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INTRODUCTION 

The subject to be treated in this thesis is the 

conditional distribution of a random variable given that 

the outcome of an associated random variable lies within a 

specified interval. This may be considered to be an 

extension of the classical case in which the outcome of the 

associated random variable is known to assume a specific 

numerical value. A brief resume of the classical theory 

will lay a foundation for the development of the more 

general case and will help to establish the notation which 

is to be used in the sequel. 

Although the normal distribution is not the only 

useful distribution, it is perhaps the most well known. 

Since the properties of the multivariate normal distribution 

and related distributions have been characterized in detail 

it will serve to introduce our notation. 

Let!' be a random vector (X1,x2, ••• 1p] such that the 

joint density or 11 ,12, ••• Xp is the p-variate normal. Let 

! be partitioned as follows: l • (!}) . 
Let E(l) • • E(.li) • (f-1) be the mean vector. - !2 !.2 

Let V(l) • l • E(l - ,!_)(! - ~_)' be the variance - covariance 

matrix. 



Let E(!1-JL1)(l1•JL1)' • i11 ' E(!2•.».2)<!•JL2)' • i22 and 

E(!1 •JL1 ) (!2•JL2 )' • i 12 • t;1 • It. follows that 

See Anderson {l} tor a more extensive discussion in sec. 2.3. 
-1 

It is well known that E(l1 fl2•J!2) • JL1+i12 t22 (1£2•JL2) 

and that V(.!1112•¾) • i 11•i12t;;t21=t11. 2 • 

Usually t12 i2~ is said to be the matrix of coefficients of 

the regression of 11 on 1£2• The elements of t12 t2½ will be 

denoted by aij• 

In practice, when we assume E(Ill)-SL+~!, we estimate 
• the Sij and a1 using the method of least squares or maximum 

likelihood. These two methods turn out to give the same 
results under our assumption of nonnality. 

After this is done we have a relation with which we 

may predict I given that!•~• Thia type of conditional 

prediction model is adequate it the precise numerical values 

of Ii are to be observed, but suppose that because of coat 

or because of poor precision in measurement it is found 

impractical to observe the x1 precisely. Is there an 

extension of this model which will enable us to estimate 
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the expected value of I given only that! is known to be in 

some region? 

The purpose of this thesis is to explore the properties 

ot a system in which the conditioning statement specifies 

something other than that the conditioning variables have 

assumed fixed values. The more general problem, i.e. some 

of the variates are known to lie in some arbitrary 

measurable subset of their Cartesian product space, seems 

rather impractical. We shall consider only the case where 

it is known that each component of our conditioning vector 

! lies in some interval in Euclidean space. The theory 

will be developed considering arbitrary closed intervals, 

but this can be extended to apply to open or half open 

intenals very simply. Although a more general approach 

might warrant some consideration, it appears to be 

sufficient for the purposes of the present study to consider 

only conditioning statements of the form: Xi f [ai,b1], 

where x1 is the 1th component of!' - (x1 ,x2, ••• xp) and 

a1 b1 for each 1=1,2, ••• p. 

One might ask when this type of prediction could be 

used to benefit the experimenter. There are many practical 

examples that illustrate the need and use of such an 

extension to the classical prediction model. The most 

succinct way to demonstrate this need is to consider any 
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problem in which we feel justified in asswning a linear 

model to predict the outcome of some event. We shall mean 

by a linear model that: 

1) E(Ill) •~+Bl 
2) The variance-covariance matrix of I given 

that l•a does not depend on a• 
Let us assume that one ot our conditioning variates, 

say 11• may be measured in two different ways. At great 

expense we may observe Ii with almost no error; or at little 

expense we may observe that x1 , (a,bJ, where a and b can be 

assumed not to be random variables. In ord•r to make the 

example more concrete, assume that we have been estimating 

E(Yll-~) using the classical linear model for some time and 
therefore we have estimates of~ and (e1 ,a , ••• ). Let us 

2 p 

assume that the device for measuring 11 very precisely 

breaks and that we are faced with the problem ot replacing 

that device with another expensive one or replacing it with 

a much cheaper one which will be far less precise. The 

more expensive device might register Xi to three decimal 

places and the less expensive device may only register 

integral values, i.e. we shall be able to determine only 

whether x1 is in some set of intervals (I-.S, I+.5) where I 

is an integer. 
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We shall attempt to answer some of the following 

questions: What effect will replacing the more expensive 

device with the less expensive device have on the mean and 

variance of what we are trying to predict? What can be said 

about the effect that the length of the interval in question 

will have on the momenta of Y given Ij • xj in contrast to 

the conditioning statement Ij, (aj,bj); j • 1,2, ••• p? 

We shall refer to the classical conditional distri-

butions as point conditional distributions. It we are 

given that some or the random variables (x1}~.1 are in 

{[ai,bi]li.1 , we shall refer to the distribution or I given 

this information as the interval conditioned distribution. 

It will not be attempted to codify estimation 

procedure, although in many cases this will be obvious. 

The primary goal is to explore and characterize the system 

formed when interval conditioning is imposed on some set or 

dependent random variables. 

We shall discover that if in the interval conditioned 
distribution we allow each interval [a1 ,b1] to decrease in 

length to a point ci, then we obtain, in the limit, 

precisely the point conditioned distribution. If we allow 

one of the intervals to increase in length without bound, 

we find that in the limit we are considering a marginal 
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conditional prediction model, namely with that variable 

omitted in th• model. Therefore the properties or the 

interval conditioned distributions include as special cases 

the classical point conditioned distributions and the 

marginal or unconditioned distributions. 
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I THE BIVARIATE CASE 

It will be assumed that I and I are dependent random 
variables. Let F(Y,I) be the joint probability distribution 
function ot I and Y, and let F(X) and F(Y) be the marginal 
probability distribution functions of I and Y, respectively. 
Let f(Y,X) be the joint frequency function ot I and Y, and 
let f(I) and r(Y) be the marginal frequency functions of I 
and Y, respectively. We shall assume that r(I) has bounded 
moments or all orders. 

The model which will be considered here ia: 
l) 

2) 

E(IIX•x) •a+ ~x, where a and Bare functions 
only of some of the parameters of f(Y,X), 
V(YII•x) • cV(Y), where c is a function only 
of some of the parameters of f(I,X) and 
V(Y) • E(Y-E(Y)) 2 and 
V(YIX•x) • E{(Y-E(YII•x)) 2 II-x}. 

In principle we may find f(YIIt(a,b]), where a and b 
are pre-assigned constants with a.Sb; however,in moat 

practical cases we shall be content to find the moments or 
this distribution. We shall assume that in no case is 

Pr(I,(a,b]) • O. 

Assuming that f(Y,I) is a density function, we now 
have the relation: 

b 

f(YII•[a,b]) 
f r(Y,I)dX 

"' • .... a_..6 ___ _ , when X,[a,b) and 

J r(I)dI 
a 
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f(YfX,[a.b)) • 0 otherwise. 
There are a few theorems which will be of use 

throughout the sequel. These will be presented in the next 
section. 

