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Resolution-dependent depth of focus for an incoherent

imaging system

Ronald J. Pieper, Jinwoo Park, and Ting-Chung Poon

Through the application of the Rayleigh criterion for a two-point resolution, the dependence of the depth of
focus on the resolution in the image is determined for a rectangular, a Gaussian, and an annular lens aperture.
These solutions are posed in terms of the normalized parameters, obviating the need for the specification of

the actual physical lengths.

I. Introduction

The often cited criterion for the depth of focus is
expressed solely in terms of the f/No. of the lens and
the wavelength of light. This resolution-independent
depth of focus was derived! by noting the effect of axial
deviation relative to the in-focus plane at which the
spatial frequency response begins to undergo acceler-
ated deterioration. This condition was also obtained
via a diffraction argument based on the uncertainty
principle.2 Under the assumptions that the designer
knows in advance the highest point density (resolu-
tion) required in the image, a more precise criterion
can be formulated.

Although in the following discussion the Rayleigh
criterion3 for a two-point resolution was applied, other
more stringent conditions? could have been used. The
approach we are taking in this discussion has been
applied to specific apertures of current interest?5-7;
nevertheless, through numerical integration it should
be applicable to any analytic form of transmittance
aperture.

Starting from the block diagram representation of
an imaging system, the incoherent impulse response is
obtained. The resulting analytical expression is posed
in a normalized form. The procedure for the applica-
tion of the Rayleigh criterion to the normalized inco-
herent response is described for a general lens aperture
topology. Resolution curves are plotted for a number
of specific topologies.
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A general approach applicable to any aperture topology is discussed.

In Sec. II, the concepts motivating the analysis are
discussed. In Sec.IIl, a general mathematical formal-
ism is developed for any aperture function. In Sec. 1V,
three specific geometries for aperture transmittance
are analyzed. In Sec. V, we present our conclusion
that includes possible extensions of this work. In Ap-
pendix A, we start from the maximum realizable reso-
lution for a Gaussian aperture and obtain, using the
ray analysis, the correct dependence of the resolution-
independent depth of focus. In Appendix B, an exam-
ple illustrating the use of the resolution curves is pre-
sented.

ll. General Description

We assume that, consistent with the Fourier optics
formalism,8 (1) the angles of diffraction are small, (2)
the source is monochromatic but incoherent (i.e., the
coherence length of the source is zero), and (3) the
source, and therefore the complex field, has harmonic
temporal dependence exp(—jwt) (physics convention
for phasors).

The optical system to be analyzed is represented in
Fig.1. Wealsoassume that the lens is aberration-free.
Therefore, the defocus effect can be attributed solely
to the axial deviation relative to the in-focus plane.
The in-focus plane can be defined by setting I = I fr
where [ 7 satisfies

] 1

and fis the focal length of the lens. Ingeneral the out-
of-focus defect ¢ is typically defined? as

fE=— === (2)

A point source of light, as shown in Fig. 1, can be
treated mathematically as an impulse function. The
impulse response is represented in the image plane a
distance I’ away from the lens.
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Fig. 1. Optical configuration examined for determination of the

incoherent impulse response.

In Fig. 2, the response for two-point impulses is
shown, and according to the Rayleigh criterion they
can be resolved if

d=W, (3)

where W is the full width at half-maximum (FWHM)
intensity of the incoherent impulse response, and d is
the center-to-center spacing.

