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INTRODUCTION

The subject to be treated in this thesis is the
conditional distribution of a random variable given that
the outcome of an associated random variable lies within a
specified interval. This may be considered to be an
extension of the classical case in which the outcome of the
associated random variable is known to assume a specific
numerical value. A brief resume of the classical theory
will lay a foundation for the development of the more
general case and will help to establish the notation which
is to be used in the sequel.

Although the normal distribution is not the only
useful distribution, it is perhaps the most well known.
Since the properties of the multivariate normal distribution
and related distributions have been characterized in detail
it will serve to introduce our notation.

Let X’ be a random vector [xl,xz,...xpl such that the
Joint density of xl.xz,...xp is the p-variate normal. Let

X be partitioned as follows: X -'(fg) .
Let E(X) = y = E($1) = (81) be the mean vector.
) =u %2) 5k m
Let V(X) -Z = E(X = u)(X = u)’ be the variance -~ covariance

matrix,.
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Lot ElXy-uy){Zy=uy)’ = %1y » Eldymup)Xwp)” = ¥, and

E(11'“1’(52’“2)' - tlz - tél . It follows that

Y =[f tlz]
P For
See Anderson {1] for a more extensive discussion in sec. 2.3.

-1
It is well known that E(Llllzﬁgz) - u1+t12 tzz(iz’“z)
-1, .
and that V(zilgzqu) = t11~t12t22t21-t11.2 .
Usually §,, 25% is said to be the matrix of coefficients of

the regression of X on x,. The elements of tlZ E% will be

1
denoted by Bij'

In practice, when we assume E(Y|X)=g+gX, we estimate

the Bid and ai using the method of least squares or maximum

likelihood. These two methods turn out to give the same
results under our assumption of normality.

After this is done we have a relation with which we
may predict Y given that X=x. This type of conditional
prediction model is adequate if the precise numerical velues

of Ii are to be observed, but suppose that because of cost

or because of poor precision in measurement it is found

impractical to observe the X1 precisely. Is there an

extension of this model which will enable us to estimate



the expected value of Y given only that X is known to be in
some region?

The purpose of this thesis is to explore the properties
of a system in which the conditioning statement specifies
something other than that the conditioning variables have
assumed fixed values. The more general problem, i.e. some
of the variates are known to lie in some arbitrary
measurable subset of their Cartesian product space, seems
rather impractical. We shall consider only the case where
it is known that each component of our conditioning vector
X lies in some interval in Euclidean space. The theory
will be developed considering arbitrary closed intervals,
but this can be extended to apply to open or half open
intervals very simply. Although a more general approach
might warrant some consideration, it appears to be
sufficient for the purposes of the present study to consider

only conditioning statements of the form: Xi ¢ [ai’bi]'

where xi is the ih component of X’ = (xl,xz,...xp) and

ai S bi fO!‘ each i==l,2...op.

One might ask when this type of prediction could be
used to benefit the experimenter. There are many practical
examples that illustrate the need and use of such an
extension to the classical prediction model. The most

succinct way to demonstrate this need is to consider any



problem in which we feel justified in assuming a linear
model to predict the outcome of some event. We shall mean
by a linear model that:

1) E(X|X) =g +8X

2) The variance-covariance matrix of Y given
that X=x does not depend on x.

Let us assume that one of our conditioning variates,

say xi, may be measured in two different ways. At great

expense we may observe xi with almost no error; or at little

expense we may observe that X, ¢ (a,b], where a and b can be

i
assumed not to be random variables. In order to make the

example more concrete, assume that we have been estimating
E(Y| X=x) using the classical linear model for some time and

therefore we have estimates of a and (81,82....5p). Let us

assume that the device for measuring Xi very precisely

breaks and that we are faced with the problem of replacing
that device with another expensive one or replacing it with
a much cheaper one which will be far less precise. The

more expensive device might register xq to three decimal

places and the less expensive device may only register
integral values, i.e. we shall be able to determine only

whether x, is in some set of intervals (I-.5, I+.5] where I

is an integer.



We shall attempt to answer some of the following
questions: What effect will replacing the more expensive
device with the less expensive device have on the mean and
variance of what we are trying to predict? What can be said
about the effect that the length of the interval in question

will have on the moments of Y given X, = xJ in contrast to

J

the conditioning statement IJ € (ad'bJ

We shall refer to the classical conditional distri-

s J = 1,25.0ep?

butions as point conditional distributions. If we are

given that some of the random variables {xi}i-l are in
{[ai,bi]}i_l, we shall refer to the distribution of Y given

this information as the interval conditioned distribution.
It will not be attempted to codify estimation
procedure, although in many cases this will be obvious.
The primary goal is to explore and characterize the system
formed when interval conditioning is imposed on some set of
dependent random variables.
We shall discover that if in the interval conditioned

distribution we allow each interval [ai,bij to decrease in
length to a point Cy» then we obtain, in the limit,

precisely the point conditioned distribution. If we allow
one of the intervals to increase in length without bound,
we find that in the limit we are considering a marginal



conditional prediction model, namely with that variable
omitted in the model. Therefore the properties of the
interval conditioned distributions include as special cases
the classical point conditioned distributions and the

marginal or unconditioned distributions.



I THE BIVARIATE CASE

It will be assumed that X and Y are dependent random
variables. Let F(Y,X) be the joint probability distribution
function of X and Y, and let F(X) and F(Y) be the marginal
probability distribution functions of X and Y, respectively.
Let f£(Y,X) be the joint frequency function of X and Y, and
let £(X) and £f(Y) be the marginal frequency functions of X
and Y, respectively. We shall assume that f(X) has bounded
moments of all orders.

The model which will be considered here is:

1) E(Y|X=x) = a + gx, where a and B8 are functions
only of some of the parameters of f(Y,X),

2) V(Y|X=x) = cV(Y), where ¢ is a function only
of some of the parameters of f(Y,X) and
V(Y) = E(Y-E I)§3 and

V(Y| X=x) = E{ (Y-E(Y|X=x))?|X=x}.

In principle we may find f(Y|Xe[a,b]), where a and b
are pre-assigned constants with a < b; however, in most
practical cases we shall be content to find the moments of
this distribution. We shall assume that in no case is
Pr(Xe[a,b]) = O,

Assuming that £(Y,X) is a density function, we now
have the relation:

b
[ £(Y,X)dx
£f(Y|Xe[a,b]) = a © » when Xe[a,b] and

[ £(x)dx
a
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£(Y)Xela,b]) = O otherwise.
There are a few theorems which will be of use
throughout the sequel. These will be presented in the next

section.
l.1 PRELIMINARY RESULTS

Theorem 1. The expectation of a function of Y and X,
h(Y,X), given that Xe[a,b], is the expectation of E(h(Y,X)|X),
where the expectation is taken with respect to the
truncated distribution of X, i.e. truncated to [a,b] .
Proof: Pr (Y < y|Xe[a,b]) =Pr (Y<y, a<X<Db),
Pr (a <X <b)
provided Pr(Xe¢fa,b]) is not zero. This is seen to be the

truncated distribution of Y and X, where X can occur only

b
in [a,b] . Letting [ f(X)dX = p(a,b) we can write
a

e b
h(Y,X)f(Y,X)dXdY
E(h(Y,X)|X¢[a,b]) = -wf<gf ( - : .

o(a,b)
But £(Y,X) = f(X)f(Y|X) , therefore

b -
[ £(x) [ n(Y,x)e(Y]|Xx)dYdx
E(h(Y,X)|X¢fa,b]) = & e

ol(a,b)
b
[ £(x) E{n(Y,X)|X}ax
-3

0‘3’b)
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We see that f£(X) is the form of the density of X
o(a,b)

truncated to the interval [a,b] . Therefore

b
j £(X)E(h(Y,X)|X)dX
a is simply the expectation of

o(a,b)

E(h(Y,X)]|X) in the appropriate truncated distribution of X.
We should note here that if a = b then

.f Y,b)h(Y,b)dY
E(h(Y,X)| X=b=a) = "f ( Int ) ’

£ (b)
X

provided f(x)lb - fx(b) is not zero. This is the classical

point conditioning case.
We may use this theorem to obtain the expectation of

Y given that Xe[a,b] .