1.1 PRELIMINARY RESULTS 

Theorem 1. The expectation of a function of Y and X, 
h(Y,X), giYen that If(a,b], is the expectation of E(h(Y,X)II), 
where the expectation is taken with respect to the 
truncated distribution ot X, i.e. truncated to [a,b) • 

Proof: Pr (Y ,S yfX,[a,b)) • Pr (Y ,S Yt a.SI ,Sb) , 
Pr (a< I< b) - -

provided Pr(X,(a,b]) is not zero. This 1s seen to be the 
truncated distribution of Y and I, where X can occur only 

b 
in (a,b] • Letting J t(X)dl • ,p(a,b) we can write 

a 

• b 
B(h(Y,X)IX•(a,b)) 

J .r h(t,X)f(Y,I)dldY 
• - a 

..,(a,b) 

But t(Y,I) • t(I)f(YIX) • therefore 
b • 

• 

B(h(Y,I)fX,ta,bJ) 
J f(I) J h(Y,X)t(III)didX 

• a -• 

b J t(I) l(h(Y,I)f I)dX --·--------- • ,p(a,b) 
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We see that t(X) is the form or the density ot I 
o,(a,b) 

truncated to the interval [a,b) • Therefore 

b J t(I)E(h(Y,I)II)dX 
a is simply the expectation ot 

~(a,b) 

E(h(Y,X)IX) in the appropriate truncated distribution ot x. 
We should note here that it a• b then 

• 
E(h(Y,I)II•b-a) 

J t(Y,b)h(Y,b)dY -- t (b) 
X 

provided f(I)I • t (b) is not zero. Thia is the classical b X 

point conditioning case. 
We may uae this theorem to obtain the expectation of 

Y given that Xe[a,b] • 

Theorp 2. If Pr(a b) is not zero, and if we assume 
the linear model, then E(YJX•[a,b)) •a+ eMr(I), where 

M,,(I) ia the mean of the appropriate truncated distribution 

of X • 

Proof: It we apply Theorem l, where h(Y,I) • Y, and 

b 

it follows that: 

J f(X)dX • ~(a,b) , 
a 
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b 

E(YII•(a,b]) 
J t(I) {a+aI}dI •..,a _____ _ 

• 
b 

Therefore E(YfI,(a,b]) • a+aJC.,(I), where K,(X) 
I t(I)Xd.l 

• a • 
(t)(a,b) 

It ia worth noting here,that 

E(IYII•(a,b]) 
Jbl • I Yt(Y,I)dYdI 

•a -

b • J U(I) I It(YfI)dYdI 
•a - • 

b 

:. E(lll It( a, b]) 
J E(YII)Xt(X)dl • __ a ______ • Assuming a linear 

model we obtain: 
b r I 2f(X)dl 

E(llfit[a,b]) - a.M.r(I) +a.~ • 
fP(a,b) 

It will also be very convenient to use Theorem 1 in 
obtaining V(YfXe(a,b]), which is accomplished in the next 
theorem. 

Before we state the next theorem we need to introduce 

the notation which will be used. Let Mrtx • E(Y(I) and 
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Then V(YIIt[a,b]) • E{(Y-MyjX,[a,b]) 2 1X,(a,b]}. We shall let 

b J I 2t(I)dl b 
• a - (M (1)} 2 , where 0(a,b) • J f(l)dl. 

~(a,b) T a 

Theorg 3. The variance of Y given that I,(a,bJ ia 
V(III•x) + e2oT2 (X), where we have assumed the linear model. 

Proof: Consider the expression 

This is simply V(IIIe(a,b]) and is equal to 

E[(Y-MylI) 2 + 2 (Y-MylI)(MylI-Mylie(a,b]) + 

<My1x·My11,(a,bJ) 2 IX,(a,bJ] • 
We apply Theorem 1 to this expression and obtain: 

b r rcx>11<1-14y11)2 111dX 
V(YII,(a,b]) • a· + 

cp(a,b) 

b J f(l) { $I-fU4T (Ja} 2dl 
a + 

u,(a,b) 

The first two terms are seen to be 
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and it remains to be proved that 

2E[(Y·Mytx)(MylI-MylX,(a,b])IX•[a,b]] is zero. 

We again invoke Theorem land obtain 

My11-MYIX•[a,b] is fixed and therefore 

- o. 

Therefore we••• that 

Since we assumed V(YII•x) • cV(Y) we may write thia 

expression as follows: 

V(YII,[a,b]) • cV(Y) + oT2 (I) • 

At this point we can see that it will be very useful to 
know the behavior ot oT2 (X) as we alter the interval [a,b]. 

Let ua digress for a tew paragraphs in order to present 
a general method for obtaining the variance ot a function of 
I and Y given that Xt[a,b]. 

It is a rather well known fact that it I and I have a 
joint distribution, then we may obtain V{Y} by the 

following relation: V{Y} • E{V(YII)} + V{E(YII)}. See 
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section 2.2 of Parzen [12). 

A corresponding relationship may be derived which is 

useful in the case of interval conditioning. This will be 

developed below. 

Thforem 4. 
(1) V{h(t,X)IIt[a,b]} • E(v{h(Y,I)fI)IXt[a,b]] + 

v[E{h(t,I)fI}II•(a,b]]. 

Proof: Let I designate (a,b]. We shall denote 

E{h(Y,I)II) by ~IX and E{h(Y,I)jX,(a,b]} by J\i,I• 

We may write 

V{h(Y,I)fI,I} - E[{h(Y,X)-~11+\11-l\,11 21x,1]. 
We apply Theorem l to this expression to obtain: 

V{h(Y,I)fI,I} • E[v{h(Y,I)IX}fXeI] + v[E{h(I,I)IX}fx,1] + 

21{(h(Y,X)-f\1x)(l\i1x-~,I)II•IJ. 

Now all that is left to be shown ia that the last term is 

zero. 

We invoke Theorem 1 once again. Letting 

b J t(I)dI • ~(a,b), 
a 

the last term becomes 
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since Kiiix is fixed if we are given x. 
This proves th• theorem and it also shows that 

E((h(Y,x)<J\ix>>II•Il - E(h(I,I)IX,I}Ell\ixt1,1} • 

If we let [a,b] consist or the domain or I in equation (1) 
we obtain Parzen•s relation. 

We should note here that the relation 

V(Y) - E(V(III)} + V{E(YIX)} 
could be applied to the newly formed random variable 
Y' • Illt[a,b), where 

g(Y',X) - t(Y,III•[a,b]) • t(I,I) , 
~(a,b) 

It[a,b] and g(Y',X) • O, otherwise. 
We apply the relation tot' and obtain: 

V(I') • E{V(Y'II)} + V{E(Y'II)}, Xe[a,b], which ia 
equivalent to the results we obtained above. 

We have round that if we assume a linear model, 
E(YII) •~+~I and V(III) independent or x, then 

E(YII•(a,b]) • + ~M.r(X) and 

V(IIIt[a,b]) • V(YII) + ~2aT2 (X). 

We may deduce from these results that 

V(YfI•Ca,bJ) V{Y!X), tor ~2oT2 {I) O. 

The equality holds it and only it Y and I are independent, 
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where aT2 (I) o. 

It may also be shown that if V(YII) is independent of 
X then V(Y) V(YII), for as we have seen 

Y(Y) • V{E(IIX)} + E{V(YfX)}. 
Since V(YIX) is independent ot X, then E{V(YIX)} • Y(III) 
and therefore 

V(Y) - V(YIX) + V{E(YII)}. 
Obviously V{E(III)} o. Therefore V(Y) ~V(YIX). 

In the next section we shall ponder th• proposition: 

V(Y) V(YII•I) V(YII), 
where V(III) ia independent of I. We shall find that it 
I~(-•,•) then the first equality holds and that it I-.x0 

then the second equality holds. Obviously both equalities 
hold if Y and X are independent. In the appendix we shall 

••• that.unless there is some kind of monotonicity of 
V(YIIeI) with respect to I, then the statement 
V(I) V(YfieI) may not hold. 

1.2 LIMITING PROPERTIES 

At this point it ia quite natural to ask what happena 
to the mean and variance ot our conditioned random variable 

(YIX•[a,b]) as u0 and u!. We might rephrase thia and 

ask what happena to the mean and variance as (a,b] is 

allowed to approach a point u0 ,[a,bJ. 
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It will be tacitly assumed that b a in all ca••• and 
that the denaity function t(I) is poaitive and continuous at 
each a0 which will be considered. 

V V 
Let ~(u,v) • J U(X)dI and .,(u,v) • J t(X)dl. 

u u 

It was shown that E(YII,[a,bJ) •a+• .tiA.Ju.. 

