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Susan R. Garrett 

(ABSTRACT) 

The problem of detecting deep space objects with certain proba-

bilities was investigated. A mathematical model was then developed 

from given problem specifications that deals with the trade-off of 

various parameters involved in the detection problem. 

A software package that allows the user to input data inter-

actively was written to implement the model. The completed program 

as well as an analysis of the tested results are included. 
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DESCRIPTION OF THE PROBLEM 

Introduction 

The purpose of this project is to develop a numerical scheme 

that will effectively allow the user to trade-off various parameters 

involved in the detection of space objects. The space objects are 

referred to as targets because they are the target of detection. The 

targets can be objects in some earth orbit or they can be missiles 

with known launch and impact sites. In order to detect the targets, 

a visual range telescope is used. The telescope, referred to as the 

sensor, will be space-based, operating in orbit. Thus, we have a 

sensor in some orbit about the earth that can view objects in space. 

The view of the target through the sensor is nssumed to be against a 

background of stars only. For simplicity, nothing else will be con-

sidered in the detection of the target other than the target and 

stars. 

This view of the target against the starfield background is 

called the total field of view. Part of the actual hardware of the 

sensor, is a fine mesh grid through which the total field of view can 

be seen and divided. This is called the focal plane grid of detectors. 

Each division of the grid is a square of equal size to the other 

divisions. These divisions are called pixels and act as the detectors. 

The sensor must have some device that does the actual detection 

of a target. The sensor is equipped with an amplifier that can 

collect or record the number of electrons of any object in the field 

1 
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of view. The number of electrons collected in each pixel is 

recorded and is assumed to follow a Gaussian distribution. This is 

done more than once. Each time electrons are collected it can be 

thought of as though a picture has been taken. Each one of these 

"pictures" is referred to as an exposure and is of some given time 

length. The whole problem comes down to finding out how many exposures 

are needed and how much time each one should take in order to ade-

quately detect a target. 

This method for detecting a target compares each subsequent 

exposure. Since we assumed that the background is a starfield only, 

the number of electrons collected from the target should move from one 

pixel to the next in each exposure while the number of electrons 

collected due to stars remains constant. It is assumed that the grid 

can be oriented so that the target moves in a straight line from one 

pixel to the next. 

There are certain elements that come into play that make a target 

harder to detect. Up to this point, we have only discussed collecting 

electrons due to the target itself and to stars. Because they are 

recorded through an amplifier, it is possible to pick up electrons due 

to noise from the -amplifier. This must be taken into account. It is 

also possible to detect what is called a false alarm. This happens 

when a star is mistaken for a target. False alarms must also be taken 

into account. One other thing that has not been mentioned is the 

idea of a threshold level. The threshold level is a number below 

which no electrons are recorded. This makes it possible to have a 

target and not detect it because the number of electrons collected 
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from it falls below the threshold level. All of these things affect 

the accuracy with which a target can be detected. 

An overview of what is physically taking place is this: There 

is a visual range telescope operating in an orbit about the earth. It 

has the ability to take timed exposures of objects in its field of 

view by collecting electrons from the objects. Each exposure is 

compared to the one preceding it and the one succeeding it to find 

out if the path of the target can be distinguished. 

The rest of this chapter goes through the details of the problem 

and the mathematical equations that arise. Chapter two deals with 

the development of the computer program and the last chapter gives an 

analysis of the tested results. A copy of the computer code of the 

program can be found in Appendix D. 

The Sensor 

The sensor, operating in orbit about the earth, has the follow-

ing known orbit data supplied as input by the user: 

a) Altitude of sensor at apogee (NM: nautical miles) 

b) Altitude of sensor at perigee (NM) or in place of a) and 

b) 

• period of revolution (HR) 

• eccentricity 

c) Inclination (degrees) 

d) Initial true anomaly (deg) 

e) Longitude of ascending node with respect to Greenwich (deg) 

f) Argument of perigee (deg) - if the orbit is non-circular 
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The aperture of the sensor is the diameter, D (meters), and is also 

supplied on input by the user. Other input data that will be needed 

includes the following: 

1) Field of view, ~ (square degrees), of the sensor 

2) Combined efficiency, E, of the optics and detectors in the 

sensor 

3) Total number of pixels, N, that make up the full focal plane 

array of detectors in the sensor. The focal plane grid is 

divided into squares which act as electron detectors. 

4) Number of diffraction limited pixel diameters, K, that make 

up an actual pixel 

5) The galactic latitude, ~g (deg) 

6) Standard deviation of the number of electrons due to noise, 

a r 

7) Visual magnitude of the target, t\,T or, if not known, the 

following may be input: 

Distance from the sensor to the target, R(m). 

Reflectivity - area product, oR(m). 

Sun angle subtended from sensor to target to sun, y(deg). 

t\,T can then be found using the following formula from [3]: 

(
oR F(Y)J 

t\,T = - 26.78 - 2.5 log R2 (1) 

where 

F(y) = 2 [(rr - y) cosy+ sin y) 
3rr 2 

(2) 
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The sensor will try to detect a target in the field of view 

that also contains stars. This is achieved by examining a time-

sequenced row of pixels yielding a number of electrons from an 

amplifier read-out above a certain threshold level, n . In other 
0 

words, an exposure is made and each pixel outputs the number of 

electrons exceeding the threshold level. For a detection to take 

place, subsequent exposures are made showing adjacent "flipped" 

pixels. A "flip" occurs when a pixel outputs electrons above the 

threshold level. The number of exposures needed, Q, depends upon 

given probabilities. The number of exposures needed is the major 

calculation of the program and is therefore an important output data 

item. 

A detection is defined as a set of Q flips, one in each of the 

adjacent Q exposures forming a straight line. On input, the proba-

bility of detection for a target in the field of view, PD, will be 

required as input in order to obtain the probability of detection for 

a target in a pixel field of view, pd. A lower bound on pd is ob-

tained by ignoring the enhancement effects of stars and readout noise. 

Thus, 

(3) 

The time for each exposure is referred to as the stare time, 

, (sec). The total stare time is denoted T exp stare Since each 

exposure is of duration T , exp we have: 

T = Q T stare exp (4) 
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During the total stare time, the stars remain fixed in the field of 

view and a target moves across the field of view. 

are also given as output. 

-r and T stare exp 

Since the total number of pixels, N, and the field of view of 

the sensor, n, are given as input, the pixel field of view, ~n, can 

easily be found: 

n ~n = -N 
(5) 

For any value of 6n, T is to be computed so that the anticipated exp 

target just crosses the pixel width. Thus, 

!Mi. --= w 
T 

(6) 
exp 

where w is the angular rate of the target across the field of view. 

w is calculated from the orbital input data. 

The following additional assumptions have been made in order to 

narrow down the scope of the problem: 

1) The required statistics on the number of electrons relevant 

to the detection of targets, stars, and noise can be 

approximated by Gaussian distribution. 

2) The focal plane grid geometry of the telescope is made up 

of an array of square detectors. 

3) A combined efficiency of the optics is approximately 

constant over the wavelength. 

4) The magnitude of the target does not vary significantly 

over the time length of an exposure. 
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False Alarms 

A false alarm occurs during a stare when a detection occurs and 

a target is not present. This may be caused by some combination of 

stars and/or noise resulting in an electron readout above the 

threshold level. On input, the probability of a false alarm, Pfa' as 

well as a number, X, between O and 1 representing the ability to re-

move stars as false alarm candidates (1 = worst) will be needed. 

False alarms caused by noise are due to the amplifier itself. 

A certain number of electrons will be added or subtracted by the 

amplifier. We assume that this noise has a mean of O and a standard 

deviation of a r In dealing with false alarms due to stars, the 

average number of stars per steradian in the magnitude decrement dm 
V 

is used (see Appendix A): 

( 7) 

dz Also, measured values of are given in Appendix A and are dependent 
dffiv 

on the visual magnitude, m ' V 

the factor, X, (7) becomes 

X (:: J 
V 

dm ·, 
V 

and the galactic latitude, ~ • g Inserting 

(8) 

the effective number of stars per steradian in the magnitude decrement 

dm. 
V 

Threshold Setting 

It was previously stated that a pixel is said to have "flipped" 

if the number of readout electrons exceeds some threshold value n . 
0 
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The number of electrons is a combination of electrons from noise, 

stars, and the target. 

In order to calculate n, we need to examine a few things. The 
0 

number of electrons collected in a pixel due to the presence of an 

object of visual magnitude m will be denoted as n(m) and the flux 
V V 

(photons/m 2/sec) at the sensor aperture will be denoted as F. Then, 

the flux of photons corresponding to an object of visual magnitude m 
V 

is (see Appendix B): 

10 -.92 mv F(m) = 5.76 x 10 e 
V 

Thus, the mean number of electrons collected is: 

n(m) 
V 

nD2 
4 E T F(m ) exp v 

or using equation (6): 

n(m) 
V 

nD2 /iii, = ~ ~ E F(m) 
4 W V 

(9) 

(10) 

(11) 

Going back to one of the original assumptions regarding the electrons 

collected as following a Gaussian distribution, then: 

pd 1 - 1 
[ -12 1 nTN - 0 T 

Jno e 2 °eff 
ffn 

-oo 

(12) 
0eff 

nTN is the number of electrons collected due to a target plus noise 

during one exposure, nT is the expected mean from equation (11) where 

the object is the target (i.e. m = Il\rT)' and 0eff is the effective 
V 

standard deviation of the numbei of electrons due to a target plus 

noise. 
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(13) 

where 

CJT = ~. (14) 

The lower limit on the integral in equation (12) should actually 

be zero but the approximation of using -oo is very small (no larger 

than that of assuming a Gaussian distribution). If s0 T is the number 

of standard deviations of n0 below nT, then 

~oT (15) 

We can now write pd as: 

soT 

1 
r /'I. 2 

pd Loo 
- X = 1 - - e dx ;; (16) 

Using the Gaussian error function: 

erf (x) 2 
- Tn (17) 

and noting that: 

1 ' (18) 

pd becomes: 

(19) 



Hence, from equation (3), 

PDl/Q = _!_ + _!_ f [soT] 2 2 er F 

10 

(20) 

Given the value of PD and Q, the value of s 0 T can be found using the 

inverse error function. Once s0 T is known, n0 can be calculated 

using equation (15). 

