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Orthogonal vs. Biorthogonal Wavelets for Image Compression

Satyabrata Rout

(ABSTRACT)

Effective image compression requires a non-expansive discrete wavelet transform (DWT) be

employed; consequently, image border extension is a critical issue. Ideally, the image border

extension method should not introduce distortion under compression. It has been shown in

literature that symmetric extension performs better than periodic extension. However, the

non-expansive, symmetric extension using fast Fourier transform and circular convolution

DWT methods require symmetric filters. This precludes orthogonal wavelets for image com-

pression since they cannot simultaneously possess the desirable properties of orthogonality

and symmetry. Thus, biorthogonal wavelets have been the de facto standard for image com-

pression applications. The viability of symmetric extension with biorthogonal wavelets is

the primary reason cited for their superior performance.

Recent matrix-based techniques for computing a non-expansive DWT have suggested the

possibility of implementing symmetric extension with orthogonal wavelets. For the first

time, this thesis analyzes and compares orthogonal and biorthogonal wavelets with symmetric

extension.

Our results indicate a significant performance improvement for orthogonal wavelets when

they employ symmetric extension. Furthermore, our analysis also identifies that linear (or

near-linear) phase filters are critical to compression performance—an issue that has not been

recognized to date.

We also demonstrate that biorthogonal and orthogonal wavelets generate similar compression

performance when they have similar filter properties and both employ symmetric extension.

The biorthogonal wavelets indicate a slight performance advantage for low frequency im-

ages; however, this advantage is significantly smaller than recently published results and is

explained in terms of wavelet properties not previously considered.
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Chapter 1

Introduction

1.1 Motivation

The phenomenal growth of the Internet, along with the ubiquitous use of digital cameras,

scanners and camera phones have made the capture, display, storage and transmission of

images, a routine experience. In addition, imaging is extensively used in medicine, law

enforcement, Internet gaming and data collected by satellites. Despite rapid improvements

in data storage, processing speeds, and digital communication system performance, this

proliferation of digital media often outstrips the amount of data storage and transmission

capacities. Thus, the compression of such signals has assumed great importance in the use,

storage and transmission of digital images.

For still images, the JPEG and the GIF standards have been the prevailing norms for lossy

and lossless compression [21]. Lossless compression achieves a moderate amount of compres-

sion (3:1 - 4:1) whereas lossy compression schemes exploit the human visual system to achieve

higher compression ratios (leq 0.25 bits per pixel (bpp)). Recently, wavelet-based lossy com-

pression schemes have been gaining popularity over discrete cosine transform (DCT) due to

their lower complexity and better image quality vis-a-vis compression ratio. This prompted

1
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the new JPEG2000 standard to adopt a wavelet-based compression scheme.

For image compression applications, it is vital that a non-expansive (i.e. the total number

of input samples is equal to the total number of wavelet coefficients at any point during

the decomposition process) discrete wavelet transform (DWT) be employed; this, in turn,

makes image border extension critical. The goal of the extension technique is two-fold: (1)

no distortion should be introduced by the extension technique; and, (2) the subband de-

composition process should be non-expansive. There are two types of extension techniques

that are widely used in image compression: periodic and symmetric extension. Both ex-

tension techniques meet the second goal. However, only symmetric extension satisfies the

first goal. Periodic extension may introduce discontinuities at the image boundaries that

generate spurious high frequencies during the decomposition process.

It has been also shown that biorthogonal wavelets outperform orthogonal wavelets [12, 13].

This is because time domain convolution (TDC) or fast Fourier transform (FFT) based

non-expansive DWT methods require symmetric filters to implement symmetric extension.

Hence, this excludes the implementation of symmetric extension with orthogonal wavelets

that do not have symmetric filters. However, it is possible to implement symmetric exten-

sion with orthogonal wavelets using recently developed matrix based DWT implementation

methods. Thus, the question remains whether biorthogonal wavelets outperform orthogonal

wavelets in image compression applications due to the use of symmetric extension or due to

the linear phase property of the symmetric biorthogonal filters. If orthogonal wavelets were

able to employ symmetric extension, then perhaps their unique advantages (energy preserv-

ing, decorrelating, simple inverse) would outweigh advantages of the biorthogonal wavelets

(linear phase).

For the first time, orthogonal wavelets would be able to compete with the biorthogonal

wavelets an equal footing with regard to the type of border extension. Thus, some unre-

solved questions may now be addressed. This thesis presents and compares different DWT

implementation techniques as well as compares the performance of orthogonal and biorthog-
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onal wavelets with symmetric extension.

1.2 Previous work

An early introduction to wavelet theory was presented by Ingrid Daubechies with the con-

struction of compactly supported orthogonal wavelets [3]. Subsequently, the development of

multiresolution analysis and the fast wavelet transform by Mallat led to extensive research

in image coding using wavelets [14]. The success of wavelet-based image coding can be

evidenced by JPEG2000’s adoption of the biorthogonal (9,7) wavelet for image compression.

Discontinuity at the boundaries for finite length signals (images) generates undesirable arti-

facts under compression. Hence, signal extension is performed at the boundaries to overcome

this finite signal length problem. Smith and Eddins first demonstrated the advantages of

symmetric extension over periodic extension [23]. They illustrated that the symmetric exten-

sion technique outperforms the periodic extension in terms of both PSNR and image quality;

their result comparing the symmetric and periodic extension technique for the building im-

age (with dissimilar borders) shows an improvement of 0.4 - 0.5 dB for compression ratios

from 0.4 bpp - 1.6 bpp. Their symmetric extension method was further developed to in-

clude all combinations of filter lengths and symmetry types [2, 9, 17]. However, their DFT

based symmetric extension method—which requires symmetric filters to produce symmet-

ric subbands—precludes the use of orthogonal wavelets. Consequently, it has been widely

accepted that symmetric extension cannot be employed with orthogonal wavelets in the im-

plementation of a non-expansive DWT [13, 23]. Additionally, the available results has been

limited to a very few images.

Extensive studies have been done comparing the performance of scalar wavelets for image

compression. It has been shown that biorthogonal wavelets outperform orthogonal wavelets

both subjectively and quantitatively in terms of PSNR [12, 13]. These results show that the

PSNR advantage of the biorthogonal wavelet B9/7 over the orthogonal D8A wavelet ranged
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from about 0.6dB at 8:1 to 0.4dB at 64:1 for a low frequency image (Lena). The authors

explained the performance differences between biorthogonal and orthogonal wavelets in terms

of several wavelet properties—with coding gain cited as the primary factor; unfortunately,

many results did not fit easily into this explanation. The attribute most often cited as the

primary explanation for orthogonal wavelet’s poor performance is the absence of the superior

symmetric image border extension technique for non-symmetric filters. The inability of scalar

wavelets to combine orthogonality and symmetry motivated the development of balanced

multiwavelets [11]. Unfortunately, the performance of balanced multiwavelets also falls short

of the biorthogonal scalar wavelets in compression [10, 18].

While the symmetric extension details were being perfected for the biorthogonal wavelets,

matrix methods were developed as an alternative for computing the non-expansive DWT

[4, 1, 22]. The time domain matrix (TDM) method introduced by Silva and Sa works for both

biorthogonal and orthogonal wavelets irrespective of the extension type. The matrix based

methods regenerate the expansive transform coefficients (truncated during decomposition

process) from the transmitted non-expansive coefficients. Subsequently, inverse DWT is

computed using this extended signal.

Approximation order, regularity, smoothness, orthonormality and magnitude response of the

filters have been identified as some of the wavelet properties important for image compression.

Approximation power of the wavelet corresponds to the vanishing moment of the wavelet [24,

25]. An asymptotic error formula for the approximation error is presented in [26]. Sobolev

and Holder definitions of regularity that quantify the degree of smoothness are given in [16].

Villasenor et.al proposed a way to measure the accuracy of reconstruction by evaluating

the impulse and step response of the filter associated with the low frequency subband [5].

Orthonormal filters preserve energy in the transform domain. The orthonormality parameter

measures the deviation of biorthogonal wavelets from orthonormality [13]. However, the

published literature to date have not discussed the effect of linear phase on compression

performance. Our results indicate that biorthogonal wavelets enjoy a performance advantage

over orthogonal due to their linear phase property.
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1.3 Significance of this work

Matrix based methods have demonstrated a technique for a DWT implementation with sym-

metric extension using orthogonal wavelets. However, these methods have not been evaluated

in the literature. Also, in the past, the performance results of orthogonal wavelets using pe-

riodic extension has been compared to biorthogonal wavelets with symmetric extension. The

comparison of subjective and objective performance of similar orthogonal and biorthogonal

wavelets employing symmetric extension for different image types has also not been reported

in the literature. This thesis implements the TDM method and presents performance re-

sults for orthogonal and biorthogonal wavelets using both periodic and symmetric extension

techniques. Our results for symmetric extension indicate a slight performance advantage for

biorthogonal wavelets (particularly for low frequency images); this advantage is significantly

smaller than recently published results. Our analysis also demonstrates the importance of

linear phase filters on image compression performance. The contributions of this thesis are

as follows.

1. Extensive analysis of periodic and symmetric extension techniques for different image

types for both orthogonal and biorthogonal wavelets.

2. Comparison of subjective and objective performance of similar orthogonal and biorthog-

onal wavelets when both employ symmetric signal extension. This comparison is also

done for different image types for a wide range of compression ratios.

3. Evaluation of the impact of linear and non-linear wavelet filters on image compression

performance.

4. Performance analysis and side by side evaluation of the advantages and disadvantages

of the three different DWT implementation techniques.
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1.4 Organization of this thesis

This thesis is organized as follows. Chapter 2 begins with a brief introduction to a wavelet-

based image compression system. This is followed by the description of extension types and

different DWT implementation methods. Chapter 2 concludes with a pertinent description

of the set partitioning in hierarchical trees (SPIHT) quantization scheme. Chapter 3 ana-

lyzes these wavelet properties that are important to image compression. It also discusses

the effect of filter properties on SPIHT quantization. Chapter 4 presents and discusses both

the objective and subjective performance results for the TDM DWT method. This is done

for orthogonal and biorthogonal wavelets using both periodic and symmetric extension tech-

niques. Chapter 5 summarizes our results and concludes this thesis with suggestions for

future work.



Chapter 2

Background

2.1 Overview of wavelet based image compression sys-

tem

The primary goal of any image compression technique is to reduce the number of bits needed

to represent the image with little perceptible distortion. Subband coding using wavelets is

one of the best performing techniques among different transform based image compression

techniques. Figure 2.1 shows the block diagram of a wavelet based image compression system

[24]. The first three blocks (DWT, quantizer and entropy coder) compress the image data

whereas the last two blocks (entropy decoder, inverse discrete wavelet transform (IDWT))

reconstruct the image from the compressed data.

The DWT performs an octave frequency subband decomposition of the image information.

In its subband representation, an image is more compactly represented since most of its

energy is concentrated in relatively few DWT coefficients.

The quantizer then performs quantization by representing the transform coefficients with a

limited number of bits. Quantization represents lossy compression—some image information

7
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is irretrievably lost. A quantizer in a DWT-based coder exploits the spatial correlation in a

wavelet-based, hierarchical scale-space decomposition.

The entropy coder follows the quantization stage in a wavelet based image compression sys-

tem. Entropy coding is lossless; it removes the redundancy from the compressed bitstream.

However, the typical performance improvement of 0.4-0.6 dB [19] achieved by entropy cod-

ing is accompanied by higher computational complexity. We concentrate on the DWT and

quantizer blocks and do not consider entropy coding for the results in this thesis. A detailed

description of widely used entropy coding schemes is presented in [28].

The channel is the stored or transmitted compressed bitstream. We consider the channel

to be noiseless—the received DWT coefficients are free from errors. The synthesis stage

reconstructs the image from the compressed data. The entropy decoder and IDWT invert

the operations performed by the entropy encoder and DWT, respectively.

DWT QuantizerImage X
Entropy
coder

channel IDWTEntropy

decoder
X

Figure 2.1: Block diagram of a wavelet based lossy compression system.

2.2 One and two dimensional discrete wavelet trans-

form

2.2.1 Perfect reconstruction filter bank

A perfect reconstruction (PR) filter bank consists of filters that divide the input signal

into subbands; the synthesis part of a PR filter bank reconstructs the original signal by

recombining the subbands. The structure of a one dimensional (1-D), two channel PR filter

bank is shown in Figure 2.2. X(z) is the 1-D input signal. H(z) and G(z) are the z-
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transforms of the analysis lowpass and highpass filters; F (z) and J(z) are the z-transforms

of the synthesis lowpass and highpass filters.

Analysis Synthesis

2

22

2

G(z)

H(z)
Low pass

High pass

F(z)

J(z)

X(z)

X (z)L

X (z)H
X (z)HD

X (z)LD X (z)LU

X (z)HU

X(z) z
-d

Figure 2.2: 1-D, 1 level PR filter bank

H(z) and G(z) split the input signal X(z) into two subbands: lowpass (XL(z)) and highpass

(XH(z)). The lowpass and highpass subbands are then downsampled generating XLD(z) and

XHD(z) respectively. The upsampled signals, XLU(z) and XHU(z) are filtered by the corre-

sponding synthesis lowpass (F (z)) and highpass (J(z)) filters and then added to reconstruct

the original signal X(z) that has an overall delay of d.

Although downsampling preserves the original sampling rate, it introduces aliasing since

the magnitude response of the analysis filters are not ideal brickwall responses (they extend

beyond their π/2 symmetry point). Apart from aliasing distortion, there are amplitude and

phase distortions associated with the analysis filters. The synthesis filters are chosen to

cancel the errors introduced by the analysis filters and the relation between the analysis and

synthesis is given by the two PR conditions:

F (z)H(z) + J(z)G(z) = 2z−d, (2.1)

F (z)H(−z) + J(z)G(−z) = 0. (2.2)
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Equation (2.1) is called the ‘no distortion’ condition while Equation (2.2) is called the ‘anti-

aliasing’ condition. The relation between the analysis and synthesis filters changes slightly

for orthogonal and biorthogonal PR filter banks.

In the case of an orthogonal PR filter bank, the synthesis filters are time reversed versions

of the analysis filters: F (z) = H(z−1) and J(z) = G(z−1). Moreover, the highpass filter is

the alternating flip of the lowpass filter, G(z) = −z−NH(−z−1), where N is the length of

the filter. Thus, the entire filter bank is defined by just one filter—the lowpass analysis filter

H(z).

In the case of a biorthogonal PR filter bank, the PR conditions are satisfied by choosing

G(z) = F (−z) and J(z) = −H(−z). Thus, the biorthogonal filter bank is defined by two

filters H(z) and F (z). It is possible to obtain linear phase filters for biorthogonal wavelets

unlike the case for orthogonal wavelets, where all the filters are derived from one filter H(z).

2.2.2 One dimensional discrete wavelet transform

For any signal x(t) ∈ L2(R), the orthogonal discrete wavelet transform (DWT) analysis and

synthesis equations are given by:

aj,k =
∫

x(t)2j/2φ(2jt− k)dt bj,k =
∫

x(t)2j/2ψ(2jt− k)dt (2.3)

x(t) = 2N/2
∑

k

aN,kφ(2N t− k) +
M−1
∑

j=N

2j/2
∑

k

bj,kψ(2jt− k). (2.4)

and the biorthogonal discrete wavelet transform analysis and synthesis equations are given

by:

ãj,k =
∫

x(t)2j/2φ̃(2jt− k)dt b̃j,k =
∫

x(t)2j/2ψ̃(2jt− k)dt (2.5)

x(t) = 2N/2
∑

k

ãN,kφ(2N t− k) +
M−1
∑

j=N

2j/2
∑

k

b̃j,kψ(2jt− k). (2.6)

Equations (2.3) and (2.5) are the orthogonal and biorthogonal analysis (DWT) equations;

equations (2.4) and (2.6) are the orthogonal and biorthogonal synthesis (IDWT) equations.
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φ(t) and ψ(t) in equations (2.3) and (2.4) are the orthogonal scaling and wavelet functions;

aj,k and bj,k are the corresponding scaling and wavelet coefficients. Biorthogonal wavelets

have two sets of scaling and wavelet functions. φ(t) and ψ(t) are the synthesis scaling and

wavelet functions and φ̃(t) and ψ̃(t) are the analysis scaling and wavelet functions. ãj,k and

b̃j,k are the scaling and wavelet coefficients respectively; together they form the biorthogonal

DWT coefficients of x(t).