Conaider 11m E(tlXt[a,b]). Since we have assumed that tor 
a .. ao 

11111 B(YIXe[a,b]) •a+ e ~a,,b) • 
.... o ~(a0 ,bJ 

We apply L1Hospital'• rule to 'i(aq,b) to obtain the limit 
.,(a0 ,6) 

Therefore 

11m [.L +(a ,t)J lia t f(t) t-..o di o • t .. •o 

We assumed lim t(t) > o, therefore .. •o 

s¼:o E(YIXt[ao,b]) - a+ eao. 

We might abuse our notation and write: 

11.m E(YIIt[a,b]) •a+ ~I, where it exista. 
(a,b] .. .I 
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Thia is immediately seen to be K(YII), the classical point 
conditioning problem. 

We next examine what happens to V(IIIt[a,b]) as 
+ and b..._0 • Aa before, we find that 

lim V(IIIt[a,b]) • V(YII•[a0 ,b]). a~ao 

If the probability that a0 .$I.$ t ia not ••ro for each 

t > a0 , then we seek the limit of V(YIIt(a0 ,b]) as 

We shall have need of L1Hoapital 1s rule aa we did in the 
last argument. It has been shown that 

V(YIIt[a,b]) • V(III) + e1 V(IIIt[a,b]). 

Applying L'Hoapital'• rule to 
K(I21It[a,b]) • [1(IIXt[a,bJ)J1 , 

applying it twice to the second term, we obtains 
11m V(YfI•t• ,t]) • Y(YII) + e• [t!f ,~_It t(t)) 1 ) J 
t-.0 0 0 ---rt'iJ {f(t)}I 

- V(YIX) + ~1 (0) - V(YII), 
which was assumed to be cV(Y). 
Thia ia precisely the result obtained in th• classical case 
of point conditioning. 

Thua we have found that aa our intenal "shrinks" to a 
point we obtain point conditional result• aa a special case 
of our extension to intenal conditioning. Thia ia not an 
unexpected result if one recalls the definition of a 
conditional distribution. 
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Now we examine the behavior ot the mean and variance of 
Y, given that x,[a,b], as a.._• and b...,_ • It is easily seen 
that 11m l(YIIcta-A,b+A]) • u + e 1(1) 1 for A.._ -"T 

We may look at this in a different light, aa follows: 

- . I I J f(Y,I)dldt 
11m l(YII•(a•A,b+A]) • - - • E(Y) • 
6... ~,-,-> 
Th••• two forma are illmediately aeen to be equivalent, tor 

E(Y) • l{E(YII)) • u + Jl(I) • 
I 

See Graybill {7) pace 199. 
We aee that the assumption of the linear model illpoeea 

the restriction that u + aE(I) • B(Y) • 
It we write E(YII) • u' + e(I-B(I)}, then u' • l(t), which 
is well known. 

Finally let ua look at V(YII•[a,b]) as a-...- and b-++-. 
It immediately follows that 
lim V(YfI,[a-A,b+A]) • V(YIX) + ~2 V(I), for aT1 (X) V(I). 
A.._ 

We should note that an equivalent form may be obtained as 
follows: 

V(YIXt[a,b]) • E(I2 1It[a,b]) - {B(YIXt[a,b])} 2 

and therefore 
1111 V(IIIt[a,b]) • 1111 E(Y2 1I•ta,b)) - {l(Y)} 2 , g:;: g:;: 
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for we have seen that liJI E(YII,Ca,b]) • l(Y). Also 
1:;: 

- -J 12 J t(Y,l)dXdl - - • 1(?2 ) • .,c-,-> 
Therefore 

11111 V(YIIt(a,b]) • l(t2 ) • (B(I)} 2 • V(Y) • a .... 
b..._ 

Again V(I) and V(YII)+a1Y(I) are seen to be equivalent. 
Recall that 

V(Y) - E{V(III)} + V{E(YII)} • 
We assumed V(YII) was not a function of I, and therefore 

E(V(YII)} = V(YII) • 
Therefore 

V(Y) • V(tfI) + V(a+$I) • V(YII) + J2 V(I) • 
We have ahown that in the special case when I~ x., we 

haYe V(Y) V(YII,I) • V(YII•x0 ), 

and that when I~<-,•) we have 

V(I) - V(Yll•I) V(YII). 
Let ua recall that 

V(tlitI) - l{V(YfI)IXtI} + V{l(YII)IX,I} 
and that 

V(Y) • V(YIX) + $1 V(I) • 
Assuming that V(YII) is independent of I, we have 

V(YII,I) • V(YII) + V(fifI,I) • V(YII) + $2 V(IIItI). 
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Therefore 

V(I) • V(Yll•I) • e2(V(I) • V(l•I>] • 
Therefore, in order to aaaert that 

V(Y) V(YII•I) V(III) for all I, 
where Y(lll) is independent of I, we must show that 

V(I) V(XtI) 
for all I. Thie ie not the case in general. Sufficient 
condition• tor this property may be found in the appendix. 
We shall diacuaa some special casea in the next section 
which may-tend to clarity this question. 

1.) MONOTONICITY OF VARIANCE 

Now that we have aeen what happen• to the variance in 
the limiting caaea, we should like to know what is the 
behavior in between th••• two extr•ea. It would be useful, 
tor purpoaea ot applications, to be able to aay that the 
variance 1• monotone decreasing aa we decrease the intenal 
in some neated manner. Thia ia not true in general. 
However, we can make some general stat•ents about what 
happens it we restrict each auccesaive choice of intervals 
to leave the previous mean unchanged. 

If we consider all frequency functions defined to 

be zero on the complement of the intenal Ca, b), the 

max1mwa variance ia ¥. 
Proof: Consider {t1}i•{I)' the aet of all frequency 
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tunctiona defined to be zero on the complement ot [a,b] • 
We aaawne that the family of all distributions 

(Pj(I) • 0 except at a and b)j,[O,l] , where 

PJ(I)•J, it X•a; 
•l-j, it I•b, 

will contain that distribution with maximal variance. 
Let Pr(I-a) • p and Pr(I•b) • q, p + q • l. It w, 

compute the Tariance and then ditterentiate with respect to 
p, et cetera, we tind that p • q • 1/2 maximizes the 
expression. 

Therefore we conclude that the maximal variance, 

is (l/2) ( (a-b)/2} 2 + (l/2) ( (b-a);2} 2 • ( (b-a)/2} 2 

• {b-a)a • 
I+ 

Since¥~ max((b-..) 2 ,(11-a) 2}, we may conclude that the 

maximwa Tariance can be no larger than max((b-~) 2 ,(~•a) 2 } , 

where"'• EI. 
With similar assumptions it is easy to show that it we 

require the mean to be zero, (note a< 0 and b > O), then 

the maximum variance ia 

( 2) Max. Var • (-ab) • 
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Let ua consider a density function t(I) with bounded 
mean and variance. Let f(I) be truncated to some interral 
I with mean~ • We shall agree to call 

0 0 

I c:I c ••• cI a nested decreasing truncation about ~o and n n-1 o 
I • J cJ1c ••• c:J a nested increasing truncation about ~0 , o o m 

where J1 • Jj and I 1 • Ij if and only it i•j and the mean 

alter each truncation is ~o• We shall let VAR(Ij) denote 

the variance of the truncated variate associated with the 
interval Ij, and require that each truncation not be trivial, 

i.e. "some probability is excluded (or included) with each 
successive truncation." Subject to these restrictions and 
definitions we now prove a theorem. 

Th•or• s. A nested increasing truncation implies that the 
sequence (VAR(J1 )J1:0 is a monotone increasing sequence. 

Proof: Without loaa of generality, we let the constant 

mean~•~ • 0. We define a 2 (t) to be 
0 

and we let 

t t J x2dl(I)/ J df(I) , 
u(t) u(t) 

t J dF(I) • ~{u(t),t} • 
u(t) 
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Since 
t 

11 • 0 • f IdF(I) for any t 0, 
u(t)' 

i • tf(t) - u(t)f(u(t))[~]. o. 