Theorem 2. If Pr(a <X < b) is not zero, and if we assume
the linear model, then E(Y|Xe(a,b]) = a + sMT(x), where

MT(X) is the mean of the appropriate truncated distribution

of X .
Proof: If we apply Theorem 1, where h(Y,X) = Y , and

b
[ £(X)dX = o(a,b) ,
a

it follows that:
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b
£(X){a+8X}dX
E(Y|X¢[a,b])) = gf i .

ol(a,b)

b
[ £(X)xdx
Therefore E(Y|X¢[a,b]) = a+BMT(I), where MT(X) =g

ola,b)
It is worth noting here,that

b ®
X Yf(Y,X)dYdX
E(IYIX¢[a,b]) = gf -nf !

ola,b)

b ®
J x£(x) [ 1e(Y|x)dYdx
= g -l®

o(a,b)

b
[ E(Y|X)Xf(X)dx
E(XY|Xela,b]) = a o Assuming a linear

o(a,b)

model we obtain: b
[ x2f£(X)ax
E(XY|Xe[a,b]) = aM,(X) + B a .
O(aab)

It will also be very convenient to use Theorem 1 in
obtaining V(Y|Xela,b]), which is accomplished in the next
theoren.

Before we state the next theorem we need to introduce

the notation which will be used. Let MYIX = E(Y|X) and

My|xe[a,p] = E(YIXela,01).
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Then V(Y|Xe[a,b]) = E{(Y-Mle‘[a’b])2|X¢[a.b]}. We shall let

b

X3f£(X)dXx
o 2(!) - s‘r )
T o(a,b)

b
- {MT(X)}2 , where o(a,b) = [ f(X)dX.
a

Theorem 3. The variance of Y given that Xe¢[a,b] is

V(Y] X=x) + Bcha(x), where we have assumed the linear model.

Proof: Consider the expression

- -, ]
g (x M ™ x| xer a7 |xeta,n1]

This is simply V(Y| Xe(a,b]) and is equal to

E[(r-u!lx)i + 2‘“&|x”"¥|x'"r|xe[a.b1’ +

(MYIX'MYIXQ[a,b])2lx‘[a’b]] .

We apply Theorem 1 to this expression and obtain:

b
T f(X)E{(Y-M!'x)alxldx .
¢(asb)

V(Y| Xefa,b]) = a

b
- 2
Q.r £(X){sx BN, (X)}2dX .

O(S.b)

2E[(Y°“Y|x)(Mnx'Mnxc[a,b])lx‘[a’b]]’

The first two terms are seen to be

V(Y| X=x) + Bzcra(x)
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and it remains to be proved that
2E[(I‘MYQX)(MIIX'MY|X¢[a,b])Ix‘[a’b]] is zero.

We again invoke Theorem 1 and obtain

ZE[E{(Y-M.HX) (Mnx-MY'x‘[a’b])|x}|X¢[a,b]}; but given X,

MYII-MIIX¢[a,b] is fixed and therefore

E“Y'Mxl x (Wlx'"nx«[a,b]”x} -

M_, =M
YIX YIX([a,b]
Therefore we see that

V(Y|Xela,b]) = V(Y| X=x) + aTz(X) .

Since we assumed V(Y|X=x) = cV(Y) we may write this

expression as follows:

V(Y|Xe[a,b]) = cV(Y) + a,ra(X) .

At this point we can see that it will be very useful to

know the behavior of oTz(x) as we alter the interval [a,b].

Let us digress for a few paragraphs in order to present
a general method for obtaining the variance of a function of
X and Y given that Xe[a,b].

It is a rather well known fact that if X and Y have a
Jjoint distribution, then we may obtain V{Y} by the
following relation: V{Y] = E{V(Y|X)} + V{E(Y|X)]. See
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section 2.2 of Parzen {12]}.
A corresponding relationship may be derived which is
useful in the case of interval conditioning. This will be

developed below.

Theorem 4.
(1) Vih(Y,X)|Xela,b]} = E[V{h(!,x)lx}lxc[a,b]] +

v[n{n(r,x)lx}lx.ta.b]] .
Proof: Let I designate [a,b]. We shall denote
E{h(Y,X)|X} by Mhlx and E{h(Y,X)|Xe[a,b]} by Mh’l.

We may write

V{h(Y,X)|XeI} = E[{h(Y’x).MhlI+Hh|x-Mh,I}a'x‘I] .

We apply Theorem 1 to this expression to obtain:
V{h(Y,X)|X¢I} = E[v{h(r,x)lx}|x¢1] + V[E[h(Y,X)lX]II(I] +

23[(h(y'x)'“h|x)("hlx’“h,x)'X‘I] .

Now all that is left to be shown is that the last term is
Zero.

We invoke Theorem 1 once again. Letting
b
f £(X)dX = ¢o(a,b),
a

the last term becomes

[(—25r] e
LSTar) I eE[ (LX) ) 0 o, 1) |X]ax,
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but obviously E[(h(Y.x)-Mhlx)(Mhlx-Mh’I)lX]' is zero,

since Mh'x is fixed if we are given X,

This proves the theorem and it also shows that

E{(h(Y.X)(Mh'x)HXéI} - E{h(r.nlm}zwh,xlm} .

If we let [a,b] consist of the domain of X in equation (1)
we obtain Parzen's relation.
We should note here that the relation
V(Y) = E{V(Y|X)} + V{E(Y|X)]
could be applied to the newly formed random variable
Y’ = Y|Xela,b], where

g(Y’,X) = £(Y,X|Xe[a,b]) = L(XX)
o(a,b)

X¢la,b) and g(Y’,X) = 0, otherwise.
We apply the relation to Y’ and obtain:
V(Y’) = E{V(Y’|X)]} + V{E(Y’|X)}, Xe[a,b], which is
equivalent to the results we obtained above.
We have found that if we assume & linear model,
E(Y|X) = a + 8X and V(Y|X) independent of X, then
E(Y|Xe[a,b]) = a + suT(x) and

V(Y| Xela,b]) = V(Y|X) + ezo,r"‘(x).

We may deduce from these results that
V(Y| Xela,b]) > V(Y|X), for szcrﬂ(x) 2 0.

The equality holds if and only if Y and X are independent,
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where oT"‘(I) + 0.

It may also be shown that if V(Y|X) is independent of
X then V(Y) > V(Y|X), for as we have seen
v(Y) = V{E(Y|X)} + E{V(Y|X)}.
Since V(Y|X) is independent of X, then E{V(Y|X)} = V(Y|X)
and therefore
V(Y) = v(Y|X) + V{E(Y|X)}.
Obviously V{E(Y|X)} > O. Therefore V(Y) > V(Y|X).
In the next section we shall ponder the proposition:
V(Y) 2 v(Y|XeI) 2 V(Y|X),
vwhere V(Y|X) is independent of X. We shall find that if
I+(e»,») then the first equality holds and that if I+x,

then the second equality holds. Obviously both equalities
hold if Y and X are independent. In the appendix we shall
see that unless there is some kind of monotonicity of

V(Y| XeI) with respect to I, then the statement

V(Y) > V(Y|XeI) may not hold.

1.2 LIMITING PROPERTIES

At this point it is quite natural to ask what happens
to the mean and variance of our conditioned random variable

(Y|X¢fa,b)) as a- as and b= a'; « We might rephrase this and

ask what happens to the mean and variance as [a,b] is

allowed to approach a point a,e¢[a,b].
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It will be tacitly assumed that b > a in all cases and
that the density function f(X) is positive and continuous at
each a, which will be considered.

Let Y u,v) = IVXI(X)dx and o(u,v) = fvf(x)dx.
u u

It was shown that E(Y|X¢[a,b]) = a + B .
o(a,b)

Consider lim E(Y|Xe¢(a,b]). Since we have assumed that for
a-=a
o

each ¢ > 0 w(ao,a°+¢) > 0, by continuity, we may write

- Wag,b)
é&goE(YlXG[a,b]) a ¢+ 8 mﬁ_’_s_y .

We apply L'Hospital's rule to “‘ag'b) to obtain the limit
® ao’

t )
as b &oo

im Wa_,t) im ¢ £(t)
%*ao [§? o’ ] - %“o
1lim [d (a ,t im £(t) .
twa, [az.w o’ ’] - %*ao (e)
Therefore im E(Y|Xefa,,b]) =a + 8 lim ¢t £ .
%*ao o’ t~a, "Z%%}
We assumed %gm £(t) > 0, therefore
8o
%_i.lgo E(le‘[aogb]) =q + Bao .