Imagine that in the object plane a 1-D array of point
sources exists as represented in Fig. 3. The spatial
density of points ¢ generated in the image plane is,
assuming unity magnification, given by

c=1/d. 4)

Therefore, the maximum point density p that can be
resolved, according to the Rayleigh criterion, is

p=1W2zo. (6))

In the remainder of the text we will refer to this param-
eter as the resolvable point density. Once Wisrelated
to the defocus defect ¢, the relation between the resolv-
able point density and the defocus defect follows from
expression (5). To determine W, the incoherent im-
pulse response has to be determined. Thisis obtained
from the magnitude squared of the complex coherent
impulse response.? It is apparent that the geometrical
scale factor associated with the magnification in the
image has not been incorporated in this discussion.
Since the magnification scale factor M equally affects
both sides of inequality (3), a unity magnification can
be assumed without loss in generality.

ll. Analysis

Under the assumptions stated in the previous sec-
tion, the incoherent impulse response can be deter-
mined through the application of a block diagram sys-
tem approach,? as shown in Fig. 4. The propagation
impulse responses are given by

h; = C, exp [J% (x2+ y2)] s (6a)
.k oo
hy = C, exp [] oF x2+y )] ) (6b)

where & = 2z/\ is the propagation constant in air, C;
and Cy are complex constants, and x and y are the
Cartesian coordinates as defined in Fig. 1. The ideal

intensity

Fig. 2. Two impulse responses with defining parameters for the
Rayleigh criterion.
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Fig. 3. Optical system response to spatially periodic impulses.
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Fig. 4. System model for the optical system in Fig. 1.

thin lens of focal length f introduces a spatially qua-
dratic phase factor ¢y given by

;= exp [—j% (= + yz)] . (60)
The coherent impulse response of the entire optical
system h; is then expressible in terms of expressions

(6):

hs = [hl¢fP(xvy)] * hl’1 (7)
where * denotes 2-D spatial convolution and P(x,y) is
the aperture transmittance placed against the lens.
Using definition (2), coherent response (7) can be ex-
pressed explicitly as

hy(u,0) = exp [j e+ 02)] [ ex [—j L yz)] P(x,)

X exp [—j % (2ux + 20y)] dxdy, 8

where the complex constant term has been dropped,
and the Cartesian coordinates u,v are defined in Fig. 1.
Since the incoherent impulse response is obtained
from the magnitude squared of the coherent impulse
response, the complex exponential term in Eq. (8),
which precedes the integration, will not make any con-
tribution and will, therefore, be dropped.

The result in Eq. (8) can be written in a compact
form as

15 May 1988 / Vol. 27, No. 10 / APPLIED OPTICS 2041



Fig.5. General aperture function with a typical scale dimension R.

fo=u/N

f=ony’ @

hyup) =F {exp [-J' ge(x"’ + y2)] P(x,y)}

where the Fourier transform operation, F{+}, is defined
on an arbitrary function t(x,y) as

Pit(ey)} = ] i

—c

j ) t(x,y) exp[—j2r(fx + f,y)]dxdy,  (10)

with f, and f, denoting the spatial frequencies.
We define the integrated transmittance, A(P), of the
aperture as

AP) = j; f_: P(x,y)dxd}ll.‘ (11)

In all physically meaningful applications, some non-
unique geometric scale, R, proportional to the square
root of the integrated transmittance can be defined.
This is represented in Fig. 5. The new normalized
spatial variables x’ and y’ are defined as

x =zx/R,
¥ =ylR.

(12a)
(12b)

A scale-independent aperture transmittance p(x’,y’)
can then be defined:

p(x',y’) = P(Rx', RY'). (13)

It follows, after some algebra, that the coherent im-
pulse response in Eq. (9) can be written as

G L

- J=

exp [-j TR y’%]

X exp[—jm (s’ + «”y”)|p(x’,y")dx’dy’, (14a)

where
Ap)= j [ plx'y)dwdy = # [ j P(x,5)dxdy, (14b)

ke

B=+/— R, (14c)
ki

o = kuR/xl, (14d)

o = koR/l. (14e)

It can be noted that transmittance (14b) does not
depend on the physical scale of the aperture. The
defect parameter 8 is independent of the transverse
coordinates u,v. Finally, the normalized transverse
coordinates o and a” are not dependent on the out-of-
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Figl 6. Defining relationship between (A,y) and (¢/,a”).

focus defect e. Therefore, the normalization obviates
the specification of physical lengths, e.g., [, ', R, f, and
Ainthe evaluation of Eq. (14a). Itis apparent that for
o =0,a” =0,and 8 = 0 (i.e., on-axis and in-focus) the
right-hand s1de of Eq. (14a) is unity, Expression (14a)
has, therefore, been normalized to the maximum mag-
nitude.