Therefore we have the relation ~11.iti • tf{t} , 
u(t) (u(t)) 

assuming that t(u(t)) is not equal to zero. Therefore we 
can write: 

Therefore~ is positive provided l + o2 (t)jtu(t) ia 

positive. We ask now, ia o2 (t) S -tu(t)? We showed that 
a2 (t) S (-tu(t)}, see equation (2) following Lemma l. 

We have seen that if we increase the length of our 
intenal, i.e. a non-trivial increase, we necessarily 
increase the variance it the mean remains unaltered. Thia 
also impliea that a decreasing non-trivial truncation will 
have aaeociated with it a decreasing sequence of variances. 

It we have a discrete variate the same results hold. 

See Widder'• Adyanc1g Calculy page 167 {13}. 
The practical aspects of this procedure will usually 

be found to be of no use whatever, for even if we could 
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choose our intervals as we pleased, the proper way to alter 

a particular interval, under the conditions of the previous 

theorua, would depend heavily on our distribution 

assumptions and would depend on the estimate of our 

original truncated mean. This would imply that our newly 

fonned interval would have random variables for end points. 

We would have to assert that the new mean was equal to the 

original truncated mean in order to be sure that the variance 

would be larger. 

We would prefer to be able to extend the end points and 

not have to worry about the alteration of the mean. Some 

characterizations under other hypotheses may be found in the 

appendix, as well as necessary and sufficient conditions tor 
monotone variance under arbitrary extensions ot an interval. 

1.4 HIGHER MOMENTS 

There may arise a need for higher moments, therefore we 

shall derive expressions yielding higher moments in general 

and then, as a special case, obtain them £or the case of a 
linear model. 

In order to conserve space we shall use some rather 

uncommon notation. Let 

E[(Y • ~IX)nlX} • o;IX and Jf{X)dI • ~{I} • 
I 
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We are now equipped to apply Theorem 1 to our relation: 

I{(? - MI )nlI,I} • E((Y - MI +MI - MI )nlI•Il • Y I,I YI YI Y X,I 

Let us recall that ~II is fixed if we are given I. 

We obtain 

E{ (l - M.yl 1 , 1 >0 1 I,I} - [~] St(I)t,(I)dl , where c,(I) is 
I 

E((Y - ~II+ MIil • MYIX•I)nll} , which is equal to 

Using the fact that MylX is fixed, it we are given I, we 

obtain 

Therefore 

It we assume a linear model, thia expression becomes: 

fU(I)dX 
where 14.r<x) • .., __ _ 

q,{I} • 



28 

Since in moat applications higher conditional momenta 

of Y depend on the first two conditional moments of I, one 

of which depends on I in the linear model, we see that the 

previous expression becomes rather messy, but if they were 

needed, theoretically they could be computed from this 

expression. 
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II THE MULTIVARIATE CASE 

We shall find the counterpart of Theorem 1 in the 
multivariate case to be as useful as was Theor• 1 in the 
bivariate case. 

Let t(l,X , ••• I) be the joint density of Y,x1, ••• l , 
1 p p 

and let f(Y) be the marginal density of I. Let f(-'p) be 

the joint marginal density of x1 , ••• xp. Let it be given aa 

a condition that Xi•I1 , ••• Xp•Ip. We shall write 

it th• expression is not zero. For the sake of brevity, 
p 

let Rx denote the Cartesian product space of {Ii}i•l and 

Under th••• assumptions we shall now prove some 
theorems which will be useful in later sections. 

2.1 PRELIMINARY RESULTS 

TheoNm lA. 



JO 

Proof: -E{hll fR} - .r hf(YIX fR )dY -p X -• -p X 

Therefore we may write: 
• 

E{hlAp,Rx} • {lJCl_.f { ht(.Ap)t(Yllp)D(4p)dl 
X 

-- {ljC} { f(lp) __ I ht(YIIp)dYD(!p) • 
X 

Therefore we have E{hllp•Rx} • {ljC} J E{hl1i,}f(lp)D(~) • 
R 

X 

Assuming the linear model E(Y) • a. + J.' Ap and 

V(Yl.lp) is independent ot -'p• we now shall seek the 

conditional mean and variance tor the multivariate case 
corresponding to Theorems 2 and j in section l.l • 

Theorem 2A. It we assume that E{Yl4pl • a. + ,i' and that 

V(Yllp) is independent of 1i,• then if C is not zero we may 

write l(Yllp•Rx) •a.+ .a.' Br• where~ is the column vector 

with [l1;c} I f(li,)I1D(lp)] as its 1th entry. 
Rx 
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Proof: We apply Theorem U and obtain: 

E(Yl4p•Rx) • {ljC} { f(4i,)E{Yl-'p}D(lp) 
X 

• Cl + J.'H-r • 

Theorg lA• If we assume E(Yl1i,) •Cl+ i'Ap and that 

V(Yf-'p) ia independent or 1i>, then 

V(Yl-'p•Rx) • V{Yllp} + .l'i 1, where 

i • (o1j) and oij • {ljC} { (I1-Ms,)(Ij-Mj)f(lp) D("i,) ; 
X 

th 1,j • 1,2, ••• p, where Mi is the i element of Hr. 
Proof: We apply Theorem lA to the following 

expression: 

Aa before, the cross product terms are zero for the same 

reason as they were previously in the bivariate case. 

That which remains is: 

V(lllpfRX) -

V(Yllp) + {ljC} / f(lp)E{[(ci+t'lp)-(a+1'B,.)] 2 11i>}D(1i,) • 
R 

X 
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Therefore we have: 

We might refer tot as the "local• variance-covariance 

matrix of the conditioned variables. 

The multivariate version of Theorem 4 holds also. 

Theorem 4.A. Given that C is not zero, then 

Proof: Apply Theorem 1A to the following expression: 

V(hl.6pERx) • E{(h - ~I.Ip+ ~llp - l\i1pERx) 211i,•Rx) , 

where E(hl"r,) • '\i1p and E(hl-'pERx) • l\i1i,,ax. 

Again it is obvious that the cross products are zero, and 

we obtain: 

2.2 THE MIXED CASE 

In the multivariate case we have a more versatile 
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situation than in the bivariate caae. We may consider 
problUlS in which it is known that 11,x2, ••• 1p take on 

fixed numerical values and the remaining variates are in 
some rectangular region R. Before we begin the next 
theorem we need to introduce some notation. 

Let h(Y,I1,x2, ••• 1p,z1,z2, ••• zn) be a scalar valued 

function of Y,I1,x2, ••• IP,z1,z2, ••• zn. Let the column 

vector (I1,x2, ••• 1p,z1,z2, ••• zn)' • (.!) • <t> • 

Let B{h(Y,.!) l~•Rx•.Kz • .1.nl • ~N and 

E{h(I,!)I!} - Mhli • 

Th9orem 6. It we assume B(Yll) •a+ J.'(l) , where 

J.' • , then 

if it exists. 
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Proof: In Theorem 1A we showed that 

E{h(Y.}£) ll!.dlw} - E[ B{h(I,!) l!:llld\r] . - -
• 

Therefore ~N • E [l __ J h(Y,~)t(Ill)dI 11.i•\J 

--~ [ __ J h(I,}i)t(Yl}:'.)dt] f(ll,c,.llz)D(}i) 

!-------------, [ s f(J!x,~)D(!) ]' 
R 
! 

provided the denominator is not zero, which it would be 
without the prime. 

We mean by this that: 

[ S t(.!!,c,:!!zlD(!J.1]' -~ t(.!!zltl.1!,,.)xz)DIJ!,.l 
\ 

where~ - • 

• f(~) S f(l!xll!z)D(Xx) • 

R~ 

made in the numerator and we cancel t(w ), if it is not -z 

' 
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where we have assumed that the conditioning, ~z • .In was a 

non-trivial condition. Now we may write: 

This is very much like Theorem lA in that we integrate 

the point conditioned mean over the region of truncation. 

In this case the only difference we encounter is that we 
integrate that same mean in a conditional distribution over 
a marginal truncation region. 

It is easily verified that this la th• same result that 

one gets if he considers the expectation given that 1i,•Rx 
and -Zn•Rz and then lets ••• an) • Thia followa 

from the definition or a multivariate conditional 

probability density. 