We might abuse our notation and write:

lim E(Y|Xe[a,b]) = a + gX, where it exists.
fa,b]=X
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This is immediately seen to be E(Y|X), the classical point
conditioning problem.
We next examine what happens to V(Y|X¢[a,b]) as a-ag

and b+a’ . As before, we find that

°
lim V(Y|Xefa,b]) = V(Y|Xe[ay,b]),
a=a,

If the probability that a, < X < t is not sero for each
t > a,, then we seek the limit of V(Y|Xe[ay,b]) as bwa, .

We shall have need of L'Hospital's rule as we did in the
last argument. It has been shown that
V(Y| Xela,b]) = V(Y|X) + B2 V(X|Xelfa,b]).
Applying L'Hospital's rule to
E(X?|Xela,b]) - [E(X|XeCa,b1) )%,

applying it twice to the second term, we obtain:

2 2
%}.I:OV(le‘[aogt]) - V(Y|X) + 33 [MO(% - %) ]

= V(Y| X) + s2(0) = V(Y|X),
which was assumed to be cV(Y).
This is precisely the result obtained in the classical case
of point conditioning.

Thus we have found that as our interval "shrinks" to a
point we obtain point conditional results as a special case
of our extension to interval conditioning. This is not an
unexpected result if one recalls the definition of a
conditional distribution.
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Now we examine the behavior of the mean and variance of
Y, given that X¢[a,b], as a+== and b++s , It is easily seen

that %1_.3 E(Y|Xe[a-a,b+A]) = a + B E(X), for ar(x)-os(x) .

We may look at this in a different light, as follows:

.Y ’f(f X)dxdY
lim E(Y|Xe[a=8,b*r]) = -Of -I X} = E(Y)
4= ©(en,=)

These two forms are immediately seen to be equivalent, for
E(Y) -'§{E(le)} = a + BE(X) .

See Graybill {7} page 199.

We see that the assumption of the linear model imposes
the restriction that a + BE(X) = E(Y) .,
If we write E(Y|X) = o’ + g{X-E(X)}, then a’ = E(Y), which
is well known.

Finally let us look at V(Y|Xe¢[a,b)) as a<== and b-+te,
It immediately follows that
%1_'5 V(Y|Xe¢[a=a,b+a]) = V(Y|X) + g2 V(X), for aT“(x) - V(Xx).

We should note that an equivalent form may be obtained as
follows:

V(Y|Xela,b]) = E(Y?|Xe[a,b]) - {E(Y|Xe[a,b])]}?
and therefore

lim V(Y|XeCa,b]) = lim_ E(Y?|Xela,b]) - {E(Y)]}2,
Dot b
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for we have seen that 135. E(Y|Xe[a,b]) = BE(Y). Also

Biritag
j‘.xa f.f(Y,X)dXdI
== = - E(Iz) .
o(enyn)
Therefore
lm V(Y|Xela,b]) = B(Y?) = {E(Y)}2 = V(Y) .
bete

Again V(Y) and V(Y|X)+823V(X) are seen to be equivalent.
Recall that
v(Y) = E{v(Y|X)} + V{E(Y|X)] .
We assumed V(Y|X) was not a function of X, and therefore
E{v(Y|X)} = V(Y|X) .
Therefore
V(Y) = V(Y|X) + V(a+pX) = V(Y|X) + B2 V(X)

We have shown that in the special case when I -+ x, we

have V(Y) 2 V(Y| XeI) = V(Y|X=x,),

and that when I = (~e,e) we have

V(Y) = V(Y| XeI) > V(Y|X).
Let us recall that

V(Y| XeX) = E{V(Y]|X)|XeI} + V{E(Y]|X)|XeI}

and that

V(Y) = V(Y|X) + 8% V(X) .
Assuming that V(Y|X) is independent of X, we have

V(Y|XeI) = V(Y|X) + V(BX|XeI) = V(Y|X) + 82 V(X|XeI),
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Therefore
V(Y) - V(Y|XeI) = 83 V(X) - V(XeD)] o
Therefore, in order to assert that
V(Y) > V(Y|XeX) 2> V(Y|X) for all I,
where V(Y|X) is independent of X, we must show that
V(X) 2 V(XeI)
for all I. This is not the case in general. Sufficient
conditions for this property may be found in the appendix.
We shall discuss some special cases in the next section

which may tend to clarify this question.
1.3 MONOTONICITY OF VARIANCE

Now that we have seen what happens to the variance in
the limiting cases, we should like to know what is the
behavior in between these two extremes, It would be useful,
for purposes of applications, to be able to say that the
variance is monotone decreasing as we decrease the interval
in some nested manner. This is not true in general.
However, we can make some general statements about what
happens 1f we restrict each successive choice of intervals
to leave the previous mean unchanged.

Lemma 1. If we consider all frequency functions defined to

be zero on the complement of the interval [a,b], the

maximum variance is (b-a)? .

Proof: Consider {fi}itlll’ the set of all frequency



23

functions defined to be zero on the complement of [a,b] .
We assume that the family of all distributions

{PJ(X) = 0 except at a and b}Jc(O,l]

PJ(X)-J, if X=a ;
=l-j, if X=b ,

» where

will contain that distribution with maximsl variance.

Let Pr(X=a) = p and Pr(X=b) = q , p+q=1. If we
compute the variance and then differentiate with respect to
p , ot cetera, we find that p = q = 1/2 maximizes the
expression.

Therefore we conclude that the maximal variance,

Y (x=E(X))2P(X) ,

[

X=a,b

is  (1/2){(a=b)/2}2 + (1/2){(b-a)/2}2 = {(b-a) 2}

-.(2;_ali.

Since {p:halz < max{(b=p)?,(u-a)?}, we may conclude that the

maximum variance can be no larger than max{(b=u)?,(u-a)?} ,
where y = EX ,

With similar assumptions it is easy to show that if we
require the mean to be zero, (note a <0 and b > 0), then

the maximum variance is

(2) Max. Var = ('ab) °



2l

Let us consider a density function f(X) with bounded
mean and variance. Let f(X) be truncated to some interval

I° with mean “o « We shall agree to call
Icl _c.eecl & nested decreasing truncation about y_ and
n n-l o -]

I -mJcJc,..cd a nested increasing truncation about u _,
) o 1 m °

where J1 - JJ and I1 - IJ if and only if iej and the mean

after each truncation is Wo® We shall let VAR(IJ) denote

the variance of the truncated variate associated with the

interval Ij’ and require that each truncation not be trivial,

i.e. "some probability is excluded (or included) with each
successive truncation." Subject to these restrictions and

definitions we now prove a theoren.

Theorem 5. A nested increasing truncation implies that the

sequence {VAR(Ji)lizo is a monotone increasing sequence.

Proof: Without loss of generality, we let the constant

mean p =y = 0O . We define o¢2(t) to be

t t
X?dP(x) dF(X) ,
(t)f /;(t)f

and we let

t
4 - ’ .
u(t)f dF(X) = olu(t),t]
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Since

t
u=0= [ XdF(X) for any t 2 0,
u(t)

%“.t. - tf(t) - u(t)f(u(t))[i'lg{ﬁl] -0 .

Therefore we have the relation du(t) = gffta ’
dt uit)fiult
assuming that f(u(t)) is not equal to zero. Therefore we
2 t) -
dt
[orerarerlleaeie) = ulv)eete) = a2(e)is(e) - L8] o

[t - 2R -

Therefore dg?(t) is positive provided 1 + o%(t)/tu(t) is
\

can write:

positive, We ask now, is ¢%(t) < =tu(t) ? We showed that
0%(t) < {=tu(t)}, see equation (2) following Lemma 1.

We have seen that if we increase the length of our
interval, i.e., a non-trivial increase, we necessarily
increase the variance if the mean remains unaltered. This
also implies that a decreasing non-trivial truncation will
have associated with it a decreasing sequence of variances,

If we have a discrete variate the same results hold.
See Widder's Advanced Calculus page 167 {13}.

