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Abstract

The violation of lepton-flavor-universality in the neutrino-Z interactions can lead to extra matter

effects on neutrino oscillations at high energies, beyond that due to the usual charged-current

interaction of the electron-neutrino. We show that the dominant effect of the violation is a shift in

the effective value of θ23. This is in contrast to the dominant effect of the charged-current interaction

which shifts θ12 and θ13. The shift in θ23 will be difficult to observe if the value of sin2(2θ23) is

too close to one. However, if the value of sin2(2θ23) is as small as 0.92, then a Fermilab→Hyper-

Kamiokande experiment can potentially place a constraint on universality violation at the 1% level

after 5 years of data taking.
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I. INTRODUCTION

When considering matter effects on neutrino oscillations, it is customary to consider

only the charged current interaction of the electron-neutrino mediated by W -exchange, and

ignore the neutral current interactions of all three neutrino flavors mediated by Z-exchange.

This is because the universality of the neutral current interaction ensures that the phases

acquired by the three neutrino flavors through Z-exchange remain the same, and thereby

do not lead to extra mixing effects beyond that due to W -exchange.

However, in many models beyond the Standard Model (SM), the universality of the Zνℓνℓ

(ℓ = e, µ, τ) couplings can be violated through radiative corrections, such as in Supersym-

metric models with R-parity violating interactions [1], or through the mixing of the light

active neutrinos with heavy sterile ones [2]. The existence of a Z ′ which couples to the

three lepton flavors differently can also mimic the violation of universality in Z-exchange

[3]. Though the violation of Zνℓνℓ coupling universality in the particular models considered

in Refs. [1], [2], and [3] are strongly constrained by the universality of the Wℓνℓ and Zℓℓ

couplings, they nevertheless provide existence proofs that the universality of neutral current

interactions cannot be taken for granted.

The experimental bound on the violation of Zνℓνℓ coupling universality is also very weak.

The sole constraint comes from CHARM and CHARM II [4, 5]:

gνe = 0.528± 0.085 ,

gνµ = 0.502± 0.017 ,

gνe/gνµ = 1.05+0.15
−0.18 = 0.87 ∼ 1.20 , (1)

where gνℓ is the coupling of neutrino flavor νℓ to the Z, normalized to 0.5 for the SM. These

values were obtained from the measurements of the ratio Rµ and the double ratio Re/Rµ,

where

Rℓ ≡
σ(νℓN → νℓX)

σ(νℓN → ℓ−X)
. (2)

The constraint on gνµ was obtained from Rµ, and the constraint on the ratio gνe/gνµ was

obtained from the double ratio Re/Rµ assuming charged current universality. The constraint

on gνe was obtained from those on gνµ and gνe/gνµ.

As we can see from the above numbers, while gνµ is fairly well constrained to the SM

value of 0.5, gνe is ill constrained and can deviate significantly from 0.5. Of course, the sum
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of squares of the Zνℓνℓ couplings, namely

(gνe)2 + (gνµ)2 + (gντ )2 , (3)

is well constrained to its SM value by the Z invisible width measured by LEP and SLD

[6], so any deviation in gνe must be accompanied by a corresponding deviation in gντ to

maintain this agreement. However, as long as gνe and gντ conspire to do so, large violations

of universality are allowed.

In this paper, we investigate the effect of such violations of neutral current universality

on neutrino oscillations in matter. If the violation is as large as that allowed by CHARM

and CHARM II, then it could lead to new effects that are measurable by long baseline

neutrino oscillation experiments. If such effects are not seen, it could then improve upon

the CHARM/CHARM II universality constraint.

This paper is organized as follows: In section II, we derive the effective potentials due

to the charged- and neutral-current interactions which enter the effective Hamiltonians that

govern neutrino and anti-neutrino propagation in matter. In sections III and IV, we ap-

proximately diagonalize the effective Hamiltonians for neutrino (III) and anti-neutrino (IV)

propagation using the method of Ref. [7], and show how the effective mass-squared differ-

ences and effective mixing angles are affected by the presence of neutral current universality

violation. In particular, we will show that the effective mass-squared differences are little

affected, while the shifts in the effective mixing angles are confined to just one angle; which

angle this is depending on the mass hierarchy, and on whether the neutrino or anti-neutrino

case is being considered. In section V, we discuss how these shifts in the effective mixing

angles will manifest themselves in the neutrino and anti-neutrino oscillation probabilities,

and point out that whether any effect can be seen or not depends crucially on the value

of sin2(2θ23) in vacuum. In section VI, we present the results of a numerical calculation of

the effective mass-squared differences, effective mixing angles, and oscillation probabilities,

which validate the approximations used in the previous sections. In section VII, we consider

a hypothetical experiment in which the Fermilab NUMI beam [8, 9] in its high-energy mode

is aimed at a 1 Megaton class detector 9120 km away at Kamioka, Japan (the planned

Hyper-Kamiokande [10]) and discuss the potential constraint such an experiment can place

on neutral current universality violation. Section VIII concludes.

3



II. THE EFFECTIVE POTENTIALS DUE TO W AND Z EXCHANGE

Let us first derive the effective potentials for neutrino propagation in matter, which ac-

count for theW - and Z-exchange interactions between the neutrino and the matter fermions.

The effective potential due to W -exchange is well known [11], but we will re-derive it in the

following to provide a parallel to the Z-exchange case.

At momentum transfers much lower than the W and Z masses, the weak interaction

Hamiltonian of the neutrinos is given by

Hweak = HCC +HNC , (4)

where HCC and HNC are the charged and neutral current contributions, respectively:

HCC =
GF√
2
[ν̄ℓγ

µ (1− γ5) ℓ]
[

ℓ̄γµ (1− γ5) νℓ
]

,

HNC = ρ
GF√
2
[ν̄ℓγ

µ (1− γ5) νℓ]
[

f̄γµ

(

gfV − gfAγ5

)

f
]

. (5)

Here, ℓ is the lepton flavor (ℓ = e, µ, τ); f denotes a generic fermion, and gfV and gfA are its

vector, and axial-vector couplings to the Z:

gfV = If3 − 2Qf sin2 θW ,

gfA = If3 . (6)

If3 and Qf are, respectively, the isospin and electric charge of the fermion f . If lepton-flavor-

universality is violated in the neutral current interaction, the product ρGF in the expression

for HNC will depend on ℓ.