Probability of Star Presence in a Pixel 

The effective number of stars per steradian in the magnitude 

decrement dm is vs X [d~J dmvs (see (8)) where m is the visual vs 

magnitude of a star. If we let the probability, P, be i that a given 

star will be in a given pixel, we can find P , the probability of 
s 

star presence in that pixel. 

To calculate P , we add the probability of finding 1,2, ... ,20 
s 

stars in one pixel. The probabilities above 20 are extremely small 

and the resulting exponents extremely large to be handled easily; there-

fore, we need only go as high as 20. Thus, 

where mis the total number of stars at the given galactic latitude. 

Equation (21) gives the probability of star presence in a pixel 

where there are m stars in the total field of view. We will be 

integrating this quantity over visual star magnitudes so that m should 

be taken in a small magnitude decrement. Thus, 

P (m ) dm = X (P) dm s vs vs s vs (22) 
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It should be noted that m depends on m so that P is actually a vs s 

function of m , P (m ). vs s vs 

Flip Probability of a Pixel with no Target Present 

If we assume that no target is present in a pixel, the proba-

bility P fT is: 

PfT = Prob (flip due to noise and no star) 

+ Prob (flip due to star presence plus noise) 

= p [l -Nf 
roo 
J P (m ) dm ] s vs vs 

0 

But, it must be noted that: 

Joo P (m ) dm 
s vs vs 

0 
1 ' 

P Nf(m ) P (m ) dm 
8[ vs S vs vs 

(23) 

(24) 

which makes the first term in equation (23) drop out. However, for 

extremely large values of m (i.e. extremely dim stars), P (m ) vs s vs 

should eventually equal 1. This would make the integral in equation 

(24) blow up (approach infinity). Therefore, once the star presence 

in a pixel is equal to 1, we are no longer interested in whether or 

not dimmer stars exist in the pixel. Thus, it suffices to find xx 

such that: 

Jxx 
P (m ) dm = 1 

O s vs vs 
(25) 

Thus, equation (23) becomes: 
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p - = fxx p Nf(m ) p (m ) dm 
fT O s vs s vs vs (26) 

PsNf is the probability of a flip due to star presence plus readout 

noise. We have already found an equation for P , now one must be 
s 

found for PsNf" 

The number of standard deviations of n below n will be denoted 
0 S 

as~ N (m ). Then: 
SO vs 

n - n (m ) 
0 S vs 

losN 
(2 7) 

where n (m ) is the mean number of electrons collected from a star s vs 

with visual magnitude mvs (see equation (11)) and osN is the 

standard deviation of the number of electrons due to star presence 

plus noise: 

o sN = / o s 2 + or 2 

Then, as in equation (19): 

Derivation of Q 

0 s 
.,-==-

= r n 
s 

(28) 

(29) 

The probability of a false alarm will be denoted by Pfa" PfT 

and Pfa are related by Q, the number of exposures needed, by the 

following equation: 

(30) 
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We can now solve this equation for Q: 

Q = (31) 

The procedure for evaluating Q will be to first make an initial guess 

of Q. Then, using equation (31), iterate until convergence is met. 

The value or function PfT can be considered a function of Q. There-

fore, an initial guess is required in order to evaluate equation 

(31). One or more convergence schemes may be needed. Once Q has 

been found, calculate T from equation (4). stare 

One other relationship should be mentioned. D, the diameter, 

and 6Q, the pixel field of view, can be related by diffraction theory. 

If we denote the field subtended by the entire central peak of the 

diffraction pattern of a point object as 6~ 1 • then: 

(32) 

where A is the mean wavelength of the spectrum under consideration: 

A,; 0.5 x 10- 6 (33) 

Introducing K, the number of diffraction limited pixel diameters that 

make up an actual pixel, we get: 

6Q = K2 
6~1 (34) 

Thus, 

6Q K2 4A2 
= 2 

n D /4 
(35) 
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The computer program that will carry out all the calculations 

presented in this chapter, will allow the user to estimate some of 

the input parameters to see their effect on Q and T • The user stare 

will then be able to trade-off any input values for another to see 

the effects. The following items should be printed and presented to 

user on output: 

Number of exposures needed - Q 

Exposure time - T exp 

Total stare time - T stare 

Threshold level - n 
0 



DEVELOPMENT OF THE PROGRAM 

Major Calculations 

The following are the major components of the program: 

1) A main program structure 

2) A subroutine for the purpose of allowing the user to 

input data interactively 

3) Additional subroutines to partition the major evaluations 

into many shorter calculations 

4) Output displayed for the user 

5) The user should then be allowed to go back and alter any 

of the original input data to see what effects the changes 

make. 

From Chapter One, the major calculation of the program is 

(see equation (31)): 

Q = 
£n (~] 

(36) 
£n(PfT) 

Pfa and N are entered on input so only PfT needs to be calculated. In 

order to do this, the calculation of PfT can be broken down and 

traced back through a series of equations. From the following list 

of equations, PfT can be found from the input data: 

P-fT = Jxx p Nf(m ) p (m ) dm 
O s vs s vs vs 

15 

(37) 
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• P (m ) dm x P dm s vs vs s vs 

• Ps = (~) P(l-P)m-l + 

+ (2~) p20 (l-P) m-20 

• xx is such that fxx P (m ) dm = 1 
O s vs vs 

1 1 • p Nf (m ) = - - - erf s vs 2 2 

n - n (m ) 
0 S vs 

• n (m ) s vs 

• !:SI 

0 sN 

TI o2 Ifill 
= ~- -~ E F(m ) 

4 w vs 

K2 4 "I.2 
=---

TI D2/4 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

• A= 0.5 x 10- 6 (45) 

• F(m ) = 5.76 x 1010 e-· 92 mvs (46) vs 

• w is calculated from orbital 

input data 

• a s 
= In 

s 

Ifill 
--- E F(m ) 

w vT 

(47) 

(48) 

(49) 

(50) 
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• 0 eff + a r 

• a = £ T T 

2 

c: = Ii erf-l (2 (PD//Q - .!.2 ) 
• '-,OT 

PfT is found using the following input data items: 

PD , Q , o , St , N , E, m T , D , X , ¢ r V g 

mis also needed to find P but is not input by the user. It is 
s 

(51) 

(52) 

(53) 

calculated externally to the program itself and will be discussed in 

the next section. Solving the equations above requires the use of 

numerical integration and various convergence algorithms. 

Evaluation of m 

mis the number of stars at a given galactic latitude for some 

visual magnitude decrement. For each run of the program,¢ remains g 

constant. Thus, m can be thought of as a function of visual star 

magnitude: m = m(m ). vs Because we will be integrating over all 

visual star magnitudes in the integral of P , it will be helpful to 
s 

find the function m(m ). For any given value of¢ , there is one vs g 

function m(m ). Hence, in order to save computing time, a function vs . 

m(m ) was calculated for specific values of¢ and stored. For this vs g 
reason, the user is given a list of values for¢ to choose from. g 

The list is reasonable and should enable the user to find an ap-

propriate ¢ g The choices are: 

0°, ± 5°, ± 10°, ± 20°, ± 30°, ± 40°, ± 50°, ± 60°, 

± 70°, ± 80°, ± 90° . 
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In order to find m(m ), the table of star numbers from [l] vs 

found in Appendix A was used. It shows the logarithm of the number 

of stars per square degree brighter than some photographic magnitude 

m (this m is not the same as the function m(m )). For each of the vs 
values in the table, 10value was calculated to get the actual number 

of stars. These new values were then shifted up by • 7 to take into 

account visual rather than photographic magnitudes. Then each value 

was subtracted from its immediate predecessor to obtain the number of 

1 1 stars per square degree within the brightness range m + 2 tom - 2 . 

The logarithm of these values was then taken. It is known that the 

graph of the logarithm of these values forms a straight line. Thus, 

using a straight forward least squares routine, a straight line was 

fit to each set of values at each galactic latitude. The values at 

the extremes of the table were disregarded to alleviate possible 

error. The slope and intercept of each line for each galactic latitude 

are stored in the file LINES.DAT. At the start of the program, once 

the galactic latitude has been input, the appropriate slope and 

intercept are read into the variables SLOPE and YCEPT. Thus, 

m(m ) = SLOPE(m ) + YCEPT • (54) vs vs 

With the value mas a known function, P is now a known function of 
s 

the visual star magnitude. 

(see Appendix D, D23). 

P is calculated in the subroutine PS 
s 
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Evaluation of Jxx P (m ) dm 
O s vs vs 

Once P is found as a function of m , JP (m ) dm can be 
S VS S VS VS 

evaluated. xx needs to be found such that Jxx P (m ) dm - 1. This 
O s vs vs 

was achieved in two steps. The subroutine LOWBND (see Appendix D, 

D20) is used to bracket the integral value 1 between two successive 

unit increments. Initially, J1 P (m ) dm is evaluated. The 
O s vs vs 

integral is then evaluated with an upper limit of 2. The upper limits 

are increased by 1 each time until the values of the integral at two 

successive upper limits bracket the value 1. Testing the integral at 

various galactic latitudes showed that, generally, a value between 10 

and 20 for the upper limit yielded an integral value close to 1. 

Because these values for xx are visual star magnitudes this is 

expected. 20 is an extremely dim magnitude. The reason for bracketing 

the value 1 in this way is to insure better results when getting the 

integral to be sufficiently close to 1. 

Newton's method is used in the subroutine UPLIMIT (see Appendix 

D, D22) to achieve convergence. Newton's method was chosen for two 

reasons. First, using the subroutine LOWBND gives a good initial 

estimate for Newton's method which greatly increases its rate of 

convergence. The lower of the two successive unit increments is used 

as the initial estimate. Secondly, Newton's method requires that the 

derivation of the function involved be calculated. Because we are 
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dealing with a definite integral as our function, the derivative is 

easily found: 

f(x) = I: p (m ) s vs dm vs - 1 (55) 

and 

f'(x) = p (x) s (56) 

The added time involved using the subroutine LOWBND is minimal and is 

offset by the increase in the rate of convergence using Newton's 

method. The algorithm for Newton's method used in the subroutine 

UPLIMIT is adapted from [4]. 

In order to evaluate the integral, the subroutine GAUSS (see 

Appendix D, D21) is called. GAUSS uses the Gaussian Quadrature method 

of integration and was adapted from a previously written subroutine, 

GAUSSQ. 