The practical aspects of this procedure will usually

be found to be of no use whatever, for even if we could
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choose our intervals as we pleased, the proper way to alter
a particular interval, under the conditions of the previous
theorem, would depend heavily on our distribution
assumptions and would depend on the estimate of our

original truncated mean. This would imply that our newly
formed interval would have random variables for end points,
We would have to assert that the new mean was equal to the
original truncated mean in order to be sure that the variance
would be larger.

We would prefer to be able to extend the end points and
not have to worry about the alteration of the mean. Some
characterizations under other hypotheses may be found in the
appendix, as well as necessary and sufficient conditions for

monotone variance under arbitrary extensions of an interval.
1.4 HIGHER MOMENTS

There may arise a need for higher moments, therefore we
shall derive expressions yielding higher moments in general
and then, as a special case, obtain them for the case of a

linear model.
In order to conserve space we shall use some rather

uncommon notation, Let

E{(Y = um)’“m - aglx and i‘f(x)dx - o{I} .
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We are now equipped to apply Theorem 1 to our relation:

E{(Y « M )®|xeI} = E{(Y = - M DixeIl
{ Y| XeI )7l xe1} = Bl "rix * Myx nxa)' }

Let us recall that M

Y|x is fixed if we are given X,

We obtain
E{(Y - Mnxa)“txa} - LE:T%T] §t(xmx)ax , where ¥{X) is

E{(lY = +
{( “!lx Mij le I) %1x} , which is equal to

) @r- "nx) Mr1x = Mypxer! 1" 1] .

Using the fact that MYQX is fixed, if we are given X, we

iivks

obtain

n
(%) o (M _-M )"
mZo L (D SR (D ¢ Y| Xel .

Therefore
n
E{(Y = MYIX@I) |Xel} =

(zhr] § j £ Z (B o)y hy = My p g) X

If we assume a linear model, this expression becomes:

n
[5t] § f(x)mzo (@) 8" of (X - () ax

Xf(X)ax

where MT(X) - o
(1]
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Since in most applications higher conditional moments
of Y depend on the first two conditional moments of Y, one
of which depends on X in the linear model, we see that the
previous expression becomes rather messy, but if they were
needed, theoretically they could be computed from this

expression.
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II THE MULTIVARIATE CASE

We shall find the counterpart of Theorem 1 in the
multivariate case to be as useful as was Theorem 1 in the
bivariate case.

Let £(Y,X

,...xp) be the joint density of Y,X ,...X ,

1" p
and let f(Y) be the marginal density of Y. Let f(gb) be

1

the Joint marginal density of xl....xp. Let it be given as

a condition that X.€I_,...X ¢I , We shall write
171 PP

C -{ { r(;p)dxlmdxp
1 7p
if the expression is not zero. For the sake of brevity,

P
i}i-l and

let Rx denote the Cartesian product space of {I
dxlodxz....de - D(lp) o Let h(Y,Xl....Xp), any scalar
valued function of r,xl,...xp » be denoted by h.

Under these assumptions we shall now prove some

theorems which will be useful in later sections.

2.1 PRELIMINARY RESULTS

Theorem 1lA. E{hl%e&x} = (1) [ f(;p)E{hl;p}D(;(_p) .
Ry
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Proof:
Elhlgpcnx} - T hf(!lxpenx)dx

e (1) [ [ BE(Y,X.,e. X )D(L )4Y «
/C-.f£ 10 XDy

X
But LX) X500 X ) /1K) = £lx )Y ) .

Therefore we may write:

E{hlgpeax} - {1/cl-_r.£ hf(_lgp)f(rlgp)n(gp)dx
p <

- () [ hel (L) -
{1} {: ;p)-.f he(Y| X )dID(X,

Therefore we have E(h|X eR,} = {10} f E{hl,xp}r(z_p)n(lp) .
R

X

Assuming the linear model E(Y) = qa + 8’ Lp and
V(Y| xp) is independent of Lp, we now shall seek the

conditional mean and variance for the multivariate case

corresponding to Theorems 2 and 3 in section 1.1 .

sor e« If we assume that E{Ylgp] =q+ 8’ lp and that
V(Y| Lp) is independent of xp’ then if C is not zero we may

write E(Y|§p¢3x) =-q+ g’ 51,. where &r is the column vector

with  [{1/0} [ £(X)X,D(X)] as its 1*" entry.
Ry
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Proof: We apply Theorem lA and obtain:

E(T|X er) = {1/C] {xf(§)sirl%}n<%)
= {1/} [ £(X )a+8’ D(X )
/] fhlle + 27 L

- g + 1'% .
Theorem 3A. If we assume E(!1§p) -a + ﬁfgp and that
V(Yllp) is independent of xp » then

V{Yllpcﬁxl = V{Y|X} +2'E 8, where
£ = (o) and %y " {10} {x(xi-ui)(xj-nj)f(;p) DIZL)

i,J = 1,2,...p , where Mi is the 1th element ofiﬂT .

Proof: We apply Theorem 1A to the following

expression:
vm;pmx) - E{(Y - KYUSP + MYIZP - unlpdx)ilgpmx} .

As before, the cross product terms are zero for the same
reason as they were previously in the bivariate case.

That which remains is:
V(lepeRx) -

virlg) + {10 { X E{C (a+g X ) =(a*g" M ) 12| L IDIL) o
X
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Therefore we have:

V(n;peax) -
P
ViY|E) + {1,c) { f(lpm[izlai{xi""r(xi)}]zllp}n(zp) -
X

V(YILP) +8'£8.

We might refer to £ as the "local™ variance-covariance
matrix of the conditioned variables.

The multivariate version of Theorem 4 holds also.
Theorem 4A. Given that C is not zero, then
V(hILpeﬁx) - Elvuup)l;peax} + v[z(xlgp)lgp.ax} .

Proof: Apply Theorem 1A to the following expression:

V(hu_penx) = E{(h - %!Zp + "hllp - %'me )q;_p‘nxl ’
where E(hl;p) - thlp and E(hl;penx) - Mhllptﬁ .

Again i1t is obvious that the cross products are zero, and

we obtain:

V(h| X ¢R,) = E{v(hlg_p)lxpenx} + v“"mx NEer .
=p

The last term is equal to V{[E(hl;p)]l;peﬂx} .

2.2 THE MIXED CASE

In the multivariate case we have a more versatile
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situation than in the bivariate case. We may consider

problems in which it is known that xl,xz,...xp take on

fixed numerical values and the remaining variates are in
some rectangular region R, Before we begin the next
theorem we need to introduce some notation.

Let h(I,Xl,xz,...Xp,Zl,Zz,...Zn) be a scalar valued
function of I,xl.xz,...xp.zl,zz,...zn « Let the column
vector (xl.xz....xp.zl.zz....zn)' = (W) = (g‘:) -
(wl,wz,...wm)' , where
()’ = (X),X,000 K ) and (Mp)* = (2132550 002,) o

We shall denote f(xl,xz....xp.zl.zz,...Zn)‘gs -‘en

by f(xl,xz,...xp.al,az,...an) or just f(y;x,;n) .
Let E{h(Y,E)lxstx,xz - gn} - MhN and
E(h(Ioﬂ)IE} - Mh

(¥
Theorem 6., If we assume E(Y|W) = a + g’(W) , where

! -
ﬁ (Bl’sz’oooﬂp'ap+lgcooap+n) [ then

I My £l | =a,)D(2 )
B(R(T,0)|x Ry, u, = oo} = M = R, hly “l e P

[Rxf(xxlxz-,gn)n(xp)

if it exists,
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Proof: In Theorem 1A we showed that

E{h(X,4) [4er | = E{B(n(Y,4)|u}INer ] .