A DWT is a representation of the signal x(t) in terms of scale (j) and shift (k). The lower

limit, j = N , indicates that the DWT captures all the coarse(lowpass) information; the

upper limit, (j = M − 1), indicates that the DWT must stop at some finest scale. M − N

gives the number of decomposition levels in the DWT of x(t).

2.2.3 Fast wavelet transform

Mallat’s fast wavelet transform (FWT) gives a complete discrete time algorithm for deriving

the DWT coefficients for some coarse scale from the coefficients at the next finer scale.

Thus, the FWT avoids calculating the inner products as in equations (2.3) and (2.5). The

PR bank as shown in Figure 2.2 is used to compute the FWT and IFWT (inverse fast

wavelet transform). H(z) corresponds to the scaling function; G(z) corresponds to the

wavelet function. The orthogonal FWT and IFWT are given by equations (2.7) and (2.8);

the corresponding biorthogonal FWT and IFWT are given by equations (2.9) and (2.10).

aj,k =
∑

l

h(l − 2k)aj+1,l bj,k =
∑

l

g(l− 2k)aj+1,l (2.7)

aj+1,l =
∑

k

[h(2k − l)aj,k + g(2k − l)bj,k] (2.8)

ãj,k =
∑

l

h(l − 2k)ãj+1,l bj,k =
∑

l

g(l− 2k)ãj+1,l (2.9)
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ãj+1,l =
∑

k

[f(l − 2k)ãj,k + j(l − 2k)b̃j,k] (2.10)

It can be noted from equations (2.7) and (2.9) that the filter coefficients employed are the

time reversed versions of the lowpass and highpass filters in the PR filter bank.

The FWT begins with the computations of the scaling coefficients (aj+1) at the finest scale.

This is done by either calculating the inner products or setting the coefficients equal to the

sampled values of the input. After passing aj+1,l through one analysis level in the filter

bank we get scaling coefficients aj,k are obtained on the lowpass output branch and the

wavelet coefficients bj,k are obtained on the highpass output branch. For scaling and wavelet

coefficients at scales lower than j, we iterate the analysis stage on aj,k only. The synthesis

stage recovers scaling coefficients at scale j + 1 from the scaling and wavelet coefficients at

scale j.

2.2.4 Two dimensional discrete wavelet transform

The DWT described in the previous section is for one dimensional (1-D) signals. Images are

2-D and are analyzed using a separable 2-D wavelet transform. A 2-D separable transform

is equivalent to two 1-D transforms in series. It is implemented as a 1-D row transform

followed by a 1-D column transform on the data obtained from the row transform. Figure

2.3 shows the filter bank structure for computation of a 2-D DWT and IDWT.

Image

Analysis Synthesis

Reconstructed
Image

LL

HL

LH

HH

2

2

2

2

2

22

2

2

2

2

2

H(z)

G(z)

H(z)

H(z)

G(z)

G(z)

F(z)

F(z)

F(z)

J(z)

J(z)

J(z)

rows rowscols cols

+

+

+

Figure 2.3: One level filter bank for computation of 2-D DWT.
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Transform coefficients are obtained by projecting the 2-D input signal onto 2-D basis func-

tions. The separable 2-D basis functions can be expressed as the product of two 1-D basis

functions. Unlike two basis functions for 1-D signals at a given scale, there are four basis

functions for 2-D signals as given in equation (2.11).

φ(u, v) = φ(u)φ(v)

ψ1(u, v) = ψ(u)φ(v)

ψ2(u, v) = φ(u)ψ(v)

ψ3(u, v) = ψ(u)ψ(v) (2.11)

φ(u, v) can be thought of as the 2-D scaling function; ψ1(u, v), ψ2(u, v) and ψ2(u, v) are the

three 2-D wavelet functions. For a 2-D input signal x(u, v), the transform coefficients are

obtained by projecting the input onto the four basis functions given in equation (2.11). This

results in four different subbands in the decomposition corresponding to the four types of

transform coefficients (X(N, j,m), X (1)(i, j,m), X (2)(i, j,m) and X (3)(i, j,m)). X(N, j,m)

is the coarse approximation of the 2-D signal x(u, v) and corresponds to the LL band.

X(1)(i, j,m) coefficients contain the vertical details and correspond to the LH sub-band.

X(2)(i, j,m) coefficients contain the horizontal details and correspond to the HL sub-band.

X(3)(i, j,m) coefficients represent the diagonal details in the image and constitute the HH

sub-band. The four subbands for one level of decomposition are shown in Figure 2.4.

Thus, the 2-D DWT can be expressed as four inner products given by equation (2.12). As

shown in Figure 2.3, it is computed by filtering each row in the image followed by filtering

each column of the output obtained from the row filtering .

X(N, j,m) =
∫ ∫

x(u, v)2Nφ(2Nu− j)φ(2Nv −m)dudv ⇒ LL

X(1)(i, j,m) =
∫ ∫

x(u, v)2iψ(2iu− j)φ(2iv −m)dudv ⇒ LH

X(2)(i, j,m) =
∫ ∫

x(u, v)2iφ(2iu− j)ψ(2iv −m)dudv ⇒ HL

X(3)(i, j,m) =
∫ ∫

x(u, v)2iψ(2iu− j)ψ(2iv −m)dudv ⇒ HH (2.12)
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IMAGE

LL

LH

HL

HH

Approximation
Coeff

Horizontal
Details

Vertical
Details

Diagonal
Details

Figure 2.4: Output of 1-level 2-D decomposition

The synthesis stage corresponds to the 2-D IDWT and is given by equation (2.13). The

synthesis stage performs upsampling and filtering in the reverse order (column followed by

row filtering) to reconstruct the input image x(u, v).

x(u, v) =
∑

j

∑

m

X(N, j,m).2Nφ(2Nu− j)φ(2Nv −m)

+
−∞
∑

i=∞

∑

j

∑

m

[X(1)(i, j,m).2iψ(2iu− j)φ(2iv −m)

+X(2)(i, j,m).2iφ(2iu− j)ψ(2iv −m)

+X(3)(i, j,m).2iψ(2iu− j)ψ(2iv −m)] (2.13)

Multiple level of decompositions achieve higher decorrelation and are generated by iterating

the LL band output only as shown in Figure 2.5.

2.2.5 Wavelet decomposition structure

Figure 2.4 shows the structure of a 1-level 2-D wavelet decomposition of an image. For

multiple levels of decomposition, the LL band is iteratively decomposed; this results in a

pyramid structure for the subbands with the coarsest subband at the top and the finest

subband at the bottom. Figure 2.6 illustrates the pyramid structure obtained after two-level
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Figure 2.5: 3-level 2-D decomposition

decomposition of the Lighthouse image; notice that the LL subband from the first stage has

been transformed into 4 subbands- the three other subbands remain unchanged. Color gray

in the figure corresponds to the value zero.

The multiresolution nature of the wavelet decomposition compacts the energy in the signal

into a small number of wavelet coefficients. For natural images, much of the image energy

is concentrated in the LL band that corresponds to the coarsest scale. This can be noted

in Figure 2.6. The LL band is not only a coarse approximation of the image but also

contains most of the image’s energy. In addition to this, it is also statistically observed

that the energy in the finer subbands is also concentrated into a relatively small number

of wavelet coefficients. The significant coefficients in the finer subbands do not occur at

random, but rather tend to occur in clusters in the same relative spatial location in each of

the higher frequency subbands. This self-similar, hierarchical nature of the wavelet transform

can be used to make interband predictions; the location of the significant coefficients in the

coarser bands is used to predict the location and magnitude of significant coefficients in finer

subbands.
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Coarse Fine

Figure 2.6: 2-Level wavelet decomposition of Lighthouse image

2.3 Extension techniques

2.3.1 Expansive and non-expansive discrete wavelet transform

The DWT is an expansive transform, i.e., the number of output samples is greater than

the number of input samples. Figure 2.7 illustrates the expansive DWT for one level of

decomposition. We consider a 1-D input of length N (even) and a set of orthogonal filters

of length M (even). The length of the output for both lowpass and highpass branches

combined is equal to N + M − 2; this exceeds the number of input samples N. In general,

for (N + M) that is even, there are N + M − 2 output samples; for (N + M) that is odd,

there are N + M − 1 samples. All the output samples (N + M − 2 or N + M − 1) are

required in the synthesis stage for reconstructing the original signal. This problem of extra

number of output samples that are required for reconstruction worsens with multiple levels

decomposition and with increase in filter length (M). Table 2.1 shows the percentage increase

in the number of DWT coefficients for 1-5 levels of decomposition for different image sizes.

It is observed that the percentage increase in the number of DWT coefficients increases for

higher levels of decomposition and longer filters. Thus, DWT based on linear convolution
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is expansive; this is highly undesirable in image compression. This can be avoided by using

circular convolution instead of linear convolution. Circular convolution is not expansive as

the two signals, input (length N) and filter (M) are shifted modulo N. Hence, the number

of samples from both the lowpass and highpass branch combined is equal to the number of

input samples (N). However, in circular convolution a total of M − 1 (assuming N >> M)

outputs samples suffer from aliasing. The original signal can still be reconstructed from the

aliased non-expansive DWT since the filter bank is a PR system. However after quantization,

circular convolution generates distortion at the boundaries of the image. Hence, to minimize

the effect of this distortion, the input signal is extended at the borders. Two such standard

extension techniques are discussed in the next two subsections.

2

2

X

G(z)

H(z)

N(even)

M(even)

N+M-1

} N+M-2 > N

M(even)

N+M-1

N+M-2

2

2

N+M-2

Figure 2.7: Illustration of expansive DWT transform

Table 2.1: DWT based on linear convolution

Percent increase in the no. of DWT coefficients

Image size Filter length 1-Level 2-Level 3-Level 4-Level 5-Level

10 6.3 9.7 11.4 12.7 13.3

256 X 256 18 12.9 19.9 24 26.7 28.7

10 3.1 4.8 5.6 6.1 6.4

512 X 512 18 6.3 9.7 11.4 12.5 13.2



18

2.3.2 Periodic extension

Periodic extension is shown by the block diagram in Figure 2.8. Signal extension is accom-

plished by periodically replicating the entire finite length signal X; i.e. X = X̂(n modulo N).

We illustrate each step in Figure 2.8 through an example (refer Figure 2.9). The following

notation is used:

• X: input sequence of length 32 samples

• X̂: periodically extended version of X

• lpn: signals in the lowpass branch of a one-level filter bank

• hpn: signals in the highpass branch of a one-level filter bank

The step-wise procedure for computation of DWT and IDWT using periodic extension is as

follows:

• Analysis:

1. lp1 and hp1 correspond to the lowpass and highpass filter outputs. They are

obtained by filtering the periodically extended input signal X̂ with the low-

pass/highpass filters (H(z)/G(z)). It is to be noted that both lp1 and hp1 are

periodic with period equal to N = 32. One period of lp1 and hp1 is equivalent to

the output obtained by N-point circular convolution of the original input signal

X and the filter coefficients.

2. lp2 and hp2 are the downsampled lowpass and highpass filter outputs. lp2 and

hp2 are periodic with period equal to N = 16.

3. lp3 and hp3 are the samples retained to be fed to the synthesis stage. lp3 and hp3

are 16 (N/2) samples each. They are obtained by performing an N/2 windowing

operation. lp3 and hp3 would also correspond to the downsampling of the output

obtained through circular convolution as discussed in (1).
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• Synthesis:

1. lp4 and hp4 are formed by periodically replicating lp3 and hp3. They are periodic

with period equal to N = 16.

2. lp5 and hp5 are generated by upsampling lp4 and hp4. lp5 and hp5 are periodic

with period equal to N = 32.

3. lp6 and hp6 are the synthesis low and highpass filter outputs obtained by filtering

the periodic input sequences (lp5 and hp5) using the filters (F (z) and G(z)). lp6

and hp6 are periodic with period equal to N = 32. One period of lp6 and hp6 is

equivalent to the output obtained by N-point circular convolution of the signals

(lp5 and hp5) and the respective filter coefficients (F (z) and G(z)).

4. The lp6 and hp6 outputs are combined to generate X̂ that is periodic with period

equal to N = 32. The reconstructed signal X is obtained from X̂ by an N-point

windowing operation.

G(z)
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Figure 2.8: Block diagram for periodic extension

Periodic extension is implemented using circular convolution of the signal with the filter

coefficients (equivalent to linear convolution of periodic signal with filter coefficients). It

can be noted, from Figure 2.9(b), that periodic extension of the signal introduces jumps

at the boundaries; this is because the start and the end of any signal are more likely to

be different. This discontinuity generates high frequency artifacts in the transform domain.
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The original signal can still be reconstructed from the transform coefficients provided there

is no compression. However, for lossy compression, these artifacts are undesirable because:

1. these large coefficients corresponding to these artifacts occur in the high frequency

subbands. The quantizer utilizes more bits to code these artifacts ; and,

2. these artifacts do not represent real information present in the input signal, instead

they are spurious features resulting from the method used to do the transform.
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Figure 2.9: Periodic extension example. Signals in red represent the extended/discarded

samples while signals in blue represent the input/preserved samples at each stage.
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2.3.3 Symmetric extension

Symmetric extension is shown by the block diagram in Figure 2.10. Signal extension for

symmetric extension is described below:

The input signal (length N) is symmetrically extended. There are two ways of extending

the sequence based on whether the length of the filter is odd or even. For an even length

filter, the extended signal X̂, has length 2N and can be expressed by:

x̂(n) =















x(n) : 0 <= n <= N − 1

x(2N − n− 1) : N <= n <= 2N − 1

0 : otherwise

(2.14)

while for an odd length filter, X̂ has length 2N − 2 and can be expressed by:

x̂(n) =















x(n) : 0 <= n <= N − 1

x(2N − n− 2) : N <= n <= 2N − 3

0 : otherwise

(2.15)

We explain the operation of each block in Figure 2.10 by stepping through an example (refer

Figure 2.11). H(z), G(z), F (z) and J(z) are the biorthogonal 9/7 symmetric filters. The

notation used is as given below:

• X: input sequence of length 32 samples

• X̂: symmetrically extended version of X (period N = 64)

• lpn: signals in the lowpass branch of a one-level filter bank

• hpn: signals in the highpass branch of a one-level filter bank

The step-wise procedure for computation of DWT and IDWT using periodic extension is as

follows:
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• Analysis:

1. lp1 and hp1 correspond to the lowpass and highpass filter outputs; they are ob-

tained by circular convolution of the symmetrically extended input signal X̂ and

the lowpass/highpass filters (H(z)/G(z)). It is to be noted that both lp1 and hp1

obtained through circular convolution are symmetric-periodic with period equal

to N = 64.

2. lp2 and hp2 are the downsampled lowpass and highpass filter outputs. lp2 and

hp2 are also symmetric-periodic with period equal to N = 32.

3. lp3 and hp3 constitute the non-expansive DWT coefficients. We need to retain half

the number of downsampled outputs (N = 16) in each branch as the downsampled

outputs (lp2 and hp2, N = 32) are symmetric.

• Synthesis:

1. lp4 and hp4 are formed by symmetric extension of lp3 and hp3. However, for

odd length symmetric filters, (1,2)-extension (i.e. the start sample of the input

sequence is repeated only once while the end sample is repeated twice. Vice-versa

for (2,1) extension) is followed for the input signal to the lowpass filters and (2,1)-

extension is followed for the input signal to the highpass filter. Thus, lp4 and hp4

are periodic with period N = 32.