After a Fierz transformation, HCC can be rewritten as

HCC =
GF√
2

[

ℓ̄γµ (1− γ5) ℓ
]

[ν̄ℓγµ (1− γ5) νℓ] . (7)

The forward scattering amplitude of a neutrino νℓ against a non-relativistic lepton ℓ via

W -exchange is then

MCC =
GF√
2
〈ℓ| ℓ̄γ0 (1− γ5) ℓ |ℓ〉 〈νℓ| ν̄ℓγ0 (1− γ5) νℓ |νℓ〉

=
√
2GF 〈ℓ| ℓ†ℓ |ℓ〉 〈νℓ| ν†

ℓ

(

1− γ5
2

)

νℓ |νℓ〉

=
√
2GFNℓ

(

φ†
νℓ
φνℓ

)

, (8)
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where Nℓ ≡ 〈ℓ| ℓ†ℓ |ℓ〉 is the density of the charged lepton ℓ, and φνℓ is the two-component

wave-function of the left-handed neutrino νℓ. This shows that the effective potential that

the neutrino experiences as it travels through matter is

VCC =
√
2GFNℓ . (9)

In ordinary matter, Nµ = Nτ = 0. Therefore,

VCC =







√
2GFNe (for νe) ,

0 (for νµ, ντ ) .
(10)

Similarly, the forward scattering amplitude due to Z-exchange between a neutrino and a

non-relativistic fermion f is given by

MNC =
GF√
2
〈f | f̄γ0

(

gfV − gfAγ5

)

f |f〉 〈νℓ| ν̄ℓγ0 (1− γ5) νℓ |νℓ〉

=
√
2GF 〈f | gfV (f †f) |f〉 〈νℓ| ν†

ℓ

(

1− γ5
2

)

νℓ |νℓ〉

=
√
2GF g

f
VNf

(

φ†
νℓ
φνℓ

)

, (11)

where we have set the ρ-parameter to one, and Nf = 〈f | f †f |f〉 is the density of the fermion

f . The effective potential due to the neutral current interaction is then

VNC =
√
2GF g

f
VNf =

√
2GF

(

If3 − 2Qf sin2 θW

)

Nf . (12)

Since Ne = Np in electrically neutral matter, we find

VNC =
√
2GF

[(

−1

2
+ 2s2W

)

Ne +

(

1

2
− 2s2W

)

Np +

(

−1

2

)

Nn

]

= −1

2

(√
2GFNn

)

. (13)

Assuming N ≡ Ne = Np ≈ Nn, which is valid for the lighter nuclei which constitutes

most of the Earth, we can relate N (cm−3) to the matter density ρ (g/cm3) via the Avogadro

number NA:

2N = Np +Nn = ρNA . (14)

Then,

√
2GFN =

√
2

GF

(~c)3
(~c)3

NA

2
ρ
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=
1

2
(7.6324× 10−5 eV2)×

(

ρ

g/cm3

)

×
(

1

GeV

)

, (15)

where we have used GF/(~c)
3 = 1.16637(1)×10−5 GeV−2, NA = 6.0221415(10)×1023 mol−1,

and ~c = 0.197326968(17) GeV · fm [5]. Therefore,

a ≡ 2EVCC = (7.6324× 10−5 eV2)×
(

ρ

g/cm3

)

×
(

E

GeV

)

,

b ≡ 2EVNC = −1

2
a . (16)

For anti-neutrinos, both VCC and VNC reverse their signs.

III. THE EFFECTIVE MIXING ANGLES, NEUTRINO CASE

A. Inclusion of Neutral Current Effects into the Effective Hamiltonian

The effective potentials derived above enter the effective Hamiltonian for neutrino oscil-

lations (multiplied by 2E) as follows:

H =
∼

U











λ1 0 0

0 λ2 0

0 0 λ3











∼

U
†

= U











0 0 0

0 δm2
21 0

0 0 δm2
31











U † +











a 0 0

0 0 0

0 0 0











+











be 0 0

0 bµ 0

0 0 bτ











. (17)

Here, U is the MNS matrix in vacuum [12], a comes from the W -exchange interaction of νe

with the electrons in matter, while be, bµ, and bτ come from the Z-exchange interaction of

each neutrino flavor with the neutrons. If be = bµ = bτ = b, then the b-matrix is proportional

to the unit matrix, and it will not contribute to neutrino oscillations. However, if neutral

current universality is broken, then be 6= bµ 6= bτ in general and the b-matrix cannot be

ignored.

The experimental constraints from CHARM/CHARM II, Eq. (1), allow be and bτ to

deviate significantly from b = −a/2, provided that be + bτ = 2b to satisfy the Z invisible

width constraint, Eq. (3). We therefore write

be
b

= 1 + 2ξ ,
bµ
b

= 1 ,
bτ
b

= 1− 2ξ , (18)

and use ξ to parametrize the violation of universality.
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Notice that we can rewrite the matter-effect terms in Eq. (17) in several different ways:











a 0 0

0 0 0

0 0 0











+











be 0 0

0 bµ 0

0 0 bτ











=











(a+ be − bτ ) 0 0

0 (bµ − bτ ) 0

0 0 0











+ bτ











1 0 0

0 1 0

0 0 1











=

















(

a + be −
bµ + bτ

2

)

0 0

0

(

bµ − bτ
2

)

0

0 0 −
(

bµ − bτ
2

)

















+

(

bµ + bτ
2

)











1 0 0

0 1 0

0 0 1











. (19)

Since the unit matrix terms can be dropped, this shows that we can always reduce the

problem to the case bτ = 0, or bµ = −bτ . We will use the latter replacement in the following.

For the case of Eq. (18), this entails making the replacement











a + b(1 + 2ξ) 0 0

0 b 0

0 0 b(1 − 2ξ)











⇒











(a+ 3bξ) 0 0

0 bξ 0

0 0 −bξ











. (20)

Furthermore, we absorb the factor 3bξ in the (1, 1) element into a since we can expect

3bξ ≪ a, and the uncertainty in the matter density ρ which enters into a can be expected

to hide any such shift. Therefore, the effective Hamiltonian we will consider is

H =
∼

U











λ1 0 0

0 λ2 0

0 0 λ3











∼

U
†

= U











0 0 0

0 δm2
21 0

0 0 δm2
31











U † +











a 0 0

0 bξ 0

0 0 −bξ











. (21)

The problem is to diagonalize H and find the eigenvalues λi (i = 1, 2, 3) and the diagonal-

ization matrix
∼

U .

To this end, we use the method of Ref. [7] in which the λi’s and
∼

U were derived for

the ξ = 0 case. The procedure followed in Ref. [7] was to approximately diagonalize the

effective Hamiltonian, H , using the Jacobi method: 2×2 submatrices of H are diagonalized

in the order which requires the the largest rotation angles until the off-diagonal elements are
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negligibly small. As the order parameter to evaluate the size of these off-diagonal elements,

we use

ε ≡
√

δm2
21

|δm2
31|

, (22)

and consider H to be approximately diagonalized when the rotation angles required for

further diagonalization are of order ε3 or smaller. For δm2
21 = 8.2+0.6

−0.5×10−5 eV2 and |δm2
31| =

(1.5 ∼ 3.4)× 10−3 eV2, we have ε = 0.15 ∼ 0.24 and ε3 = 0.0034 ∼ 0.014.