Therefore M = E [{ j‘.h(t.mf(m!)dr }m&]

.§ [“f.h(t..\y,)f(rm)dx] £(3,u, )D(H)
W ,

[ § faxmdow ]
R
.vz

provided the denominator is not zero, which it would be
without the prime.
We mean by this that:

[ S f(y,x.y.z)n(.\:f.)]' -.E f(!z)f(!’xlxz)n(-‘!x)
Ry e
- f(!z)s flwelu )D(x)
¥,
where - gn .
If this change, i.e. f(gx,_gz) - f(xz)f(yxlzz) y is

made in the numerator and we cancel f(ﬁz)’ if it is not

zero, we obtain M _.£ {P&‘!E}ﬂxx‘!z)l)(gx)

Tt lw )0l
X
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where we have assumed that the conditioning,‘y_z -a, was a

non-trivial condition. Now we may write:

N - [ My Fllo,=a,)Dla)
n x

{; £(w |u =a,)D(w,)

X

This is very much like Theorem 1A in that we integrate
the point conditioned mean over the region of truncation.
In this case the only difference we encounter is that we
integrate that same mean in a conditional distribution over

a marginal truncation region.
It is easily verified that this is the same result that
one gets if he considers the expectation given that gpeax

and Z ¢R_ and then lets R #(a,,a.,...8_ ) . This follows
z g @ 1'2 n

from the definition of a multivariate conditional
probability density.
Corollary 1. If we assume E(Y|W) = a + 8’}, and if we let

ﬂegﬁ mean ;p«Rx and Zn-gn » then

MY,!‘R -q + 1‘ (ml.ngooomp.algaz’oooan)l )
¥

where m, = E{xilﬂgnw} « This is a simple consequence of

Theorem 6., We might note here that

(ml,mz,...mp.al,az....an) could be written
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(ml’ngooomp,mp+l.mp+2,ooomp+n) ’ for
E{zimeaﬂl - E{wi,‘_pmeﬁﬁ} -8 .

Now we should like to find the variance of Y given
_l;pcRx and Zn = &, « We shall retain the same notation that

we used in Theorem 6.

Theorem 7. If we assume that E(Y|W) = a + g8’(¥) and that
V(Y|W) is independent of ¥, then

V(Y|u, Ry, wo=a ) = V(Y|W) +8° T8,

where T is a (p+n)x(p+n) matrix such that row i is

(til’tizgco.tip.O,O,oQQO) if isp and (2)' if i)p » where

tij - B{(xy - mi)(xJ - mj)!yielt!} 3 1,3 < p and the
m, = E{xil_v_{eﬁ}l} .

Proof: We shall apply Theorem 6 to V(Y| M R _v_wz-gn) ’

which may be written E{(Y = )&IE + an - Mxlwmw)am‘nw} .

We defined M.”w in Theorem 6., Let “Y!Eeﬂw - Emy_caw} .

If we expand this expression and then apply Theorem 6 we

obtain:

V(Yly_eﬂw) -
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§ [Viriy) + zsic.P.|u} + E“"rm‘"rl!«n!’z' L} ]etelu, 00X )

b 4 ’

§ r(_v_rxluz)n(zp)

x
where C.,P, = (Y = l&’!)(lﬂ! - K!'!‘n!) .

Since V(Y|¥W) and H!' ¥’ given W , are fixed we obtain
V(!lldtﬂ) -
V(T| W) +ore] for(p) H-lat(p) (m),m,,.0omp,w ) 1121 MR, ]
The last term is
p
1,3, 8, (x, - m)}*Uer,] = 2'T 8 .
If we partition g§ such that

l' - (Bloﬂz. o0 .Bp.8p+l.ﬂp+2....ap4_n)

- (%o%) ’
we can write:

- ’ -
V(!lﬁcax) v(Yjw) + & (Tc) L N where T is the variance
covariance matrix of xl,xz,...xp in Rx given that !’ - _gn .

If we are concerned with predicting a vector
!; - (II’YZ""Ym’ » the above theorems will be valid for

most of the marginal properties of 1' o« The more general
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multivariate situations will be considered in the following

section.
2.3 EXTENSIONS TO PREDICTING A VECTOR

Consider the model:
E‘lm'lp and ln) - .Qa + (B)(L;)oz;‘)' ’
where g; - (dl’dz”“dn) is a vector of constants and B

is an (m)x(p+n) matrix of constants. Again we shall let

(L;,Z;l) - (W'._W_;) - (wl,wz,...wn_"p) - (}v_)’ and

5”! = E(X |W) and !YIEGRW - E(.!mlﬁcky_) .

We shall insist that throughout this section we denote the
variables which are point conditioned only by_\gz and that we
shall denote only the interval conditioned variables by -
which have been defined above. We shall, without loss of
generality, use W to denote whatever combination is

appropriate. Note that W, or W _may be a void vector.

Theorem 8. ILE(X W) =d + (s)¥,

then E(X|WeR ) = gy + () (M R |¥ Mz)'
a =x €

%
‘whoro !‘-"xmxl!z - E{!xlzxcnx:!z} .

Proof: By E(}hlﬁcnw) we mean that
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[
column vector ;&YL‘.’{‘RW - (E{Ylly_{cRE},...E{Imly_dl!}) .

We may apply Theorem 6, or Corollary 1, to each of the

marginal entries., We obtain

'L!Y'!‘Rw - Qm + (B)(ml,mz,...mp,al,az,.uan)' »
where m, - E{Iim_d?!] and W = (al,az,...an) .
Therefore: M -d + (8)(M ‘) .
Tler,  Tm ﬁzx‘axlzz’ s

We shall need a few definitions before proving the next
theorem. Let it be given that xpenx and Zn - _gn » then we

shall denote this by y_enw. We shall denote the condition,
given ‘p and gn - gn » by given W. We shall let

V(.!m'ld&) = U, where U = (u,,) 18 an (m)x(m) matrix. We

iJ
shall let V(Zmlm = V, wvhere V = (vij) is an (m)x(m) matrix
independent of ¥. We shall denote E{wil_‘f_eaw} by m, , and

we shall denote the (p+n)x(p+n) matrix with the ijth element,

E{(w -m )(wj -m )Iﬁdiw}, by £ = (°ij We shall also let
E{Yilﬁeﬂn} - Mxiln and

E{Y, |4} = “r, 1w and BlUlMeR ) = 4y = (my)
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Theorem 9. If E(X |¥) =d + (8)M , where W’ = (X',Z')

and we are given that ngw and V is independent of ¥, then

U=V +(8) E(8) .

Proof: Consider E{(Yi-MYi )(r MY‘R)lgen}

This is the ijth entry in U, i.e, UiJ « We now expand the

term and get:

E{Y, Y |ueR, } - WeR, ]

rla YlR

We now add and subtract from this:

Em’ﬂ}! MIJIE'!‘R!] o We now have:

E{(YiYJ - Myim MYJIE)'!‘RX}+

E{(M M

- )weR,} .
AT e A AT RS 1

We apply Theorem 6 to the first term and obtain v, .

13

Now we have:

Uy T Yyt E“"xim “zdlg - My (R By |n)m‘R b

We now replace the terms in the expectation by
equivalent terms obtained via Corollary 1 of Theorem 6 and

our model. Rewriting this we have:
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u

13" Vay? E{(d1+§_i_\!)(dj+ﬂ3!l_) - (di+§_i_b§T)(dJ+§3MT)|y¢B!} )
where ﬁé is the k! row of (g) .

We see that cross product terms cancel when the

expectation is taken, therefore we write:
Uy vyt E{(g] W) (33 ¥) - (g M)(8] Agr)ly_l_mﬁl
-Vt E{g{(¥ - %)13(,\1 - &r)lﬁe}tﬂ}

+ ((s) ¥ (8)°), We see that

Vij Jo

cij is zero if i or j is greater than p.

S U=V <+ () E(8) &
This theorem raises an interesting question. Let us
assume that we know the structure of the (g) matrix and that
we could find a definitive mathematical relationship

between the o, . involving the lengths of each of the

1]

intervals [ai,bij. Let us also assume that if we decrease

the length of some interval, say [a,,b,] = [a,,b,],, then
171, 1’711

( (

) ). is positive definite, where (ai

a13 3 )o is the

J

variance~covariance matrix associated with [ai,bi)o and

%13'0 ~

(¢6,.) is the variance-covariance matrix associated with

ij1

[ai,bi]1 « Can we minimize the variance of Yi with some
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set of constraints on our set of intervals, namely cost
constraintas? We saw that if we point condition gn then we
obtain a minimal variance situation if we point condition
the other p variates. If we consider p variates interval
conditioned, then the point conditioning of n others caused
the upper left (p)x(p) matrix of £ to be not the local
variance-covariance matrix, but the local variance-~

covariance matrix given gn = a5 which we assumed to be

"smaller" than if the n Z variates were interval
conditioned. Just how could we attack this problem with
some cost levels attached to the intervals? We shall not
attempt to answer this question here. We only point out
that this seems to be a very interesting problem for future

study.
2.4 LIMITING FPROPERTIES

We shall consider the limiting properties for the
linear model: E(gh}ﬁ) = gh + ()W , where V(}hjﬁ) is

independent of W . This will provide us with the results

we might want for the various cases; lh - Yl y N = Xl y and

the mixed cases. We shall continue to use the notation of

Theorems 8 and 9, except we shall not insist that'yz be a

given vector of constants as we did in the previous section.