Once the root of f(x) (see equation (55)) has been found (i.e. 

convergence has been met) in the subroutine UPLIMIT, the root, X, is 

returned in the variable xx. xx is the upper limit of the integral • 

. fxx 
xx is then used in the evaluation of P Nf(m ) P (m ) dm O s vs s vs vs 

The subroutine GAUSS will be used in the evaluation of this integral 

also. PsNf must now be evaluated. 
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Jxx 
Evaluation of 0 P Nf(m ) P (m ) dm s vs s vs vs 

In order to evaluate P Nf(m ) P (m ) dm , it is necessary s vs s vs vs 

to find a function for P Nf(m ). There are many calculations in-s vs 

valved in finding PsNf as can be seen in the list of equations in the 

first section of this chapter. Some of these calculations are straight 

forward and need no explanation. The following is a list of variables 

and the subroutine or function where they are evaluated: 

Variable Routine Appendix D 

6l] PFIELDV DS 

w DOMEG Dl7 

nT MEANT D9 

~T TARMAG D4 

0 eff SDEV D8 

SOT SDEVOT D6 

n THRESH D7 
0 

ns' 0 s' 0 sN PSNF D24 

Some of the ·variables used in the evaluation of PsNf' such as 

ssNo and F(M) are never actually defined in the program. Rather, their 

equivalent form is used and never named. For example, in place of the 

variable ssNo' 
n - n 
~ 0~~-s- is used and never named as a single value. 

0 sN 

It should be noted that in order to calculate w using DOHEG, the 

position and velocity vectors of both the sensor and the target are 
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needed. The subroutine, SBSIN (see Appendix D, D15) prompts the user 

for orbital data for both the sensor and a non-missile target. It 

then calculates the position and velocity vectors for both. The 

requested input data is listed as a) through f) in the second section 

of the first chapter. In the case where the target is a missile, the 

subroutine MISSIL (see Appendix D, D16) prompts the user for launch 

and impact information and calculates the position and velocity 

vectors. The required input data is: 

Launch site: latitude (deg) 

longitude (deg) 

altitude (ft) 

Impact site: latitude (deg) 

longitude (deg) 

altitude (ft) 

DOMEG, SBSIN, MISSIL are all previously written and tested subroutines 

that are used only in the calculation of w. 

The function SDEVOT calls the function INVERF (see Appendix D, 

D18) which evaluates the inverse error function. The function ERF 

(see Appendix D, D19) eviluates the error function. ERF is used in the 

function PSNF since PsNf 1 1 = 2 - 2 erf Both INVERF and ERF 

were adapted from previously written and tested routines. 

Evaluation of Q 

Once PsNf and Ps have been found, using an initial estimate for 

Q, the next value for Q can be evaluated. The main objective of the 
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program from a mathematical viewpoint is to find the convergent value 

of Q. Because the program fails to yield any information if Q does 

not converge, two separate converging routines are used. The second is 

used in case the first fails. The two subroutines are CONVERGl (see 

Appendix D, Dll) and CONVERG2 (see Appendix D, D12). 

CONVERGl uses the x = G(x) method, also known as the method of 

iteration. This method was chosen because of the nature of the 

equation. It is already of the correct form: 

Q=1n[P~·]= 
G(Q) • (57) 

£n (PfT) 

PfT is dependent upon Q, therefore, using the notation, G(Q), is valid. 

CONVERGl calls the function QFUN (see Appendix D, D13) to do the 

actual calculation of G(Q). QFUN then calls the other functions and 

subroutines previously mentioned in the evaluation of PfT" CONVERGl 

was adapted from the program, PXGXIT, found in [4]. 

In case CONVERGl fails to yield convergence, the subroutine 

CONVERG2 is used as a second attempt to reach convergence. This sub-

routine uses Newton's method with an initial estimate from the original 

input guess for Q~ Since Q is expected to be approximately between 1 

and 10, using the initial input guess provides an adequate estimate. 

The method used here is a similar adaptation of the one used earlier 

taken from [4]. 

Once a value of Q has been reached, the results are output and 

control is transferred back ta the user. 
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Other Subroutines 

Some of the subroutines that have not been mentioned yet do not 

directly effect the value of Q, although they do effect the output. 

The functions TEXP (see Appendix D, D10) and TSTARE (see Appendix D, 

D3) evaluate T and T respectively. These are both straight exp stare 

forward calculations (see equations (6) and (4)) and the results are 

included in the output. 

The subroutine INPUT (see Appendix D, D2) is called from the 

main program to prompt the user for the needed input data. INPUT per-

forms two initial calculations; that of Il\rT and w. Both Il\rT and ware 

calculated directly from the input data. 

After the following items are displayed as output to the user: 

• number of exposures needed - Q 

• exposure time - T exp 

• total stare time - T stare 

• threshold level - n , 
0 

the user then has the opportunity to make any changes in the input data 

and run the program again. 

The charts on the following pages show the transfer of control 

throughout the program. They briefly show the order in which the 

program flows and therefore all the subroutines are not present. A 

brief description of all the routines in the program follows. 



Flow of Control 
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MAIN 

CALL INPUT 
• User inputs dat 
• Initial calcu-

lations 

CALL CONVERGl 
• Iterate with 

initial Q 
• Call CONVERG2 i 

CONVERGl fails 

OUTPUT DATA 
• Allow user ~o 

re-run with new 
input 
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,----~========::--------------------·--- ---

CALL QFUN 
• Evaluate Q 

CALL GAUSS 

• Evaluate PfT 

CALL PS 
• Evaluate P s 

CALL PSNF 

• Evaluate 
p * p sNf s 

Evaluate Q 

CALL SDEVOT 

• Evaluate ~oT 

CALL THRESH 
• Evaluate n 

0 

CALL CONVERG2 
• Follow same 

procedure as 
above 

I 
I 

V 
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Description of Routines 

Subroutines 

INPUT 

CONVERGl 

CONVERG2 

SBSIN 

HISSIL 

LOWBND 

UPLIMIT 

TSTARE 

TARMAC 

PFIELDV 

THRESH 

Prompts user for needed input data and performs pre-

liminary calculations 

Performs method of iteration (or x = G(x)) to achieve 

convergence of Q 

Performs Newton's method if CONVERGl fails 

Prompts user for orbital data and calculates position and 

velocity vectors for both the sensor and a non-missile 

target - previously written 

Prompts user for launch and impact data and determines 

position and velocity vectors for a missile target -

previously written 

Finds an initial estimate to be used with Newton's method 

in UPLIMIT 

Performs Newton's method with an initial estimate from 

LOWBND to get JxOx P (m ) dm sufficiently close to 1. s vs vs 

Functions 

Calculates total stare time - T stare 

Calculates target magnitude, if not input - ~T 

Calculates pixel field of view - 6Q 

Calculates threshold level - n 
0 



SDEVOT 

SDEV 

MEANT 

TEXP 

QFUN 

QDER 

PS 

PSNF 

DOMEG 

INVERF 

ERF 

GAUSS 
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Calculates the number of standard deviations of n below 
0 

~ - ~oT 

Calculates the effective standard deviation of electrons 

due to target plus noise - oeff 

Calculates the mean number of electrons due to the target - . 

Calculates exposure time - T exp 

Calculates a new value for Q at every iteration in the 

convergence subroutines. Calls functions to do other 

calculations affected by a new value of Q. 

Calculates the derivative of QFUN - Q when Newton's method 

of convergence is used in CONVERG2. 

Calculates the probability of a flip due to star presence -

p 
s 

Calculates the probability of a flip due to star presence 

plus readout noise 

Calculates the angular rate of motion of the target through 

the sensor view - previously written 

Calculates the inverse error function - previously written 

Calculates the error function - previously written 

Performs Gaussian Quadrature integration - previously 

written 



ANALYSIS OF TEST RUNS 

In order to test the validity of the output, the program was run 

numerous times with varying data. The computer used was an IBM PC XT. 

This XT was equipped with 640K memory, removable hard disk drives, 

two floppy disk drives, a math coprocessor chip, and the IU-1-Fortran 

Compiler (Ryan McFarland's version of Fortran). From one run to the 

next, all the input parameters were held constant except one. The pur-

pose of this was to examine the effect that each individual parameter 

had on the output. This form of testing was chosen since the main 

goal of the program was to allow the user to trade-off various 

parameters and see their effect on the output. 

The input data for the test cases is chosen from a range of 

realistic values. For example, the probability of false alarm, Pfa' 

should not realistically exceed .5. If it did, it would not be 

reasonable to expect to adequately detect a target regardless of the 

other input values. In each of the following cases only one of the 

input values varies from one run to the next. The resulting output 

and an analysis as to whether the output is physically reasonable are 

included with the input data. 

Diameter - D 

D 

K 

Initial Input Data 

.2 

5 

29 



Il\rT 
PD 

E: 

ar 

¢g 

X 

p fa 

N 

Q (initial guess) 

Orbital Data 

a) altitude at apogee 

b) altitude at perigee 

c) inclination 

d) initial true anomaly 

e) longitude of ascending 

node with respect to 

Greenwich 

T exp 

30 

7 

.6 

.09 

3 

0 

.1 

.005 

50,000 

7 

Sensor 

500 

500 

45 

0 

0 

Target 

19,000 

19,000 

0 

0 

0 

T stare 

Output (D .= • 2) 

0.171 sec 

0.636 sec 

Q 

n 
0 

3.708 exposures 

44,317.403 electrons 



T exp 

Q 

n 
0 
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Output (D = 1.5) 

0.023 sec 

0.085 sec 

3.708 exposures 

333,519.074 electrons 

Increasing the diameter, D, of the sensor should make it easier 

to detect a target. As a detection becomes easier, it is reasonable 

to expect that less time is needed for each exposure. The fact that Q 

remained unchanged is not unreasonable since the same number of 

exposures but with smaller time lengths still yields a smaller total 

stare time, T t • T is a direct result of T and Q. With an s are stare exp 
easier detection, the threshold level, n, would be expected to in-o 

crease. A higher threshold level allows fewer false alarms to be 

detected. The threshold level, therefore, need not be as low with an 

easier target detection. 