Using definition (10), the normalized coherent imi-
pulse response (14a) can be written as

Q\

/ " f=
hl@a”f) _ 1 T e ,2] } *
AP) A(p)F{exp[ J = B+ y) | p(xy)

.
"

fy=

N,IQ |

(15)

If the function p(x’,y’) has circular symmetry, the '
transform above can be written equivalently as a Fou-
rier Bessel transform B{-}8 as

h (a' ”,/3) 1 {exp (_J%ﬁZ'JZ) p(r/)}}

AP Alp)
oI ET - as

where the Bessel transform is defined in terms of the
zeroth-order Bessel function of the first kind:

Bit()) = 27 J o2 o)) dr. (16b)
0

The normalized incoherent response is obtained
from the square of the magnitude of the normalized
coherent response. Note that the FWHM width of the
normalized incoherent impulse response will not be
the same in all directions in the image plane, assuming
that the aperture does not possess polar symmetry.
Therefore, the orientation for minimum resolvable
line density is, according to the Rayleigh criterion, the
direction in which the incoherent impulse response
exhibits the maximum width.

Let us assume that the relation between the depth of
focus and the resolvable point density have to be deter-
mined for a particular orientation of points. Figure 6
defines the parameters o and «” in terms of a normal-
ized length A and an angle v:

(17a)
(17b)

With the introduction of the parameters A and v, the
incoherent response can be interrogated for any direc-

o = A cos(y),
a” = A sin(y).



tioninthe o’ — o” plane. A normalized FWHM width,
AA, along direction v, can be defined, following (14d)
and (14e), as

kR ‘
AA= <—> w. (18)

wl

The normalized width AA will be determined from the
examination of the normalized incoherent impulse re-
sponse |hs(o/,0”,8)/A(P)I2, subject to constraint (17)
for various 8. The curves which illustrate the expect-
ed behavior of AA as a function of 3 are shown in Fig.
7(a). The implicit dependence of AA on the out-of-
focus defect parameter 8 has been emphasized. By
combining Egs. (5) and (18), it is clear that the resolv-
able point density satisfies

1 kR 1 19
o0 = =| = ['AI] (19)

Again, the implicit dependence of p on 8 follows from
Fig.7(a). Based on the examination of Fig. 7(a), a plot
of (1/AA) vs the defect parameter 8 is sketched in Fig.
7(b). It follows from expression (19), after referring to
definition (14c), that the resolvable point density p as a
function of focus defect ¢ can be determined. An
example of this type of calculation is presented in
Appendix B. In the next section this analysis is ap-
plied to some specific geometries. -

IV. Specific Geometries

A. Rectangular Aperture

The rectangular geometry aperture, represented in
Fig. 8(a), can be expressed as )

P(x.y) = rect(x/L,) rect(y/L,), (20a)

where
rect(¥) = 1 forl¢g| < ¥, (20b)
=0 for g = Y, (20¢)

If we take R = (JL.L,)/2 and define s = V(L,/L,), the
scale-independent aperture transmittance becomes

p(x'y) = rect (;C—s) rect (%) . "

And it follows from definitions (14b)—(14e) that

s s
Alp) = j [ de'dy’ = 4, (22a)
=1/s J=s
N
8= [ke yL:Ly (22b)
T 2
JL.L.
a'='—‘3, — (22¢)
w2
T.L
w2 L @)

w2

For this geometry, the x” and y’ integrations (14a) are
uncoupled and of essentially the same functional form.
After completing the square and dropping an inessen-
tial phase factor, the normalized coherent impulse re-
sponse in (14a) can be written as

 hel%laipi2

AAB=0)

» 3
(b)

Fig.7. Sketches based on physical interpretation of Egs. (16)~(19):
(a) typical normalized impulse response curves; (b) resolvable point
density vs the defect parameter 3.

