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Design and Detection Process in Chipless RFID Systems 

Based on a Space-Time-Frequency Technique 

Reza Rezaiesarlak 

ABSTRACT 

Recently, Radio Frequency Identification (RFID) technology has become commonplace in many 

applications. It is based on storing and remotely retrieving the data embedded on the tags. The tag 

structure can be chipped or chipless. In chipped tags, an integrated IC attached to the antenna is 

biased by an onboard battery or interrogating signal. Compared to barcodes, the chipped tags are 

expensive because of the existence of the chip. That was why chipless RFID tags are demanded as 

a cheap candidate for chipped RFID tags and barcodes. As its name expresses, the geometry of the 

tag acts as both modulator and scatterer. As a modulator, it incorporates data into the received 

electric field launched from the reader antenna and reflects it back to the receiving antenna. The 

scattered signal from the tag is captured by the antenna and transferred to the reader for the 

detection process.  

By employing the singularity expansion method (SEM) and the characteristic mode theory 

(CMT), a systematic design process is introduced by which the resonant and radiation 

characteristics of the tag are monitored in the pole diagram versus structural parameters. The 

antenna is another component of the system. Taking advantage of ultra-wideband (UWB) 

technology, it is possible to study the time and frequency domain characteristics of the antenna 

used in chipless RFID system. A new omni-directional antenna element useful in wideband and 

UWB systems is presented. Then, a new time-frequency technique, called short-time matrix pencil 

method (STMPM), is introduced as an efficient approach for analyzing various scattering 

mechanisms in chipless RFID tags. By studying the performance of STMPM in early-time and 

late-time responses of the scatterers, the detection process is improved in cases of multiple tags 

located close to each other. A space-time-frequency algorithm is introduced based on STMPM to 

detect, identify, and localize multiple multi-bit chipless RFID tags in the reader area. The proposed 

technique has applications in electromagnetic and acoustic-based detection of targets. 
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1 INTRODUCTION 

 

Today’s ever increasing demand for wireless tracking and identification of objects and targets has 

attracted many people in industry to move toward the application of RFID systems. Compared to 

Barcodes, the RFID tags can be detected in longer distances and non-line-of-sight view of the 

reader antenna. It enables the sellers and managers to monitor different objects and personnel 

remotely. Nowadays, they are widely being used in different applications such as: advertising, 

transportation systems, passports, animal and human identification, libraries, hospitals and 

healthcare systems, museums and so on [1].  

The concept of radio frequency identification (RFID) is relatively old and back to World War 

II [2]. Identification, friend or foe (IFF) is an identification system enables the radar to detect the 

closing target as friendly or not. In fact, it is the first RFID system used in practice. In 1948, the 

idea of modulation of the reflected signals in time domain was introduced [3]. The device 

modulated human voice on reflected light signals. In 1963, a breakthrough was happened by 

introducing the passive RFID transponder developed and patented by Richardson. Later on, 

inductive coupling between interrogator and tag was used for charging the passive RFID tags by 

Vinding. Many available chipless RFIDs in the market are working based on the same idea 

proposed in 1967. In 1975, Koelle, Depp and Feyman at Loss Alamos Scientific Laboratory 

(LASL), introduced the idea of transponder antenna load modulation [4]. In 1980s and 1990s, 

many companies around the world started commercializing RFID systems in various applications 

such as transportation and personnel access in United States and Europe. In 1987, first RFID toll-

collection system was employed in Alesound, Norway. Because of the widespread use of RFIDs 

in commercial applications, some organizations such as the International Standards Organization 

(ISO) and the International Electrotechnical Commission (IEC) conducted some standardization 

activities [5]. Recent advances in silicon technology enabled the integration and miniaturization 

of efficient RFID tags [6]. In June 2003, Wall-Mart Inc. introduced the RFID in “the near future” 

for all its suppliers at the Retail system conference, which led to the release of first EPCglobal 

standard [5, 7].  
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1.1 RFID Systems 

In general, RFID systems can be divided into three classes: active, passive and semi-passive. 

Active tags need a power supply to power RF communication. This power supply implementation 

enables active tags to transmit information of longer distances. In passive RFID tags, there is no 

onboard power supply attached to the tag. Instead, it receives its power from an illuminating 

electromagnetic field lunched from the reader antenna. Hence, they are usually used in shorter-

range communication with smaller data capacity compared to active tags. Figure 1.1 shows some 

passive RFID tags. These RFID tags are lighter and cheaper than active RFID tags. 

Compared to active tags where a battery is directly used for generating RF power, the onboard 

battery in semi-passive RFID tags are employed only to provide power for supporting enabling 

circuits, not for generating RF power.  

 

    
 

Figure 1.1 Two passive RFID tags. 

1.2 Passive RFID tags 

Because of lower price of passive tags, they are commonly used in identification systems. As 

mentioned before, passive tags are powered by an interrogating electromagnetic field. The tag 

introduces modulation on the scattered field, depending on the ID of the illuminated tag. These 

tags can be categorized by two groups of near-field and far-field tags. 
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1.2.1 Near-field RFID 

In near-field RFID systems, the electromagnetic fields radiated from the reader antenna are 

coupled to the tag by an inductive coupling mechanism. Based on Faraday’s principle, a large 

alternating current on the reader coil generates an alternating magnetic field around the antenna. 

The time-varying magnetic field can produce a small voltage across the tag if they are located in 

the reactive near-field of the tag. The voltage is rectified and used for powering the tag chip. The 

basic block diagram of the near-field RFID is shown in Figure 1.2. The analog front-end includes 

a limiter, rectifier and regulator. The regulated voltage powers up the digital unit including 

microcontrollers, Input/output and memory. It also has to meet the communications protocol and 

generate the required serial data to be transmitted to the reader [8]. Near-field tags are usually 

designed at low frequencies, commonly 128 KHz (LF) and 13.56 MHz (HF). The most problematic 

aspect with these tags is the large size of the antenna coils. As another drawback, the power 

changes with 1/r6 (r is the distance from antenna) in the near field of the antenna leading to a fast 

decay of the power with respect to distance. The low data rate is another downside of near-field 

tags [5, 9].  

 

 

Figure 1.2 Block diagram of near-field passive RFID tag. 

 

Antenna Limiter Rectifier

Demodulator

Regulator

Clock Generator

Power Supply

Clock

TX Serial Data

RX Serial Data

Digital

Unit



 

4 

 

1.2.2 Far-field RFID 

The fields in the far-field of antennas are radiative in nature. Figure 1.3 illustrates the 

communication mechanism in far-field RFID systems. The antenna illuminates the tag located in 

its far-field. Part of the incident field is modulated by a mismatching load connected to the antenna. 

This incorporates some data on the scattered field which can be used for identification purpose. 

Far-field tags usually operate at higher frequencies, 860-960 MHz (UHF band) or 2.45 GHz 

(Microwave). Compared to near-field tags, the employed antennas in these tags are smaller. The 

essential parts of the tag are antenna, voltage multiplier, modulator, and digital unit [6, 10].  

 

 

Figure 1.3 Far-field communication mechanism in RFID systems. 

Antenna. Among various antennas proposed for RFID tags, the Gamma-matched dipole has 

been used in more UHF tags [8]. As Figure 1.4 shows, the antenna is attached to a chip. By loading 

the antenna with different impedances, a ASK modulation, based on information stored in the 

digital unit, is performed on the scattered electric field and reflected back to the reader.  

Voltage-multiplier. Although higher power transfer efficiency is possible in near-field RFID 

systems, they are used in short-range communication. In UHF RFID tags, the tag is located in the 

far-field of the antenna. Based on radar equation, the maximum detectable range of the tag can be 

written by  

 reader reader tag

max

min4

P G G
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P




      (1.1) 
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Figure 1.4 Gamma-matched antenna. 
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Figure 1.5 A 6-stage full-wave rectifier voltage multiplier. 

where λ is the wavelength, Preader represents radiated power of the transmiting signal, Greader and 

Gtag are the gain of the reader antenna and tag antenna, respectively, and Pmin is minimum power 

required by the tag to turn on. According to FCC regulation [11], the equivalent Isotropically 

Radiated Power (EIRP) for a reader at ISM band, 902 – 928 MHz, must be less than 4 W. Assuming 

0 dB gain for the tag antenna and Pmin = -15 dBm, the maximum read range will be Rmax = 3 m at 

915 MHz by ignoring polarization mismatch. In perfect matching condition between antenna and 

attached chip, the voltage on the chip port will be 41 mV, which is not sufficient for powering up 

the tag circuitry. A full-wave rectifier voltage multiplier shown in Figure 1.5 can be used to power 

up the tag circuitry. The number of stages and type of diodes determines the multiplication constant 

[8].  

Modulator. Based on the radar equation, the received power (Pr) by the reader antenna is given 

by 

 
 

2

3 44

reader tag

r reader tag

G G
P P

R





  (1.2) 



 

6 

 

The radar cross-section (RCS) of the tag, tag , depends strongly on the loading of the antenna. 

Hence, by loading the antenna consistent with the embedded data in the digital memory, the RCS 

of the tag is changed. The demodulator can be a simple envelope detector which provides required 

power for digital unit.  

Digital Unit. The digital unit is responsible for generating various transmit data based on the 

EPC G2 protocol. It is composed of a few sections including controller, memory, EPROM, clock 

generator, and so on. The voltage multiplier provides the required power to power up the digital 

unit [8].  

1.3 Chipless RFID System 

In chipless RFID systems, the tag does not contain any microchip. This reduces the price of the 

fabrication process of tag in industrial level. In these tags, the structure acts as both scatterer and 

modulator. The overall configuration of chipless RFID system is depicted in Figure 1.6. Three 

important parts of the system are tag, antenna and reader. The frequency of operation is UWB 

range, 3.1-10.6 GHz. The UWB antenna illuminates the reader area. The incident wave 

interrogates the chipless RFID tags presented in the reader area. The induced currents on the tags 

depends strongly on the tag geometry and size, polarization, direction and position of the tag 

relative to the reader antenna. The information on the tag must be aspect-independent and do not 

change by direction and position of the tag. These parameters are complex natural resonances 

(CNRs) of the tag. By embedding some resonant circuitry on the tag structure, the CNRs can be 

used as the ID of the tag. The reflected field is modulated by the tag structure, corresponding to 

embedded resonant circuitry, and reflects back to the antenna reader. After front-end of the 

receiver, the received signal is processed in the reader in order to extract the information of the 

tag. The most important part of the system is the reader and the employed detection algorithm. The 

received signal by the antenna includes the noise and reflections from background objects (clutter) 

in addition to the scattered signal from the tags. These interferences introduce some difficulties in 

extracting the required information from the received signal.  
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Figure 1.6 Chipless RFID system. 

1.4 Dissertation Outline 

This dissertation addresses three important parts of chipless RFID systems: chipless tag, antenna, 

and detection technique. Before starting the design and implementation of chipless RFID 

components, a theoretical background on the scattering mechanism in chipless RFID systems is 

required. Chapter 2 is devoted to the theory of the singularity expansion method (SEM), the 

eigenmode expansion method (EEM), and the characteristic mode theory (CMT). After studying 

the theoretical issues, some important features of the aforementioned methods applicable in the 

design of chipless RFID systems are addressed.  

The theory introduced in chapter 2 is used in the design of chipless RFID tags in chapter 3. 

Since the tag structure acts as both scatterer and modulator, the radiation and resonant behaviors 

of the tag are studied versus structural parameters based on SEM and CMT. Taking advantages of 

SEM and CMT, the resonant frequencies, quality factors, and radiation characteristics of tag are 

investigated in terms of geometry and dimensions in a pole diagram. This helps the designer to 

easily assign the resonant frequencies and desired damping factors of the resonators for meeting 

requirements. These specifications are the read-rang of the tag, data density (number of bits), and 

tag size. In some applications, all aforementioned specifications cannot be satisfied simultaneously 

and trade-off are needed in the design procedure. As an example, for embedding a high density of 

data on a small tag, the quality factors of the resonances must be very high. On the other hand, by 

increasing the quality factor, the radiation fields decrease, leading to a smaller radar cross-section 

of the tag. Hence, the read-range of the tag becomes shorter. In chipless RFID sensors, the radar 

cross-section of the tag or equivalently the strength of the received signal is very important. 
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Systematic design procedures introduced in chapter 3 provide some useful information and insight 

of the electromagnetic behavior of the tags.  

In chapter 4, antenna structures applicable in UWB systems are reviewed. Because of the 

employment of UWB technology in chipless RFID systems, one needs to study both time-domain 

and frequency-domain characteristics of UWB antennas. Frequency-domain parameters of 

antennas are the input impedance and radiation pattern of the antenna. Likewise, the time-domain 

parameters of the antenna are the dispersion characteristics such as ringing, analytic envelope and 

group delay of the antenna. After a summary of these parameters, a small omni-directional antenna 

element useful in wideband and UWB applications is proposed. The time and frequency domain 

characteristics of the antenna are investigated in more detail in this chapter.  

The next chapters of the dissertation are devoted to the detection process in chipless RFID 

system. In multiple multi-bit tags presented in the reader area, the time, frequency and spatial 

information of the tags are important in the detection, identification and localization processes, 

respectively. The accuracy of the employed approach depends strongly on the resolution in time, 

frequency and space. Since the IDs of the tags are included in the spectral domain of the scattered 

signal and its location can be obtained from its time-domain response, chapter 5 introduces some 

time-frequency representations of the received signal. After a review on short-time frequency 

transform (STFT), wavelet, and re-assigned joint time-frequency (RJTF) techniques, a new time-

frequency analysis approach, called short-time matrix pencil method (STMPM) is explored in 

detail. By addressing the effective parameters of STMPM on resolution in time and frequency, it 

is applied to some scattered signals from scatterers. It will be shown that various scattering 

mechanisms such as resonance, scattering center, and dispersion characteristics of the scatterers 

can be detected in time-frequency representation of the signal. The effect of noise in the calculation 

of CNRs extracted from matrix pencil method (MPM) is studied and improved by STMPM. Then, 

the pole diagram and damping factors of the extracted CNRs of the signal are studied when the 

sliding window is located in the early-time and late-time responses of the scatterer. Finally, an 

efficient technique is introduced for separating the early-time and late-time responses of the 

scatterers.  

Chapter 6 is dedicated to detection, identification and localization of chipless RFID tags. First, 

a space-time-frequency algorithm is introduced by which the locations and IDs of the tags are 

obtained in the reader. Assuming the reader area as a scattering medium, the tags act as the 
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scattering centers of the media. Based on Altes’ model introduced in chapter 2, the scattering 

centers are calculated by applying NFMPM (dual of SMPM) to the frequency-domain response. 

In detection process, the number of tags presented in the reader area is obtained. In the cases where 

the tags are close to each other, the detection process is constrained to the range resolution. The 

range resolution is proportional to the inverse of the bandwidth of the incident pulse. In chipless 

RFID systems, the frequency band of operation is in the range of 3.1-10.6 GHz, leading to the 

resolution of 2 cm. It means that the tags distanced farther than 2 cm can be detected in the reader. 

In most radar applications, the idea of matched filter is used in the detection process. In chipless 

RFID systems where the information of the tags are included in the late-time responses, the early-

time of the second scatterer might be hidden in the early time of the former illuminated target, 

which complicates the detection of the tags. This scenario is more complicated when the tags are 

located in close proximity of each other. By applying STMPM to the time-domain signal and 

monitoring the poles of the windowed signal in the pole diagram or the zero-crossing points in 

time-damping factor diagram of the signal, the locations of the tags can be obtained with a better 

accuracy. After detection of the tags, the identification process is performed by extracting the 

resonant frequencies of the tags. In circumstances when multiple tags are present in the reader 

area, an anti-collision algorithm is required in order to assign the extracted CNRs to the presented 

tags. Using three antennas spaced in the reader area, the positions of the tags can be calculated 

relative to a reference point. This procedure is called tag localization. Some scenarios are simulated 

and measured in the laboratory to confirm the validity of the proposed algorithm.  

Finally, chapter 7 presents an overall summary, conclusions, contributions and followed by a 

short discussion and suggestions on the possibilities for future work.  
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2 Mathematical Representation of Scattered Fields from 
Chipless RFID Tags [8] (Chapter used with permission of 

Springer science and business media, 2015) 

 

In scattering scenarios when an incident electric field impinges a scatterer, the scattered fields can 

be mathematically represented by an inner product of the dyadic Green’s function of the structure 

and equivalent induced currents on the scatterer. The induced currents and equivalently, the 

scattered fields can be expanded in different ways. In singularity expansion method (SEM), the 

induced currents are expanded versus the natural resonant modes of the scatterer. The natural 

modes are defined as the corresponding currents on the scatter surface at complex natural 

resonances (CNR), the zeroes of the metricized Green’s function of the scatterer. Instead, the 

induced currents can be expanded versus the eigenmodes of the Green’s function. Compared to 

the natural modes of the scatterer which are independent of frequency, the eigenmodes and 

corresponding eigenvalues of the scatterer are functions of frequency. For some special 

geometries, the structure is perfectly coincided with a special coordinate system. In such cases, the 

eigenmodes are in-phase on the scatterer surface. This is not valid for arbitrary shaped geometries. 

The characteristic modes of the scatterer are defined as the current modes whose corresponding 

scattered fields are in-phase on the surface of the scatterer. These modes are the eigenmodes of a 

generalized eigenvalue equation.  

In this chapter, after studying the mathematical descriptions and the physical interpretation of 

the aforementioned current representations, a simple dipole is considered as a scatterer. By 

employing SEM and using electric-field integral equation (EFIE), the CNRs and corresponding 

natural modes on the dipole are calculated. As a second method, the eigenmodes and eigenvalues 

of the dipole are calculated by applying method of moment to the EFIE representation of the 

scatterer. Finally, the characteristic modes and equivalently, their scattered fields are calculated 

for different frequencies.   

2.1 Singularity Expansion Method (SEM) 

As an example, a 3-bit chipless RFID tag shown in Figure 2.1 is illuminated by an incident field 

(Einc, Hinc), launched from a transmitting antenna. The surrounding medium is assumed to be free 
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space with permittivity ԑ0 and permeability µ0. The ID of the tag is set into the resonant frequencies 

of the structure, which can be embedded into some resonant-based circuitry on the tag. In practical 

applications, it is beneficial to design the tag on a metallic surface in order to maximize the 

radiation efficiency of the scatterer. Assuming the induced current on the tag as J, the scattered 

field is obtained from either an electric-field integral equation (EFIE) or a magnetic-field integral 

equation (MFIE) [12]. Here, the former case is considered for simplicity in formulations. 

Therefore, the scattered electric field is written in the Laplace domain as [13] 

    02

1
( ; ) , ; ;

A
s s G s s dS

k


  
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where ˆˆ ˆˆ ˆˆxx yy zz  I , s = α+jω is the complex frequency, k = s/c represents the propagation 

constant of the fields in the complex frequency domain, and A is the surface of the tag. The primed 

and unprimed coordinates represent the source and observation points, respectively. The quantity 

G0 is the scalar Green’s function in free space. 
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Figure 2.13-bit tag illuminated by an incident plane wave. 
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where G0 satisfies the Sommerfeld radiation condition as 

  0lim , ; 0
r

r jk G s
r

 
  

 
r r  (2.3) 

The scattered field in (2.1) can be written as the inner product of the dyadic Green’s function 

and current distribution on the structure as 

    ( ; ) , ; ,s s


 s

r
E r G r r J r  (2.4) 

where the dyadic Green’s function is defined as 
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G r r I r r    (2.5) 

The associated radiation condition for G


is 

    ˆlim , ;
r

r jkr s


  G r r 0  (2.6) 

and <.> in (2.4) is defined by 

 ,
a

da A B A B  (2.7) 

Assuming the tag is a perfect electric conductor (PEC), the boundary condition on the tag 

surface is given by 

     s inc.̂ ; ;t s s A   E r E r 0 r  (2.8) 

where t̂ denotes the unit vector tangential to the tag surface. As a result, the electric-field integral 

equation (EFIE) is written by 

    inc

t( , ), A


     
r

G r r J r E r r  (2.9) 

It is assumed that the integral in (2.9) is done as a finite-part integral.  Subscript t in (2.9) indicates 

the tangential components of the fields on the tag surface. The method of moment (MoM) can be 

used to solve equation (2.9). By discretizing the surface of the tag into N isolated meshes and 

applying method of moments (MoM), one can rewrite (2.9) as 
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 mn n nJ I    (2.10) 

The matrix equation in (2.10) should be in some sense an accurate representation of the integral 

equation in (2.9). One important criterion of such accuracy is the convergence of the solution 

obtained from (2.9) to the real current distribution as N   [14]. The current distribution on the 

tag is obtained from 

 
1

n mn nJ I    (2.11) 

According to (2.11), the singularity poles of the tag are the zeroes of the determinant of the 

coefficient matrix  as 

   kdet 0s                    k =1, 2, 3 (2.12) 

These singularity poles are the complex natural resonances (CNRs) of the tag at which the current 

distribution on the tag shows damped oscillating behavior after the incident source field crosses 

through the tag. The basis of the SEM is that the current distribution is assumed to be an analytic 

function in the complex s-plane, except at CNRs such as  
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where sn = αn+jωn is the nth CNR of the tag. Since the time-domain response is a real-valued signal, 

then for simple complex poles and coupling coefficients, one can write 

*

n -ns s        (2.14a) 

* *

n n( ; ) [ ( ; )]s sa r a r      (2.14b) 

* *

e e( ; ) [ ( ; )]s sJ r J r                                              (2.14c) 

Equation (2.13) needs some more interpretation. According to Mittag-Leffler’s theorem [12], 

an entire function in the s-plane is required for each pole in the infinite series to guarantee the 

convergence of the series [15]. This entire function is represented by Je(r; s) in (2.13). The other 

important part of the series is the weighting function an(r; s), which is assumed separable in the 

spectral-spatial form of 
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 n n n( ; ) ( ) ( )s R sa r J r  (2.15) 

Here, Jn(r) is the natural mode of the tag at the nth resonant frequency, and Rn(s) is the 

corresponding frequency-dependent residue of the pole. By inserting (2.15) in (2.13), the current 

distribution close to sn is written by  
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It will be shown that for class-1 coupling coefficients, 
nR  is independent of complex frequency. 

By expanding G


and the incident source field, Einc , in a power series around s = sn as  
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and inserting (2.17) and (2.18) in (2.9), one can write 
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By balancing the two sides of (2.19) according to powers of (s-sn), some important expressions are 

obtained. The coefficient of the (s-sn)
-1 term at s = sn gives 

 
n n( , ; ), ( )s


  

r
G r r J r 0  (2.20) 

Equation (2.20) provides some important features of the CNRs and corresponding natural modes. 

By converting (2.20) to matrix form, it is seen that the determinant of the coefficient matrix should 

be zero at CNRs in order to have nontrivial solutions. As another significant point, these poles are 

completely dependent upon the dyadic Green’s function of the structure and as (2.20) illustrates, 

they are source-free and aspect-independent parameters of the tag. This is the reason that these 

parameters are often used in identification applications. For each CNR, sn, there is a nontrivial 
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natural mode, Jn(r), which is the solution of (2.20). Corresponding to (2.20), one can define the 

coupling factors as the solutions to the following homogenous equation 

 
n n( ), ( , ; )s
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r
M r G r r 0  (2.21) 

By equating the coefficients of (s-sn)
0 in both sides of (2.19), one has 
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The inner products in the left-hand side of (2.22) are performed on the rʹ parameter. Thus, both 

sides of the equation are functions of r. By taking the inner products of the two sides of (2.22) by 

Mn(r), the coupling coefficients can be found at resonant frequencies as 
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 (2.23) 

For electric-field integral equations (EFIE), where symmetric matrices are encountered, the 

coupling vectors and natural mode vectors are the same [12], so that (2.23) is written by 
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 (2.24) 

It is seen in (2.24) that the coupling coefficients at resonant frequencies depend on the incident 

electric field as well as the natural mode distribution at the corresponding resonant frequency. In 

the cases where 0);(),( n

inc

t 
r

n rErJ s , the related mode will not be excited by the incident electric 

field. The coupling coefficients in (2.24) are just obtained at CNRs of the tag. There is no 

straightforward way to obtain the entire function added to the resonant response of the scatterer in 

(2.13). Mathematically, this is necessary to guarantee convergence of the series. However, more 

explanation is needed in order to understand the physical concepts behind the theory of SEM. As 

the equation (2.24) shows, the coupling coefficients at the resonant frequencies of the structure 
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depend on the natural modes, dyadic Green’s function of the structure, and incident field at those 

frequencies. For other complex frequencies, s, different representations can be chosen as the 

coupling coefficient, which affects the entire function added to the series. In the late-time response 

of the scatterer, we have just the damped sinusoidals corresponding to the CNRs of the tag. Hence, 

the entire-function contribution comes into the early-time response, which rises and falls faster 

than the late-time signals. In order to cover other complex frequencies, different coupling 

coefficients have been introduced, where class 1 and class 2 representations are most common in 

literature [12]. For a class 1 representation, which is the simplest one, the coupling coefficients of 

the natural modes are defined as 
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 (2.25) 

By inserting (2.25) in the series part in (2.13), the time-domain response is given by 

 n

0 n n e

1

( ; ) ( )Re ( ) ( ; )
s t

n

t U t t R e t




 
   

 
j r j r j r  (2.26) 

where U(.) is the Heaviside step function defined as 

 0

0

0

1
( )

0

t t
U t t

t t


  


 (2.27) 

and the inverse Laplace transform is defined as 

 ( ; ) ( ; )st

Br
t e s ds j r J r  (2.28) 

which causality ensured by having the Bromwich integration contour Br passing above all 

singularities in the s-plane. Turn-on time might be the time at which the incident wave is first 

applied anywhere on the tag. Although class 1 form of the coupling is more useful in the analytical-

based formulation of SEM, it shows some convergence issues in earlier times of the response in 
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numerical calculations [16]. For computational purposes, the class 2 form is more efficient. In this 

form, the frequency dependency of the coupling coefficients is held in the incident electric field as 
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 (2.29) 

The effect of these coupling coefficients on the current distribution can be better illustrated in 

the time domain. For more simplicity, the following incident electric field is considered. 
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E r E  (2.30) 

where the vector r̂  is the propagation vector, E0 includes the polarization vector and amplitude of 

the incident wave, and c is the speed of light in free space. By inserting (2.29) and (2.30) in (2.23), 

the current distribution in the Laplace domain is written as 
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 (2.31) 

By applying the inverse Laplace transform defined in (2.28) to (2.31), the current distribution in 

time domain is written as 
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 (2.32) 

The convergence difficulties in the class 1 form of coupling coefficients are alleviated in the class 

2 representation, where a time-varying region of integration covers that part of the object surface, 

which has already been illuminated by the incident field [16]. When the incident wave completely 

passes through the tag, both class 1 and class 2 representations are similar. For better illustration, 
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Figure 2.2 shows the region of integration at t = t0 on the surface of the tag for class 2 coupling 

coefficients when the incident plane wave passes through a part of the tag.  

 

 
 

Figure 2.23-bit tag illuminated partly by an incident plane wave. 

By representing the current distribution on the tag as the summation over the natural modes 

in the late-time response accompanying an entire function as the early-time response, the scattered 

field is obtained from the integral equation in (2.4) as  
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 (2.33) 

The radiated field close to the nth CNR is written by 
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In the far field, the field in (2.34) can be approximated by 
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As (2.35) expresses, in the far-field region, the scattered fields in the time domain are 

approximately proportional to the first derivative of the current distributions on the tag. In contrast, 

in the near field, the field distribution is mostly affected by the spatial derivatives of the currents. 

By applying the inverse Laplace transform to the scattered field in (2.33), the fields in the time 

domain are written as 

 ns

0 n n n e( ; ) ( ) cos( ) ( ; )
t

n

e t U t t R e t e t
  

   r r  (2.36) 

where the class 1 form of coupling coefficients is assumed in (2.36). According to (2.36), the 

scattered field from a tag is affected by two different phenomena. Early-time response, which is 

depicted by ee(r;t) in (2.36), is affected by the specular reflections from the scattering centers of 

the tag. The early-time response is followed by the series of damped sinusoidals with some 

weighting coefficients. The CNRs of the tag, shown by sn = αn+jωn, are aspect-independent 

parameters of the tag, not dependent on the direction, polarization, or distance to the tag’s 

observation point. For this reason, they are well-suited to be used as the tag’s ID.  