Target Magnitude - Il\rT 

Initial Input Data 

D 1.5 

K 41 

Il\rT 10 

PD .6 

E .09 

0 3 r 

~ 0 g 



X 

pfa 

N 

Q 

Orbital 

T exp 

T stare 

Q 

n 
0 

T exp 

'stare 

Q 

n 
0 

a) 

b) 

c) 

d) 

e) 

Data 
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.1 

.005 

50,000 

7 

Sensor 

500 

500 

45 

0 

0 

Output (1\TT = 10) 

0.187 sec 

1.137 sec 

Target 

19,000 

19,000 

0 

0 

0 

6.070 exposures 

172,850.519 electrons 

Output (1\TT = 18) 

0.187 sec 

2.135 sec 

11.396 exposures 

91.682 electrons 

If the visual magnitude of the target, 1\TT' increases, it gets 

dimmer, harder to detect. As a result, it has fewer detectable 

electrons. (In relation to visual star magnitudes, 18 is an 

extremely dim magnitude.) The number of exposures, Q, increased, not 
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unexpectedly, in order for a detection to occur with the given proba-

bilities. As stated, the target with the larger magnitude has far 

fewer detectable electrons. Thus, in order for the target to be 

detected, the threshold level must be lowered. The exposure time re-

mains unchanged mathematically, m..T has no effect on T • The total v exp 

stare time, T , increased as a direct result of the increase in Q. stare 

Probability of Detection - PD 

Initial 

D 

K 

~T 

PD 

E: 

(J r 
cp 

g 

X 

pfa 

N 

Q 

Orbital Data 

a) 

b) 

c) 

Input 

1.5 

41 

10 

.85 

.09 

3 

0 

.1 

.005 

50,000 

7 

Sensor 

500 

500 

45 

Data 

Target 

19,000 

19,000 

0 



d) 

e) 

T exp 
T stare 

Q 

n 
0 

T exp 

Tstare 

Q 

n 
0 
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0 

0 

0 

0 

Output (PD= .85) 

0.187 sec 

1.137 sec 

6.070 exposures 

172,627.320 electrons 

Output (PD= .999) 

0.187 sec 

1.137 sec 

6.070 exposures 

171,938.249 electrons 

Increasing the probability of detection, PD, resulted in a 

decrease in the threshold level but left the other input data unchanged. 

A higher value of PD implies that the user would like more assurance 

that the target will be detected. 

allows for this higher probability. 

The resulting lower value of n, 
0 

It is not unreasonable that the 

number of exposures and the exposure time were unaltered. The lower 

threshold yielded the required probability of detection and no other 

adjustments were needed. 



X 

D 

K 

1\rr 
PD 

E: 

cr r 
<I> g 

X 

pfa 

N 

Q 

Orbital Data 

a) 

b) 

c) 

d) 

e) 

T exp 

Tstare 

Q 

n 
0 
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Initial Input Data 

1.5 

41 

10 

.85 

.9 

40 

90 

.5 

.005 

50,000 

7 

Sensor 

500 

500 

45 

0 

0 

Output (X = .5) 

0.187 sec 

1.450 sec 

Target 

19,000 

19,000 

0 

0 

0 

7.739 exposures 

1,731,652.128 electrons 



T exp 

T stare 

Q 

n 
0 
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Output (X = .9) 

0.187 sec 

1.908 sec 

10.181 exposures 

1,731,506.301 electrons 

The value of Xis an estimate of the ability to remove stars as 

false alarm candidates where 1 is the worst possible case. (Xis 

between O and 1). An increase in the value of X means that more 

false alarms will show up in the detection. As a result, the 

threshold level was lowered. Lowering the threshold level allows more 

false alarms in the detection. More possible false alarms make it 

reasonable to expect that the value of Q would increase. The more 

false alarms with the same probability of a false alarm makes a 

detection harder. The more difficult a detection is, the more 

exposures it takes. 

Conclusions 

The above cases along with many other similar test runs lead to 

the conclusion that the output is indeed accurate. The output was also 

checked mathematically, i.e., the equations themselves were checked to 

see if they justified the increase or decrease of the output data. 

The results were not included in this paper. They were straight 

forward and do not require an explanation. An example of how the 

equations were checked can be seen in the first case in this chapter; 

the change in the diameter. From equation (44), we see that Dis 

inversely proportional to~~. Thus, as D increases,~~ decreases. 
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~Q is proportional to, (see equation (6)) and therefore as exp 

decreases, , decreases. Hence, from this viewpoint, , is exp exp 

expected to decrease with an increase in D and this is indeed the case 

as can be seen in the output values of, exp 
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Let S(A) be the energy flux per unit wavelength (erg cm -2 -1 sec 
0-1 A ). Then, for an object of visual magnitude mv, as fixed by the zero 

point of the magnitude system (see [2]), 

0 
log S (5500 A)= - 8.42 - 0.4 m 

V 

If one converts to metric units and specifies quantum rather than 

-2 -1 -1 energy flux per unit wavelength (photons m sec m ), then 

-6 log S (0.55 x 10 m) = 17.02 - 0.4 m 
V 

The width (at half height) of the sunlight spectrum is 

-6 0.55 X 10 m. Thus, the quantum flux of the sunlight spectrum 

(including nearby skirts) is: 

F(m) 
V 

S (0.55 x 10- 6 m) ~A 

= 5.76 x 10-lO e- 0 •92 mv (photons/m- 2 sec- 1) • 
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DEFINITION OF VARIABLES 

D - Diameter of sensor (m) 

K - Number of diffraction limited pixel diameters that make up 

an actual pixel 

~T - Visual magnitude of target 

y - Sun angle subtended from sensor to target to sun (deg) 

aR - Reflectivity - area product (m) 

R - Distance from sensor to target (m) 

PD Probability of detection for a target in the field of view 

E - Combined efficiency of optics and detectors in sensor 

a - Standard deviation of the number of electrons due to noise r 

~ - Galactic latitude (deg) g 

X - A number between O and 1 that represents ability to remove 

stars as false alarm candidates (1 = worst) 

Pfa - Probability of a false alarm 

N - Total numbef of pixels 

Q - Number of exposures needed 

w Angular rate of the target through the sensor view (rad/sec) 

~ - Expected ·mean of the number of electrons due to the target 

n - Threshold level (number of electrons above which anything is 
0 

recorded) 

Pixel field of view (steradians) 

- Total sensor field of view (steradians) 

0 eff - Effective standard deviation of the number of electrons due 

to a target plus noise 
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C - Number of standard deviations of no below nT ~oT 

PfT - Probability of a flip when no target is present 

T - Exposure time (sec) exp 

T - Total stare time (sec) stare 

A - Mean wavelength of the visible spectrum (m) 

P - Probability of a flip due to star presence s 

PsNf Probability of a flip due to star presence plus noise 
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*** Dl *** 
PROGRAM SURPAR 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

EXTERNAL PFIELDV,SDEV,MEANT,TEXP,TSTARE,TARMAG 

DOUBLE PRECISION PFIELDV,SDEV,MEANT,TEXP,TSTARE,TARMAG 

DIMENSION SBSSEN(2,6) 

COMMON/ORB/SBSSEN 

COMMON/MAG/MVT 

COMMON/MAGS/SUNA,RCS 

COMMON/CONSTl/PI,TPI,WL 

COMMON/CONST2/XTOL,FTOL,NLIM 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

COMMON Q 

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV 

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT 

COMMON/LINE/SLOPE,YCEPT 

COMMON/PROB/X,N 

LOGICAL CONV,CONVG,FLAG 

CHARACTER *1 ANSW,AN,AA 

INTEGER MM,GL 

DOUBLE PRECISION NT,NO,N,MVT 

C 

C * * * * * * * * * * * VARIABLE DEFINITIONS * * * * * * * * * * * * 

C * 
C -- VARIABLES -- * 
C ARATE: Angular rate of motion of target through the sensor view * 



C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

D: 

EFF: 

EOT: 

FOV: 

GL: 

K: 

MVT: 

N: 

NO: 

NT: 

PD: 

PFA: 

PFOV: 

PFT: 

Q: 

R: 

RCS: 
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Aperture of the sensor (m) 

Combined efficiency of optics and detectors 

Number of standard deviations of NO below NT 

Field of view of sensor (steradians) 

Galactic latitude (deg) 

# of diffraction limited pixel diameters that make up an 

actual pixel 

Visual magnitude of the target 

Number of pixel detectors 

Threshold level(# of electrons above which anything is 

recorded) 

Expected mean of the number of electrons due to the target 

Probability of detection for a target in the field of view 

Probability of a false alarm 

Field of view of a pixel (steradians) 

Probability of a flip assuming no target is present in a 

pixel 

Number of exposures needed 

Distance from sensor to target (m) 

Reflect~vity-area product (reflection cross section) (m) 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

C SDEFF: Effective standard deviation of the# of electrons due to a* 

C 

C SDR: 

C SUNA: 

target plus noise 

Standard deviation of the# of electrons due to noise 

Sun angle subtended from sensor to target to sun (rad) 

C TEXP: Exposure time (sec) 

C TSTARE: Total stare time (sec) 

* 
* 
* 
* 
* 
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C X: A number between O and 1 that represents ability to remove * 
C stars as false alarm candidates * 
C FIXED PARAMETERS -- * 
C CONV,CONVG,FLAG: Tell whether of not convergence has been met * 
C DEGRAD: Radians per degree * 
C DMU: Gravitational constant (m**2/sec**3) 

C 

C 

C 

C 

C 

C 

NLIM: Upper limit on# of iterations in the convergent routines 

PI,TPI: Pi and 2*Pi 

RADDEG: Degrees per radian 

RE: Radius of the Earth (m) 

STERSD: Steradians per square degree 

WE: Angular rate of the Earth (rad/sec) 

C WL: Mean wavelength of spectrum under consideration (visible) 

Meters per nautical mile C XMNM: 

* 
* 
* 
* 
* 
* 
* 
* 
* 

C XTOL,FTOL: Used in convergence subroutines to test closeness to O * 
C * 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C 

C Initialization 

C 

PFT=O.O 

C 

C Call subroutine to ask user for input parameters 

C 

CALL INPUT(ARATE,MVT) 

C 



C 
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WRITE(6,*) 'Enter an initial guess for the number of exposures', 

&' that will be needed. 