‘ R(1-n)
L' &
Lx
(b) (e)

(a)

Fig.8. Specific geometries analyzedinSec.IV: (a) rectangular; (b)
Gaussian (R = Gaussian width at /e of maximum); (¢) annular.

h\2”,8) 1 ¢ Y A
AP) ‘ZL“"[ T9# (" ’?)]d" L/s
Y AN
Xexp[ i58(s +ﬂ2)]dy. (29)
For the purpose of compactly expressing the normal-
ized incoherent impulse response, the following combi-
nations of Fresnel integrals are defined:

o= o (5 +0)-e(5-2]

o o) A
wa-5[o(52)-e(5-2]
[s(5+0)-s(-00) em
where
15 May 1988 / Vol. 27, No. 10 / APPLIED OPTICS 2045



C = J: cos (g 72) dr, (24¢)

S(¢) = I: sin (Z"z_ 12> dr.

Using the definitions in (24), the normalized incoher-

ent impulse response becomes

hy(o 0" ,B) |2
A(P)

(24d)

= fle/,8)g(”,8). (25)

To find the normalized FWHM width, it is necessary
to examine the dependence of the response in a specific
direction. For illustration the s parameter was arbi-
trarily set to 2.0. The two cases, which will be tested,
correspond to vy = 0 and vy = w/2. The conditions on
the impulse response given by Eq. (25) become

A=d,a”=0, s=20, (26a)

A=a",a/ =0, s=20, (26b)

respectively. Representative normalized impulse re-
sponse curves, subject to conditions (26a) and (26b),
have been plotted in Fig. 9 for defect parameters 8 =
0.0, 0.5, 0.7, 1.1. Although (24) cannot be explicitly
evaluated for 8 = 0.0, the graphical results were found
to converge for small enough 8, e.g., 8 <0.05. It can be
confirmed that the graphic solution, obtained in this
manner, agrees with the results obtained analytically
from Eq. (15) after setting 8 = 0.0. From curves such
as those shown in Fig. 9(a), a plot of the reciprocal of
the normalized FWHM, 1/A«’, vs the defect parameter
Bis obtained. This is shown as the upper curve in Fig.
10. This curve can be directly related to the resolvable
point density [see Eq. (19)] since, in the case of (19) or y
= 0.0, it follows from Eq. (26a) that

. AA = Ad'. (27a)
Similarly, from Eq. (26b), we have

AA = Ad”. (27b)

For this case the reciprocal of the normalized FWHM,
1/(Aa”), is.shown as the lower curve in Fig. 10. As
expected from the direct evaluation of Eq. (14a), after
taking 8 = 0.0, the results, represented in Fig. 10,
indicate the in-focus diffraction FWHM along the co-
ordinate o/ [condition (26a)] is Y4 of the diffraction
FWHM along the coordinate «” [condition (26b)]. In
addition, the resolution in condition (26a), i.e., the
upper curve, deteriorates faster with the defocus de-
fect parameter 8 than that in condition (26b) (lower
curve). Thisis qualitatively understood by employing
the circle-of-confusion argument? which predicts more
rapid deterioration in the résolution for apertures with
larger dimensions.

B. Gaussian Aperture Function

The Gaussian aperture functlon represented in Fig.
8(b), is given by

P(x,y) = exp(—rZ/R2) (28)

If we take the normahzmg dlmensmn to be R =R,
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Fig.9. Impulse response curve for rectangular geometry with s = 2
(ie., L, = 4L,): (a) along coordinate «’; (b) along coordinate ”.
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Fig. 10. Resolution curves for rectangular geometry: upper curve
is 1/FWHM along direction «’; lower curve is 1/FWHM along direc-
tion a”.

p(x',y’) = exp[—(')}, (29a)