Corollary l. If we assume E(YI!) •a+ ~'}l, and if we let 

Myll.•Rw •a+ .l' (m1,m2,•••mp,al,a2,•••8n)' ' 
-

where m1 • E{X11l•Jl,,;l • This is a simple consequence of -
Theorem 6. We might note here that 

(m1 ,m2, ••• mp,a1 ,a2, ••• an) could be written 



for 

Now we should like to find the variance ot Y given 

4i,•8x and .&ri •Ari. We shall retain the same notation that 

we used in Theorem 6. 

Theorem 7. If we assume that E(YI!) •a+ A'(!) and that 
V(Yl:t) is independent ot l, than 

V (Yll!x•Rx• ~-An) - V( Yj}i) + .a.' T .a t 

where Tis a (p+n)x(p+n) matrix such that row i is 

(ti1,t12, ••• tip'o.o, ••• o) 1£ i,Sp and (J2)' it i>p, where 

t 1 j • I{ <xi - Dlj_) (xj - mj) l!.,\l 1 1,j p and the 

m1 • E{x11!•~1 • 

Proof: We shall apply Theorem 6 to V(Ylw «R ,~-.a) , 
-X X Z -n. 

which may be written E{(Y - ~I!+ ~I! - ~l!•¾) 2 l!•Ri} • -
We defined Mylli in Theor• 6. Let Myl!•¾, • E{Yl!•\I • -
It we expand this expression and then apply Theorem 6 we 

obtain: 
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[v(Ylll + 211c.P.lll + Bl(M,;ll°"'rll•\l 211pl]r<!tzl.-_l»<1i,> x _______________________ , 

s t(w I~ )D(X ) 
R -X z -p 

X 

Since V(Ifl) and 11y11 , given I, are fixed we obtain 

V(If!t~) • 

V(If !)+o+B[ {u+(J.) 'l•[u+(J.)' (111 •.mp,~)'] l2 1 I•\] • 
The last term is 

8'\!1 e1 (x1 - • 1 l 1211•\J • .l'T .I. • 

It we partition .l such that 

.l' • '"1•~2•··•~p,ap+l'sp+21 ·•·ap+n> 

we can write: 

It we are concerned with predicting a vector 

I;_• (t1,t2, ••• I•) , the above theorema will be Talid tor 

moat of the marginal properties ot I.. The more general 



multivariate situations will be considered in the following 

section. 

2.) EXTENSIONS TO PREDICTING A VECTOR 

Consider the model: 

is an (m)x(p+n) matrix ot constants. Again we shall let 

(i;,-':i) • (~,J!;) • (w1,w2, ••• wn+p) •(!)'and 

lirl! • E(I.nl!) and Hyl!fl~w • E(J,..I!•\) • -
We shall insist that throughout this section we denote the 

variables which are point conditioned only by l!z and that we 

shall denote only the interval conditioned variables by~• 

which have been defined above. We shall, without loss of 

generality, use! to denote whatever combination is 
appropriate. 

Theorem S. 
then 

where 

Proof: 

Note that .l!z or~ may be a void vector. 

It E(.x_li> - a.+(~)!' 

E(I.ll•¾> - Saa+,,>(~ ,J!~)' , 
- -x•ftxll!z 

By E(Jmlldtw) we mean that -
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column vector Ml • (E{Y1IW•R J, ••• E(Y l!•R })' • -Y WtR - W m w - w - J:, -
We may apply Theorem 6, or Corollary 1, to each of the 
marginal entries. We obtain 

HJIW•R •,slm + (a)(m1,•2••••mp,a1,a2,•••an)' • 
- w -

where 

Therefore: 

We shall need a few definitions before proving the next 

theorem. Let it be giYen that -'p•Rx and~• -An, then we 

shall denote thia by !•Rw• We shall denote the condition, -
given~ and~ • -'n , by given!• We sh~ll let 

v<i_l!•~> • u, where U • (uij) is an (m)x(m) matrix. We 

shall let V(X.I!) • V, where V • (v1j) is an (m)x(m) matrix 

independent of I• We shall denote E{w111•1\,I by m1 , and -
we shall denote the (p+n)x(p+n) matrix with the ijth element, 

E[(w1 • m1 )(wj • mj)l!•\I, by t • (a1j). We shall also let 

B{Y1li•1),l • ~1IR and 

E{Y11!1 • My111 and l{ll!•~l •Hr• (~) • 
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and we are given that!•¾, and Vis independent of!, then -
Proof: Consider 

th This is the ij entry in u, i.e. u1j. We now expand the 

tenn and get: 

We now add and subtract from this: 

E{(Y1Yj • I\ IW iw>l:teR }+ 
1- j- ! 

E{(MY fw MY 1w • My IR MY IR>l!•Rwl • 
1- j- 1 j -

We apply Theorem 6 to the first term and obtain v1j. 

Now we have: 

We now replace the terms in the expectation by 

equivalent terms obtained via Corollary 1 ot Theorem 6 and 

our model. Rewriting this we have: 
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where~ is the kth row ot (~) • 

We see that cross product terms cancel when the 

expectation is taken, therefore we write: 

uij • vij + E{ (ls_ l'£) (J.j :UJ - (~ H,_-H.lj ~) 11!•\l 

- V ij + El~ OL - Kr )J.j (! - H.r) li:•Rr.} 

We see that 

aij is zero it i or j is greater than p. 

U • V + (~) t (8)' • 
This theorem raises an interesting question. Let us 

assume that we know the structure of the(~) matrix and that 

we could find a definitive mathematical relationship 

between the a1j involving the lengths of each of the 

intervals [a1 ,b1J. Let us also assume that if we decrease 

the length of some interval, say [a1 ,bi]0 (a1 ,b1J1, then 

variance-covariance matrix associated with tai,bi] 0 and 

(a1j)1 is the variance-covariance matrix associated with 
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set of constraints on our set of intervals, namely coat 

constraints? We saw that if we point condition 1n then we 

obtain a minimal variance situation it we point condition 

the other p variates. It we consider p variates interval 

conditioned, then the point conditioning or n others caused 

the upper left (p)x(p) matrix of i to be not the local 

variance-covariance matrix, but the local variance-

covariance matrix given -'ri • An I which we assumed to be 

"smaller" than if then Z variates were interval 

conditioned. Just how could we atta~k this problem with 

some cost levels attached to the intervals? We shall not 

attempt to answer this question here. We only point out 

that this seems to be a very interesting problem for future 

study. 

2.4 LIMITING PROPERTIES 

We shall consider the limiting properties for the 

linear model: E (.\ii!) • .s_ + ( i, )! , where V (Iuil !) is 

independent of!. This will provide us with the results 

we might want for the various cases; 1iu • Y1 , ! • x1 1 and 

the mixed cases. We shall continue to use the notation of 
Theorems 8 and 9, except we shall not insist that w be a -z 

given vector of constants as we did in the previous section. 



4) 

1~1• found in Theorem 8 thAt: 

E(Y llfR) - d + (~) M' • 
111 ! Ill -r 

where • (m1,m2 , ••• mn+p) with m1 • E{w11!•R!} • 

Here we are using mi• w1 if w1 is given. This is 

• a • 1 

Now we ask what happens to E(Y l!E¾) as R B , i.e. Ill _ X p 

Euclidean p-space, and R or R (a1,a , ••• a) • 
z l!z 2 n 

All we need to do to answer this question is to consider 

one of the m1 , since equation()) holds for arbitrary\. 