2. lp5 and hp5 are generated by upsampling lp4 and hp4. lp5 and hp5 are symmetric-

periodic with period equal to N = 64.

3. lp6 and hp6 are the synthesis low and highpass filter outputs obtained by the

circular convolution of the symmetric input sequences (lp5 and hp5) with the

synthesis filters (F (z) and G(z)). lp6 and hp6 are periodic with period equal to

N = 64.

4. The lp6 and hp6 outputs are combined to generate X̂ that is symmetric-periodic

with period equal to N = 64. The reconstructed signal X is obtained from X̂ by
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an N-point windowing operation.

Symmetric extension is implemented using circular convolution of the symmetrically ex-

tended signal with the filter coefficients. It can be noted, from Figure 2.11(b), that symmet-

ric extension unlike periodic extension does not introduce jumps at the boundaries as the

signal boundaries are continuous.

H(z)
circ conv

F(z)
circ conv

22

G(z)
circ conv

22

+

Low Pass Branch

High Pass Branch

Analysis Synthesis

X

Sym.Ext. XX

N/2-pt
window
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window
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circ conv

N-pt
window X
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3
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2
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4
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5
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1
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2
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5
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6

hp
6

Sym.Ext.

Sym.Ext.

Figure 2.10: Block diagram for symmetric extension
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Figure 2.11: Symmetric extension example. Signals in red represent the extended/discarded

samples while signals in blue represent the input/preserved samples at each stage.
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2.4 DWT implementation methods

This section outlines three methods for computing the non-expansive DWT with either

symmetric or periodic extension.

2.4.1 Fast fourier transform method

The fast Fourier transform (FFT) method computes the DWT by performing filtering opera-

tions in the frequency domain. This method allows the implementation of periodic extension

technique for both biorthogonal and orthogonal wavelets. We discuss the method for both

periodic and symmetric extension.

• Periodic extension

The block diagram in Figure 2.12 shows the computation of the non-expansive DWT

coefficients with periodic extension. We use the example as shown in Figure 2.9 to

illustrate the different intermediate signals. The simultaneous operations of signal

extension and circular convolution is implemented by DFT and IDFT operations i.e.

the output is obtained by the multiplication of 32 point DFTs of the input signal and

the filters and subsequently taking a 32 point IDFT of the output. It is to be noted

that multiplying DFTs correspond to circular convolution in time domain. The IDFT

operation yields signals lp1 and hp1 each of length 32. Downsampling results in two 16

length DWT signals, lp2 and hp2 (correspond to signals lp3 and hp3 in Figure 2.9). The

analysis stage is not connected directly to the synthesis stage to indicate that lp2 and

hp2 can be stored and quantized to achieve compression before the signals are input

into the synthesis stage. Frequency domain filtering of the upsampled signals (lp3 and

hp3) and subsequent combining results in the reconstructed signal.
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Figure 2.12: Block diagram of the FFT method with periodic extension

• Symmetric extension

Figure 2.13 shows the block diagram for computation of the non-expansive DWT coef-

ficients with symmetric extension. We again use the example as shown in Figure 2.11

to illustrate the different intermediate signals. The input signal is initially extended

according to equations (2.14) or (2.15). Frequency domain filtering of the extended

signal X̂ (length 2N/(2N − 2), in our case (2×32)-2 = 62) is equivalent to circular

convolution of a symmetrically extended signal; this yields two filtered outputs, each

of length 62 in our case. Downsampling results in signals lp2 and hp2 of length 31

each. Thus, we observe that the total number of DWT samples (62) exceeds the input

(32). However, for symmetric filters, the filtered output is also symmetric (refer Figure

2.11(d)). Hence, we can keep half the number of samples (lp3 and hp3) thus yielding

a non-expansive DWT transform. The DWT coefficients from the analysis stage (lp3

and hp3) are symmetrically extended as follows:

– lp3 undergoes (1,2) symmetric extension: the first sample is repeated once and

the last sample is repeated twice to generate lp4. (1,2) extension is required for

odd length filters (in our case biorthogonal 9/7) while (2,2) extension is done for

even length filters.
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– hp3 undergoes (2,1) symmetric extension: the first sample is repeated twice and

the last sample is repeated only once hp4. (2,1) extension is required for odd

length filters whereas (2,2) extension is done for even length filters.

Frequency domain filtering of the upsampled signals (lp4 and hp4) and subsequent

combining results in the symmetric output X̂. N-point windowing results in the original

signal X.
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DFT/IDFT

22
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+
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(1,2) / (2,2)

Sym.Ext.
(2,1) / (2,2)

Figure 2.13: Block diagram of the FFT method with symmetric extension

2.4.2 Time domain convolution method

The time domain convolution (TDC) approach to compute the DWT uses linear convolution

to compute the DWT coefficients. The wavelet and the extension technique combination

that can be implemented using TDC is same as the FFT method: symmetric extension

for biorthogonal filters and periodic extension for both orthogonal as well as biorthogonal

filters. We illustrate both periodic and symmetric extension below through examples. We

use D4 (length 8) least asymmetric orthogonal Daubechies filters for periodic extension and

biorthogonal 9/7 for symmetric extension. The following notation is used throughout this

section:

• X: input sequence of length 32 samples

• X̂: periodically extended version of X
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• lpn: signals in the lowpass branch of a one-level filter bank

• hpn: signals in the highpass branch of a one-level filter bank

• Periodic extension

The block diagram for periodic extension is shown in Figure 2.14 and the corresponding

example is shown in Figure 2.15. The input signal X is extended by 3 (M/2 - 1 for even

and (M − 1)/2 for odd) samples on either side of the signal periodically as shown in

Figure 2.15(b) yielding the extended signal X̂ of length 38. lp1 and hp1, each of length

45, are obtained by linear convolution of the extended signal X̂ and the filters (H(z) and

G(z)). It is to be noted that the middle N filter outputs obtained by linear convolution

of the extended signal are same as that obtained by circular convolution of the input

signal X. lp2 and hp2 are the downsampled versions of lp1 or hp1, each of length 22.

Windowing operation yields the non-expansive DWT coefficients (length 16) for both

lowpass and highpass branches. The DWT coefficients are again periodically extended

by 3 samples on either side as before resulting in extended signals (lp4 and hp4). Linear

convolution of the upsampled outputs (lp5 and hp5) result in final lowpass and highpass

outputs (lp6 and hp6). The final reconstructed signal is obtained by combining lp6 and

hp6 followed by a windowing operation.
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Figure 2.14: Block diagram of TDC method with periodic extension
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Figure 2.15: TDC method periodic extension example. Red represents the ex-

tended/discarded samples while blue represents the input/preserved samples at each stage.
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• Symmetric extension

The block diagram for symmetric extension is shown in Figure 2.16; the corresponding

example is shown in Figure 2.17. The input signal X is symmetrically extended by

4 ((M − 1)/2 - B9/7) samples on either side of the signal as shown in Figure 2.17(b)

yielding the extended signal X̂ of length 40. The extended signal is either (1,1) for

odd filters or (2,2)for even filters. lp1 and hp1, each of length 48, are obtained by

linear convolution of the extended signal X̂ and the filters (H(z) and G(z)). The

downsampled signals, lp2 and hp2 are each of length 24. Windowing operation yields the

non-expansive DWT coefficients (length 16) for both lowpass and highpass branches.

The DWT coefficients are again symmetrically extended by 4 samples on either side

as before resulting in extended signals (lp4 and hp4). In our case, lp3 and hp3 undergo

(1,2) and (2,1) extension. Linear convolution of the upsampled outputs (lp5 and hp5)

with the synthesis filters (F (z) and G(z)) result in final lowpass and highpass outputs

(lp6 and hp6). The final reconstructed signal is obtained by combining lp6 and hp6

followed by a windowing operation.

The FFT and TDC methods with symmetric extension cannot be used with non-linear

filters (i.e. orthogonal wavelets). The complication arises in the computation of the

inverse transform. The convolution of two symmetric inputs yields a symmetric output

(desired as half the number of samples needs to be retained). However, the convolution

of a symmetric input with another non-symmetric input yields a non-symmetric output.

Hence, the DWT coefficients for orthogonal wavelets do not show redundancy as in the

case of linear phase filters. Thus, some (depends on filter length) DWT coefficients

corresponding to the boundaries of the signals are discarded at the analysis stage

to keep the process non-expansive. Recovering these discarded coefficients from the

received coefficients is non trivial using TDC or FFT based implementation methods.

The matrix based method discussed next provides a way to retrieve these truncated

coefficients from the received coefficients.
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Figure 2.17: TDC method symmetric extension example. Red represents the ex-

tended/discarded samples while blue represents the input/preserved samples at each stage.
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2.4.3 Time domain matrix method

The FFT and TDC methods cannot be used with non-linear phase filters. Recently de-

veloped matrix based methods provide an alternative for computing a non-expansive DWT

[1, 4, 22]. These matrix methods operate in the time domain and regenerate transform co-

efficients truncated during the decomposition process; the inverse DWT is calculated using

this extended signal. The time domain matrix (TDM) method introduced by Silva and Sa

is used to implement the matrix method in this thesis [22]. We discuss the Silva and Sa

method below; we also illustrate both types of extensions through examples.

• Silva and Sa Method

The signal extensions in TDM are described by linear combination of input signal

samples. Thus, both symmetric and periodic extension techniques can be implemented

for both biorthogonal and orthogonal wavelets. The TDM method for a two subband

system is discussed below.

The input signal x, of length N , is extended by length Q = M − 2 (even filters) or

Q = M − 1 (odd filters) to generate the extended signal x̂. The appended signal xex

and the extended signal x̂, can be expressed by equations (2.16) and (2.17):

xex = Ex (2.16)

x̂ =

[

x

xex

]

(2.17)

where E is the signal extension matrix of dimension Q× N . E matrix for symmetric

extension and periodic extension for a 10 length filter are shown in equations (2.4.3(a))

and (2.4.3(b)).

The analysis stage transform matrix (A) of size (Q + N) × (Q + N) operates on the

extended input signal x̂. Matrix A is shown in equation (2.18). h and g are analysis

lowpass and highpass filters. Downsampling is achieved by dyadic circular shifts of

rows.
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=

[

A0 A1

A2 A3

]

(Q+N)×(Q+N)

(2.18)

where D = M − Q/2 and the sizes of A0, A1, A2 and A3 are N×N, N×Q, Q×N and

Q×Q respectively.

The DWT output ŷ can be split into two: the transmitted DWT coefficients, y and the

extra samples, yex that needs to be truncated to keep the DWT process non-expansive

(refer equation (2.19)).

[

y

yex

]

=

[

A0 A1

A2 A3

]

×
[

x

xex

]

(2.19)

The truncated expansive coefficients yex regenerated from the non-expansive coeffi-

cients y, are given by:

yex = (A2 + A3E)(A0 + A1E)−1y (2.20)
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Periodic extension is implemented by modifying the E matrix given in Equation

(2.4.3(b)).

• Example:

The block diagrams of TDM method with periodic and symmetric extension are shown

in Figures 2.20 and 2.19. We use orthogonal wavelet (D5LA) and explain the intermedi-

ate signals for symmetric extension through an example as shown in Figure 2.18. The

notation used is given as below:

– X: input sequence of length 32 samples

– X̂: symmetrically extended version of X

– lpn: signals in the lowpass branch of a one-level filter bank

– hpn: signals in the highpass branch of a one-level filter bank

The symmetrically extended signal X̂ is obtained using equations (2.16) and (2.17).

The length of X̂ is 40 samples.

– Analysis:

1. lp1 and hp1 correspond to the lowpass and highpass filter outputs; they are

obtained by circular convolution of the symmetrically extended input signal X̂

and the lowpass/highpass filters (H(z)/G(z)). It is to be noted that both lp1

and hp1 are obtained through a 40-point circular convolution (32 unaliased

and 8 aliased outputs).

2. lp2 and hp2 (20 samples each) are the downsampled versions of lp1 and hp1.

The simultaneous operations of circular convolution and downsampling is

achieved by matrix A in equation (2.18); it’s output corresponds to lp2 and

hp2.

3. lp3 and hp3 constitute the non-expansive DWT coefficients and are obtained

by a windowing operation that retains the unaliased samples in lp2 and hp2
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Figure 2.18: TDM method symmetric extension example. Red represents the ex-

tended/discarded samples while blue represents the input/preserved samples at each stage.
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– Synthesis:

1. lp3 and hp3 are used to regenerate the truncated coefficients (yex as in equation

(2.20)). The corresponding regenerated coefficients for lowpass and highpass

branches are padded at the back of lp3 and hp3 to generate the expansive

DWT: lp4 and hp4 (each of length 20 samples).

2. lp5 and hp5 are generated by upsampling lp4 and hp4. lp5 and hp5 each

correspond to 40 samples.

3. lp6 and hp6 are the synthesis low and highpass filter outputs obtained by

performing a 40-point circular convolution of the upsampled sequences (lp5

and hp5) and the synthesis filters (F (z) and G(z)).

4. The lp6 and hp6 outputs are combined to generate X̂ that is symmetric-

periodic of length 40. The unaliased samples of X̂ correspond to the original

signal X and is obtained by a N-point windowing operation.

Periodic extension implementation as shown in Figure 2.20 follows the same proce-

dure as the symmetric extension described above. However, we need not compute

the regenerated coefficients since circular convolution operations in analysis and

synthesis are equivalent to performing a periodic extension on the input signal.
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Figure 2.19: Block diagram of TDM method with symmetric extension
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Figure 2.20: Block diagram of TDM method with periodic extension

2.4.4 Comparison of FFT, TDC and TDM methods

• Wavelet/extension type:

Periodic extension for both orthogonal and biorthogonal wavelets can be implemented

by all DWT computation methods. In the case of FFT and TDC methods, symmetric

extension can only be implemented with biorthogonal filters that have symmetric filters.

The extension type ((1,1)/(2,2)) to be followed for the input signal is decided by

whether the filters are even or odd. In the case of TDM method, symmetric extension

can be implemented for both orthogonal and biorthogonal wavelets. The extension

type for the input does not depend on the filter length and can be either (1,1) or (2,2).

• Computation requirements:

In the case TDC method, we observe that the length of the extended signal at the

boundaries depend on the filter length (M/2 - 1 for M even and (M −1)/2 for M odd).

This differs from the FFT method where for symmetric extension, the entire signal

is symmetrically extended resulting in an input signal length of 2N − 2 (odd length

filters) or 2N (even length filters). For an input of length N (assumed to be power of

2) and filter of length M (even), the number of multiplication and addition operations

for performing a single filtering operation in TDC and TDM are as described below.

– TDC: M ×N real multiplications and (M − 1) ×N real additions.
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– FFT: 2N
2
log2N (for obtaining the 2N-point DFT of the input) + 2N (multiplica-

tion of DFTs of input and filter) + 2N
2
log2N (2N-point IDFT of the result obtained

from the multiplication of the input and the filter) complex multiplications and

2 × 2Nlog2N (for obtaining the 2N-point DFT of the input) + 2N − 1 (multi-

plication of FFTs) + 2Nlog2N (2N-point IDFT) complex additions. Therefore,

we have 2Nlog4N number of complex multiplications and 4Nlog2
√

2N number

of complex additions in total. We have assumed that the one-time computation

of the DFT of the filter for a particular image size can be neglected.

It is to be noted that 1 complex multiplication is equivalent to 4 real multiplications and

1 complex addition is equivalent to 2 real addition operations. Thus, FFT method is

computationally more intensive than the TDC method. The TDM method is equivalent

to the TDC method in terms of computation. The TDM method also requires the

computation of a matrix inverse for regenerating the discarded coefficients. However,

the matrix inverse computation is an one-time calculation for a particular image size

and hence can be neglected.