A(p) =2n jﬂ exp[—()?] X rFdr = . (29b)
0

The normalized coherent impulse response in Eq. (15)
can then be expressed as

" by ) fo=
M—l —_ + T a2 2 ,2 ¥ 2
AP —ﬂ_F{epr: (]26 +1)(x +y )]}f o ’
Yo 2
(30)

where o/, o”, 8 are given, after substituting R for R, by
(14¢), (14d), and (14e), respectively. Using a trans-
form table, Eq. (30) can be reduced to



[

fi=

hy(e/,0”,8) 1 72 2
B e P [— - 2+ f§)] a (31a)
fy - _2—-
where for convenience of notation we define
asj%ﬁ% 1 (31b)

Due to the polar symmetry, «” can be set to zero
without loss in generality. The incoherent impulse
response then becomes

h(e’,0,6) |2
A(P)

1

T g2\
+(57)
These curves, for arbitrary 8, drop to half of the maxi-
mum of the impulse response at a value for o’ satisfying

exp{—27%’%/[4 + #(8D%}. (32)

L,
@ = Qe

L2 ot e 39

It follows that 1/(AA) can be expressed in terms of 8 as

1 _1_ 1 _x[n2 22 } 1z
NN ) 2{ (4 + (x6%7 (34)
This dependence is plotted in Fig. 11. In Appendix A
we show how this result of Eq. (34), combined with the
ray theory, leads to, up to a constant, the well-known
resolution-independent form for the depth of focus.

C. Annular Aperture Function

The aperture function, represented in Fig. 8(c), can
be analytically expressed as

P(x,y) = cire(r/R) — circ(r/mR), (35a)
where
. _1forr<D
cire(r/D) = 0 forr> D, (85b)
and the annular factor 7 satisfies
1=2920. (85c¢)

Taking the scale dimension & equal to R leads to
p() = cire(r’) — cire(r'/n),
A(p) = w(1 —19).
In this case the normalized coherent impulse response,
as derived from expression (16), can be written as
h(\a”,8) _ 1
A(P) (1 — 4%

(36a)
(36b)

B{—J B (r’)H

_ ﬁ’ 2 a”\2 )
NG
After setting a” = 0, Eq. (37) can be expressed, using
definition (16a), as

hy(a',0,6) 2 _ 2
w5 | ")

1 T 2
J r’dy(wa’r’) exp(—-] 5132,.,2) dr’} .
n
(38)

Table l. List Describing the Figures for the Annular Aperture

Normalized

impulse response 1 )

#8=10.0,1.1,1.6,1.9 AA/vs B
7= 0.0 Fig. 12 Fig. 17
7=103 Fig. 13 Fig. 17
7=06 Fig. 14 Fig. 17
7=09 Fig. 15 Fig. 17
7= 0.99 Fig. 16 Fig. 17

For the purpose of numerical calculation, the above
can be recast in the following strictly real form:

hy(a',0,8) |2 2 Py e
AP) | T [(1 - nz):' G+, %9
where
1 T
I= j Fdy(xa’r’) cos (— Bzr’z) dr, (39b)
; 2
1 T
I, = f r'dy(wae’r’) sin (— Br '2) dr. (39c)
8 2

Table I lists the curves generated based on Egs. (39).
Note that, for o” = 0, relation (27a) applies. The
normalized incoherent impulse response curves corre-
spond ton =0.0,0.3,0.6,0.9, and 0.99 are shown in Figs.
12-16, respectively. We note a decrease in sensitivity
to the defect parameter 8 with increasing 7, in agree-
ment with predictions from previous investigations.2?
The resulting resolution curves, as presented in Fig. 17,
summarize this observation.

V. Conclusion

A formalism was introduced for expressing the inco-
herent impulse response in terms of the normalized
parameters. Because of this normalization the analy-
sis only requires the specification of the aperture to-
pology, independent of any physical lengths. By using
the Rayleigh criterion for a two-point resolution, the
depth of focus was related to the level of resolution
required in the image. Inthe case of a Gaussian aper-
ture, this process was analytically tractable. These
results were shown to lead to, up to a constant, the
resolution-independent form for the depth of focus.