2.1.1 Altes’ Model 

Though the late-time response of the tag can be compactly cast into a series-form formulation, it 

is not as easy to predict the behavior of the early-time impulse response. This is because it depends 

on the spatial variations of the scatterer and observation point. Based on (2.33), the early-time 

response is formulated by  

  e 0 e2

1
( ; ) , ; , ( ; )r s s G s s

k


 
     

 
E I r r J r    (2.37) 

where the first part of the dyadic Green’s function is more pronounced in the far zone and the 

second term is dominant in the near zone of the scatterer. Because of the fast variations of the 

early-time currents, the scattered field includes pulse-shape impulses reflected from the scattering 

centers of the tag. Assuming a scatterer containing M scattering centers is illuminated by an 

incident plane wave with pulse function p(t), the backscattered signal in the early time can be 

modeled as the summation of the delayed pulses from the scattering centers as [17] 
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(a) 

 

 
(b) 

Figure 2.3(a) Transversal and (b) modified filter model of the early-time response. 
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where Am and tm are the amplitude and time delay related to the mth scattering center. This early-

time representation is modeled in Figure 2.3a as a tapped delay line (t1, t2, …, tM) with M 

multipliers and an adder. Based on physical optics approximations, some functions other than 

impulses must be added to the series in (2.38) in order to completely model the early-time response 

of the scatterer. The model seen in Figure 2.3a, which includes the parallel combinations of the 

integrators and differentiators, can be described with the well-accepted model in Figure 2.3b by 

assuming that some of the delay differences tm+1-tm are very small compared to the smallest 

wavelength of the impinging signal. If two neighboring scattering centers have opposite signs, and 

their delay difference (d= tm+1-tm) is very small, d << 1, one can write  
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This component is proportional to the differentiated signal at t = tm. Similarly, weighting factors 

can result in a return component as 

  
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In order to perfectly model the early-time response of the scatterer, one must consider both the 

integrators and differentiators in the model, in addition to the replica of the incident pulse. This 

model is formulated as the convolution of the incident pulse with the impulse responses of the 

scattering centers. 
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In (2.41), the impulse response of the mth scattering center is summed over the integrals and 

derivatives of the Dirac-delta function. Here, the negative and positive values of n refer to the nth 

integral and derivative of the delta function with respect to time. In the Laplace domain, the early-

time response is written by 
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 (2.42) 

where  

 mn mn ( ; )nB A s P r s  (2.43) 

For scattering from edges, fractional n = ±0.5 must be considered in Bmn [18]. By comparing (2.42) 

with (2.36), it is inferred that there is a duality between early-time response in the Laplace domain 

and late-time response in the time domain. In the former, the response is expanded over the 

exponential functions of delay times, while in the latter, the time-domain response is expanded 

versus exponential functions of complex resonances of the tags. This duality will be helpful in the 

identification process of chipless RFID tags, presented in Chapter 6.  
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In simple scatterers such as chipless RFID tags, the reflection from the first illuminated part 

of the tag is strong enough to be considered as the early-time response of the tag. But in the 

complex scatterers such as an airplane, the impulse responses of the multiple scattering centers of 

the target should be considered in the response. Therefore, the early-time response from the simple 

scatterers can accurately be approximated by just one term of the series shown in (2.42). This part 

is strongly dependent on the polarization and direction of the incident electric field. This is because 

of the dependency of the scattering centers on the polarization and direction of the incident wave. 

Additionally, the shape of the early-time response changes from the near field of the scatterer to 

its far field. In the near field, the scattered field is mostly similar to the incident pulse, but in the 

far field, the scattered field is limited to the first time-derivative of the incident field [19], [20].As 

an example, the scattered field from a rectangular metal plane with size of 15 cm×15 cm 

illuminated by an incident pulse is considered. The measurement set-up is shown in Figure 2.4. A 

rectangular metal plane is located 60 cm above an optical table. A TEM horn antenna is connected 

to a digital sampling oscilloscope in order to calculate the backscattered signal from the tag at 

different distances. Another measurement without the presence of the metal is performed and the 

results are subtracted from the earlier signal to cancel the effects of background objects. Time 

averaging is applied to the received pulses in order to improve the signal-to-noise ratio (SNR). The 

excitation pulse and its derivative with respect to time are shown in Figure 2.5. In Figure 2.6, the 

backscattered signal from the plate is shown when it is located at four different distances d = 20 

cm, 30 cm, 1 m and 1.3 m away from the antenna aperture. 

 

 

Figure 2.4 Measurement setup to measure a UWB pulse scattered from a metal object. 
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In the cases where d = 20 cm and 30 cm, the observation point is in the near-field of the scatterer 

and as can be seen, the scattered signal is similar to the incident pulse. In these two cases, the 

scattered signal is followed by a tail, which is related to the impulse response of the antenna. By 

locating the plate and the antenna in the far- field of each other, the scattered signal inclines to the 

first derivative of the incident pulse. By increasing the distance between the antenna and scatterer, 

the amplitude of the scattered signal decreases. In Figure 2.7, the normalized responses are plotted 

for d = 20 cm and d = 130 cm. According to the results, the scattered field is similar to the incident 

field in the near-field and similar to the first derivative of the incident pulse in the far-field of the 

scatterer. 

 

Figure 2.5 Excitation pulse and its derivative with respect to time. 

2.1.2 SEM-Based Equivalent Circuit of Scatterer 

In previous chapters, the mathematical representation of the scattering modes was studied. The 

early-time response of the scatterer was formulated in (2.41) by the time convolution of the 

incident pulse with the summation over localized impulse responses of the scattering centers of 

the tag. Based on the wavefront representation [21-23], the interactions between the local 

resonances in the early time generate global resonances. According to the singularity expansion 

method, these global resonances are modeled in the time domain as the summation over damped 

sinusoidals corresponding to the complex natural resonances of the scatterer with some weighting 

residues as the coupling coefficients. Although the CNRs are aspect-independent, depending only 

on the geometry and material of the scatterer, the coupling coefficients are strongly aspect- 
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(a)       (b) 

 

   
(c)       (d) 

Figure 2.6 Received electric field from the metal object for different distances (a) d = 20 cm, (b) 

d = 30 cm, (c) d = 100 cm, and d = 130 cm. 

 

 

Figure 2.7 Received electric field from the metal plate for d = 20 cm and d = 130cm. 
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dependent. In the scattering analysis, it is usually more desirable to model the scattering process 

with an equivalent-circuit representation. This equivalent circuit is helpful in the design process of 

the scatterer. In order to consider the effects of polarization in the scattering process, a general 

situation, shown in Figure 2.8a, is assumed. Assuming the incident and scattered electric fields as 

Einc and Es with polarization vectors incâ  and sâ , the scattering transfer function of the tag is 

defined as 

 

s

t inc s inc

( ; )
ˆ ˆ( , ; )

( ; )

E r s
H a a s

E r s
  (2.44) 

Assuming the incident electric field as a Dirac-delta function, the transfer function of the tag is 

related to the scattered electric field. The equivalent circuit of the scatterer is depicted in Figure 

2.8b. The input and output voltages are defined at the transmitting and receiving antenna ports, 

respectively. The incident field is coupled to the CNRs by coupling coefficients 
(i)

incn i=1, 2, …., 

N, which depend on the direction and polarization of the incident electric field. Each CNR is 

represented by a parallel RLC circuit in series with a delay line, which models the turn-on times 

of the CNRs. The excited natural current modes are coupled to the scattered field with coupling 

coefficients 
(i)

sn i=1, 2, …., N. The quantity Ze represents the early-time response of the tag, which 

is aspect-dependent. The transfer function of the tag as defined in (2.44) is converted to the ratio 

of output to input voltages. With some mathematical manipulation, the transfer function can easily 

be written as 
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 (2.45) 

The first term is the early-time part and the second term, including the complex natural resonances, 

is the late-time part. Although in reality, N is infinity, for numerical computations, N is usually 

truncated to a finite value.  
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(a)      (b) 

Figure 2.8 (a) A tag illuminated by an incident plane pulse, and (b) SEM-based equivalent circuit 

of chipless RFID tag 

2.1.3 SEM Representation of Currents on a Dipole 

In this section, scattered fields from a dipole are formulated based on the SEM in order to illustrate 

the application of the SEM in numerical computations [24]. A single dipole of length L = 1m is 

aligned with the z-axis (Figure 2.9) and illuminated by an incident plane wave propagating in the 

direction forming an angle θ with the z-axis. The incident wave is assumed to be a step function, 

striking the scatterer at t = 0. By formulating the current distribution using the SEM, it is possible 

to obtain the current distribution and scattered fields in the time domain. By neglecting the effects 

of the end caps on the wire and φ variations of the currents on the wire, a Pocklington equation 

can be written for the axially-directed current on the dipole. Assuming s = α+jω, the Pocklington 

equation is written as [24] 

      
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where 
inc

tE is the tangential component of the incident electric field along the dipole and the kernel 

K is given by 
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Here, a is the radius of the wire and  
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Figure 2.9 Geometry of the dipole illuminated by an incident field. 
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The incident tangential electric field along the dipole is written by  
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For the step-function incident wave, we have 

   0inc E
E s

s
  (2.50) 

By discretizing the length of the dipole into N segments, the integral equation in (2.46) is converted 

to the equation 

   Z I V     (2.51) 

where [Z] is an N×N matrix referred to as the system impedance matrix, [I] is an N×1 response 

vector and [V] is an N×1 vector corresponding to the incident field. According to (2.20), at CNRs 

of the scatterer, the following equation holds 

    0n nZ s I s             (2.52) 

L x

z



incE
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The CNRs of the dipole are obtained from  

 
     0det  nn sZs

 (2.53) 

The CNRs can be calculated by employing different searching algorithms. One easy way is to 

expand Δ(s) in a complex Taylor series about sn as 

 
       0000  sssssn  (2.54) 

Keeping the first two terms of the series, the CNR, sn, is obtained from 

 
 

 
0

0

0

n

s
s s

s


 


 (2.55) 

where s0 is the initial guess of the resonant frequency. More accurate values for sn can be obtained 

by repeating this procedure. Figure 2.10 shows the pole diagram of the dipole. It is seen that the 

poles, sn=αn+jωn, are located in different layers in the s-plane. The poles situated in the first layer 

are more dominant in the time-domain response because they have lower damping factors than 

those located in the further layers. The natural current modes on the dipole are the solutions of 

equation (2.52).  

 

     
 
   V
s

Y
VZI




1

 (2.56) 

In Figure 2.11, the real and imaginary parts of the first three modes of the dipole located in the 

first layer are depicted. By possessing the natural modes and CNRs of the dipole, the current 

distribution can be cast to the form 

    
 
 

1 Y
I Z V V

s


       


 (2.57) 

where Rn is the residue of the nth pole, obtained from (2.24). The time-domain response is obtained 

by applying an inverse Laplace transform along the appropriate Bromwich contour.  

      expn n n

n

i t R s t J     (2.58) 
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Figure 2.10 Pole diagram of the dipole, representing the resonant frequency and damping factor of 

the CNRs. 

 

  

(a)       (b) 

Figure 2.11 (a) Real and (b) imaginary parts of the first three natural currents of the dipole. 

2.2 Eigenmode Expansion Method 

Returning to scattering from the chipless tag shown in Figure 2.1, the incident electric field induces 

a current distribution on the tag, which can be calculated by applying boundary conditions on the 

tag surface as 
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    inc

t( , ; ), ;s s A


     
r

G r r J r E r r  (2.59) 

where Ĝ  in the following formulations is the electric-type dyadic Green’s function and A 

represents the surface of the tag. The eigenvalue equation associated with (2.59) is written by 

      n n n( , ; ), ; ;s s s s A


    
r

G r r J r J r r  (2.60) 

where Jn(r; s) and λn(s) are nth eigenmode and eigenvalue of G


, respectively. By applying the 

method of moment (MoM), the integral equation in (2.59) is converted to the following matrix 

equation 

 
     es s s Γ J I

 (2.61) 

and the eigenvalue equation corresponding to (2.61) is written by 

 
       n n ns s s s Γ J J

 (2.62) 

In order to have nontrivial solutions, the determinant of the coefficient matrix must be zero as 

     ndet 0C s s  Γ I  (2.63) 

C, is called the characteristic equation and I, is a unit matrix. Assuming Γ to be a square matrix of 

rank N, one can write 

    n

1

det( )
N

n

s s


Γ  (2.64) 

The eigenvalues may or may not all be distinct. It is clearly seen from (2.63) and (2.64) that the 

CNRs of the scatterer are the zeroes of the eigenvalues. Each eigenvalue may contain an infinite 

number of CNRs. For each square matrix, two sets of eigenmodes, right-side and left-side, are 

defined. In (2.62), the right-side eigenmodes are introduced, which are represented by 
R

nJ  in the 

following. The left-side Eigenmodes are defined as [25] 

       L L

n n ns s s s J Γ J      (2.65) 

The orthogonality and bi-orthogonality relations between eigenmodes can be summarized as  
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   L L

n m mns s  J J                                              (2.66a) 

   R R

n m mns s  J J                                                         (2.66b) 

   L R

n m mns s  J J                                                         (2.66c) 

where  

mn

0

1

m n

m n



 


 

The current distribution and incident electric field in (2.62) can be expanded versus the 

eigenmodes as 

    R

n n

1n

s a s


J J  (2.67) 

  R

e n n

1n

b s


I J  (2.68) 

Substituting (2.67) into (2.63) and using (2.68), one arrives at 

 
           

 

R R

n n n n n

1 1

e

n n

a s s a s s

s


 

 



 Γ J J

I

 (2.69) 

By taking an inner product of the two sides of (2.69) with 
   L

n sJ  and using the orthogonality 

relation in (2.66), one can write  

 
 

     
       

L

n

n L R

n n n

1 s s
a

s s s


 



J I

J J
 (2.70) 

Therefore, the current distribution on the tag is written by 

  
 

     
       

   
L

Rn

nL R
1 n n n

1

n

s s
s s

s s s


 




J I
J J

J J
 (2.71) 
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By defining the normalized dyadic functions as 

 
       
     

R L

n n

n R L

n n

s s
s

s




J J
d

J J
                                       (2.72) 

the current distribution in (1.71) can be expressed by 

  
 

   n

n

1

n

s s s
s

 J d I  (2.73) 

By comparing (2.61) and (2.73), one can write 

 
 

 1

n

n

1

n

s
s

 Γ d  (2.74) 

It shows that the singularity poles of the scatterer are the zeroes of the Eigenvalues. Similarly, 

    n n

n

s sΓ d  (2.75) 

Therefore, 

 
    

1

n

n

s s


 



Γ Γ d

δ

 (2.76) 

In some scattering problems, the geometry of the scatterer is perfectly matched to a specific 

coordinate system. As an example, when the incident electric field illuminates a perfectly electric 

conducting (PEC) sphere or an infinite cylinder, the scattered fields or equivalently the induced 

currents on the scatterer can be easily expanded versus the eigenmodes of the structures. For 

arbitrary geometries, which are not necessarily compatible with any specific coordinate system, 

the numerical evolution of the eigenmode equation (2.62) can be used in order to find the 

eigenmodes, eigenvalues and, consequently, the complex natural resonances of the scatterer.  

2.2.1 Example: Eigenmode Expansion of Currents on a Dipole 

Assuming the dipole seen in Figure 2.9, the eigenmodes and eigenvalues of the dyadic Green’s 

function of the scatterer can be calculated from (2.62). The real and imaginary parts of the first 
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three eigenmodes of impedance matrix of the dipole are represented in Figure 2.12 at frequencies 

f = 133 MHz and f = 400 MHz. Compared to the real part of the eigenmodes, the imaginary part 

changes significantly by frequency. 

 

   

(a) Real part at f = 133 MHz   (b) Imaginary part at f = 133 MHz 

 

   

(c) Real part at f = 400 MHz   (d) Imaginary part at f = 400 MHz 

Figure 2.12 Real and imaginary parts of the first three eigenmodes of the dipole. 

2.3 Characteristic Mode Theory 

For structures whose geometry coincides perfectly with a special coordinate system, the 

eigenmodes of the structure are in-phase on the surface of the scatterer. As an example, assuming 

a perfectly conducting sphere of radius a is illuminated by an incident plane wave, the scattered 

fields can be written by 
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       2

,

cos
mn m jn

n r n

m n mn

h r P e     
   

   


ΑE

H B
 (2.77) 

where 
 2

nh  is the second kind spherical Hankel function and 
m

nP  represents the associated 

Legendre function of first kind, θ is the angle measured from z-axis and φ is the angle measured 

from xz-plane. Since the sphere is assumed as PEC, the induced currents on its surface can be 

obtained from  

 n̂ J H  (2.78) 

Fields in (2.77) satisfy the following Maxwell equation as 

 

2

0k
   

    
   

E E

H H
 (2.79) 

which can be written as three separate eigenvalue equation. The induced currents and the scattered 

fields in (2.77) and (2.78) are in-phase on the surface of the sphere. The same result is seen for 

cylindrical mode expansion around an infinitely long cylinder located along the z-axis. In such 

special cases where the geometry of the structure is perfectly matched to a special coordinate 

system, the boundary conditions can be easily satisfied on just one spatial component of the fields. 

The idea of characteristic modes is how to expand the currents and fields versus the basis functions 

(or characteristic modes) which are in-phase on the scatterer surface. This theory was first 

introduced by Garbacz in 1971 for conducting bodies of arbitrary shapes [26]. His proposed 

approach was based on diagonalizing the scattering matrix of the scatterers. He presented a new 

class of eigenmodes on a scatterer that are real and their corresponding scattered fields have 

constant phase over the surface of the body. Although the proposed method was used in some 

cases, its implementation was not easy for an arbitrarily-shaped scatterer. In [27], Harrington 

proposed an alternative viewpoint for diagonalizing an operator. This technique relates the current 

distribution to the tangential electric field on the body. He defined a particular weighted eigenvalue 

equation, which gives the same eigenmodes defined by Garbacz, but with a simpler approach. Ever 

since, this proposed technique has been widely employed in the design and modeling of antennas 

and scatterers [28-33]. Similar to natural resonant modes, the characteristic modes are independent 

of source fields and depend only on the geometry and shape of a scatterer.   
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2.3.1 Mathematical Formulation of the Characteristic Mode Theory 

Referring to Figure 2.1, it is assumed that an incident plane wave illuminates the scatterer. The 

first step in formulating the eigenvalue equation, which defines the characteristic modes of the tag, 

is the application of the electric-field integral equation (EFIE) on the tag surface as 

 
   

 inc

t

( , ; ),

;

J s

s


 

 

r
G r r J r

E r

L
 (2.80) 

where G


 is defined in (2.5) and the integration is performed over the surface of the tag. Since the 

operator L(.) in (2.80) has the dimensions of impedance, it is more convenient to introduce the 

notation 

 Z(J)=L(J) (2.81) 

where Z is a symmetric operator as 

 
    CBCB ,, ZZ 

 (2.82) 

One can write Z in terms of its real and imaginary components   

 XRZ j  (2.83) 

where   ZZR
2

1
 and  

1

2 j

 X Z Z . Since the radiated power from a current distribution J on 

the tag is given by  

  ,RP  J J  (2.84) 

it follows that R is positive semi-definite. The starting step in defining the characteristic modes of 

the tag is the following eigenvalue equation 

 
   n n nJ JZ M

 (2.85) 

where γn and Jn are the nth eigenvalue and eigenmode of the equation and M is a weighting 

operator. Choosing M = R ensures orthogonality of the radiation patterns of the current modes in 

the far zone. Introducing  
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 n n1 j  
 (2.86) 

into (2.85) , the eigenvalue equation is converted to 

 
   n n nJ JX R

 (2.87) 

Since R and X are real symmetric operators, both the eigenvalues n  and the corresponding 

characteristic modes, Jn, must be real. In addition, the eigenmodes satisfy the orthogonality 

relationships 

 m n mn, J JR                                        (2.88a) 

 m n n mn,  J JX                                   (2.88b) 

   m n n mn, 1 j  J JZ                                    (2.88c) 

where  

mn

1

0

m n

m n



 


 

The electric and magnetic fields produced by an eigenmode Jn on the surface of the tag are 

called characteristic fields, and are referred to as (En, Hn). One important property of the 

characteristic fields is their orthogonality in the far zone. Based on Poynting’s Theorem, the mutual 

power coupling between the current modes Jn and Jm distributed on the surface of the tag can be 

written as follows 

 

 
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mn
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 



 

       

J J

J J J J

E H H H H H

Z

R X  (2.89) 

Here, Sʹ is any surface enclosing the tag and v is the region enclosed by Sʹ. According to the 

orthogonality relations in (2.88), we have 

  mn n mn1P j    (2.90) 



 

37 

 

If Sʹ is chosen to be a sphere at infinity, then the characteristic fields in the far zone can be 

expressed by 

 
 

n n

n

ˆ

,
4

jkr

r

j
e

r




 




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


E H

F
 (2.91) 

where  /   is the intrinsic impedance of space, r̂ is the unit radial vector perpendicular to 

Sʹ, (θ, φ) are the angular coordinates of the position on Sʹ and Fn is the pattern of the field. Inserting 

the far-zone fields in (2.89), the real and imaginary parts of the radiated power can easily be 

separated as 

 
m n mn

S
d 


   E H s

 (2.92) 

 
 m n m n n mn

v
dv     


    H H E E

 (2.93) 

Relation (2.92) expresses the orthogonality of the characteristic fields in the far-zone region. For 

a single characteristic mode, (2.93) is written by  

 
 n n n n n

v
dv    


    H H E E

 (2.94) 

From (2.94), it is seen that at resonant frequencies where the electric and magnetic energies are 

equal, the corresponding eigenvalues are zero. At frequencies where n 0  , the fields are inductive 

and for n 0  , the fields are capacitive.  According to (2.87), at resonant frequencies, we have 

 n( ) 0JX
 (2.95) 

By applying MoM and converting equation (2.95) into matrix equation, the determinant of the 

reactance matrix should be zero at the resonant frequencies of the structure in order to have 

nontrivial solutions.  

The current distribution on the tag can be expanded in terms of the characteristic current 

modes as 
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 n n

1n

a


J J  (2.96) 

where Jn is the nth characteristic mode and an is the unknown coefficient in the expansion series. 

Substituting (2.96) in (2.80) and considering the linearity of the operator, we have 

   inc

n n t

n

a   J EZ  (2.97) 

By taking an inner product of the two sides of (2.97) with Jm and using the orthogonality relations 

in (2.88), one can write 
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t n t n

n

nn n
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a

j
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E J E J

J JZ
 (2.98) 

It is seen that the unknown coefficients are strongly dependent on the coupling between the 

characteristic modes and the incident electric field. By substituting (2.97) in (2.95), the current 

distribution on the tag is given by 
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 (2.99) 

where  

inc

n t n,V  E J                                               (2.100) 

is the coupling coefficient between nth characteristic mode and incident electric field. The electric 

and magnetic fields scattered from the tag can be written by  

 n
n

1 n1n

V

j

 


E E      (2.101)  

n
n

1 n1n
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H H                                       (2.102) 
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The variation of eigenvalues, current distribution, and corresponding fields versus frequency 

provides some useful information about the scattering properties of the tag structure. The modal 

expansion of the current in (2.99) is inversely dependent on the eigenvalues as 

n

n

1

1
MS

j



                                       (2.103) 

This parameter is called the modal significance. This parameter depends only upon the 

geometry and dimensions of the tag, and does not vary with the incident excitation. Another 

parameter, which is very useful in calculating the quality factor of the scatterer at resonant 

frequencies, is the characteristic angle defined as 

 1

n n180 tan                                          (2.104) 

This parameter models the phase angle between a characteristic current, Jn, and the associated 

characteristic field, En. It is clear from (2.103) and (2.104) that at the resonant frequencies of the 

tag, the characteristic angle is equal to zero and the modal significance has a maximum value of 

one. These parameters are very useful in calculating the quality factor of the tag response at 

resonant frequencies. In computing the radiating bandwidth of the modes, we need to know the 

frequencies at which the radiated power is half of that at resonant frequencies. From (2.103), at 

the frequencies where λn = 1 or λn = -1, the corresponding modal significance is 0.707, and the 

corresponding characteristic angles are 135° and 225°. Labelling these frequencies fL and fH, the 

quality factor of the characteristic mode at resonant frequency can be calculated from the 

expression 

0

H L

f
Q

f f



                                          (2.105) 

This approximation is only valid for high-Q resonators. There have been numerous formulae 

for calculating the quality factor of a scatterer. In our application where we try to implement 

resonators with high quality factor, all the proposed formulae give approximately the same results 

with slight variations. Another simple formula useful in calculating the quality factor of the 

resonators embedded on chipless RFID tags is given by the expression 
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n
n

2

d
Q

d




                                                                    (2.106) 

which was proposed by Harrington [34]. 

 

 

Figure 2.13 Eigenvalues of the characteristic modes versus frequency. 

2.3.2 Characteristic Mode Analysis of Dipole 

Assuming the dipole of length L = 1m seen in Figure 2.9, the variations of eigenvalues of the dipole 

are shown in Figures 2.13. The first three resonant frequencies of the dipole are located at f1= 133 

MHz, f2 = 282 MHz and f3 = 430 MHz at which the corresponding eigenvalues are zero. The mode 

is capacitive at frequencies lower than its corresponding resonant frequency and is inductive at 

frequencies above it. According to Figure 2.14a, the modal significance is equal to 1 at the resonant 

frequencies of the dipole. The quality factor of the dipole at the resonant frequencies are equal to 

Q1 = 4.3, Q2 = 5.34 and Q3 = 6.2. The characteristic angle of the characteristic modes is equal to 

180° at the resonant frequencies, as Figure 2.14b shows. The first three characteristic modes of the 

dipole are shown in Figure 2.15 at resonant frequencies. The characteristic modes are sorted based 

on their corresponding eigenvalues. The actual current on the dipole is the summation of the 

characteristic modes weighted by coupling coefficients, which depend on the incident electric 

field. 
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(a)       (b) 

Figure 2.14 (a) Modal significance and (b) characteristic angle of the characteristic modes versus 

frequency. 

   
                                   (a)                                                                               (b) 

 

   
                                         (c)                                                                         (d) 

Figure 2.15 First three characteristic modes of the dipole at (a) f = 130 MHz, (b) f = 282 MHz, (c) 

f = 300 MHz, and f = 430 MHz 
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3 Design of Chipless RFID Tags [8] (Chapter used with 

permission of Springer science and business media, 2015) 

 

One key element of a chipless RFID system is the tag. Since it is chipless, it acts both as the 

scatterer and encoder. As the scatterer, it needs to reradiate the incident field as much as possible 

in order to maximize signal-to-noise ratio (SNR) in the reader. As the encoder, it needs to encode 

a high density of data on the backscattered signal. There are some challenges in attaining all desired 

characteristics of the tag as the scatterer and encoder altogether. Although many designs have been 

proposed as chipless RFID tags, they can be categorized into two general groups [35]. 

In the first group, called time-domain reflectometry-based (TDR) design, the tag includes 

some discontinuities along a long transmission line. The positions of the discontinuities encode 

the data by a train of pulses shifted corresponding to the positions of the discontinuities. Surface 

acoustic wave (SAW) tags are an example of this category. The schematic view of a SAW RFID 

tag is shown in Figure 3.1. It includes an antenna, piezoelectric surface, and multiple reflectors 

which encode the data on the signal [36]. The incident electromagnetic pulse received by the 

antenna is converted to the acoustic wave through the piezoelectric substrate. The SAW is affected 

by a number of reflectors, which create a number of shifted pulses corresponding to the positions 

of the reflectors. Although SAW tags are nowadays used in some commercial applications, there 

are still some issues to be addressed to make them compatible for RFID applications. Reduction 

in size and loss, and increase in data capacity and reading range are some of these issues. 