READ(*,*) Q 

PRINT*, I 

C Do initial calculations 

C 

101 NT=MEANT(MVT,D,K,EFF,ARATE) 

SDEFF=SDEV(NT,SDR) 

PFOV=PFIELDV(K,D) 

FOV=N*PFOV 

WRITE(6,*) 'THE STARTING VALUE OF Q IS: ',Q 

C 

C Read in slope and y-intercept for appropriate galactic level. A Least 

C Squares routine was used to fit the log of the Amv values for each 

C galactic latitude to a straight line. 

C 

IF (GL.EQ.O) THEN 

I=l 

ELSEIF (IABS(GL).EQ.5) THEN 

I=2 

ELSE 

I=IABS(GL)/10 + 2 

ENDIF 

OPEN (11,STATUS='OLD' ,FILE='LINES.DAT') 



C 

DO 10 J=l,I-1 

READ( 11,*) 

10 CONTINUE 

READ(ll,*) SLOPE,YCEPT 

CLOSE ( 11) 

FLAG=.FALSE. 

CALL LOWBND(XX,FLAG,CONVG) 

51 

WRITE(6,*) 'AFTER LOWBND XX= ',XX 

IF (.NOT.FLAG) CALL UPLIMIT(XX,CONVG) 

IF (.NOT.CONVG) THEN 

WRITE(6,*) 'Integral did not converge to 1. Re-run.' 

GO TO 999 

ENDIF 

C Call subroutine to get a better estimate for the number of exposures 

C 

CALL CONVERGl(CONV,XX) 

IF (.NOT. CONV) THEN 

CALL CONVERG2(CONV,XX) 

IF (.NOT. CONV) THEN 

WRITE(6,*) 'No convergence with two different methods.' 

WRITE(6,*) 'Do you want to try another value of your', 

& ' initial guess of the number of exposures needed (Y/N)? 

READ(*,111) ANSW 

IF (ANSW.EQ. 'Y') THEN 

WRITE(6,*) 'Enter guess 



C 

C 

100 

READ(*,*) Q 

GO TO 101 

ENDIF 

ENDIF 

ENDIF 

IF (CONV) THEN 

TT=TEXP(PFOV,ARATE) 

WRITE(6,100) TT 
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FORMAT(' ','The exposure time is 

TS=TSTARE(Q,PFOV,ARATE) 

WRITE(6,200) TS 

',F6. 3,' sec') 

200 FORMAT(' ','The stare time is I ',F7.3,' sec') 

WRITE(6,*) 1 SDEFF= ',SDEFF,' NT= ',NT,'EOT= ',EOT 

NO=THRESH(SDEFF,EOT,NT) 

300 

400 

WRITE(6,300) NO 

FORMAT(' ','The threshold value is 

WRITE(6,400) Q 

',F12.3,' electrons') 

FORMAT(' ','The number of exposures needed is ',F6. 3/T3) 

WRITE( 6, *) 'PFT ' , PFT 

WRITE(6,*) 'Do you want to run this program again with any new 

&parameters (Y/N)? 

READ(*, 111) AN 

IF (AN . EQ. I y') THEN 

110 WRITE(6,*) 'Enter the number beside the parameter' 



C 
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WRITE(6,*) 'Aperture of sensor (meters) - 1 

WRITE(6,*) '# of diffraction limited pixel diameters - 2 

WRITE(6,*) 'Visible magnitude of target - 3 

WRITE(6,*) 'Sun angle subtended from sensor-target-sun', 

& ' (degrees) - 4 

WRITE(6,*) 'Reflectivity-area product (meters) - 5 

WRITE(6,*) 'Probability of detection of target - 6 

WRITE(6,*) 'Combined efficiency of optics and detectors', 

& I - ] 

WRITE(6,*) 'Standard deviation of noise electrons - 8 

WRITE(6,*) 'Galactic latitude (degrees) - 9 

WRITE(6,*) 'A number between O and 1 that represents your' 

WRITE(6,*) ' ability to remove stars as false alarm' 

WRITE(6,*) ' candidates (l=worst) - 10 

WRITE(6,*) 'The probability of false alarm - 11 

WRITE( 6, ~'I') 'The # of pixels - 12 

WRITE(6,*) 'A new estimate of the number of exposures', 

& ' needed - 13 

WRITE(6,*) 'Sensor orbital data - 14 

WRITE(6,*) 'Target orbital data (missile) - 15 

WRITE(6,*) 'Target orbital data (non-missile) - 16 

READ(*,*) MM 

IF (MM .LE. 13) THEN 

WRITE(6,*) 'Enter new value 

ENDIF 



IF (MM . EQ. 1) THEN 

READ(*,*) D 

ELSEIF (MM .EQ. 2) THEN 

READ(*,*) K 

ELSEIF (MM .EQ. 3) THEN 

READ(*,*) MVT 

ELSEIF (MM .EQ. 4) THEN 

READ(*,*) SUNA 

MVT=TARMAG(SUNA,RCS) 

ELSEIF (MM .EQ. 5) THEN 

READ(*,*) RCS 

MVT=TARMAG(SUNA,RCS) 

ELSEIF (MM .EQ. 6) THEN 

READ(*,*) PD 

ELSEIF (MM .EQ. 7) THEN 

READ(*,*) EFF 

ELSEIF (MM .EQ. 8) THEN 

READ(*,*) SDR 

ELSEIF (MM .EQ. 9) THEN 

READ(*,*) GL 

54 

ELSEIF (MM .EQ. 10) THEN 

READ(*,*) X 

ELSEIF (MM .EQ. 11) THEN 

READ(*,*) PFA 

ELSEIF (MM .EQ. 12) THEN 

READ(*,*) N 
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ELSEIF (MM .EQ. 13) THEN 

READ(*,*) Q 

ELSEIF (MM .EQ. 14) THEN 

CALL SBSIN(SBSSEN,1) 

ARATE=DOMEG(SBSSEN) 

ELSEIF (MM. EQ. 15) THEN 

CALL MISSIL(SBSSEN,2) 

ARATE=DOMEG(SBSSEN) 

ELSE 

CALL SBSIN(SBSSEN,2) 

ARATE=DOMEG(SBSSEN) 

ENDIF 

IF (MM .GE. 14) THEN 

WRITE(6,*) 'If you have previously entered the magnitude' 

WRITE(6,*) ' of the target directly, enter Y, otherwise', 

&' enter N 

READ(*, 111) AA 

IF (AA .EQ. 'N') MVT=TARMAG(SUNA,RCS) 

ENDIF 

WRITE(6,*) 'Do you want to change any other parameters ' 

WRITE(6,*) 'before this program is run again (Y/N)? 

READ(*, 111) AN 

IF (AN .EQ. 'Y') GO TO 110 

GO TO 101 

ENDIF 

ENDIF 



999 CONTINUE 

111 FORMAT (Al) 

STOP 

END 
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*** D2 *** 

SUBROUTINE INPUT(ARATE,MVT) 

C 

C This subroutine asks the user for the required input parameters 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

EXTERNAL TARMAG,DOMEG 

DOUBLE PRECISION TARMAG,DOMEG 

DIMENSION SBSSEN(2,6) 

COMMON/MAGS/SUNA,RCS 

COMMON/ORB/SBSSEN 

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV 

COMMON/PROB/X,N 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

CHARACTER ANS*l 

INTEGER IM, GL 

DOUBLE PRECISION N,MVT 

WRITE(6,*) 'Enter the aperture of your sensor (meters) 

READ(*,*) D 

WRITE(6,*) 'Enter the# of diffraction limited pixel diameters ' 

& 'that make up an actual pixel 

READ(*,*) K 

WRITE(6,*) 'Do you know the visual magnitude of the target (Y/N)' 

READ(*,112) ANS 

IF (ANS.EQ. 'Y') THEN 

WRITE(6,*) 'Enter the value 



READ(*,*) MVT 

ELSE 

58 

WRITE(6,*) 'Enter the sun angle subtended from sensor to target 

& to sun (degrees) 

READ(*,*) SUNA 

WRITE(6,*) 'Enter the reflectivity-area product (reflection' 

& 'cross section) (meters) 

READ(*,*) RCS 

ENDIF 

WRITE(6,*) 'Enter the probability of detection for a target in 

& 'the field of view 

READ(*,*) PD 

WRITE(6,*) 'Enter the combined efficiency of optics and', 

& ' detectors 

READ(*,*) EFF 

WRITE(6,*) 'Enter the standard deviation of the# of electrons due 

& to noise 

READ(*,*) SDR 

WRITE(6,100) 

100 FORMAT(' ','Enter the galactic latitude, choosing one of the', 

&'following: 1 /T3,'0,5,-5,10,-10,20,-20,30,-30,40,-40'/T3,'50 1 , 

&' ,-50,60,-60,70,-70,80,-80,90,-90 1 ) 

READ(*,*) GL 

WRITE(6,*) 'Enter a numbe~ between O and 1 that represents your' 

WRITE(6,*) 'ability to remove stars as false alarm candidates ' 

WRITE(6,*) '(1 = no discrimination between stars and a target) 
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READ(*,*) X 

WRITE(6,*) 'Enter the probability of a false alarm 

READ(*,*) PFA 

WRITE(6,*) 'Enter the# of pixels 

READ(*,*) N 

WRITE(6,*) 'Input the following orbit data with respect to your', 

&' sensor' 

CALL SBSIN(SBSSEN,1) 

WRITE(6,*) 'If your target is a missile - input 11 

WRITE(6,*) 'otherwise - input 2 

READ(*,*) IM 

IF (IM .EQ. 1) CALL MISSIL(SBSSEN,2) 

IF (IM .EQ. 2) CALL SBSIN(SBSSEN,2) 

ARATE=DOMEG(SBSSEN) 

IF (ANS .EQ. 'N') MVT=TARMAG(SUNA,RCS) 

112 FORMAT (Al) 

RETURN 

END 
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*** D3 *** 

DOUBLE PRECISION FUNCTION TSTARE(Q,PFOV,ARATE) 

C 

C This function caluculates the stare time given the calculated exposure 

C time and the current value of Q 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

EXTERNAL TEXP 

DOUBLE PRECISION TEXP 

T=TEXP(PFOV,ARATE) 

TSTARE=Q*T 

RETURN 

END 
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*** D4 *** 

DOUBLE PRECISION FUNCTION TARMAG(SUNA,RCS) 

C 

C This function calculates the visual magnitude of the target given the 

C sun angle (sensor-target-sun), the reflectivity-area product and the 

C sensor-target distance 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CONSTl/PI,TPI,WL 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