• Symmetric extension: It is not possible to implement symmetric extension with

orthogonal wavelets using the FFT and TDC based methods. This is because the DWT

coefficients for orthogonal wavelets do not show redundancy as in the case of linear

phase filters. Thus, some (depends on filter length) DWT coefficients corresponding

to the boundaries of the signals are discarded at the analysis stage to keep the process

non-expansive. Recovering these discarded coefficients from the received coefficients is

non trivial for TDC or FFT methods.

One drawback of the TDM method is that it requires the regenerating matrix, (A2 +

A3E)(A0 + A1E)−1 to possess a low condition number for accurate signal reconstruc-

tion. Fortunately, this condition number constraint is satisfied by several combinations

of wavelets and extension type. The condition numbers for symmetric extension for

LA⊥, A⊥ and bi⊥ wavelets is shown below. It can be observed that all A⊥ and D7LA
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have poor condition numbers. For periodic extension, the regenerating matrix for all

the wavelets is perfectly conditioned (condition number is equal to 1).

Wavelet Condition No.

D4LA 1.30

D5LA 1.59

D6LA 1.33

D7LA 9.62

D8LA 1.36

D9LA 1.66

D10LA 1.39

B9/7 1.11

D22/14 2.11

Wavelet Condition No.

D4A 24.43

D5A 797.31

D6A 6237.92

D7A 1.26e+03

D8A 1.22e+06

D9A 1.12e+06

D10A 4.34e+07

(a)LA⊥ and bi⊥. (b)A⊥.

Table 2.2: Condition numbers for LA⊥, bi⊥ and A⊥ filters.

2.5 Quantization

The set partitioning in hierarchical trees (SPIHT) [19] quantization scheme is used to gener-

ate all of the results in this thesis. SPIHT is an extension of the embedded zero tree wavelet

(EZW) image coding technique introduced by Shapiro [20]. SPIHT achieves good perfor-

mance by exploiting the spatial dependencies of the DWT coefficients in different subbands.

The next two sections discuss the wavelet decomposition structure and the SPIHT coder.

2.5.1 SPIHT coder

The interband spatial dependencies are captured in the form of parent-child relationships;

this is illustrated in Figure 2.21. The arrows in Figure 2.21 point from the parent node

to its four children. With the exception of the coarsest subband and the finest subbands,
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Figure 2.21: Parent-child relationships for a 3-level wavelet decomposition.

each DWT coefficient (parent) at the ith level of decomposition is spatially correlated to 4

child coefficients at level i-1 in the form of a 2 × 2 block of adjacent pixels. These 4 child

coefficients are at the same relative location in the subband decomposition structure. This

relationship is utilized during SPIHT quantization: if a parent coefficient is insignificant with

respect to a particular threshold, then all of its children would most likely be insignificant and

similarly, significant coefficients in the finer subbands most likely correspond to a significant

parent in the coarser subband. This results in significant savings: only the parent’s position

information needs to be coded since the children’s coordinates can be inferred from the

parent’s position information.

SPIHT captures the current bit-plane information of all the DWT coefficients and organizes

them into three ordered lists:

1. List of significant coefficients (LSC).

2. List of insignificant coefficients (LIC).

3. List of insignificant sets of coefficients (LIS).
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LSC constitutes the coordinates of all coefficients that are significant. LIS contains the roots

of insignificant sets of coefficient. They can be of two different types; the first type known

as TYPE A has all the descendants insignificant within a given bit-plane, the second type

known as TYPE B excludes the four children of the root node. Finally, LIC contains a list

of all the coefficients that do not belong to either LIS or LSC and are insignificant. The

operation of SPIHT can be grouped into three sequential steps: initialization, sorting pass

(SP) and refinement pass (RP) & threshold update.

1. Initialization: The initial threshold is set to 2log2(max(|Ci,j |)), where max(|Ci,j|) is the

largest DWT coefficient. The algorithm starts at the coarsest band in the subband

pyramid. All the coefficients in the subband are added to the LIC and the coeffi-

cients with descendants (tree roots) are added as to LIS as TYPE A. Thus, during

initialization, every coefficient is initialized to an insignificant state.

2. Sorting pass: At each threshold level, the LIC is coded first, followed by the entries

in LIS. A given entry in LIC is tested and moved to LSC if found significant. The

sign bit of the significant coefficient is also immediately coded. The LIS entries are

coded differently. For a TYPE A LIS entries, if any member in the hierarchical tree

is found significant, the immediate children are tested and are added to either LIC or

LSC. The parent is added to the end of LIS as a TYPE B entry or removed from the

LIS if it does not have any grandchildren. For TYPE B entries, if any member in the

hierarchical tree is found significant, the immediate children are removed and added as

TYPE A entries to the end of LIS. Processing continues till the end of LIS is reached.

SP also records the position of the coefficients that are found significant during the

current pass.

3. Refinement pass and threshold update: RP adds precision to the LSP entries

obtained before the current sorting pass by outputting the most significant bit corre-

sponding to the existing threshold. On completion of the refinement, the threshold is

halved and the cycle is repeated starting from step 2.



Chapter 3

Wavelet properties

Wavelet properties important to image compression have been discussed in [5, 13, 15, 16,

24, 26]. In this section, we analyze six such properties: orthonormality, filter length, van-

ishing order, smoothness, filter magnitude response and group delay difference. We evaluate

these properties for three types of wavelets: least asymmetric (LA) Daubechies orthogonal

wavelets (D4LA - D10LA), asymmetric (A) Daubechies orthogonal wavelets (D4A - D10A), and

biorthogonal wavelets (B9/7 and B22/14). It is to be noted that, in the discrete domain,

wavelet characteristics correspond to the filter properties in the filter bank.

3.1 Orthonormality

Orthogonal filters lead to orthogonal wavelet basis functions; hence, the resulting wavelet

transform is energy preserving. This implies that the mean square error (MSE) introduced

during the quantization of the DWT coefficients is equal to the MSE in the reconstructed

signal. This is desirable since it implies that the quantizer can be designed in the trans-

form domain to take advantage of the wavelet decomposition structure. For orthogonal

filter banks, the synthesis filters are transposes of analysis filters. However, in the case of

44
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biorthogonal wavelets, the basis functions are not orthogonal and thus not energy preserving.

Hence, we use the orthonormality parameter (OP) to measure the wavelet’s deviation from

orthonormality [13]. It is given by:

OP =
∫ π

0
(2 − O(ω))2dω (3.1)

where O(ω) is the frequency response of the allpass filter defined by O(z) = H(z)H(z−1) +

G(z)G(z−1) (H and G are z-transforms of the lowpass and highpass analysis filters).

Table 4.7 presents the filter properties of 7 least asymmetric (LA) orthogonal Daubechies

wavelets (D4LA - D10LA) [3], corresponding asymmetric(A) orthogonal Daubechies wavelets

(D4A - D10A) [3] and 2 biorthogonal wavelets (B9/7[3], B22/14[27]). As expected, the orthonor-

mality measure is zero for the orthogonal wavelets (LA and A), but greater than zero for

the two biorthogonal wavelets (B9/7 and B22/14). However, both B9/7 and B22/14 are ‘close’

to orthonormal; thus, they preserve energy reasonably well in the DWT.

3.2 Filter length

Shorter synthesis basis functions are desired for minimizing distortion that affect the sub-

jective quality of the image. Longer filters (that correspond to longer basis functions) are

responsible for ringing noise in the reconstructed image at low bit rates. Table 4.7 depicts

that D8A - D10A, D8LA - D10LA, B22/14 have the longer length synthesis filters while D4A -

D6A, D4LA - D6LA, B9/7 have the shorter synthesis filters.
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Table 3.1: Properties of the biorthogonal and orthogonal wavelets: orthonormality, filter

length (analysis, synthesis), vanishing order (analysis), smoothness (synthesis), and group

delay difference parameter.

Properties

Wavelets OP Length (A,S) VO (A) Smax GDD

D4A 0 8,8 4 1.77 4.46

D4LA 0 8,8 4 1.77 0.46

D5A 0 10,10 5 2.10 8.05

D5LA 0 10,10 5 2.10 0.11

D6A 0 12,12 6 2.39 12.73

D6LA 0 12,12 6 2.39 0.48

D7A 0 14,14 7 2.66 18.50

D7LA 0 14,14 7 2.66 1.97

D8A 0 16,16 8 2.91 25.38

D8LA 0 16,16 8 2.91 0.50

D9A 0 18,18 9 3.16 33.45

D9LA 0 18,18 9 3.16 0.48

D10A 0 20,20 10 3.40 42.56

D10LA 0 20,20 10 3.40 0.53

B9/7 0.015 9,7 4 2.12 0

B22/14 0.011 22,14 5 3.16 0

3.3 Vanishing order, smoothness and magnitude re-

sponse

3.3.1 Vanishing order

Vanishing order (VO) is a measure of the compaction property of the wavelets [24]. It

corresponds to the number of zeros (p) at w = π for H(w), the frequency response of the

analysis lowpass filter. This means that the synthesis wavelet, ψ(t), that is orthogonal to

the analysis scaling functions has p vanishing moments. A VO of p means that polynomial
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inputs 1,....,tp−1 are preserved by the analysis lowpass filters and annihilated by the synthesis

highpass filters.
∫

tmψ(t)dt = 0, 0 ≤ m ≤ p− 1. (3.2)

In the case of orthogonal wavelets, the analysis wavelet function is same as the synthesis

wavelet function (ψ̃(t) = ψ(t)). Thus, the synthesis as well as the analysis wavelets have the

same vanishing moment. However, for biorthogonal wavelets, the analysis wavelet function

ψ̃(t) is different from the synthesis wavelet ψ(t). Thus, the VO corresponds to p vanishing

moments for synthesis wavelet ψ(t) only. A higher vanishing moment corresponds to better

accuracy of approximation at a particular resolution [24]. Thus, the lowest frequency sub-

band captures the input signal more accurately by concentrating a larger percentage of the

image’s energy in the LL subband. Table 4.7 shows the VO for LA⊥, A⊥ and bi⊥ wavelets.

It can be observed that the longer wavelets D8A - D10A, D8LA - D10LA, B22/14 have higher

VO than the shorter wavelets D4A - D6A, D4LA - D6LA, B9/7.

3.3.2 Smoothness

Non-smooth basis functions introduce artificial discontinuities under quantization [16]. These

discontinuities are reflected as spurious artifacts in the reconstructed images. Smoothness of

the synthesis scaling function is measured by the Sobolev exponent, Smax [24] and corresponds

to the number of derivatives for φ(t). The asymptotic relation between Smax and VO (p)

for Daubechies filters is shown in equation (3.3) [6]. We observe from Table 4.7 that Smax

increases as VO increases. It can be observed from Figures 3.1 - 3.4 that the scaling and

wavelet functions for D10LA (Smax = 3.40) are visually more smooth than D4LA (Smax = 1.77).

Smax ≈ 0.2075p+ constant (3.3)
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Figure 3.1: Scaling Function, φ(t), D4LA,

VO = 4, Smax = 1.77

Figure 3.2: Wavelet Function, ψ(t), D4LA,

VO = 4, Smax = 1.77

Figure 3.3: Scaling Function, φ(t), D10LA,

VO = 10, Smax = 3.40

Figure 3.4: Wavelet Function, ψ(t), D10LA,

VO = 10, Smax = 3.40
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3.3.3 Magnitude response

Filter response is another critical property that affects the subjective quality of the recon-

structed image. Wavelet filter bank characteristics important to image compression are

discussed in [24]. Ideally, the lowpass filter response should decay smoothly to zero at ω = π

and the highpass filter response should decay smoothly to zero at ω = 0 . The filter responses

approach the ideal (transition band width = 0 and more flat at ω = π (lowpass) or ω = 0

(highpass)) rectangular response with the increase in the number of zeros. It is also to be

noted that the number of zeros also correspond to the VO of the wavelet as discussed in

section 3.3.1. A non-zero magnitude response at ω = π for the lowpass filter (ω = 0 for the

highpass filter) result in scaling (wavelet) functions that have sharp peaks and transitions.

Reconstructed images for such scaling and wavelet functions depict checker boarding and

tiling artifacts.

It can be observed from Table 4.7 that all the wavelets have VO of 4 or more; this indicates

that there are at least four zeros at ω = π (ω = 0 ) for the lowpass (highpass) filters. Figure

3.5 compares the magnitude response of D10LA (solid lines) and D4LA (dashed lines) filters. It

can be observed that the passband edge (refer equation (3.4)) is at fp = 0.25 for both D10LA

and D4LA. Although D10LA and D4LA share the same passband edge, D10LA has a steeper

transition band. The D10LA lowpass and highpass magnitude responses are also more flat at

ω = π and ω = 0 due to their higher VOs. (Note: The magnitude responses of the LA ⊥
wavelets are identical to the corresponding A⊥ wavelets.)

|H(ωp)|
|H(ω0)|

=
1√
2

lowpass, where fp is the passband edge frequency,

|H(ωp)|
|H(ωπ)|

=
1√
2

highpass, where fp is the passband edge frequency. (3.4)

where H(ωp), H(ω0), and H(ωπ) correspond to the magnitude responses at passband edge

frequency (ω = p), ω = 0 and ω = π respectively. Figures 3.6 and 3.7 compare the magnitude
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Figure 3.5: Magnitude response of the lowpass and highpass D10LA (solid lines) and D4LA (dashed

lines) filters.

responses of orthogonal and biorthogonal filters that have similar length and Smax (B9/7 (solid

lines) and D5LA (dashed lines), B22/14 (solid lines) and D9LA (dashed lines)). The passband

edges of the lowpass biorthogonal filters (f = 0.272 for both B9/7 and B22/14) extend beyond

that of the lowpass orthogonal filters (f = 0.250 for both D5LA and D9LA). Thus, the

biorthogonal wavelets will concentrate more energy in the lower frequency subbands than

the orthogonal wavelets; this is especially true for low frequency images.
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lines) filters.
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3.4 Group delay difference

Group delay difference (GDD) measures the deviation in group delay of the orthogonal

wavelets from the linear phase group delay. GDD is calculated as the mean-squared-error

of the filter’s actual group delay from the ideal group delay in the passband defined as

in equation (3.4). The ideal group delay for filter of length M is M−1
2

). For orthogonal

wavelets, GDD is the same for both lowpass and highpass filters. As expected, the symmetric

biorthogonal wavelets have zero GDD while the LA orthogonal wavelets exhibit small GDD.

Non-zero GDD introduces a phase distortion that impacts encoding and decoding by altering

the DWT subband structure. Figures 3.8 - 3.11 show an original image and its 2-level

decomposition using D9LA, D9A and B22/14. As discussed in Section 2.2.5, the DWT results

in a self-similar, hierarchical subband structure: the location of significant coefficients in

the finer subbands correspond to the same relative position of the significant coefficients in

coarser subbands. This is true only when the filters have constant group delay (GDD = 0)

as observed in the case of biorthogonal wavelets (Figure 3.11). It is to be noted that the

color gray corresponds to zero in Figures 3.8-3.11 while black and white correspond to high

negative or positive values. For orthogonal wavelets, GDD > 0 results in different delays for

different subbands. Figures 3.12 and 3.13 compare the passband group delay for the low and

highpass filters of D9LA (solid) and D9A (dashed) with the ideal group delay (dotted). For

the asymmetric wavelet D9A, with a large GDD of 33.45, the significant coefficients in finer

subbands suffer large offsets (Figure 3.10) unlike the significant coefficients for biorthogonal

wavelet that has GDD = 0 (Figure 3.11).
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Figure 3.8: Original Image Figure 3.9: 1-level, 2D DWT of original image

using D9LA.

Figure 3.10: 1-level, 2D DWT of original im-

age using DA.

Figure 3.11: 1-level, 2D DWT of original im-

age using B22/14.
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Figure 3.12: Group delay for LP filters: D9LA (solid), D9A (dashed) and ideal (dotted) in the

passband.
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Figure 3.13: Group delay plots for HP filters: D9LA (solid), D9A (dashed) and ideal (dotted) in the

passband.



