=DASIN(DABS(P))

C Rate of apparent motion of target in focal plane

C

RAM=DVMAG*DCOS(THETA)

DOMEG=RAM/DRMAG

RETURN

END

85

*** D18 ***

DOUBLE PRECISION FUNCTION INVERF(C)

C

C This function evaluates the inverse error function. It is adapted

C from a previously written function.

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

EXTERNAL ERF

DOUBLE PRECISION ERF

DIMENSION Y(7)

DATA Y/0.0,.842700793,.995322265,.99997910,.999999984,l.O,l.O/

IF (C .GE. 1.0) THEN

INVERF=6.0

ELSEIF (C .LE. 0.0) THEN

INVERF=O.O

ELSE

DO 10 I=l,7

IF (Y(I)-C) 10,20,30

10 CONTINUE

20 INVERF=FLOAT(I-1)

GO TO 50

30 XC=I-2

DO 40 K=l,20

A=ERF(XC)

TEMP=XC+(C-A)*(0.886226925*DEXP(XC**2))

B=ERF(TEMP)

Z=C-B

XC=TEMP

86

IF (Z-1.E-10 .LT. 0.0) TIIEN

INVERF=TEMP

GO TO 50

ENDIF

40 CONTINUE

ENDIF

50 RETURN

END

87

*** D19 ***
DOUBLE PRECISION FUNCTION ERF(W)

C

C This function evaluates the error function. It was previously

C written

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

DIMENSION A(25),B(30)

DATA A/16443152242714D-13,-9049760497548D-13,643570883797D-13,

* 196418177368D-13,-1244215694D-13,-9101941905D-13,

* -1796219835D-13,139836786D-13,164789417D-13,39009267D-13,

* -893145D-13,-3747896D-13,1298818D-13,136773D-13,77107D-13,

* 46810D-13,11844D-13,-5D-13,-1384D-13,-652D-13,145D-13,

* 10D-13,24D-13,11D-13,2D-13/

M=24

X=DABS(W)

XERR=l. 0

IF (X .GT. 9.306) THEN

CERR=l. 0-XERR

ELSEIF (X .GE. 0.010) THEN

Z=(X-1.0)/(X+l.O)

DO 10 I=l,30

B(I)=O. 0

10 CONTINUE

DO 20 I=l ,M

Ml=(M+l)-I

88

B(M1)=2.0*Z*B(Ml+l)-B(M1+2)+A(Ml+l)

20 CONTINUE

F=-B(2)+Z*B(l)+0.5*A(l)

XERR=l.0-(1.0/1. 77245385)*(DEXP(-(X**2)))*F

CERR=l. 0-XERR

ELSE

XERR=2. 0/(3. o,tr1, 77245385)*X*(3. O-X**2)

CERR=l.0-XERR

ENDIF

IF (W .GE. 0.0) THEN

ERF=XERR

ELSE

ERF=CERR

ENDIF

RETURN

END

89

*** D20 ***
SUBROUTINE LOWBND(XX,FLAG,CONVG)

C

C This subroutine evaluates the integral of Ps(Mvs) and returns a value

C of TRUE in FLAG if the integral is sufficiently close to 1 and the

C upper limit of the integral in XX. Flag remains false if the value

C of the integral is not sufficiently close to 1 and less than 1 and

C XX returns the value of the upper limit

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/PROB/X,N

EXTERNAL PS,GAUSS

DOUBLE PRECISION PS,GAUSS

DOUBLE PRECISION N

LOGICAL FLAG,CONVG

HK=O.

DO 10 K=0,100

B=DFLOAT(K)

VAL=GAUSS(50,PS,B,B+l)

HK=VAL+HK

IF (DABS(HK-1.).LT.0.001) THEN

XX=DFLOAT(K)

FLAG=. TRUE.

RETURN

ENDIF

IF (HK .GT. 1.) THEN

XX=DFLOAT(K-1)

RETURN

ENDIF

90

IF (DABS(VAL).LT.O. lD-15) THEN

XX=DFLOAT(K-1)

FLAG=. TRUE.

