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(ABSTRACT) 

Active control of noise and vibration has been previously demonstrated in fi- 

nite and infinite systems undergoing single and multiple-frequency excitations. Con- 

trol of broadband noise and vibration has also been reported, but it tends to be lim- 

ited to infinite and semi-infinite systems. Here, four new adaptive feedforward con- 

trol algorithms were developed for attenuating the response generated by finite struc- 

tural systems. The algorithms are based on the filtered-X Least Mean Square (LMS) 

adaptive algorithm. A system identification of the plant control loop is required to 

implement this algorithm. An autoregressive moving-average (ARMA) model was 

used for the system identification since it provides the most computationally-efficient 

means of representing the frequency response function (FRF) of a lightly-damped 

structure. In the first control system, an adaptive finite impulse response (FIR) or 

nonrecursive filter was used as the compensator. A second control approach was 

realized by employing a recursive compensator. These two algorithms were modi- 

fied using an equation error minimization technique to form two additional control 

systems, which eliminate certain stability requirements of the ARMA system iden- 

tification. Each algorithm was simulated and then demonstrated experimentally.



Lastly, an analysis of control system causality was developed to determine 

the importance of this topic with regard to controlling finite structural systems. A 

exemplary parametric study of one of the four control systems presented, will demon- 

strate the analytical tool by examining the effects of system damping, compensator 

order, and a time delay in the control path, which is responsible for acausal control 

solutions. It was determined that control is always achievable, despite a delay in 

the control path, and also that control system performance can be improved by 

increasing the order of the control compensator. Both of these results were verified 

experimentally.
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Chapter 1 

Introduction 

Over the past decade, active control methods have become recognized as a viable 

means of attenuating structural vibration and its associated sound radiation. The 

principle behind active control is adding “secondary” controlled source(s) in order 

to cancel the response generated by the “primary” or disturbance input. There are 

two basic control approaches: feedback and feedforward as shown in Figure 1.1. The 

error signal, e,, in either system is formed from the superposition of the responses, 

d, and y,, from the disturbance and control inputs, respectively. Note that T,,. in 

Figures 1.1(a) and (b) represents the plant transfer function between the distur- 

bance input and the error sensor. Likewise, TJ, represents the transfer function of 

the control loop from the plant. Feedback control (Figure 1.1(a)) is characterized 

by feeding one or more measured or estimated system states back through a com- 

pensator, G., to form the control signal, u; (1, 2, 3]. An augmentation of the system 

natural properties allows control of both transient and steady-state disturbances. 

In feedforward control, the control input, u,, is computed by passing a reference 

signal which is coherent to the disturbance signal through a compensator, G,, and



  

sR rear neenersnesereoramsoornebeuctnerasee 

  

  

  

  
  

          
  

  
  

  

Xe : qd: disturbance T kK: -— > Tre : — @fror 
4 , + ' signal 

: —_ 
t : " h 1 FO) Go > Toe ° 

k y, 

plant 

disturbance : q, error 
  

      
> The & 

X ( : yy : signal 

  
  

          

  

b) : : fd a 
; : tk 

Go p> Ice 7 
reference Ue: Veo! 

signal r ; 7 
’ plant     
  

Figure 1.1: Schematic diagram of two basic control approaches: a) feedback only 
and b) adaptive feedforward.



into the structure (Figure 1.1(b)). The compensator is typically a linear digital 

filter which is typically designed by minimizing a quadratic cost function formed by 

squaring the error signal and taking its expectation. Often, as shown by the dashed 

arrow in Figure 1.1(b), the error signal is used in a recursion equation to adapt the 

coefficients of the compensator (in real time) until the minimum mean square error 

(MSE) is found. The sum of the mean-square values of the output of a number of 

sensors can also be used as the cost function in multi-input multi-output (MIMO) 

systems. Adaptive feedforward algorithms have proven successful for applications 

in which the disturbance is stationary such as single and multiple frequencies, and 

random inputs. 

Initial application of feedforward control was to one-dimensional acoustics 

fields as summarized in the review article by Warnaka [4]. More recently the tech- 

nique has been extended to multi-dimensional acoustic acoustic fields [5] as well as 

control of structurally radiated noise [6]. Feedforward least-mean-square (LMS) and 

recursive-least-mean-square (RLMS) adaptive algorithms have been applied on ac- 

tive control of bending motion in infinite or semi-infinite thin beams [7, 8, 9, 10, 11]. 

Recently, the simultaneous control of flexural and extensional waves in beams has 

been demonstrated by a multi-channel LMS approach, in conjunction with spe- 

cialized piezoceramic transducers [12]. Most theoretical and experimental studies 

consider only single and multiple sinusoidal excitations. Applications of feedforward 

control for broad-band excitation are much more scarce and restricted for attenu- 

ating noise in ducts [13, 14, 15] and enclosures [16]. Broadband structural control 

has been demonstrated with feedback and state-space methods, where designs are 

typically based on damping augmentation (direct velocity feedback) or wave ab-



sorption [8]. Reports of feedforward, broadband structural control are scarce and 

are characterized using infinitely long structures that have no reflected power which 

occurs from boundary conditions [9]. Consequently, the response to the disturbance 

can be measured at a location on the structure before the error sensor, providing 

exact, apriori knowledge of the error signal to be cancelled. In addition, the previous 

implementations of feedforward, broadband controllers for noise and structural vi- 

bration have transfer functions between the control input and the error sensor which 

are relatively flat in magnitude response, allowing them to be easily represented by 

a fairly low-order finite impulse response (FIR) filter. 

Here, four new adaptive single-input, single-output (SISO) feedforward con- 

trol configurations for the active control of broad-band vibration for a finite struc- 

ture are developed and investigated. Each control system is based on the filtered-X 

LMS algorithm where an autoregressive moving-average (ARMA) model is used for 

the system identification of the control loop. An ARMA model, often referred to 

as an infinite impulse response (IIR) digital filter, was used because its pole-zero 

structure provides the most compact means of representing a structural frequency 

response function (FRF), but it complicates the control system because IIR filters 

have certain stability requirements which must be met [17, 18]. The parameters of 

the ARMA model were found by forming a least-squares (LS) solution combined 

with a variation of the recursive least mean square (RLMS) algorithm [17, 19, 20]. 

In the first control system, an adaptive finite impulse response (FIR) (or 

nonrecursive) filter was used as the compensator. A second control structure differed



by using a recursive (IIR) filter for the compensator. Alternate configurations of 

these two systems provide two more control approaches which provide a means of 

eliminating the stability requirements of the ARMA system identification. These 

systems are based on the equation error minimization technique, {17, 19] where the 

error signal is filtered before minimizing it. 

One important topic of broadband feedforward control is system causality. 

From Figure 1.1(b), an ‘acausal’ control system can result when the propagation time 

of the reference signal, z,, through the compensator G, and the control-loop T,,. ex- 

ceeds the propagation time of z, through the disturbance loop, T,,. [16, 21, 22, 23]. 

In this text, the system will be referred to as ‘acausal’ since the optimal control 

filter will have an output which is dependant upon future inputs, rendering the 

unit sample response [24] to be acausal. The delay or wave propagation time in 

the control response, y;, will depend on the locations of the control actuator and 

error sensor, the signal processing time in G,, and the dynamics of the additional 

control hardware (e.g. power amplifiers, filters, etc.). The delay in the disturbance 

response, d;, will be dependent on the physics of T,.. By careful selection of the 

sensor/actuator locations in order to delay the disturbance input with respect to the 

reference signal, a causal control system can often be achieved. Achieving causality 

is often difficult in active vibration control (AVC) because: 1) physical dimensions 

are usually limited, 2) Often the exact source of the disturbance is unknown, and 

3) propagation times of the signals are extremely fast compared to acoustic waves 

in air. Early experiments suggested that causality was not a critical issue for finite 

structures since sufficient levels of control were achieved with a causal approxima- 

tion of an acausal controller. An analytical tool was developed to investigate the 

effects of acausality of feedforward control systems applied to finite elastic systems.



Results from a numerical study on one of the control systems which investigated 

system damping, the order of the control compensator, and the effects of delaying 

the control signal input (simulating an acausal system) will be presented and com- 

pared to experimental observations. 

The controllers were implemented in a digital signal processing (DSP) board 

and experimental results for a simply-supported beam are presented. The delay 

times through the disturbance and control paths to the error output were measured 

so that an additional delay could be introduced into the disturbance path, if needed, 

to guarantee that the controller would be causal. The control performance of the 

Filtered-X LMS Control Configuration was evaluated for different size adaptive FIR 

filters. The same analysis was repeated for an acausal control system, where the 

disturbance-path delay was removed. 

This document is organized with the theoretical development of the control 

algorithms located in the first few chapters followed by the experimental investi- 

gations and causality analysis. Chapter 2 contains the theory of adaptive signal 

processing and how it is expanded to plant control using the filtered-X LMS algo- 

rithm. A simulation of each proposed control algorithm is also presented. Chapter 3 

discusses the system identification of the control loop using a least-squares (LS) so- 

lution for an autoregressive moving-average (ARMA) model to model the plant. 

In chapter 4, the experimental design is presented along with a description of the 

test rig, followed by the experimental results which are contained in chapter 5. An 

analysis of control system causality was carried out in chapter 6 to determine the



influence of a control-path delay. A parametric study of various system parameters 

will be compared with observed experimental behavior. Finally, the conclusions 

from this research can be found in chapter 7 along with recommendations for im- 

provement and further research of this topic. Information about how the plant and 

control algorithms were simulated is contained in Appendix A. Appendix B is in- 

cluded to provide detailed information on the integration of the transfer functions 

that comprise the causality analysis in chapter 6.



Chapter 2 

Adaptive Signal Processing and 

Control 

The availability of fast, affordable, digital signal processing (DSP) chips over the 

past decade has made applications using adaptive signal processing feasible. Adap- 

tive signal processing has been applied in filter syntheses, plant modelling, noise 

cancellation and adaptive control [17]. The technique adds flexibility to a system 

by allowing it to respond or ‘adapt’ to changing conditions, making it beneficial for 

control applications where the operating environments and disturbances may change 

with time. 

2.1 Adaptive FIR filters 

Figure 2.1(a) shows a single-input, single-output (SISO) adaptive linear combiner, 

which is essentially a finite impulse response (FIR) filter with adaptable coefficients. 

The output of the filter u, can be written as convolution of the unit sample response



of the filter, w,, and the input sequence z; as follows [24] 

Up = WEe*¥TE = LE * Wy (2.1) 

where the * operator denotes a convolution. The filter sample response is a fi- 

nite, right-handed sequence such the equation (2.1) can be written as the following 

convolution sum [24] 

N 
Up = SS wite-i (2.2) 

i=0 

This convolution sum can also be conveniently written in terms of vectors as 

ue = {W}{X},= {WHA}, (2.3) 

where 

N = order of the filter 

{W}F = { wo, W1, We, 22+) WN-1; wn} 

{X}F = {x,, Lp—1)TK—-2) +++ > Lk-N+15 rp_n} 

If the adaptive filter is of adequate order, its output can closely match the desired 

signal, d,, when there is high coherence function between the filter input z, and 

d, in Figure 2.1(b). In fact, the maximum achievable reduction of the error signal 

power is related to the coherence between x; and d, as follows [25] 

Max.Reduction(dB) = 10 log(/——_) (2.4) 

where 2, is the coherence between the reference signal, z,, and desired signal d,. 

The reader should note that the filter required to meet the upper performance limit 

specified by equation (2.4) may not be physically realizable [25]. 