Chapter 4

Performance analysis and results

The results presented in this thesis compare the image compression performance of periodic

and symmetric extension techniques using the TDM non-expansive DWT method. A 5-

level DWT decomposition is followed by SPIHT quantization. Both objective as well as

subjective performance of the compressed images are evaluated. The objective performance

is measured by peak signal-to-noise-ratio (PSNR) of the reconstructed image x̃. PSNR

measured in decibels (dB) is given by:

PSNR = 10 log10

(

2552

MSE

)

, (4.1)

where the value 255 is the maximum possible value that can be attained by the image signal.

Mean square error (MSE) is defined as

MSE =
1

MN

M−1
∑

m=0

N−1
∑

n=0

|x(m,n) − x̃(m,n)|2 , where M ×N is the size of the original image.

(4.2)

PSNR is measured in decibels(dB). It has been shown that PSNR is not always a indicator

of the subjective quality of the reconstructed image [24]. We also evaluate the subjective

performance by visible artifacts in the reconstructed image.

55
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4.1 Choice of wavelets and images

We employ 7 LA orthogonal Daubechies wavelets (D4LA - D10LA) [3], 7 (A) orthogonal

Daubechies wavelets (D4A - D10A) [3] and 2 biorthogonal wavelets (B9/7 [3], B22/14 [27]).

It has been shown in Chapter 3 (Table 4.7) that the least asymmetric wavelets and the

corresponding asymmetric wavelets differ only in the GDD parameter. Hence, by perfor-

mance comparison of LA and A wavelets, we illustrate the importance of linear phase on

compression performance. We then chose the best performing orthogonal wavelets and com-

pare their compression performance against similar biorthogonal wavelets when both use

symmetric extension.

The compression performance is evaluated for twelve grayscale images that can be grouped

into three image types: four low frequency (LF) (Lena, Peppers, Boat, Goldhill), four

medium frequency (MF) (Barbara, Lighthouse, Nitf7, House), four high frequency (HF)

(Satellite, Mandrill, Grass, SanDiego) images. The frequency type groups are based on the

percentage of total image energy (96% - 100% LF, 92% - 96% MF and ≤92% HF) in the LL

subband obtained after one level of decomposition using the B9/7 wavelet. The distribution

of energy for the twelve images is given in Table 4.1.

4.2 Test conditions

The results are organized as follows. Section 4.3.1 presents the PSNR results for LA ⊥ , A⊥,

and bi⊥ wavelets using the periodic extension technique. This is done for all three image

types at four compression ratios (8:1, 16:1, 32:1, and 64:1). Section 4.3.2 presents the sym-

metric extension PSNR results for LA ⊥ and bi⊥ wavelets that have low condition numbers.

Section 4.4.1 compares the performance of near-linear phase wavelets (LA ⊥) to non-linear

phase wavelets(A ⊥) using periodic extension technique. In Section 4.4.3, extensive analysis

of symmetric and periodic extension for biorthogonal (bi⊥) and ⊥ wavelets. Section 4.4.4
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Table 4.1: Percentage energy distribution after 1-level of decomposition using the B9/7

wavelet.
Subbands

Image Type Image LL LH HL HH

Lena 99.2402 0.4734 0.1901 0.0964

Low Peppers 99.2582 0.3347 0.2787 0.1284

frequency Boat 98.6573 1.0110 0.2495 0.0822

Goldhill 98.6162 0.7221 0.5290 0.1328

Barbara 95.1036 4.1602 0.3308 0.4054

Medium Lighthouse 95.8747 2.2305 1.7046 0.1902

frequency House 94.7955 2.4787 2.4906 0.2352

Nitf7 94.0581 2.5215 2.5581 0.8623

Satellite 87.8758 5.1434 4.8395 2.1413

High Mandrill 86.4593 2.8193 9.1289 1.5925

frequency Grass 87.9973 7.1446 3.9735 0.8846

SanDiego 90.5299 3.7452 4.5237 1.2011

compares the performance of the least asymmetric ⊥ wavelets and similar bi⊥ wavelets when

they both employ symmetric extension. We perform subjective evaluation of reconstructed

images in Section 4.5. Comparison with previous work in Section 4.6.

4.3 PSNR results

4.3.1 Results for periodic extension

This section presents the image compression performance of orthogonal as well as biorthog-

onal wavelets for periodic extension. The PSNR results are computed for three image types

(LF, MF, and HF) at four CRs (8:1, 16:1, 32:1, and 64:1). The PSNRs for an image at each

CR is shown relative to the PSNR value of D4LA at that CR. “+” indicates that the PSNR

for the wavelet/CR combination is more than the PSNR value of the D4LA while “-” sign

indicate that the PSNR for the wavelet/CR combination is lower than the PSNR value of
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Table 4.2: MSE introduced by SPIHT for 2-level decomposition for the test image shown in

Figure 3.8

CR D9A D9LA B22/14

8:1 0.361 0.364 0.214

16:1 6.880 6.624 3.215

32:1 47.069 45.686 33.923

64:1 223.235 183.831 198.788

the D4LA at that particular CR.

4.3.1.1 Low frequency images

Tables A.1 and A.2 in Appendix A show the PSNR results for four LF images (Lena, Peppers,

Boat and Goldhill). Longer wavelets (D9s and B22/14) as expected perform better than the

shorter wavelets (D4s and D5s) due to their VOs. However, the performance gain for longer

wavelets over shorter wavelets varies with wavelet type. The gain is high for LA⊥ (≈ 0.20dB)

and bi⊥ (≈ 0.10dB) wavelets while it is negligible for A⊥ wavelets. We also observe that

the LA⊥ wavelets, in general, perform better than the corresponding asymmetric(A⊥). This

can be attributed to the lower GDD for LA⊥ wavelets. Note that higher GDD corresponds

to larger offsets suffered by significant coefficients in the finer subbands; this affects SPIHT

encoding since significant children now correspond to insignificant parents. Thus, SPIHT

requires more bits to achieve the same mean square error (MSE) for an A⊥ wavelet compared

to the LA⊥ and bi⊥ wavelets. This can be observed in Table 4.2 which presents MSE for

the test image of Figure 3.8 (for LA⊥ (D9LA), A⊥ (D9A) and bi⊥ (B22/14)) for a 2-level

decomposition. B22/14 and D9LA are the best performing wavelets among biorthogonal and

orthogonal wavelets.
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4.3.1.2 Medium frequency images

PSNR results for the four MF (Barbara, Lighthouse, House and Nitf7 ) images are shown

in Tables A.3 and A.4 in Appendix A. Similar to LF images, longer wavelets outperform

shorter wavelets for LA⊥ and bi⊥ wavelets. In the case of A⊥ wavelets, PSNR decreases for

longer wavelets for all images except Barbara . The bi⊥ wavelets, in general, perform better

than the ⊥ wavelets.

4.3.1.3 High frequency images

Tables A.5 and A.6 show the PSNR results for the four HF images (Satellite, Mandrill, Grass

and SanDiego) in Appendix A. For HF images, shorter wavelets perform nearly as well as

longer wavelets (PSNR difference ≤ 0.1 dB). The bi⊥ wavelets and the ⊥ wavelets deliver

similar PSNR performance at high CRs.

4.3.2 Results for symmetric extension

This section presents the PSNR results for both LA⊥ and bi⊥ wavelets with symmetric ex-

tension. It is to be noted that symmetric extension cannot be implemented for A⊥ wavelets

using the TDM method due to the poor condition number of the regenerating matrix (equa-

tion (2.20). Six LA⊥ wavelets (D4LA, D5LA, D6LA, D8LA, D9LA, D10LA) and two bi⊥ wavelets

(B9/7 and B22/14) have been used for the results. The PSNR results at four CRs (8:1, 16:1,

32:1, and 64:1) are grouped based on the image type. For an image, the PSNRs for different

wavelets are shown relative to the PSNR value of D4LA at each CR. “+” indicates that the

PSNR for the wavelet/CR combination is greater than the PSNR value of the D4LA while

“-” sign indicate that the PSNR for the wavelet/CR combination is smaller than the PSNR

value of the D4LA at that particular CR. The highest PSNR value for a given CR and image

is boldfaced.
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4.3.2.1 Low frequency images

Tables B.1 in Appendix B shows the PSNR results for four LF images (Lena, Peppers, Boat

and Goldhill). It can be observed that B22/14 is the best performing wavelets for all CRs

and all images. D9LA / D10LA is the best performing LA⊥ wavelet. It is also observed that

the PSNR gain increases with increase in the length of the wavelet. This can be attributed

to their higher VOs (Table 4.7). The difference in PSNR between the best performing bi⊥
wavelet and LA⊥ is 0.1∼0.25dB for Lena and Goldhill and 0.2∼0.34dB for Peppers and

Boat.

4.3.2.2 Medium frequency images

Table B.2 in Appendix B shows the PSNR results for MF images (Barbara, Lighthouse, House

and Nitf7 ). It is observed that D8LA and D9LA are the best performing wavelets. B22/14

performs better than B9/7. The PSNR gain increases with increase in length of wavelets

for both LA⊥ and bi⊥ wavelets. The best performing ⊥ wavelet outperforms the best bi⊥
wavelet by about 0∼0.1dB.

4.3.2.3 High frequency images

Table B.3 in Appendix B shows the PSNR results for HF images (Satellite, Mandrill, Grass

and SanDiego). It can be observed that D9LA and D10LA are the best performing ⊥ wavelets.

B22/14 is the best performing bi⊥ wavelet. The bi⊥ wavelets give better PSNR performance

than ⊥ wavelet in general; the average gain being between -0.02∼0.1dB. The same trend of

longer wavelets outperforming shorter wavelets as in LF and MF images is also observed.
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4.4 Analysis of PSNR results

A detailed analysis of the results presented in Appendix A and Appendix B is the subject

of this section; it is divided into three subsections. For periodic extension, Section 4.4.1

demonstrates the importance of linear phase and explains why LA⊥ wavelets perform better

than the A⊥ wavelets. Section 4.4.2 compares the periodic and the symmetric extension

techniques. Lastly, for symmetric extension, Section 4.4.3 compares the compression perfor-

mance of orthogonal wavelets with biorthogonal wavelets that have similar properties.

4.4.1 Least asymmetric wavelets vs. asymmetric wavelets

This section compares the performance of the least asymmetric (LA) ⊥ Daubechies wavelets

and asymmetric (A) ⊥ Daubechies wavelets for periodic extension. This comparison isolates

the impact of linear phase filters on image compression performance. Although perfect

reconstruction can be achieved with either linear or non-linear phase filters, the effect of

phase distortion becomes critical under quantization. It is to be noted that previous literature

[7, 8, 12, 13, 23] comparing the image compression performance for different wavelets have

not compared the performance of LA⊥ wavelets with A⊥ wavelets.

The PSNR results shown in Table 4.3 have been extracted from the Tables A.1 - A.6 by

averaging the data for an image type, for a given wavelet. Seven LA⊥ wavelets, D4LA -

D10LA and the corresponding seven A⊥ wavelets, D4A - D10A are compared. The compression

performance at four CRs (8:1, 16:1, 32:1 and 64:1) for twelve grayscale images was computed:

four LF (Lena, Peppers, Boat, Goldhill ), four MF (Barbara, Lighthouse, Nitf7, House ) and

four HF (SanDiego, Mandrill, Satellite, Grass ).

Table 4.3 shows the average PSNR improvement for LA⊥ wavelets over the A⊥ wavelets for

an image type. The results indicate that LA⊥ wavelets significantly outperform A⊥ wavelets

for LF and MF images at all compression ratios (PSNR differences ≥ 0.1dB are considered

significant). A significant improvement is also realized for high frequency (HF) images at
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most compression ratios with the longer filters. It is also interesting to note that, in general,

the PSNR gain increases for the longer filters (D9LA - D9A, D10LA - D10A). Moreover, for LF

images, the performance improvement increases as the amount of compression increases.

Table 4.7 depicts that the A⊥ wavelets differ from the LA⊥ wavelets only in their group delay

difference (GDD) parameter; all other filter properties critical to compression (orthogonality,

filter length, VO, smoothness) are identical. Table 4.4 shows the difference (A⊥ - LA⊥) in

MSE introduced by SPIHT for 1 LF image (Lena), 1 MF image (Barbara) and 1 HF image

(Mandrill); this illustrates the effect of phase distortion on MSE introduced by SPIHT

after five levels of decomposition. MSE is computed from the DWT coefficients before and

after SPIHT quantization. Positive entries indicate that MSE for LA⊥ is lower than the

corresponding A⊥ wavelet. The column corresponding to “Compaction gain” computes

the percentage difference in image energy (A⊥ - LA⊥) for the lowest frequency subband

after five levels of decomposition. Positive entries indicate that A⊥ wavelets have higher

compaction ability than the corresponding LA⊥ wavelet. It is observed that, although A⊥
wavelets possess higher compaction ability, LA⊥ introduce lower MSE at the end of SPIHT

encoding. Since the the wavelets vary only in their GDD parameter, it can be inferred that

variable group delay results in different delays for different frequency subbands. This variable

delay shifts the spatial position of the children with respect to its parent coefficients thereby

adversely affecting the hierarchical wavelet decomposition structure (Section 2.5). As a

result of the spatial shift, significant coefficients (children) at higher resolutions correspond

to insignificant parents at coarser resolution. This leads to the addition of more number

of coefficients into the list-of-insignificant-coefficients during SPIHT encoding that require

allocation of extra bits during the next sorting pass. Thus, fewer bits are available to code

significant coefficients there by increasing the MSE. It can also be noted that, in general,

MSE gain for LA⊥ wavelets increase with filter length and with increase in compression

which explains why PSNR gain increases for longer filters.
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Table 4.3: PSNR difference (in dB) between LA⊥ and the corresponding A⊥ wavelet. A

positive entry indicates LA⊥ perform better than A⊥ wavelets. A negative entry indicates

LA⊥ perform worse than A⊥ wavelets.
Compression Ratios

Image Type Wavelets 8:1 16:1 32:1 64:1

D4LA-D4A 0.045 0.048 0.092 0.085

D5LA-D5A 0.137 0.150 0.217 0.285

D6LA-D6A 0.162 0.203 0.252 0.238
LF Images D7LA-D7A 0.172 0.208 0.282 0.320

D8LA-D8A 0.235 0.315 0.377 0.343

D9LA-D9A 0.310 0.385 0.513 0.517

D10LA-D10A 0.308 0.358 0.425 0.413

D4LA-D4A 0.168 0.138 0.072 0.027

D5LA-D5A 0.170 0.163 0.208 0.180

D6LA-D6A 0.285 0.223 0.168 0.130
MF Images D7LA-D7A 0.322 0.275 0.230 0.153

D8LA-D8A 0.378 0.310 0.253 0.192

D9LA-D9A 0.393 0.372 0.340 0.275

D10LA-D10A 0.440 0.380 0.303 0.173

D4LA-D4A 0.008 -0.013 -0.005 -0.007

D5LA-D5A 0.087 0.065 0.065 0.045

D6LA-D6A 0.060 0.043 0.040 0.020
HF Images D7LA-D7A 0.075 0.060 0.057 0.030

D8LA-D8A 0.097 0.080 0.072 0.045

D9LA-D9A 0.128 0.110 0.100 0.077

D10LA-D10A 0.125 0.087 0.070 0.032
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Table 4.4: SPIHT MSE Comparison
MSE (A⊥ - LA⊥) at CA

Compaction gain
Image Wavelets (A⊥ - LA⊥) 8:1 16:1 32:1 64:1

D4LA/D4A 4.207 -0.001 -0.002 0.335 0.794

D5LA/D5A 1.401 0.126 0.553 2.053 5.106

D6LA/D6A -0.166 0.182 0.621 1.496 1.838
Lena D7LA/D7A -2.984 0.176 0.627 2.078 4.751

D8LA/D8A 4.374 0.308 1.188 3.281 6.280

D9LA/D9A -0.794 0.388 1.473 3.914 7.426

D10LA/D10A -0.146 0.308 1.060 3.319 6.036

D4LA/D4A 1.729 -0.014 0.011 -1.651 -1.526

D5LA/D5A 0.406 0.700 2.293 8.626 9.156

D6LA/D6A 0.796 0.653 1.884 1.695 1.624
Barbara D7LA/D7A -1.322 0.726 2.329 3.588 1.250

D8LA/D8A 1.425 1.135 3.440 5.080 5.267

D9LA/D9A 1.005 1.141 4.824 9.111 9.593

D10LA/D10A 0.609 0.917 3.694 4.378 0.484

D4LA/D4A 0.384 0.292 -0.264 1.453 0.442

D5LA/D5A -0.113 2.328 4.775 3.432 3.961

D6LA/D6A -0.012 1.583 2.829 4.037 4.683
Mandrill D7LA/D7A -0.050 1.660 5.671 9.492 5.691

D8LA/D8A 0.052 2.217 3.289 7.695 8.120

D9LA/D9A -0.061 2.767 6.692 7.982 9.973

D10LA/D10A 0.124 2.752 6.802 10.462 7.550
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4.4.2 Periodic extension vs. symmetric extension

This section discusses why symmetric extension performs better than periodic extension for

both orthogonal and biorthogonal wavelets. The TDM method provides a common platform

for comparison of both extension techniques. We have selected six LA ⊥ wavelets and two

bi⊥ wavelets that posses low condition numbers for the synthesis regenerating matrix for

comparison. The compression performance at four compression ratios of twelve grayscale

images is shown in Table 4.5. The results shown in Table 4.5 are obtained by averaging the

results for a wavelet and image type to produce one overall bi⊥ and one overall ⊥ result for

a given CR.