CONVG=.TRUE.

RETURN

ENDIF

10 CONTINUE

WRITE(6,*) 'FINAL INTEGRAL VALUE= ',VAL

WRITE(6,*) 'K VALUE EXCEEDED K= ',K

XX=K

RETURN

END

91

*** D21 ***
DOUBLE PRECISION FUNCTION GAUSS(NARG,F,A,B)

C

C This function uses Gaussian Quadrature to evaluate the integral of F

C from A to Busing NARG as the number of values of F to be used. It

C previsouly written.

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/PROB/X,N

DOUBLE PRECISION N

DIMENSION U(71),H(71),IV(17),TCEL(16)

DATA U/. 28867513,0. ,. 38729833,

& • 16999052,. 43056816, 0. , . 26923466,. 45308992,

& • 11930959,. 33060469,. 46623476, 0. , . 20292258,

& .37076559,.47455396,.09171732,.26276620,

& • 39833324,. 48014493,0. ,. 16212671,. 30668572,

& .41801555,.48408012,.07443717,.21669769,.33970478,

& • 43253168,. 48695326,0. ,. 13477158,. 25954806,

& .36507600,.44353130,.48911433,.06261670,

& • 18391575,.29365898,.38495134,.45205863,.49078032,

& 0. ,. 11522916,. 22424638,. 32117467,

& .40078905,.45879920,.49209153,.05402747,. 15955618,

& .25762432,.34364645,.41360066,.46421744,.49314190,

& 0. ,.10059705,.19707567 ,. 28548609,. 36220887 ,. 42410329,

& .46863670,.49399626,.04750625,. 14080178,.22900839,

& .30893812,.37770220,.43281560,.47228751,.49470047/

92

DATA H/.50000000,.44444445,.27777778,

& .32607258,. 17392742,.28444444,.23931434,. 11846344,

& .23395697,. 18038079,.08566225,.20897959,. 19091503,

& • 13985270,.06474248,. 18134189,. 15685332,. 11119052,

& .05061427,. 16511968,. 15617354,. 13030535,.09032408,

& .04063719,. 14776211,. 13463336,. 10954318,.07472567,

& .03333567,. 13646254,. 13140227,. 11659688,.09314511,

& .06279018,.02783428,. 12457352,. 11674627,. 10158371,

& .08003916,.05346966,.02358767,

& • 11627578,. 11314159,. 10390802,

& .08907299,.06943676,.04606075,.02024200,

& • 10763193,. 10259923,.09276920,.07860158,.06075929,

& .04007904,.01755973,. 10128912,.09921574,.09308050,

& .08313460,.06978534,.05357961,.03518302,.01537662,

& .09472531,.09130171,.08457826,.07479799,.06231449,

& .04757926,.03112676,.01357623/

DATA IV/0,1,2,4,6,9,12,16,20,25,

& 30,36,42,49,56,64,72/

DATA ZER0/0./

I=MIN(16,NARG)

NN=MAX(2,I)

Ml=IV(NN)

M2=IV(NN+l)-1

I=l

J=Ml

V=U(J)

241 T=(B-A)*V+(A+B)/2.

TCEL(I)=F(T)

IF (I.LT.NN) TIIEN

I=I+l

IF (V.LE.ZERO) THEN

J=J+l

V=U(J)

ELSE

V=-V

ENDIF

GO TO 241

ELSE

IF (U(Ml).EQ.ZERO) TIIEN

S=H(Ml)*TCEL(1)

J=2

93

ELSE

S=H(Ml)*(TCEL(l)+TCEL(2))

J=3

IF (J.GT.NN) THEN

GAUSS=(B-A)*S

RETURN

ENDIF

ENDIF

ENDIF

I=Ml+l

DO 10 Jl=I,M2

94

S=S+H(Jl)*(TCEL(J)+TCEL(J+l))

J=J+2

10 CONTINUE

GAUSS=(B-A)*S

RETURN

END

95

*** D22 ***
SUBROUTINE UPLIMIT(XX,CONV)

C

C This subroutine is used if LOWBND returns a value of FALSE in FLAG.