9
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Figure 2.1: a) Adaptive FIR filter, b) Adaptive FIR configuration used to produce 
desired response, d, from coherent input, x, and drive the error, e; to zero. 
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The error signal from Figure 2.1(b) can be written in terms of the desired 

response and the filter output as follows 

€e = dy —yt (2.5) 

e, = d, —{W}*{X}, (2.6) 

which goes to zero when the filter output matches the desired response. Assuming 

a stationary signal, the optimal weight vector, W*, which minimizes the error signal 

can be found by first squaring equation (2.6) and taking the expected value to form 

a quadratic cost function, C, in terms of the filter weights 

= Ele}] (2.7) 
C = EBl(d, — {WH} {X},)"] (2.8) 

where E| | denotes the expected value operator. An example of the performance 

surface for a two variable system described by equation (2.8) is shown in Figure 2.2 

as a paraboloid. This function has a unique minimum which can be found by taking 

the partial derivative of equation (2.8) with respect to the weight vector and equating 

the result with zero 

aC 0 

aw) = wy Elid — {W}"{X}«)”] (2.9) 

We now assume e,; to be stationary, allowing the partial to be moved inside the 

expectation operator 

seury = BMX) + XIE e210 
0 —{P} + [R]{W} (2.11) 

il



where 

{P} = the cross correlation vector between the filter input and output 

[R] = the input autocorrelation matrix 

Equation (2.11) can now be solved for the optimal filter vector that will minimize 

the error signal 

{W}* = [R]"{P} (2.12) 

Solving the linear system of equations in equation (2.12) can be computationally 

intensive, making a real-time implementation impractical. One solution is to create 

a recursion equation that will minimize the error signal, such as the method of 

steepest descent [17, 26]. Here, the filter weights are adapted by marching a small 

step along the negative gradient of the performance surface (like the one shown in 

Figure 2.2), until the minimum is found. That is, 

{Wh(k+1) = {W}(k)-pVC (2.13) 

where 

k = discrete time step 

VC = gradient vector of the cost function 

pt = step size 

The step size, 4, controls the stability and convergence rate of the update 

equation (2.13). The stability limits on » can be computed from the largest eigen- 

value of the input correlation matrix of equation (2.11). Therefore, a good estimate 

12
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of the convergence parameter can be made from the power of the reference signal, 

Lk (17, 27]. 

The simplest and most popular method of steepest descent uses the Least 

Mean Square (LMS) algorithm. In the LMS algorithm, the gradient in equa- 

tion (2.13) is approximated with the instantaneous values of the error and input 

signals as follows 

oC Oe 
VC = nw) 7 leary (2.14) 

= 2Ele{—X},] (2.15) 

~ —2e,{X}, (2.16) 

Substituting equation (2.16) into equation (2.13) yields the final form of the weight 

update equation, known as the Widrow-Hoff LMS algorithm [26, 28] 

{(W}(k+1) = {W}(k) + 2ue{X}, (2.17) 

or for a single coefficient, w,, 

wi(k+1) = wyi(k) + 2pepre_; (2.18) 

The second term of equation (2.18), 2e,2,4-;, represents the change in the 7” filter 

coefficient, é6w;. Note that é6w; becomes smaller as the minimum is approached 

because the error signal is diminishing. For a constant rate of convergence, 4 should 

increase as ex decreases. 

14



2.2 Adaptive IIR Filters Using Equation Error 

Minimization 

Often FIR filters of practical length do not provide an adequate impulse response 

for the job at hand. The solution is to use infinite impulse response (IIR) filters like 

the one shown in Figure 2.3, which has both a feedforward and a feedback section. 

IIR filters are also referred to as autoregressive moving-average or ARMA models. 

Since the filter output is based on the input sequence as well as the past filter output 

values, the impulse response will be infinite in duration. The frequency response 

of an IIR filter is more easily shaped because it contains both poles and zeros. As 

long as the system order is known, an IIR filter can compactly and efficiently model 

transfer functions having the characteristic sharp resonance-peaks associated with 

lightly-damped structures. What can be represented with only a few coefficients 

in an IIR filter will often take hundreds of coefficients for an FIR [18], making the 

computational overhead impractical. The disadvantage of using IIR filters is that 

they have a certain stability requirement which must be met. This problem will be 

addressed after the filter equations are developed. 

The filter output, y, can be written in terms of the input x, and the filter 

coefficients 6; and a; that can be seen in Figure 2.3(a). 

yk = (Qo tajyz7*4+...4 anz~)ax, + (bz +...4+ byez ™ )y, (2.19) 

(a9 t+ayz-1 +... tayz7%) 
ve = = Ck 

1—(bz71 +... + byez”) 

_ _ A(z) 

  (2.20) 

(2.21) 

15
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Each root of the filter poles must lie inside the unit circle in the complex z-plane or 

the filter output will not be bounded for a bounded input. The filter poles can be 

checked by factoring the polynomial (1 — B(z)) and ensuring that the modulus of 

each root is less than unity. 

The LMS algorithm can be used to adapt recursive filters [15, 17, 19, 20, 29], 

but left in their conventional form, they pose some problems. First, the cost function 

is not a quadratic function of the filter weights, A(z) and B(z), meaning that the 

performance surface may have more than one minimum. Also, as mentioned, the 

poles of the filter (1 — B(z)) must remain inside the unit circle for the filter output 

to remain bounded. One solution to these problems is to use the equation error 

minimization technique for adapting IIR filters [17, 20, 29]. Shown in Figure 2.4 is 

an equation error adaptive IIR filter that can adaptively determine the coefficients 

of an ARMA model for an unknown plant. The output error is first filtered with 

the system poles, (1 — B(z)), before it is minimized, allowing the separation of the 

feedforward and feedback sections of the filter. Each section is then adapted as 

independent transversal filters, each having its own quadratic error surface. The 

output error signal is given as the difference between the plant output d,, and the 

predicted plant response from the recursive filter, #,. That is, 

€e = de—y, (2.22) 

Na Ne 

ck = dy — ” AnLk—n + bnYk—n) (2.23) 
n=0 n=1 

where (N4 + 1) is the number of feedforward coefficients and Ng is the number 

of feedback filter coefficients. Taking the z-transform [24] of both sides of equa- 
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tion (2.23) yields 

Na Ng 

Z {ex} = Z{d, —_ dy Anth—n + d bn k—n} (2.24) 

E(z) = D(z)- Oe (2.25) 

where Z{} is the z-transform operator. Multiplying equation (2.25) by the poles of 

the filter, (1 — B(z)), the desired filtered equation error, E°(z), becomes 

E*(z) = D(z)(1 — B(z)) — A(z) X(z) (2.26) 

By taking the inverse z-transform of equation (2.26), the time domain difference 

equation for the equation error signal becomes 

Neg Na 
e, = d, — y b,dp—-n — De Onin (2.27) 

n= n= 

The cost function to be minimized is the expected mean-square-value (MSV) of ef 

C(a;,b;) = El(eg)’] (2.28) 
Neg Na 

C(a;, b;) = E|(d; _ 2D b,di—n _ d AnZ,-n)”] (2.29) 

Equation (2.29) can be recognized as a quadratic function of the filter coefficients 

from both the zeros and the poles of the adaptive IIR filter. One can now per- 

form a gradient search to update the filter coefficients a; and 6; as described by 

equation (2.13). Again, the partial derivatives of the cost function are taken with 

respect each filter weight. The gradient and its instantaneous approximation for the 

coefficient 6; will be 

0c - OC; 
Ob; = 2E[e; Bb, 

= 2Ele,(—d:-:)] 
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~ —2ej,.d,_; (2.30) 

where e§ is the instantaneous equation error from equation (2.27) and d,_; is the 

desired response of the filter. 

Similarly, the gradient for the numerator coefficients can be approximated as 

follows 

aC - Oe; 
Da, 2E|e;, Da, 

= 2Ele{(—z,-:)] 

  

me —Lep rp; (2.31) 

where x, is the input disturbance sequence to the adaptive filter and desired plant, 

which is typically zero-mean, band-limited white noise. 

Considering equation (2.13) with equations (2.30), and (2.31) we can con- 

struct the final form of the Widrow-Hoff equations for the system identification as 

follows 

b(k+1) = d;(k) + 2upepdy; (2.32) 

ai(k+1) = aj(k) + Qpgeprg-i (2.33) 

where yw, and pp are the convergence parameters used in updating the numerator 

and denominator coefficients, respectively. These parameters may differ since the 

two updating processes are independent. 
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The disadvantage of using Equation Error minimization technique is that 

minimizing the equation error does not always minimize the error signal itself. The 

literature suggests that using a filter of ‘adequate’ size to filter the error signal will 

cause the error signal itself to be reduced whenever the equation or filtered error 

signal is reduced [17]. 

Although the roots of (1 — B(z)) are not required to remain inside the unit 

circle in the z-complex plane during the equation error adaptation process, they 

must be stable before implementing the filter in the form shown in Figure 2.3. 

An unstable filter can be remedied using a technique called reciprocation [17], a 

process where each unstable root is reflected inside the unit circle by dividing it 

into unity. This process approximately preserves the magnitude information of the 

filters frequency response, but drastically alters the phase response. Stabilization 

of the filter in real-time can be aided by breaking the polynomial (1 — B(z)) into 

second order filter sections and configuring them into cascade form [29]. Then, the 

stability of each individual filter can be guaranteed by requiring the coefficients to 

remain inside the region of stability as shown in Ref. [17, pp.160-1]. However, the 

cascade form results in a much more complex system identification algorithm with 

an associated significant computational effort. 

2.3 Filtered-X LMS Adaptive Control 

Whenever LMS algorithm is applied in control applications, such as disturbance 

rejection in structures, the filtering effect of the controlled plant must be taken into 
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account before the gradient of equation (2.13) can be estimated. The net result, as 

will be seen later, is that the transfer function of the control-path must be estimated 

before implementing the adaptive controller. The resulting algorithm for plant con- 

trol is referred to as the Filtered-X LMS algorithm [17, 30]. This algorithm is the 

basis of the four previously-mentioned control algorithms. In section 2.3.1, the two 

control systems which incorporate a nonrecursive compensator will be developed, 

followed by the development of the recursive control systems in section 2.3.2. 

2.3.1 Nonrecursive FIR Compensator 

2.3.1.1 Conventional Filtered-X LMS Configuration 

A typical block diagram of a SISO filtered-x LMS control structure is shown in 

Figure 2.5. The plant output denoted as the error signal, e,, is the combination of 

the response due to the disturbance input, x,, and the control input, u,. That is, 

e& = dy + Yk (2.34) 

where the subscript k indicates a signal sample at time t,. The response due to the 

control input in equation (2.34) can be replaced in terms of the control sequence u, 

as 

ee = det Tee(k) * UE (2.35) 

where T.,(k) is the unit sample response of the transfer function between the con- 

trol input and its response at the error sensor, y,. T,-(k) represents a causal, 

shift-invariant system such that the convolution can be found from the following 
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convolution sum [24] 

Tee(k) ¥UR = 3 Tee(N)UK—n (2.36) 
n=0 

The control sequence, u;,, is obtained here by filtering a reference signal that 

is coherent to the disturbance signal through an adaptive FIR filter. It is assumed 

throughout this document that the reference signal is obtained by directly tapping 

from the disturbance signal as shown in Figure 2.5. Thus, the control sequence 

becomes 

Up = WET, (2.37) 

N 

Ue = D> Ween (2.38) 
n=0 

Replacing equation (2.37) into equation (2.35), the error output is given as 

ce. = d;, + Toe(k) * WE * LE (2.39) 

Again, the LMS algorithm adapts the coefficients w;(2 = 0,1,...,N) in order to 

minimize a quadratic cost function of the plant response. The the cost function is 

defined as 

C(w;) = Ele] (2.40) 

Substituting equations (2.38) and (2.39) into equation (2.40) gives 

C(wi) = El{dg + Toe(k) * (wie) }7] (2.41) 
t=0 

The cost function, and thus the error signal, is again minimized using a 
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gradient descent technique. Differentiating the cost function in equation (2.40) with 

respect to a single weight, w,;, produces 

  
oC Oe, 

= 2E[e,T.e(k) * Lei] (2.43) 

Pe Qepdy; (2.44) 

where, for a shift-invariant system [24] 

Lh; = Toe(k) * Tp; (2.45) 

using the right-shift theorem [31]. The sequence 2, is referred to as the filtered - 

x signal, and is generated by filtering the reference signal, z,, by an estimate of 

the control loop transfer function, T..(z). The final update for the filtered-X LMS 

algorithm is 

w,(k + 1) = w;i(k) _ 2en Le; ~=1,...,N (2.46) 

where the convergence parameter yz can be estimated from the power of the filtered 

reference signal, 2; [27, 17]. 