Additionally, due to the costly process of making the SAW and attaching it to the antenna, this 

type of RFID tag is more expensive than the silicon-based tags [37]. The same idea was employed 

by utilizing delay line instead of piezoelectric substrate, incorporated by some discontinuities 

instead of reflectors [38, 39]. In [40], a chipless RFID tag based on group delay engineered 

dispersive delay structures is proposed. The tag employs transmission-type all-pass dispersive 

delay structures (DDSs, shown in Figure 3.2) to assign the pulse position modulation (PPM) code 

onto the interrogating signal. The proposed chipless RFID system based on DDSs is shown in 

Figure 3.3. The interrogating signal includes three pulses modulated with three different 

frequencies. Depending on the frequency of the incident pulse, the structure introduces the required 

phase shift corresponding to bits 0 or 1. As an example, the pulses can be positioned in the first 

half or the second half of a bit interval to encode a bit 0 or a bit 1, respectively. 
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Figure 3.1 Schematic view of a surface acoustic wave tag. 

 

In practical applications, TDR-based tags are loaded with an antenna, which increases the size. In 

addition, the long transmission line included in these structure introduces some loss in the 

transmission path of the signal.  

In the second group of chipless RFID tags, which is called spectral-based tags, the ID of the 

tag is incorporated into the spectral response of the scattered signal. In these designs, the frequency 

band of operation is divided into N sections, corresponding to N bits. According to Figure 3.4, the 

presence and absence of resonance at each section of the frequency band is associated with bits 1 

and 0, respectively. By increasing the number of bits on the tag, the couplings between the 

resonances are increased [41]. Hence, by removing a specific resonance, the couplings between 

the other resonators are changed and as a result, the resonant frequencies of the other resonances 

are altered. Therefore, we need to increase the quality factor of the resonator in order to decrease 

the coupling between them [42]. 

The first spectral-based design is shown in Figure 3.5a. It is an 11-bit tag including 11 dipoles, 

each corresponding to one bit [43]. In order to decrease the coupling between the dipoles, they are 

placed far from each other, which increases the size of the tag. Another drawback of the tag is the 

low quality factor of the dipoles, which is not suitable for high density of data. In 2006, a chipless 

RFID tag based on the fractal Hilbert curve was proposed [44]. The configuration of the proposed 

tag is depicted in Figure 3.5b. From an electromagnetic point of view, such a curve provides a 

structure that can resonate at a wavelength much longer than its physical size. For high densities 

of data where we need to pack the resonances into a limited frequency band, this structure involves 

some difficulties in the fabrication process. 
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Figure 3.2 Dispersive delay structures [40] (With permission, Copyright© 2011 IEEE). 

 

 

Figure 3.3 Chipless RFID system based on DDSs [40] (With permission, Copyright© 2011 IEEE). 

 

 

Figure 3.4 Assigned resonant frequencies for a chipless RFID tag. 
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In 2007, a simple structure based on the slot resonator was proposed [45]. By inserting quarter-

wavelength slot resonators on a metallic plane as seen in Figure 3.5c, the ID of the tag is adjusted 

by the resonant frequencies of the slots. Later on, this structure was used as a basis for designing 

compact multi-bit chipless RFID tags. Figure 3.5d shows another chipless RFID tag in which a 

receiving antenna is attached to a resonant circuitry that encodes data on the signal and then 

transmits the encoded signal through a transmitting antenna [46]. The antennas are placed in 

different polarizations for transmitting and receiving purposes. Compared to the spectral-based 

chipless RFID tags in which the structure acts both as the scatterer and encoder, the tag shown in 

Figure 3.5d has larger size with higher loss. Hence, this design is not suitable for compact chipless 

RFID tags. Figure 3.5e shows a chipless RFID tag designed based on high impedance surfaces. In 

this tag, by employing a multi-resonant HIS unit cell, several bits can be stored in the structure 

[47]. The states “total reflection” and “total absorption” encode bits 0 and 1, respectively. The 

ground plane of the microstrip participates in the resonant mechanism of the structure, which 

makes the tag bulky in some applications. The 24-bit tag represented in Figure 3.5f contains 24 

quarter-wavelength slots, each resonating at the specified frequency [42].   

Besides all aforementioned designs proposed as chipless RFID tags, there is a need for a 

systematic design, which includes all effective structural parameters in the design process. As the 

encoder, we need to consider the quality factor and resonant frequency tunability of the embedded 

resonators. As the scatterer, the residue of the poles and radar cross section of the tag and their 

dependency on polarization and direction should be considered in the design process. In this 

chapter, two design approaches based on singularity expansion method (SEM) and characteristic 

mode theory (CMT) are presented. First, complex natural resonance-based design of chipless 

RFID tags is introduced. By monitoring the effects of structural dimensions on the damping factor 

and resonant frequency of the resonators, the process of encoding the data onto the tag is presented. 

In the following, another design process of the tag based on the theory of characteristic modes is 

introduced, which provides the resonant frequency, quality factor, and additionally the intensity of 

the characteristic fields in the far-zone region [48]. Although the design procedure is general and 

can be used for any arbitrary resonant-based structure, the quarter-wavelength slot resonators is 

used as the resonant circuitry in the presented design procedure. This structure exhibits some 

desired features compared to other proposed resonant structures [42, 49]. Its low profile, ease of 

fabrication, and lightness are the important features of the proposed tag. 
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                                  (a)                                                                               (b) 

                              
                             (c)                                                                                   (d) 

 

                                               
                               (e)                                                                            (f) 

Figure 3.5 Spectral-based chipless RFID tags using (a) dipole resonators [43] (Copyright© 2005 

IEEE) (b) fractal Hilbert curve [44] (Copyright© 2006 IEEE) (c) slot resonators [45]. (Copyright© 

2007 IEEE) (d) Resonant circuitry attached to the transmitting/receiving antennas as a chipless 

RFID tag [46] (Copyright© 2009 IEEE) (e) chipless RFID tag based on high-impedance surface 

[47] (Copyright© 2013 IEEE) (f) 24-bit tag using quarter-wavelength slot resonators [42] (With 

permission, Copyright© 2014 IEEE). 
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3.1 Complex Natural Resonance-Based Design of Chipless RFID 

Tags  

As mentioned in Chapter 2, the impulse response of the tag can be written as the summation over 

the CNRs combined with an entire-domain function including the early-time response of the tag 

as 

    n
e

nn

R
H s H s

s s





 


  (3.1) 

As mentioned before, the residues (Rn) and entire-domain function (He(.)) depend strongly on the 

polarization and direction of the transmitting and receiving antennas, while the CNRs of the tag 

(sn) are aspect-independent. Although the series includes an infinite number of poles, we consider 

just N fundamental high-Q CNRs of the tag, which are excited strongly by the incident electric 

field. A single-bit scheme of the tag is shown in Figure 3.6 with its structural dimensions.  

In order to perceive an intuitive description of the scattering modes, the tag shown in Figure 

3.6 is illuminated by a y-polarized electric field propagating in the x-direction. The current 

distribution on the tag is illustrated in Figure 3.7 at different time instances. At t=0.02ns, the 

impinging wave hits the leading edge of the tag. The current on the tag at t=0.04ns is shown in 

Figure 3.7b. At this time, the incident wave illuminates part of the tag and as the figure shows the 

induced current is strongly dependent on the source field. At t = 0.06 ns, the incident field crosses 

through the tag and afterward the current distribution can be written by the summation over the 

natural modes of the tag. Although each scatterer has infinite CNRs, the dominant resonances 

 

Figure 3.6 Single-bit tag with structural dimensions. 
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excited by the incident field are related to the fundamental resonant frequency of the slot and metal 

parts. According to the current distribution at t = 0.4 ns and t = 0.6 ns, it is explicitly seen that the 

current distribution on the tag is the summation of the natural currents related to the fundamental 

resonance of the slot and metal. At t = 0.4ns, the current is dominated by the natural modes related 

to the slot and metal resonant frequencies. At t = 0.6ns and thereafter, the slot’s fundamental 

natural mode is more dominant, because it has a low damping factor compared to other CNRs of 

the tag. 

Assuming W = 0.3 mm, S = 3 mm, d = 0.8 mm, and L = 12.6 mm, the time-domain and 

frequency-domain backscattered field from the tag are depicted in Figure 3.8. The incident electric 

field is polarized in the y-direction and propagates in the z-direction. As the frequency-domain 

response of the backscattered field shows, two excited resonant frequencies of the structure are 

located at f = 5.54 GHz and f = 8.35 GHz. The pole diagram of the tag is shown in Figure 3.9. It 

depicts the resonant frequencies of the tag versus their corresponding damping factors. The 

residues of the poles are depicted beside them. The high-Q resonance at f = 5.54GHz is related to 

the fundamental frequency of the slot resonator, and the low-Q resonant frequency at f = 8.35GHz 

is associated with the metallic part of the tag. Although the CNR of the slot has a lower damping 

factor than the CNR of the metal, its residue is five times weaker. Since the fundamental resonant 

frequency of the slot is used in encoding the data onto the tag, the resonant frequency of the metal 

should be considered in the design procedure and distinguished in the applied detection technique. 

In Figure 3.10, the current distribution on the tag is shown for two resonant frequencies. As it 

shows, at the resonant frequency of the slot, the current on the arms of the slot are in opposite 

directions while at f = 8.35GHz, which corresponds to the half-wavelength resonance of the metal, 

the current on the arms is mostly in the same direction. Based on these current distributions, it can 

be inferred that the resonant frequency of the slot is mostly sensitive to the slot length L and that 

the resonant frequency of the metal can be changed by L+S. In practical applications, the 

fundamental CNR of the slot rather than the metal is used for encoding the data onto the tag 

because of its higher quality factor. In Figure 3.11, the resonant frequency of the slot is plotted 

versus slot length for two different values of d. As can be seen, increasing the slot length shifts 

down its resonant frequency. In addition, for larger values of d, as a result of slightly increasing 

the electrical length of the slot, its resonant frequency decreases. Therefore, the resonant frequency 

can be easily adjusted by the slot length (L). Another important parameter to be considered in the 
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(a) t = 0.02 ns                                                                   (b) t = 0.04 ns 

 

                                             
 

(c) t = 0.4 ns                                                        (d) t = 0.6 ns 

 

Figure 3.7 Current distribution on the tag for different time instances [33] (With permission, 

Copyright© 2015 IEEE). 

            
          

                                     (a)                                                                               (b) 

Figure 3.8 (a) Frequency-domain and (b) time-domain backscattered field from the single-bit tag 

[33] (With permission, Copyright© 2015 IEEE). 
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Figure 3.9 Pole diagram of the single-bit tag [33] (With permission, Copyright© 2015 IEEE). 

design procedure is the damping factor of the resonances. In order to incorporate more resonant 

frequencies into a relatively narrow frequency band, it is necessary to design the poles with low 

damping factors or equivalently high quality factors. In Figure 3.12, the damping factor of the 

slot’s fundamental CNR is plotted versus the width of slot (W). As it shows, by increasing the slot 

width and consequently increasing the parasitic fields at the open-ended edge of the slot, its 

damping factor slightly increases. Due to the limitation in prototyping of slots with widths below 

0.2mm, this parameter cannot be used effectively to lower the damping factor of the slot resonator. 

Assuming slot width of W = 0.2mm, the damping factor of the slot is depicted in Figure 3.13 in 

terms of d. As it shows, by decreasing d, the damping factor is significantly decreased. According 

to the current distribution on the tag as seen in Figure 3.10a, by decreasing d, the currents on the 

edges of the resonator are placed closer to each other and as a result, backscattered radiation 

decreases drastically. By reducing the radiated power, according to the definition of the quality 

factor 

 
stored

radiation

E
Q

P
  (3.2) 

the quality factor of the resonator increases which leads to a lower damping factor at that resonant 

frequency. The quantities ω, Estored, and Pradiation are the radian frequency, stored energy around the 

tag, and radiation power from the tag, respectively. By decreasing the radiation fields the radar 
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cross-section (RCS) of the tag is decreased, which makes the identification process of the tag more 

challenging especially in the presence of noise and clutter. 

Assuming a single-bit tag as seen in Figure 3.6, the late-time response corresponding to 

fundamental resonance can be written by 

    0

0 0Re cos
t

s t t
  

   (3.3) 

                           
 

                                        (a)                                                                       (b) 

Figure 3.10 Current distribution on the tag at (a) f = 5.54GHz and (b) 8.8 GHz [42] (With 

permission, Copyright© 2014 IEEE). 

 
 

Figure 3.11 Resonant frequency of the slot versus L. W = 0.3mm [42] (With permission, 

Copyright© 2014 IEEE). 
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Figure 3.12 Damping factor of the CNR of the slot versus d for different values of a. W = 0.3 mm 

[42] (With permission, Copyright© 2014 IEEE). 

 

Figure 3.13 Damping factor of the CNR of the slot versus d for different values of a. W = 0.3mm 

[42] (With permission, Copyright© 2014 IEEE). 

where R and φ0 are the amplitude and phase of the signal resonating at the radian resonant 

frequency of ω0 and attenuating with damping factor α0. The energy of the signal is defined by 
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For the CNRs with low damping factor as ω0>>α, assuming φ0=0, the energy of the signal in (3.4) 

is summarized as 
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  (3.5) 

It is seen that the energy of the single-pole signal is proportional to the square of its amplitude and 

inverse of its damping factor, when its damping factor is much smaller than radial frequency. For 

this reason, it is crucial in the identification process of the scattered signal from chipless RFID tag 

to use resonances with a low damping factor.   

In practical application, the tag structure is usually designed on a thin dielectric substrate. 

Because of the existence of the lossy dielectric, both the resonant frequency and damping factor 

of the CNRs change. In Figure 3.14, the variation of the CNRs versus dielectric constant of the 

substrate is shown. The thickness of the substrate is assumed 0.7874 mm and the dimensions of 

the structure are a = 10mm, d = 0.8mm, W = 0.3mm. As it shows by increasing the dielectric 

constant of the lossless substrate, the resonant frequency and the damping factor of the CNR 

decrease. Based on the scaling relationship, when a tag is located in a lossy dielectric with 

dielectric constant ԑ and conductivity δ [50],  
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where 
fs

ns  and ns are the nth-CNR of the tag in free space and in the lossy dielectric. In the case 

where the tag is located on the dielectric substrate from one side, neglecting the loss of the 

dielectric, we have 
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(a) 

 

 
 

(b) 

Figure 3.14 (a) Resonant frequency and (b) damping factor of the CNR of the tag versus dielectric 

constant. A = 10mm, d = 0.8mm, t = 0.3mm. 

According to (3.7), the damping factor and resonant frequency of the tag attached to the dielectric 

substrate decrease by increasing the dielectric constant of the substrate (according to Figures 3.13 

and 3.14). As the Figure 3.14 shows, when the dielectric constant of the substrate is between 2 and 

3, the damping factor of the CNR increases. In this region, the resonant frequency of the slot is 
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close to the resonant frequency of the metal. Therefore, the coupling effect between these two 

resonant mechanisms increases the damping factor of the slot’s CNR.  

Another important parameter in chipless RFID tags is the sensitivity of the CNRs to background 

objects in the environment. For this purpose, a single-bit chipless RFID tag is assumed above a 

metallic plate as the Figure 3.15 shows. The percentage variations of the resonant frequency and 

damping factor in terms of the distance between tag and plate are illustrated in Figure 3.16. 

According to the figures, as a result of coupling, the damping factor of the pole is much more 

sensitive to the environmental objects than the resonant frequency. This is the reason why the 

damping factor of the poles is not usually used in the identification process. The single-bit tag seen 

in Figure 3.6 can be used in the design of multi-bit chipless RFID tags. The coupling between 

resonances plays a critical role in the design of chipless RFID tags. The presence and absence of 

a resonance at a specific resonant frequency represents bit 1 or 0, respectively. Therefore, the 

structure should be designed in such a way that by nulling one resonant frequency, the resonant 

frequencies of the other resonators do not change.  

A 24-bit tag shown in Figure 3.17 is designed based on the quarter-wavelength slot resonators 

on a Rogers RT/Duroid®/5870 (r =2.2) with a thickness of 0.78mm. The lengths of the slots are 

tuned in order to adjust the resonant frequencies of the slots according to the ID of the tag. By 

filling the slot surface with metal or inserting some stubs along the slot, the corresponding bit is 

 

 

Figure 3.15 Single-bit tag above a metallic plate. 

12mm
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nulled. Therefore, 224 tags with unique IDs can be encoded with 24 slots. As an example, in the 

second tag, the second and fifth bits of the tag are nulled by inserting some stubs along the slot. 

The radar cross-sections of the tags are depicted in Figure 3.18. It is seen that the second and fifth 

bits of the tag are nulled without any considerable change in the positions of the other resonances.  

 

         
                                    (a)                                                                      (b) 

 

Figure 3.16 Percentage variations in the (a) resonant frequency and (b) damping factor of the CNR 

of the tag versus distant to the metallic plate. A = 10mm, d = 0.8mm, t = 0.3mm. 

 

 
 

Figure 3.17 Schematic view of the 24-bit tag [42] (With permission, Copyright© 2014 IEEE). 
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3.2 Design of Chipless RFID Tag Based on Characteristic Mode 

Theory 

In the previous section, the effects of various structural dimensions of the tag on the CNRs were 

studied. The scattered field radiated from the natural current mode depends strongly on its 

distribution on the tag surface. We need to calculate the CNRs and corresponding natural modes 

on the tag by employing some numerical techniques such as method of moment (MoM). Another 

approach for monitoring the effects of structural parameters on the scattered response is 

characteristic mode theory (CMT). As mentioned in Chapter 2, by decomposing the current 

distribution on the tag into its characteristic modes, the resonant and radiation characteristics of 

the tag can be studied easily at each frequency. In some commercial software such as FEKO, the 

characteristic modes of the structure and the variations of the eigenvalues, modal significances, 

and radiated power can be easily monitored versus frequency. This insight is useful in the design 

of chipless RFID tags.  

A single-bit tag with the dimensions shown in Figure 3.19 is considered. Two parameters d1 

and d2 are shown in Figure 3.19, which are initialized at the y-axis in order to study the effects of 

the metal and slot resonances more accurately. The eigenvalues of the first two characteristic 

modes of the tag are illustrated in Figure 3.20 versus frequency for d = .8 mm, W = 0.3 mm, d1 = 

3.5 mm, d2 = 0, a = 10 mm, and L = 12.1 mm. 

 

Figure 3.18 Radar cross-sections of the 24-bit tags [42] (With permission, Copyright© 2014 

IEEE). 
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Figure 3.19 Single-bit tag illuminated by incident plane wave. 

The resonant frequencies of the tag are the frequencies at which the eigenvalues are equal to 

zero. In this case, the resonant frequencies of the tag in the 3-10GHz band are located at f1 = 

5.7GHz and f2 = 8.6GHz. Figure 3.21 illustrates the modal significances of the characteristic 

modes, which are calculated from 
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According to Figure 3.21, the first resonance of the tag has a much higher quality factor than 

the second. For high-Q resonances which are usually used in the design of chipless RFID tags, the 

quality factor of the CNRs can be calculated from the modal significance (MS) of the modes. 

Assuming fL and fH as the frequencies at which the MS is 0.707, the quality factor can be calculated 

from  
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where f0 is the resonant frequency of the tag. The quality factor of the resonances can also be 

calculated from the characteristic angles of the modes. The characteristic angle of a characteristic 

mode is obtained from 
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Figure 3.20 Eigenvalues of the characteristic modes versus frequency. 

 

Figure 3.21 Modal significances of the characteristic modes versus frequency. 

As can be seen from (3.10), the characteristic angle is 180° at the resonant frequency and is 135° 

and 225° at fL and fH, respectively. The characteristic angles of the modes are shown in Figure 3.22 

versus frequency. The first resonant frequency at f1 = 5.7 GHz is corresponding to the quarter-

wavelength resonant of the slot and the resonant frequency at f2 = 8.6 GHz is related to the half-

wavelength resonance of the metal. 
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The first two characteristic modes of the tag at two resonant frequencies are depicted in Figure 

3.23. As the figures show, the currents on the arms of the slots oppose each other at f = 5.7 GHz 

which is associated to the slot’s resonance. The first characteristic mode of the tag at f=8.6 GHz 

agrees with the current distribution at the half-wavelength resonance of the tag, while it is not the 

same for the second characteristic mode. The actual current on the tag is the superposition of the 

characteristic modes weighted with coefficients proportional to the coupling coefficients and 

modal significances.  

Taking advantage of the characteristic mode theory (CMT) in the design procedure, the 

variations of the resonant frequency and quality factor of the CNRs and field intensity can be 

monitored easily. According to the current modes, it is seen that the resonant frequency of the slot 

is dependent strongly upon the slot length and the resonance of the metal is proportional to the 

metal length. Knowing this, two parameters d1 and d2 shown in Figure 3.19 are used to change the 

lengths of the slot and metal on the tag structure. In Figure 3.24, the variations of the first and 

second resonant frequencies of the tag are shown versus d1. It is seen that by increasing d1 and 

consequently decreasing the slot length, its resonant frequency increases without considerable 

change in the resonant frequency of the metal. Figure 3.25 shows the variations of the resonant 

frequencies of the slot and metal versus d2. By altering d2, the resonant frequency of the metal 

changes without considerable variations in the resonant frequency of the slot. It is very useful in 

 

  

Figure 3.22 Characteristic angle of the characteristic modes versus frequency. 
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          J1 at f = 5.7GHz                                                       J2 at f = 5.7GHz 

                               
 

 J1at f = 8.6 GHz                                                       J2 at f = 8.6 GHz 

Figure 3.23 Characteristic modes of the tag at two resonant frequencies [33] (With permission, 

Copyright© 2015 IEEE). 

the design of the tag to be able to tune the resonant frequencies of the structure separately. Since 

the resonance of the slot is usually utilized for encoding the ID onto the tag, it is necessary to place 

the resonance of the metal outside the frequency band of operation or to distinguish it from the slot 

resonances in the detection process. When the resonant frequency of the slot is located close to the 

resonant frequency of the metal, by increasing the coupling between these two resonant 

frequencies the quality factor of the slot resonator decreases. In Figure 3.26, the backscattered 

response from the single-bit tag with dimensions d1 = 6 mm, a = 12 mm, d = 0.8 mm, W = 0.3 mm 

is shown for three different values of d2. By keeping the value of d1 = 6mm and changing d2, the 

resonant frequency of the slot changes, but not the metal’s resonant frequency. The quality factor 

of the CNRs of the tag is shown in Table 1 for three cases. It is seen that in the second case where 

the resonant frequencies are located in close proximity to each other, the quality factor of the slot’s 

CNR decreases more than 10 times. The quantity R in the table is the residue of the corresponding 
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CNR of the tag in the late time. In the second case, the slot’s CNR has higher residue, which is 

very important in the detection process. Based on (3.3), the energy of the CNR is directly 

proportional to the square of the residue and inversely to the damping factor of the CNR. In Chapter 

5, the effects of residue and damping factor on detection of a signal in the presence of noise will 

be shown. In some applications such as chipless RFID sensors where few bits are used in the 

sensing process in the lossy media, the strength of the late-time response is critical in the detection 

of a signal. In tags with high density of data, a low damping factor is desirable, decreasing the 

coupling between resonators. As mentioned before, the quality factor of the resonances of the tag 

can be controlled by d. The variation of the quality factor of the slot is shown in Figure 3.27 versus 

d. By increasing the arm width d, the quality factor of the slot’s resonance decreases, which agrees 

with the discussion in section 3.2. By decreasing d and increasing the quality factor of the CNR, 

more energy is localized in the reactive near-field of the tag, which leads to a decrease in the 

radiation from the tag. Therefore, the RCS of the tag decreases. As an example, the far-field 

radiation pattern of the tag is seen in Figure 3.28 for d = 0.8 mm and d = 0.4 mm. The maximum 

radiation intensity of the far-zone electric field is 330uV/m for d = 0.8 mm, compared to 84uV/m 

for d = 0.4mm. By following the aforementioned design procedure and monitoring the effects of  

 

 

Figure 3.24 Variation of the resonant frequencies of the tag versus d1 [33] (With permission, 

Copyright© 2015 IEEE). 
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Figure 3.25 Variation of the resonant frequencies of the tag versus d2 [33] (With permission, 

Copyright© 2015 IEEE). 

. 

 

Figure 3.26 Scattered far-field electric field radiated from the tag. d1 = 6 mm, a = 12 mm, d = 0.8 

mm, W = 0.3 mm [33] (With permission, Copyright© 2015 IEEE). 
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Table 3-1. The resonant frequency, quality factor, and residue of the CNR of the slot for different 

cases [33] (With permission, Copyright© 2015 IEEE). 

d2(mm) Qslot Qmetal (R) fslot(GHz) fmetal(GHz) 

8 115 4.12 1.2 6.8 5.4 

5.5 11.3 6 5 5.2 5.7 

3 446 4.12 0.2 4.4 5.4 

 

structural dimensions on the resonant frequency, quality factor, and intensity of the backscattered 

field from the tag, two 4-bit tags are designed. The schematic view of the tag is shown in Figure 

3.29. The slot resonators embedded on the metallic plane are used for encoding the data. Two 

different cases of d2 = 3 mm and d2 = 7 mm are considered. By illuminating the tag with an incident 

plane wave polarized in the x-direction and propagating in the z-direction, the backscattered 

response from the tag is shown in Figure 3.30 for two values of d2. The pole diagram of the tag is 

depicted in Figure 3.31 for two different cases. The resonance of the metal is located out of the 

frequency band of the slot’s resonances for d2=3mm. By increasing d2 sufficiently, the resonance 

of the metal can be within the frequency band of the slot’s resonances. In this case, the damping 

factor of the slot’s resonances increases as a result of coupling, which leads to a lower quality 

factor. This must be avoided in the design of the tags with high density of data in order to pack 

many resonant frequencies in a narrow frequency band. Two fabricated tags are shown in Figure 

 

Figure 3.27 Quality factor of the CNR of the tag versus d [33] (With permission, Copyright© 2015 

IEEE). 
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                            (a) d = 0.8 mm                                                     (b) d = 0.4 mm 

Figure 3.28 Far-field electric fields radiated from the tag for (a) d = 0.8 mm and (b) d = 0.4 mm 

[33] (With permission, Copyright© 2015 IEEE). 

 

 

Figure 3.29 Schematic view of the designed 4-bit tag. Units: mm [33] (With permission, 

Copyright© 2015 IEEE). 

3.32. The tags were designed on a Rogers RT/Duroid®/3003 (r =3) with a thickness of 0.7874mm. 

Assuming the incident electric field directed in x and propagating in z, the measured backscattered 

electric field from the tags is depicted in Figure 3.33. Although the data are incorporated as four 

resonant frequencies of the slots, five resonant frequencies are seen in the backscattered signal 

from the tags. In these circumstances, the resonant frequency of the metal shall be distinguished 

from the slot resonances in the detection process of the tag. The pole diagram of the tags is shown 

0.5 0.3
x

y
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in Figure 34 based on the measured backscattered signal. It is seen that the CNRs of the tags 

calculated from the measurement data are in good agreement with the simulation results.  

  

Figure 3.30 The simulated backscattered electric field from 4-bit tags [33] (With permission, 

Copyright© 2015 IEEE). 

 

 

Figure 3.31 Pole diagram of the simulated backscattered fields from the tags [33] (With 

permission, Copyright© 2015 IEEE). 
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                                         (a)                                                               (b) 

 

Figure 3.32 Two 4-bit fabricated tags (a) d2 = 3 mm and (b) d2 = 7 mm [33] (With permission, 

Copyright© 2015 IEEE). 

 

 

 

Figure 3.33 Measured RCS of the tags [33] (With permission, Copyright© 2015 IEEE). 
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Figure 3.34 Pole diagram of the measured backscattered fields from the tags [33] (With 

permission, Copyright© 2015 IEEE). 

 

 

 

 

 

 

-8 -7 -6 -5 -4 -3 -2 -1 0

x 10
9

4

4.5

5

5.5

6

6.5

Damping factor (s-1)

F
re

q
u
en

cy
 (

G
H

z)

 

 

d
2
=3mm

d
2
=7mm



 

69 

 

4 UWB Antenna in Chipless RFID Systems 

 

This chapter is devoted to the scattering process in chipless RFID systems. When an antenna 

illuminates a scatterer, the backscattered signal received by the antenna is analyzed in the reader 

to extract the required information of the scatterer. Therefore, the interaction between antenna and 

scatterer plays an important role in the detection process of data. The antenna needs to cover a 

wide range of frequencies and its frequency response strongly affects the received signal. Different 

antenna types can be used for this purpose providing some pros and cons. Since the location and 

ID of the tag are calculated based on time-domain and frequency-domain signals, respectively, 

both time and frequency domain properties of antenna must be considered in the systematic design 

of chipless RFIDs [51].  