For the sizes of the mixing angles in vacuum, we assume θ13 = O(ε), cos(2θ12)/2 = O(ε),

and cos(2θ23) ≤ O(ε) as in Ref. [7]. We also assume that the universality violation parameter

ξ is of order ε2 = 0.02 ∼ 0.06, since the central value of the CHARM/CHARM II result

translates to ξ = 0.025.

B. Diagonalization of the Effective Hamiltonian

For the neutral current term bξ in Eq. (21) to have a non-negligible effect on neutrino

oscillations, we anticipate that it must be at least as large as, or larger than, the smaller

mass-squared-difference δm2
21. Since we have assumed ξ = O(ε2), this requires a = −2b =

2
√
2GFNE to be at least as large as, or larger than, the larger mass-squared-difference

|δm2
31|. For the sake of concreteness, we will consider the case a/|δm2

31| = O(ε−1) in the

following.

Introducing the matrix

Q = diag(1, 1, eiδ) , (23)

we begin by partially diagonalizing the Hamiltonian H as

H ′ = Q†U †HUQ

=











0 0 0

0 δm2
21 0

0 0 δm2
31











+Q†U †











a 0 0

0 bξ 0

0 0 −bξ











UQ

=











0 0 0

0 δm2
21 0

0 0 δm2
31











+ aQ†











U∗
e1Ue1 U∗

e1Ue2 U∗
e1Ue3

U∗
e2Ue1 U∗

e2Ue2 U∗
e2Ue3

U∗
e3Ue1 U∗

e3Ue2 U∗
e3Ue3











Q
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+bξQ†





























U∗
µ1Uµ1 U∗

µ1Uµ2 U∗
µ1Uµ3

U∗
µ2Uµ1 U∗

µ2Uµ2 U∗
µ2Uµ3

U∗
µ3Uµ1 U∗

µ3Uµ2 U∗
µ3Uµ3











−











U∗
τ1Uτ1 U∗

τ1Uτ2 U∗
τ1Uτ3

U∗
τ2Uτ1 U∗

τ2Uτ2 U∗
τ2Uτ3

U∗
τ3Uτ1 U∗

τ3Uτ2 U∗
τ3Uτ3





























Q . (24)

The matrix multiplying a is given by

Ma = Q†











U∗
e1Ue1 U∗

e1Ue2 U∗
e1Ue3

U∗
e2Ue1 U∗

e2Ue2 U∗
e2Ue3

U∗
e3Ue1 U∗

e3Ue2 U∗
e3Ue3











Q =











c212c
2
13 c12s12c

2
13 c12c13s13

c12s12c
2
13 s212c

2
13 s12c13s13

c12c13s13 s12c13s13 s213











. (25)

Using θ13 = O(ε), we estimate the sizes of the elements of Ma to be

Ma =











O(1) O(1) O(ε)

O(1) O(1) O(ε)

O(ε) O(ε) O(ε2)











. (26)

The matrix multiplying bξ is given by

Mb = Q†





























U∗
µ1Uµ1 U∗

µ1Uµ2 U∗
µ1Uµ3

U∗
µ2Uµ1 U∗

µ2Uµ2 U∗
µ2Uµ3

U∗
µ3Uµ1 U∗

µ3Uµ2 U∗
µ3Uµ3











−











U∗
τ1Uτ1 U∗

τ1Uτ2 U∗
τ1Uτ3

U∗
τ2Uτ1 U∗

τ2Uτ2 U∗
τ2Uτ3

U∗
τ3Uτ1 U∗

τ3Uτ2 U∗
τ3Uτ3





























Q

=











(s212 − c212s
2
13) cos(2θ23) + sin(2θ12) sin(2θ23)s13 cos δ

−(1 + s213)s12c12 cos(2θ23)− (c212e
−iδ − s212e

+iδ)s13 sin(2θ23)

−s12c13 sin(2θ23)e
−iδ + c12s13c13 cos(2θ23)

−(1 + s213)s12c12 cos(2θ23)− (c212e
+iδ − s212e

−iδ)s13 sin(2θ23)

(c212 − s212s
2
13) cos(2θ23)− sin(2θ12) sin(2θ23)s13 cos δ

c12c13 sin(2θ23)e
−iδ + s12s13c13 cos(2θ23)

−s12c13 sin(2θ23)e
+iδ + c12s13c13 cos(2θ23)

c12c13 sin(2θ23)e
+iδ + s12s13c13 cos(2θ23)

−c213 cos(2θ23)











. (27)

Using cos(2θ23) ≤ O(ε) and θ13 = O(ε), we estimate the sizes of the elements of Mb to be

Mb =











O(ε) O(ε) O(1)

O(ε) O(ε) O(1)

O(1) O(1) O(ε)











. (28)
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Since we are only interested in the leading order effect in ξ, we neglect the O(ε) terms in

Mb and approximate

Mb ≈











0 0 −s12e
+iδ

0 0 c12e
+iδ

−s12e
−iδ c12e

−iδ 0











. (29)

Under this approximation, the effective Hamiltonian that must be diagonalized is

H ′ = diag(0, δm2
21, δm

2
31) + aMa + bξ Mb

=











a c212c
2
13 a c12s12c

2
13 a c12c13s13 − bξ s12e

+iδ

a c12s12c
2
13 a s212c

2
13 + δm2

21 a s12c13s13 + bξ c12e
+iδ

a c12c13s13 − bξ s12e
−iδ a s12c13s13 + bξ c12e

−iδ a s213 + δm2
31











. (30)

At this point, we set δ = 0 for the sake of simplicity. Then H ′ becomes

H ′ =











a c212c
2
13 a c12s12c

2
13 a c12c13s13 − bξ s12

a c12s12c
2
13 a s212c

2
13 + δm2

21 a s12c13s13 + bξ c12

a c12c13s13 − bξ s12 a s12c13s13 + bξ c12 a s213 + δm2
31











= a











O(1) O(1) O(ε)

O(1) O(1) O(ε)

O(ε) O(ε) O(ε)











.