COMMON/ORB/SBSSEN 

DIMENSION SBSSEN(2,6) 

XDIF=SBSSEN(l,1)-SBSSEN(2,1) 

YDIF=SBSSEN(l,2)-SBSSEN(2,2) 

ZDIF=SBSSEN(l,3)-SBSSEN(2,3) 

R=DSQRT(XDif1:XDIF+YDIF·kYDIF+ZDIP'<'ZDIF) 

SUNA=SUNA/RADDEG 

F=2/( 31(PI*PI)*( ( PI-SUNA)*DCOS( SUNA)+DSIN( SUNA)) 

TARMAG=-26. 78-2.S*DLOGlO((RCS*F)/(R*R)) 

RETURN 

END 
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*** DS *** 

DOUBLE PRECISION FUNCTION PFIELDV(K,D) 

C 

C This function calculates the field of view of the pixel in steradians 

C given the aperture of the sensor, the mean wavelength of 

C the spectrum and the value of K 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CONSTl/PI,TPI,WL 

PFIELDV=K1rK*l6. *WUrWL/(PI*D*D) 

RETURN 

END 
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*** D6 *** 
DOUBLE PRECISION FUNCTION SDEVOT(PD,Q) 

C 

C This function calculates the standard deviation of NO below NT given 

C the probability of detection of the target and the current value of Q 

C 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

EXTERNAL INVERF 

DOUBLE PRECISION INVERF 

SDEVOT=INVERF(2. O*PD•""*(l. O/Q)-1. O)*SQRT(2. 0) 

RETURN 

END 
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*** D7 *** 
DOUBLE PRECISION FUNCTION THRESH(SDEFF,EOT,NT) 

C 

C This function calculates the threshold value given the effective 

C standard devlation of electrons due to target plus noise, the mean 

C number of electrons due to the target 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

DOUBLE PRECISION NT 

THRESH=-SDEFF~'rEOT+NT 

RETURN 

END 
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*** DB *** 
DOUBLE PRECISION FUNCTION SDEV(NT,SDR) 

C 

C This function calculates the effective standard deviation of electron 

C due to target plus noise given the mean number of electrons due to th 

C target and the standard deviation of elctrons due to the target alone 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

DOUBLE PRECISION NT 

SDEV=DSQRT(NT+SDR*SDR) 

RETURN 

END 
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*** D9 *** 
DOUBLE PRECISION FUNCTION MEANT(MVT,D,K,EFF,ARATE) 

C 

C This function calculates the mean number of electrons due to the 

C target given the diameter of the sensor, the value of K, the wave-

C length of the spectrum, the angular rate of the sensor, the combined 

C efficiency and the visual magnitude of the target 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CONSTl/PI,TPI,WL 

DOUBLE PRECISION MVT 

E=DEXP(-.92*MVT) 

MEANT=DSQRT( PI )'"'D~'<'K'l'•WL*EFF / ARATE*(5. 76ElO)*E 

RETURN 

END 
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*** DlO *** 

DOUBLE PRECISION FUNCTION TEXP(PFOV,ARATE) 

C 

C This function calculates the exposure time given the field of view 

C and the angular rate of the sensor 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

WRITE(6,*) 'IN TEXP, PFOV= ',PFOV,' ARATE= ',ARATE 

TEXP=DSQRT(PFOV)/ARATE 

RETURN 

END 



68 

*** Dll *** 
SUBROUTINE CONVERGl(CONV,XX) 

C 

C This subroutine uses the x=G(x) method (or the method of iteration) of 

C convergence using the initial estimated input value of Q 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CONST2/XTOL,FTOL,NLIM 

COMMON Q 

EXTERNAL QFUN 

DOUBLE PRECISION QFUN 

LOGICAL CONV 

CONV=.TRUE. 

J=l 

SAVEQ=Q 

Q=QFUN(Q,XX) 

DELl=DABS(SAVEQ-Q) 

IF (DELl .LE. XTOL) RETURN 

DO 20 J=2,NLIM 

SAVEQ=Q 

WRITE(6,*) 'A NEW Q IS NOW BEING EVALUATED' 

Q=QFUN(Q,XX) 

DEL2=DABS(Q-SAVEQ) 

IF (DEL2 .LE. XTOL) RETURN 

IF (J .EQ. 2) THEN 

IF (DELl .LE. DEL2) THEN 



CONV=.FALSE. 

RETURN 

ENDIF 

ENDIF 

20 CONTINUE 

C 
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C If NLIM is exceeded CONV returns a value of false 

C 

CONV=. FALSE. 

RETURN 

END 
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*** D12 *** 
SUBROUTINE CONVERG2(CONV,XX) 

C 

C This subroutine uses Newton's method of convergence if the first 

C method fails with the original input value of Q (INIT) 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CONST2/XTOL,FTOL,NLIM 

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT 

COMMON Q 

DOUBLE PRECISION NT,NO 

LOGICAL CONV 

EXTERNAL QFUN,QDER 

DOUBLE PRECISION QFUN,QDER 

CONV=. TRUE. 

QQ=QFUN(Q,XX) 

QX=QQ-Q 

DO 30 J=l,NLIM 

DELQ=QX/QDER(QQ,XX,PFT) 

Q=Q-DELQ 

QQ=QFUN(Q,XX) 

QX=QQ-Q 

IF (DABS(DELQ) .LE. XTOL) RETURN 

IF (DABS(QX) .LE. FTOL) RETURN 

30 CONTINUE 

C 
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C If NLIM is exceeded CONV returns a value of false 

C 

CONV=. FALSE. 

RETURN 

END 
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*** D13 *** 
DOUBLE PRECISION FUNCTION QFUN(Q,XX) 

C 

C This function calculates Q as a function of Q to be used in the 

C convergent routines 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT 

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV 

COMMON/CONSTl/PI,TPI,WL 

COMMON/PROB/X,N 

DOUBLE PRECISION NOT,NT,NO 

EXTERNAL THRESH,SDEVOT,GAUSS,PSNF 

DOUBLE PRECISION THRESH,SDEVOT,GAUSS,PSNF 

INTEGER GL 

DOUBLE PRECISION N 

EOT=SDEVOT(PD,Q) 

NO=THRESH(SDEFF,EOT,NT) 

PFT=GAUSS(SO,PSNF,O. ,XX) 

QFUN=DLOG(PFA/N)/DLOG(PFT) 

RETURN 

END 
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*** D14 *** 

DOUBLE PRECISION FUNCTION QDER(QQ,XX,PFT) 

C 

C This function evaluates the derivative of QFUN-Q to be used only if 

C the CONVERG2 routine is needed 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

EXTERNAL GAUSS,PSNF 

DOUBLE PRECISION GAUSS,PSNF 

DPFT=PSNF(XX) 

QDER=-QQ*DPFT/(DLOG(PFT)*PFT)-1. 

RETURN 

END 
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*** D15 *** 

SUBROUTINE SBSIN(SBSSEN,L) 

C 

C This subroutine requests input for determining the orbits 

C of satellites when the Keplerian Propagator will be used. 

C It has been previously written. 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

DIMENSION SBSSEN(2,6),0RB(6),X(3),Y(3),H(3),XMNAN(2) 

COMMON/CONSTl/PI,TPI,WL 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

ORB(6)=0.0 

WRITE(6,100) 

100 FORMAT(' '/T3, 1 Six pieces of data are needed to propagate the', 

&'satellites. 1 /T3,'For Circular orbits, only five pieces of data', 

&'are input. '/T3,'Input 1 if you wish to input apogee and perigee', 

&' altitudes,'/T3,'2 if you wish to input period and eccentricity') 

WRITE(6,*) ' ' 

READ(*,'"') ITYPE 

IF (ITYPE .EQ. 1) THEN 

WRITE(6,120) 

120 FORMAT(' '//T3,'Input Altitude at ', 

& 'Apogee (NM)'/T3,'Altitude at Perigee (NM)1 /T3,'Inclination (deg 

&)') 

ELSE 

WRITE(6,110) 
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110 FORMAT(' ',/T3,'Input Period (hours),', 

& ' Eccentricity, Inclination (degrees)') 

ENDIF 

WRITE(6,130) 

130 FORMAT(' '/T3,'Initial true anomaly (deg)'/T3,'Longitude of', 

& ' ascending node with respect to Greenwich (deg)'/T3, 

& 'Input last ascending node before Epoch'/T3) 

READ(*,*) (ORB(I),I=l,5) 

IF (DABS(ORB(2)-0RB(l)) .LT. 1.E-2 .OR. ORB(2).LT. 1.E-5) GO TO 35 

WRITE(6,*) ' Input argument of Perigee (degrees), ' 

& '-180<=argument<180' 

WRITE(6,*) ' ' 

READ(*,*) ORB(6) 

35 IF (!TYPE .EQ. 2) THEN 

ORB( 1)=( (ORB( 1)*3600. /2. /PI)**2*DMU)*'"( 1. /3.) 

ELSE 

ORB(l)=ORB(l)*XMNM 

ORB(2)=0RB(2)*XMNM 

A=(ORB(l)+ORB(2)+RE*2. )/2. 

ORB(2)=(0RB(l)+RE)/A-1. 

ORB(l)=A 

ENDIF 

DO 10 K=3,6 

ORB(K)=ORB(K)/RADDEG 

10 CONTINUE 

B=DC0S(ORB(3)) 



C 

C=DSIN(ORB(3)) 

D=DC0S(ORB(4)) 

E=DSIN( ORB( 4)) 

F=DCOS(ORB(S)) 

G=DSIN(ORB(S)) 

P=DC0S(ORB(6)) 

Q=DSIN(ORB(6)) 
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R=ORB(l)*(l. -ORB(2)**2)/(1.+0RB(2)*D) 

V=DSQRT(2.*(DMU/R-DMU/(2.*0RB(l)))) 

ANGMOM=DSQRT( ( 1. -ORB( 2)**2),'rDMU'"'ORB( 1)) 

H(l)=ANGMOM*G*C 

H(2)=-ANGMOM*F*C 

H(3)=B*ANGMOM 

XW=R'lrD 

YW=R*E 

PX=P*F-Q*G'"'B 

PY=P*G+Q,'rf,'rB 

PZ=Q*C 

QX=-Q*F-P*G*B 

QY=-Q*G+P*F*B 

QZ=P*C 

RX=XW*PX+YW*QX 

RY=XW*PY+YW*QY 

C Find Z-component of position vector 

C 
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SBSSEN(L,3)=XW*PZ+YW*QZ 

C 

C Consider earth rotation between epoch and ascending node. 