The United States of America was the first country to release a regulatory framework for the 

use of UWB technology. This framework defines UWB transmitters as: “An intentional radiator 

that, at any point in time, has a fractional bandwidth equal to or greater than 0.2 or has a UWB 

bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth” [11]. The 

available spectrum for unlicensed UWB communications is between 3.1 GHz to 10.6 GHz with a 

maximum power emission limit of -41.3 dBm/MHz. The FCC mask for outdoor and indoor UWB 

applications in USA is shown in Figure 4.1. Assuming the FCC regulation, some attentions must 

be drawn in the design process of chipless RFID systems. According to the radar equation in the  

 

 

 

Figure 4.1 FCC mask for outdoor and indoor UWB applications. 
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frequency domain, the power of received signal depends on the transmitted power, path loss, radar 

cross section (RCS) of the tag, and antenna gains. Since these parameters are frequency-dependent, 

one needs to study their frequency dependency in the desired frequency band of operation. 

In this chapter, first a mathematical representation of the scattering process in between the 

antenna and scatterer is presented and then, some important parameters of the antenna in time 

domain are reviewed. Various UWB antennas are studied in summary and finally, a new antenna 

element applicable in wideband and UWB is introduced.  

4.1 Link Equation in Frequency Domain 

As mentioned, the received signal by the antenna is a function of many parameters. Assuming a 

mono-static case seen in Figure 4.2 and based on the radar budget equation, the power of the 

received signal can be written as 

  
       

 
 f

R

ffGfGfP
fP aat

r 








43

2

4
 (4.1) 

where R is the read-range distance from the scatterer to the antenna, Pt and Ga are the power of 

the transmitted signal and antenna gain respectively, λ is the wavelength and δ(f) represents the 

radar cross-section (RCS) of the scatterer. All these parameters are frequency-dependent. It is 

assumed that the antenna and scatterer are located in the far field of each other. High-gain antennas 

concentrate energy into a narrower solid angle than omni-directional ones and are usually used so 

as to reduce the effects of the interferences and background objects in the scattering media. In 

contrast, the omni-directional antennas can receive signal from any direction. These antennas have 

relatively lower gain and a wider field of view. Regulatory constrains require transmitted power 

to be decreased when using a high-gain antenna in order to meet the same maximum radiated 

emission limit shown in Figure 4.1. Since the regulatory limits are defined in terms of equivalent 

isotropically radiated power (EIRP), Pt.Ga, the transmitted signal is engineered based on the 

antenna gain to meet the FCC constrains for short-rang UWB applications. The term λ2/(4π)3R4 is 

referred as roundtrip path loss. The frequency dependency of the path loss comes from the 

definition of the antenna gain and antenna effective aperture in the frequency domain as [52, 53] 
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Figure 4.2 Mono-static chipless RFID system. 

  
 

2

4



 fA
fG

eff

a   (4.2) 

For large directive antennas, the effective aperture is comparable to the physical area of the 

antenna. For omnidirectional small antennas, the effective aperture may be significantly larger 

than the physical area of the antenna. It means that although a very small antenna may have 

negligible RCS, it is an effective receiver or radiator. Two groups of antennas as constant-gain and 

constant-aperture are considered here [52]. In omni-directional small antennas which are being 

widely used in short-range applications, the gain of the antenna is approximately constant in the 

frequency band of operation leading to the variation of the aperture by 
2/1 f . In Figure 4.3a, the 

frequency variations of the signal power and antenna gain are shown in the receiver and transmitter 

sides. In the cases where a constant-gain antenna is used in the network, the transmitter power is 

designed to be constant in the frequency range to meet constant EIRP in the transmitter side, result 

in the received power rolling off as   2/ ff in band. On the other hand, in constant aperture 

antennas which are large compared to the wavelength of the signal, the gain of the antenna 

increases by 
2f  (Figure 4.3b). Hence, the transmitter gain should change by 

2/1 f  and the power 

of the received signal changes by δ(f) in this case. In other UWB antennas, the variations of the 

gain and effective aperture is between these two cases. In resonant-based detection applications, 

the resonant frequencies of the scatterer are present in the frequency band of operation. These 

resonances might introduce some variations in the power of the received signal in the desired 

frequency band. 

 

R

 fGa
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(a) Omni-directional antenna in chipless RFID system. 

 

 

      
(b) High-gain directional antenna in chipless RFID system. 

Figure 4.3 Gain and power considerations in chipless RFID systems. 

4.2 Time-Domain Signal Link Characterization 

As a general case, a bi-static set-up comprised of two UWB antennas is depicted in Figure 4.4. 

The transmitter antenna, TX, is excited with an incident voltage aTX(t) and the radiated field from 

the transmitter at the scatterer position is Einc(r, t). The induced current on the surface of the 

scatterer re-radiates an electric field, Es(rRX, t) at the position of the receiving antenna, RX. The 

scattered field generates a voltage voc(t) across the receiving port. The transmission coefficient 
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between two antennas is defined as the ratio of the received voltage wave bRX(s) to the incident 

voltage wave, aTX(s), in the Laplace domain. As the first step, we introduce the impulse response 

of a scatterer located at the origin as the 
2â -component of the scattered field at r2, in the far zone 

of the scatterer, for an impulsive incident plane wave of 1
1

ˆ .
ˆ t

c

 
 

 

r r
a  as  1 2

1 2

2

ˆ ˆ
ˆ ˆ, , t

r


a a
r r . In the 

general case, 1â  and 2â  are functions of time. The impulse response of the scatterer is a dyad, 

which includes all the scatterer information for a particular  1 2
ˆ ˆ, , tr r . The next step is computing 

the incident field versus the effective length of the transmitting antenna and the input signal. The 

antenna can be characterized in the far-zone by its equivalent effective length as [54, 55] 

    
ˆ ˆ

ˆ ˆ; ; /
antS

a

t t c dS
I

 
     

r r
h r J r r r    (4.3) 

where Sant indicates the antenna surface, J is the electric current on the antenna surface, r̂  is the 

unit vector to the observation point, Ia is the input current, and c represents the speed of light in 

free space. The primed and unprimed coordinates indicate the source and observation points, 

respectively. If the input impedance of the antenna is assumed as Zr and ZTX is the impedance of 

the matching circuit, then the reflection coefficient at the transmitter, STX, in the frequency domain 

is given by  

 
*

TX r
TX

TX r

Z Z
S

Z Z





 (4.4) 

 

Figure 4.4 Schematic of the bio-static set-up for measuring the impulse response of the tag.  
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The realized effective length of the antenna is defined in time domain as [55] 

  
 

 TXR

TX TX

1
ˆ ˆ; ;

2

s t
t t


 h r h r  (4.5) 

where sTX(t) is the inverse Fourier transform of STX. Using the definition of the realized effective 

length of the transmitting antenna, the incident electric field Einc for an incident voltage wave of 

aTX(t) is computed from 

  
 TXinc R TX

TX TX TX

TX TX

1
ˆ; ;

2

a t r
t t

r t cR




   
      

    

E r h r  (4.6) 

where RTX is the resistance of the transmitter and µ is the permeability of the free space. Using the 

definition of the impulse response of the scatterer, one can compute the received signal at the 

receiving antenna port as 

 
 

 TX R RTX RX
RX TX TX 1 2 TX RX RX RX2

TX RX RX TX

ˆ ˆ ˆ ˆ ˆ ˆ; , ; ;
8

a t r r
b t t t t

r r t c cR R





      
            

      

h r a a r r h r  (4.7) 

Equation (4.7) can be simplified if the impulse response of the scatterer is computed for the case 

where 1â  and 2â  are in the same direction as 
R

TXh and 
R

RXh , respectively. 

 
 

 TX R RTX RX
RX TX TX TX RX RX RX2

TX RX RX TX

ˆ ˆ ˆ ˆ; , ; ;
8

a t r r
b t t t t

r r t c cR R





      
           

      

h r Γ r r h r (4.8) 

Applying Laplace transform to (4.8), the transmission coefficient is defined as the ratio of bRX(s) 

to aTX(s). 

  
 
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For the mono-static case where one antenna is used for both transmitting and receiving, the 

reflection coefficient is computed from  
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The impulse response of the scatterer is obtained as 

 
  

112

/222

;ˆ

8
;, S

srHs

eRr
srr

R

RX

csr

RXRX
RX




                                          (4.11) 

According to (4.10), the information of the scatterer is included in S11 of the receiving antenna 

multiplied by the square of impulse response of the antenna. As (4.11) shows, the impulse response 

of the tag can be calculated by knowing the effective length of the antenna and the distance 

between the antenna and the scatterer, rRX.  

4.3 Antenna Effective Length 

As (4.11) shows, one needs to have the effective length of the antenna in order to extract the 

impulse response of the tag in the measurement set-up. As (4.3) shows, the effective length of the 

antenna is defined in the far field and is related to the far-field electric field by 

  ˆ ˆ( )
4

jkr

a

e
j I

r






 E r H r  (4.12) 

A bi-static set-up, seen in Figure 4.5, can be used in order to measure the effective length of the 

antenna. It is assumed that both antennas are similar to each other. In bi-static case, the effective 

length of the antenna can be calculated from 

 

 

Figure 4.5 Measurement set-up for measuring transfer function of the antenna. 
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where S21 is the transmission coefficient between two antennas, S11 represents the reflection 

coefficient of the antennas, HTX and HRX are the effective length of the transmitting and receiving 

antennas, and d is distance between the antennas. In order to measure the effective length of the 

antenna, it is necessary to know the distance d between the antennas. Ultra wideband antennas 

usually do not have a well-defined phase center and this provides some difficulties in calculating 

the phase of the antenna effective length. This also might be happen in calculating the phase of the 

transfer function of the scatterer in (4.11). The phase response of S in (4.13) can be separated into 

three terms: 90° due to the jω, twice of the phase of the antenna impulse response, and the phase 

related to the spherical mode, linearly changes with kd. Assuming the antenna as a minimum phase 

system, its phase response can be calculated from the Hilbert transform of its magnitude response 

[56]. As (4.13) shows, the amplitude of S is proportional to the amplitude of the square of the 

transfer function of the antenna with coefficient of ω/(2πd). Hence, the minimum phase function 

φm(ω) can be found from  
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0 22
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
 d

SS
m  (4.14) 

by assuming a nominal distance dd  . The linear part of the phase in S21 is calculated from  

  L mS     (4.15) 

The correction distance can be calculated from the linear phase part as 

 
df

dc
d L

2
0  (4.16) 

By substituting ddd   in (4.13), the amplitude of and phase of the transfer function of the 

antenna is obtained. As an example, two different antennas (circular disk and narrowband 

monopole) shown in Figure 4.6 are considered. Two circular disks with R = 10 cm are located 40 

cm away from each other (face to face) and the reflection and transmission coefficients between 
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the input ports of the antenna are measured. The S11 and S21 between antennas are depicted in 

Figure 4.7a. As it shows the antennas are matched (S11 < -10dB) for frequencies in the range of 

3.1-10.6 GHz. The phase of S21 is seen in Figure 4.7b. According to (4.12), the phase of the S21 is 

the combination of the three different terms. By assuming the antenna as a minimum phase system, 

the linear part of the response can be calculated from (4.15). This part is also depicted in Figure 

4.7b. By using the equation (4.12) and (4.14), the amplitude and phase response of the antenna 

effective length are shown in Figure 4.7c and 4.7d. By applying inverse fast Fourier transform 

(IFFT) to the antenna effective length, its effective length in time domain is seen in Figure 4.7e 

for θ = 90° and φ = 0°. It just represents the angular variation of the pattern of the antenna in the 

far field. By applying MPM to the late-time response of the radiated field of the antenna, its pole 

diagram shown in Figure 4.7f.  

In narrowband antennas, since the antenna and propagation characteristics are assumed 

constant over the desired frequency band, they are typically described in the frequency domain. 

On the other hand, in UWB antennas, not only the frequency-domain characteristics of the antenna 

and channel should be considered, but their time-domain properties should also be taken into 

consideration, because they are usually realized in an impulse-based technology.  

4.4 Antenna Characteristics in Time Domain 

In order to evaluate the performance of an antenna in time domain, some parameters need to be 

defined as figure of merits. Since the radiation properties of the antenna in the frequency domain 

 

 

Figure 4.6 (a) UWB Monopole disk and (b) Narrowband monopole antenna. 
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                                     (a)                                                                          (b) 

 

                    
                                      (c)                                                                       (d) 

 

                    
                                       (e)                                                                       (f) 

Figure 4.7 (a) Amplitude and (b) phase of the S21 for θ = 0 and φ = 0, (c) Amplitude and (d) phase 

of the antenna effective length in frequency domain, (e) antenna effective length in time domain, 

and (f) pole-diagram of the antenna. 

are usually defined in the far-field, it is significantly necessary to translate the concept of far-field 

into time domain. IEEE defines the far field as “The region of the field where the normalized 

angular field distribution is essentially independent of the distance from a specified point in the 

antenna region”. For a narrow band antenna, the far-field distance is defined as the distance from 

the antenna phase center where the phase shift from the ray originating from antenna maximum 
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dimension and one from antenna center is 22.5°. In most narrowband antennas, the following rang 

is considered as the far-field [57]. 



22D
R       (4.17) 

where D is the maximum antenna dimension in meter and λ is the wavelength of the signal at the 

desired frequency. As an example, Figure 4.8a shows a narrowband monopole antenna located 

above a ground plane. Different probes are located at different distances from the antenna. The 

reflection coefficient of the antenna is seen in Figure 4.8b. The first and third resonances of the 

antenna are located at f = 3.6 GHz and f = 10.8 GHz. In Figure 4.9, the θ-component of the electric 

field is depicted versus the distance from the antenna at two resonant frequencies. Since the fields 

in the far field change inversely by distance, the real fields in the far field are approximated by A/r 

in Figure 4.9. At the distance where the variations of electric field deflects from A/r, the near-field 

of the antenna starts. For example, the far-field region starts from R = 4.5 cm and R =12 cm at 

frequencies of f = 3.6 GHz and f = 10.8 GHz, respectively, which are well matched with (4.17). 

For wideband and UWB antennas, the far field seems frequency-dependent and one needs new 

definition in time domain. Before defining the far-field region in time domain, it is required to 

calculate the analytic envelope response of the antenna as 

 h+(t) = h(t) + jH(h(t)) (4.18) 

 

          
                        (a)                                                                                          (b) 

Figure 4.8 (a) Monopole antenna above a ground plane (b) its reflection coefficient. 
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Figure 4.9Radiated Eθ versus the distance from the monopole antenna.  

 

Figure 4.10 Normalized impulse response of the UWB monopole antenna along with analytic 

envelope.  

where h (t) is the impulse response of the antenna and H(.) is the Hilbert transform. The dispersion 

characteristics of the antenna can be studied from the envelope of the analytic impulse response of 

the antenna, |h+(t)| [51]. 

As an example, Figure 4.10 shows the impulse response and analytic envelope of the UWB 

monopole antenna at θ = 90° and φ = 0. Some of the specific quantities usually used in 

characterizing the UWB antennas are summarized as following. 
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1) Peak Value of the Envelope: It is defined as the maximum of the antenna transfer function 

as 

     ,,max, thp
t

  (4.19) 

It depends strongly on the directivity of the antenna and its impedance bandwidth [58] . 

2) Envelope Width (τFWHM): It shows the widening of the radiated impulse from the antenna. 

It defines as the full width at the half maximum (FWHM) of the analytic envelope of the antenna. 

This parameter is depicted in Figure 4.10. The lower values of envelope width ensures the 

transmission of high data rate through the antenna.  

In [59], the far-field of the antenna in time domain is defined as the range where the arrival of 

the closest ray and the arrival of the farthest ray is small compared to envelope width. Assuming 

d1 and d2 as the distances of the closest and farthest dimensions of the antenna to the observation 

point, the far field of the antenna is the range where [59] 

 
 

vc

dd FWHM


 12  (4.20) 

where c is the speed of light in free space and v is a number between 3 to 5 for large antennas. For 

smaller antennas in the dimensions comparable with λ, larger value of ν must be used. In general, 

there is not a unique closed-form formula for finding the far-field of UWB antennas in time 

domain. A reliable way is monitoring the variation of the field from near field to far field. Figure 

4.11 shows the variation of the electric fields in the near field and far field of the UWB monopole 

antenna with R = 10 mm at different distances of the observation point compared to the center of 

the antenna. In the near field, the shape of the field changes significantly versus distance, d. As 

Figure 4.11a shows, for larger distances in the near-field region, not only the fields are shifted, but 

their shape also changes. On the other hand, the shape of the radiated field does not change versus 

distance in the far field, as Figure 4.11b shows.  

3) Ringing: An important parameter which illustrates the dispersion properties of the antenna 

is ringing, τr. Ringing originates from the stored energy around the antenna or multiple reflections 

from the antenna structure. Quantity τr=α is defined as the time until the envelope is fallen in a 

bound from its peak to α.p(θ,φ). For UWB applications such as ranging, one needs to lower the 

ringing of the antenna less than a few envelope width. 
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4) Group Delay: The frequency dependency of the phase response of the antenna impulse 

response is defined as the group delay. 

  
 





d

d
g   (4.21) 

where φ is the phase of the antenna impulse response. In non-distorted antenna, the group delay is 

constant over the frequency band of operation leading to linearly varying phase with frequency. 

The nonlinearities of the group delay indicate the resonant behavior of the antenna. In Figure 4.12, 

the group delay of the UWB antenna seen in Figure 4.6 is depicted.  

4.5 New Antenna Prototype for Wideband and Ultra-wideband 

Applications 

Different types of wideband antennas have been introduced and employed in practical 

applications as 

Frequency-independent antennas; 

Self-complementary antennas; 

Travelling wave antennas; 

Multiple resonance antennas; 

Electrically small antennas; 

In frequency-independent antennas, a scaled version of the radiating element is used for scaled 

wavelength. In practice, one needs to truncate the antenna structure. Bowtie antenna (planar 

version of Biconical antenna) shown in Figure 4.13a is an example of frequency-independent 

antennas. It is important to note that independence from frequency refers to the radiation properties 

of the antenna not its input impedance. 

Self-complementary antennas are realized by a self-complementary metallization. In these 

antennas, the metal and dielectric can be replaced without changing the antenna’s configuration. 

Based on Babine’s principle, the input impedance is independent of frequency as 

 

 Zin=60π Ω (4.22) 
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It does not mean that the radiation field is independent of frequency as well. The antenna structure 

seen in Figure 4.13b is an example of the self-complementary antenna. In some applications where 

both radiation characteristics and input impedance need to be independence of frequency for large 

bandwidth, both techniques are combined. Two-arm logarithmic spiral antenna is an example of 

the antenna which combines two aforementioned techniques together.  

 

 
(a) 

 

 
(b) 

Figure 4.11 Variation of Eθ versus distance from the antenna in (a) near field and (b) far field of 

the antenna. 
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Figure 4.12 Group delay of UWB monopole antenna. 

In travelling-wave antennas, a travelling wave along a guiding structure with size much larger 

than wavelength is used as the radiating element. By travelling the wave along the structure, it 

radiates progressively and the reflected wave from the antenna end is usually very small compared 

to the input signal. TEM horn seen in Figure 4.13c is an example of this type of antennas. The 

antenna structure is tapered to match the antenna impedance to the free space intrinsic impedance 

for a wide range of frequencies.  

Another type of UWB antennas is realized by employing multiple resonances in the antenna 

structure. These antennas are combinations of multiple and narrow-band radiating elements. Planar 

log-periodic antenna is a multiple resonance antenna, seen in Figure 4.13d. It includes multiple 

dipoles with different lengths as (lu/lu+1) = constant. Different narrowband antennas elements can 

be used as a basis in the design of multi-resonant UWB antennas.  

Electrically small antennas are antennas with dimensions far below the resonance region. 

These antennas are poor in radiation characteristics and impedance matching. Based on the 

physical limits of the radiation, there is a relationship between the size of the antenna, its quality 

factor and radiation efficiency [60, 61]. As a result, by decreasing the size of the antenna, its 

radiation efficiency decreases in order to achieve wider bandwidth. Some efforts have been made 

in order to miniaturize the antenna structures close to the physical limits. In these antennas the  
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                                  (a)                                                                                 (b)   

 

            
 

                                 (c)                                                                             (d)   

Figure 4.13 (a) Bowtie antenna as a frequency-independent antenna, (b) a self-complementary 

antenna, (c) TEM horn as a travelling-wave antenna, and (d) Log-periodic antenna as a multiple 

resonance antenna.  

                                             
                                  (a)                                                                              (b) 

Figure 4.14Two examples of UWB small antennas.  
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radiation pattern of the antenna is very close to the radiation pattern of TM01 (ideal small dipole) 

or TE01 (ideal small loop). These antennas are very applicable for low frequency applications (HF, 

VHF and UHF frequencies) which the size of the antenna is a critical issue. Figure 4.14a shows a 

typical rotational symmetric UWB monocone antenna with the height of about λ/5 [51]. In Figure 

4.14b another small antenna of with maximum size of λ/10 more than 10:1 bandwidth, and 

efficiency of more than 95 percent is depicted [62].  

The proposed antenna element in this chapter is based on simple monopole antenna above a 

ground plane. By exciting the antenna through a source terminated in between the ground and 

antenna, the odd-order resonances can be excited. Figure 4.8 depicts a monopole antenna of length 

L = 20 mm and its reflection coefficient for a wide range of frequency. The excited resonant 

frequencies of the antenna are very close to the sharp nulls of the reflection coefficient. Assuming 

an infinite ground plane, the current distribution and corresponding pattern in the far-field are 

shown in Figure 4.15 and 4.16. At the first resonance of the antenna, f = 3.6 GHz, the current 

distribution has its maximum on the feeding point and its null at its end. It produces a radiation 

pattern with maximum at θ = 90° and null at θ= 0°. Since the antenna structure is symmetric around 

z-axis, its radiation pattern is omni-directional. At f = 7 GHz, the current distribution is tapered at 

the end points which makes the antenna more directive at the broadside direction. At the third 

resonant modes, f = 10.8 GHz, the current distribution has a null on the antenna length. The current 

changes its direction at the null point leading to a null in the radiation pattern of the antenna. By 

increasing the frequency, the location of the null shifts up from the voltage source, corresponding 

to the frequency of the source. The impedance characteristics of the antennas can be studied by 

monitoring the variations of the CNRs as a function of structural parameters in the pole diagram.  

In pole diagram, the resonant frequencies and damping factors of the excited CNRs of the antenna 

are represented together. In antenna language, the quality factor of the CNRs is usually used in the 

design procedure, instead of damping factors. For high-Q resonances, the following relation exist 

between the quality factor and damping factor [19].  

 
n

n
nQ





2
  (4.23) 
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                      (a)  f = 3.6 GHz                                                 (b)  f = 7 GHz 

 

 
                      (c)  f = 10.8 GHz                                                 (b)  f = 12 GHz 

 

Figure 4.15 Amplitude of the current along the monopole and its direction at different frequencies. 

 

Figure 4.16 Radiation gain of the monopole antenna at different frequencies. 
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Two structural parameters for changing the resonant frequency and quality factor of the CNRs 

are the length and width of the monopole antenna. The variations of the CNRs versus the length 

and width of the monopole are shown in Figure 4.17. As it shows, any increase in the length of the 

antenna reduces the resonant frequencies with slightly increase in damping factors. On the other  

hand, by increasing the width of the monopole, the damping factors increase leading to the wider 

bandwidth of the antenna at the resonant frequencies. The corresponding quality factors of the first 

three CNRs of the monopole antenna are Q1 = 17.6, Q3 = 27.5, and Q5 = 53.3 in the case of r = 0.5 

mm and L = 20 mm. In order to obtain a wide input impedance from the monopole antenna, one 

needs to lower the quality factors of the CNRs enough and at the same time adjust the resonances 

of the antenna at appropriate frequencies. Figure 4.18a shows a monopole antenna with simply 

adjustable length and width as r1 and r2. Assuming r1 = 10 mm, the variations of CNRs versus r2 

is depicted in Figure 4.18b. For better illustration, the reflection coefficient of the antenna is seen 

in Figure 4.19a. As the results show, by increasing r2, the first resonant frequency of the antenna 

does not change. While the higher order resonances decrease slightly. Additionally, the quality 

factors of the CNRs decrease leading to a wideband input impedance. In Figure 2.19b, the radiated 

electric fields from the antenna in time domain are shown for r2=0.5 mm and r2=20 mm. As it 

shows, the antenna is less dispersive for r2 = 20 mm. As above mentioned analysis of UWB 

monopole antenna showed, the resonant frequencies, damping factors and corresponding residues 

of the CNRs of the antenna can be designed properly in order to have UWB input impedance. The 

absolute value of the current distribution on the antenna surface for r1 = 20 mm and r2 = 10 mm is 

 

                
                                     (a)                                                                          (b) 

Figure 4.17 Variations of CNRs of the monopole antenna versus (a) antenna length, L and (b) 

antenna radius, r. 
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                           (a)                                                                                (b) 

Figure 4.18 (a) Monopole antenna above a ground plane, (b) its pole diagram for different values 

of r2. 

           
                                    (a)                                                                                (b) 

Figure 4.19 (a) Reflection coefficient of the monopole antenna, and (b) time-domain radiated field 

from the antenna. 

depicted in Figure 4. 20 at different resonant frequencies of the antenna. At lower frequencies, the 

current distribution is very close to the current distribution on monopole antenna seen in Figure 

4.15. By increasing the frequency, the current is stronger on the edges of the antennas and the 

standing wave on the antenna edges has more variations which introduces some variations in the 

far-field radiation fields. At some frequencies, depending on the phase of the current distribution 

on the tag, some dip null might be introduced in the radiation pattern. For example, the radiation 

pattern has a dip null at θ = 90° and frequency f = 6 GHz. In aforementioned UWB antenna, the 

quality factors and resonant frequencies of the antenna are adjusted for wide input impedance 

matching by enlarging the size of the monopole. In following a simple antenna element is  
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                         (a) f = 2 GHz                     (b)  f = 4.92 GHz                      (c) f = 8.3 GHz 

 

 

                                                                               
                        (d) f = 11.7 GHz                   (e) f = 15.5 GHz                   (f) f = 18.6 GHz 

 

Figure 4.20Current distribution on the monopole antenna at different resonant frequencies. 

introduced useful in wideband and UWB applications. By inserting a short cylinder around the 

monopole, as seen in Figure 4.22, some new CNRs are added to the antenna structure. The resonant 

modes of the antenna can be totally categorized by coaxial and monopole modes. The coaxial 

modes are the TEM resonant modes of the open-ended coaxial line comprised of the monopole as 

the inner conductor and surrounding cylinder as outer conductor. On the other hand, the monopole 

modes are the resonant modes of the combination of monopole and the ground plane. 

Figure 4.23 shows the reflection coefficient of the antenna for an infinitely thin monopole and 

s=0.4 mm, d=20 mm and different values of h. Comparing to the reflection coefficient of the 

monopole antenna seen in Figure 4.8b, there is a resonant frequency in between the first and third 

resonances of the monopole. This resonance frequency is strongly dependent on the length (h) and 

the width (s) of the cylinder around the monopole. By increasing the length of the coax, h, its 
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corresponding resonant frequency decreases. By choosing W = 0 in our simulations, it is possible 

to study the electric current on the monopole more clearly. 

                  
                     (a) f = 2 GHz                              (b) f = 4 GHz                                 (c) f = 6 GHz 

 

                
 

                  (d) f = 8 GHz                               (b) f = 9 GHz                                (c) f = 10 GHz 

Figure 4.21 Radiation gain of the monopole antenna at different resonant frequencies. (Solid line: 

φ = 0 and dashed line: φ = 90°) 

 

 

Figure 4.22 A monopole antenna surrounded by short cylinder as a wideband /UWB element. 
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Figure 4.23 Reflection coefficient of the antenna for different values of h. 