For the adaptive linear combiner presented earlier, the output of the adaptive 

filter was subtracted from the desired response to form the error signal. In contrast, 

the error signal for the Filtered-X LMS control is formed by the summation of the 

desired response with the output of the adaptive filter after having been filtered by 

the plant control loop, 7... This transfer function must be taken into account for 

the reference sequence, x;, to be correctly correlated with the error signal, e,, in the 
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coefficient update equation (2.46) [17]. Otherwise, the correct gradient of the cost 

function will not be computed. An off-line system identification of the control-path 

was performed for the experimental implementation of the control systems. The 

system identification will be discussed further in chapter 3. 

Since the plant is a linear, time-invariant structure with light damping, the 

transfer function T,. can be most efficiently represented by an ARMA model. Such 

a model can best represent the resonances and anti-resonances typical of this type 

of structural frequency response function because it has both poles and zeros 

The ARMA model is implemented as an IIR digital filter of the form 

  i (>r) = A(z) _ Y() Tce(2) GB) > Uz) (2.48) 

. N Aga? 
T.e(z) = —te0t ee ___ (2.49) 

(Q-DR B;2-5) 

where A(z) and B(z) are polynomials in the complex variable z. The convolution 

sum resulting from the inverse z-transform of equation (2.48) can be written as 

Na Ng 

Uk = > GnUk—n bn Yk—n (2.50) 

n=0 n=1 

Note that the infinite summation in equation (2.36) can be be achieved by a finite, 

compact summation when using an IIR digital filter. 

Now, substituting equations (2.38) and (2.50) into equation (2.39), the error 

signal becomes 

Na N Ng 

Ck = dy + S an > Wmlk-n—-m + » bn Uk—n (2.51) 

n=l n=0 m=0 
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For the filtered-x signal, Z,, to be bounded such that the control algorithm 

will be stable, the measured transfer function, T.e(z), must be stable. The stabil- 

ity of this filter is guaranteed if all of the measured poles, given by the roots of 

(1 — B(z)) in equation (2.48), remain inside the unit circle in the complex z-plane. 

2.3.1.2. Equation Error Control Configuration 

The fact that the poles of the system represent global system properties can be 

taken advantage of to develop a second control configuration that will eliminate the 

stability requirements introduced by the IIR filter used in the Filtered-X LMS Con- 

trol Configuration. As shown in Figure 2.6, the output of the plant is first filtered 

by the measured poles of the system, (1 — B(z)), and then the LMS algorithm is 

used to minimize the filtered error signal rather than the error signal itself. Such a 

filtered version of the error signal is often referred to as equation error, hence the 

name Equation Error Filtered-x LMS Control Configuration. Typically, equation 

error forms are used to counter convergence problems of adaptive IIR filters as dis- 

cussed in section 2.2. 

The new error signal to be minimized is most easily represented in the z- 

domain. Taking the z-transform of equation (2.39) yields 

E(z) = [D(z) + Tee(z)W(z)]X(z) (2.52) 

The equation error signal can now be formed by multiplying equation (2.52) by the 
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estimated poles of the system, (1 — B(z)) 

E*(z) = [1 — B(z)][D(z) + Tee(z)W(2)]X(2) (2.53) 

The transfer function between the noise or disturbance signal zr, and its response 

d;, can be expressed as 

C(z) 
Tne(2) (1— Biz) (2.54) 

Thus, equation (2.53) can be also written as 

E(z) = (1-B(z)) | C® + 44 wey] x (2.55)   

1-B(z) 1-B(z) 

If an exact identification of the system poles is assumed equation (2.55) simplifies 

to 

E*(z) = [C(z) + A(z)W(z)] X(z) (2.56) 

which has the following discrete-time difference equation when the inverse z- 

transform is taken 

Ne Na N 

= > akon t D0 On YD) Wm Ek—n—m (2.57) 
n=0 n=1 m=0 

where (Nc + 1) is the number of coefficients in C(z). Due to noise in the mea- 

surement and variation in the system’s properties, in practice exact cancellation of 

poles and zeros is rarely possible. However, according to Kuo [32], the transient 

response of the compensated system will hardly be affected by residuals left from 

‘inexact’ cancellation of the poles and zeros. Unfortunately, there was no quantifica- 

tion of his statement. However, the adaptive LMS algorithm was shown to tolerate 

errors in the system identification for harmonic control [30, 33] and similar error 
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tolerance was observed experimentally when operating the broadband controller. 

It was observed empirically that the natural frequencies of Te must be accurately 

represented within 5% to control that particular mode, where phase information 

was not important. This behavior is attributed to the robust nature of the LMS 

algorithm. Equation (2.56) shows that by forward filtering the output of the plant 

with (1 — B(z)), the effect of the system poles are cancelled in the signal ef. The 

reader should notice that this control structure is only possible because again, the 

poles (1 — B(z)) represent global properties of the system (i.e. natural frequencies 

and modal damping). 

The update equation for the adaptive filter coefficients is obtained with the 

same process as before, except the cost function is created from the filtered error 

signal in equation (2.56). 

C(wi) = El(e)’] (2.58) 

Differentiating equation (2.58) with respect to the weight, w;, and considering equa- 

    

tion (2.56) 

oC - 0e%, 
jus = 2E [ee Fu (2.59) 

= 2E[e,ap¥*r,—;] (2.60) 

where 

Lh-i = ay * pi (2.61) 

is the filtered-x signal required to compute the gradient and a, is the unit sample 
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response of the feedforward portion of the filter T..(z). This signal is obtained by 

filtering the disturbance signal with only the zeros of the measured transfer function 

of T.e(z). Then, using instantaneous values to approximate expected values of the 

gradient, the update equation for w; now becomes 

Wik+1) = W,(k) — 2pegzy-; 2=1,...,N (2.62) 

The main advantage of this configuration is that two inherently-stable FIR filters 

are used to replace the potentially unstable IIR filter used for T,,(z) in the Con- 

ventional Filtered-X LMS controller. Thus, the stability requirements of the system 

identification are removed since the filtered-X signal z, will always be bounded, 

even when some or all of the poles of T.,(z) are outside the unit circle. Such a 

result is useful for systems that apply a simultaneous on-line system identification 

and control. On-line system identification is carried out by injecting an additional, 

uncorrelated random signal into the control path while operating an LMS or RLMS 

algorithm in a typical system identification arrangement [21, 34, 35]. After updating 

the coefficients of T,.(z), they are copied to the LMS algorithm and used to create 

the filtered-x signal. Stabilization of the recursive filter coefficients is not required 

when employing the Equation Error Control Configuration, reducing both the sys- 

tem complexity and computational overhead. 

Again, this configuration is disadvantaged because a filtered version of the 

error signal is minimized instead of the error signal itself. However, according to 

reference [17] if the filter (1 — B(z)) is of adequate size, then minimizing ef also 

minimizes e€,. 
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2.3.2 Recursive IIR Compensator 

Taking another look at Figure 2.5, the z-transform of the plant error signal can be 

written in terms of the transfer functions and the z-transform of the input signal, 

X(z) as follows 

E(z) = [Tne(z) + W(z)Tee(z)|X (z) (2.63) 

Because the cost function is quadratic and has only a single solution for the min- 

imum, the optimal compensator W(z)* which will make equation (2.63) equal to 

zero can be determined from inspection as 

Wz) = —2eel2) (2.64)   

Substituting equations (2.48) from page 26 and (2.54) from page 29 into equa- 

tion (2.64) yields 

C(z) 
W(z)* ~ A)   (2.65) 

since the poles are common to both transfer functions and they cancel. What equa- 

tion (2.65) reveals is that optimal filter solution has an ARMA structure which could 

only be crudely approximated by the low-order FIR compensator in section 2.3.1. 

Full attenuation of the error signal is possible with an IIR compensator provided it 

is of adequate order (of equal or greater order of C(z) and A(z) in equation (2.65)) 

and all of the zeros of A(z) are inside the unit circle. 

Figure 2.7 shows a diagram of the filtered-X LMS algorithm which uses 

an adaptive recursive compensator, having poles represented by the polynomial 
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(1 — Q(z)). There are many problems connected with adapting the poles of IIR 

filters that would deter one from using them. First, left in their conventional form 

IIR filters produce a nonquadratic, multi-modal cost function of which it is difficult 

to find the global minimum. Also, the poles must be factored and checked for stabil- 

ity which requires significant computational effort. Further, the convergence tends 

to be more sensitive to noise in the gradient. The equation error technique from 

section 2.2 could be used to avoid stability problems, but there will be some bias 

error introduced into the solution. However, another inspection of equation (2.65) 

reveals that an IIR compensator with adaptable poles could be avoided since the 

polynomial A(z) is the zeros of the transfer function T,,(z) and they are measured 

before the controller is implemented. Therefore the poles of the compensator should 

be assigned such that 

1-—Q(z) « A(z) (2.66) 

which can be achieved by the following equation 

  

N a: 

Q(z) = a (2.67) 

Q(z) = a —1 (2.68) 

1-Q@) = —IAG)] (2.69) 

By assigning the poles of the compensator to be proportional to A(z), the problems 

associated with adapting IIR filters are avoided. The control system has only a sin- 

gle LMS algorithm with much nicer convergence properties than would be possible 
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Figure 2.7: Schematic showing the filtered-X LMS adaptive plant control using a 
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with an RLMS algorithm. The disadvantage of the method is that the roots of A(z) 

must all lie inside the unit circle for the compensator output to be bounded. If the 

zeros of T..(z), or the roots of A(z), are all inside the unit circle, then the system 

is said to be a minimum-phase system, and a stable inverse exists. Nonminimum- 

phase systems occur naturally in cases where actuator and sensor are not colocated. 

A nonminimum-phase system may also result from discretizing a minimum-phase 

plant for digital implementation and is independent of the sampling rate [36]. For 

the analysis, it will be assumed that the T,.(z) is a minimum-phase transfer func- 

tion. 

The error signal in Figure 2.7 can be written as follows 

ee = at+y (2.70) 

= I z Wz) z * 2 a = 21 tuls) + eo ra(e))h an @.71) 
where Z—'{} denotes the inverse z-transform. 