(31)

B1. First Rotation

Applying the Jacobi method toH ′, we first diagonalize the (1, 2) submatrix which requires

a rotation by an angle of O(1). Define the matrix V as:

V =











cϕ sϕ 0

−sϕ cϕ 0

0 0 1











, (32)

where

cϕ = cosϕ , sϕ = sinϕ , tan 2ϕ ≡ ac213 sin 2θ12
δm2

21 − ac213 cos 2θ12
,
(

0 ≤ ϕ <
π

2
− θ12

)

. (33)

Then,

H ′′ = V †H ′V =











λ′
1 0 ac′12c13s13 − bξs′12

0 λ′
2 as′12c13s13 + bξc′12

ac′12c13s13 − bξs′12 as′12c13s13 + bξc′12 as213 + δm2
31











, (34)
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where

c′12 = cos θ′12 , s′12 = sin θ′12 , θ′12 = θ12 + ϕ , (35)

and

λ′
1 =

(ac212c
2
13)c

2
ϕ − (as212c

2
13 + δm2

21)s
2
ϕ

c2ϕ − s2ϕ
= λ′

− ,

λ′
2 =

(as212c
2
13 + δm2

21)c
2
ϕ − (ac212c

2
13)s

2
ϕ

c2ϕ − s2ϕ
= λ′

+ , (36)

with

λ′
± =

(ac213 + δm2
21)±

√

(ac213 − δm2
21)

2 + 4ac213s
2
12δm

2
21

2
. (37)

As discussed in Ref. [7], in the region a/|δm2
31| = O(ε−1), we can expand θ′12 as

θ′12 =
π

2
− δm2

21

2a
sin(2θ12) +O(ε5) , (38)

from which we can conclude

s′12 ≈ sin

(

π

2
− δm2

21

2a
sin(2θ12)

)

= cos

(

δm2
21

2a
sin(2θ12)

)

= 1− O(ε6) ,

c′12 ≈ cos

(

π

2
− δm2

21

2a
sin(2θ12)

)

= sin

(

δm2
21

2a
sin(2θ12)

)

= O(ε3) . (39)

Also, expanding λ′
±, we find

λ′
− = δm2

21c
2
12 + aO(ε6) = aO(ε3) ,

λ′
+ = ac213 + δm2

21s
2
12 + aO(ε6) = aO(1) . (40)

Therefore, the sizes of the elements of H ′′ are evaluated to be

H ′′ = a











O(ε3) 0 O(ε2)

0 O(1) O(ε)

O(ε2) O(ε) O(ε)











. (41)

Unlike the ξ = 0 case considered in Ref. [7], both the (1, 3) and (2, 3) submatrices require

rotations by angles of O(ε) to diagonalize. Here, we diagonalize the (2, 3) submatrix next

to maintain the parallel with the ξ = 0 case.
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B2. Second Rotation

The matrix W which diagonalizes the (2, 3) submatrix is

W =











1 0 0

0 cφ sφ

0 −sφ cφ











, (42)

where cφ = cosφ, sφ = sinφ, and

tan 2φ ≡ 2(as′12s13c13 + bξc′12)

δm2
31 + as213 − λ′

2

=
2as′12s13c13

δm2
31 + as213 − λ′

2

{

1− ξ

(

c′12
2s′12s13c13

)}

= tan 2φ0

{

1− ξ

(

c′12
2s′12s13c13

)}

. (43)

The angle φ is in the first quadrant when δm2
31 > 0 (normal hierarchy), and in the fourth

quadrant when δm2
31 < 0 (inverted hierarchy). φ0 is the rotation angle when ξ = 0. Taking

the arc-tangent of both sides of the above equation, we find

φ = φ0 − ξ

(

sin 4φ0 cot θ′12
4 sin 2θ13

)

+O(ξ2) . (44)

When a/|δm2
31| = O(ε−1), φ0 is given by [7]

φ0 =











(π

2
− θ13

)

− δm2
31

a
θ13 +O(ε3) (δm2

31 > 0) ,

−θ13 −
δm2

31

a
θ13 +O(ε3) (δm2

31 < 0) .
(45)

Therefore, sin 4φ0 ≈ − sin(4θ13) for both the δm2
31 > 0 and δm2

31 < 0 cases and using

Eq. (38), we find

φ ≈ φ0 + ξ

(

δm2
21

4a

)

sin(2θ12) = φ0 +
1

4
O(ε5) . (46)

Therefore, the difference between φ and φ0 can be neglected in this range.

Using W , we obtain

H ′′′ = W †H ′′W

=











λ′
1 −(ac′12c13s13 − bξs′12)sφ (ac′12c13s13 − bξs′12)cφ

−(ac′12c13s13 − bξs′12)sφ λ′′
2 0

(ac′12c13s13 − bξs′12)cφ 0 λ′′
3











,

(47)
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where

λ′′
2 =

λ′
2c

2
φ − (as213 + δm2

31)s
2
φ

c2φ − s2φ
,

λ′′
3 =

(as213 + δm2
31)c

2
φ − λ′

2s
2
φ

c2φ − s2φ
. (48)

If we define

λ′′
± ≡ [λ′

2 + (as213 + δm2
31)]±

√

[λ′
2 − (as213 + δm2

31)]
2 + 4(as′12c13s13 + bξc′12)

2

2
, (49)

then

λ′′
2 = λ′′

− , λ′′
3 = λ′′

+ , if δm2
31 > 0 ,

λ′′
2 = λ′′

+ , λ′′
3 = λ′′

− , if δm2
31 < 0 . (50)

When a/|δm2
31| = O(ε−1), we can expand λ′′

± as

λ′′
− = δm2

31c
2
13 +O(ε3|δm2

31|) = aO(ε) ,

λ′′
+ = a+ δm2

31s
2
13 + δm2

21s
2
12 +O(ε3|δm2

31|) = aO(1) . (51)

Also, from Eq. (45) and the fact that φ ≈ φ0, we conclude

sφ ≈ c13 = O(1) , cφ ≈ s13 = O(ε) , (δm2
31 > 0) ,

sφ ≈ −s13 = O(ε) , cφ ≈ c13 = O(1) , (δm2
31 < 0) .

(52)

In the ξ = 0 case considered in Ref. [7], H ′′′ was already approximately diagonal and further

diagonalization was not necessary. However, when ξ = O(ε2), the sizes of the elements of

H ′′′ are found to be

H ′′′ = a











O(ε3) O(ε2) O(ε3)

O(ε2) O(ε) 0

O(ε3) 0 O(1)











(53)

when δm2
31 > 0, and

H ′′′ = a











O(ε3) O(ε3) O(ε2)

O(ε3) O(1) 0

O(ε2) 0 O(ε)











(54)

when δm2
31 < 0. Therefore, for the δm2

31 > 0 case (normal hierarchy) we must diagonalize the

(1, 2) submatrix next, while for the δm2
31 < 0 case (inverted hierarchy) we must diagonalize

the (1, 3) submatrix next.
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B3. Third Rotation, δm2
31 > 0 Case

Define the matrix X as

X =











cχ sχ 0

−sχ cχ 0

0 0 1











, (55)

where

cχ = cosχ , sχ = sinχ , tan 2χ ≡ −2(ac′12c13s13 − bξs′12)sφ
λ′′
2 − λ′

1

. (56)