C 

TRUEA=DABS(ORB(6)) 

DO 20 I=l, 2 

RPER=ORB(l)*(l. -ORB(2)*0RB(2))/(1.+0RB(2)*DCOS(TRUEA)) 

IF (DABS(ORB(2)).LT.0.0001) THEN 

ECCAN=TRUEA 

ELSE 

ECCAN=DACOS((l. -RPER/ORB(l))/ORB(2)) 

ENDIF 

IF (TRUEA .GT. PI) ECCAN=TPI-ECCAN 

XMNAN( I )=ECCAN-ORB( 2)irDSIN(ECCAN) 

TRUEA=ORB(4) 

20 CONTINUE 

Cl=DSQRT(DMU/ORB( 1)''<'*3) 

ANG=ORB(4)+0RB(6) 

IF (ANG .GE. TPI) THEN 

DMEAN=XMNAN(l)+XMNAN(2)-TPI 

ELSE 

IF (ORB(6) .LT. 0.) DMEAN=XMNAN(2)-XMNAN(l) 

IF (ORB(6) .GE. 0.) DMEAN=XMNAN(2)+XMNAN(l) 

ENDIF 

DT=DMEAN/Cl 

EROTl=DCOS(WE*DT) 
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EROT2=DSIN(WE*DT) 

C 

C Find X,Y-components of position vector 

C 

SBSSEN(L,l)=RX*EROT1+RY*EROT2 

SBSSEN(L,2)=RY*EROT1-RX*EROT2 

HO=H(l) 

H(l)=HO*EROT1+H(2)*EROT2 

H(2)=H(2)*EROT1-HO*EROT2 

GAM=DACOS(ANGMOM/(V*R)) 

DO 30 I=l,3 

Y(I)=SBSSEN(L,I)/R 

30 CONTINUE 

X(l)=SBSSEN(L,3)*H(2)-SBSSEN(L,2)*H(3) 

X(2)=SBSSEN(L,l)*H(3)-SBSSEN(L,3)*H(l) 

X(3)=SBSSEN(L,2)*H(l)-SBSSEN(L,l)*H(2) 

DO 40 I=l,3 

X(I)=X(I)/(XMNM**3) 

40 CONTINUE 

XMAG=DSQRT(X(1)**2+X(2)**2+X(3)**2) 

DO SO I=l,3 

X(I)=X(I)/XMAG 

50 CONTINUE 

VCOSG=V*DCOS(GAM) 

VS ING=V'l'rDS IN( GAM) 

C 



C Find velocity vector 

C 

79 

SBSSEN(L,4)=VC0SG*X(1)+VSING*Y(1) 

SBSSEN( L, 5 )=VCOSG•'•X( 2)+VSING*Y( 2) 

SBSSEN(L,6)=VCOSG*X(3)+VSING*Y(3) 

RETURN 

END 



*** D16 *** 

SUBROUTINE MISSIL(TRGT,L) 

C 
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C This subroutine determines orbit elements for missile launches. 

C Inputs are locations of launch and impact. The routine 

C determines the orbit from two position vectors, using the minimum 

C energy trajectory. 

C REFERENCE: Cornelisse, Schayer, Wakker: Rocket Propulsion and 

C Spaceflight Dynamics, CH. 13. 

C It has been previously written. 

C 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

DIMENSION TRGT(2,6),0RB(6),RL(3),RI(3) 

COMMON/CONSTl/PI,TPI,WL 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

WRITE(6,*) ' Note that the missile orbit determination is ' 

& 'Keplerian.' 

WRITE(6,*) ' Use the Keplerian Propagator only.' 

WRITE(6,100) 

100 FORMAT(' '/T3,'Input the Latitude (deg), Longitude (deg) of the', 

& ' launch site,'/T3,'Altitude of launch site (ft).', 

&//T3,'Southern latitudes and/or Western longitudes', 

& ' should be input with a '/T3,'minus sign. '/T3) 

READ(*,*) ORB(l),ORB(2),0RB(3) 

WRITE(6,110) 

110 FORMAT(' '/T3,'Input the Latitude (deg), Longitude (deg) of the', 



C 
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& ' impact site,'/T3,'Altitude of impact site (ft)'/T3) 

READ(*,*) ORB(4),0RB(5),0RB(6) 

ORB(l)=ORB(l)/RADDEG 

ORB(2)=0RB(2)/RADDEG 

ORB(3)=0RB(3)*.3048 

ORB(4)=0RB(4)/RADDEG 

ORB(5)=0RB(5)/RADDEG 

ORB(6)=0RB(6)*.3048 

RLCH=RE+ORB(3) 

RL( 1) =RLCH-lrDCOS ( ORB ( 1) ) *DCOS ( ORB ( 2) ) 

RL( 2)=RLCH*DC0S( ORB( 1) )-lrDSIN( ORB( 2)) 

RL( 3)=RLCH~'rDSIN(ORB( 1)) 

TOLD=O. 

DELTAT=O. 

C Iterate to find exact parameters with rotating earth. 

C 

C 

10 ORB(5)=0RB(5)+WE*DELTAT 

RIMP=RE+ORB(6) 

RI(1)=RIMP*DC0S(ORB(4))*DCOS(ORB(5)) 

RI(2)=RIMP*DC0S(ORB(4))*DSIN(ORB(5)) 

RI(3)=RIMP*DSIN(ORB(4)) 

C Length of chord between launch and target sites. 

C 
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D=DSQRT((RL(l)-RI(1))**2+(RL(2)-RI(2))**2+(RL(3)-RI(3))**2) 

C 

C Lenth of major axis. 

C 

S=(D+RIMP+RLCH)/2. 

C S=D+RIMP+RLCH 

C 

C Compute minimum energy flight time. 

C 

C 

B=l. -D/S 

C=DSQRT(B) 

TF=DSQRT((S/2. )**3/DMU)*(PI-2.*DASIN(C)+2.*C*DSQRT(l. -B)) 

DELTAT=TF-TOLD 

IF (DABS(TOLD-TF) .LT. 1.E-1) GO TO 20 

TOLD=TF 

GO TO 10 

20 A=S/2. 

VI=DSQRT(2.*(DMU/RLCH-DMU/S)) 

SIG=DACOS( (RLCH'"'*2+RIMP**2-D**2)/2. /RIMP/RLCH) 

GAMI=(PI-SIG)/4. 

E=TAN(GAMI) 

C Following derivation taken from Escobal, Methods of Orbit 

C Determination, p. 197. 

C 

ECCl=DACOS((l. -RLCH/A)/E) 
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ECC2=2.*PI-DACOS((l. -RIMP/A)/E) 

DELTAE=ECC2-ECC1 

F=l. -A/RLCH*(l. -DCOS(DELTAE)) 

G=TF-DSQRT(A**3/DMU)*(DELTAE-DSIN(DELTAE)) 

DO 30 K=l,3 

TRGT(L,K)=RL(K) 

TRGT(L,K+3)=(RI(K)-F*RL(K))/G 

30 CONTINUE 

RETURN 

END 
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*** D17 *** 

DOUBLE PRECISION FUNCTION DOMEG(SBSSEN) 

C 

C This function calculates the angular rate of motion 

C It has been previously written. 

C 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

DIMENSION SBSSEN(2,6),DR(3),DV(3) 

DO 10 I=l,3 

DR(I)=SBSSEN(2,I)-SBSSEN(l,I) 

DV(I)=SBSSEN(2,I+3)-SBSSEN(l,I+3) 

10 CONTINUE 

DRMAG=DSQRT(DR(l)*DR(l)+DR(2)*DR(2)+DR(3)*DR(3)) 

DVMAG=DSQRT(DV( l)*DV( l)+DV( 2)*DV( 2)+DV( 3 )''<"DV( 3)) 

DRDOTDV=DR( l)*DV( l)+DR( 2)*DV( 2)+DR( 3)1rDV( 3) 

P=DRDOTDV/DRMAG/DVMAG 

THETA=DASIN(DABS(P)) 

C Rate of apparent motion of target in focal plane 

C 

RAM=DVMAG*DCOS(THETA) 

DOMEG=RAM/DRMAG 

RETURN 

END 



85 

*** D18 *** 

DOUBLE PRECISION FUNCTION INVERF(C) 

C 

C This function evaluates the inverse error function. It is adapted 

C from a previously written function. 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

EXTERNAL ERF 

DOUBLE PRECISION ERF 

DIMENSION Y( 7) 

DATA Y/0.0,.842700793,.995322265,.99997910,.999999984,l.O,l.O/ 

IF (C .GE. 1.0) THEN 

INVERF=6.0 

ELSEIF (C .LE. 0.0) THEN 

INVERF=O.O 

ELSE 

DO 10 I=l,7 

IF (Y(I)-C) 10,20,30 

10 CONTINUE 

20 INVERF=FLOAT(I-1) 

GO TO 50 

30 XC=I-2 

DO 40 K=l,20 

A=ERF(XC) 

TEMP=XC+(C-A)*(0.886226925*DEXP(XC**2)) 

B=ERF(TEMP) 



Z=C-B 

XC=TEMP 

86 

IF (Z-1.E-10 .LT. 0.0) TIIEN 

INVERF=TEMP 

GO TO 50 

ENDIF 

40 CONTINUE 

ENDIF 

50 RETURN 

END 
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*** D19 *** 
DOUBLE PRECISION FUNCTION ERF(W) 

C 

C This function evaluates the error function. It was previously 

C written 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

DIMENSION A(25),B(30) 

DATA A/16443152242714D-13,-9049760497548D-13,643570883797D-13, 

* 196418177368D-13,-1244215694D-13,-9101941905D-13, 

* -1796219835D-13,139836786D-13,164789417D-13,39009267D-13, 

* -893145D-13,-3747896D-13,1298818D-13,136773D-13,77107D-13, 

* 46810D-13,11844D-13,-5D-13,-1384D-13,-652D-13,145D-13, 

* 10D-13,24D-13,11D-13,2D-13/ 

M=24 

X=DABS(W) 

XERR=l. 0 

IF (X .GT. 9.306) THEN 

CERR=l. 0-XERR 

ELSEIF (X .GE. 0.010) THEN 

Z=(X-1.0)/(X+l.O) 

DO 10 I=l,30 

B(I)=O. 0 

10 CONTINUE 

DO 20 I=l ,M 

Ml=(M+l)-I 
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B(M1)=2.0*Z*B(Ml+l)-B(M1+2)+A(Ml+l) 

20 CONTINUE 

F=-B(2)+Z*B(l)+0.5*A(l) 

XERR=l.0-(1.0/1. 77245385)*(DEXP(-(X**2)))*F 

CERR=l. 0-XERR 

ELSE 

XERR=2. 0/(3. o,tr1, 77245385)*X*(3. O-X**2) 

CERR=l.0-XERR 

ENDIF 

IF (W .GE. 0.0) THEN 

ERF=XERR 

ELSE 

ERF=CERR 

ENDIF 

RETURN 

END 
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*** D20 *** 
SUBROUTINE LOWBND(XX,FLAG,CONVG) 

C 

C This subroutine evaluates the integral of Ps(Mvs) and returns a value 

C of TRUE in FLAG if the integral is sufficiently close to 1 and the 

C upper limit of the integral in XX. Flag remains false if the value 

C of the integral is not sufficiently close to 1 and less than 1 and 

C XX returns the value of the upper limit 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/PROB/X,N 

EXTERNAL PS,GAUSS 

DOUBLE PRECISION PS,GAUSS 

DOUBLE PRECISION N 

LOGICAL FLAG,CONVG 

HK=O. 