In Figure 4.24, the magnitude of the current on the monopole part of the antenna is shown at 

three resonant frequencies of the antenna. At first and third resonant frequencies, f = 3.7 GHz and 

f = 11.1 GHz, the current is well-matched with the current distribution on the monopole antenna 

(without surrounding cylinder). While, the current distribution at f = 7.1 GHz is affected by the 

presence of the cylinder around it. As can be seen, there is a discontinuity in the current distribution 

at z = 10mm, cylinder height. The current on the monopole at the resonant frequency of the coaxial 

mode of the antenna is depicted in Figure 4.25a for h = 8 mm and h = 14 mm. This current can be 

separated into two parts: resonant mode and radiation mode. These two modes are shown in Figure 

4.25b. The resonant mode is the quarter-wavelength resonance of the coaxial transmission line, as 

the figure shows. By continuing the current, it crosses the z-axis at quarter wavelength which is 

higher than h due to the parasitic effects at the end of the coax. As an example, the current 

distribution (Figure 4.25a) for h = 8 mm, has a discontinuity exactly at z = 8 mm and the resonant 

mode of the current crosses the z-axis at z = 9 mm, which is associated with the resonant frequency 

of f = 8.33 GHz. By increasing the length of the cylinder to h = 14 mm, the crossing point of the 

resonant mode of the current with z-axis is z = 17 mm, which is associated with f = 6.4 GHz. 
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Figure 4.24The current distribution on the antenna at three resonant frequencies. 

                          
                                   (a)                                                                   (b) 

Figure 4.25 The current distribution on the monopole antenna at its coaxial mode resonance for 

two different values of h, (b) resonant and radiation modes of current. 

According to Figure 4.23, any change in the resonant frequency of the coaxial mode does not 

change the resonances of the monopole significantly. Figure 4.26 shows the reflection coefficient 

of the antenna for d = 21 mm, h = 12 mm, W = 2 mm. The calculated S11 is depicted for different 

values of s. By changing the value of s, the intrinsic impedance of the coaxial line changes leading 

to the change in the input impedance of the antenna and its quality factor at the resonant frequency. 

As Figure. 4.26 shows, the bandwidth of the antenna is 3.5 GHz - 5.5 GHz for S11 < -10 dB. The 

radiation pattern of the antenna is seen in Figure 4.27 at three frequencies for s = 12 mm. As it 

shows, the radiation pattern changes very slightly in the frequency band. In all cases, the ground 

0 5 10 15 20
0

5

10

15

20

25

30

z (mm)

|J
| (

m
A

/m
2
)

 

 

f = 3.7 GH

f = 7.1 GHz 

f = 11.1 GHz

0 5 10 15 20
0

5

10

15

20

25

30

z (mm)

J 
(m

A
)

 

 

h=8 mm

h=14 mm

0 5 10 15 20
0

5

10

15

20

 

 

z

cu
rr

en
t

   

h

Resonant mode

Radiation mode



 

94 

 

plane is a circular plate of radius 20 mm. By adjusting the resonant frequencies and corresponding 

damping factors of the CNRs, an ultra-wideband response can be achieved. Figure 4.28 depicts 

the reflection coefficient of the antenna for two different designs. 

 

 

Figure 4.26 Reflection coeffiecnt of the antenna for different values of s. 

 

 

Figure 4.27 The gain of the antenna versus elevation angle at different frequencies for h=8 mm. 
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Figure 4.28 Reflection coefficient of the antenna for two different designs. Design 1: s = 11 mm, 

W = 2 mm, h = 5.5 mm, d = 18 mm, Design 1: s = 9 mm, W = 2 mm, h = 5.5 mm, d = 18 mm 

As can be seen, the antenna is matched (S11 < -10 dB) for wide range of frequencies. For s = 11 

mm, the antenna has wider bandwidth. The far-field gain of the antenna for different frequencies 

is depicted in Figure 4.29 for design 1. Since the current has some variations in its direction at 

higher frequencies, there are some nulls in the pattern of the antenna at those frequencies. The 

pattern of the antenna is omnidirectional because of the symmetry of the antenna structure in φ 

direction. The radiation field of the antenna in time domain is shown in Figure 4.30a for different 

directions. The early-time and late-time responses are clearly visible in the time-domain response. 

For better comparison, the normalized value of the radiated field in far-field is seen in Figure 4.30b 

for different observation angles. Although the CNRs of the fields do not change with observation 

angle, but the dispersion characteristics of the antenna change slightly with direction. For higher 

elevation angles, the antenna is more dispersive. Additionally, there is some ringing originating 

from the resonant behavior of the antenna. By placing two similar antennas 40 cm away from each 

other and following the equations (4.13) to (4.16), the amplitude and phase response of S21 are 

shown in Figure 4.31a and 4.31b. The amplitude and phase of the antenna effective length can be 

extracted from S21 response for θ = 90° and φ = 0°. The effective length of the antenna is useful in 

calculating the impulse response of the tag in chipless RFID systems. An antenna prototype with 

dimensions of s = 11 mm, W = 2 mm, h = 5.5 mm, d = 18 mm is fabricated in the VTAG antenna 

lab. 
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                                      (a)                                                                          (b) 

 

 

                                      
                                  (c)                                                                          (d) 

Figure 4.29 Gain of the antenna at (a) f = 4 GHz, (b) f = 6 GHz, (c) f = 8 GHz, and (d) f = 10 GHz. 

 

               
                                     (a)                                                                        (b) 

Figure 4.30 (a) The radiation field and (b) normalized radiation field of the antenna in far field. 
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                                     (a)                                                                                (b) 

 

           
                                   (c)                                                                                (d) 

 

Figure 4.31 (a) amplitude and (b) phase of S21 between two similar antennas when they are spaced 

40 cm far from each other, (c) amplitude and (d) phase of the antenna effective length for θ = 90° 

and φ = 0°. 

The fabricated antenna is shown in Figure 4.32a. The antenna is connected to Network analyzer 

(Rohde & Schwarz, ZVA 50-series), as can be seen in Figure 4.32b. The measured reflection 

coefficient of the antenna is depicted in Figure 4.33. Based on the measured S11, the antenna shows 

S11 < -10 dB at the desired frequency range of 2.7-10.6 GHz. The radiation pattern of the fabricated 

antenna is measured in the chamber of Virginia Tech Antenna Group (VTAG). The co-polar and 

cross-polar radiation pattern of the antenna are shown in Figure 4.34 at different frequencies.  
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Figure 4.32 (a) Fabricated tag, and (b ) Antenna connected to the network analyzer. 

 

 

Figure 4.33 Measured reflection coefficient of the antenna. 
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                                         (a)                                                                               (b) 

            

 

                                        (c)                                                                                 (d) 

Figure 4.34 Co- and cross polar radiation pattern of the antenna at (a) f = 2.7 GHz, (b) f = 4.8 GHz, 

(c) f = 6.9 GHz, and (d) f = 9 GHz at xz and yz planes. 
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5 Time-Frequency Techniques for Analyzing Transient 
Scattered Signal from Targets [8] (Chapter used with 

permission of Springer science and business media, 2015) 

 

Since the scatterer is located at some distances from the receiving antenna, we need a time-

frequency analysis technique in order to extract desired spatial and structural information of the 

target. One important parameter in time-frequency analysis of scattered fields is the resolution of 

employed technique in time and frequency domains. In circumstances where multiple scatterers or 

a scatterer with multiple scattering centers is located in the main beam of the receiving antenna, 

the resolution in time domain is important. While in the cases where the scatterer has multiple 

resonances in close proximity of each other, the resolution in the frequency domain will be 

important parameter [63]. Sometimes, we need to employ a time-frequency technique which 

provides acceptable resolution in both time and frequency domains. As an example, when multiple 

chipless RFID tags are present in the reader area, good resolution in the time domain improves the 

accuracy of the localization process and on the other hand, good resolution in the frequency domain 

enhances the accuracy of the extracted information from the scattered signal. Based on Heisenberg 

uncertainty principle, there is a restriction on the product of time and frequency resolutions [64]. 

In this chapter, some practical time-frequency techniques are studied. Starting with most practical 

one, short-time Fourier transform (STFT), the definitions of time and frequency resolution are 

presented. Then, the application of wavelet transform in scattering process is presented and its 

drawbacks are discussed in detail. Re-assigned joint time-frequency (RJTF) method is introduced 

for improving the frequency resolution. Finally, Short-time matrix pencil method (STMPM) is 

introduced as an efficient technique and its corresponding resolution in time and frequency is 

compared with other time-frequency techniques.  

5.1 Short-Time Fourier Transform (STFT) 

Conventional spectral analysis of a signal is based on Fourier transform. The Fourier transform of 

signal x(t) is defined as 

     2j ftX f x t e dt   (5.1) 
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This transformation is useful tool for analyzing the spectral content of the stationary signals and it 

also simplifies some differential equations by converting the integrations and derivatives to 

algebraic operations in Fourier domain. The inverse Fourier transform of signal is written by 

     dfefXtx ftj 2   (5.2) 

In practical applications, the signal is unstationary and its spectral contents change with time. 

The most commonly used time-frequency representation of signal is STFT. In this technique, a 

sliding window of fixed length is moved along the time axis of the signal and fast Fourier transform 

(FFT) is applied to each time snapshot. Assuming h(t) as the window function, the STFT of the 

signal x(t) is defined by 

 
     
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

defHX

dethxft

tj

ftj

x

2

2,STFT
 (5.3) 

The first equation in (5.3) shows that STFT can be thought of as a local spectral of the windowed 

signal. The second equation shows that the window can be applied in the frequency domain. In 

this view, STFT performs as a filter sliding in the frequency domain. One useful window function 

usually used in practical applications is the Gaussian function defined as 

    2/1 



teth   (5.4) 

where δ is related to the standard deviation of the pulse. As an example, time-domain signal in 

(5.5) is considered. 
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 (5.5) 

This signal can be regarded as the scattered field from two single-resonance scatterers located at 

different distances from the antenna, regardless of the early-time responses. The signal is shown 

in Figure 5.1 for A = 3, α1 = 0.5e9, α2 = 0.8e9, B = 3, f1 = 6 GHz, and f2 = 7 GHz. The spectrogram 

of the signal is depicted in Figure 5.2 by applying Gaussian window defined in (5.4) to (5.5) for 

two values of δ. By changing the variance of the Gaussian window, its width changes, which leads 
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to the change in the resolution in time and frequency domains. By choosing δ = 1 (narrower 

window in time domain), the time resolution is improved and as a result, the turn-on times of the 

resonant frequencies can be seen in the spectrogram; while the close resonant frequencies are not 

distinguishable in the spectrogram. On the other hand, by choosing δ = 1, the frequency resolution 

is enhanced at the expense of deterioration of time resolution. Hence, the resolution of the 

transformed signal is strongly dependent on the window function. For better illustration, the time-

domain signal of     tfj
etttx 02

0

 
 is considered [65]. By applying STFT with the Gaussian 

function of δ to the time-domain signal, the transformed signal is given by 

        tffjffftjtt

x eeeeft 0
2

0
2

0
22

0 22/1
,STFT




 


 (5.6) 

The transformed signal seen in (5.6) shows clearly the effect of δ on the resolution in time and 

frequency. It is desirable the STFT to be concentrated around t = t0 and f = f0, because the signal 

includes an impulse at time t0 and an impulse at frequency f0. But, the STFT of the signal has two 

pulses around t=t0 and f=f0. As (5.6) shows, any increase in δ improves the frequency resolution 

and deteriorates the time resolution and vice versa. Therefore, by choosing δ in between these two 

limits, one has limited resolution in time and frequency. 

5.1.1 Resolution 

It is more desirable to quantify the concept of the resolution in time and frequency domains. The 

time resolution, t of the window function, h(t) is defined by 

 
 
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dttht
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22

2  (5.7) 

It means that two pulses can be distinguished in time domain if they are more than t  apart [65]. 

Similarly, the frequency resolution is defined by 
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Figure 5.1Time-domain signal. 

                        
                                               (a)                                                                         (b)  

Figure 5.2 Spectrogram of the signal for (a) δ = 0.8e-9, and (b) δ = 4e-9 

Two frequencies can be discriminated in the frequency domain if they are more than  apart. 

There is an intrinsic limitation on the time and frequency resolutions, which is governed by 

Heisenberg principle as 
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5.2 Wavelet Transform 

As another time-frequency technique, wavelet transforms are widely being used in signal 

processing. In STFT analysis of a signal, the length of the window is fixed in whole time-frequency 

plane leading to fixed time and frequency resolutions. The wavelet transform of x(t), a square-

integrable function, is defined by  

      


 dtthtxsW sx  ,,  (5.10) 

where asterisk denotes the complex conjugates. The wavelets are generated from a mother wavelet, 

h, as 

   






 


s

t
h

s
ths




1
,  (5.11) 

where s and τ are the scale and translation factor. The dimension of s is Hz. The wavelet transform 

of signal x(t) is the trajectory of the signal into the wavelet basis functions with different translation 

and scale factors. The wavelets are dilated as s > 1 and are contracted when s < 1. By normalizing 

the wavelet basis as (5.11), their energy is equal to 1 for any translation and scale. The wavelet 

transform of the signal can also be written versus the Fourier transforms of the signal and window 

function as 

      
 


 desHX

s
sW j

x
2

,  (5.12) 

where H is the Fourier transform of h(t). In this view, the wavelet transform can be assumed as a 

bank of wavelet filters with different scales and shifts corresponding to je . As (5.12) shows, the 

wavelet transform of a signal depends on the wavelet basis, h. Various wavelet functions are 

introduced for different applications. There are some conditions which wavelets should satisfy 

among them admissibility and regulatory properties are the most important. Satisfying these two 

conditions, one can make his own wavelet for a special application. As an important property, no 

information should be lost during the transformation. This can be expressed by the following 

resolution of identity for two arbitrary functions of f1 and f2 [65]. 
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 21,2,1 ,
1

,, ffc
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ddhfhf ss 







    (5.13) 

where hf ,  shows the inner product of function f and wavelet h and c is a constant. It is easy to 

show that  

   




d
Hc

2
 (5.14) 

Relation (5.14) implies that the integration of the inner products of h with f1 and f2 over all the 

scaling and translation parameters is proportional to the inner of the two functions. By removing 

f2 from the two sides of (5.13), the inverse wavelet transform can be written by 
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Therefore, the time-domain signal can be recovered from its wavelet transform. It implies that no 

information will be lost during the transformation process. The constant value of c implies that 

H(0) = 0, or equivalently 

   0 dtth  (5.16) 

The condition (5.16) which guarantees the oscillatory behavior of the wavelet function is called 

admissibility property. The weaker condition on wavelet is regularity condition, which implies that 

wavelet should be local in time and frequency domains. Assuming τ = 0 and expanding signal x(t) 

into the Taylor series at t = 0, one has [65] 
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where R is the reminder of the Taylor series. The r-order moment of the wavelet is written by 

   dtthtM r

r  (5.18) 
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By change of variables in the integrals in (5.17) and using (5.18), the wavelet transform at τ = 0 is 

written by 

    
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Based on the admissibility property, M0 = 0. Therefore, the speed of converge of the above series 

with decreasing s is determined by the first non-zero term in the series. The n-order wavelet is one 

which its first n-order moments are zero. 

    0dtthtM n

n  (5.20) 

or equivalently in the Fourier domain, one can write 

 
   00 nH  (5.21) 

This condition exhibits the smoothness of the wavelet at f = 0. For the wavelet of order n, wavelet 

transform is decayed by sn+1/2. Additionally, it has first n+1 vanishing moments decaying by t-n. 

Therefore, the wavelet transform is an oscillatory function which is localized in both time and 

frequency domains. In comparison to STFT, by choosing small value of the scale, the wavelet 

analysis permits to analyze the discontinuities, singularities and edges in more detail and it gives 

the global view of the signal for large scales. This property of the wavelet is depicted in Figure 5. 

3. As it shows, for larger scales corresponding to low frequencies, the wavelet is dilated and for 

smaller scales, it contracted. The bandwidth of wavelet at scale s is 
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Therefore, its quality factor is defined as 
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Figure 5.3 Time and frequency resolutions in wavelet transform. 

 

Hence, the wavelet transform is constant-Q analysis. For low frequencies, it has small bandwidth 

or wider time window. On the other hand, for high frequencies (low scales), it adopts larger 

bandwidth leading to the smaller time window. As an example, the signal in (5.4) is considered. 

The wavelet transform of the signal is depicted in Figure 5.4 by using Morlet basis function. It is 

seen that around s = 100 corresponding to the resonant frequency of the signal, the wavelet 

transform has stronger value. In multi-resonant signals when the resonances are close to each other, 

the detection of the resonances using wavelet transform is not easy. However, in the processing of 

the scattered signals from resonant-based targets, one needs much better resolution in time and 

frequency in order to extract the required data from the signal. Some wavelet families have been 

introduced for time-frequency analysis of different types of signals. Figure 5.5 shows some 

practical wavelets. One can chose the desired wavelet based on the shape of the signal. Some 

approaches such as Wigner-Vile, adaptive time-frequency representation and so on were 

introduced for enhancing the resolution in both time and frequency domains [63]. In most of the 

proposed technique, some interferences presented in the time-frequency which are not suitable for 

analyzing of scattered signal from resonant-based structures.  

1/s

τ



 

108 

 

 

Figure 5.4 Wavelet transform of the signal. 

5.3 Re-assigned Joint Time-Frequency (RJTF) 

In previous sections, two commonly used techniques for time-frequency analysis of time-domain 

signals were studied. In both techniques, as (5.3) and (5.10) show, the transformed signal depends 

on the characteristics of the window function. In these approaches, the amplitude of the 

transformed signal is plotted in a time-frequency plane. In general, each time-varying signal can 

be expressed in time and frequency by 

       tjtatx exp  (5.24) 

       fjfAfX exp  (5.25) 

where X is the Fourier transform of x and a and A are real positive quantities. The instantaneous 

frequency and the group delay of a signal are one-dimensional transformations trying to represent 

the temporal and spectral signal characteristics simultaneously. For the signal shown in (4.24) and 

(2.25), these parameters are calculated as 
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 (a) Haar                                                                   (b) Db4 

 

 

                    
 

(c) Coeflet2                                                                    (d) Sym4 

 

 

                      
 

(e) Morlet                                                             (f) Mexican Hat 

Figure 5.5 Some practical wavelets. 

These time-frequency representations provide some drawbacks for multi-resonant signals. 

Assuming the following signal [66] 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



 

110 

 

   tfjtfj
eetx 21 22 

  (5.28) 

With some mathematical manipulations, it is easy to show that the instantaneous frequency of the 

signal is (f1+f2)/2. One can find so many signals with the same instantaneous frequency.  

In order to study the effect of window function, we start with some simple cases. In the first 

group which is called amplitude maximum of the spectrum (MS), a window of length Δt is moved 

along the time axis and the spectrum of the widowed signal is calculated versus time index. 

Assuming the rectangular pulse as the window function located at t=t0, then the spectrum of the 

signal is  

       





2/

2/
0

0

0

2exp,
tt

tt
dtfjtjtaftS   (5.29) 

We consider two limits of Δt in the calculation of S. In the first case, 0t , then 

       





2/

2/
00

0

0

2exp,
tt

tt
dtfjtjtaftS   (5.30) 

Therefore, quantity S is maximum at the frequency for which the phase is stationary as 

 
 

02

1

tdt

td
fm




      (5.31) 

which is the instantaneous frequency of the signal. For t ,    fXftS ,0  which is a line 

parallel to the time axis in the time-frequency plane.  

The second case is related to the second equation seen in (5.3), which is called the maximum 

envelope method (ME). In this method, a rectangular pulse of width f0-Δf/2 to f0+Δf/2 in the 

frequency domain moves along the frequency axis and inverse Fourier transform (IFFT) is applied 

to each windowed signal as 

      





2/

2/
0

0

0

2exp,
ff

ff
dfftjfXftS   (5.32) 

For 0f , the time at which S has a maximum is given by 
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1

fdf
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which is the group delay time as a function of frequency. For f ,    txftS 0,  is a line 

parallel to the frequency axis in the time-frequency plane. Hence, it is seen that in these two cases 

the transformed signal in the time-frequency axis depends strongly on the length of the window 

chosen in time or frequency domains. In the third case, the energy distribution can be calculated 

for (t0,f0). Assuming 

      





2/

2/
000

0

0

2exp,
ff

ff
dfftjfXftS   (5.34) 

The integrated energy distribution at (t0,f0) is  
2

0 ffX  . It is easy to show that the energy 

distribution is independent of t0 for 0f and is equal to x(t0) for f .  

In all above mentioned time-frequency analysis techniques including STFT, the transformed 

signal is written by 

       dtthtxfX f

*

,,   (5.35) 

The original signal can be recovered from 

       dfdthfXtx s      ,,  (5.36) 

There is an infinity of manners for defining h; here we chose 

      

   tfj

s etgth 2

,  (5.37) 

Assuming 

   1
2

 dttg  (5.38) 

By inserting (5.37) in (5.35), the transformed signal is given by 
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
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 


 (5.39) 

Hence, the original signal can be reconstructed as 
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           
    dfdetgfAtx fftjfj   2,.,  (5.40) 

If the time variations of A and g are slow compared to phase variations, the maximum contribution 

to the integral emanates from the regions close to the stationary conditions as 

      02, 


  



fftjfje  (5.41) 
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 (5.42) 

The stationary-phase points are 
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which are related to group delay and instantaneous frequency of the filtered signal. In re-assigned 

joint time-frequency (RJTF), the energy density S(τ,f) is assigned to the point of coordinates  ft ,  

instead of (τ, f). Now, the effect of the window length on the transformed signal can be explored 

with subject to (5.34). For 0f , using (5.43) and (5.44), one obtains 
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
 (5.45) 

 0ff   (5.46) 

which is corresponding to the group delay at the frequency f0 and for f , one has 

 0tt                (5.47) 

  

0

0arg

2

1

t

tx
f




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
               (5.48) 

which is the instantaneous frequency at t = t0. In RJTF, the distribution energy changes from group 

delay to instantaneous frequency curves in the time-frequency plane by changing the window 

length from 0 to + . Assuming the STFT of the signal x(t) as 
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    
 

 

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


 dteetxX tfj
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 22 2

2

,  (5.49) 

in which the Gaussian pulse has been used as the window function. The instantaneous time and 

frequency can be calculated from [67] 
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In Figure 5.5, the time-frequency representation of the signal seen in (5.4) is depicted for A= 3, α1 

= 0.5e9, α2 = 0.8e9, B= 3, f1 = 6 GHz, and f2 = 7 GHz. As it shows, the resonant frequencies and 

turn-on times of the resonances can be easily seen from its time-frequency representation.  

 

 

Figure 5.6 Time-frequency representation of signal by RJTF and δ = 0.6e-9. 

5.4 Short-Time Matrix Pencil Method (STMPM) 

Based on singularity expansion method (SEM) expressed in section 2.1, the backscattered response 

from scatterers can be expanded versus the complex natural resonances. For complex scatterers 

with multiple scattering centers and multiple resonances, different resonant frequencies might have 
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different turn-on times. Depending on the polarization and the direction of the incident field 

compared to the scatterer, some resonances might be excited stronger than the others. In these 

applications, there are two important factors need to be considered in the time-frequency 

representation of the signal. First as mentioned before, time and frequency resolutions should be 

improved in order to extract the position of the scatterer and its resonant frequencies. The other 

factor is the robustness of the employed approach in extracting the weak resonances in the presence 

of the stronger ones. Recently, another time-frequency method, called short-time matrix pencil 

method (STMPM), is proposed which shows good performance as a view of resolution and ability 

to extract low energy resonances. In reality, there is a unique damping factor corresponding to 

each resonant frequency. Therefore, instead of working on the spectral content of the scattered 

signal in Fourier domain, it is more informative to work on complex natural resonances (CNRs) 

in Laplace domain. In some scenarios such as design process of resonant-based scatterers, the 

knowledge of the damping factors of the resonances give some more information about the 

structural dimensions and electromagnetic behavior of the scatterer. Taking advantage of STMPM, 

the damping factors of the CNRs can be obtained from its scattering response. As mentioned in 

section 2.4, the scattering response from the scatterer is affected by two different phenomena: the 

early time is due to the specular reflections from the scattering centers of the scatterer and is 

followed by the-late time response which is the radiation fields from the natural modes of the 

scatterer. In general, the scattered field can be written as 

      





1

cos
n

nn

t

n teRtets n 
 (5.52) 

where e(t) is the early-time response and the late-time response is expanded versus the natural 

resonances of the scatterer as sn = αn+jωn with corresponding residue, sn. In 1992, matrix pencil 

method (MPM) is employed to extract the complex natural resonances of the damped sinusoidal 

signals [68]. In this technique, by sampling the time-domain signal, two matrices are introduced, 

which the CNRs are the generalized eigenvalues of their associated pencil.  

5.4.1 Matrix Pencil Method (MPM) [68] 

MPM is a technique used for extracting the CNRs of the damped sinusoidal signal. First, the 

late-time response of the scatterer as the summation over damped sinusoidals is considered as 
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                                                  (5.53) 

By sampling the signal, the kth sample is  
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                                                      (5.54) 

where 

    
ts

n
nez


                                                                 (5.55) 

Quantity M is the number of the poles in the signal, k=0, 1, …., N-1 is the sample index and Δt is 

the sampling interval. Ignoring the noise, two following matrices are formed by sampling data.   
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                     (5.57) 

where L is a number between N/3 and N/2. Two matrices in (5.56) and (5.57) can be decomposed 

for an arbitrary L<N-1 in the following manner 

      211 ZRZY   (5.58) 

       2012 ZZRZY   (5.59) 

where [Z0] and [R] are diagonal matrices  

    0 1 2 Ndiag , , ,Z z z z  (5.60) 

    1 2 Ndiag , , ,R R R R  (5.61) 

and 
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By constituting the following matrix pencil as 

             20112 ZIZRZYY    (4.64) 

where [I] is an N×N identity matrix, it is easy to show the ith row of     IZ 0  is zero for λ = zi (I = 

1,…, N). Therefore, zi is the generalized eigenvalue of the matrix pair [Y2], [Y1]. Thus, the zis are 

calculated by solving the following ordinary eigenvalue problem. 

       IYY 


21  (5.65) 

where [Y1]
+ is the Moore-Penrose pseudo-inverse of [Y1].  

For noisy data, some prefiltering must be used in order to remove extra poles resulting from 

noise. In this case, first the following matrix is formed using sampled data as 
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                        (5.66) 

As can be seen, [Y1] and [Y2] are obtained from [Y] by removing the last and the first columns, 

respectively. A singular-value decomposition (SVD) of the matrix [Y] can be written as 

      HVUY   (5.67) 

where [U] and [V] are unitary matrices. The parameter M, estimated number of CNRs in the signal 

by MPM, is introduced as a threshold and the singular values beyond M are set to zero. In theory 
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and noiseless data, M is equal to the number of CNRs contained in signal. An appropriate way to 

choose M is through looking at the ratio of the maximum singular value to all other singular values 

in the matrix. Considering c as the singular value such that 

 
pc 10

max


 (5.68) 

where p is the number of significant decimal digits in the data. For instance, if the measurement 

data is known to be accurate up to three significant digits, then the singular values for which the 

ratio in (5.68) are less than 10-3 are the singular values of measured noise. The chosen value of p 

depends strongly on the strength of the weakest pole compared to the strongest one. For low values 

of p, the weak poles can not be detected in the presence of the much stronger poles. By increasing 

the value of p, the weak poles can be extracted at the expense of arrival of poles from noise. The 

next step is to construct the filtered matrix  V  . It is constructed such that it contains only M 

dominant right-singular vectors [V].  

    1 2 M, , ,V v v v   (5.69) 

Now, by suppressing the singularities corresponding to the noise, [Y1] and [Y2] can be constructed. 

      HVUY 11
  (5.70) 

      HVUY 22
  (5.71) 

where  1V  and  2V  are obtained from [V] by removing the first and last rows and [ ] is obtained 

from the Mth column of [ ], corresponding to the M dominant singular values. Following the same 

approach as in (5.64), the poles of the signal can be obtained. Once the poles and M are known, 

the residues Ri are found from the following least squares problem. 
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 (5.72) 
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5.4.2 STMPM in Late-Time 

In STMPM, a sliding window of length TW is moved along the time axis and matrix pencil method 

is applied to each windowed signal [69]. Figure 5. 7 shows a time-domain signal along with the 

sliding window located at t = T. As a simple scatterer, consider the late-time response of the signal 

seen in (5.73). 