Table 4.5 depicts that symmetric extension performs significantly better than periodic ex-

tension for both bi⊥ and ⊥ wavelets for LF and MF images at all CRs. Further examination

of these results leads to four important insights.
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Figure 4.1: Original image House256.

Figure 4.2: House256 , Symmetric exten-

sion, 32:1, PSNR = 27.37 dB.

Figure 4.3: House256 , Periodic extension,

32:1, PSNR = 26.89 dB.
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First, the performance gain of symmetric extension over periodic extension is proportional

to the degree of discontinuity introduced at the border when the image is extended. To

illustrate this effect, one MF image house256 with dissimilar borders is considered (CR:

32:1). Figures 4.1 - 4.3 show the original and compressed house256 images for both type of

extension techniques using D9LA. For images with similar borders, symmetric extension and

periodic extension will generate similar border extensions; thus, the PSNR gain for symmetric

extension is expected to be less than the average gain for such images at a particular CR.

However, for images with dissimilar borders, the symmetric extension advantage is expected

to be larger than average. For example, the PSNR improvement (0.48dB) of symmetric

over periodic extension for House (dissimilar borders) is higher than the average PSNR gain

(∼0.14dB) for MF images at 32:1. This effect is seen for both bi⊥ and ⊥ wavelets. Moreover,

subjectively, the reconstructed image using periodic extension shows a lot of ringing at the

boundaries compared to the reconstructed image using symmetric extension.

Table 4.5: Average PSNR improvement (in dB) of symmetric extension over periodic exten-

sion for bi⊥ and ⊥ wavelets.
Compression Ratio

Image Type Wavelet 8:1 16:1 32:1 64:1

Low Biorthogonal 0.1638 0.2188 0.3163 0.3475
Frequency Orthogonal 0.1721 0.2346 0.3146 0.3525

Medium Biorthogonal 0.1150 0.1550 0.1450 0.1525
Frequency Orthogonal 0.1158 0.1388 0.1442 0.1496

High Biorthogonal 0.0088 0.0163 0.0188 0.0125
Frequency Orthogonal 0.0133 0.0162 0.0125 0.0104

Second, the average performance improvement of symmetric extension varies with image

type (for both bi⊥ and ⊥ wavelets). Table 4.5 illustrates that the performance gain is

highest for LF images (∼0.3dB at 32:1) and decreases for MF (∼0.14dB at 32:1) and HF

images (∼0.02dB at 32:1). For HF images, it is more likely that adjacent pixels are dif-

ferent; thus, symmetric extension and periodic extension typically result in similar border

extensions. However, for LF images, it is more likely that adjacent pixels are similar; thus,
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periodic extension, in general, introduces more discontinuities at the borders than symmetric

extension.

Third, the performance gain of symmetric extension over periodic extension increases with

increasing compression for LF images (for both bi⊥ and ⊥ wavelets). This is because bor-

der discontinuities introduced by periodic extension generate high frequency artifacts that

artificially increase the energy in the high frequency subbands; consequently, the energy in

the low frequency subbands is decreased. The image energy in the low frequency subband

for symmetric extension and periodic extension for three image types (LF, MF and HF) are

shown in Table 4.6. For a given wavelet, the entries in Table 4.6 are generated by aver-

aging the values for a particular image type after 5-level decomposition. In all cases, but

one (HF - D9LA), periodic extension results in less energy in the lowest frequency subband

compared to symmetric extension. Higher number of significant coefficients in the finer sub-

bands deteriorates compression performance by degrading the efficiency of the SPIHT coder.

Table 4.6: Percentage of energy in the lowest frequency subband after a 5-level decomposi-

tion.
Low Frequency Medium Frequency High Frequency

Wavelet SymEx PerEx SymEx PerEx SymEx PerEx

D4LA 72.47 69.96 61.15 58.02 35.68 33.91

D5LA 73.77 72.20 60.87 58.97 34.67 34.07

D6LA 72.89 70.37 61.08 58.10 35.38 34.06

D8LA 73.97 70.75 59.73 58.16 34.27 34.14

D9LA 73.64 72.32 59.72 59.42 33.62 34.09

D10LA 73.34 70.96 60.92 58.25 35.02 34.16

B9/7 75.46 72.58 60.47 59.33 34.87 34.63

B22/14 74.68 73.09 60.73 59.38 33.89 33.40

When a wavelet/extension combination concentrates more energy in the lower frequency

subbands, SPIHT requires fewer bits to capture the same amount of information (i.e. same

mean square error(MSE)) than a wavelet/extension combination that concentrates less en-
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ergy in the same low frequency subbands. There are two reasons for this. (i) In SPIHT, a

greater concentration of energy in the low frequency subbands means significant coefficients

occur higher in the subband pyramid; in other words, fewer bits are required to encode the

position of the significant coefficient during the sorting pass. This is because SPIHT encoding

starts at the top with the coarsest subband. The position and magnitude of the insignificant

coefficients are encoded by only encoding the root node that occurs higher (requires fewer

bits) in the subband pyramid. (ii) When energy is spread throughout the higher frequency

subbands, the significant coefficients (at each threshold level) occur ‘deep’ in the subband

pyramid requiring more bits to encode the position information. Deeper trees also lead to

the addition of more number of coefficients corresponding to the parent nodes to the LIC

set that require allocation of extra bits in the next SP. This is illustrated in Figures 4.4 and

4.6. The plots show the mean-squared-error (MSE) introduced by SPIHT, as a function of

bit rate (bits per pixel, bpp), for periodic and symmetric extension, for all the LA⊥ and

bi⊥ wavelets being compared. The bit rate shown corresponds to CRs from 8:1 (1 bpp) to

64:1 (0.125 bpp). For LF and MF images, the same MSE is achieved at a lower bit rate for

symmetric extension than periodic extension. In other words, symmetric extension requires

fewer bits to attain the same MSE as periodic extension. So for a given CR, symmetric

extension encodes more DWT coefficients which in turn generates superior PSNR results.

Moreover, this MSE difference is largest for LF images; the difference decreases for MF

images and is negligible for HF images.
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Figure 4.4: Mean-squared-error (MSE) introduced by SPIHT as a function of bit rate (bits

per pixel, bpp) for LF and MF images. Symmetric and periodic extensions are represented

by solid and dashes lines respectively.
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Figure 4.5: Mean-squared-error (MSE) introduced by SPIHT as a function of bit rate (bits

per pixel, bpp) for LF and MF images. Symmetric and periodic extensions are represented

by solid and dashes lines respectively.
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Fourth, the superior performance of symmetric extension over periodic extension occurs

throughout an image and not just at the borders (for both bi⊥ and ⊥ wavelets). The PSNR

of the compressed images were computed after cropping the borders (the number of cropped

rows and columns was half the filter length). It was observed that the PSNRs of the cropped

images were very similar to the PSNRs of the uncropped images. Thus, the discontinuities

introduced by periodic extension at the borders decrease the PSNR throughout a compressed

image. This is expected since the discontinuities generate spurious high frequencies that

modify the hierarchical subband structure which, in turn, decreases the efficiency of the

SPIHT coder.

4.4.3 Orthogonal vs. biorthogonal

The FFT and TDC methods exclude the use of symmetric extension with orthogonal wavelets

for computing the non-expansive DWT. The TDM method allows to implement symmetric

extension technique for both orthogonal and biorthogonal wavelets. Hence, we can now

compare the compression performance of orthogonal wavelets with biorthogonal wavelets

when both use symmetric extension. We perform the comparison by choosing two sets of

LA⊥ and bi⊥ wavelets (D5LA and B9/7, D9LA and B22/14) that have similar filter properties

(VO, filter length and smoothness). Although the wavelets being compared do not have

similar GDD or ON values, it is to be noted that LA⊥ wavelets have near linear phase

(low GDD) and biorthgonal wavelets have nearly orthonormal (low ON) properties. The

impact of these two filter properties are described in Chapter 3 of this thesis. The results

are presented in Table 4.8 and are obtained from PSNR data for symmetric extension in

Tables B.1 - B.3. The entries shown in Table 4.8 are obtained by averaging PSNR difference

between bi⊥ wavelet and the corresponding LA⊥ wavelet for an image type at a given CR.

The results indicate that there are almost no significant differences in performance between

the bi⊥ and ⊥ wavelets. Only four comparisons result in significant differences (≥ 0.1dB)—

and three of these cases are for LF images.
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Wavelets

Properties B9/7 D5LA B22/14 D9LA

O.N 0.015 0 0.011 0

Length(A,S) 9,7 10,10 22,14 18,18

V.O (A) 4 5 5 9

Regular. (S) 2.12 2.10 3.14 3.16

GDD 0 0.11 0 0.11

Table 4.7: Properties of the biorthogonal and orthogonal wavelets: orthonormality, filter

length (analysis, synthesis), vanishing order (analysis), regularity (synthesis), and group

delay difference parameter.

Table 4.8: Average PSNR improvement (in dB) of the bi⊥ wavelets over the LA⊥ wavelets;

symmetric extension is used in all cases.
Compression Ratio

Image Type Wavelet 8:1 16:1 32:1 64:1

Low B9/7-D5LA 0.080 0.135 0.210 0.170
Frequency B22/14-D9LA 0.095 0.087 0.085 0.072

Medium B9/7-D5LA 0.062 0.095 -0.015 0.070
Frequency B22/14-D9LA 0.112 0.075 0.002 0.040

High B9/7-D5LA 0.035 0.007 0.027 -0.030
Frequency B22/14-D9LA 0.037 0.020 0.042 -0.005

The slight performance advantage of the bi⊥ wavelets for LF images can be associated

with the extended passband for lowpass filters as shown in Figures 3.6 and 3.7 in chapter

3. The extended response of bi⊥ wavelets aids in higher energy compaction in the lower

frequency subbands as compared to ⊥ wavelets. Table 4.6 shows the energy compaction

for symmetric extension. It is observed that bi⊥ wavelets have higher energy compaction

than the corresponding LA⊥ wavelets although they possess lower VO. Consequently, as

explained in the Section 4.4.3, the bi⊥ wavelets will require fewer bits than the ⊥ wavelets

to capture the same amount of information. Figure 4.6 compares the MSE introduced by

SPIHT for bi⊥ wavelets (B9/7 and B22/14) and the corresponding LA⊥ wavelet (D5LA and

D9LA) when both employ symmetric extension. Lena image is used for the LF plot; Barbara
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Figure 4.6: Mean-squared-error (MSE) introduced by SPIHT as a function of bit rate (bits

per pixel, bpp) for LF and MF images. Symmetric extension are represented by solid lines.

Periodic extensions are in dashed lines.

image is used for the MF plot. It is observed that bi⊥ wavelets require fewer bits than

LA⊥ wavelets for the same MSE; not surprisingly, this difference is larger for LF images and

decreases for MF and HF images. The differences decrease for the longer length filters. This

is because D9LA has a substantially larger vanishing order than B22/14; this advantage of the

⊥ wavelet may be significant enough to compensate for the advantage of the bi⊥ wavelet’s

lowpass magnitude response.

Also, as shown in section 3.4, the bi⊥ wavelets have GDD = 0; this does not affect the

hierarchical subband structure as in LA⊥ wavelets (D5LA = 0.11, D9LA = 0.48).



75

4.5 Subjective results and analysis

At lower compression ratios (8:1, 16:1) there is a strong correlation between PSNR and image

quality of the reconstructed image. However, at higher compression ratios (32:1, 64:1), visible

artifacts like ringing, tiling, boundary noise and blurring are introduced in the reconstructed

images. These artifacts depend on the choice of wavelets and the bit allocation algorithm (in

our case SPIHT). A subjective analysis of reconstructed image quality allows us to better

understand the effect of the various filter properties.

We present the results for periodic as well as symmetric extension for each image type. We use

both biorthogonal and orthogonal wavelets for each extension type. Section 4.5.1 compares

the subjective quality of the reconstructed images for periodic extension. Subsection 4.5.2

presents the results for symmetric extension.

4.5.1 Periodic extension

We have chosen one image from each of the three image types: LF (Lena ), MF (Barbara )

and HF (Mandrill). Each image is compressed at 32:1 using three shorter (D4LA, D4A and

B9/7) and three longer (D10LA, D10A and B22/14) wavelets. Figures C.1 and Figures C.2-C.7

show the uncompressed and compressed Lena image respectively. Similarly, Figures C.9-C.14

and Figures C.16 - C.21 show the image Lighthouse and Mandrill respectively. The PSNR

of the compressed image as well as the wavelet used are displayed.

For LF images, all reconstructed images show border distortion associated with periodic

extension. The boundary distortions are more prominent for longer wavelets due to their

longer filters. It can also be observed that smooth regions in the image (the face and

the background for Lena) are better represented by the shorter wavelets than the longer

wavelets. However, details like line edges and the hat are better preserved by longer length

wavelets. Higher ringing at the edges for longer wavelets can be attributed to their longer

synthesis filters. Higher vanishing order of the longer wavelets allows them to preserve the
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high frequency details. The reconstructed images of A⊥ wavelets in Figures C.2 and C.4 also

show a lot of blocking artifacts at high frequency edges. The blocking is more pronounced

in the case of D10A. However, the blocking artifact is negligible in the reconstructed images

for LA⊥ wavelets (Figures C.3 and C.5) and absent in bi⊥ wavelets (Figures C.6 and C.7).

This suggests that the blocking artifact in the reconstructed image is due to the non-linear

phase of A⊥ wavelets that affects SPIHT encoding and decoding.

For MF and HF images, more blocking is observed near the high frequency edges for A⊥
wavelets; this is especially true in the case of D10A wavelets. The bi⊥ wavelets suffer less from

blocking and the overall image quality is better than LA⊥ wavelets although the PSNRs are

nearly the same.