Then,

H ′′′′
X = X†H ′′′X

=











λ′′′
1X 0 (ac′12c13s13 − bξs′12)cφcχ

0 λ′′′
2X (ac′12c13s13 − bξs′12)cφsχ

(ac′12c13s13 − bξs′12)cφcχ (ac′12c13s13 − bξs′12)cφsχ λ′′
3











,

(57)

where

λ′′′
1X =

λ′
1c

2
χ − λ′′

2s
2
χ

c2χ − s2χ
= λ′′′

X− ,

λ′′′
2X =

λ′′
2c

2
χ − λ′

1s
2
χ

c2χ − s2χ
= λ′′′

X+ , (58)

with

λ′′′
X± ≡

(λ′′
2 + λ′

1)±
√

(λ′′
2 − λ′

1)
2 + 4(ac′12c13s13 − bξs′12)

2s2φ

2
. (59)

Recalling that

ac′12c13s13 ≈ a

(

δm2
21

2a
sin(2θ12)

)

c13s13 = aO(ε4) ,

bξs′12 ≈ −a

2
ξ = −aO(ε2) ,

λ′
1 ≈ δm2

21c
2
12 = aO(ε3) ,

λ′′
2 ≈ δm2

31c
2
13 = aO(ε) , (60)

and sφ ≈ 1, we find

tan 2χ =
−2(ac′12c13s13 − bξs′12)sφ

λ′′
2 − λ′

1

=
2bξ

δm2
31

{

1 +O(ε2)
}

. (61)
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Therefore, the angle χ is given approximately by

χ ≈ bξ

δm2
31

= O(ε) , (62)

from which we can conclude that sχ = O(ε) and cχ = O(1). The eigenvalues can also be

expanded in ε and we find

λ′′′
1X = δm2

21c
2
12 −

b2ξ2

δm2
31

+ aO(ε5) = aO(ε3) ,

λ′′′
2X = δm2

31c
2
13 +

b2ξ2

δm2
31

+ aO(ε4) = aO(ε) . (63)

Note that these shifts of the eigenvalues are of order aO(ε3) and have negligible effect on

δλ31 = aO(1) or δλ21 = aO(ε). Putting everything together, we evaluate the sizes of the

elements of H ′′′′
X to find

H ′′′′
X = a











O(ε3) 0 O(ε3)

0 O(ε) O(ε4)

O(ε3) O(ε4) O(1)











. (64)

This shows that further diagonalization requires rotations by angles of O(ε3) or smaller,

which we will neglect.

Thus, we have found that when ξ = O(ε2) and δm2
31 > 0 (normal hierarchy), we need an

extra (1, 2)-rotation to diagonalize H , and the diagonalization matrix is UVWX , which we

need to identify with

∼

U =











1 0 0

0
∼
c23

∼
s23

0 −∼
s23

∼
c23





















∼
c13 0

∼
s13e

−i
∼
δ

0 1 0

−∼
s13e

i
∼
δ 0

∼
c13





















∼
c12

∼
s12 0

−∼
s12

∼
c12 0

0 0 1











(65)

to obtain the effective mixing angles and effective CP phase. From Ref. [7], we know that

when δm2
31 > 0 and a/|δm2

31| = O(ε−1), identification of
∼

U with UVW leads to

∼

θ13 = θ′13 ,
∼

θ12 =
π

2
− c13

c′13

(

δm2
21

2a

)

sin(2θ12) ,

∼

θ23 = θ23 +
sφ
c′13

(

δm2
21

2a

)

sin(2θ12) ,

∼

δ = 0 , (66)

where we have defined

θ′13 ≡ θ13 + φ , c′13 = cos θ′13 , s′13 = sin θ′13 . (67)
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(Recall that we are considering the δ = 0 case). Since X is an (1, 2)-rotation, multiplication

of
∼

U = UVW from the right by X only shifts the value of
∼

θ12 by χ. Therefore, we can

conclude that

∼

θ13 = θ′13 ,
∼

θ12 =
π

2
− c13

c′13

(

δm2
21

2a

)

sin(2θ12) + χ ,

∼

θ23 = θ23 +
sφ
c′13

(

δm2
21

2a

)

sin(2θ12) ,

∼

δ = 0 . (68)

In these expressions, non only χ, but also φ and θ′13 = θ13 + φ depend on ξ. However, the

ξ-dependence of φ is very weak. The ξ-dependence of δλ31 and δλ21 are also weak, so the

effect of a non-zero ξ will appear dominantly in
∼

θ12.

B4. Third Rotation, δm2
31 < 0 Case

In this case, we need to diagonalize the (1, 3)-submatrix of H ′′′. Define the matrix Y as

Y =











cη 0 sη

0 1 0

−sη 0 cη











, (69)

where

cη = cos η , sη = sin η , tan 2η ≡ 2(ac′12c13s13 − bξs′12)cφ
λ′′
3 − λ′

1

. (70)

Then,

H ′′′′
Y = Y †H ′′′Y

=











λ′′′
1Y −(ac′12c13s13 − bξs′12)sφcη 0

−(ac′12c13s13 − bξs′12)sφcη λ′′
2 −(ac′12c13s13 − bξs′12)sφsη

0 −(ac′12c13s13 − bξs′12)sφsη λ′′′
3Y











,

(71)

where,

λ′′′
1Y =

λ′
1c

2
η − λ′′

3s
2
η

c2η − s2η
= λ′′′

Y+ ,
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λ′′′
3Y =

λ′′
3c

2
η − λ′

1s
2
η

c2η − s2η
= λ′′′

Y− , (72)

with

λ′′′
Y± ≡

(λ′′
3 + λ′

1)±
√

(λ′′
3 − λ′

1)
2 + 4(ac′12c13s13 + bξs′12)

2c2φ

2
. (73)

Using

ac′12c13s13 ≈ a

(

δm2
21

2a
sin(2θ12)

)

c13s13 = aO(ε4) ,

bξs′12 ≈ −a

2
ξ = −aO(ε2) ,

λ′
1 ≈ δm2

21c
2
12 = aO(ε3) ,

λ′′
3 ≈ δm2

31c
2
13 = aO(ε) , (74)

and cφ ≈ 1, we find

tan 2η =
2(ac′12c13s13 − bξs′12)cφ

λ′′
3 − λ′

1

= − 2bξ

δm2
31

{

1 +O(ε2)
}

. (75)