2.3.2.1 Conventional Filtered-X LMS Configuration 

The quadratic cost function in W(z) is created by squaring the random variable e;, 

and taking the expected value 

C = Elles)’ (2.72) 
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Compute the gradient of the cost function by differentiating with respect to the 

adaptive weight, w; 

    
oC _ Oe; 
du, = 2Blera | (2.73) 

_ T.e(z)27% _ 1 = 2Ele,Z ees — O(a) * Lp] (2.74) 

~~ 26, Lk (2.75) 

where 

Aa _ T.-(z) =—1 _—_ 1p _ ON s at 
Tp-~ = Zz {7 — Q(z)” } * rp (2.76) 

is the filtered-X signal required to update the filter coefficients of W(z) with the 

following Widrow-Hoff LMS update equation 

w,(k + 1) = w;(k) _ Quen LE; (2.77) 

(2.78) 

By examining equation (2.63), the optimal compensator that will make the error 

signal zero is 

W(z)" = ao (2.79) 

and considering equation (2.69), if perfect cancellation of poles and zeros is assumed, 

the numerator will adapt to 

W(z)" = kC(z) (2.80) 

where k, = = is a constant. Therefore, the zeros of the compensator adapt to the 

zeros of the disturbance loop, T,,.(z), differing only by a constant. Now, the only 
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requirements to reduce the error signal to zero is for (1 — Q(z)) to be stable and 

that the adaptive numerator of the compensator, W(z), be of the same or greater 

order than C(z). 

2.3.2.2 Equation Error Configuration 

Using the equation error minimization technique described in section 2.2, the 

filtered-x filter can again be reduced to an FIR as shown in Figure 2.8. The er- 

ror signal can be filtered with both the compensator and plant poles to produce 

E*(z) = [1—- B(z)][1 — Q(z)]E(z) (2.81) 

Now substituting equations (2.48), (2.54), and (2.63) into equation (2.81) and sim- 

plifying 

Ete) = [C(z)(1 — Q(z)) + A(z)W(z)]X(z) (2.82) 

which can be written as 

= [eg — ce * qe + 5q * WE] * TE (2.83) 

when the inverse z - transform is taken, where q, is the unit sample response of the 

poles of the compensator. Now, the cost function becomes 

C = Ele)’ (2.84) 
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Computing the gradient of the cost function by differentiating with respect to the 

adaptive weight, w; 

  
oC - Oe 

= 2Ele%a, + zy_;] (2.86) 

on Ze, Lj (2.87) 

where 

Lk-i = ak * Tp; (2.88) 

is the filtered-X signal used in the instantaneous gradient approximation for the 

Widrow-Hoff algorithm: 

wi(k+1) = w,(k) — Qwefz,-_; (2.89) 

(2.90) 

In the event that 7,-(z) is a nonminimum-phase transfer function, some of the 

poles of the compensator, (1—@Q(z)) as formed by equation (2.67) will lie outside the 

unit circle, making the compensator output unbounded. Therefore, the polynomial 

(1—Q(z)) must be factored to discover the unstable roots in order to stabilize them. 

A simulation of such a nonminimum-phase system was performed and the unstable 

poles were found. Using the reciprocation technique from section 2.2 to reflect the 

unstable poles inside the unit circle produced a stable controller, but it did not 

minimize the error signal. One can see from equations (2.79) and (2.80) that if any 

of the unstable poles were reciprocated, the adaptive numerator would then need to 
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converge to 

C(z) Tia (2 - +) WO) = bea) (2.91)   

for m unstable roots, z;. The discrepancy between being able to successfully stabi- 

lize the identified transfer function T,-(z) and unsuccessfully stabilizing (1 — Q(z)) 

results from the roots of (1 — Q(z)) being much further outside the unit circle that 

the roots of (1—_B(z)). Another attempt to solve the stability problem was to cancel 

only the stable zeros of A(z) with (1 — Q(z)), but this technique also failed to yield 

any control of the plant response in simulations. Using the conventional practice 

of representing 7., as a rational transfer function in z (equation (2.47)) will always 

yield an unstable inverse for nonminimum-phase systems. Perhaps this problem 

could be solved by using another representation for the plant inverse such as an 

artificial neural network (ANN) or other feedforward structure that is inherently 

stable. 

2.3.3 Remarks on Broadband Versus Harmonic Control 

Most of the research in adaptive, feedforward control has been for harmonic distur- 

bances, due in part to the large number of applications and partly because of the 

simplicity. If a structure is undergoing a harmonic excitation, the response is also 

harmonic in the same frequency, but typically with a change in phase and magnitude. 

This transfer function is represented by the vertical line on the sample frequency 

response function (FRF) shown in Figure 2.9. The measured structural transfer 

function, T(z), for a harmonic excitation can be represented with a two-weight 
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FIR filter capable of changing the two degrees-of-freedom, phase and magnitude. 

When broadband vibration is controlled, the magnitude and phase information for 

the plant control loop, T,.(z), is needed across a wide bandwidth of frequencies. 

Again, this point is illustrated in Figure 2.9. 

Another point of interest that can be inferred from section 2.3.2 is that since 

the optimal control compensator is an ARMA structure, the control compensator 

will need to be either an ITR of low but sufficient order or a very high order FIR 

filter. In contrast, a single harmonic tone can again be cancelled by a two-weight 

FIR filter which is capable of changing phase and magnitude of the deterministic 

reference signal until it cancels the response due to the disturbance at the error 

sensor location. 

2.4 Simulation of Control Algorithms 

Each of the four control algorithms presented earlier in this chapter were simulated 

on a computer using the Matlab software by MathWorks [37]. A simply-supported 

steel beam with dimensions 380 x 40 x 0.2 mm was chosen for the plant. The mass 

was chosen to be 0.232 kg and the damping ratio was assumed to be 1% for each 

mode. The beam and actuator properties are equivalent to the real beam to be 

used in the experimental analysis described in chapter 4. Figure 4.2 in on page 63 

illustrates the locations of the accelerometer and the piezoelectric patches used as 

the sensor and actuators, respectively. An equivalent loading diagram is also shown 

at the bottom of that figure. The error sensor was assumed to be located 238mm 
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from the left edge of the beam. A pair of line moments, 150 and 188mm from the 

left edge of the beam, were applied by the disturbance actuator. Chapter 4 describes 

the action of piezo actuators in more detail. The control moments were applied 265 

and 303mm from the left edge. A Gaussian white noise sequence was used for the 

input signal. Table 2.1 lists the analytical natural frequencies of the beam, the first 

three of which were included in the model. Appendix A provides details on how the 

discrete model of the beam was obtained for the simulations. 

Table 2.1: Analytical Natural Frequencies 

Mode | Analytical f,, (Hz) 

1 31.73 
127.0 
285.6 
507.8 
793.5 
1142.6 

1555 
2031 
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The simulation results will be presented in the same order that the algo- 

rithms were developed. The simulation results from the Conventional Filtered-X 

FIR control are shown in Figure 2.10. This particular simulation used an adaptive 

filter with 20 coefficients, a convergence parameter of 4 = le~*, and a sample rate 

of 2000 Hz. Although the error signal was not completely minimized, a reduction of 

13 dB in the error signal power was observed. Similar results were observed for the 

Equation Error FIR Control, using 20 adaptive coefficients, a sampling frequency 

3 of 2 kHz, and a convergence parameter of 3e~°. The uncontrolled and controlled 
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Figure 2.10: Simulation of Conventional Filtered-X FIR Control algorithm when 
applied to the discrete-time model of a simply-supported beam. 
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time histories are compared in Figure 2.11, where the power of the controlled error 

signal is 8 dB less than the uncontrolled plant response. Although the largest signal 

oscillations are attenuated, control is generally not as good as that observed for the 

Conventional FIR Controller. 

For the simulations of the Filtered-X algorithms incorporating a recursive 

compensator, the error sensor location was moved to correspond with the center of 

the control actuator, 285mm from the left edge. The colocation of the error sensor 

and control actuator provided a minimum-phase transfer function for the control 

loop. Simulation results from the Conventional Filtered-X IIR Controller can be 

found in Figure 2.12. Here, the adaptive compensator has only 6 coefficients, one 

order higher than the order of numerator of T,,-(z). As anticipated, the error signal 

almost completely diminished, with an attenuation of 23 dB. Simulation results from 

the Equation Error recursive algorithm show a 27 dB reduction in the error signal as 

shown in Figure 2.13. Again, the error signal was almost driven to zero. The same 

sampling rate and adaptive filter order as above were used, along with a convergence 

parameter of 5e7°. 

Two additional simulations were performed using the recursive controller. 

Firstly, the moduli of all the compensator poles were perturbed by 10% to de- 

termine how the errors in estimating T..(z) would affect control performance. The 

error signal was still minimized almost completely, although convergence was slower. 

Secondly, the same analysis was repeated with 20% error in the poles. Complete 

attenuation was no longer possible, but a very significant reduction was observed. 

The robust behavior of the LMS algorithm allowed the unconventional practice of 
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Figure 2.11: Simulation of Equation Error Filtered-X LMS FIR control algorithm 
when applied to a simply-supported beam. 
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Figure 2.12: Simulation of the Conventional Filtered-X LMS algorithm using a 
recursive compensator on a minimum-phase plant. 
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pole-zero cancellation to be feasible. 
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Figure 2.13: Simulation of the Equation Error Filtered-X LMS algorithm using a 
recursive compensator on a minimum-phase plant. 

49



Chapter 3 

System Identification of 

Control-loop Transfer Function 

It was shown in section 2.3 that a system identification of the control loop must be 

performed before filtered-X LMS adaptive control can be implemented. The sys- 

tem identification can be implemented either on-line simultaneously with control or 

off-line, as was done for this research. Once the transfer function is known, it can 

be used to predict the response of the control loop when excited by the reference 

signal. This ‘filtered-X signal’ is then correlated with the measured error signal so 

that the appropriate gradient can be estimated for the LMS coefficient update (e. 

g. equations (2.46) and (2.62). Section 2.3.3 discussed the differences in the system 

identification when broadband disturbances are present as opposed to harmonic ex- 

citations of a system. 

A linear dynamic system can be identified by examining the properties of 

both a spectrally-rich input noise and the corresponding plant response. Figure 3.1 

shows an unknown system and the response, y;,, and the white noise input, z,. An 
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alternative system identification is shown in Figure 3.2 where the parameters of a 

system model are adapted to minimize the output error. The plant is identified 

when the error signal is driven to zero. With either method of system identification, 

a proper-order system model must first be realized before the model parameters 

are estimated. The conclusion of section 2.3.3 was that an autoregressive moving- 

average (ARMA) model will most efficiently model a lightly damped structural 

plant. ARMA models, which are synonymous with IIR filters, can be approximated 

with a high-order MA model [18] and have the advantage that they are always 

stable. Before an ARMA filter was used for the system identification an FIR (MA 

model) filter with 40 coefficients was first used to model the dynamics of the beam. 

The FIR filter produced unsatisfactory results and a filter of any larger order was 

deemed undesirable. 

3.1 Least-Square Solution of ARMA Model 

Recursive filters representing plants with both poles and zeros as shown in equa- 

tion (2.47) are often referred to a autoregressive-moving average (ARMA) models. 

A time series ARMA model of order N can be written as 

N N 

yk = Dla t+ Do byye-; (3.1) 
#=0 j=l 

where y; is the filter output, z, is the input sequence, a; and }; are respectively the 

coefficients of the MA and AR portions of the IIR filter. 