4.5.2 Symmetric extension

In this section, we compare the perceived quality of reconstructed images of bi⊥ wavelets

with the corresponding LA⊥ wavelets (D5LA and B9/7, D9LA and B22/14). We choose one

image from each of the three image types: LF (Lena), MF (Barbara) and HF (SanDiego). The

captions below the images give the PSNR of the compressed image as well as the wavelet

used. Figures D.1-D.4 show the reconstructed images for Lena image at 64:1. Similarly,

Figures D.5-D.8 and Figures D.9-D.12 show images of Barbara and SanDiego reconstructed

at a compression ratio of 64:1 and 32:1 respectively.

We observe higher amount of ringing in the reconstructed images of LA⊥ wavelets. However,

no border distortion as present in the reconstructed images for periodic extension is observed.

Figure D.1 and D.2 show the LF image (Lena) compressed at CR of 64:1 by D5LA and B9/7

respectively. Although the images differ in PSNR by 0.07dB, the D5LA image shows more

ringing, especially on the face and at the edges. Some amount of tiling artifact is also

present near the eyes. However, D5LA captures high frequency content better as evident on

the hat portion of the image. Similar trend is observed for the D9LA (Figure D.3) and B22/14

(Figure D.4) images. Figures D.8 and D.7 compare the reconstructed images of B22/14 and
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D9LA for a MF image (Barbara) at CR of 64:1. The substantial amount of ringing present

in D9LA overshadows the high frequency component present in the pants, scarf and table

cloth. The face also appears more clear in B22/14 image. The same phenomenon is observed

in reconstructed images for D5LA and B9/7. It is to be noted that the PSNR difference

between the LA⊥ wavelets and the corresponding bi⊥ wavelets is negligible for Barbara

image. Figures D.12 and D.11 compare B22/14 and D9LA for a HF image (San Diego) at

CR of 32:1. The orthogonal wavelets preserve high frequency better than the corresponding

biorthogonal wavelets.

The higher amount of ringing and tiling in orthogonal wavelets can be attributed to their

slightly non-linear phase that alters the hierarchical subband structure. Orthogonal wavelets

also have longer synthesis filters: B9/7(7) vs. D5LA(10) and B22/14(14) vs. D9LA(18). Or-

thogonal wavelets preserve high frequency better because they have higher vanishing orders

(see Table 4.7).



Chapter 5

Conclusions and future work

5.1 Conclusions

We present several conclusions based on our evaluations of the wavelet filter properties

developed in chapter 3, analysis of the DWT computation methods described in Chapter 2

and our results presented in chapter 4. Our conclusions are described below.

1. Signal extension is used to overcome the finite signal length problem in image compres-

sion. Widely used FFT and TDC based techniques do not allow the implementation

of the symmetric extension technique with orthogonal wavelets. However, contrary to

popular belief, recently developed matrix methods have made it feasible for orthogonal

wavelets to employ the superior symmetric extension technique at an image’s borders.

This is reflected in our results; the PSNR improvement for symmetric extension is

around 0.25dB for LF images and 0.1 for MF images for both bi⊥ and ⊥ wavelets.

The primary reason for this is the symmetric extension’s ability to concentrate more

energy in the lower frequency subbands.

2. Previously published results have shown that biorthogonal wavelets outperform or-

thogonal wavelets. The comparison was made for orthogonal wavelets with periodic

78



79

extension against biorthogonal wavelets with symmetric extension. Now, by employing

the TDM method, ⊥ wavelets can be compared to bi⊥ wavelets on an equal footing

with regard to the type of extension. Our results indicate that bi⊥ and ⊥ wavelets

generate similar PSNR performance when they have similar filter properties and both

employ symmetric extension. Although the bi⊥ wavelets indicate a small performance

gain over the ⊥ wavelets for low frequency images (about 0.1dB), this advantage is

significantly smaller than previously published results and has been explained here in

terms of the magnitude response passband edge frequency.

3. This thesis has demonstrated that linear (or near-linear) phase filters are critical to

compression performance—particularly for low and medium frequency images where

PSNR improvements up to ∼0.5dB are realized for the near-linear phase filters. This is

because non-linear phase filters adversely affect the hierarchical wavelet decomposition

structure decreasing the efficiency of SPIHT encoding and decoding.

4. Subjectively, the LA⊥ wavelets perform better than the A⊥ wavelets (which suffer

from severe blocking artifacts). Although the PSNR of LA⊥ wavelets are similar to

bi⊥ wavelets, La⊥ wavelets suffer from more ringing as a result of their non-linear

phase.

5.2 Future work

This thesis has identified and explained new parameters and techniques that are critical

to high quality image compression performance. Although this thesis illustrates improved

image compression performance for orthogonal wavelets by using symmetric extension, op-

portunities for further improvement remain.

1. Ideally, a constant group delay is desired since it does not alter the hierarchical subband

structure. SPIHT encoding and decoding is optimized to take take advantage of the in-
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formation in the wavelet hierarchical structure. However, recent encoders and decoders

like EBCOT (Embedded Block Coding with Optimal Truncation) in JPEG2000 are not

necessarily dependent on the wavelet structure for coding into bitstreams. Hence, the

subjective and objective performance of LA⊥ wavelets may be improved (relative to

the bi⊥ wavelets) under quantization with EBCOT. A⊥ wavelet performance may also

be improved.

2. Symmetric extension using the TDM method has been demonstrated for only a few

LA⊥ and bi⊥ wavelets due to the requirement of a low condition number for the

regenerating matrix. It appears that the regenerating matrix is better conditioned for

wavelets that have linear phase. Hence, techniques to improve the condition number

of the matrix along with the design of near linear phase wavelets would be beneficial

in the use of the TDM method to compute the DWT.
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[11] Jérôme Lebrun and Martin Vetterli. Balanced multiwavelets theory and design. IEEE

Transactions on Signal Processing, 46(4):1119–1125, April 1998.

[12] Michael Lightstone and Eric Majani. Low bit-rate design considerations for wavelet-

based image coding. Proc. of SPIE Symp. on Visual Comm. and Image Proc.,, 2308:501–

512, 1994.

[13] Michael Lightstone, Eric Majani, and Sanjit K. Mitra. Low bit-rate design considera-

tions for wavelet-based image coding. Multidimensional systems and signal processing,

8(1-2):111–128, January 1997.

[14] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego CA, 1998.

[15] J. E. Odegard and C. S. Burrus. Discrete finite variation: a new measure of smoothness

for the design of wavelet basis. Proceedings of the International Conference on Acoustics,

Speech and Signal Processing, 3:1467–70, 1996.

[16] Olivier Rioul. Regular wavelets: a discrete-time approach. IEEE Trans. on Signal

Processing, 41(12):3572 – 3579, Dec. 1993.



83

[17] Steven L. Eddins Roberto H. Bamberger and Veyis Nuri. Genralized symmetric exten-

sion for size-limited multirate filter banks. IEEE Trans. on Image Proc., 3(1):82–87,

January 1994.

[18] S. Rout and A. E. Bell. Color image compression: multiwavelets vs. scalar wavelets.

Proceedings of International Conference on Acoustics, Speech, and Signal Processing,

4:3501 – 3504, 2002.

[19] A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set

partitioning in hierarchical trees. IEEE Trans. on Circ. and Syst. for Video Tech.,

6(3):243–250, June 1996.

[20] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE

Trans. on Image Proc., 41(12):3445–3462, December 1993.

[21] Yun Q. Shi and Huifang Sun. Image and Video Compression for Multimedia Engineer-

ing: Fundamentals, Algorithms, and Standards. CRC Press LLC, Boca Raton FL, first

edition, 2000.

[22] Vitor Silva and Luis de Sa. General method for perfect reconstruction : Subband

processing of finite length signals using linear extensions. IEEE Trans. on Signal Proc.,

47(9):2572–2575, September 1999.

[23] Mark J. T. Smith and Steven L. Eddins. Analysis/synthesis techniques for subband

image coding. IEEE Trans. on Acoustics, Speech, and Signal Proc., 38(8):1446–1456,

August 1990.

[24] Gilbert Strang and Truong Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge

Press, Wellesley MA, first edition, 1996.

[25] Michael Unser. Approximation power of biorthogonal wavelet expansions. IEEE Trans.

on Signal Processing, 44(3):519–527, 1996.



84

[26] Michael Unser and Thierry Blu. Mathematical properties of the jpeg2000 wavelet filters.

IEEE Trans. on Image Processing, to appear in 2003.

[27] D. Wei, H. Pai, and A. C. Bovik. Antisymmetric biorthogonal coiflets for image coding.

Proceedings of the IEEE International Conference on Image Processing (ICIP), October

1998.

[28] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data

compression. Commications of the ACM, 30(6):520–540, June 1987.



Appendix A

Periodic extension results

85



86

Table A.1: PSNR values relative to the corresponding PSNR value of D4LA for LF images:

Lena and Peppers. A positive entry corresponds to PSNR value higher than that of D4LA.

A negative entry corresponds to PSNR value lower than that of D4LA.

TDM Method

Image Wavelet CR

08:1 16:1 32:1 64:1

D4LA 39.42 36.08 32.81 29.80

D4A
+0.00 +0.00 -0.04 -0.06

D5LA
+0.12 +0.22 +0.27 +0.32

D5A
+0.04 +0.07 +0.00 -0.02

D6LA
+0.16 +0.23 +0.22 +0.14

D6A
+0.05 +0.05 +0.03 +0.02

D7LA
+0.18 +0.29 +0.35 +0.33

Lena
D7A

+0.07 +0.11 +0.07 +0.01

D8LA
+0.18 +0.32 +0.31 +0.23

D8A
+0.00 -0.02 -0.12 -0.17

D9LA
+0.25 +0.39 +0.47 +0.47

D9A
+0.01 -0.03 -0.06 -0.03

D10LA
+0.22 +0.35 +0.35 +0.28

D10A
+0.04 +0.05 -0.09 -0.11

B9/7
+0.24 +0.46 +0.46 +0.33

B22/14
+0.29 +0.50 +0.56 +0.57

D4LA 37.46 35.21 32.54 29.55

D4A -0.07 -0.10 -0.21 -0.20

D5LA
+0.06 +0.08 +0.11 +0.18

D5A -0.07 -0.10 -0.18 -0.20

D6LA
+0.04 +0.06 +0.10 +0.10

D6A -0.12 -0.17 -0.27 -0.28

D7LA
+0.02 +0.04 +0.11 +0.15

Peppers
D7A -0.15 -0.23 -0.35 -0.37

D8LA
+0.00 +0.02 +0.00 +0.01

D8A -0.17 -0.29 -0.41 -0.39

D9LA
+0.03 +0.02 +0.05 +0.10

D9A -0.24 -0.39 -0.60 -0.61

D10LA
+0.03 +0.06 +0.08 +0.11

D10A -0.27 -0.41 -0.59 -0.62

B9/7
+0.06 +0.19 +0.25 +0.25

B22/14
+0.20 +0.24 +0.30 +0.42
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Table A.2: PSNR values relative to the corresponding PSNR value of D4LA for LF images:

Boat and Goldhill. A positive entry corresponds to PSNR value higher than that of D4LA.

A negative entry corresponds to PSNR value lower than that of D4LA.

TDM Method

Image Wavelet CR

08:1 16:1 32:1 64:1

D4LA 37.69 33.17 29.70 27.15

D4A -0.03 -0.06 -0.10 -0.09

D5LA
+0.18 +0.14 +0.12 +0.07

D5A -0.05 -0.04 +0.01 -0.08

D6LA
+0.18 +0.16 +0.13 +0.08

D6A -0.04 -0.06 -0.17 -0.25

D7LA
+0.20 +0.22 +0.13 +0.07

Boat
D7A -0.08 -0.05 -0.11 -0.18

D8LA
+0.18 +0.17 +0.18 +0.08

D8A -0.20 -0.18 -0.23 -0.30

D9LA
+0.33 +0.30 +0.24 +0.19

D9A -0.17 -0.17 -0.28 -0.30

D10LA
+0.26 +0.24 +0.14 +0.08

D10A -0.26 -0.20 -0.29 -0.32

B9/7
+0.39 +0.34 +0.38 +0.32

B22/14
+0.62 +0.49 +0.40 +0.33

D4LA 35.46 32.00 29.48 27.59

D4A -0.08 -0.03 -0.02 +0.01

D5LA
+0.04 +0.07 +0.18 +0.25

D5A -0.07 -0.02 -0.02 -0.02

D6LA
+0.09 +0.10 +0.06 +0.05

D6A -0.07 -0.08 -0.09 -0.07

D7LA
+0.05 +0.07 +0.10 +0.14

Goldhill
D7A -0.08 -0.04 -0.05 -0.05

D8LA
+0.09 +0.14 +0.10 +0.07

D8A -0.12 -0.12 -0.16 -0.12

D9LA
+0.09 +0.12 +0.20 +0.21

D9A -0.14 -0.12 -0.15 -0.16

D10LA
+0.11 +0.14 +0.09 +0.07

D10A -0.12 -0.08 -0.07 -0.06

B9/7
+0.12 +0.21 +0.27 +0.21

B22/14
+0.14 +0.16 +0.22 +0.24
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Table A.3: PSNR values relative to the corresponding PSNR value of D4LA for MF images:

Barbara and Lighthouse. A positive entry corresponds to PSNR value higher than that of

D4LA. A negative entry corresponds to PSNR value lower than that of D4LA.

TDM Method

Image Wavelet CR

08:1 16:1 32:1 64:1

D4LA 35.22 30.30 26.72 23.96

D4A
+0.00 +0.00 +0.05 +0.02

D5LA
+0.44 +0.32 +0.37 +0.21

D5A
+0.28 +0.15 +0.08 +0.06

D6LA
+0.56 +0.39 +0.28 +0.09

D6A
+0.39 +0.24 +0.22 +0.06

D7LA
+0.72 +0.55 +0.40 +0.13

Barbara
D7A

+0.53 +0.37 +0.28 +0.11

D8LA
+0.77 +0.61 +0.36 +0.14

D8A
+0.47 +0.33 +0.19 +0.05

D9LA
+0.87 +0.74 +0.59 +0.26

D9A
+0.58 +0.35 +0.27 +0.09

D10LA
+0.88 +0.76 +0.49 +0.17

D10A
+0.63 +0.45 +0.34 +0.16

B9/7
+0.43 +0.29 +0.15 +0.14

B22/14
+0.80 +0.64 +0.36 +0.30

D4LA 33.03 29.47 26.62 24.05

D4A -0.07 -0.08 +0.00 +0.04

D5LA
+0.16 +0.09 +0.15 +0.24

D5A -0.15 -0.14 -0.11 +0.00

D6LA
+0.11 +0.05 +0.00 +0.10

D6A -0.20 -0.18 -0.13 -0.01

D7LA
+0.11 +0.03 +0.05 +0.19

Lighthouse
D7A -0.18 -0.19 -0.17 +0.10

D8LA
+0.13 +0.02 +0.00 +0.19

D8A -0.31 -0.28 -0.26 -0.02

D9LA
+0.15 +0.11 +0.10 +0.32

D9A -0.34 -0.28 -0.25 +0.01

D10LA
+0.12 +0.05 +0.00 +0.18

D10A -0.31 -0.28 -0.28 +0.10

B9/7
+0.25 +0.13 +0.02 +0.20

B22/14
+0.32 +0.14 +0.06 +0.36
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Table A.4: PSNR values relative to the corresponding PSNR value of D4LA for MF images:

House and Nitf7. A positive entry corresponds to PSNR value higher than that of D4LA. A

negative entry corresponds to PSNR value lower than that of D4LA.