Therefore, the angle η is given approximately by

η ≈ − bξ

δm2
31

=
bξ

|δm2
31|

= O(ε) , (76)

from which we can conclude that sη = O(ε) and cη = O(1). The eigenvalues can also be

expanded in ε and we find

λ′′′
1Y = δm2

21c
2
12 −

b2ξ2

δm2
31

+ aO(ε5) = aO(ε3) ,

λ′′′
3Y = δm2

31c
2
13 +

b2ξ2

δm2
31

+ aO(ε4) = aO(ε) (77)

Again, these shifts in the eigenvalues are negligible. Putting everything together, we evaluate

the sizes of the elements of H ′′′′
Y to find

H ′′′′
Y = a











O(ε3) O(ε3) 0

O(ε3) O(1) O(ε4)

0 O(ε4) O(ε)











. (78)

This shows that further diagonalization requires rotations by angles of O(ε3) or smaller,

which we will neglect.
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Thus, we have found that when ξ = O(ε2) and δm2
31 < 0 (inverted hierarchy), we need an

extra (1, 3)-rotation to diagonalize H , and the diagonalization matrix is UV WY . We need

to identify this product with

∼

U =











1 0 0

0
∼
c23

∼
s23

0 −∼
s23

∼
c23





















∼
c13 0

∼
s13e

−i
∼
δ

0 1 0

−∼
s13e

i
∼
δ 0

∼
c13





















∼
c12

∼
s12 0

−∼
s12

∼
c12 0

0 0 1











(79)

to obtain the effective mixing angles and effective CP phase. From Ref. [7], we know that

when δm2
31 < 0 and a/|δm2

31| = O(ε−1), identification of
∼

U with UVW leads to

∼

θ13 = θ′13 ,
∼

θ12 = θ′12 ,
∼

θ23 = θ23 ,
∼

δ = 0 . (80)

Furthermore, in the range a/|δm2
31| = O(ε−1) we have

θ′12 =
π

2
− δm2

21

2a
sin(2θ12) + · · · =

π

2
+O(ε3) ,

θ′13 = −δm2
31

a
θ13 + · · · = O(ε2) , (81)

which implies that

UV W ≈











1 0 0

0
∼
c23

∼
s23

0 −∼
s23

∼
c23





















1 0 0

0 1 0

0 0 1





















0 1 0

−1 0 0

0 0 1











. (82)

Then,

UVWY ≈











1 0 0

0
∼
c23

∼
s23

0 −∼
s23

∼
c23





















1 0 0

0 1 0

0 0 1





















0 1 0

−1 0 0

0 0 1





















cη 0 sη

0 1 0

−sη 0 cη











≈











1 0 0

0
∼
c23

∼
s23

0 −∼
s23

∼
c23





















1 0 0

0 cη −sη

0 sη cη





















1 0 0

0 1 0

0 0 1





















0 1 0

−1 0 0

0 0 1











. (83)

Therefore, η can be absorbed into
∼

θ23 as

∼

θ13 = θ′13 ,
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∼

θ12 = θ′12 ,
∼

θ23 = θ23 − η ,
∼

δ = 0 . (84)

As in the δm2
31 > 0 case, the ξ-dependence of θ′13 = θ13 + φ is very weak, so the effect of a

non-zero ξ will appear dominantly in
∼

θ23.

C. Summary of Neutrino Case

To summarize what we have learned, the main effect of including the bξ terms, which

come from neutral current universality violation, in the effective Hamiltonian is to shift
∼

θ12

in the δm2
31 > 0 (normal hierarchy) case, and

∼

θ23 in the δm2
31 < 0 (inverted hierarchy) case,

beyond the shifts due to the charged current interaction term a. In the δm2
31 > 0 case, the

shift in
∼

θ12 is given by

χ ≈ bξ

δm2
31

= − aξ

2 δm2
31

, (85)

while for the δm2
31 < 0 case, the shift in

∼

θ23 is given by

−η ≈ bξ

δm2
31

= − bξ

|δm2
31|

=
aξ

2|δm2
31|

. (86)

IV. THE EFFECTIVE MIXING ANGLES, ANTI-NEUTRINO CASE

A. Inclusion of Neutral Current Effects into the Effective Hamiltonian

For the anti-neutrinos, the effective Hamiltonian is given by

H̄ =
∽

U∗











λ̄1 0 0

0 λ̄2 0

0 0 λ̄3











∽

UT = U∗











0 0 0

0 δm2
21 0

0 0 δm2
31











UT +











−a 0 0

0 0 0

0 0 0











+











−be 0 0

0 −bµ 0

0 0 −bτ











.

(87)

The differences from the neutrino case are the reversal of signs of the CP violating phase δ

(and thus the complex conjugation of the MNS matrix U), and the matter interaction terms

a, and bℓ (ℓ = e, µ, τ). We denote the matter effect corrected diagonalization matrix as
∽

U

(note the mirror image tilde on top) to distinguish it from that for the neutrinos. As in the
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neutrino case, we make the replacement










−a 0 0

0 0 0

0 0 0











+











−be 0 0

0 −bµ 0

0 0 −bτ











→











−a 0 0

0 −bξ 0

0 0 bξ











. (88)

B. Diagonalization of the Effective Hamiltonian

Using the matrix Q from Eq. (23), we begin by partially diagonalize the effective Hamil-

tonian as

H̄ ′ = QUT H̄U∗Q∗

=











0 0 0

0 δm2
21 0

0 0 δm2
31











−QUT











a 0 0

0 bξ 0

0 0 −bξ











U∗Q∗

=











0 0 0

0 δm2
21 0

0 0 δm2
31











− aQ











Ue1U
∗
e1 Ue1U

∗
e2 Ue1U

∗
e3

Ue2U
∗
e1 Ue2U

∗
e2 Ue2U

∗
e3

Ue3U
∗
e1 Ue3U

∗
e2 Ue3U

∗
e3











Q∗

−bξQ





























Uµ1U
∗
µ1 Uµ1U

∗
µ2 Uµ1U

∗
µ3

Uµ2U
∗
µ1 Uµ2U

∗
µ2 Uµ2U

∗
µ3

Uµ3U
∗
µ1 Uµ3U

∗
µ2 Uµ3U

∗
µ3











−











Uτ1U
∗
τ1 Uτ1U

∗
τ2 Uτ1U

∗
τ3

Uτ2U
∗
τ1 Uτ2U

∗
τ2 Uτ2U

∗
τ3

Uτ3U
∗
τ1 Uτ3U

∗
τ2 Uτ3U

∗
τ3





























Q∗ . (89)