      0

1

cos ttUteRtL
n

nn

t

n
n 



 
 (5.73) 

where U is the step function defined as 
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In (5.73), it is assumed that all CNRs of the scatterer start resonating at the same time, t0, called 

turn-on time. This is valid for simple scatterers such as chipless RFID tag. Meanwhile, for complex 

scatterers such as airplane and so on, each resonance might have its own turn-on time. The turn-

on times give some information about the location of the scattering centers of the scatterer 

compared to the receiving antenna.  

According to Figure 5.7, a time-window of length TW is moved along the time axis 

incrementally by the value of T. Poles and residues of each sliding window are computed using 

MPM and they are indexed by T to realize a time-frequency representation. The windowed signal 

can be written by 

      n 0T

W n 0

1

Re
N

s t t

n

e t R e U t t
 
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 
  (5.75) 

in which 
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 (5.76) 

In natural logarithmic scale, (5.76) is expressed by 

 
   T

n n nLn R Ln R T 
 (5.77) 
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Figure 5.7 Time-domain signal with moving window. 

Equation (5.77) indicates that in normal logarithmic scale, residues linearly decrease versus 𝑇 with 

slope αn. The real part of the poles, αn, calculated from MPM are very sensitive to noise. An 

alternative way of calculating the damping factors of the CNRs is to find the slopes of the residues 

versus time in the normal logarithmic scale as (4.76) shows. The simulation results presented in 

this section will show that the CNRs calculated from STMPM are more accurate than those from 

MPM. By calculating the poles and residues, three different diagrams (time-frequency, time-

damping factor, and time-residue) can be used in detection and localization of scatterers. As a 

simple case, the following signal is considered. 

     222111 2cos2cos 21  



tfeRtfeRts

tt
                        (5.78) 

Figure 5. 8a shows signal s(t) versus time for R1 = 2, R2 = 1.5, α1 = 3e8, α2 = 5e8, f1 = 5e9, f2 = 7e9, 

φ1 = π/4, and φ2 = π/3. By applying STMPM to the time-domain signal, its time-frequency and  

                    

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6

8

Time (s)

am
p

li
tu

d
e

T
W

T

0 2 4 6 8 10
-4

-2

0

2

4

Time (ns)

A
m

p
li

tu
d

e

4.5 5 5.5 6 6.5 7 7.5
0

1

2

3

4

5

Frequency (GHz)

T
 (

n
s)



 

120 

 

                                  (a)                                                                     (b) 

                    
                                (c)                                                                             (d) 

Figure 5.8 (a) Time-domain signal, (b) time-frequency, (c) time-damping factor and (d) time-

residue diagrams of the signal. 

time-damping plots are depicted in Figure 5.8b, 5.8c, and 5.8d. Two resonant frequencies and their 

corresponding damping factors are seen clearly in the Figure. Figure 5.8d shows the normal 

logarithm of the residues of the CNRs versus time. The slope of the lines is associated to the 

damping factors of the CNRs.  

Two important parameters of STMPM are the filtering parameter p and window length, TW. 

In practical applications, it is very important to choose the optimum values of p and TW to extract 

the time and frequency information from noisy data. Frequency resolution deals with the minimum 

distance between two adjacent resonant frequencies of the signal which can be distinguished. 

Assuming signal seen in (4.77) with R1= R2= 1, α1= α2= 3e8, f1= 5 GHz  and Δ= f2-f1, the minimum 

widow length required for distinguishing two poles of the signal is represented in Figure 5.9 in 

terms of Δ= f2-f1 for different values of p. For lower Δ, larger TW is required. This is common in 

all time-frequency approaches. On the other hand, by increasing p, smaller window need to be 

used. Employing smaller window length means improving the time resolution. Therefore, it is 

possible to improve the time and frequency resolutions by applying STMPM with optimum values 

of p and TW. For better comparison, the time-frequency representation of the signal seen in (5.78) 

is shown in Figure 5.10 by applying STMPM and RJTF techniques to the time-domain signal. The 

length of the applied window in both methods is TW = 2.5ns. Compared to STMPM result, there 

are some interferences in between two resonances of the signal when we use RJTF with the same 

window length. Additionally, there are slight variations in the resonant frequencies of the signal at 

time instances. Therefore, the proposed technique can be useful when high density of data is places 

on the tags. 
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Figure 5.9 Minimum window length for distinguishing two resonances of the signal versus 

frequency distance  [70] (With permission, Copyright© 2015 IEEE). 

            
                                   (a)                                                                        (b) 

Figure 5.10 Time-frequency representation of the signal by applying (a) STMPM and (b) RJTF. 
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While by increasing filtering parameter to p = 4, and keeping TW = 1.1 ns, both resonances are 

detected. This is very important in scattering processes where some poles are excited stronger than 

the others. As the results show, by increasing the value of p, not only is the resolution in time and 

frequency domains improved, but the weaker CNRs of the signal can be detected in the presence 

of the stronger ones.  

 

               
(a)                                                                      (b) 

                    
(c)                                                                      (d) 

Figure 5.11 (a) Signal in time domain, Time-frequency representation of signal for (a) TW = 1.1 

ns, p = 2, (b) TW = 4 ns, p = 2, and (c) TW = 1.1 ns, p = 4 [70] (With permission, Copyright© 2015 

IEEE). 
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the scatterers. In other word if one can expand an impulse signal in terms of damped sinusoidals. 

Based on Fourier series, each time-limited signal in  W,0t T  can be expanded versus sinusoidal 

signals as 

   















0

2
cos

n

n

W

n t
T

n
Atx 


 (5.79) 

In theory, the series has infinite number of terms. But in practical applications, it is truncated to a 

finite number of sinusoidals to achieve the desirable accuracy.  

In UWB application, the early-time response is a pulse-shaped signal covering all the excited 

frequencies. Depending on the location of the observation point compared to the scatterer, it can 

be expanded versus the incident filed and its integration and derivatives with respect to time [17]. 

In simple scatterers such as chipless RFID tag where the scatterer is approximated by just one 

scattering center in the frequency band of operation, the early-time response is approximated by 

just one term. In the near-field of the scatterer it is very similar to the incident field, while in the 

far field it inclined to the first time derivative of the incident field. In complex scatterers with 

multiple scattering centers, more terms need to be considered in the series. As an example, the 

following Gaussian signal is assumed. 

     22
2/exp  ttx  (5.80) 

The time-domain signal seen in (5.80) and its first derivative with respect to time are depicted in 

Figure 5.12 for δ = 0.5e-9 and τ = 0.15 ns. The derivative of the signal is normalized to its maximum 

value. By applying STMPM with TW = 2 ns and p = 3 to the signal, its pole diagram is depicted in 

Figure 5.13. As it shows, the original pulse is approximated by four damped sinusoidal signals. 

These four signals are depicted in Figure 5.14. By summing the four damped sinusoidals, the 

reconstructed signal is depicted in Figure 5.15 along with the reconstructed signal based on Fourier 

series of the pulse. As it shows, the recovered signal by damped sinusoidals is more accurate than 

one resulted from Fourier series with the same number of terms, M = 4.Assuming the length of 

window as TW = 2 ns in Figure 5.12, the position of the pulse is changed in the window. 
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Figure 5.12 Gaussian pulse and its first derivative with respect to time. 

 

 

Figure 5.13 Pole diagram of the Gaussian pulse function. 
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                                     (a)                                                                          (b)       

 

                    
                                    (c)                                                                      (d) 

 

Figure 5.14 Four extracted damped sinusoidal modes by applying STMPM to the Gaussian pulse. 

 

Figure 5.15 Gaussian pulse and reconstruction one from Fourier transform and CNRs. 

 

0 0.5 1 1.5 2
-4

0

4

8

Time (ns)

A
m

p
li

tu
d
e

0 0.5 1 1.5 2
-4

-2

0

2

Time (ns)

A
m

p
li

tu
d
e

0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

Time (ns)

A
m

p
li

tu
d

e

0 0.5 1 1.5 2
-0.2

-0.1

0

0.1

Time (ns)

A
m

p
li

tu
d

e

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

Time (ns)

A
m

p
li

tu
d
e 

 

 

Gaussian pulse

Reconstructed from Fourier series

Reconstructed from CNRs



 

126 

 

The pole diagram of the pulse is shown in Figure 5.16 for different values of τ. By moving the 

pulse from left to the right of the window, the extracted CNRs move to the right side of the 

imaginary axis either. For τ < 1 ns, the CNRs must be highly damped resonances leading to the 

poles located at the left hand side of the pole diagram. On the other hand, for τ > 1 ns, constructive 

signals must grow with time leading to the CNR located at the right hand side of the pole diagram. 

For τ = 0.5 ns and τ = 1.5 ns when the pulse is located at the same distance from the center, the 

poles are asymmetrically located at two sides of the imaginary axis. By moving the pulse away 

from the center of the window, the poles move away from the imaginary axis and when it is at the 

center, they are on the imaginary axis. When the pulse is located at the center of the window, τ = 

1 ns, the poles are located on the imaginary axis of the pole diagram with more terms. It means 

that when the pulse is at the center of the window, the series of the CNRs inclines to the Fourier 

series of the signal. Since the poles are non-damped sinusoidals, more terms are needed to achieve 

the required accuracy. The reconstructive signals are depicted in Figure 5.17 for different τs and 

TW = 2 ns. For τ = .5 ns, the reconstructed signal is zero for t > 2 ns either. In the case of τ = 1 ns 

where the poles are close to the imaginary axis, Gibbs phenomenon is seen at sharp variations of 

the signal. According to Figure 5. 17c, by increasing p in STMP, more terms are included in the 

series and the accuracy of the reconstructed signal is improved. Since the poles are not perfectly 

located on the imaginary axis, there is a sharp discontinuity at the end of the time window. For τ = 

1.5 ns when the pulse in the RHS of the window, the reconstructed signal is similar to the original 

one in t [0,2e-9]. But it has very sharp variations for larger time values. These sharp variations 

emanate from the growing sinusoidal signal summed together. Based on the presented results in 

Figures 5.15 to 5.17, it is seen that the reconstructed signal approximates the original one for t

],[ WTTT  . The width of the early-time impulses is related to the bandwidth of the incident field. 

By increasing the bandwidth, the impulses become narrower. In far-field region, the shape of the 

scattered field inclines to the derivative of the incident field. Assuming the Gaussian pulse seen in 

(5.80), its normalized derivative with respect to time is shown in Figure 5.12. By changing the 

position of the signal in the time window, the extracted poles are shown in Figure 5.18 for different 

values of τ. 
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Figure 5.16 Pole diagram of the Gaussian pulse for different values of τ. 

 

                 
                                        (a)                                                                      (b) 

 

                    
                                   (c)                                                                      (c) 

Figure 5.17 Reconstructed pulse signal for (a) τ = .5 ns, p = 4, (b) τ = 1 ns, p = 4, (c) τ = 1 ns, p = 

8, (d) τ = 1.5 ns, p = 4. 
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Figure 5.18 Pole diagram of the derivative of Gaussian pulse for different values of τ. 

Again, by moving the pulse to the RHS of the window, the corresponding poles move to the RHS 

of the pole diagram. When the pulse is located at the center of the window, the poles are very close 

to the imaginary axis of the pole diagram. Figure 5.19 shows the reconstructed signal based on 

Fourier series and summation over CNRs with M = 4 compared to the original signal. As can be 

seen, the original signal is accurately constructed by summing over CNRs. While it needs more 

terms in Fourier series to achieve the desired accuracy. According to above mentioned discussion, 

the CNRs of the early-time response move from the LHS to the RHS of the pole diagram when the 

window moves along the time axis. This is very useful in detecting the early-time response of the 

scatterers. In Figure 5.20, the extracted damping factors of the Gaussian pulse and its derivative 

located at τ = .15 ns is depicted versus the center of the sliding window by applying STMPM to 

the time-domain signal. As it shows the damping factors are zero when the pulse is located at the 

center of the window. For the derivative of the pulse, there are two other zero crossing points 

coincident with the position of the maximum and minimum points of the signal in addition to the 

center of the pulse located at τ =.15 ns. As another example, the scattered signal from a resonant 

structure is depicted in Figure 5.21a. By applying STMPM with TW = 1 ns to the signal, the 

extracted poles of the scatterer is depicted in Figure 5.21b for different sliding times. The early-

time response of the scatterer is centered at t = 1.55 ns. As it shows, the extracted poles move from 

the RHS of the pole diagram to the LHS by sliding the window along the time. The CNRs of 
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Figure 5.19 Derivative of the Gaussian pulse and reconstruction one from Fourier transform and 

CNRs. 

           
                                      (a)                                                                               (b) 

Figure 5.20 Extracted damping factor versus the center of the sliding window for (a) pulse,  and 

(b) its derivative. 

the late-time response are shown in the figure. They do not change by sliding window along the 

late-time signal. On the other hand, the poles of the early-time response vary as a function of T. 
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received scattered signal from the scatterers by illuminating them by an incident electric field. The 

early-time response of the first scatterer is followed by the late-time response originating from the 

natural modes of the scatterer. The early-time of the second scatterer is hidden in the late-time of 

the first target. Since its dimensions are much smaller than the lowest wavelength of the incident 

field, it does not excite the CNRs of the second target. By applying STMPM to the time-domain 

signal, the extracted damping factors are shown in Figure 5.21e versus the center of the sliding 

window. The zero crossing of the damping factors show the position of the early-time responses 

of the scatterers. By extracting the CNRs of the early-time and late-time responses, the 

reconstructed early time and late time are depicted in Figure 5.21f. The turn-on time of the 

resonance and position of the scatterers can be accurately obtained from the proposed technique. 

The location of the scatterers can be calculated by knowing the centers of the early-time responses.  

5.4.4 Performance of STMPM Against Noise 

Noise is any unwanted signal which interferes with the desirable signal. Detection in the presence 

of noise is very challenging when the backscattered signal is not very strong. Because the normal 

radiation modes of the scatterer are damped sinusoidals, the signal to noise ratio decreases with 

respect to time. In communication systems, the dominant noise is additive white Gaussian noise 

(AWGN). White noise is a random signal with a constant power spectral density. Assuming the 

input noise as AWGN, the received signal is represented as 

        tnteRtets
n

nn

t

n
n  





1

cos 
 (5.81) 

where e(t) is the early-time response and n(t) is AWGN. The second term is the late-time response 

including the CNRs of the scatterer. For nth CNR, the corresponding signal is  

 
     
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n
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cos
 (5.82) 

With aforementioned assumptions on noise, its power spectral density and correlation function are 

defined as 

  
2

0N
fSN   (5.83) 
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                                 (a)                                                                             (b) 

 

              
                                  (c)                                                                             (d) 

 

 

                    
                                  (e)                                                                             (f) 

 

Figure 5.21 (a) Backscattered electric field from the scatterer, (b) pole diagram of the signal for 

different sliding times, (c) extracted damping factors with respect to the center of the sliding 

window, (d) backscattered electric field from two scatterers, (e) extracted damping factors with 

respect to the center of the sliding window, and (f) reconstructed early-time and late-time 

responses.  
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                                               (5.86) 

where K= 1.38×10-23 (m2Kg s-2K-1)  is the Boltzmann constant, Tc is the temperature in Kelvin, 

and H(f) is the since function corresponding to the Fourier transform of the rectangular pulse of 

width TW in time domain. After some mathematical manipulations, the SNR in (5.86) is given by 

 
    

    TTTTe

TT
TKT

Re
SNR

WnnnWnn

T

WnnnWnn

nc

n

T

Wn

n

222sin222cos1

22sin22cos1
4

22

2

22


















 (4.87) 

According to (5.87), SNR is proportional with the square of the residue of the CNR and decreases 

with any increase in damping factor. For long-read distances, the residues decrease leading to 

smaller SNRs. As it shows, by sliding the window along the time, the energy of signal decreases, 

while the energy of noise does not change. Hence, higher SNR is accessible at the earlier times of 

the signal. In scattering from multi-resonant structures, one need a few number of cycles in order 

to detect all the resonances from the scattered signal. On the other hand, in scattering from lossy 

media, the damping factors of the CNRs might be large enough to attenuate the response very fast. 

In such cases, the knowledge of the turn-on time of the CNRs is very useful. Because by placing 

the sliding window just before the turn-on time, some CNRs from the early time response might 

come into the pole diagram of the signal.  

In order to study the effect of noise on STMPM, the backscattered signal from a 3-bit tag is 

seen in Figure 5.22a. The early-time and late-time responses are clearly seen in the figure. By 

applying the proposed method to the time-domain signal, the time-frequency, time-damping factor 

and time-residue of the signal is depicted in Figure 5.22b, 5.22c, and 5.22d for TW = 0.8ns and p = 

2. The poles of the early-time response are converged to the poles of the late time at turn-on times. 

Compared to resonant frequencies, there are some variations in the extracted damping factors. The 

turn-on time of the CNRs of the tag is shown in the time-frequency representation of the signal as 

t0 = 0.65ns. By adding noise to the signal, the time-damping factor and time-residue of the signal 

are shown in Figure 5.23 for SNR = 15dB. As the results show, the damping factor is very sensitive  
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                                 (a)                                                                        (b) 

 

         
                                (c)                                                                          (d) 

Figure 5.22 (a) Backscattered electric field, (b) Time-frequency diagram, (c) Time-damping factor, 

and (d) Time-residue diagram of the signal [69] (With permission, Copyright© 2014 IEEE). 

 

                  
                                      (a)                                                                      (b) 

Figure 5.23 (a) Time-damping factor of the signal, (b) Time-residue diagram of the signal for SNR 

= 15 dB [69] (With permission, Copyright© 2013 IEEE). 
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Table 5-1 Percentage error of estimating of real and imaginary parts of the dominant poles of the 

tag calculated from direct matrix pencil method (MPM) and short-time-matrix-pencil-method 

(STMPM) [69] (With permission, Copyright© 2013 IEEE). 

 

SNR 

 

𝜔  

 

𝜔  

 

𝜔3 

𝛼  𝛼  𝛼3 
 

MPM 

 

Slope of 

residues 

 

MPM 

 

Slope of 

residues 

 

MPM 

 

Slope of 

residues 

15 0.39 0.31 0.36 9.14 7.18 12.7 7.1 11.1 6.78 

10 0.71 0.68 0.82 17 15.3 22 15.1 21.6 14.6 

5 2.85 2.98 3.2 28.4 24.6 31.5 26.8 48 29 

 

to noise. For later times, by decreasing the SNR, the detection of the CNRs becomes challenging. 

In Figure 5.23b, the time-residue of the CNRs of the signal are shown. The slop of the lines are 

equal to the damping factors of the poles. The calculated damping factors in time-residue diagram 

is more accurate than ones calculated from MPM. Table. 1 presents the average error of estimating 

the real and imaginary parts of the poles for 50 different sets of noisy data with a specific SNR 

value. As the table shows, the proposed method gives more accurate results for damping factors 

than MPM. The reason is that the calculating damping factor from the time-residue diagram is 

based on the residues of CNRs which is related to the energy.  

5.5 Application of STMPM in Wideband Scattering from Resonant 

Structures [70] 

As a time-frequency approach, various scattering mechanisms such as resonance, scattering center, 

and dispersion features of the scatterer can be monitored in the time-frequency diagram obtained 

from STMPM [70]. In some applications such as radar, the CNRs of the airplane are used as the 

ID for detection purposes [71]. In these applications, high-Q resonances are more effective for 

identification purposes. These high-Q resonances are mostly generated by cavity structures 

embedded on the scatterer. For example, the engine of the airplane makes an open-ended cavity 

resonator whose corresponding CNRs participate effectively in the late-time backscattered 

response from the airplane. Hence, the ID of the airplane can be adjusted by changing the resonant 

modes of the open-ended engine cavity. These CNRs are usually affected by the dispersion 

characteristics of the structure. 
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Figure 5.24 indicated various scattering-mechanism representations in the time-frequency 

diagram [72]. A vertical line represents a reflection from a scattering center while a horizontal line 

introduces a resonance mechanism in the scattering mode. Any slope in the time-frequency 

diagram (as Figures 5.24c and 5.24d show) represents a dispersive phenomenon. In order to gather 

all the above mechanisms into one example, an open-ended cylindrical cavity seen in Figure 5.25a 

is often considered in literature [21, 22, 73-77]. An incident electric field polarized in x-direction 

and propagating in –z direction illuminates the cavity. The backscattered field contains reflections 

from the rim and bottom of the cavity and dispersive internal resonant modes of the cavity. As the 

time-domain response in Figure 5.25b indicates, three pulse-shaped responses at t = 1ns, t = 4.3ns 

and t=5.4ns are due to the specular reflections from the rim, and the external and internal back of 

the cavity, respectively. The time-frequency diagram of the signal is depicted in Figure 5.26 using 

STMPM and STFT. The parameters of STMPM are chosen as Tw = 0.4ns and p = 2. According to 

figure, there are two scattering centers and three resonant modes. The modes with cut-off  

                     
(a)                                                                           (b) 

 

                       
(c)                                                                      (d) 

Figure 5.24 Scattering mechanisms in time-frequency analysis. (a) Scattering center. (b) Resonant 

behavior. (c) Structural dispersion. (d) Material dispersion [70] (With permission, Copyright© 

2015 IEEE). 
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(a)                                                                         (b) 

Figure 5.25 (a) Open-ended circular cavity excited by incident plane wave, (b) Backscattered 

signal in time domain [70] (With permission, Copyright© 2015 IEEE). 

 

         
(a)                                                                             (b) 

Figure 5.26 (a) Time-frequency diagram of the backscattered signal from the cylinder based on (a) 

STMPM and (b) STFT [70] (With permission, Copyright© 2015 IEEE). 

 

frequencies f = 5 GHz and f = 13.8 GHz have been excited more strongly than the mode with cut-

off resonance at f = 9.9 GHz. There are some poles parallel to the frequency axis located around t 

= 10 ns which emanate from the second roundtrip travel of the pulse inside the waveguide cavity. 

The spectrogram of the signal based on STFT is shown in Figure 5.26b. As can be seen, because 

of the poor resolution of STFT in both frequency and time domains, the scattering centers and 

resonant frequencies of the cavity cannot be accurately extracted from the spectrogram of the 

signal. This is especially severe when the resonances are closer to each other. By increasing the 

length of the window and filtering parameter, p, and consequently increasing the frequency 

resolution as seen in Figure 5.27, not only is the second mode clearly visible, but there also exist 
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some extra resonances higher than 13.8 GHz. These frequencies result from the second roundtrip 

travel of the pulse inside the cavity, which shows itself at later times. Here, in addition to the 

dispersive modes of the first roundtrip of the pulse inside the cavity, the modes corresponding to 

the second roundtrip are visible with different turn-on times which is exactly matched with the 

electrical length of the cavity. The dispersion characteristics of the modes have been highlighted 

with dashed lines. In order to extract the accurate times of the reflections from the lid and bottom 

of the cavity in the time-domain signal, the damping factors of the windowed signal are shown in 

Figure 5.28 versus the center of the window for two values of TW, window length, and p, filtering 

parameter. The zero-crossing points in the damping factors versus time are the time instances of 

the multiples reflections from the structure. Another advantage of the proposed technique is that 

the local resonant frequencies of the scatterer are illustrated by discrete poles in the time-frequency 

diagram rather than continuous colors in wavelet and STFT. Figure 5.29 shows the time-frequency 

diagram of the signal based on the proposed technique for SNRs of 20dB and 10dB. For lower 

values of SNR, we need to decrease the value of p in order to avoid the presence of poles 

originating from noise. 

 

 

 

Figure 5.27 Time-frequency diagram of the scattered field for TW = 1 ns, p = 4 [70] (With 

permission, Copyright© 2015 IEEE). 
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Figure 5.28 Time-damping factor representation of backscattered signal from cavity. 

 

 

 

 

       
                                  (a)                                                                          (b) 

Figure 5.29 Time-frequency diagram of the signal with (a) SNR=10dB, TW =0.8ns, p=2 and (b) 

SNR=20dB. TW =0.8ns, p=4 [70] (With permission, Copyright© 2015 IEEE).  
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6 Detection, Identification, and Localization in Chipless 
RFID Tags [8] (Chapter used with permission of Springer science 

and business media, 2015) 

 

In previous chapter, short-time matrix pencil method (STMPM) was introduced as an efficient 

time-frequency analysis technique. By improving time and frequency resolutions, the resonant 

frequencies and turn-on times of the CNRs are monitored in time-frequency diagram. The ID of 

the tag is located in the spectral of the scattered field. The turn-on times of the CNRs are useful in 

calculating the distance of the tag compared to the antenna. In circumstances where multiple 

chipless RFID tags are present in the reader area, a space representation of the tags is needed to 

localize their positions. Hence, one needs a space-time-frequency representation of the signal in 

order to detect, identify and localize the chipless tags in the reader area. The accuracy of the 

approach depends on the resolution in space, time and frequency. When multiples tags are in the 

main beam of the antenna, a collision-avoidance algorithm is required to separates the IDs of the 

tags  

In this chapter, first a space-time-frequency algorithm is introduced by which the IDs and 

locations of the tags are calculated by applying STMPM and its dual, narrow-frequency matrix 

pencil method (NFMPM) to time and frequency domain signals, respectively. In some 

applications, multiple reflections from the antenna structure used in the RFID system or multiple 

reflections from the dielectric material introduce some impulses in the late-time response of the 

resonant-based scatterers. In such cases, the impulses limits the sliding of the time window along 

the signal. This problem can be solved by separating the early-time and late-time responses of the 

scatterer. As mentioned in section 5.3 and 5.4, by sliding the window along the time-domain signal, 

the poles originating from the early time can be distinguished from poles of the late-time response, 

which facilitates the detection, identification and localization of chipless RFID tags. 

6.1 Detection of Chipless RFID Tags 

The detection process can be performed based on time-domain or frequency-domain signal. In [46, 

49, 78, 79], the absolute value of the backscattered signal in the frequency domain and group delay 

of the received signal are used in detection process. Based on the singularity expansion method 
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(SEM), the impulse response of the scatterer for the incident and scattered fields directed in the 

1̂r  and 
2r̂  can be expressed by 
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 (6.1) 

where the first term is the late-time response, including the complex natural resonances sn and 

corresponding residues Rn, and the second term is the early-time response of the scatterer. 

Compared to the early-time response and residues, the complex natural resonances (CNRs) are 

aspect-independent. Although each scatterer includes an infinite number of CNRs, the series in 

(6.1) is truncated to N, the number of fundamental resonances excited by the incident electric field. 

Compared to the CNRs, the residues Rn and the early-time response of the tag Γe depend strongly 

on the direction and polarization of the transmitting and receiving antennas. As mentioned in 

Chapter 2, the embedded CNRs of the tag are high-Q resonances. Assuming the tag is illuminated 

by an incident pulse δ(t), the scattered field in close proximity of the nth resonant frequency is 

written by  
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Although the late-time response has its maximums at the resonant frequencies of the tag, it does 

not necessarily happen for the total field. The received signal at the nth resonant frequency is 
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As (6.3) shows, the received signal at ω = ωn is separated into three terms. The first term in (6.3) 

is the scattered field from the nth resonant frequency; the second term is due to the coupling of the 

other resonators on the nth resonator resonating at ω = ωn, and the third term is the early-time 

response of the tag at ωn. As an important note here, the magnitude of the scattered field at the nth 

resonant frequency is not simply a maximum at ωn. The coupling of the other poles, the second 

term in (6.3), and early-time response can change the maximum peak of the total field in the 

frequency domain to a minimum null or may shift it to other frequencies. Since the couplings and 
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the early-time response of the tag are aspect-dependent, the magnitude of the scattered field in the 

frequency domain is aspect-dependent as well. The main observation is that the magnitude of the 

impulse response of the tag in the frequency domain is not sufficient to extract the resonant 

frequencies of the tag. 

Similarly, in detection techniques based on the group delay of the received signal, the group 

delay is not sufficient for extracting the resonant frequencies of the tag. The group delay is defined 

as 
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where  
11s  is the phase response of the tag. Again, assuming high-Q resonances are embedded 

on the tag and ignoring the effect of the second term in (6.4), the group delay of the received signal 

can be written by 
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where  
e

   is the phase of the early-time part of the signal, which is aspect-dependent. 