Multiplying each side of equation (3.1) consecutively by each element from 

51



  

Input, X Output, Y   
k 

Unknown 

Plant       

      

Figure 3.1: System identification of the impulse response of an unknown system 

through time domain analysis. 
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Figure 3.2: System identification of a plant via an adaptive model. 
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the sequences {xz} and {y;} (e.g. {24,24-1,.--)Lk-Ny Yk-1)+--) Yk-N}) and taking 

the expected value, the following linear system of equations results 

{ tac) } = [acs] {2h} 9 
The components in this equation are defined in terms of the auto and cross correla- 

tion functions of the sequences {z;,} and {y;,} as 

    

Rey (0) 

{Rey} = | fal) ! (3.3) 

Ray(N) 

Ryy(1) 

{Ry} = | fal) ! (3.4) 
Ryy(N) 

R,-(0) Rerz(—1) ue Rz2(—-N) 

Roe) = SR BOERNE 88) 
Rez(N) Ree(N—-1) -:: Rz2(0) 

Rzy(—1) Ryy{—2) “ee Rzy(—N) 

[R _ Rey(0) Rey(—1) an Rey(—N + 1) (3.6) 

Rz,(N - 1) Rey(N — 1) A Rey (1) 

Ryz(1) Ryz(0) ‘++ Ryg(1— N) 

[R _ Rye(2) Ryz(1) “s* Ryz(2 ~ N) (3.7) 

Ryo(N) Rye(N — 1) A Ry(0) 
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R (0) Ryy( 1) 7" Ry(-N +1) 

R 
vy ~ 

1 0 —-N+1 ny = |Pa® Bal MND | gy 
Ryy(N ~ 1) Ry (N ~ 1) i Ry, (0) 

where the correlation functions and some of their properties are defined as 

Rez(m) = Elapteim]) = Rer(—m) (3.9) 

Ray(m) = Elziystm] = Rye(—m) 

The unknown filter coefficients a; and 6; are the components of the vectors 

Ag 

A, 
{A} = . (3.10) 

An 

By 
B 

{By} = 3) 0 (3.11) 

Bn 

Solving the system in equation (3.2) will produce a least square (LS) solution for 

the IIR filter coefficients, which represent a complex polynomial in z. This type 

of solution provides the advantage that the poles do not have to be broken into 

second order sections and checked for stability during the identification process (as 

described in Section 2.2). Rather, the poles can be factored and stabilized after the 

parameter estimation is complete and before the filter is implemented in the control 

system. 

The denominator polynomial of the transfer function in equation (2.47) can 
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be factored into the form 

1—B(z) = 1—b27!—b2z7?...—by2% (3.12) 

= 2-N(z— 2)(z — 2)(z — 23) +++ (2 — zn) (3.13) 

where z;,(¢ = 1,2,...,N), are the roots or poles of the structure. They occur in 

complex conjugate pairs, representing the individual second order sections of the 

structure. A pole, and therefore the filter, is stable when its modulus is less than 

one. Poles can be made stable by reciprocation, a process where each unstable root 

is reflected it back inside the unit circle [17]. This procedure approximately preserves 

the magnitude response of the transfer function, but alters the phase response. An 

accurate estimate of the phase could be needed for response prediction of the control 

loop when excited by the disturbance input (generation of the filtered-x reference 

signal). If necessary, the phase corruption can be remedied by using the adaptive 

IIR configuration for system identification as explained in section 3.2. 

3.2 Adaptive IIR Filters Applied to System 

Identification 

The adaptive IIR configuration discussed in section 2.2 can be used to correct the 

phase corruption which may occur during stabilization of the least-squares ARMA 

solution described in section 3.1. In this case, the coefficients of the stabilized 

ARMA model provide the first guess to the LMS solution where only the numerator 

coefficients of the IIR filter, a;, are adapted using equation (2.33). A schematic of 

this process is shown in Figure 3.3. A simulation of RLMS phase-correction process 
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was carried out and the results are shown in Figure 3.4. As can be seen by the 

bottom plot, the error signal diminishes as the numerator coefficients are adapted. 

Correcting the ARMA model will be more difficult in a real implementation, since 

the RLMS is more sensitive to noise. The RLMS can also introduce bias error into 

the estimate of T..(z), potentially worsening the model. It is not known how the 

accuracy of T’,-(z) affects the convergence and stability of the algorithms. 

56



  

  
  

        

| 

11) Ig (Oi 18 — 
  

  

  

      

      LMS, 

Algorithm 
  

          
  

Figure 3.3: Adaptive IIR filter used to correct phase corruption of stabilized ARMA 

model. 
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Figure 3.4: Convergence process when the adaptive phase-correction scheme shown 
in the previous figure was employed: (top) plant response, (bottom) difference be- 
tween actual and estimated plant response (e;). 

58



Chapter 4 

Experimental Setup and 

Procedure 

Theoretical analyses and simulations are important tools for the understanding and 

development of controls and other processes. However they are limited since real- 

world applications are plagued by noise, measurement errors, nonstationarities and 

the like. Therefore, experimental demonstration of the control algorithms is essential 

to show that they will be useful for real applications. The performance of the control 

algorithms are demonstrated with active vibration control on a simply-supported 

beam. However, these algorithms should be able to control acoustic radiation as 

well as vibration, with the only difference being the effects of the structural—acoustic 

coupling. 

4.1 Test Rig 

A small, simply-supported beam was used in all of the broadband vibration con- 

trol experiments. The beam is made of plain carbon steel and has dimensions 
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380 x 40 x 2 mm. Two thin, flexible metal shims connect the beam to a heavy sup- 

port stand, providing the desired simply-supported end conditions. A picture of the 

test rig is shown in Figure 4.1. Table 4.1 lists the first six natural frequencies which 

were obtained experimentally. They agree within 6% with the analytical natural fre- 

quencies listed in Table 2.1. The experiment was limited to control of the first three 

bending modes because the location of the control actuator pair rendered the fourth 

mode uncontrollable. Two separate actuator and sensor configurations were used 

depending on whether the control system employed and FIR or IJR compensator 

since the IIR system requires a minimum-phase control-loop. Both are illustrated 

in Figures 4.2 and 4.3 along with their effective loading diagrams. 

Table 4.1: Experimental Natural Frequencies 

Mode | Experimental f,, (Hz) 
1 32.9 

126.9 
282.3 

498.6 
768.7 
1077.0 
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4.1.1 Configuration 1: Setup for Systems Using an FIR 

Compensator 

The error sensor was a Brtiel & Kjzr mini-accelerometer located 238 mm from the 

left edge of the beam, a location capable of sensing the modes of interest. Control 

action was applied by a co-located set of Piezo Products’ G1195 piezoelectric strips. 
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Figure 4.1: Picture of test rig showing beam and piezo-electric patches. The square 
piezo patch on the far right is the control actuator, the center, rectangular patch is 
the disturbance actuator, and the far left patch was not used in these experiments. 

The accelerometer can be seen between the disturbance and control patches. 
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The piezoelectric strips measured 38.1 x 32.0 x 0.2 mm and their closest edge was 

located 265 mm from the left edge of the beam. Figure 4.2 shows the layout of the 

actuators and sensor, along with the equivalent schematic diagram of the loading. 

Piezo patches apply an in-plane strain at the patch/beam interface. Since the two 

control-actuator patches have the same geometry and are connected out of phase, 

equal and opposite strains are applied to each side of the beam. The net effect of 

the actuator (pair of patches) is to apply two line moments, M., at each edge of the 

piezo patches, which excite the beam in pure bending (38, 39]. The disturbance or 

input actuator was applied by a single piezoelectric strip. It measured 38 x 22 x 

0.2mm and was affixed 150mm from the left edge of the beam, where it is capable 

of exciting the first three modes. A single patch results in both bending and exten- 

sional excitations (Mz and Fy in Figures 4.2 and 4.3). 

4.1.2 Configuration 2: Setup for Systems Using an IIR 
Compensator 

A minimum-phase plant can be achieved by co-locating the control actuator with 

the error sensor. Hence a point-force input was achieved with an electrodynamic 

shaker which was mounted opposite the accelerometer at the same axial location 

on the beam, 327 mm from the left edge. Again, this arbitrary location renders 

the first three bending modes observable and controllable. The disturbance input 

was achieved with the same piezo strip described in Configuration 1. Figure 4.3 

illustrates the locations of the sensors and actuators for the second configuration 

described above. 
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Figure 4.2: Sensor and Actuator locations on the simply-supported beam used for 

the experimental analysis of the control systems incorporating and FIR compen- 

sator. All dimensions are in mm. 
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Figure 4.3: Sensor and Actuator locations on the simply-supported beam used for 

the experimental analysis of the IIR control systems. All dimensions are in mm. 

64



4.2 Instrumentation 

The control approaches presented in chapter 2 were implemented in a Texas Instru- 

ments TMS320C30 (C30) digital signal processor (DSP) board which was resident in 

a host 80386—based personal computer (PC). All of the DSP programs were written 

in Assembly language and compiled into stand-alone executables for the C30. Ad- 

ditional programs were written for the PC in ‘C’-language to direct different tasks 

such as: 1) downloading C30 executables, 2) starting/stopping execution of the C30, 

and 3) passing parameters between the PC and C30 (e.g. convergence parameter, 

sampling rate, system identification parameters, etc.). 

Although this is a SISO control system, a second input to the DSP was re- 

quired for the reference signal. Figure 4.4 shows the complete experimental setup 

including the details about the two inputs (reference, error) and one output (control) 

of the DSP. A second DSP board (TMS320C20) was used to provide a pure delay 

in the disturbance signal for Configuration 1 to achieve a causal control system. 

The accelerometer signal was conditioned with a Briel & Kjzr type 2635 charge 

amplifier which also performed an analog integration of it. It was observed that the 

controller produced better results when velocity rather than acceleration was used as 

the error signal. This result is believed to be due to the removal of the low-frequency 

noise occurring below the first mode, since the cut-off frequency of the high-pass 

filter in the accelerometer charge amp is 10 Hz for a velocity signal compared to 2 

Hz for an acceleration signal. A Frequency Devices 9002 low-pass filter was used 

as an anti-aliasing filters for the error signal and two additional FD9002 low-pass 
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filters were used to smooth the control signal and delayed disturbance signal before 

driving the structure with them. All three of these filters were removed to analyze 

the recursive control systems because their large phase shift made the control loop 

have nonminimum phase. A fourth FD9002 low-pass filter was used to band-limit 

the input random noise signal generated by a Bruel & Kjzr analyzer to 400 Hz. 

All time and frequency domain analysis was done by the Briiel & Kjzr 2032 and 

was downloaded to a PC via an IEEE-488 interface. A programmable digital de- 

lay z~* was implemented in the disturbance path using a TMS320C20 (C20) DSP 

board installed in a separate computer. By selecting the number of delay taps in 

conjunction with the sample rate of the C20, an appropriate delay can be added 

to the disturbance signal to make the control system causal, if needed. Figure 4.4 

shows a schematic diagram of the complete experimental setup. 

4.3 Experimental Procedure 

Both control configurations were checked for causality before implementing the con- 

trol systems. Propagation times from both the disturbance and control inputs to 

the error output were measured by computing the cross correlation functions across 

each path while they were excited by white noise. The propagation time for each 

path is found at the largest peak on the respective cross correlation functions and it 

is discovered that the disturbance path has a propagation time that is 3 ms longer 

than that of the control path in Configuration 1. A 3.9 ms delay was added to the 

disturbance signal by selecting a sample rate of 15 kHz and 59 delay taps for the 

C20 DSP. Delaying the disturbance signal with respect to the control input allowed 
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the acausal optimal control solution for the system to be implemented. The second 

configuration was naturally causal because of the co-location of the control actuator 

and error sensor, in addition to the removal of the low-pass filters. Although the 

low-pass filters do not produce a pure time delay, they provide enough phase-shift in 

the higher-frequency content of the time-domain signal to make the optimal control 

filter acausal. 