The matrix which multiplies a is given by

M̄a = Q











Ue1U
∗
e1 Ue1U

∗
e2 Ue1U

∗
e3

Ue2U
∗
e1 Ue2U

∗
e2 Ue2U

∗
e3

Ue3U
∗
e1 Ue3U∗

e2 Ue3U
∗
e3











Q∗ =











c212c
2
13 c12s12c

2
13 c12c13s13

c12s12c
2
13 s212c

2
13 s12c13s13

c12c113s13 s12c13s13 s213











, (90)

while the matrix which multiplies bξ is given by

M̄b = Q





























Uµ1U
∗
µ1 Uµ1U

∗
µ2 Uµ1U

∗
µ3

Uµ2U
∗
µ1 Uµ2U

∗
µ2 Uµ2U

∗
µ3

Uµ3U
∗
µ1 Uµ3U

∗
µ2 Uµ3U

∗
µ3











−











Uτ1U
∗
τ1 Uτ1U

∗
τ2 Uτ1U

∗
τ3

Uτ2U
∗
τ1 Uτ2U

∗
τ2 Uτ2U

∗
τ3

Uτ3U
∗
τ1 Uτ3U

∗
τ2 Uτ3U

∗
τ3





























Q∗ = M∗
b

=











(s212 − c212s
2
13) cos(2θ23) + sin(2θ12) sin(2θ23)s13 cos δ

−(1 + s213)s12c12 cos(2θ23)− (c212e
+iδ − s212e

−iδ)s13 sin(2θ23)

−s12c13 sin(2θ23)e
+iδ + c12s13c13 cos(2θ23)
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−(1 + s213)s12c12 cos(2θ23)− (c212e
−iδ − s212e

+iδ)s13 sin(2θ23)

(c212 − s212s
2
13) cos(2θ23)− sin(2θ12) sin(2θ23)s13 cos δ

c12c13 sin(2θ23)e
+iδ + s12s13c13 cos(2θ23)

−s12c13 sin(2θ23)e
−iδ + c12s13c13 cos(2θ23)

c12c13 sin(2θ23)e
−iδ + s12s13c13 cos(2θ23)

−c213 cos(2θ23)











. (91)

Using cos(2θ23) ≤ O(ε) and θ13 = O(ε), the sizes of the elements of M̄b are evaluated to be

M̄b =











O(ε) O(ε) O(1)

O(ε) O(ε) O(1)

O(1) O(1) O(ε)











. (92)

As in the neutrino case, we neglect the O(ε) terms in M̄b and approximate

M̄b ≈











0 0 −s12e
−iδ

0 0 c12e
−iδ

−s12e
+iδ c12e

+iδ 0











. (93)

The effective Hamiltonian which must be diagonalized is then

H̄ ′ = diag(0, δm2
21, δm

2
31)− a M̄a − bξ M̄b

=











−a c212c
2
13 −a c12s12c

2
13 −a c12c13s13 + bξ s12e

−iδ

−a c12s12c
2
13 −a s212c

2
13 + δm2

21 −a s12c13s13 − bξ c12e
−iδ

−a c12s13s13 + bξ s12e
+iδ −a s12c13s13 − bξ c12e

+iδ −a s213 + δm2
31











.(94)

From this point on, we set δ = 0 for the sake of simplicity. Then, H̄ ′ becomes

H̄ ′ =











−a c212c
2
13 −a c12s12c

2
13 −a c12c13s13 + bξ s12

−a c12s12c
2
13 −a s212c

2
13 + δm2

21 −a s12c13s13 − bξ c12

−a c12s13s13 + bξ s12 −a s12c13s13 − bξ c12 −a s213 + δm2
31











= a











O(1) O(1) O(ε)

O(1) O(1) O(ε)

O(ε) O(ε) O(ε)











.

(95)
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B1. First Rotation

Applying the Jacobi method on H̄ ′, we begin by diagonalizing the (1, 2)-submatrix. Define

the matrix V̄ as

V̄ =











c̄ϕ s̄ϕ 0

−s̄ϕ c̄ϕ 0

0 0 1











, (96)

where

c̄ϕ = cos ϕ̄ , s̄ϕ = sin ϕ̄ , tan 2ϕ̄ ≡ − ac213 sin 2θ12
δm2

21 + ac213 cos 2θ12
, (−θ12 < ϕ̄ ≤ 0) . (97)

Then,

H̄ ′′ = V̄ †H̄ ′V̄ =











λ̄′
1 0 −ac̄′12c13s13 + bξs̄′12

0 λ̄′
2 −as̄′12c13s13 − bξc̄′12

−ac̄′12c13s13 + bξs̄′12 −as̄′12c13s13 − bξc̄′12 −as213 + δm2
31











, (98)

where

c̄′12 = cos θ̄′12 , s̄′12 = sin θ̄′12 , θ̄′12 = θ12 + ϕ̄ , (99)

and

λ̄′
1 =

(−ac212c
2
13)c̄

2
ϕ + (as212c

2
13 − δm2

21)s̄
2
ϕ

c̄2ϕ − s̄2ϕ
= λ̄′

− ,

λ̄′
2 =

(−as212c
2
13 + δm2

21)c̄
2
ϕ + (ac212c

2
13)s̄

2
ϕ

c̄2ϕ − s̄2ϕ
= λ̄′

+ , (100)

with

λ̄′
± =

(δm2
21 − ac213)±

√

(δm2
21 + ac213)

2 − 4ac213s
2
12δm

2
21

2
. (101)

From Ref. [7], we know that in the region a/|δm2
31| = O(ε−1), we can expand ϕ̄ as

θ̄′12 =
δm2

21

2a
sin(2θ12) +O(ε5) = O(ε3) . (102)

Therefore,

c̄′12 = cos

(

δm2
21

2a
sin(2θ12)

)

= 1−O(ε6) ,

s̄′12 = sin

(

δm2
21

2a
sin(2θ12)

)

= O(ε3) . (103)
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The expansions of λ̄′
± are given by

λ̄′
− = −ac213 + δm2

21s
2
12 + aO(ε6) = aO(1) ,

λ̄′
+ = δm2

21c
2
12 + aO(ε6) = aO(ε3) . (104)

Therefore, the sizes of the elements of H̄ ′′ can be evaluated to be

H̄ ′′ = a











O(1) 0 O(ε)

0 O(ε3) O(ε2)

O(ε) O(ε2) O(ε)











. (105)

As in the neutrino case, though we have a choice of whether we diagonalize the (1, 3) or the

(2, 3) submatrix, since both require rotations by angles of O(ε), we diagonalize the (1, 3)

submatrix next to maintain the parallel with the ξ = 0 case.