L3

We found in Theorem 8 that:
(3) E(xmmmﬂ) - gm + (8) y.,r ’

! - cee - .
where yT (ml,mz, mn+p) with m, E{wilEeRE}

Here we are using mi -w, if wi is given. This is

consistent since if w = a_ , then E(wp

pHi T %y -a) =2

il "o+t i

Now we ask what happens to E(lﬁlgggﬂ) as Rx - Ep y 1.0

Euclidean p-space, and Rz or g!z - (al,az,...an) .

All we need to do to answer this question is to consider

one of the m since equation (3) holds for arbitrary Rw .

But an immediate consequence of Theorem 6 is that

m, = E(wilgzekz) .

Applying the definition of multivariate conditional
distributions to this expression we obtain:

m = Elwy =2 .
This was not unexpected, for we were essentially given

nothing concerning the !& and therefore obtained the
marginal expectation given only that Kz -‘ﬂn « The

intermediate step, m, = E(wilgzekz) » is the case where we

i

have some variates interval conditioned, in Rz, and we then
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let the intervals of Rx increase without bound.

Retaining the same model, we now wish to know what

happens to V(Xmlﬂcnw) as we let R~ Ep . In this discussion

we shall not require §, of Theorem 9, to have zero entries

in the (n)x(n) lower right hand submatrix, i.e. we allow R,

to be an arbitrary rectangular region. Recall that Theorem 9
stated that

U=V + (g) E(8) ,
where V is fixed, for any Rw « Therefore all we need consid-

er is the behavior of f as R - Ep . Ve defined oij to be

E{(wi - mi)(wJ - md)lﬂcnﬂl y for any rectangular region Rw .

Applying Theorem 6 again we see that as Rx - Ep we obtain a

new

= E{(w, - m, ) (w, - mj)lxztﬂzl ’

%13 3

vwhere now m = E{wklgzenz] .

We next consider the case where we are given E‘gﬂ and

Rz is a rectangular region with all intervals of positive

length. We wish to examine the behavior of f as

Rz - (al,az....an) .

v -
Here we first consider f(!i‘!z) as Rz (al,az,...an) .
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By the definition of conditional distributions we obtain
’ -
f(legz gn) s if it exists. We now apply Theorem 6 in

the same way as we did in Theorem 9 and we obtain a new

o4 = E{(w, - “’1)("3 - mj)lﬂeﬂé} ’

where Ré is {(!;,al,az,...an)} such that !;‘Rx and

m, = E{wilg&th and‘!z - gh} .

We see that we get the same expression that we had in

Theorem 9;

U‘V"’ata'ol

It may seem that the last few discussions set forth are
incomplete. This is why these discussions are not labelled
theorems. They are meant only to be an outline for the
application of previous theorems,



L6

III SUMMARY

We have seen that there is essentially no difference
in £(Y,X|X6¢I) and the joint frequency function of Y and X
where we have truncated the distribution of X in I. Even
though there is no difference between the frequency functions
there is a very important difference in their origins. The
classical meaning of truncation is that we exclude some of
the outcomes which might occur and therefore delete our
sample space. Consequently, we map the elements of this
new sample space with a new random variable which obviously
has a different frequency function. In our interval
conditioning problem we allow the random variable to take
on any value, unknown to the experimenter, and then we
observe only in which interval that value falls.

Although we have developed the properties with the

simple statement, "given g¢nx", it does not seem feasible

to apply this to any experiment unless an exhaustive
disjoint family of intervals may be chosen for each Xi prior

to running the experiment. Recall that we assumed that each
interval had end points which were not random variables.
There may be some cases in which we may feel justified in
approximating some intervals, but these cases are subjective
and only one of them will be discussed below.

Assuming E(Y|X) = a + X, we also considered what
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happened to the variance of Y given Xel as I was altered.

We found that if E(X|XeI) = bo then the variance of Y given

XeI’, I « I’, would be at least no smaller than the variance

of Y given that Xel if E(X|X¢I’) = Boe We mentioned why this

was not very useful, and referred the reader to the appendix.
One might feel that this monotone property is obvious
for all practical purposes, but this is not the case. We
now offer a very simple example to demonstrate that this is
not true.
We shall show that if
V(Y| Xe{=2,k}) = C + p2V(X|Xe{-1,k}) ,
then it will depend on the frequency function of X whether
V(X|Xe{o,k}) < V(X|Xe{~-1,k}) or not.
In order to conserve space let us assume that the frequency
function of X is approximated very closely by
Pr{Xe-1}=1/3, Pr{X=o]}=1/3 and Pr{X=k}=1/3 .

Then E(X) = (1/3)(k-1) and V(X) =(2/9)(k3+k+1). We now

exclude X=-1 and have Pr{X’=o}=1/2 and Pr{X’=k}=1/2 .

Therefore E(X’)=k/2 and V(X’) = (1/4)k? .
We see immediately that (1/4)k2 > 2/9(k3+k+l) for

r

k 2 1'0, and we see that the variance of X’ may be made as
much larger than the variance of X as we like,
We see that we do need to examine the exact behavior

of the "local variance® before we make any decisions about
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selecting a family of intervals,

Since the normal distribution is usually assumed in
conjunction with the linear model we should like to
characterize the local variance properties for this
distribution. We could not prove or disprove that in all
cases the normal distribution had the monotone variance
properties we had anticipated. Some of the particular
intervals for which a normal random variable has the
monotone variance property will be discussed in the
appendix. Table 1, presented by Clark {3}, seems to be a
rather good indication that the variance will increase 1if
we extend any interval under consideration in the case of a
normal variate with mean zero and variance one,

If we move up or to the left in the table from any
point, the entry is found to be larger than the original
entry. We do, however, recognize that this is only an
indication and not conclusive,

If we are willing to accept this as sufficient evidence
for the said property, then it follows that eny normally
distributed random variable with bounded mean and variance
also has the property of monotone variance in a nested
truncation,

Much more work can be done on this particular question.
Some numerical work on this aspect would appear to be

particularly helpful in characterizing some properties of



VALUES OF THE STANDARD DEVIATION o ) OF THE STANDARD NORMAL POPULATION TRUNCATED AT a AND b(a<b).
NOTE THAT o_p, _, =

TABLE 1

"3000 -2075 -2.50 -2.25 -2.00 “1075 "1050 "1025

a
"1.00
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the system studied here.

Most of the work done in section I, The Bivariate Case,
carried over to the multivariate case as expected, with a
few more variations in the limiting cases.

Since only the fundamental properties of this system
could be explored in this thesis, many of the problems and
applications can only be conjecturo& at this time.

Some of the problems to be solved may be presented
best in the form of questions. How can we estimate
parameters if we do not observe the variate "precisely"?
How could one attack the problems concerning robustness?
How would one decide which choice of intervals to use for a
minimal cost estimation with a pre-assigned level of
variance? These and many other problems must be left for
future investigation.

The obvious application, which has been mentioned
above, is predicting the outcome of some event by measuring,
or observing, some associated random variables with a device
which yields measurements which are not sufficiently precise
to be considered, or assumed, continuous events,

It seems very feasible that this conditioning may have
some practical applications in designs of experiments,
particularly in some cases of missing data. If one has some
way of knowing that the data lost were within given bounds,
he might be able to salvage some of the information for
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purposes of estimation. We must keep in mind that we would
have to assume that these given bounds were not random
variables,

The most fruitful application would seem to be the
design of a minimal cost experiment by observing more
correlated variables in larger intervals., Some of these
variables may nullify their usefulness in the conventional
regression models because of the cost of precise
observation., We might also choose some variables with
established estimates for their parameters which might be

very inexpensive to observe less precisely.
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IV APPENDIX

It was shown, for any probability distribution, that if

we considered V(YlY(Il) where the mean was, say Mi' then non-

trivial extensions of the interval leaving the mean un=-
changed necessarily produced a larger variance., Obviously,
this leaves a great deal to be desired. We have mentioned
the problems involved in extending an interval in such a way
as to leave the mean unchanged, Can we find some
distributions which have the property that if we extend some
arbitrary interval we may be sure that the variance is
larger regardless of the change of the mean?