Before the control algorithms can be implemented, one must first perform 

the off-line system identification. A random signal is fed into the reference input 

channel of the DSP and echoed back out the control output channel. A DSP code 

measured the two signals and computed the statistics for the ARMA model shown 

in equation (3.2). Approximately 30,000 points were used to compute the correla- 

tion functions, which were sent back to the PC to form the linear system shown in 

equation (3.2) on page 53 and solve for the filter coefficients 4; and 6; of T.e(z). The 

poles were then computed by solving for the zeros of (1 — B(z)), and the unstable 

poles were stabilized by reciprocation, as described in Section 2.2. In the event that 

the stabilized model has accurately identified the system natural frequencies but 

does not provide adequate performance for the control system, the phase corruption 

occurring from the pole reciprocation can be remedied by using the adaptive IIR 

configuration shown in Figure 3.3 from section 3.2, to adapt only the numerator 

coefficients of the filter, a;. In this case, the coefficients of the stabilized ARMA 

model provided the first guess to the LMS solution. When evaluating the perfor- 

mance of the Conventional FIR control, the “phase-corrected” ARMA model did 

not appear to provide any better control than an uncorrected model. Therefore, 

the RLMS phase-correction process was not performed for any of the experiments 
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which will be presented in the next chapter. A comparison between the autospectra 

of the filtered-x signal and the real output error for Configuration 1 (FIR Control 

System) are presented in Figure 4.5, and they show very good agreement. The IIR 

filter coefficients were stored on the hard-disk to be loaded into the memory of the 

DSP and be used by the control codes at a later time. The off-line system identi- 

fication process was necessarily repeated when Configuration 2 of the test rig was 

implemented since a different error/control actuator combination was used. Next, 

the random input signal was applied to the disturbance actuator and the perfor- 

mance of the different control configurations was investigated. The sampling rate 

used for the system identification and control experiments was 2000 Hz. 
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Figure 4.5: Comparison of autospectra between plant control-loop response (top) 
and the filtered-x signal (bottom) for a white noise input. 
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Chapter 5 

Experimental Results 

The experimental results are presented in the same order as the theoretical devel- 

opments in chapter 2. Results will be displayed in both the time and frequency 

domains. All experiments are performed with a causal control system except for 

the indicated experiments with the Conventional FIR Controller, where an acausal 

system was experimentally examined. 

5.1 Conventional Filtered-X LMS Control With 

FIR Compensator 

Figure 5.1 shows a comparison of the steady-state error signal measured from the 

beam both before and after the Conventional Filtered-X LMS Control was applied 

with a 24th order adaptive FIR. Although the error signal was not reduced to zero, 

a large amount of vibration attenuation was achieved by the controller. A compar- 

ison of the graphs of the power spectral density of the two error signals is shown in 

Figure 5.2, and it gives additional insight into the control] mechanism. Despite an 
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Figure 5.1: Measured error signal from the plant. (top) before control; (bottom) 
after convergence of Conventional Filtered-X LMS Control using an FIR. 

72



10° t 1 v t 1 t q t   

    
  

10-1} - 

10-2} - 

10-3 i 
~ 
ea ‘ * i 

oe " 

‘ «104T ft i ‘ 1 
s it ry nO 

2 a yee’ l ‘ Ms Noyes } \ 10s (A Nagler s 
$ av Me’ ‘ey ng 

ae "V o 

106 § a f 4 
\ 7 

\ af 

10-7} - 

1084 . 

10-9 lL ! ! 1 ! 1 l 1 

0 50 100 150 200 250 300 350 400 450 

Frequency (Hz) 
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increase of the spectrum in some of the off-resonance frequency bands, the spectrum 

displays a reduction of approximately 20-25 dB at the system resonances. The net 

reduction in mean-square error over the bandwidth was 19.4 dB. Thus, the con- 

troller behaves as a wide-band controller rather than a true broadband controller, 

attenuating the larger frequency components that occur near the structural reso- 

nances, while adding energy at the off-resonance frequencies. The reader should 

keep in mind that the areas under the two curves can not be compared directly, 

because of the log scaling. Convergence of the adaptive algorithm occurred in ap- 

proximately three seconds as shown by the time histories of the control and error 

signals in Figure 5.3. 

The influence of the adaptive FIR filter size on the controller performance 

was then investigated by varying the filter order N, from 12 to 80 coefficients. This 

process was performed first for a causal control system. The reduction in the mean 

square error as function of the filter size is plotted in the top curve of Figure 5.4. It 

is seen that the control performance quickly improves with larger filters to reach a 

nearly constant reduction of 20 dB after 24 weights. 

The programmable disturbance-path delay d was then set to zero to repeat 

the above experiments for an ‘acausal’ control system. More correctly stated, a 

causal filter was used to approximate an acausal optimal control filter solution. The 

results of these tests are shown by the bottom curve in Figure 5.4. The performance 

of the ‘acausal’ controller is severely compromised for small size adaptive filters 

compared with the causal controller. However, for larger filter size, the ‘acausal’ 

controller shows significant reduction of the MSE, which is only 3 dB below that of 
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Figure 5.3: Time histories showing the convergence rate of the Conventional 
Filtered-X FIR adaptive controller. (top) error signal; (bottom) control signal. 
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the causal controller. 

5.2 Equation Error Control Configuration with 

FIR 

The Equation Error Control structure was demonstrated by performing two experi- 

ments with a causal control system having 24 adaptive coefficients. In the first test, 

the error signal was filtered with the same stabilized poles, (1 — B(z)), used for 

the Conventional Filtered-X FIR Control in Section 5.1. This configuration did not 

produce as much reduction in the error signal as the Conventional Filtered-X LMS 

Control structure, nor did it converge as quickly. In Figure 5.5, a comparison of the 

error signal time histories before and after control is presented. The autospectra 

of the error signal were similar to Figure 5.2, where the modal amplitudes were 

reduced while some off-resonance frequency bands increased in energy. The plots 

are shown in Figure 5.6. A reduction of 10 dB in the power of the error signal 

was measured in this case. For the second control experiment, some of the poles 

of (1 — B(z)) were reflected outside the unit circle before being used to filter the 

error signal with the Equation Error Configuration. This test demonstrates that 

a stable system identification of the control loop is not necessary for the Equation 

Error Control Configuration. Total power reduction of the error signal for the last 

experiment was approximately 8.9 dB, which differs slightly from the results of the 

first Equation Error Control experiment. Again, the before and after control error 

signals are compared as shown in Figure 5.7. Both of these experiments displayed 

much lower power reductions than the corresponding causal, 24**-order Conventional 
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Figure 5.5: Actual error signal time histories during application of the Equation 
Error Control using an FIR. (top) without control; (bottom) after application of 
the Equation Error Control configuration. 
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Autospectra of Uncontrolled and Controlled Plants 
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Figure 5.7: Error signal time histories showing effects of applying the Equation 

Error FIR Control form with unstable ‘poles’. (top) without control; (bottom) after 
control convergence. 
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Filtered-X LMS Controller, which exhibited 20 dB of attenuation. However, the ex- 

periments demonstrate the advantage that a highly accurate system identification 

with stable poles is not necessary when using the Equation Error Control structure. 

The penalty for the relaxation on the system identification is a deterioration of the 

control performance. The difference between the results of the three test cases can 

be explained simply by the fact that a different cost function is minimized for all 

three test cases. Table 5.1 summarizes these test results. 

Table 5.1: Comparison of Three Different Control Structures Having a 24**-Order 

Causal Adaptive FIR Filter 

  

  

  

  

Control Configuration Reduction (dB) 
Conventional LMS Controller 19.4 

Equation Error LMS Controller 
With Stable Poles 10.1 

Equation Error LMS Controller 
With Unstable Poles 8.91       
  

5.3 Conventional Filtered-X Control With IIR 

Compensator 

In Figure 5.8 the time domain results of the Conventional IIR control are shown 

for an adaptive filter having 6 coefficients. Complete attenuation of the error signal 

did not occur as in the simulation. However, very good control was observed for 

much smaller adaptive filters. For example, the 6‘*-order adaptive filter produced 

over 13 dB of reduction. A comparison of the autospectra in Figure 5.9 shows that 
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Figure 5.8: Measured error signal: (top) before control, and; (bottom) after conver- 
gence of the 6’*-order Conventional Filtered-X IIR Control. 
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the recursive filter achieves more of a true broadband control, leaving the spectrum 

relatively flat after convergence. Note that this control system also increased the 

plant response at some of the off-resonance frequencies. The additional peaks at 16 

and 44 Hz resulted from the interaction between the structure and the shaker used 

as a control actuator. 

Last, the Conventional FIR control was applied to the same system (Configu- 

ration 2) in order to compare its performance with the recursive system. Figure 5.10 

displays the control performance of both control systems for various adaptive filter 

sizes. As you can see, the conventional recursive filter performs much better than 

the FIR for small filter sizes, with comparable performance in the two systems oc- 

curring with a 16% order filter. Note that the IIR performance is nearly constant 

from a 4* order filter up to 16 order, where the FIR filter shows the familiar in- 

creasing asymptotic trend observed in the previous section. A noted disadvantage of 

the recursive filter is the very long convergence time, which is on the order of a few 

hours for each of the test cases. The nonrecursive system took longer to converge 

(15-30 minutes) than it did when applied to Configuration 1, presumably because 

of the removal of the low-pass filters. 

5.4 Equation Error Filtered-X Control With IIR 

Compensator 

As expected, the Equation Error Configuration was not as effective at minimizing the 

error signal as the conventional configuration when using the recursive compensator. 

About 7 dB of attenuation was observed for a 6**-order adaptive filter. The error 
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Comparison of Recursive and Nonrecursive Control Systems 
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signal before and after control is shown in Figure 5.11. Figure 5.12 shows that the 

Equation Error IIR Control did not produce a flat spectrum unlike the Conventional 

Configuration. In fact, it looks similar to spectrum produced from the Conventional 

FIR Control. 

Although the application of the recursive compensator is limited to only 

minimum-phase systems, the experiments demonstrate the potential for better con- 

trol systems. This particular system has two advantages over the traditional RLMS 

filters: 1) the poles are not adapted and thus do not have to be checked for stability 

each time they are updated, and 2) no bias error is introduced as is the case for 

using an equation error minimization technique to adapt recursive filters. 
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Figure 5.11: Error signal before and after applying Equation Error ITR Control. 
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Chapter 6 

Analytical Study of System 

Causality 

Previous literature discusses system causality for broadband feedforward control 

systems [16, 23]. The authors experimentally demonstrated that control system 

performance declines when delays are present in the control-path, rendering the op- 

timal control filter acausal. For convenience, the complete system will be referred to 

as ‘acausal’ when, in actuality, the acausal optimal filter solution is being approxi- 

mated with a causal compensator filter. In section 5.1, results of vibration control 

experiments using the Conventional Filtered-X LMS FIR Control showed about a 3 

dB decrease in control system performance when a 2.7 ms delay was present in the 

control-path as compared to no delay. In the experiments, the disturbance signal 

was delayed to achieve the causal system since the 2.7 ms delay occurred naturally 

in the control loop [40]. The delays are dictated by the propagation times of the 

signal through each component of the control system, including the controlled plant. 

As seen in Figure 4.4, the control signal is delayed with respect to the disturbance 

signal in the experimental setup because of the sampling of the DSP and a larger 
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physical spacing between the actuator and error sensor. In addition, the low-pass 

smoothing filter provided a phase-shift in the control signal which cannot not be 

compensated for in the time-domain. Often systems can be made causal by sim- 

ply decreasing the distance between the control actuator and error sensor, and if 

present, moving the reference sensor closer to the disturbance source. 

The following analysis conducted on the Conventional Filtered-X LMS FIR 

Controller will exemplify that control is always achievable for any degree of ‘acausal- 

ity’ in the optimal filter solution. A parametric study investigating filter order, sys- 

tem damping, and the delay time of the reference signal will be performed in order to 

provide better insight into the concept of causality and how it relates to broadband 

structural control. In addition, an attempt will be made to analytically predict the 

experimental observations shown in Figure 5.4 which relate system causality and 

adaptive filter size. Such an analysis will provide a tool to predict the degradation 

in performance of the control system for a given amount of system ‘acausality’ or 

control delay time. If desired, this analysis could be performed on the other three 

control structures as well. 