Therefore, both the magnitude and phase of the impulse response of the scatterer can vary by 

changing the source and observation points. Ignoring the early-time part of the signal causes a 

misleading result where the group delay shows its maximum value at the resonant frequencies of 

the tag. In the cases where the phase of the early-time part has stronger variations than the phase 

of the late-time part, the detection of the resonant frequencies from the group delay is not 

straightforward. As an example, Figure 6.1 shows a single-bit tag, located in the xy plane, 

illuminated by an incident electric field. The scattered signal in given two different orientations of 

the receiving antenna is depicted in Figure 6.2a. The resonant frequency of the tag is f = 5.09 GHz, 

while the peaks and nulls in the scattered signal are slightly shifted around it. Hence, the locations 

of nulls and peaks in the backscattered response from the tag are not the exact values of the 

resonant frequencies of the tag. This is very important in the identification of a tag with high 

density of data, in which case the resonant frequencies are close to each other. In Figure 6.3b, the 
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group delay of the received signal for two different cases is shown. Although the first peak of the 

group delay is exactly located at the resonant frequency of the slot, there are some other peaks 

corresponding to variations in the early-time response. Hence, the absolute value of the scattered 

signal and its group delay cannot be used to accurately extract the ID of the tag. In contrast to the 

absolute-value and group-delay response of the scattered field, the detection can be performed 

based on the time-domain response. As mentioned before, the time-domain response of the tag is 

the combination of the early-time and late-time responses. The aspect-independent parameters of 

the tag, the complex natural resonances (CNRs), are included in the late-time response. This part 

of the response must be separated from the early time, which contains the specular reflections from 

the tag.  

 

Figure 6.1 Single-bit tag illuminated by a plane incident field.  

               

                                   (a)                                                                             (b) 

Figure 6.2 (a) Scattered electric field from the tag for two different orientations of receiving 

antenna, (b) Group delay of the scattered field for two different orientations of receiving antenna. 
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6.2 Space-Time-Frequency Anti-Collision Algorithm for Identifying 

Chipless RFID Tags [80] 

In Figure 6.4, the schematic view of multiple tags presented in the main beam of the reader antenna 

is depicted. As it shows, the received backscattered signal is composed of the reflected signals 

from each tag. Assuming the configuration in Figure 6.4, the scattered field can be written in the 

Laplace-domain as (6.6). 

 e( ) ( , ; ) ( )s s ds    sE r G r r J r  (6.6) 

The source points are presented in the primed coordinate and the observation points are presented 

using unprimed coordinates. Quantity eG is the electric dyadic Green’s function [13] and Js is the 

surface current density induced on the scatterer. Here, the reader area is assumed as a scattering 

medium with tags as the scattering centers. For the case of multiple tags, the current density can 

be written as the summation of the currents on the tags as 

 s sm m

1

( ) ( )
M

m

   J r J r r  (6.7) 

in which M is the number of tags, and m
r and Jsm are the location and induced current on the mth 

tag, respectively. Backscattered fields from the tags can be deduced from the electric field integral 

equation (EFIE) as 

 

 

Figure 6.3 Multiple chipless RFID tags present in the reader zone [80] (With permission, 

Copyright© 2014 IEEE). 
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 e ˆ( , ; ) ( ) ( )ss ds t S        
inc

G r r J r r E r r  (6.8) 

in which inc
E is the incident electric field which emanates from the antenna, t̂ represents the unit 

vector tangential to the tag surface, and s=α+jω is the complex frequency. On the other hand, 

based on singularity expansion method (SEM), the current in (6.7) and (6.8) can be expanded by 

a series of complex natural resonances as  
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where (n)

smJ and (n)

ms are the nth natural-mode current and pole of the mth tag. Compared to complex 

natural resonances, the residue coefficients, (n)

mA , are aspect-dependent, depending strongly on the 

polarization and incident angle. The last summation in (6.9) contains the entire-domain function 

including the early-time response from the scatterers [81, 82]. The early-time response originates 

from the scattering centers of the scatterer [81, 83-85]. By inserting (6.9) in (6.8) and applying the 

method of moments, the induced currents on the tags can be obtained. Assuming the frequency 

band of operation covers all the natural resonances of the tags, the backscattered signal from 

induced current on the tags can be written in time domain as 
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in which tm represents the turn–on time of the mth tag. It is assumed that CNRs of each tag have 

the same turn-on time. For complex scatterers, this assumption might not be accurate. According 

to Altes’ model [17] mentioned in Chapter 2, the early-time response can be approximated by a 

series of pulse responses as 
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where tm is the delay time equal to the roundtrip time between the antenna and the mth tag. The 

impulse response of the mth tag in (6.11) is summed over the integrals and derivatives of the Dirac-

delta function. Here, the negative and positive value of p refers to the pth integral and derivative of 

the delta function. Therefore, (6.10) can be written in Laplace-domain as  
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in which the early-time summation is summarized by Am. Comparing (6.10) with (6.12), there is 

a duality between late-time response in time domain and the early-time response in Laplace domain 

[80, 84]. By applying STMPM to (6.10), the complex resonances of the tags and their residues are 

found at each snapshot of time. By shifting the sliding window by T in the late-time region, the 

backscattered signal can be written as 
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in which 
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In normal logarithmic scale, (6.14) can be expressed as 

    T,n n (n)

m m mLn Ln T R R  (6.15) 

As can be seen in (6.15), the residues linearly decrease versus T with slope
(n)

m . By applying 

Narrow-frequency matrix pencil method (dual of STMPM) to the frequency response in (6.12), a 

space-frequency representation is obtained in which the scattering centers (here the tags) of the 

response are depicted versus frequency. In this diagram, the resonant frequencies of the tags in the 

late time are converted to some unstable poles. In practical applications limited to the frequency 

band of 3.1-10.6 GHz, when some dense multi-bit tags exist in the reader zone, the resonances of 

the tag in the frequency domain perturb the early-time response. In these cases, by inserting the 

poles and related residues in (6.10), the early-time part of the signal is found as 

 ms
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By applying NFMPM to (6.16), the delay times (tm) are accurately obtained. The flowchart of the 

proposed algorithm is illustrated in Figure 6.4. The aforementioned technique is generalized and  
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Figure 6.4 Flowchart of the proposed anti-collision algorithm [80] (With permission, Copyright© 

2014 IEEE). 

can be used for any multi-resonance tag schemes. For better illustration, Figure 6.5a shows a 

scenario in which two single-bit tags are illuminated by a plane wave. In the first case, the resonant 

frequencies of the tags are assumed at f1= 7.8 GHz and f2=9.8 GHz and the tags are located R=20 

cm away from each other. Each tag is characterized by a complex natural resonance (CNR) which 

is created by inserting a quarter-wavelength slot on the tag surface [42, 45]. The approach is 

applicable for other types of tag including slot, transmission line, or spiral resonators [41, 44-47, 

86]. The time-domain response is shown in Figure6.6a. The early-time and late-time responses of 

the tags are illustrated by two different lines. The sliding time and window length are shown by T 

and TW = 0.5ns. The time-frequency representation of the response is shown in Figure 6.6b. 

According to the figure, the unstable poles in the early-time part converge to the CNRs at turn-on 

times (t1 and t2). Then, after t2=2.4ns, the response contains the backscattered signal from both 

tags; whereas before t2, the backscattered signal contains just the response from the first tag. In 

contrast to the time-frequency  
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(a)                                                            (b) 

Figure 6.5 (a) Two single-bit tags and (b) two 2-bit tags spaced by R are illuminated by a plane 

wave. Units in mm [80] (With permission, Copyright© 2014 IEEE). 

                  
(a)                                                                       (b) 

                  
(c)                                                               (d) 

Figure 6.6 (a) Time-domain backscattered signal from two tags spaced by R=20cm (b) time-

frequency representation of the signal by applying STMPM with T = 0.5ns. (c) time-residue 

diagram of the signal. (d) Separated responses of the tags in frequency-domain [80] (With 

permission, Copyright© 2014 IEEE). 
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representation of the signal, in the time-residue diagram of Figure 6.6c, two poles can be easily 

distinguished. The pole with turn-on time t1=1ns is associated with tag #1 and likewise, the pole 

with turn-on time t2=2.4ns is related to the second tag. According to (6.15), the slopes of the lines 

in Figure 6.6c are equal to the damping factor of the poles. By reconstructing the backscattered 

signal from the tags in the time domain, the contribution of each tag in the late-time response of 

the received signal is shown in Figure 6.6d.As can be seen, the amplitude of the backscattered 

signal from the first tag is higher than that of the second tag. The amplitudes at the resonant 

frequencies are directly proportional to the residues of the poles. In addition, the frequency 

response of each tag is depicted separately which simplifies the identification process. As another 

example, two similar single-bit tags are considered in Figure 6.5a resonating at f1=7.7GHz. The 

time-frequency and time-residue representations of the signal are shown in Figures 6.7a and 6.7b, 

respectively. Two turn-on times of the resonators are shown in Figure 6.7a. By plotting the residues 

versus sliding time, there is a jump in the residue at the second turn-on time. This jump comes 

from the resonant frequency of the second tag. Assuming the pole of the tags as s1=α1+jω1 and 

the residues of the first and second tag’s poles as R1 and R2, then the backscattered signal after t2 

can be written as 

 
          1 1 2)1 1 1 1 1 1 1 1 1 1 2

(( )

1 2 1 1

j t tj t t j t j t j t
R e R e e R e R e

                
    (6.17) 

Hence, the residue of the single pole R1 before t2 becomes the term in the parentheses in right-hand 

side of (6.17) after t2. Since the poles of the tags have the same damping factors, the slopes of the 

lines are the same. The late-time frequency response of the tags is shown in Figure 6.7c. Although 

they share the same resonant frequency and quality factor, they have different amplitudes at the 

resonant frequency. By applying NFMPM to the total frequency-domain response of the tags 

(without subtracting the late-time response), the locations of the tags are depicted in Figure 6.7d 

in a space-frequency diagram. There are some unstable poles (between R=5cm to R=25cm) 

associated with the resonances of the tags. These poles can be suppressed by subtracting the late-

time response from the total response in (6.12). In Figure 6.8, the time-residue of the backscattered 

signal from the tags is depicted for different polarizations of tag. As can be seen when the second  
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(a)                                                                   (b) 

              
(c)                                                          (d) 

Figure 6.7 (a) Time-frequency and (b) time-residue representation of the signal by applying 

STMPM with T= 0.5ns. (c) Separated responses of the tags in frequency-domain (d) space-

frequency response after SFMPM [80] (With permission, Copyright© 2014 IEEE). 

 

tag is rotated by 45°along its axis, the electric field of the incident wave is perpendicular to the 

slot’s length and it excites the tag’s pole more effectively. According to Figure 6.8, the residue of 

the first tag does not change while the residue of the second tag shifts proportional to the 

polarization of the second tag. When the slot’s length is in parallel with the incident electric field 

(90° rotation), the excited residue of the second tag is small and as can be seen in Figure 6.8, it 

produces a small shift at the second turn-on time. 

In the third example as shown in Figure 6.5b, two 2-bit tags are illuminated by an incident 

plane wave. The first illuminated tag represents two resonant frequencies at f1 = 5.3 GHz and f2 = 

7.1GHz (ID = 11) and the second tag has no resonant frequencies (ID = 00). In addition, the RCS 

of the second tag is much smaller than that of the first. The time-domain and frequency-domain  
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Figure 6.8 6.8. Time-residue diagram for different polarizations [80] (With permission, 

Copyright© 2014 IEEE). 

           
(a)                                                             (b) 

                        
(c)                                                                (d) 

Figure 6.9 (a) Time-domain signal (b) frequency-domain response (c) time-frequency diagram 

after STMPM (d) space-frequency diagram after SFMPM [80] (With permission, Copyright© 

2014 IEEE).  
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responses are depicted in Figures 6.9a and 6.9b. In this case, the early-time response of the second 

tag is obscured in the late-time response of the first tag. By applying STMPM and NFMPM to the 

time-domain and frequency-domain responses, the time-frequency and space-frequency diagrams 

of the signal are shown in Figures 6.9c and 6.9d. Similar to previous examples, if one knows the 

turn-on times and poles, the ID of each tag can be found by reconstructing the backscattered signal 

of each tag.  Here, the presence of the second tag cannot be detected without the space-frequency 

diagram. 

As another example, two 3-bit tags are assumed 20cm apart. The configuration and 

dimensions of the tags are shown in Figure 6.10.  The tags represent ID1:111 and ID2:101. The 

presence and absence of each assigned resonant frequency represents bits 1 and 0, respectively. 

The assigned resonances are at f1= 6.2GHz, f2=8.7GHz, and f3=10.9GHz. The simulation is 

performed in CST Microwave Studio. The pole diagram of the three-bit tag is depicted in Figure 

6.11. The illuminating plane wave first hits tag #1 and then tag #2. The time, frequency, time-

frequency and time-residue responses of the backscattered field are shown in Figure 6.12. 

Obviously, the identification process cannot be done perfectly with backscattered frequency-

domain response. From the time-frequency response, it can be inferred that the first tag represents 

three resonant frequencies. At t = 1.8 ns, the illuminating wave hits the second tag with ID2 = 101. 

According to Figure 6 12c, three resonant frequencies exist in the backscattered signal after t = 1.8 

ns. In the simulation results, the window length of TW=0.5ns is used. Another important parameter 

introduced in matrix pencil method (MPM) is p which is the number of significant decimal digits 

in the sampled data. It acts as a filtering parameter determining the accuracy of the extracted poles. 

                      
(a)                                                                  (b)          

Figure 6.10 Schematic view of the tags. (a) ID1:111, (b) ID2: 101[80] (With permission, 

Copyright© 2014 IEEE). 
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Figure 6.11 Pole diagram of the 3-bit tag [80] (With permission, Copyright© 2014 IEEE). 

For noisy data, we usually use p ≤ 3. Here, p = 4 is used for more accuracy. For values less than 

4, just two poles of the second tag after t = 1.8 ns are represented in the time-frequency diagram. 

To identify the ID of the second tag, we use the time-residue diagram shown in Figure 6.12d. As 

can be predicted by the mathematical formulation in (6.15) and (6.17), the residues of the first and 

third bits have jumps at the second turn-on time whereas the residues of the second bit are located 

in a straight line without any jump at the second turn-on time. It confirms that the second resonant 

frequency after t = 1.8ns is related to the first tag’s response. Therefore the ID of the second tag is 

ID2 = 101. The slopes of the poles in the time-residue diagram are related to the damping factors 

of the poles in Figure 6.11. As an example, the second pole, which has the lowest damping factor, 

has the steepest slope in Figure 612d.  

As a final scenario, the incident wave first illuminates tag #2 with ID2 = 101, then second tag 

with ID1 = 111. The time-residue diagram of the backscattered signal is shown in Figure 6.13a. In 

this case, all the residues have a jump at the second turn-on time. By obtaining the residues and 

poles of the signal, the contribution of each tag to the backscattered signal is shown in Figure 

6.13b.  
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(a)                                                                   (b) 

 

                                
(c)                                                                             (d) 

Figure 6.12 (a) Time-domain backscattered signal from two tags spaced by R=20cm (b) frequency-

domain response (c) time-frequency representation of the signal by applying STMPM with T= 

0.5ns. (d) Time-residue diagram of the signal [80] (With permission, Copyright© 2014 IEEE).  

                   
(a)                                                                     (b) 

Figure 6.13 (a) Time-residue diagram of the backscattered signal (b) separated responses of the 

tags in frequency-domain [80] (With permission, Copyright© 2014 IEEE). 
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6.2.1 Space, Time and Frequency Resolutions 

Similar to other time-frequency analysis methods such as wavelet transforms, short-time Fourier 

transform and so on, time and frequency resolutions are key parameters in the proposed method. 

The resolution in time and frequency domains is strongly dependent upon the length of the sliding 

window. The frequency resolution is related to the minimum distance in frequency between two 

adjacent resonant frequencies which can be identified. We discussed about the effect of window 

length and filtering parameter on the resolution in chapter 5.  

Other important parameter affecting the frequency resolution is noise. In order to study the 

effect of the window length on the frequency resolution, the time-domain signal in (6.18) is 

considered as the backscattered signal from a two bit tag. 

   1 1( ) sin(2 ) sin(2 ( )ts t Ae f t f t n t       (6.18) 

For more simplicity, the poles are assumed to have the same residue and damping factor and n(t) 

is the additive Gaussian white noise. Assuming f1 = 5 GHz and α = 1e8 (1/s), the minimum required 

frequency length of window for distinguishing the poles is shown in Figure 6.14 as a function of 

Δ for different SNRs. As it shows, when the resonances of the tag are located closer to each other, 

we need to increase the window’s length to distinguish the resonances. Also, for lower SNR cases, 

a larger value of Tw is required to distinguish the poles. The filtering parameter in MPM (p) is 

directly related to SNR. For lower SNRs, a lower value of p should be employed in the algorithm  

 

 

Figure 6.14 Minimum required window length as a function of Δ for different SNRs [80] (With 

permission, Copyright© 2014 IEEE).   
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Figure 6.15 6.15. Backscattered signal from two single-bit tags [80] (With permission, Copyright© 

2014 IEEE). 

so as not to allow the poles due to noise to come into the picture. Here, the value of p is chosen as 

5, 4, and 3 for SNR = 20, 5, and 0 dB, respectively. By increasing the length of time-window, 

frequency resolution is increased which deteriorates the time resolution. For example, the turn-on 

time in Figure 612c is located in between 1.5ns and 2ns which causes a significant error in 

calculating locations of the tags. On the other hand, the range resolution depends on the pulse 

width of the incident wave. Figure 6.15 shows the backscattered signal from two single-bit tags. 

The early-time response of the tags is a replica of the incident wave whose width can be 

approximated by [87] 

 
p

1 1
0.13

(10.6 3.1)
W ns

B GHz
  


 (6.18) 

where B is the operational bandwidth of the incident wave (3.1-10.6 GHz). Hence, the range 

resolution can be calculated as 

 2
2

pcW
R cm    (6.20) 

In practical applications, we usually need a few cycles of the sinusoidal signals in the window 

to extract the poles. Considering the worst case as fmin = 3.1 GHz, the minimum range resolution 

at which the tags and their IDs can be distinguished using the arrival times of the early-time 

responses is between 7-15cm.  
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6.3 Separating the Early-Time and Late-Time Responses for Detection, 

Identification, and Localization of Chipless RFID Tags 

In previous section, the turn-on time and IDs of the tags were obtained by applying STMPM and 

NFMPM to the time-domain and frequency-domain backscattered signal received by the antenna. 

As mentioned, in multi-tag applications, the resolution in space, time and frequency plays an 

important role in detection, identification and localization of the tags. A few cycles of the late-time 

response is required in order to place the sliding window in the late time for extracting the poles 

of the tag. The detection of the tags is also very challenging when the tags are located less than 

10cm away from each other. In such cases, one needs wider bandwidth in order to decrease the 

resolution in space. Based on the algorithm proposed in Figure 6.4, in multi-bit tags with high 

quality CNRs, the late-time poles must be removed from the frequency response in order to extract 

the delay-times of the scatterers accurately by applying NFMPM to the frequency-domain 

response. The accurate calculation of amplitude and phase of the residues is not easy, especially 

in low-Q resonances of the tags. By employing an optimization process in the detection procedure, 

the accuracy of the approach is improved which complicates the processing calculations in the 

reader. According to section 5.3, by sliding the window along the time-domain signal, the position 

of the impulses in the received signal can be distinguished by monitoring the zero-crossing points 

in time-damping factor diagram. This technique is very efficient when multiple reflections exist in 

the signal.  

As an example, Figure 6.16 shows a 4-bit tag located 30 cm away from a TEM horn antenna. 

The dimension of the antenna is depicted in Figure 6.16. The reflection coefficient of the antenna, 

in the presence and absence of the tag, is seen in Figure 6.17a. The reflection coefficient of the 

antenna in time domain is seen in Figure 6.17b. After multiple reflections from the feeding point 

and antenna aperture, the radiated field interrogates the tag. Since the embedded resonances of the 

tag have high quality factors, the late-time response from the tag stays for long time. The multiple 

reflections from the antenna and tag are located in the let-time response of the tag. For better 

illustration, by applying STMPM to the time-domain reflection coefficient, the extracted damping 

factors are shown in Figure 6.17c versus the center of window. The location of multiple reflections 

from the antenna aperture are located at zero-crossing points of the damping factors. The time-
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frequency representation of the signal is shown in Figure 6.17d. The resonant frequencies of the 

tag are stably located at f = 4.8 GHz, f = 5.2 GHz, f = 6GHz, and f = 6.4 GHz.  

The proposed technique can be efficiently used in detecting multiple tags located close to each 

other. As an example, Figure 6.18 depicts the time-domain and time-damping factor diagrams of 

the received signal when two 3-bit tags are located in the reader area. Three cases as d = 20 cm, d 

= 10 cm and d = 4 cm are considered here. Since the early-time responses of the tags are located 

very close to each other and are followed by the late time responses of the tags, the extraction of 

the scattering centers (here the tags) from the time-domain response is very challenging; While, 

by applying the proposed technique, the location of the tags can be obtained from the zero-crossing 

times in time-damping factor diagram.  

6.4 Measurement Results 

Three 3-bit tags with IDs of ID1 = 101, ID2 = 111, and ID3 = 011 are designed based on the proposed 

technique in Chapter 3. The second and first bits of tags #1 and #3 are respectively nulled by 

soldering a stub in the middle of the related slots. This manual soldering causes a small shift in the 

resonant frequencies which is negligible in our analysis. Two measurements are performed: First, 

according to Figure 6.19, two tags (ID1 and ID2) are located 20cm away from each other in front 

of a UWB quad-ridge horn antenna. Then the third tag is located 15cm from the second tag. The 

antenna is connected to the network analyzer and the S11 is measured while the frequency is swept 

from 10 MHz to 25 GHz. This wide frequency range is chosen for better resolution in the time 

domain. For practical applications, the standard frequency band (3.1-10.6 GHz) can be used for 

measurement. The data measured by the network analyzer cannot be used directly to extract the 

poles because it includes undesired components such as the contribution of TEM horns and the 

scattering from background objects in addition to the tag response. As a result, another 

measurement is performed without the presence of the tags to subtract the effect of the background 

objects from the first measured data. The input power is 18dBm. The time-domain backscattered 

signal for two cases is shown in Figure 6.20a. By applying STMPM to the time-domain response, 

the time-frequency diagram of the signal is obtained, shown in Figure 6.20b. The optimum values 

of p and TW are used at each snapshot of time for extracting the poles. Here, we used p = 4 and 

Tw= 0.5 ns for 3.5ns ≤ t ≤ 5.3ns and p = 5 and Tw = 0.6 ns for 5.3ns ≤ t. 
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Figure 6.16 A 4-bit chipless RFID tag located 30 cm away from the antenna. 

                  

                                       (a)                                                                            (b) 

           

                                             (c)                                                                           (d) 

Figure 6.17 Reflection coefficient of the antenna loaded by tag in (a) frequency domain, (b) time 

domain, (c) Time-damping factor diagram and (d) Time-frequency diagram of the S11. 
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        Time-domain signal for d = 20 cm                Time-damping factor for d = 20 cm       

        

        Time-domain signal for d = 10 cm                Time-damping factor for d = 10 cm 

          

       Time-domain signal for d = 4 cm                    Time-damping factor for d = 4 cm 

                             (a)                                                                                  (b) 

Figure 6.18 (a) Time domains and (b) Time-damping factor diagrams of the backscattered signal 

from two tags. 

1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

Time (ns)

E
 (

m
V

/m
)

-2 0 2 4

x 10
10

0

1

2

3

4

Damping factor (s-1)

T
+

T
w

/2
 (

n
s)

1

2

3

5

4

1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

Time (ns)

E
 (

m
V

/m
)

-2 0 2 4

x 10
10

0

1

2

3

4

Damping factor (s-1)

T
+

T
w

/2
 (

n
s)

1

2

3

5

4

1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

Time (ns)

E
 (

m
V

/m
)

-2 0 2 4

x 10
10

0

1

2

3

4

Damping factor (s-1)

T
+

T
w

/2
 (

n
s)

1

2

3

5

4



 

160 

 

These parameters are chosen based on number of resonances in the snapshot of time and SNR. 

Due to the limited time resolution, the exact turn-on times cannot be obtained from this diagram. 

The exact turn-on time is crucial in reconstructing the tag responses because the time-domain 

reconstructed signal is very sensitive to phase (or turn-on times). As can be seen in Figure 6.18, 

the second set of poles excited at t = 5.3ns have different residues than the poles excited at t = 

3.9ns. Thus, the first and second tags represent two and three resonant frequencies, respectively. 

At t = 6.2 ns, the poles of the third tag are excited. The third tag is rotated 45° with respect to 

incident electric field. The resonant frequencies and ID of each tag can be identified from the time-

frequency and time-residue diagrams. In Figure 6.22a, the real and imaginary parts of the 

backscattered signal versus frequency are shown. Following the algorithm presented in the 

flowchart of Figure 6.4, by suppressing the late-time poles of the tags, the space-frequency diagram 

of the response is shown in Figure 6.22b for two cases. Here, the accurate turn-on times (or 

equivalently locations of the tags) are depicted in a space-frequency diagram  

 

 

 

Figure 6.19 Set-up for the measurement of backscattered signal from two tags [80] (With 

permission, Copyright© 2014 IEEE). 
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                                   (a)                                                                                     (b) 

Figure 6.20 (a) Time-domain backscattered signal from the tags, (b) Time-frequency 

representation of the backscattered signal [80] (With permission, Copyright© 2014 IEEE). 

 

 

Figure 6.21 Time-residue representation of the backscattered signal [80] (With permission, 

Copyright© 2014 IEEE). 
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(a)                                                                              (b) 

Figure 6.22 (a) Real and imaginary parts of the measured backscattered signal, (b) Space-

frequency diagram of the measured response [80] (With permission, Copyright© 2014 IEEE). 

6.5 Localization of Chipless RFID Tag [88] 

In tracking applications, it is desired to know the precise location of the tag in the reader area. For 

example, by knowing the tag location, the reader antenna can direct the antenna beam to the object, 

suppressing the interference signals from background objects [89]. In addition, by enabling this 

capability in conventional chipless RFID systems, it can be used in a wider range of crucial 

applications such as health-care monitoring in hospitals. For example, in microwave hyperthermia 

of breast cancer [90], the accurate localization of the tumor is necessary. Additionally, the 

localization technique is useful in the positioning of chipless RFID sensors placed in different 

locations of the medium in order to sense the density of a particular gas [91] or the humidity of the 

medium [78]. In such cases, because of the inhomogeneity of the material under consideration, 

multiple tags are used in different places. Therefore, the accurate localization and identification of 

the tags is an essential part of the measurement set-up. 

Ranging techniques can be categorized as time-based ranging and received signal strength-

based ranging [92]. The former is based on the time of arrival (TOA) of the signal while later is 

based on the principle that the greater the distance between two nodes, the weaker their relative 

received signals are. In practical applications, taking advantage of ultra-wideband technology in 

the detection process, the first method shows better accuracy and precision than the second [92]. 

However, there are some factors which affect the performance of the ranging process in the reader. 

In ideal propagation conditions, without considering multipath and interference phenomena in our 
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discussion, the ranging accuracy for SNR larger than 15dB is limited to the Cramer-Rao (CR) 

bound as [92, 93] 

 

2

2 2
{ }

8

c
E R

SNR 
  (6.21) 

where E{.}1 is the mean square error (MSE), R accounts for the estimation error, c is speed of 

light in free space and β represents the effective bandwidth of signal [94]. For lower SNRs, the 

estimation error is limited to a stricter bound, called the Ziv-Zakai bound [92]. The formulation is 

more difficult for multipath effects. As the simplest case, we consider the CR bound in (6.21). 

According to (6.21), the ranging error is strongly dependent on the SNR and the pulse shape. 