C It uses Newton's Method for convergence in order to get the integral

C of Ps(Mvs) sufficiently close to 1.

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

COMMON/LINE/SLOPE,YCEPT

COMMON/CONST2/XTOL,FTOL,NLIM

COMMON/PROB/X,N

EXTERNAL PS,GAUSS

DOUBLE PRECISION PS,GAUSS

LOGICAL CONV

DOUBLE PRECISION N

CONV=.TRUE.

VAL=GAUSS(50,PS,O. ,XX)

PSX=VAL-1.

DO 20 J=l ,NLIM

DELP=PSX/PS(XX)

XX=XX-DELP

VAL=GAUSS(50,PS,O. ,XX)

PSX=VAL-1.

WRITE(6,*) 'THE LAST VALUE AFTER THE LAST ONE OF THESE'

WRITE(6,*) 'STATEMENTS IS INT PS ',VAL

IF (DABS(DELP).LE.XTOL) RETURN

96

IF (DABS(PSX).LE.FTOL) RETURN

20 CONTINUE

C

C If NLIM is exceeded CONV returns a value of false

C

CONV=. FALSE.

RETURN

END

97

*** D23 ***
DOUBLE PRECISION FUNCTION PS(P)

C

C This function evaluates Ps (the probability of a flip due to star

C presence) at P

C

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

COMMON/LINE/SLOPE,YCEPT

COMMON/PROB/X,N

DOUBLE PRECISION M,N,NN

DIMENSION YA(20),Y(20)

M=lO. tr*(SLOPE*P+YCEPT)

M=M/STERSD

C WRITE(6,*) '# STARS/PIXEL= ',M/N

NN=(N-1.)/N

YA(l)=M

Y(l)=YA(l)/N*NN**(M-1.)

PS=Y(l)

DO 10 J=2,20

S=DFLOAT(J)

YA(J)=(M-(S-1.))/S*YA(J-1)

Y(J)=YA(J)/N**J*NN**(M-S)

PS=PS+Y(J)

10 CONTINUE

PS=X*PS

RETURN

END

98

99

*** D24 ***

DOUBLE PRECISION FUNCTION PSNF(P)

C

C This function evaluates Psnf (the probability of a flip due to star

C presence plus readout noise)* Ps at P

C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)

EXTERNAL PS,ERF

DOUBLE PRECISION PS,ERF

COMMON/CONSTl/PI,TPI,WL

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT

COMMON/LINE/SLOPE,YCEPT

COMMON/MAG/MVT

DOUBLE PRECISION NT,NO,MVT

E=DEXP(-.92*(P-MVT))

XE=NT"'rE

UL=(NO-XE)/(DSQRT(XE+SDR*SDR)*SQRT(2.))

C WRITE(6,*) 'AFTER THIS, IGNORE #STARS/PIXEL'

C READ(*,*)

PSNF=PS(P)*0.5*(1.-ERF(UL))

C WRITE(6,*) 'PSNF= ',PSNF,'UL= ',UL

RETURN

END

100

*** D25 ***

C

BLOCK DATA

IMPLICIT DOUBLE PRECISION(A-H,0-Z)

COMMON/CONSTl/PI,TPI,WL

COMMON/CONST2/XTOL,FTOL,NLIM

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD

DATA PI,TPI,WL/3. 14159265,6.2831853,0.SD-6/

DATA XTOL,FTOL,NLIM/.00001,.00001,100/

DATA XMNM,RE,DMU/1852. ,6371000. ,3.981014/

DATA WE,DEGRAD,RADDEG/7.292115856D-5,1. 74532925D-2,57.29577958/

DATA STERSD/3.04617424D-4/

END

C *********''r************* End of Program *i"''******"'r****''r*******''r*****

The vita has been removed from
the scanned document

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106