TDM Method

Image Wavelet CR

08:1 16:1 32:1 64:1

D4LA 29.91 25.27 22.45 20.59

D4A -0.17 -0.09 -0.10 -0.08

D5LA -0.02 +0.06 +0.05 +0.06

D5A -0.34 -0.22 -0.15 -0.19

D6LA -0.02 +0.02 +0.06 +0.06

D6A -0.40 -0.20 -0.16 -0.16

D7LA -0.10 -0.01 +0.08 +0.10
House

D7A -0.45 -0.25 -0.18 -0.16

D8LA -0.08 +0.01 +0.10 +0.05

D8A -0.60 -0.36 -0.20 -0.25

D9LA -0.07 +0.07 +0.16 +0.09

D9A -0.60 -0.31 -0.21 -0.23

D10LA -0.07 +0.03 +0.11 +0.08

D10A -0.69 -0.37 -0.26 -0.28

B9/7
+0.01 +0.11 +0.10 +0.10

B22/14
+0.05 +0.12 +0.20 +0.15

D4LA 25.00 21.92 19.59 17.60

D4A -0.43 -0.38 -0.24 -0.09

D5LA -0.22 -0.18 -0.04 +0.05

D5A -0.11 -0.15 -0.12 -0.03

D6LA
+0.04 +0.03 +0.07 +0.05

D6A -0.24 -0.26 -0.19 -0.11

D7LA
+0.04 +0.04 +0.07 +0.13

Nitf7
D7A -0.42 -0.42 -0.25 -0.11

D8LA
+0.04 +0.05 +0.09 +0.08

D8A -0.21 -0.24 -0.19 -0.09

D9LA -0.16 -0.11 +0.04 +0.15

D9A -0.42 -0.44 -0.28 -0.15

D10LA
+0.01 +0.02 +0.08 +0.09

D10A -0.45 -0.46 -0.33 -0.15

B9/7
+0.02 +0.05 +0.07 +0.09

B22/14 -0.02 +0.08 +0.07 +0.13
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Table A.5: PSNR values relative to the corresponding PSNR value of D4LA for HF images:

Satellite and Mandrill. A positive entry corresponds to PSNR value higher than that of

D4LA. A negative entry corresponds to PSNR value lower than that of D4LA.

TDM Method

Image Wavelet CR

08:1 16:1 32:1 64:1

D4LA 27.41 24.75 23.26 21.94

D4A -0.05 -0.02 +0.00 +0.02

D5LA
+0.06 +0.07 +0.08 +0.09

D5A -0.02 -0.01 +0.00 +0.02

D6LA
+0.06 +0.07 +0.05 +0.05

D6A -0.02 -0.01 -0.01 +0.02

D7LA
+0.06 +0.06 +0.06 +0.08

Satellite
D7A -0.01 +0.03 +0.02 +0.04

D8LA
+0.07 +0.10 +0.09 +0.07

D8A -0.04 +0.01 +0.00 +0.03

D9LA
+0.10 +0.13 +0.12 +0.12

D9A -0.05 +0.01 +0.00 +0.03

D10LA
+0.10 +0.11 +0.08 +0.08

D10A -0.04 +0.02 +0.02 +0.06

B9/7
+0.04 +0.07 +0.08 +0.05

B22/14
+0.09 +0.14 +0.13 +0.14

D4LA 28.37 24.83 22.70 21.32

D4A -0.01 +0.01 -0.01 +0.00

D5LA
+0.12 +0.10 +0.04 +0.05

D5A
+0.01 +0.00 -0.01 +0.01

D6LA
+0.12 +0.10 +0.07 +0.04

D6A
+0.04 +0.04 +0.01 +0.00

D7LA
+0.15 +0.16 +0.11 +0.07

Mandrill
D7A

+0.07 +0.04 -0.01 +0.02

D8LA
+0.17 +0.13 +0.09 +0.07

D8A
+0.07 +0.06 -0.01 -0.01

D9LA
+0.19 +0.19 +0.10 +0.08

D9A
+0.06 +0.05 +0.00 -0.01

D10LA
+0.18 +0.17 +0.10 +0.06

D10A
+0.05 +0.03 -0.03 -0.01

B9/7
+0.11 +0.09 +0.07 +0.02

B22/14
+0.17 +0.16 +0.16 +0.10
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Table A.6: PSNR values relative to the corresponding PSNR value of D4LA for HF images:

Grass and SanDiego. A positive entry corresponds to PSNR value higher than that of D4LA.

A negative entry corresponds to PSNR value lower than that of D4LA.

TDM Method

Image Wavelet CR

08:1 16:1 32:1 64:1

D4LA 23.13 20.05 17.97 16.44

D4A
+0.03 +0.04 +0.04 +0.01

D5LA
+0.17 +0.13 +0.10 +0.06

D5A
+0.12 +0.11 +0.04 +0.01

D6LA
+0.24 +0.13 +0.07 +0.03

D6A
+0.24 +0.15 +0.10 +0.05

D7LA
+0.32 +0.21 +0.12 +0.05

Grass
D7A

+0.30 +0.19 +0.12 +0.05

D8LA
+0.34 +0.24 +0.11 +0.05

D8A
+0.33 +0.20 +0.11 +0.07

D9LA
+0.41 +0.26 +0.17 +0.08

D9A
+0.36 +0.21 +0.10 +0.04

D10LA
+0.44 +0.26 +0.14 +0.06

D10A
+0.39 +0.23 +0.14 +0.08

B9/7
+0.25 +0.21 +0.12 -0.01

B22/14
+0.46 +0.30 +0.20 +0.07

D4LA
+26.50 +23.34 +21.46 +20.32

D4A
+0.00 +0.02 -0.01 +0.00

D5LA
+0.12 +0.10 +0.08 +0.05

D5A
+0.01 +0.04 +0.01 +0.03

D6LA
+0.12 +0.11 +0.08 +0.05

D6A
+0.04 +0.06 +0.01 +0.02

D7LA
+0.17 +0.14 +0.10 +0.07

SanDiego
D7A

+0.04 +0.07 +0.03 +0.04

D8LA
+0.18 +0.17 +0.12 +0.10

D8A
+0.01 +0.05 +0.02 +0.02

D9LA
+0.22 +0.21 +0.16 +0.12

D9A
+0.04 +0.08 +0.05 +0.03

D10LA
+0.19 +0.17 +0.13 +0.09

D10A
+0.01 +0.08 +0.04 +0.03

B9/7
+0.21 +0.09 +0.09 +0.02

B22/14
+0.30 +0.22 +0.16 +0.10
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Table B.1: PSNR values relative to the corresponding PSNR value of D4LA for LF images.

A positive entry corresponds to PSNR value higher than that of D4LA. A negative entry

corresponds to PSNR value lower than that of D4LA.

Wavelets

Image CR D4LA B9/7 D5LA D6LA D8LA D9LA B22/14 D10LA

08:1 39.64 +0.19 +0.10 +0.14 +0.17 +0.24 +0.31 +0.23

16:1 36.45 +0.26 +0.18 +0.23 +0.27 +0.32 +0.43 +0.30
Lena

32:1 33.31 +0.28 +0.15 +0.26 +0.31 +0.35 +0.49 +0.35

64:1 30.34 +0.20 +0.13 +0.15 +0.20 +0.26 +0.47 +0.22

08:1 37.53 +0.08 +0.07 +0.04 +0.05 +0.06 +0.24 +0.03

16:1 35.33 +0.21 +0.05 +0.06 +0.09 +0.04 +0.27 +0.07
Peppers

32:1 32.73 +0.30 +0.09 +0.10 +0.17 +0.09 +0.40 +0.09

64:1 29.8 +0.37 +0.10 +0.10 +0.19 +0.15 +0.47 +0.13

08:1 35.65 +0.08 +0.02 +0.08 +0.08 +0.07 +0.17 +0.13

16:1 32.28 +0.18 +0.05 +0.10 +0.13 +0.12 +0.22 +0.15
Goldhill

32:1 29.87 +0.26 +0.06 +0.08 +0.09 +0.10 +0.27 +0.10

64:1 28.09 +0.07 +0.07 +0.08 +0.10 +0.08 +0.18 +0.09

08:1 37.91 +0.30 +0.14 +0.19 +0.16 +0.29 +0.60 +0.28

16:1 33.37 +0.29 +0.12 +0.16 +0.16 +0.27 +0.54 +0.27
Boat

32:1 29.94 +0.34 +0.04 +0.10 +0.15 +0.19 +0.39 +0.16

64:1 27.36 +0.34 +0.00 +0.10 +0.10 +0.14 +0.35 +0.16
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Table B.2: PSNR values relative to the corresponding PSNR value of D4LA for MF images.

A positive entry corresponds to PSNR value higher than that of D4LA. A negative entry

corresponds to PSNR value lower than that of D4LA.

Wavelets

Image CR D4LA B9/7 D5LA D6LA D8LA D9LA B22/14 D10LA

08:1 35.45 +0.00 +0.00 +0.00 +0.02 +0.01 +0.02 +0.00

16:1 30.51 +0.03 +0.02 +0.03 +0.02 +0.03 +0.01 +0.00
Barbara

32:1 27.00 +0.05 +0.00 +0.01 +0.14 +0.11 +0.10 +0.05

64:1 24.24 +0.06 +0.04 +0.02 +0.03 +0.05 +0.03 +0.03

08:1 33.26 +0.07 +0.05 +0.03 +0.14 +0.12 +0.10 +0.05

16:1 29.69 +0.06 +0.05 +0.02 +0.06 +0.07 +0.03 +0.02
Lighthouse

32:1 26.84 +0.12 +0.06 +0.04 +0.19 +0.15 +0.12 +0.07

64:1 24.32 +0.04 +0.02 +0.02 +0.06 +0.08 +0.05 +0.04

08:1 25.12 +0.15 +0.08 +0.05 +0.20 +0.18 +0.14 +0.10

16:1 22.04 +0.06 +0.02 +0.03 +0.03 +0.06 +0.04 +0.02
Nitf7

32:1 19.76 +0.12 +0.03 +0.05 +0.24 +0.22 +0.18 +0.12

64:1 17.77 +0.08 +0.06 +0.03 +0.06 +0.09 +0.07 +0.03

08:1 29.89 +0.11 +0.04 +0.03 +0.21 +0.18 +0.15 +0.09

16:1 25.24 +0.08 +0.04 +0.02 +0.03 +0.09 +0.06 +0.03
House

32:1 22.40 +0.08 +0.08 +0.01 +0.23 +0.10 +0.11 +0.02

64:1 20.52 +0.18 +0.06 +0.04 +0.32 +0.23 +0.18 +0.10
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Table B.3: PSNR values relative to the corresponding PSNR value of D4LA for HF images.

A positive entry corresponds to PSNR value higher than that of D4LA. A negative entry

corresponds to PSNR value lower than that of D4LA.

Wavelets

Image CR D4LA B9/7 D5LA D6LA D8LA D9LA B22/14 D10LA

08:1 28.43 +0.09 +0.09 +0.11 +0.14 +0.16 +0.16 +0.16

16:1 24.88 +0.08 +0.09 +0.10 +0.14 +0.17 +0.16 +0.17
Mandrill

32:1 22.72 +0.08 +0.05 +0.05 +0.09 +0.11 +0.20 +0.11

64:1 21.27 +0.09 +0.14 +0.03 +0.15 +0.17 +0.17 +0.13

08:1 27.43 +0.03 +0.06 +0.06 +0.07 +0.10 +0.09 +0.09

16:1 24.77 +0.08 +0.08 +0.07 +0.11 +0.14 +0.17 +0.12
Satellite

32:1 23.29 +0.11 +0.08 +0.06 +0.12 +0.12 +0.15 +0.10

64:1 21.99 +0.08 +0.07 +0.06 +0.08 +0.11 +0.13 +0.11

08:1 23.12 +0.26 +0.18 +0.25 +0.33 +0.42 +0.48 +0.45

16:1 20.06 +0.19 +0.13 +0.13 +0.20 +0.26 +0.31 +0.25
Grass

32:1 17.98 +0.12 +0.08 +0.08 +0.11 +0.15 +0.20 +0.13

64:1 16.46 -0.01 +0.04 +0.02 +0.04 +0.07 +0.05 +0.04

08:1 26.51 +0.21 +0.12 +0.13 +0.18 +0.22 +0.32 +0.18

16:1 23.34 +0.10 +0.12 +0.11 +0.17 +0.23 +0.24 +0.17
SanDiego

32:1 21.47 +0.09 +0.08 +0.08 +0.11 +0.17 +0.17 +0.12

64:1 20.32 +0.04 +0.07 +0.05 +0.10 +0.14 +0.12 +0.09
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Figure C.1: Original image Lena .

Figure C.2: Lena, Periodic extension, D4A,

32:1, PSNR = 32.77 dB.

Figure C.3: Lena, Periodic extension, D4LA,

32:1, PSNR = 32.81 dB.
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Figure C.4: Lena, Periodic extension, D10A,

32:1, PSNR = 32.72 dB.

Figure C.5: Lena, Periodic extension, D10LA,

32:1, PSNR = 33.16 dB.

Figure C.6: Lena, Periodic extension, B9/7,

32:1, PSNR = 33.27 dB.

Figure C.7: Lena, Periodic extension, B22/14,

32:1, PSNR = 33.37 dB.
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Figure C.8: Original image,Lighthouse .

Figure C.9: Lighthouse, Periodic extension,

D4A, 32:1, PSNR = 26.62 dB.

Figure C.10: Lighthouse, Periodic extension,

D4LA, 32:1, PSNR = 26.62 dB.
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Figure C.11: Lighthouse, Periodic extension,

D10A, 32:1, PSNR = 26.34 dB.

Figure C.12: Lighthouse, Periodic extension,

D10LA, 32:1, PSNR = 26.62 dB.

Figure C.13: Lighthouse, Periodic extension,

B9/7, 32:1, PSNR = 26.64 dB.

Figure C.14: Lighthouse, Periodic extension,

B22/14, 32:1, PSNR = 26.68 dB.
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Figure C.15: Original image, Mandrill .

Figure C.16: Mandrill, Periodic extension,

D4A, 32:1, PSNR = 22.69 dB.

Figure C.17: Mandrill, Periodic extension,

D4LA, 32:1, PSNR = 22.70 dB.
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Figure C.18: Mandrill, Periodic extension,

D10A, 32:1, PSNR = 22.66 dB.

Figure C.19: Mandrill, Periodic extension,

D10LA, 32:1, PSNR = 22.80 dB.

Figure C.20: Mandrill, Periodic extension,

B9/7, 32:1, PSNR = 22.77 dB.

Figure C.21: Mandrill, Periodic extension,

B22/14, 32:1, PSNR = 22.86 dB.
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Figure D.1: Lena, Symmetric extension,

D5LA, 64:1, PSNR = 30.54 dB.

Figure D.2: Lena, Symmetric extension,

B9/7, 64:1, PSNR = 30.47 dB.

Figure D.3: Lena, Symmetric extension,

D9LA, 64:1, PSNR = 30.60 dB.

Figure D.4: Lena, Symmetric extension,

B22/14, 64:1, PSNR = 30.81 dB.
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Figure D.5: Barbara, Symmetric extension,

D5LA, 64:1, PSNR = 24.29 dB.

Figure D.6: Barbara, Symmetric extension,

B9/7, 64:1, PSNR = 24.30 dB.

Figure D.7: Barbara, Symmetric extension,

D9LA, 64:1, PSNR = 24.27 dB.

Figure D.8: Barbara, Symmetric extension,

B22/14, 64:1, PSNR = 24.29 dB.
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Figure D.9: SanDiego, Symmetric extension,

D5LA, 32:1, PSNR = 21.55 dB.

Figure D.10: SanDiego, Symmetric exten-

sion, B9/7, 32:1, PSNR = 21.56 dB.

Figure D.11: SanDiego, Symmetric exten-

sion, B9/7, 32:1, PSNR = 21.64 dB.

Figure D.12: SanDiego, Symmetric exten-

sion, B22/14, 32:1, PSNR = 21.64 dB.
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Figure E.1: Lena. Figure E.2: Peppers.

Figure E.3: Boat. Figure E.4: Goldhill.
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Figure E.5: Barbara. Figure E.6: Lighthouse.

Figure E.7: House. Figure E.8: Nitf7.
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Figure E.9: Satellite. Figure E.10: Mandrill.

Figure E.11: Grass. Figure E.12: SanDiego.
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