But an immediate consequence of Theorem 6 is that 

mi• l(w1ll!z•Rz) • 

Applying the definition of multivariate conditional 

distributions to this expression we obtain: 

•1 • E(w1ll!z • .1n> • 

This wss not unexpected, for we were essentially given 

nothing concerning the~ and therefore obtained the 

marginal expectation given only that l!z • ~. The 

intennediate step, m1 • E(w1fl!z'Rz) , is the case where we 

have some variates interval conditioned, in R, and we then 
z 
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let the intervals of R increase without bound. 
X 

Retaining the same model, we now wish to know what 

happens to V(I.nl!•~) as we let Ep. In this discussion 

we shall not require i, of Theorem 9, to have zero entries 

in the (n)x(n) lower right hand submatrix, i.e. we allow R z 

to be an arbitrary rectangular region. Recall that Theorem 9 

stated that 

where Vis fixed, for any¾. Therefore all we need consid--
er is the behavior oft as R E • We defined a to be 

X p ij 

E{(w1 - m1)(wj - mj)I:!•~} , for any rectangular region\. 

Applying Theorem 6 again we see that as R E we obtain a 
X p 

new 

a1j • E{(w1 - m1)(wj - mj)ll'!z'Rz} • 

where now • E{wkll!z'Rz} • 

We next consider the case where we are given WtR and 
- j 

R is a rectangular region with all intervals of positive z 

length. We wish to examine the behavior oft as 

Rz (al' 8 2•••••n) • 



By the definition of conditional distributions we obtain 

f(~ll!z • .In) , if it exists. We now apply Theorem 6 in 

the same way as we did in Theorem 9 and we obtain a new 

oij • E[ (w1 • m1 )(wj • mj) ll•~J, 

where R' is {(~',a1,a , ••• a)} such that w',R and --w -X 2 n -X X -
We see that we get the same expression that we had in 

Theorem 9; 
U • V + f! i ~, . 1 

1 It may seem that the last few discussions set forth are 
incomplete. This is why these discussions are not labelled 
theorems. They are meant only to be an outline for the 
application of previous theorems. 



III SUMMARY 

We have seen that there is essentially no difference 

in f(Y,XjI,I) and the joint frequency function ot Y and I 
where we have truncated the distribution of I in I. Even 

though there is no difference between the frequency functions 

there ia a very important difference in their origins. The 

claaaical meaning of truncation is that we exclude some of 

the outcome• which might occur and therefore delete our 
sample space. Consequently, we map the elements of this 

new sample space with a new random variable which obviously 

has a different frequency .function. In our interval 

conditioning problem we allow the random variable to take 

on any value, unknown to the experimenter, and then we 

observe only in which interval that value falls. 

Although we have developed the properties with the 

simple statement, "given !•Rx"• it does not seem feasible 

to apply this to any experiment unless an exhaustive 

disjoint family of intervals may be chosen for each Ii prior 

to running the experiment. Recall that we assumed that each 

interval had end points which were not random variables. 

There may be some cases in which we may feel justified in 

approximating some intervals, but these cases are subjective 

and only one of them will be discussed below. 

Assuming E(YII) •a+ ~X, we also considered what 
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happened to the variance of Y given Ifl as I was altered. 
We found that it E(IIItI) • than the variance of I given 

0 

XeI', I c I', would be at least no smaller than the variance 

ot I given that Xfl it B(IIX•I') • ~o• We mentioned why this 

was not very useful, and referred the reader to the appendix. 
One might feel that this monotone property is obvious 

tor all practical purposes, but this is not the case. We 
now offer a very simple example to demonstrate that this is 
not true. 

We shall show that if 

V(Ylx,{-1,k}) • c + ~2V(xfx,{-1,k}) , 
then it will depend on the frequency function ot I whether 

V(IIX,{o,k}) < V(XII•{-1,k}) or not. 
In order to conserve space let us assume that the frequency 
function of I is approximated very closely by 

Pr[x--11-1;,. Pr{I•o}•l/3 and Pr[I•k}•l/3. 

Then E(I) • (lj))(k-1) and V(I) •(2j9)(k2+k+l). We now 

exclude 1-1 and have Pr{I'-o}•l/2 and Pr[I'•k}•l/2. 

Therefore B(I')•k/2 and V(X') • (l/4)k2 • 

·We see immediately that (l/4)k2 > 2/9(k2+k+l) for 
rl 

k lO, and we see that the variance of I' may be made as 
much larger than the variance of I as we like. 

We see that we do need to examine the exact behavior 
ot the •local variance" before we make any decisions about 



selecting a family of intervals. 
Since the normal distribution is usually assumed in 

conjunction with the linear model we should like to 

characterize the local variance properties tor this 
distribution. We could not prove or disprove that in all 

cases the normal distribution had the monotone variance 

properties we had anticipated. Some of the particular 

intervals for which a normal random variable has the 

monotone variance property will be discussed in the 
appendix. Table 1, presented by Clark {3}, seems to be a 

rather good indication that the variance will increase if 

we extend any interval under consideration in the case of a 

normal variate with mean zero and variance one. 

If we move up or to the left in the table from any 

point, the entry ie found to be larger than the original 

entry. We do, however, recognize that this is only an 

indication and not conclusive. 
If we are willing to accept this as sufficient evidence 

for the said property, then it follows that any normally 
distributed random variable with bounded mean and variance 
also has the property of monotone variance in a nested 

truncation. 

Much more work can be done on this particular question. 

Some numerical work on this aspect would appear to be 

particularly helpful in characterizing some properties of 



TABLE 1 
VALUES OF THE STANDARD DEVIATION oa,b OF THE STANDARD NORMAL POPULATION TRUNCATED AT a AND b(a~). 

NOTE THAT o_b,-a • oa,b• 
a 

-J.00 -2.7S -2.so -2.2S -2.00 -1.75 -1.50 -1.25 -1.00 -.75 -.50 -.25 0 .2; .so a;b 

.9S66 .9603 .9707 .9557 .9344 .9063 .8713 .8)05 .7849 .7367 .6869 .6375 .;889 .5432 .49g9 J.00 
.9745 .9657 .9495 .9281 .8996 .8646 .8234 .7774 .7298 .680) .6276 .5784 .5303 .4838 2.75 

.9546 .9394 .9176 .8891 .8535 .8118 .7605 .7155 .6639 .6120 .5610 .5106 .4610 2.50 
.9239 .9020 .8757 .8372 .7944 .7468 .6959 .6428 .5891 .5357 .4823 .4290 2.25 

.8796 .8500 .8131 .7697 .7209 .6686 .6136 .5577 .5016 .4449 .3878 2.00 
.8196 .7817 .7371 .6868 .6327 .5756 .5171 .4579 .3975 .3359 1.75 

.7425 .6966 .6446 .5885 .5291 .4679 .4055 .3414 .2792 1.50 
.6490 .5952 .5371 .4755 .4118 .3469 .2802 .2118 1.25 

.5394 .4793 .4154 .3494 .2822 .2129 .1410 1.00 
.4173 .3514 .2835 .2148 .1447 .0734 .75 

Table presented by Clark {J} (abbreviated). .2835 .2139 .1439 .0734 0 .so 
.1423 .0706 0 

0 

.25 
0 

'° 
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the system studied here. 

Most of the work done in section I, The Bivariate Case, 

carried over to the multivariate case as expected, with a 

few more variations in the limiting cases. 

Since only the fundamental properties of this system 

could be explored in this thesis, many of the problems and 

applications can only be conjectured at this time. 

Some of the problems to be solved may be presented 

best in the fonn of questions. How can we estimate 

parameters if we do not observe the variate "precisely"? 

How could one attack the problems concerning robustness? 

How would one decide which choice of intervals to use for a 

minimal cost estimation with a pre-assigned level of 
variance? These and many other problems must be left for 

future investigation. 

The obvious application, which has been mentioned 

above, is predicting the outcome of some event by measuring, 

or observing, some associated random variables with a device 

which yields measurements which are not sufficiently precise 

to be considered, or assumed, continuous events. 

It seems very feasi.ble that this conditioning may have 

some practical applications in designs of experiments, 

particularly in some cases of missing data. If one has some 

way of knowing that the data lost were within given bounds, 

he might be able to salvage some of the infonnation for 
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purposes of estimation. We must keep in mind that we would 

have to assume that these given bounds were not random 

variables. 