Let us consider first a simple case in which we assume
a linear model E(Y|X) = o + 8X , and where V(Y|X) is
independent of X . We found that

- 2
V(Y|XeL) =a + 82V, ,

where VL is the "local" variance of X in Il' Since we are

attempting to lay foundations for estimation and prediction
procedure, it becomes very important to know the behavior of

VL as we choose different intervals. If we could master

this problem, we could extend our results to the various
multivariate cases without great difficulty.
This problem has had no exploration that the author has

been able to locate, other than the brief numerical table
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computed for the normal distribution in Clark's article {3}.

Because regular behavior of VL in some sense would

appear to be essential for certain applications of
conditional predictors, we direct our interests toward the
search for some characterizations of non-negative functions

which will insure the monotonicity of

[(X-M(X))2£(X)dX
Ry [ £(x)ax

Rx

as we extend Rx .

Those discoveries, made thus far by the author, which
are pertinent to this problem will be presented in the form
of theorems.

We now present a theorem which will give us some idea
about what kinds of sets we must exclude in order to discuss
the subject of monotonicity of variance. We have in the
past reserved this term for discussions about the extensions
of intervals. Thic theorem will help to show why we made
this reservation.

Let us consider a random variable X with a frequency
function f(X) which is positive on the Lebesgue measurable
set R, Let us define a truncation of this variate to a set

R1 where Pr{XeRl} >0 ., This defines a new random variable

Il with a frequency function fl(xl) = ¢ f(X) in R, , where
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[ £.(X )dX = 1. We define another random variable X
Rl 11 1 2

similarly in R where R, N Rl = g and 32 U Rl =R , with

2! 2
frequency function fz(xz) o With these definitions we

prove Theorem A ,

Theorem A. Let xl y X 2 ? Rl and R2 be defined as above.

Then it is false that V(Xl) < V(X) for each Rl cR.

Proof: Let [f(X)dX = A(R) , f £(X)dX = A(Rl) and
R R
1

[ £(X)dX = A(RZ) .

R

We may write:
A(R) V(X) = A(Rl) V(Il) + A(Rz) V(Xz) +

A(Rl){Mxl - M }? + A(Rz){uxz - Mxlz ’

where My - E(X), Mxl - E(Il) and sz - E(Xz) .
Since we need to demonstrate only the existence of some Rl

such that V(Xl) < V(X) we may, without loss of generality,

consider Rl and 8.2 such that Mxl - sz - MX e Then

A(R) V(X) = A(Rl) V(xl) + A(Rz) v(X,) .
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We note that A(R) = A(Rl) + A(Rz) « Therefore,

AR V(X)) = V(X)) ]} = A(R){V(X,) - V(X)}
If v(X) > V(xl) then the right side must be positive also.
We conclude that if V(X) > V(Il) then v(xz) > Vv(X) , and

vice versa.
Therefore we must preserve some order in the successive

choice of Ri if we are to talk, meaningfully, about monotone

variance with the R1 o« The restriction most suited for our

purposes is obviously to require that the sets we shall
discuss will be nested intervals.
There is a similar theorem for the multivariate case.
Let X be a vector of random variables with the joint
frequency function f(Y) such that [f£(Y)D(X) = 1. As in the
R

previous theorem we define fl(ll) by truncation in Rl and

fz(_Y_z) in R, , where Ry UR, =R and R, NR, = g .

2 1l 2

We define C = [£(Y)D(Y), C, = [ £(X) D(Y) and C, = [ £(X)D(Y)
R Ry R,
and E(Y) =M, E(_Y_l) - ¥, and E(Iz) -M, .

Let V() = ¢, v(ll) - tl y and V('I'Z) - tZ .
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Theorem B, Let 11 R 12 ’ tl ’ tz ’ nl » and R, be defined

as above, Then it is false that tl < §£ for each Rl cR.

Proof: Consider Bl and R2 such that ‘l'd'l - _1_4_2 -M.

- + - .
Then ck cltl Cztz » C=C o +C,

Lol E-g)=c,l £, -l .

If the left side is positive definite, then the right side
must be also. Therefore { - tz is negative definite if

) tl is positive definite and vice versa.

In this case the restriction most suited for our
purposes is obviously to require that the regions we shall
consider will be nested rectangular regions in the space
being considered.

Our next theorem is one which can be used, in special
cases, with the normal distribution and any distribution
when we are considering changing the lcngths.of intervals
where the density function is monotone. We shall define

) = [orkey] I - W10

t ¢t
M(t) - f X ;‘;lg and cp(a,t) - af f(X)dI ™

a lb(apt)

Theorem C. If the density function, f(X) , under
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consideration is a monotone decreasing function of X for

each Xela,b] , then %—e[ga(t)] > 0 for each tefa,b] .

Proof: %{aa(t)] -% {(t - M(t))a - o%(t)} ;

see Theorem 5 page 24,. We have seen that

sup o?(t) < max{(t - M(t))zo (a - H(t))z} ’

see Lemma 1 in section 1.3 .
Therefore if f(X) is as we assumed, then

(t - M(t)) 2 =-(a = M(t)) for each t ¢ [a,b] and

therefore (t = M(t))z > o%(t) for each t ¢ [a,b] also.

This implies that %{qz(t)] 20 for each t ¢ [a,b] .

In general, any distribution function which is
differentiable in (a,t] and is such that t-u( t) 2 (Mt-a)

for each t ¢ (a,b] will have this property of uniformly
monotone increasing variance with t , t ¢ [a,b] .
Obviously, if the mean is nearer the right end point of
[t,b] for each t < b which is considered, we may extend our
interval to the left with assurance that the variance will
increase.

Now we shall seek the necessary and sufficient
conditions for the density function f(X) to have the
monotone increasing variance property under right-hand

extensions.
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Let us define the following terms:

t
J (X = My 4 )2dF(X)

°a[a:t] -8 ’

ola,t]
t
[ XdF(X)
M[a t] - a » and
’ ola,t]

L]
ola,t] = [ dF(X) ,
a

where F(X) is the distribution function of X .

- F
Let F'rm'vb —0 , F(b) - F(a) >0 .

We know that

b b
of TMpa,py) "aFg(X) + [ R (XIA(X-My ) =(bd, )

In order for °2ta.b] to be greater than or equal to

(b--i'i[&“b])"'2 we must have
a,rbrT(x)d(x-M[a,b])" 0.
This is the necessary and sufficient condition for
ﬁazta,t]] >0att=b,
If this is true for eacsh t ¢ [a,b] then

ﬁa’(a,t]] >0 for each t ¢ [a,b] .
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Let us examine this condition more closely.

t
If af FT(X)d(X - u[a.t])" > 0 for each t ¢ [a,b] , then

t 1
aj' FT(I) X dx > m[a,t])af F,r(x) dX for each t ¢ [a,b] .
Therefore if

J‘txr (X) ax
(4) a T

- > for each t ¢ [a,b] , then
t < ’
Jrg(x) ax et
a

g'i"z[&,t]] 2 0 for each t ¢ [a,b] « How do we interpret

this condition? The expression on the left in inequality (4)
is simply the f F(X) 1 t M .
8 simply the mean of F(X) in (a,t] , F(X)ra,t]

Therefore we may write %;[aa[a,t,]] 20 for each t ¢ [a,b]

if and only if MF(X)[a,t] 2 N[a,t] .

It has been shown that if we choose u(t) such that

Mry(t),t] = M, for each t under consideration, then

& o*tul),21] 2 0 and =l o?ru(e),u1] 20 .

Therefore it follows that if g—ia“[a,t]] <0, then

-’-g—g[c‘[a,t]] >0 if we
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consider a to be a variable., This particular statement
must not be construed to imply that if one is positive the
other must be negative!