6.1 Theory 

We can study the effect of causality by adding a discrete delay, z~*, into the control 

path as shown in Figure 6.1 where the pure delay is given by 

zt = ents (6.1) 
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which provides a time delay of 

where 

t, = sampling period of the digital delay 

When d > 0, the control system is said to be acausal because the signal through 

the control path trails behind the signal through the disturbance path. The control 

system can be made causal by selecting the delay d = 0, i.e. the disturbance takes 

the same time, in this ideal situation, to propagate through the control and distur- 

bance paths. If d < 0, then the system is still causal, and a pure time delay will be 

needed in the control signal, which can be provided by additional filter taps. 

The error signal can be written from Figure 6.1 as the superposition of the 

plant responses from both control and disturbance inputs as 

Cee = akt+yrz (6.3) 

Now, taking the z-transform of equation (6.3) and substituting the transfer functions 

from Figure 6.1 

E(z) = [Tne(2) + 27¢W(z)Toe(2)]X (2) (6.4) 

In feedforward control, the optimum filter coefficients that define the control input 

signal are determined by minimizing the mean square value or variance of the plant 

output. The mean square value of e, can be computed by a counterclockwise contour 
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Figure 6.1: Block diagram of feedforward controller showing added delay in control 
path to make the system acausal. 
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integral around the unit circle in the complex z-plane as [17] 

1 dz 
2 — o = aaj f Pee(2) ; (6.5) 

where 

&..(z) = discrete power spectral density function (PSDF) of the error 

sequence 

The discrete Fourier transform of the PSDF in equation (6.5) can be found using 

the relation [24] 

z = elvte (6.6) 

Using equation (6.6), the integral in equation (6.5) becomes 

oo = — [ ®,.(€7***\dw (6.7) 
27 —WNy 

where ®,.(w) is the error signal PSDF defined in the frequency domain, and wy, is 

the circular Nyquist frequency of the digital controller. 

Again applying the transform of equation (6.6) to equation (6.4) gives the 

frequency content of the sequence e,; as follows 

ew) = [Tre(e*) + {WH} {f } Teele) X(w) (6.8) 

where 

{W}? = {wo,w1,W2,...,wz} (6.9) 
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is the vector of filter coefficients, and 

{f}% = {lee eho} (6.10) 

is known as the complex sinusoid vector in digital spectral analysis [18]. 

The power spectral density function of the error signal can be defined by 

®..(w) = Efe(w)e(w)*| (6.11) 

where * denotes the complex conjugate. Substituting equation (6.8) into (6.11) 

yields 

®.e(w) = |[Tne(e***) + eT LW {fh Tee(e*"*) ? One (w) (6.12) 

Since the disturbance is a zero-mean white noise random process, the disturbance 

PSDF is a constant, ®,, = ©,. The mean square value of the error signal as a 

function of the filter weights, can now be computed by replacing equation (6.12) 

into (6.7), and expanding the complex modulus to yield 

o = of + {W}*[R]{W} + {W} ({H} + {H}*) (6.13) 

where 

a ~ 5 [ ITne(e7"*) |? ® dw (6.14) 
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is the variance of the system response due to the disturbance input alone; matrix 

[RA] given by 

R(0) R11) RQ) ... R(L) 
R(-1) R(0) R(1) 

[R] = | R(-2) R(—-1) R(0) R(L) (6.15) 
. R(1) 

R(-L)... R(-1) R(0) 

is a Hermitian Toeplitz matrix that is formed from the (L+1) coefficients 

RQ) = + fe Tae(€5**#)|2 64! & dey (6.16) 
27 WNy 

and the [** element of vector {H} is given by 

Ww . . . 

H(l) = ~ | ” Tre(€72**)Toe( ets Je“ I(EN dy (6.17) 
20 —~WNy 

Recall that the performance surface given by equation (6.13) is a quadratic 

function of the filter coefficients w; and the optimum weights are those that minimize 

the error variance. Thus, differentiating equation (6.13) with respect to w; and 

setting them to zero yields the following linear system of equations 

[RI{W} = —{H,} (6.18) 

where {H,} is the real part of the complex vector {H}. 

Assuming matrix [R] is nonsingular, solving for the optimum vector {W}* 

from equation (6.18), and replacing it back into equation (6.13) yields the minimum 

MSE 

min = Oa — {H,}"[R]{ He} (6.19) min 
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The effectiveness of the control system can be measured by the performance ratio, 

defined by 

o4 
n(dB) = 10log ( — Yee | (6.20) 

which gives the power reduction in decibels. 

The minimum variance of the controlled output response is the differ- 

ence between the variance due to the disturbance alone and the quadratic form 

{Hp}(R]-'{H,}. Thus, the control system performance will be completely deter- 

mined by the properties of this quadratic form. 

6.2 Control System Performance 

A physical interpretation for the terms in matrix [R] and vector {H} can be derived 

by considering the two zero mean random processes depicted in Figure 6.2. The first 

process is the response of the system, d,, when excited at the disturbance location 

by x; (Figure 6.2 (a)), while the second process is the response of the system, yz, 

when excited at the control location by the delayed sequence z;,~¢ (Figure 6.2 (b)). 

The term R(/) represents the autocorrelation sequence of the response d;, as 

RQ) = Eldgdi-i (6.21) 

R(l) = > I B gg(w)eil dey (6.22) 
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Figure 6.2: Diagram showing two Gaussian processes that comprise a feedforward 
broadband control system. a) Disturbance process; b) Control process. 
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where the PSDF in equation (6.22) is given in terms of the disturbance PSDF and 

the system dynamics as 

Big(w) = |Tne(e?*)|? 6, (6.23) 

Since the autocorrelation A(!) is independent of the delay parameter d, the proper- 

ties of the autocorrelation matrix of the random process d; will also be independent 

of the control time delay. The properties of [R] are a function of the system dy- 

namics, through the control input and error output transfer function T,,(z), and 

the sampling period. Since the autocorrelation function of a real stationary random 

process is an even function R(/) = R(—/), that renders matrix [R] to be real and 

symmetric. Because of the nonnegative-definite property of the autocorrelation func- 

tion, the autocorrelation matrix is positive semi-definite. That is {a}7[R]{a} > 0 

for any arbitrary (ZL + 1) vector {a}. 

The term A (l) in equation (6.17) represents the crosscorrelation sequence 

between the random processes d, and y;. as follows 

H(t) = Eldeyeial (6.24) 
1 WNy . 

— ju(l+d)ts on [. $4, (w)e dw (6.25) 

where the cross PSDF in equation (6.25) is given by 

Oayj(w) = Te(e?**)Tre(e***) 6, (6.26) 

Unlike the autocorrelation, the crosscorrelation sequence of a real random process is 

a complex variable. From equation (6.26), H(l) is a function of the system dynamics 
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through the transfer functions T;,.(z) and T,,(z), the selected sampling frequency 

and the control path time delay 7 = dt,. To graphically illustrate the dependance 

of H(l) with the delay parameter, d, the real part of the crosscorrelation sequence 

is plotted in Figure 6.3 as a continuous line for a causal system by setting d = 0. 

Assuming the control path has a delay, d, the crosscorrelation sequence for the 

acausal system is the same crosscorrelation of the causal system shifted towards the 

left as shown in Figure 6.3 in dashed lines. 

The previous analysis relinquishes very limited qualitative information of the 

controlled system behavior. To gain further insight into the controller performance, 

we consider the special case of sinusoidal random process. In this process, the white 

noise random sequence is approximated as the sum of M real sinusoids as 

M 

ze = >> Amsin(wykt, + On) (6.27) 
m=1 

» sinusoid of circular frequency w,, and where A,, is the real amplitude of the m’ 

the associated phase 6,, is a uniformly distributed random variable on the interval 0 

to 2x. The amplitude A,, is related to the magnitude of the PSDF at frequency w,. 

The number and frequency of the sinusoids can be arbitrary. For the sake of clarity 

in the presentation, we select a uniform distribution for the sinusoid frequencies 

aS Wm = méw that results in An = 2\/O,dw. In the limiting case as M — oo and 

dw — 0, the sequence in equation (6.27) will be a true white noise random sequence. 

Replacing equation (6.27) into the processes described in Figure 6.2, it is not 
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difficult to show that the responses are also the summation of M sinusoids as 

M 

dy = > D(k)msin(wmkt, + bm + Om) (6.28) 
mal 

and 

M 

Yr = S Y (k)m Sin(Wmkts +m + Om) (6.29) 
m=1 

where the magnitudes of the sinusoids are 

D(k)m = = 2y/ O,6w|Tre(Wm)| (6.30) 

Y(k)m = = 24/0,6w|T,-(wm)| (6.31) 

and the phase shift of the sinusoids ¢,, and 7, are the phase of the transfer function 

Tne(Wm) and T,.(wm,) at frequency w,, respectively. 

The autocorrelation sequence of this sinusoidal process can be easily com- 

puted in closed form as 

M 
RD = G6 > |Toe(wm)|? cos(Wn lt, ) (6.32) 

m=1 

and the associated autocorrelation matrix becomes 

M 
[RF] = ,6w De |Tee(wm)|?{Sm} {Sma} " (6.33) 

where {S,,} is 

{Sm}? = {1,cos(wmt,), cos(Qwmt,),...,cos(Lwnt,)} (6.34) 

Again, the autocorrelation matrix [R] is real, symmetric and in general, pos- 
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itive semi-definite, or in other words the eigenvalues of matrix [A] are real and 

nonnegative. The rank of the autocorrelation matrix can be shown to be 2M. Two 

cases can be investigated concerning the matrix [R] dimension that it also is the 

filter size (ZL + 1). If (2+ 1) is smaller or equal to 2M, the eigenvalues of [R] 

are all real and positive and matrix inverse in equation (6.19) exists. If (Z +1) is 

greater than 2M, there will be (Z +1) — 2M zero eigenvalues and matrix [R] is 

singular. A physical interpretation can be gained by considering the limiting case 

of (£+1) = 2M,. the number of coefficients in the filter is twice the number of 

sinusoids included in the process. Thus, there are enough coefficients to adjust the 

phase and magnitude of each tone to drive the output variance to zero, (o?7,,, = 0). 

Clearly, by increasing the filter size no further reduction can be achieved and this is 

mathematically depicted by the rank of [R] to be 2M. For the case of (L+1) < 2M, 

the positive definite property of [R] and of its inverse allows us to write 

{H,}7[R]"{H,} > 0 (6.35) 

for any arbitrary vector, {H,}, which has the important implication that there will 

always be some degree of reduction in the output variance in equation (6.19) in 

spite of any delay in the control path. Because of the positive definite property, it is 

not difficult to show that the quadratic form in equation (6.35) is a monotonically 

increasing function. That is, 

{He TR] {Ayre > {H-} TRI {H})z (6.36) 

Therefore, the deterioration in the control performance due to the time delay could 

at least be partially compensated for by increasing the filter size. This phenomenon 

was observed in both the numerical and experimental studies of causality. 
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6.3 Parametric Analysis 

To analytically verify the measured results, a model of the experimental beam was 

derived by solving the eigenvalue problem for a simply supported beam. The flexural 

rigidity is EI=5.329 N—m? and mass per unit length m=0.626 kg/m that corresponds 

to the experimental beam properties. The system is assumed to have 0.2% damping 

in each mode, and only the first three modes are included in the response analysis. 