The most fruitful application would seem to be the 

design of a minimal cost experiment by observing more 

correlated variables in larger intervals. Some of these 

variables may nullity their usefulness in the conventional 

regression models because of the cost of precise 

observation. We might also choose some variables with 

established estimates for their parameters which might be 

very inexpensive to observe leas precisely. 
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IV APPENDIX 

It was shown, for any probability distribution, that it 
we considered V(YfY,I1) where the mean was, say M1, then non-

trivial extensions of the interval leaving the mean un-

changed necessarily produced a larger variance. Obviously, 

this leaves a great deal to be desired. We have mentioned 

the problems involved in extending an interval in such a way 

as to leave the mean unchanged. Can we find some 

distributions which have the property that if we extend some 

arbitrary interval we may be sure that the variance is 

larger regardless of the change of the mean? 

Let us consid~r first a simple case in which we assume 

a linear model E(YII) •«+$I, and where V(YII) is 

independent ot X. We found that 

V(YjIEI1) • « + 82 VL, 

where VL is the "local" variance of I in 11 • Since we are 

attempting to lay foundations for estimation and prediction 

procedure, it becomes very important to know the behavior of 
VL as we choose different intervals. If we could master 

this problem, we could extend our results to the various 

multivariate cases without great difficulty. 

Thia problem has had no exploration that the author haa 

been able to locate, other than the brief numerical table 
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computed for the normal distribution in Clark's article {J}. 
Because regular behavior of VL in some sense would 

appear to be essential for certain applications ot 
conditional predictors, we direct our interests toward the 
search tor some characterizations of non-negative fwictiona 
which will insure the monotonicity of 

as we extend R • 
X 

f(I-M(I)) 2t(X)dX 
ftx .r f(X)dI 

Ri 

Those discoveries, made thus far by the author, which 
are pertinent to this probl• will be presented in the form 
ot theorems. 

We now present a theorem which will give us some idea 

about what kinds of sets we must exclude in order to discuss 
the subject or monotonicity of variance. We have in the 
past reserved this term for discussions about the extensions 
of intervals. ThiE theorem will help to show why we made 
thia reservation. 

Let ua consider a random variable I with a frequency 
function f(I) which ia positive on the Lebesgue measurable 
set R. Let us define a truncation of this variate to a set 
R1 where Pr{XER1} > 0. Thia defines a new random variable 

x1 with a frequency function f 1(x1 ) • c f(I) in a1 , where 



similarly in R2 , where R2 n R1 • 1 and R2 U 11 • R, with 

frequency function r (X) • With these definitions we 
2 2 

prove Theorem A. 

Theorem A. Let x1 , I 2 , R1 and R2 be defined as above. 

Then it ia false that V(X1) < V(I) tor each a1 c R. 

Proof: Let Jr(I)dI • A(R) , J t(X)dI • A(R1) and 
R Rl 

We may write: 

A(R) V(l) • A(R1) V(I1) + A(R2) V(I2) + 

A(R1)[M1 • J\} 2 + A(R2){M - M1}2 , 
1 12 

where 

Since we need to demonstrate only the existence or some a1 

such that V(I1) <V(I) we may, without loss of generality, 

consider a1 and a2 such that Xx • Mx • .Mx • Then 
1 2 

A(R) V(I) • A(R1) V(I1) + A(R2) V(I2) • 
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We note that A(R) • A(R1) + A(R2) • Therefore, 

It V(X) > V(I1) then the right side must be positive also. 

We conclude that if V(I) > V(I1) then V(X2) > V(X) , and 

vice versa. 

Therefore we must preserve some order in the successive 

choice of R if we are to talk, meaningfully, about monotone 
1 

variance with the R1 • The restriction most suited for our 

purposes is obviously to require that the sets we shall 

discuss will be nested intervals. 

There is a similar theorem for the multivariate case. 

Let I be a vector of random variables with the joint 

frequency function t(I) such that Jt(!)D(I) • 1. As in the 
R 

previous theorem we define t 1(I1) by truncation in R1 and 
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Theorp B. Let Ii, ! 2 , t1 , t 2 , R1 , and R2 be defined 

as above. Then it is false that t1 < t for each R1 c R. 

Proof: Consider R1 and R2 such that 11 - • .H • 

If the left side is positive definite, then the right aide 

must be alao. Therefore t - t 2 is negative definite it 

t • t1 is positive definite and vice versa. 

In this case the restriction most suited for our 
purposes is obviously to require that the regions we shall 
consider will be nested rectangular regions in the space 
being considered. 

Our next theorem ia one which can be uaed, in special 
cases, with the normal distribution and any distribution 
when we are considering changing the lengths ot intervals 
where the density function ia monotone. We shall define 

t 
M(t) • J. I t(X)d.I 

8 0(a,t) 
and 

t 
~(a,t) • J t(I)dl • 

a 

Theor• c. If the density function, t(X) , under 
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consideration is a monotone decreasing function of I for 

each x,ra,b] , then Mo2(t)] 0 tor each t,(a,b] • 

Proof: ti o 2 (t) J • ;f !~t) ( (t - M(t) )2 - o2 (t)} ; 

see Theorem 5 page 24. We have seen that 

sup a2 (t) :S max{(t - M(t)) 2 , (a - M(t)) 2 } ; 

see Lemma l in section 1.3 • 
Therefore it f(I) is as we assumed, then 

(t - M(t)) -(a - M(t)) tor each t, (a,b) and 

therefore (t - M(t)) 2 0 2 (t) for each t • [a,b] also. 

Thia implies that it(o2 (t)] 0 for each t • (a,b) • 

In general, any distribution function which ia 

differentiable in [a,t) and is auch that t-M(t) Olt•a) 

tor each t • (a,b) will have this property ot uniformly 
monotone increaain& variance with t, t • [a,b] • 
Obviously, it the mean is nearer the right end point of 
(t,b] tor each t < b which is considered, we may extend our 
interval to the left with assurance that the variance will 
increase. 

Now we shall seek the necessary and sufficient 
conditions tor the density function f(I) to have the 
monotone increasing variance property under right-hand 
extensions. 
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Let us define the following terms: 
t 

2 j (X • Ma t) 2dF(I) 
o [a,t) • a • 

f)[a,t] 

M [a,t] 

t 
j Idl(X) -·---.ra,t] 

t 
~[a,t] • f dF(X) , 

a 

, and 

where F(I) is the distribution function or I. 
Let F. (I) - 'f1J - 'f'I T Fb -Fa F(b) • F(a) > 0 • 

We know that 

a In order tor O [a,b] to be greater than or equal to 

(b-Mca,bJ) 2 we must have 
b • .r rT(:l)d(X-Kca,bJ )2 2: 0 • 

This is the necessary and autticient condition tor 

It this ia true tor eaoh t • [a,bJ then 
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Let us examine this condition more closely. 

t 
It 8J r,(I)d(I - llca,tJ) 2 O tor each t f [a,b] , then 

t t 
a! FT(I) I di~ (Mca,tJ)aJ FT(I) di tor each t, [a,b] • 

Therefore if 

(4) 
t J IFT(I) dI 

a > IL tor each t t (a,bJ , then 
JtF (I) dX - [a,t] 

a T 

!Jo2[a,tJ] O for each t, ta,b]. How do we interpret 

this condition! The expression on the left in inequality (4) 

ia simply the mean ot F(X) in [a,t], Mr(I)(a,t] • 

Therefore we may write :Jo2[a,tJ] O for each t • [a,b] 

it and only it Mr(X)[a,t] Kca,t] • 

It baa been shown that it we choose u(t) such that 

Mcu(t),t] •M0 tor each t under consideration, then 

Therefore it follows that it Mo2(a,tJ] 0, then 
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consider a to be a variable. Thia particular statement 

muat not be construed to imply that if one ia positive the 
other must be negative! 