Figure 6.24 shows the ranging error as a function of SNR for CR bound in the presence of AWGN 

noise. The frequency bandwidth is 3.1-10.6 GHz. For SNRs lower than 10dB, the Ziv-Zakai bound 

is more accurate which shows worse ranging error than the CR bound. It is seen that by decreasing 

SNR, the ranging error is increased. This may happen when the tag is located at larger distances 

from the reader antenna. In addition, the detection technique plays an important role in ranging 

calculations. In most applications, classical matched filter (MF) TOA estimator is used to find the 

time when the signal has its maximum peak [92]. This strategy might not be the best method for 

localizing chipless RFID tags. The backscattered response from the tag includes early-time and 

late-time responses. In the cases where the early-time response is much stronger than the late-time 

response, the aforementioned technique works well. However in multi-bit tags, the late-time 

response of the tag is composed of high-Q sinusoidals corresponding to the embedded poles on 

the tag. At time instances when some sinusoidals are in-phase, their effect might be constructive 

enough to strengthen the late-time response at those time instances. Additionally, if two or more 

tags are located in the reader area, the early-time response of the second tag might be hidden in 

the late-time response of the first illuminated tag. Also, for bi- static cases, there is no guarantee 

that the early-time response is stronger than the late-time response.  

Although many efforts have been made in the design and implementation of chipless tags, 

there is a demanding request for improved detection techniques in the reader, especially for 

localization applications. In [95], a space-time-frequency method has been suggested for the 

localization of the tags. Later on, the proposed method in [95] was confirmed by experimental 

results in [89]. 
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Figure 6.23 Ranging error versus SNR [88] (With permission, Copyright© 2014 IEEE). 

 

The localization is based on the employment of three antennas spaced at different points in 

the reader area. For larger spaces, the area can be divided into some unit cells covered by some 

antenna arrangement. Although the authors in [89] did not consider the circumstances where the 

late-time response is stronger than the early-time part and also when multiple multi-bit tags are 

present in the reader area, the method performs well within 2.1cm and 3.5º error in distance and 

angle for a single tag. Here, a new technique is introduced for accurate localization of chipless 

RFID tags in the reader area. Similar to [95], three antennas are used in the unit cell. Assuming 

the reader area as the scattering area, the tags can be regarded as the scattering centers of the 

medium. Based on Altes’ model, the early-time response from the reader zone can be expanded 

versus the localized impulse responses of the scattering centers. By applying NFMPM, which is 

the dual of the short-time matrix pencil method (STMPM), to the frequency-domain response of 

the tag at each antenna port, its location can be easily found by some mathematical manipulations. 

The major advantages of the technique proposed herein are as follows: 

1) An easy-to-implement approach is proposed to qualitatively improve localization accuracy 

in chipless RFID systems. 

2) This technique is applicable for localization of multiple multi-bit tags in the reader zone. 

3) By obtaining the accurate value of turn-on time of the tag, its ID can be easily found by 

applying STMPM to the time-domain response.  
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4) By taking advantage of the three-antenna implementation in the unit cell, the effects of noise 

and polarization issues in the identification can be reduced considerably. 

5) The interferences from adjacent unit cells can be strongly eliminated from the backscattered 

signals. 

Figure 6.24 illustrates the system configuration arranged for the localization of chipless RFID 

tags. The area under consideration is subdivided into unit cells. Each unit cell is covered by three 

ultra wideband antennas spaced by 120º with respect to the center of the unit cell. The frequency 

of operation is assumed to be 3.1-10.6 GHz compatible with FCC requirements. By employing 

three antennas at each unit cell and obtaining the turn-on time of the tag (or equivalently the 

distances from the tag to the antennas), the position of the tag can be calculated easily. In addition, 

this arrangement has some other benefits which improves the detection and identification 

capability of the reader. By increasing the distance between tag and antenna, the amplitude of both 

early-time and late-time responses decrease which leads to a decrease in SNR. This results in two 

different drawbacks in the localization and identification of the tags. According to (6.21), by 

degrading SNR of the received signal, the ranging accuracy deteriorates. Also, by increasing the 

distance and adding extra noise to the signal, the extraction of the embedded poles of the tag 

becomes extremely challenging. With a three-antenna arrangement and some power 

considerations, we can ensure that the SNR of the backscattered signal from the tag is above a 

threshold for at least one of the antenna ports. Hence, we can obtain the signature of the tag by 

analyzing the strongest backscattered received signal from the tags.  

 

                     

Figure 6.24 System configuration for localizing chipless RFID tags in the reader area [88] (With 

permission, Copyright© 2014 IEEE).  

Local reader

Center reader

Chipless tag

x

y

ANT. 1

ANT. 2
ANT. 3

 

  

   3

R

Central 

reader



 

166 

 

Furthermore, by receiving the backscattered signal from three different directions, the direction 

and polarization dependency of the tag can be mitigated. In conclusion, a three-antenna 

configuration in a unit cell facilitates both localization and identification processes in the reader 

part. According to Figure 6.24, three antennas in the unit cell are spaced at 120º on a circle of 

radius R. Assuming multiple multi-bit chipless RFID tags present in the reader area, the 

backscattered responses at the antenna ports contain the reflections from the tags, antennas and 

interferences from the adjacent unit cells. Considering si(t) as the input signal at the ith antenna 

port, the backscattered signal can be written as the combination of early-time and late-time 

responses of the scattering objects as 
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where en,i is the early-time response of the nth object at the ith antenna port. The second part in the 

bracket contains the late-time responses from the objects which based on singularity expansion 

method (SEM) is summed over all natural resonances ( m

ns ) with weighting residues ( m

nR ). U(.) is 

the Heaviside function and tn,i is the turn-on time of the nth scatterer at the ith antenna port. Nt is 

assumed to be the number of the tags in the cell, No is the number of signals other than the tag’s 

reflections coming from background objects and interferences, and Mn is the number of bits 

embedded on the nth tag. Based on Altes’ model, the early-time response from each scatterer can 

be expanded versus the impulse response of the localized scattering centers as  
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where tn,i is the delay-time from the ith antenna to the nth scatterer. The impulse response of the nth 

scatterer in (6.23) is summed over the integrals and derivatives of the Dirac-delta function. Here, 

the negative and positive values of p refer to the pth integral and derivative of the delta function, 

respectively. For simple scatterers as in our case, one term of the summation might be enough. By 

inserting (6.23) in (6.22), the received signal in the Laplace domain can be written as 
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Figure 6.25 Flowchart of proposed localization algorithm [88] (With permission, Copyright© 2014 

IEEE). 

in which n,p,i n,p,i( ) ( )pA s a s S s . By employing the method proposed in Section 6.2, suppressing the 

late-time response and applying the narrow-frequency matrix pencil method (NFMPM) to the 

frequency-domain of early-time response, the accurate values of roundtrip time of the scattering 

centers, tn,i , can be obtained. In this approach, a sliding-frequency window is moved along the 

frequency axis and the matrix pencil method is applied to each window. By converting the 

extracted complex times to distance as dm = ctm/2 and plotting dm versus sliding frequency, the 

distance from the tags to the antenna can be monitored in the space-frequency diagram. Knowing 

the distance of a tag from the antennas, its location can be calculated with respect to the reference 

point at the center of the unit cell. After obtaining the turn-on times of the tags, the time-window 

can be adjusted in the late-time response of the tag in order to extract the corresponding poles of 

the tag. The flowchart seen in Figure 6.25 summarizes the proposed localization technique. 

As an example, the 3-bit tag under consideration is shown in Figure 6.26. It consists of three 

quarter-wavelength slots resonating at f1=5.1GHz, f2=7.1GHz, and f3=8.1GHz. The simulated and 

measured RCS of the tag is depicted in Figure 25 when the incident electric field is perpendicular 

to slot length. Based on the RCS of the tag and sensitivity of the receiver, the input power can be 

adjusted so as to maintain an SNR above a certain threshold. For larger tags, the reflected signal  
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Figure 6.26 Configuration of the 3-bit fabricated tag [88] (With permission, Copyright© 2014 

IEEE). 

is stronger which results in lower ranging error based on (20). According to [3], the minimum SNR 

at which the tag’s ID can be accurately identified is about 15dB. Assuming the tag is located in 

the far field of the antenna, the radar budget equation can be written in the frequency domain as 
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P A f f

P c R




  (6.25) 

where Pr and Pt are the received and transmitted power at the antenna with the effective area of A. 

The quantity  is the frequency-dependent RCS of the tag as shown in Figure 25, c is the speed 

of light in free space and R is distance from tag to antenna. A TEM-horn antenna with a length of 

30 cm and effective aperture surface area of 150 cm2 is connected to a network analyzer to measure 

the backscattered signal from the tag. Assuming Rmax = 100cm as the maximum detectable range, 

the ratio of received to transmitted power at the antenna is shown versus frequency in Figure 6.28 

The measured received noise by the antenna in the laboratory environment is about -60 dBm. The 

peaks of the frequency-domain response in Figure 6.28 are associated with the resonant 

frequencies of the tag. As it shows, at the first resonant frequency of around f = 5GHz, the value 

of Pr/Pt is -50dB. This value is the combination of the early-time response and the corresponding 

residue of the late-time response of the tag at f = 5 GHz. For high-Q resonances, the late-time 

residue is effectively dominant. Assuming 10dB for the early-time response and polarization 

mismatch, transmitted power should be adjusted to have Pt > 10 dBm in order to keep the SNR 

above 15 dB. By choosing Pt = 20 dBm, the backscattered response from the tag is calculated by 

subtracting the resultant S11 at the antenna port from the off-tag measured S11. In Figure 6.29, the 

measured backscattered electric field from the tag is depicted for different distances of the tag from 

the antenna. For better comparison, the electric fields are shifted up along E-axis. It is seen that by 
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increasing the distance, the backscattered response becomes noisy. In order to extract the 

resonances of the tag from the backscattered signal, short-time matrix pencil method (STMPM) is 

applied to the time-domain signal. As an example, the frequency-domain, time-domain, time-

frequency, and time-residue responses of the backscattered signal from the tag located at 30 cm 

from the antenna are shown in Figure 6.30. From the time-domain response, it is seen that t= 2ns 

at which the signal has its maximum amplitude can be considered as the roundtrip time from the 

 

 

Figure 6.27 Simulated and measured RCS of the tag when the incident electric field is 

perpendicular to slot length [88] (With permission, Copyright© 2014 IEEE). 

 

Figure 6.28 Normalized received power at the antenna versus frequency [88] (With permission, 

Copyright© 2014 IEEE). 
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Figure 6.29 Measured time-domain response from the tag for different distances [88] (With 

permission, Copyright© 2014 IEEE). 

 

tag to the antenna. The time-domain response is composed of early-time and late-time responses. 

The early-time part emanates from the scattering centers of the tag and depends strongly upon the 

incident angle and polarization. The late-time response is the summation of damped sinusoidals 

corresponding to the slot poles. All the information embedded on the tag is included in the late-

time response. The time-frequency diagram of the response shows the resonant frequencies 

(frequency-domain data) and also, the turn-on times (time-domain data) of the resonances in time. 

Because of limited time resolution in time-frequency analysis, the exact turn-on time cannot be 

extracted, especially when multiple tags are present in the reader area. It also leads to considerable 

error in ranging calculations. The real and imaginary parts of the backscattered signal are shown 

in Figure 6.31 versus frequency. By applying NFMPM to the frequency response, the distance of 

the tag from the antenna is illustrated for different cases in a space-frequency diagram in Figure 

6.32. According to this diagram, the scattering centers, which in this case are the tags, reflect the 

incident pulse. The accuracy of the method is shown for different distances from tag to antenna. 

The proposed method is applied to the cases where multiple tags are located in the main beam of 

the antenna.  
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(a)                                                                (b) 

 

             
(c)                                                      (d) 

Figure 6.30 (a) Frequency-domain, (b) time-domain, (c) time-frequency and (d) time-residue 

representation of measured backscattered signal from the tag [88] (With permission, Copyright© 

2014 IEEE).  

 

                      
                                               (a)                                                             (b) 

Figure 6.31 (a) Real and (b) imaginary parts of the measured backscattered signal from the tag[88] 

(With permission, Copyright© 2014 IEEE). 
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Figure 6.32 Space-frequency diagram of measured backscattered response from the tag for 

different cases [88] (With permission, Copyright© 2014 IEEE). 

 

As an example, two 2-bit tags with high-Q resonators are spaced 25cm apart. The scenario 

and dimensions of the tags are depicted in Figure 6.33a. An incident electric field illuminates the 

tags and the backscattered response is retrieved in the reader. The frequency and time-domain 

responses are depicted in Figures 6.33b-d for two rotation angles of the second tag. The tags carry 

two different IDs of 01 and 11, respectively. As the time-domain response shows, for φ = 0, the 

early-time response of the second tag is hidden in the late-time response of the tags. This 

phenomenon is more severe when more tags with higher density data are present in the reader 

zone. In Figure 34, the space-frequency diagram of the backscattered response is shown for φ=0, 

the worst-case scenario. Compared to the results shown in Figure 6.29, the backscattered signals 

from the tags are normalized to the impulse response of the antenna. In the cases where the data is 

embedded in the spectral-domain response of the tags, the localization cannot be efficiently 

performed based on the time of arrival (TOA) or received signal strength (RSS) [89]. Meanwhile, 

by employing the proposed algorithm as shown in Figure 6.25, not only can the location of the 

tags be obtained but their IDs can also be retrieved successfully. The aforementioned algorithm 

can be employed for finding the positions of the tags in the reader area. Here, we just consider one 

unit cell covered by three TEM horn antennas as Figure 6.35 depicts. The antennas are interspersed 

along a circle of radius R=65cm. The simulation is performed in FEKO. The measurement set-up  
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                                 (a)                                                                     (b) 

                               
                                   (c)                                                                   (d) 

Figure 6.33 (a) Two 2-bit tags illuminated by an incident electric field. (b) Frequency-domain 

response of the backscattered electric field from two tags, time-domain response from the tags for 

(c) φ = 0º and (d) φ = 30º [88] (With permission, Copyright© 2014 IEEE). 

 

Figure 6.34 Space-frequency diagram of the backscattered response from the tags [88] (With 

permission, Copyright© 2014 IEEE). 
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Figure 6.35 Simulation set-up in FEKO [88] (With permission, Copyright© 2014 IEEE). 

 

is shown in Figure 6.36. Three TEM horns are connected to the network analyzer and two 

measurements in the presence and absence of the tag are performed. By taking the difference 

between two sets of measurements, the tag response is retrieved at the antenna ports. First, one tag 

is considered in the reader zone. By receiving the backscattered responses at the antenna ports and 

applying the proposed technique to the signals, the distances of the tag from three antennas are 

obtained. The position of the tag can be obtained via triangulation. In the cases where three circles 

do not intersect at a unit point because of the limited accuracy of the method, the closest point to 

the circles is considered as the tag position. For simplicity, we express the position of the tag in 

polar representation by (ρ, φ).  

Figure 6.37a shows the time-domain backscattered signals at the antenna ports when the tag 

is located at the center of the reader area perpendicular to the y-axis. It is seen that the strength-

based positioning is not an accurate technique for localization of chipless RFID tags. Depending 

on the polarization and direction of the tag with respect to the antenna, the strength of the late-time 

and early-time responses may change. Hence, at some times the late-time response can be stronger 

than the early-time response which makes the localization more difficult. Instead, by employing 

the proposed algorithm shown in Figure 6.25, the positions and IDs of the tags can be extracted. 

The simulated, measured, and real positions of the tag in the unit cell are depicted in Figure 6.37b  
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Figure 6.36 Measurement set-up for localizing the chipless RFID tag [88] (With permission, 

Copyright© 2014 IEEE). 

 

                       

                                        (a)                                                                                   (b) 

Figure 6.37 (a) Measured time-domain signals from the tag located at the center of the unit cell, 

(b) Position of the tag extracted from the proposed technique compared to real position [88] (With 

permission, Copyright© 2014 IEEE). 

for different situations. In each situation, the ID of the tag can be extracted from the closest antenna 

port due to better SNR.As another example, two tags are placed in the unit cell. Figure 6.38 shows 

the time-domain backscattered signals at the antenna ports when the tags are located at (20, 90°) 

and (20, 210°). It is seen that for the first and second antennas where the second tag is further from 

the antenna, the turn-on time is not clearly visible. However, by applying the proposed technique, 

the positions of the tags can be extracted accurately. By applying short-time matrix pencil method 

(STMPM) to the time-domain response received at the first antenna port, the time-frequency 
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response of the tags is shown in Figure 6.38a. The IDs of the tags are visibly indicated in Figure 

6.38a as ID1:111 and ID2:011. The accuracy of the proposed method is compared to the real 

positions of the tags in three different cases in Figure 6.39. In each case, the locations of the tags 

are changed to compare the results. 

 

 

Figure 6.38 Backscattered signals from two tags at the antenna ports [88] (With permission, 

Copyright© 2014 IEEE). 

                     
                                (a)                                                                                  (b) 

Figure 6.39 (a) Time-frequency response of the received signal at the first antenna, (b) Positions 

of the tags extracted from the proposed technique compared to real position [88] (With permission, 

Copyright© 2014 IEEE). 
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7 Conclusion and Future Work 

 

This dissertation provides the design process of chipless RFID systems including tag, antenna, and 

reader. As a whole communication system, the performance of each component affects strongly 

the performances of the other parts of the system. In this chapter, a summary of the dissertation is 

introduced and some conclusion remarks are presented. Suggestions for future work are also 

outlined. 

7.1 Summary of Dissertation 

The dissertation is can be divided into three different parts: tag design, antenna and detection 

technique.  

In chapter 2, the scattering mechanisms in chipless RFID tags were discussed and modeled. 

The theoretical and physical interpretations of Singularity expansion method (SEM) and 

characteristic mode theory (CMT) were studied in this chapter. The reflected signal from chipless 

RFID tag in time domain is composed of early-time and late-time responses. Altes model was 

introduced for modeling the early time of the scattered field in the near-field and far-field 

observation points. Based on SEM, aspect-independence CNRs of the tag are included in the late-

time response. An equivalent circuit model was introduced based on SEM in order to represent the 

electromagnetic behavior of the scatterer illuminated by incident field. Then, CMT was used as a 

frequency-dependent technique to study the induced current distribution on the tag. It was shown 

that, by employing some parameters such as eigenvalues, characteristic angle, and modal 

significance, the resonant and radiation characteristics of the scatterer can be studied. 

In chapter 3, the theoretical aspects studied in chapter 2 were utilized in the design of chipless 

RFID tags. The variations of CNRs of the tag were denoted in pole diagram. A systematic design 

procedure based on SEM and CMT was introduced for enhancing the resonant and radiation 

properties of the tag. It was shown that in some cases, a trade-off between these two features 

needed to be consider in the design procedure. As an example, by increasing the quality factors of 

the CNRs, the RCS of the tag decreases. Hence, the design procedure enables the designer to 

choose the minimum size of the tag meeting the desired data density and RCS requirements. The 
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effect of coupling between resonances and corresponding residues on the quality factor and 

residues of the excited CNRs were studied. 

In chapter 4, the signal link characterization of chipless RFID system in time and frequency 

domains was represented and some important aspects in measurement setup of chipless RFID tags 

were proposed. After introducing time and frequency characteristics of UWB antenna, various 

UWB antennas applicable in chipless RFID systems were studied. Then, an easy-to-fabricate 

omni-directional antenna element introduced which can be used in the design of wideband and 

UWB antennas.  

In chapter 5, time-frequency representation of the scattered field from chipless RFID tags was 

introduced. As an important parameter, the resolution in time and frequency was studied. After 

studying some basic time-frequency approaches such as STFT and wavelet, it was shown that these 

two techniques do not provide desired resolution in time and frequency domains for detection and 

identification of tags. Short-time matrix pencil method (STMPM) was introduced and efficiently 

employed for the time-frequency analysis of scattered field from chipless RFID tags. The 

performance of matrix pencil method (MPM) in extracting the CNRs of the signal against noise 

was improved by applying STMPM to the time domain signal. The application of STMPM was 

expanded to scattered fields from dispersion structures such as open-ended cavity resonators. It 

was shown that in addition to the resonant frequencies, the scattering centers and dispersion 

characteristics of the structure can be obtained by employing STMPM. For the first time, the 

application of STMPM in sliding the window along the early-time response was introduced. 

According to the results and discussions presented in this chapter, when the early-time response is 

located in the left hand side (LHS) of the sliding window, the extracted poles of the early time 

have negative damping factors, located in the LHS of the pole diagram. By shifting the early time 

towards the right hand side (RHS) of the window, the extracted poles also shift to the RHS of the 

pole diagram. As an interesting case when the early time is located at the center of the window, all 

the extracted poles emanating from the early time are located on the imaginary axis of pole 

diagram. It enables the reader to distinguish the early-time responses of the multiple scatterers or 

scatterers with multiple scattering centers in the presence of late-time resonances.  

In chapter 6, the detection, identification and localization of chipless RFID tags in the reader 

area was proposed. When multiple multi-bit tags are present in the reader area, the resolution in 

space, time and frequency is very important. A space-time-frequency algorithm was introduced by 
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which the number of tags in the reader area, their IDs and location cans be obtained. In this 

approach, the STMPM and its dual, NFMPM are applied to the time-domain and frequency-

domain signal received by the antenna. In the cases when the tags are spaced close to each other, 

the detection is not easy. By monitoring the time instances when the extracted damping factors are 

zero, the tags can be detected with better resolution. 

7.2 Suggestions for Future Work 

The detection and identification process based on electromagnetic fields has been demanded in 

various applications, from radar to bio. The research presented in this dissertation can be expanded 

in different ways. In following, some application of the proposed technique in different scenarios 

are addressed. 

Breast Cancer. X-ray mammography is currently the most common method for detecting 

breast cancer. The application of high frequencies in X-ray imaging provides a very high 

resolution. However, it is reported that around 30 percent of breast cancers cannot be detected with 

current X-ray technology. Additionally, ionizing nature of X-rays is of concern [96].  

The contrast between the dielectric constants of a breast tumor and environment around it 

introduces some resonances in the microwave rang [96]. These resonances can be detected by 

loading the antenna with the breast and applying STMPM to the time-domain received signal by 

the antenna. By studying the variations of the extracted poles during time, the size and location of 

the tumor can be studied.  

Ground Penetrating Radars (GPR). The presence of some under-ground metallic targets 

can be detected based on their CNRs by applying proposed technique in [97]. Multiple reflections 

from the ground surface, which complicates the extraction of resonant frequencies of the target, 

can be removed f by applying the proposed technique in this dissertation and detecting zero-

crossing points of damping factors versus time. In such applications, since the scattering medium 

is very lossy, the CNRs are highly damped. A few cycles of the sinusoidal needed to be presented 

in the scattered time-domain response in order to be able to extract the CNRs of the scatterer.  

Through-The-Wall Detection of On-body concealed weapon or cellphone. Another 

important issue, especially in security applications, is the detection of on-body concealed weapons 

or cellphone carried by people. In [98-104] , microwave imaging at high frequencies (millimeter-
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wave region) is used for detecting the people carrying weapon. The problem is that the scattering 

medium is very lossy at these frequencies. Each object has unique electromagnetically complex 

natural resonances depending on its geometry and material. The resonances of the weapons are 

usually located in microwave frequencies. These CNRs are not very high-Q resonances and 

detecting their resonant frequencies is very challenging.  

As an example, Figure 7.1 shows an incident electric field, covering frequency band of 3.1-

10.6 GHz, illuminates a human carrying a cellphone carrying a cellphone. The antennas located in 

the cellphone acts as a scatterer possessing high-Q resonances. The received signal by the antenna 

includes multiple reflections from the wall-air discontinuities, human body and cellphone. 

Compared to the CNRs of the body which are located at frequencies lower than 100 MHz, the 

resonances of the antenna cellphone have higher quality factors and are located at microwave 

frequencies. This scenario is also valid for weapon targets. In [105], wavelet transform is used to 

extract the resonant frequencies of the gun in the presence of the body. The wavelet and STFT 

cannot extract weak resonances of the weapon in the presence of strong scatterers. 

The time-frequency technique presented in this dissertation was based on short-time matrix 

pencil method (STMPM). By applying a narrow window in the size of incident pulse along the 

time-domain signal and monitoring the damping factors of the windowed signal indexed by time, 

the location of pulse reflections from the wall and objects are discriminated at time instances where 

the damping factors are crossing the zero point. The thickness and structural parameters of the wall 

can be calculated based on the pulse locations. Then, by removing the multiple reflections from 

the received signal, the resonant frequencies of the weapon are calculated by using STMPM. By 

classifying the resonances, the presence of the weapon can be detected.  

Two different cases, as shown in Figure 7.2 are considered here. In Figure 7.2a, a human 

carrying a cellphone (or any gun) is illuminated by an incident electric pulse. The backscattered 

signal from the scatterer can be written in time domain as 

    nn

n

nn ttRtets    cosexp)()(  (7.1) 

where e(t) is the early-time response, sn = αn+jωn represents the nth complex natural resonance, and 

Rn is the corresponding residue. The signal shown in (7.1) contains the reflection from body and 
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Figure 7.1. Through-the-wall detection of on-body concealed weapon. 

cellphone. The early-time response of the human is much stronger than the early time of the 

cellphone. On the other hand, the CNRs of the human is highly damped and are negligible 

compared to the CNRs of the cellphone. It means that by proper windowing of the signal, the 

CNRs of the cellphone can be extracted. Figure 7.3a depicts the time-domain backscattered signal 

from the body carrying a cellphone. By applying STMPM to the time-domain signal, the presence 

of the cellphone can be detected by its resonant frequencies in time-frequency diagram (Figure 

7.3b). As it shows, second roundtrip reflection from the body occurs at t = 12 ns. This reflection 

can be detected by the proposed technique in this dissertation. The significant advantage of 

STMPM compared to other time frequency technique is its ability in extracting low-energy CNRs 

in the presence of the strongly excited CNRs.  

In second example shown in Figure 7.2b, an incident electric pulse impinges the wall surface. 

The wall is assumed concrete with dielectric constant of εr = 8 and loss tangent of tan (δ) = 0.25. 

Because of the discontinuity of the structure at air-dielectric interferences, multiple reflections 

occur at the wall surfaces. The time-domain signal is depicted in Figure 7.4a. The multiple 

reflections from the wall are clearly seen in the time domain signal which located successively 

along the signal. The location of the pulses can be accurately extracted by applying STMPM to 

the time-domain signal and monitoring the damping factors versus time index. When the pulse is 

located at the center of the sliding window, the extracted damping factors passes through the zero, 

as can be seen in Figure 7.4b.  
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Radar
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In Figure 7.1, a complicated case is assumed. A human with cellphone is located behind the 

wall. The incident pulse illuminated the reader area from the other side of the wall. The reflected 

signal can be written by 

 

                        
                                   (a)                                                                        (b) 

Figure 7.2. (a) Human carrying cellphone in the reader area, (b) A thick wall illuminated by an 

incident pulse. 

 

 

                 
(a) (b) 

Figure 7.3. (a) Time-domain return signal from body carrying cellphone (b) Time-frequency of the 

signal.  
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                                   (a)                                                                                (b) 

Figure 7.4. (a) Time-domain return signal from body carrying cellphone (b) Time-damping factor 

diagram of the signal.  

 

 

         .  
                                    (a)                                                                                      (b) 

Figure 7.5. (a) Time-domain signal reflected from a human carrying cellphone behind the wall, (b) 

Damping factors of the extracted poles versus time. 
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 (7.2) 

in which the first term includes multiple reflections from the wall occur at tm with different 

amplitudes (A1 > A2> …). Second term is the early-time response from the human body and the 

third term is the damped sinusoidal signals corresponding to the CNRs of the cellphone. By 

separating three terms of (7.2), the detection process can be easily performed. Figure 7.5a shows 

the backscattered signal from the human carrying cellphone behind the wall. By applying STMPM 
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to the time-domain signal, the time-damping factor of the signal is seen in Figure 7.5b. The zero 

crossing points show the position of multiple pulses in the response. In between the zero crossing 

pole, there are some poles emanating from the cellphone. As the Figure shows, the small reflections 

from the wall and human can be monitored in this diagram.  

Multipath mitigation in pattern measurement of antennas- In some antenna 

measurements, the multipath effects and reflections from background objects and ground plane 

limits the accurate measurement of the antenna pattern at some directions. In [106], a time gating 

approach based on MPM is used for suppressing the undesired reflections in time-domain signal. 

In some cases, the undesired reflections are very small and hidden in the late-time of the antenna 

response. The proposed technique can be used for detecting the small reflections from background 

objects.  
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