DO 10 K=0,100 

B=DFLOAT(K) 

VAL=GAUSS(50,PS,B,B+l) 

HK=VAL+HK 

IF (DABS(HK-1. ).LT.0.001) THEN 

XX=DFLOAT(K) 

FLAG=. TRUE. 

RETURN 

ENDIF 

IF (HK .GT. 1.) THEN 



XX=DFLOAT(K-1) 

RETURN 

ENDIF 
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IF (DABS(VAL).LT.O. lD-15) THEN 

XX=DFLOAT(K-1) 

FLAG=. TRUE. 

CONVG=.TRUE. 

RETURN 

ENDIF 

10 CONTINUE 

WRITE(6,*) 'FINAL INTEGRAL VALUE= ',VAL 

WRITE(6,*) 'K VALUE EXCEEDED K= ',K 

XX=K 

RETURN 

END 
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*** D21 *** 
DOUBLE PRECISION FUNCTION GAUSS(NARG,F,A,B) 

C 

C This function uses Gaussian Quadrature to evaluate the integral of F 

C from A to Busing NARG as the number of values of F to be used. It 

C previsouly written. 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/PROB/X,N 

DOUBLE PRECISION N 

DIMENSION U(71),H(71),IV(17),TCEL(16) 

DATA U/. 28867513,0. ,. 38729833, 

& • 16999052,. 43056816, 0. , . 26923466,. 45308992, 

& • 11930959,. 33060469,. 46623476, 0. , . 20292258, 

& .37076559,.47455396,.09171732,.26276620, 

& • 39833324,. 48014493,0. ,. 16212671,. 30668572, 

& .41801555,.48408012,.07443717,.21669769,.33970478, 

& • 43253168,. 48695326,0. ,. 13477158,. 25954806, 

& .36507600,.44353130,.48911433,.06261670, 

& • 18391575,.29365898,.38495134,.45205863,.49078032, 

& 0. ,. 11522916,. 22424638,. 32117467, 

& .40078905,.45879920,.49209153,.05402747,. 15955618, 

& .25762432,.34364645,.41360066,.46421744,.49314190, 

& 0. ,.10059705,.19707567 ,. 28548609,. 36220887 ,. 42410329, 

& .46863670,.49399626,.04750625,. 14080178,.22900839, 

& .30893812,.37770220,.43281560,.47228751,.49470047/ 



92 

DATA H/.50000000,.44444445,.27777778, 

& .32607258,. 17392742,.28444444,.23931434,. 11846344, 

& .23395697,. 18038079,.08566225,.20897959,. 19091503, 

& • 13985270,.06474248,. 18134189,. 15685332,. 11119052, 

& .05061427,. 16511968,. 15617354,. 13030535,.09032408, 

& .04063719,. 14776211,. 13463336,. 10954318,.07472567, 

& .03333567,. 13646254,. 13140227,. 11659688,.09314511, 

& .06279018,.02783428,. 12457352,. 11674627,. 10158371, 

& .08003916,.05346966,.02358767, 

& • 11627578,. 11314159,. 10390802, 

& .08907299,.06943676,.04606075,.02024200, 

& • 10763193,. 10259923,.09276920,.07860158,.06075929, 

& .04007904,.01755973,. 10128912,.09921574,.09308050, 

& .08313460,.06978534,.05357961,.03518302,.01537662, 

& .09472531,.09130171,.08457826,.07479799,.06231449, 

& .04757926,.03112676,.01357623/ 

DATA IV/0,1,2,4,6,9,12,16,20,25, 

& 30,36,42,49,56,64,72/ 

DATA ZER0/0./ 

I=MIN(16,NARG) 

NN=MAX(2,I) 

Ml=IV(NN) 

M2=IV(NN+l)-1 

I=l 

J=Ml 

V=U(J) 



241 T=(B-A)*V+(A+B)/2. 

TCEL(I)=F(T) 

IF (I.LT.NN) TIIEN 

I=I+l 

IF (V.LE.ZERO) THEN 

J=J+l 

V=U(J) 

ELSE 

V=-V 

ENDIF 

GO TO 241 

ELSE 

IF (U(Ml).EQ.ZERO) TIIEN 

S=H(Ml)*TCEL( 1) 

J=2 

93 

ELSE 

S=H(Ml)*(TCEL(l)+TCEL(2)) 

J=3 

IF (J.GT.NN) THEN 

GAUSS=(B-A)*S 

RETURN 

ENDIF 

ENDIF 

ENDIF 

I=Ml+l 

DO 10 Jl=I,M2 
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S=S+H(Jl)*(TCEL(J)+TCEL(J+l)) 

J=J+2 

10 CONTINUE 

GAUSS=(B-A)*S 

RETURN 

END 
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*** D22 *** 
SUBROUTINE UPLIMIT(XX,CONV) 

C 

C This subroutine is used if LOWBND returns a value of FALSE in FLAG. 

C It uses Newton's Method for convergence in order to get the integral 

C of Ps(Mvs) sufficiently close to 1. 

C 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

COMMON/LINE/SLOPE,YCEPT 

COMMON/CONST2/XTOL,FTOL,NLIM 

COMMON/PROB/X,N 

EXTERNAL PS,GAUSS 

DOUBLE PRECISION PS,GAUSS 

LOGICAL CONV 

DOUBLE PRECISION N 

CONV=.TRUE. 

VAL=GAUSS(50,PS,O. ,XX) 

PSX=VAL-1. 

DO 20 J=l ,NLIM 

DELP=PSX/PS(XX) 

XX=XX-DELP 

VAL=GAUSS(50,PS,O. ,XX) 

PSX=VAL-1. 

WRITE(6,*) 'THE LAST VALUE AFTER THE LAST ONE OF THESE' 

WRITE(6,*) 'STATEMENTS IS INT PS ',VAL 

IF (DABS(DELP).LE.XTOL) RETURN 
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IF (DABS(PSX).LE.FTOL) RETURN 

20 CONTINUE 

C 

C If NLIM is exceeded CONV returns a value of false 

C 

CONV=. FALSE. 

RETURN 

END 



97 

*** D23 *** 
DOUBLE PRECISION FUNCTION PS(P) 

C 

C This function evaluates Ps (the probability of a flip due to star 

C presence) at P 

C 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

COMMON/LINE/SLOPE,YCEPT 

COMMON/PROB/X,N 

DOUBLE PRECISION M,N,NN 

DIMENSION YA(20),Y(20) 

M=lO. tr*( SLOPE*P+YCEPT) 

M=M/STERSD 

C WRITE(6,*) '# STARS/PIXEL= ',M/N 

NN=(N-1. )/N 

YA(l)=M 

Y(l)=YA(l)/N*NN**(M-1.) 

PS=Y(l) 

DO 10 J=2,20 

S=DFLOAT(J) 

YA(J)=(M-(S-1. ))/S*YA(J-1) 

Y(J)=YA(J)/N**J*NN**(M-S) 

PS=PS+Y(J) 

10 CONTINUE 

PS=X*PS 



RETURN 

END 
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*** D24 *** 

DOUBLE PRECISION FUNCTION PSNF(P) 

C 

C This function evaluates Psnf (the probability of a flip due to star 

C presence plus readout noise)* Ps at P 

C 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

EXTERNAL PS,ERF 

DOUBLE PRECISION PS,ERF 

COMMON/CONSTl/PI,TPI,WL 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

COMMON/INPUTS/D,K,PD,EFF,SDR,GL,PFA,FOV 

COMMON/CALC/PFOV,ARATE,SDEFF,EOT,NT,NO,PFT 

COMMON/LINE/SLOPE,YCEPT 

COMMON/MAG/MVT 

DOUBLE PRECISION NT,NO,MVT 

E=DEXP(-.92*(P-MVT)) 

XE=NT"'rE 

UL=(NO-XE)/(DSQRT(XE+SDR*SDR)*SQRT(2.)) 

C WRITE(6,*) 'AFTER THIS, IGNORE #STARS/PIXEL' 

C READ(*,*) 

PSNF=PS(P)*0.5*(1.-ERF(UL)) 

C WRITE(6,*) 'PSNF= ',PSNF,'UL= ',UL 

RETURN 

END 
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*** D25 *** 

C 

BLOCK DATA 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

COMMON/CONSTl/PI,TPI,WL 

COMMON/CONST2/XTOL,FTOL,NLIM 

COMMON/CONST3/XMNM,RE,DMU,WE,DEGRAD,RADDEG,STERSD 

DATA PI,TPI,WL/3. 14159265,6.2831853,0.SD-6/ 

DATA XTOL,FTOL,NLIM/.00001,.00001,100/ 

DATA XMNM,RE,DMU/1852. ,6371000. ,3.981014/ 

DATA WE,DEGRAD,RADDEG/7.292115856D-5,1. 74532925D-2,57.29577958/ 

DATA STERSD/3.04617424D-4/ 

END 

C *********''r************* End of Program *i"''******"'r****''r*******''r***** 
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