Therefore we may conclude that:

1) if and only if Mp(x). .. 2 Mg 7 then .giaz[,,m] >0;

2) 4if and only if MF(X)[a,b] S Mpgopyo thon“giqz[a,b]] 2 0.

Another way to obtain this result is to look at:

b b
aj‘ (x-n“’b])“dir,r(x)-l} + af (Fp(X)=1)d(XH ) -

(a,b]

(a - H[a,b])z .

In order to insure (a - )2 > Ozta,b] » We have
a,b]

b
X)- - >
aI (F(X)-1}(x Mrg,py)9X 20
for each a under consideration. This implies that
f b > > X
R X[F (X)-1}ax > M a,b] a,r (Fp(X)-1)ax .
Note that Fp(X)-1 cannot be positive and therefore:

b
af X(F (X)-1)ax

<
5 < .
[ (Fy(x)-1)ax e
a

The expression on the left is MF(X)[ b o« Ve have that
a,b]
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- 2 .
=1o%¢,b]] 2 0 if and only if ME(X)pg, by S Mo by TOF

each t under consideration. This is condition 2) above.

In more crude terms we may say that if we are
considering absolutely continuous distribution functions
and decrease our variance with a "slight" increase of the
upper end point then we do increase our variance if we
decrease the left end point "slightly."™ This situation is
governed more accurately and totally by statements 1) and 2)
above,

Let us now consider the changes in variance as we
extend both end points. Let u = J{t), where t is the upper
end point and u is the lower. Let the original interval be
[a,b] « We shall consider oz[u,t] » the variance on [u,t],

where [a,b] € [u,t] « If u=a for each t > b then %% = 0,
otherwise we shall consider only those cases where

au _ .
ag "% <0

We see that %{[Uz[uot]] -

oL ee (a2 = oPru,e1) = uitlu){(u-M)? = o*[u,e1}] ,

t
where A(t) = uvr dF(X) and M =M. .o .

t t
Recall: [ (I-M)zdl".r(x) + [ 1?,1,(x)c1(x--u)2 = (t-M)? and
u u
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t t
[ (X-M)2a{Fp(X)-1} + [ {Fp(X)-1}d(X-M)2 = (u-M)? ,
u u

where F.(X) = = .
ore FplX) = T —Flo)

Multiply the first equation by f(t) and the second by
-u’f(u) o Add the results. This yields: g—ivg[u.t]] >0

if and only if

t t
£(e) [ Fp(X)d(X-M)2 = u'f(u) [ [Fp(X)-1}a(X-M)2 20 ,
u u

In fact, %-E[cz[u,t]] is {ll/A(t)} times the expression on

the left. In another form we have that the derivative is
not negative if and only if:

uu)-wﬂw}f%umumwguwmnnmw-(mmﬂ.
u

The most useful case is probably that in which u’ = =1 ,
(i.e. an equal numerical change of endpoints).

NOTE: If the distribution is symmetric about "o for

[a,b) , then the right side is zero and the left side is
positive ‘MF > M) unless f(t) and f(u) are both zero; in

which case we know %;{cz[u,g]] is zero. This is consistent

with our previous results, for (t-M)? = (u-M)? > (t-u)?/4 .
We discussed the proposition, V(Y) > V(Y| XeI) > V(Y|X),
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for the case of a linear model where V(Y|X) was independent
of X. We proved that both V(Y) and V(Y| X¢I) were greater
than V(Y| X). Assuming the linear model we prove two
theorens.

Theorem D. If V(YlXcIJ) is monotone increasing for each

arbitrary nested increasing truncation, then
V(Y) _>_ V(Y]XGIJ) for Oach J - 0,1,... .

Proof: Let I = (=e,s) , Then V(Y|Xel) = V(Y) as
was seen in section 1.2 . Therefore if V(YIX(IJ) is

monotone in the sense we have discussed, then

V(Y| XeI) = V(Y) > V(!’]XoIJ) for each IJ

) is not monotone increasing for

cl.

Theorem E. If V(IlXeIJ

each arbitrary nested increasing truncation, then V(Y) is

not necessarily greater than or equal to V(YlX(IJ) for each
Jrwhere I c I, €I, ciecl eI = (mmye),

Proof: Consider a density function £(Y,X) which is
such that: V(Y) = K and

< V(Y| XeI ) > [V(Y|XeI )] =

K’ <V(Y[XeI ,,) < eeo <V(Y) =K,



oL

If V(Y) = V(Y| XeIn+ ) the theorem holds. If not,

1

choose some fl(Y' »X’) = cf(Y,X), x‘1n+1 3 fl(Y',X') =0

otherwise. Then
V(Y’) = K’ > V(Y'lX’cIn) = V(YlXeIn) .

Therefore if we have a density which is such that
V(Y| XeI J) is not monotone we can find a density which is

such that V(Y’) < V(Y’|X’¢I) for some I .,

We have shown that the proposition: V(Y) > V(Y|Xe¢I)
may not hold unless we have the monotonicity of variance
property with nested increasing truncations. We recall
that V(Y| XeI) > V(Y| X) in all cases under our assumptions.

We might ask what good are the conditions we presented
on page 60, They may be used in some cases to give
definitive results. We shall present one such example.

Let f(X) = eX"%, X¢(-w,t] . Let u’ = 0 ., Then we
have that F(X) = f(X) = ¢X-t ,

Therefore MF(I,(-":U = M(-.t] . Therefore, 0%(-=,t] is

constant for each t < e , This may be verified by noting
that

t
& _Jx-mzeXtax -0

These conditions may be applied to the negative exponential

in the same way.
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In the case of a normal variable the necessary and
sufficient conditions presented in this appendix are not
appropriate. Consider a normal variate with mean zero and
variance one. It can be shown, and is shown by Clark {3},
that if one truncates this distribution to the interval

(a,») , then o%[a,») =1 - “[a,-)(“[a,-) -a) .

This may be obtained from the expression:

a) = b
F(b) - F(a)

Ozta.b] -] - lt(aa’b] +

Since "‘[a,-) ~a20 and is monotone increasing

(a,=)
with a , we see that ¢z[a,-) is monotone decreasing with

a , for each a < e , By symmetry, we see that this holds
for right extensions of (-e,a] also.

The author has not been able to prove that arbitrary
extensions of intervals imply an increase in variance in
the case of the normal distribution, although the table on
page 49 is a good indication that the normal distribution
does have this property.

Every attempt by the author to classify, in generality,
the set of £(X) for which right extensions imply monotonie
variances has failed.

This is a8 very interesting question, but much more work
can be done to improve our knowledge about this property and
determine its implications.
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ABSTRACT

The subject treated in this thesis is the conditional
distribution of a random variable given that the outcome of
an associated random variable lies within a specified
interval. This may be considered to be an extension of the
classical case in which the outcome of the associated
random variable is known to assume a specific numerical
value,

The primary purpose of the study was to examine the
properties of a system formed by interval conditioning
under the assumption of a suitable linear model. No
attention was given to appropriate estimation procedures.

The principal conclusions of the study follow. Let X
and Y be Jointly distributed random variables such that
E(Y|X) = a + 8X, vhere o and g are constants, and such that
the variance of Y given X is independent of X. Then

E(Y|XeI) = a + B E(X|XeI)
and the variance of Y given X¢I is equal to the variance of
Y given X plus g2 times the variance of X in its truncated
distribution, i.e. truncated in the conditioning interval I.

It was shown that the limiting cases of the system led
to the classical conditional results as the conditioning
interval degenerates to a point, and to the classical
marginal results as the interval expands to encompass the

real line. These results were generalized into the case



where a random variable Y is conditioned on a set of

associated variables, [Iili_l » such that X eIy ,

ie]1,2,00ep &

Higher conditional moments were found in general.
Since third and higher conditional moments are usually
functions of the conditioned variables, only an analytic
form was given.

Consideration was given to the case in which a vector
of random variables is to be predicted given that an
associated vector of random variables lies in a specified
rectangular region. Two types of conditioning were
considered simultaneously at this point, namely, the case
in which part of the associated variables are conditioned
to points and the remainder to intervals. ,

In various places in the body of the thesis and in the
appendix consideration was given to the conditions under
which the variance of a truncated random variable increases
monotonically with the interval of truncation. This was
found to be a complicated problem, but necessary and
sufficient conditions for this property were developed in
the appendix,
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