Therefore we may conclude that: 

1) if and only if Mp(I)[a,b] Mra,b], then ti{ a 2[a,b]] o; 

Another way to obtain this reault is to look at: 
b b 

8J (l•~a,b]) 2d{FT(I)-l} + 8J (r,(I)-l)d(I-'\a,b))1 • 

In order to insure (a - Mca,b]) 2 o2[a,b] , we have 

tor each a under consideration. Thia implies that 

Note that FT(X)-1 cannot be positive and therefore: 
b J X(FT(X)-l)dX 

a b < JL b] • r (F (I)-l)dI - [a, 
. T a 

The expression on the left ia Mr(I) • We have that 
(a,bJ 
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each t under consideration. Thia is condition 2)above. 

In more crude terms we may say that if we are 

considering abaolutely continuous distribution functions 

and decrease our variance with a "slight" increase of the 

upper end point then we do increase our variance if we 

decrease the left end point "slightly.• This situation is 

governed more accurately and totally by statements 1) and 2) 

above. 

Let us now consider the changes in variance as we 

extend both end points. Let u • '1,(t), where tis the upper 

end point and u is the lower. Let the original interval be 

ra,b] • We shall consider a 2(u,t] , the variance on [u,t], 

where [a,b] c [u,t) • If u • a for each t b then f • 0 1 

otherwise we shall consider only those cases where 

5m • u' < 0 dt • 

We see that 

t 
where A(t) • r dF(I) ... u and M • Mcu,t1 • 

t t 
Recall: .r (I-M) 2dFT(X) + .r FT(X)d(I-M) 2 • (t-M) 2 and 

u u 
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t t J (I-M) 2d{FT(I)-1} + .r {FT(X)-l}d(I-M) 2 • (u-M) a , 
u u 

where F. (I)• F(XJ ·rial. 
T F(t - Fa, 

Multiply the first equation by t(t) and the second by 

-u'f(u) • Add the results. Thia yields: Mo2[u,tJJ 0 

it and only it 

t t 
f(t) j rT(X)d(I-M) 2 • u'f(u) f [r,(I)-l}d(I-M) 2 0 • 

u u 

In fact, AI cr2 ru,t]l is {1/A(t) ! ti.mes the expression on citL .J 

the left. In another form we have that the derivative is 

not negative if and only it: 

t 
{f(t) - u't(u)} J FT(I)d(I-M) 2 u't(u){(t-M) 2 - (u-M) 2 } • 

u 
The most useful case is probably that in which u' • -1, 
(i.e. an equal numerical change ot endpoints). 

NOTE: It the distribution is symmetric about M0 tor 

[a,b] , then the right side i» zero and the left side iB 

positive (MF> M) unless f(t) and f(u) are both zero; in 

which case we know ft[ 0 2(u,t]] is zero. Thia is consistent 

with our previous results, tor (t-M) 2 • (u-M) 2 (t-u) 2/4. 
We discussed the proposition, V(Y) V(lfleI) :! V(YfI), 



6) 

for the case of a linear model where V(YfI) was independent 
ot I. We proved that both V(Y) and V(YIItI) were greater 
than Y(YfI). Assuming the linear model we prove two 
theorems. 
Theorem D. It V(YII•Ij) is monotone increasing tor each 

arbitrary nested increasing truncation, then 
V(Y) V(YfXflj) tor each j • 0,1,... • 

Proot: Let I•(-,•) • Then V(YfI,I) • V(t) aa 
was seen in section 1.2. Therefore it V(IfI•Ij) is 

monotone in the sense we have discussed, then 
V(YfifI) • V(Y) V(IfI•Ij) tor each Ij c I. 

Th•orp B. If V(III•Ij) is not monotone increasing tor 

each arbitrary nested increasing truncation, then V(Y) is 
not necessarily greater than or equal to V(YfI,Ij) tor each 

Proof: Consider a density function t(Y,I) which is 
such that: V(Y) • It and 

k • V(IfI) < V(IIItI1) < V(YIItI2) ••• 

< V(YfI•In) > [v(III•In+1>] • 

X' < V(IfI,In+2) < ••• < V(t) •I. 



If V(Y) • V(Yfieln+l) the theorem holds. If not, 

otherwise. Then 

V(Y') • K' > V(Y'II'tI) • V(YfX,I) • n n 

Therefore it we have a density which is such that 

V(YfI•Ij) is not monotone we can find a density which is 

such that V(I') < V(Y'II',I) tor some I. 
We have shown that the proposition: V(Y) V(Yfltl) 

may not hold unless we have the monotonicity of variance 
property with nested increasing truncations. We recall 
that V(YfI,I) V(YfI) in all cases under our assumptions. 

We might ask what good are the conditions we presented 
on page 60. They may be used in some cases to give 
definitive results. We shall present one such example. 

Let f(I) • e1-t, x,(-,tJ • Let u' • o. Then we 

have that F(I) - t(I) •• x-t. 

Therefore MF(I) = M( t] • Therefore, 0 2 (-,t] is (-,t] -, 
constant for each t < •. Thia may be verified by noting 
that 

These conditions may be applied to the negative exponential 
in the same way. 
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In the case of a normal variable the necessary and 
sufficient conditions presented in this appendix are not 
appropriate. Consider a normal variate with mean zero and 
variance one. It can be shown, and ia shown by Clarlc {3}, 
that if one truncates this distribution to the intenal 

[a,•) , then a 2[a,•) • l - ~[ )(~[ ) - a)• a,• a,• 
This may be obtained from the expression: 

o2[a,bJ • l - ~a + af(a) - bf(b) 
[a,b] F(b) - F(a) • 

Since~[ ) - a> 0 and ~( ) is monotone increasing .,. - ... 
with a, we••• that cr2[a,•) ia monotone decreasing with 
a, tor each a<•. By •Jlllll•try, we see that this holds 
tor right extensions ot <-,a] also. 

The author has not been able to prov• that arbitrary 
extensions ot intervals imply an increase in variance in 
the case of the normal distribution, although the table on 
page 49 is a good indication that the normal distribution 
does have this property. 

Every attempt by the author to classify, in generality, 
the set of t(I) tor which right extensions imply monotonic 
variances has tailed. 

Thia is a very interesting question, but much more work 
can be done to improve our knowledge about this property and 
determine its implications. 
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ABSTRACT 

Th• subject treated in this theais is the conditional 
distribution ot a random variable given that the outcome ot 
an associated random variable lies within a specified 

interval. Thia may be considered to be an extension ot the 
classical case in which the outcome of the associated 
random variable is known to assume a specific numerical 
value. 

The primary purpose of the study was to examine the 
properties ot a system formed by interval conditioning 
under the assumption of a suitable linear model. No 
attention was given to appropriate estimation procedures. 

The principal conclusions of the study follow. Let X 
and Y be jointly distributed random variables such that 
E(IfX) •a+ eI, where a ands are constants, and such that 
the variance of Y given I is independent of I. Then 

E(YfX,I) •a+~ E(XJXeI) 
and the variance ot Y given XeI is equal to the variance ot 
Y given X plus ~a times the variance of X in its truncated 
distribution, i.e. truncated in the conditioning interval I. 

It was shown that the limiting cases of the system. led 
to the classical conditional results as the conditioning 
interval degenerates to a point, and to the classical 
marginal results as the interval expands to encompass the 
real line. These results were generalized into the case 



where a random variable I is conditioned on a set ot 
p 

associated variables, {x1 }1• 1 , such that ¼'Ii, 

i • 1,2, ••• p. 

Higher conditional moments were found in general. 

Since third and higher conditional moments are usually 

functions of the conditioned variables, only an analytic 

form was given. 

Consideration was given to the case in which a vector 

ot random variables is to be predicted given that an 

associated vector of random variables lies in a specified 

rectangular region. Two types ot conditioning were 

considered simultaneously at this point, namely, the case 

in which part of the associated variables are conditioned 

to points and the remainder to intervals. 

In various places in the body of the thesis and in the 

appendix consideration was given to the conditions under 

which the variance of a truncated random variable increases 

monotonically with the interval of truncation. This was 

found to be a complicated problem, but necessary and 
sufficient conditions for this property were developed in 

the appendix. 
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