The extension of this work to nonimpulse type ob-
jects, i.e., input waveforms such as the sinusoids and
the square wave profiles, is presently being studied.

This work was supported in part by the Fiber &
Electro-Optics Research Center, Virginia Polytechnic
Institute & State University. The authors wish to
thank L. Hsu-Pieper for assistance in the final prepa-
ration of the manuscript.

Appendix A. Heuristic Derivation of the Resolution-
Independent Depth of Focus

In this Appendix, it is shown that, up to a constant,
the well-known resolution-independent depth of fo-
cus? follows from the analytic expression (31) in the
worst-case conditions. Specifically, we will examine

15 May 1988 / Vol. 27, No. 10 / APPLIED OPTICS 2045
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the depth-of-focus condition, using a ray optics inter-
pretation of the Rayleigh criterion for the maximum
resolvable point density permitted by the impulse re-
sponse, which, by inspection, occurs for 8 = 0.0. From
Eqgs. (19) and (34) it follows that

o) =—_ &
V2In2 N

R .
~ 2.67 — - Al
2677 (A1)

This can be compared with the highest allowed spatial
frequency for the circular pupil function,?



R 50% intensity lines
A
focus
L 2
|
|
|
Al ||
plane |
wave
o )

thin
lens

Fig. 18. Ray model representing the converging action of a lens
with 50% intensity lines.

_o B
p(0) =27 - (A2)
Figure 18 is a ray model representation for the con-
verging action of a lens on a plane wave. W represents
the vertical width between 50% intensity lines at a

horizontal location Al to the left of focus. For small
angles, W can be expressed as
W = 2Al(R/l"). (A3)

Following the concepts presented in Sec. II,
o(8) =+ < (0. (A4)
Combining (3) and (4), and employing the equality in
Eq. (A4) will lead to a maximum allowed deviation:
__ v
A R

After the final substitution from Eq. (A1), Eq. (A5)
becomes

(A5)

Al = 0.75(I'/2R)®\ = 0.75(f/2R)?\. (A6)

Taking the worst case for Al by setting I’ = f and
employing the definition for the f/No. of the lens, Eq.
(A6) can be written as

Al = 0.75(f/No.)?\. (A7)

This agrees with the results cited in Refs. 1 and 2 up to
a multiplicative constant factor.

Appendix B. Example Calculation for the Depth of
Focus

In this Appendix, an application of the resolution
curves is presented. For illustration we assume that a
Gaussian transmittance is being used in conjunction
with an ideal lens of focal length /. The relevant
parameters are given as follows:

f=10cm, I=20cm,
A=0.6 X104 cm, p = 103 points/cm.
R =R=40cm,
It follows from Eq. (19) that
1 hVi
"A—A = ﬁ p. (B1)

At this point we will assume that the depth of focus is

small enough that I’ = [ This assumption can be
checked as a last step in the calculation. Using Eq. (1)
together with the above data shows that

[ l} = 20 cm. B2)

Assuming the above data, the right-hand side of Eq.
(B1) satisfies

1
A 0.15. (B3)

From Fig. 11, the defect parameter 8 consequently is
given by

B =24 (B4)

The defocus defect e can be related, with (14c), to the
defect parameter 3:
B\? A
e= (E) )\/2 ~ 2.88 E . (B5)
Also it is easily shown from Eqs. (1) and (2) that the
out-of-focus defect can be written as
=V _ar_ A

== —

= (B6)
oo p

Combining Eqgs. (B6) and (B5) leads to an expression
for the maximum deviation from focus

l’ 2
Al = 2.88\ (é) =79\ (B7)

It is easily confirmed that within the range defined by
(B7), assumption (B2) is valid. The results indicate
that the maximum deviation from the focus is 72\ if a
line density of 103 points/cm is to be resolved.
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