The well known natural frequencies and normalized mode shapes are given by 

6,(z) = [ean (=) (6.38) 

The analytical natural frequencies were tabulated in table 2.1 and the first 

e lI 

three frequencies agree within 4% with the experimentally measured ones given in 

table 4.1. These eigenproperties are used to compute the transfer functions T,,.(z) 

and T,.(z) needed for the analysis. The derivation of these transfer functions is 

detailed in Appendix B. 

The response of the beam for a ‘causal’ system is obtained by setting the 

delay parameter d = 0 in the analysis. The integrals in equations (6.14), (6.16), and 

(6.17) are numerically solved as described in Appendix B. The power reduction at 

the error sensor location computed from equation (6.20) is plotted in Figure 6.4 as 

a function of filter size. Similarly, the ‘acausal’ control system of the experiment 

is simulated by setting d = 6, (7 = 3ms) in the analysis. The power reduction is 

again plotted int Figure 6.4. The analytical prediction shows the same general trend 

103



Effect of Distubance-Path Delay (eta=.04) 
24   

22 

  

R
e
d
u
c
t
i
o
n
 
d
B
 

    
    

Filter Order 
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as the experimental observations (also plotted in Figure 6.4) with two exceptions. 

Firstly, the analytical curves display some oscillation in the monotonically increasing 

performance function which is not observed from the experiments. The period of 

this oscillation is related to the period of the first natural mode of the beam, which 

dominates the response. Secondly, the analytical model displays better control for 

larger filter size than in the experimental observations. This probably due to the 

fact that the controller may not have completely converged at the time of the re- 

sponse measurement since larger filters require longer convergence times. However, 

the general agreement between the analytical and experimental results validates the 

proposed formulation as an analytical tool to predict control system performance. 

The effect of system damping is investigated by increasing the uniform modal 

damping ratio 8 from 2% to 10%. As shown in Figure 6.5, less damping results 

in better attenuation of the error output variance. This behavior is due to the 

enhanced notch filtering effect of the structure that yields the response to resemble 

the superposition of multiple sinusoids whose frequencies are the natural frequencies 

of the structure. In the limiting case of the modal damping approaching zero, a 

filter with the number of coefficients equal to twice the number of modes to control 

would be sufficient to completely cancel the error signal. Figure 6.6 presents the 

parametric study of damping in an acausal system having delay of 3 ms (d = 6). 

The plot reflects the same general deterioration in control performance as system 

damping is increased. 

A tool was developed to carry out causality analysis of feedforward controlled 

elastic systems subjected to broadband excitations. As an example, the analysis 
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Figure 6.6: Plots of performance versus adaptive filter size comparing system damp- 

ing of 2, 5, and 10 percent for a acausal system. 
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was carried out on the Conventional FIR Control applied to a simply-supported 

beam. The proposed analytical tool can be used to predict the performance of any 

of the feedforward control systems in terms of system parameters such as delay 

time, damping, filter size, etc. It is demonstrated that reduction in the error output 

variance is always achievable for any acausal control system. The analysis also shows 

that the deterioration in the control performance due to a delay in the control path 

can be at least partially compensated for by increasing the order of the compensator. 

The numerical results are also corroborated experimentally. Good agreement is 

observed between the numerically predicted and measured results, thus validating 

the proposed formulation. 
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Chapter 7 

Conclusions and 

Recommendations 

7.1 Conclusions 

Four adaptive feedforward algorithms were developed for control of broadband re- 

sponse from finite structural systems. The algorithm uses an IIR filter to model 

the control loop transfer function between the control input and error sensor. The 

advantages and disadvantages of using a recursive or nonrecursive filter for the 

control compensator were addressed and demonstrated experimentally on a simply- 

supported beam. A variation of these two algorithms was developed which minimizes 

a filtered or equation error signal. These algorithms provided the advantage of not 

requiring a stable system identification of the control loop. 

The effects of control system causality was addressed for finite, elastic struc- 

tures. A model was developed which allows one to predict the system performance 

for various system damping ratios, adaptive filter sizes, and sample rates. The model 
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was verified experimentally. 

The key conclusions from this research are: 

1. Adaptive feedforward control of structural response resulting from broadband 

excitation is possible using the Filtered-X LMS control approach. 

2. Control performance improves asymptotically as the order of the adaptive 

compensator is increased. 

3. Large attenuations (up to 20 dB) were observed experimentally for adaptive 

FIR compensators which had 24 or more coefficients. 

4, A new adaptive recursive approach was developed which uses fixed poles. The 

recursive approach provides better attenuation for small adaptive filters, but 

takes much longer to converge. It is also limited to use on nonminimum-phase 

plants. 

5. Using an equation-error minimization approach provides the advantage of re- 

moving the need for a stable system identification of the control-loop, but 

sacrifices control performance. 

6. An analytical tool was developed to investigate causality of feedforward control 

systems that are applied to elastic structures. It was concluded that any degree 

of acausality in the system will degrade performance, but this can be at least 

partially compensated for by increasing the compensator order. 
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7.2 Recommendations 

In order to expand and improve this area of research, the following tasks are sug- 

gested: 

1. Investigate applying the broadband controller to active structural-acoustic 

control (ASAC), to control broadband noise radiating from structures. 

2. Analyze the error tolerance of the system identification to examine the required 

accuracy of the natural frequencies, damping, magnitudes, zero locations, etc., 

and how they influence the stability and convergence properties of each algo- 

rithm. 

3. Develop a generalized recursive control approach that will work for any plant. 

Perhaps an artificial neural network (ANN) could be used to model the un- 

stable inverse of a nonminimum-phase plant. One would not have constraints 

on filters, actuator/sensor locations, etc. as is the case when achieving a 

minimum-phase system. 

4, Extend the control algorithms to multi-input, multi-output (MIMO) broad- 

band control in order to achieve better global spatial reduction of the cost. 

This will be an arduous task, requiring much memory and computational over- 

head from the DSP. 

5. Search for increased convergence performance both for the SISO and MIMO 

controllers. The very long convergence time which is characteristic of MIMO 

systems will be compounded by the fact that the adaptive compensators for 
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broadband control are much larger than ones used for harmonic control, in- 

creasing the time required for convergence. Possible suggestions are to use an 

intelligent first guess to the adaptive filter coefficients instead of adapting the 

coefficients from zero. 

. Repeat the causality analysis for the other three control algorithms and com- 

pare the results with a corresponding experimental investigation of them. 
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Appendix A 

Simulation of Beam and Control 

Algorithms 

As mentioned in section 6.3, solving the eigenvalue problem for a simply-supported 

beam in bending produced the following natural frequencies and normalized mode 

shapes 

2 = (nm\* El 
“a = (F) m (Al) 

2 . (nner b(t) = yf—sin (“) (A.2) 

where 

n = modal index 

L = length of the beam 

EI = bending stiffness of the beam = 5.329 N—m? 

m = mass per unit length = 0.626 kg/m 

x = spatial coordinate along beam length 

119



The transfer function of the beam between two points can be represented by 

  

  

N 

H(z,w) = d, Unén tla (w) (A.3) 

where 

N = number of modes (A.4) 

_ ddbn(te2) — Adn(er) 
un = dx dx (A.5) 

on = bn(Ze) (A.6) 

H,,(w) = } (A.7) 
we — w? + 27C WwW 

where the modal components for a piezo patch actuator are represented by u,, and 

the point-sensor modal components by €,, where 2,2 and x, are the coordinates 

of the leading and trailing edge of the piezo patch. Taking the z-transform of the 

frequency response function in equation (A.7) yields the following discrete function 

binz 

1 — ay n27) — dan2~? 
  H(z) = (A.8) 

where 

1 
bin = oP brite) ag _— C?T) (A.9) 

Qin = 2exp(—CawnT) cos(way/l — (?T) (A.10) 

dan = exp(—2¢,wnl’) (A.11) 

where T is the discrete-time sample period. Equation (A.8) can now be substituted 

into equation (A.3) for H,(w) to obtain the discrete transfer function for the beam. 

N 
H(z,z) = 2, UntnHn (2) (A.12) 
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The second-order sections resulting from each mode, n, in equation (A.12) were then 

convolved to produce a rational transfer function of the form 

A(z) 
H@) = 7 Ba (A.13) 

where A(z) and B(z) are polynomials in the complex variable z. The appropriate 

values for z,1,2,2, and z, from chapter 4 can be substituted into equations (A.5) 

and (A.6) to form the transfer functions T,,(z) and T,,.(z). Filtering a white noise 

process with T,,.(z) produced the plant response, d, in Figure 2.5, to broadband 

excitation. Similarly the filtered-x signal can be formed by filtering the reference 

signal, the disturbance input in this case, by the transfer function T,,.(z). It was 

assumed the estimate T...(z) used to create the filtered-x signal was exact. The 

simulation was carried out by performing the following sequence of events during 

each step through time, k: a) Compute control input, u, from equation (2.38); b) 

filter u, with T,.(z) to compute to control loop response to the control input, y;, in 

Figure 2.5; c) Sum the two plant responses, y, and d, to form the error signal; d) 

use the error signal in conjunction with the filtered-x signal to update the adaptive 

filter weights according to equation (2.46). 
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Appendix B 

Integration of Linear System for 

Causality Analysis 

The integrals in equations (6.14), (6.16), and (6.17) from page 94 do not have a 

closed form solution. A direct numerical integration poses some difficulties because 

of the peaked nature of the typical structural transfer functions and also due to the 

oscillatory behavior of the term e#”* in equations (6.16) and (6.17). Here a detailed 

description is presented for the numerical evaluation of these integrals. 

From Appendix A, it was seen that the transfer function between the control 

input and error sensor can be represented as follows 

N 
Tee(z) = 2, UnenHn(2) (B.1) 

where Uy, €,, and H,(z) are given by equations (A.5) - (A.7) in Appendix A Solving 

for the roots of the denominator of equation (A.8), H,,(z) can be written 

N=3 - 

H(z) = So bt 
nai (2 — 2n)(2 — 2m) 

(B.2) 
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where the roots are 

Zy, = e SM Icos(,/1 — C2wats) + iy — cos?(4/1 — C2wyt,)] (B.3) 

The squared modulus of the transfer function T,.(z) is computed as 

  

eoe)PP = ele) oe2™) (B.4) 
Mele) = So Yo tates bl( =) Henle) (B.5) 

where by replacing z by z~! is equivalent to taking the complex conjugate in the 

frequency domain. 

Replacing equation (B.2) into (B.5) and using partial fraction expansions, 

the product of the modal FRF's can be expanded as follows 

Anm , Bnm , Cum . Dnm 
A,(z)Hm(z") = + + + (B.6) 

2-2, 2-B 2- FT 2 * 
m zm 

  

where the coefficients in the partial fractions are easily computed. Replacing equa- 

tion (B.6) into (B.5) results in 

1 N WN 

~ on » » Un Um En €mtnm (0) (B.7) 
n=1m=1 

where 

Wy ejults WNy elwits 
Inm() = Anm wy, eitts — Zp dw + Bum J ejuts — 2 dw + 

WNy ejult. WNy efulte 

~ Cum fo ejuts _ et, — + Dam —WNy eiwts — ce B8) 

Now each integral in equation (B.7) is better conditioned than the original integral 

in equation (6.16). The numerical solution of the integrals in equation (B.7) does 
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not pose any problems for wide range of the parameters / and t,. 

Similarly, the integral of equation (6.14) becomes 

N WN 

of = 5 53> ¥- fafin€némInm(0) (B.9) 
n=1m=1 

and equation (6.17) 

1 N WN 

H(l) = an du Xu f,Um€n€mtnm(d + 2) (B.10) 

where the disturbance modal force vector is given by 

_ d¢n(2n2) d¢bn(tn1) po (B.11)   
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