B2. Second Rotation

Define the matrix W̄ as

W̄ =











c̄φ 0 s̄φ

0 1 0

−s̄φ 0 c̄φ











, (106)

where c̄φ = cos φ̄, s̄φ = sin φ̄, and

tan 2φ̄ ≡ −2(ac̄′12c13s13 − bξs̄′12)

δm2
31 − as213 − λ̄′

1

= − 2ac̄′12c13s13
δm2

31 − as213 − λ̄′
1

{

1 + ξ

(

s̄′12
2c̄′12c13s13

)}

= tan 2φ̄0

{

1 + ξ

(

s̄′12
2c̄′12c13s13

)}

. (107)

The angle φ̄ is in the fourth quadrant when δm2
31 > 0 (normal hierarchy), and in the first

quadrant when δm2
31 < 0 (inverted hierarchy). φ̄0 is the rotation angle when ξ = 0. Taking

the arc-tangent of both sides of the above equation, we find

φ̄ = φ̄0 + ξ

(

sin 4φ̄0 tan θ̄
′
12

4 sin 2θ13

)

+O(ξ2) . (108)

When a/|δm2
31| = O(ε−1), φ̄0 is given by

φ̄0 =











−θ13 +
δm2

31

a
θ13 +O(ε3) (δm2

31 > 0) ,
(π

2
− θ13

)

+
δm2

31

a
θ13 +O(ε3) (δm2

31 < 0) .
(109)
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Therefore, sin 4φ̄0 ≈ − sin(4θ13) for both the δm2
31 > 0 and δm2

31 < 0 cases and using

Eq. (102), we find

φ̄ ≈ φ̄0 − ξ

(

δm2
21

4a

)

sin(2θ12) = φ̄0 −
1

4
O(ε5) . (110)

Therefore, the difference between φ̄ and φ̄0 can be neglected in this range of a, just as in the

neutrino case.

Using W̄ , we obtain

H̄ ′′′ = W̄ †H̄ ′′W̄

=











λ̄′′
1 (as̄′12s13c13 + bξc̄′12)s̄φ 0

(as̄′12s13c13 + bξc̄′12)s̄φ λ̄′
2 −(as̄′12s13c13 + bξc̄′12)c̄φ

0 −(as̄′12s13c13 + bξc̄′12)c̄φ λ̄′′
3











,(111)

where

λ̄′′
1 =

λ̄′
1c̄

2
φ + (as213 − δm2

31)s̄
2
φ

c̄2φ − s̄2φ
,

λ̄′′
3 =

(−as213 + δm2
31)c̄

2
φ − λ̄′

1s̄
2
φ

c̄2φ − s̄2φ
. (112)

If we define

λ̄′′
± ≡ [(δm2

31 − as213) + λ̄′
1]±

√

[(δm2
31 − as213)− λ̄′

1]
2 + 4(ac̄′12s13c13 + bξs̄′12)

2

2
, (113)

then

λ̄′′
1 = λ̄′′

− , λ̄′′
3 = λ̄′′

+ , if δm2
31 > 0 ,

λ̄′′
1 = λ̄′′

+ , λ̄′′
3 = λ̄′′

− , if δm2
31 < 0 . (114)

When a/|δm2
31| = O(ε−1), we can expand λ̄′′

± as

λ̄′′
− = −a + s213δm

2
31 + s212δm

2
21 +O(ε3|δm2

31|) = aO(1) ,

λ̄′′
+ = c213δm

2
31 +O(ε3|δm2

31|) = aO(ε) . (115)

Also, from Eq. (109) and the fact that φ̄ ≈ φ̄0, we conclude

s̄φ ≈ −s13 = O(ε) , c̄φ ≈ c13 = O(1) , (δm2
31 > 0) ,

s̄φ ≈ c13 = O(1) , c̄φ ≈ s13 = O(ε) , (δm2
31 < 0) .

(116)
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Putting everything together, we evaluate the sizes of the elements of H̄ ′′′ and find

H̄ ′′′ = a











O(1) O(ε3) 0

O(ε3) O(ε3) O(ε2)

0 O(ε2) O(ε)











(117)

when δm2
31 > 0, and

H̄ ′′′ = a











O(ε) O(ε2) 0

O(ε2) O(ε3) O(ε3)

0 O(ε3) O(1)











(118)

when δm2
31 < 0. Therefore, for the δm2

31 > 0 (normal hierarchy) case, we must diagonal-

ize the (2, 3) submatrix next, while for the δm2
31 < 0 (inverted hierarchy) case, we must

diagonalize the (1, 2) submatrix next.

B3. Third Rotation, δm2
31 > 0 Case

To diagonalize the (2, 3) submatrix of H̄ ′′′, we define the matrix X̄ as

X̄ =











1 0 0

0 c̄χ s̄χ

0 −s̄χ c̄χ











, (119)

where

c̄χ = cos χ̄ , s̄χ = sin χ̄ , tan 2χ̄ ≡ −2(as̄′12s13c13 + bξc̄′12)c̄φ
λ̄′′
3 − λ̄′

2

. (120)

Then,

H̄ ′′′′
X = X̄†H̄ ′′′X̄

=











λ̄′′
1 (as̄′12s13c13 + bξc̄′12)s̄φc̄χ (as̄′12s13c13 + bξc̄′12)s̄φs̄χ

(as̄′12s13c13 + bξc̄′12)s̄φc̄χ λ̄′′′
2X 0

(as̄′12s13c13 + bξc̄′12)s̄φs̄χ 0 λ̄′′′
3X











,

(121)

where

λ̄′′′
2X =

λ̄′
2c̄

2
χ − λ̄′′

3 s̄
2
χ

c̄2χ − s̄2χ
= λ̄′′′

X− ,
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λ̄′′′
3X =

λ̄′′
3 c̄

2
χ − λ̄′

2s̄
2
χ

c̄2χ − s̄2χ
= λ̄′′′

X+ , (122)

with

λ̄′′′
X± ≡

(λ̄′′
3 + λ̄′

2)±
√

(λ̄′′
3 − λ̄′

2)
2 + 4(as̄′12s13c13 + bξc̄′12)

2c̄2φ

2
. (123)

Recalling that

as̄′12s13c13 ≈ a

(

δm2
21

2a
sin(2θ12)

)

s13c13 = aO(ε4) ,

bξc̄′12 ≈ −1

2
ξ = −aO(ε2) ,

λ̄′
2 ≈ δm2

21c
2
12 = aO(ε3) ,

λ̄′′
3 ≈ δm2

31c
2
13 = aO(ε) , (124)

and c̄φ ≈ 1, we find

tan 2χ̄ = −2(as̄′12s13c13 + bξc̄′12)c̄φ
λ̄′′
3 − λ̄′

2

= − 2bξ

δm2
31

{

1 +O(ε2)
}

. (125)

Therefore, the angle χ̄ is given approximately by

χ̄ ≈ − bξ

δm2
31

= O(ε) , (126)

from which we can conclude that s̄χ = O(ε) and c̄χ = O(1). The eigenvalues can also be

expanded in ε and we find

λ̄′′′
2X = δm2

21c
2
12 −

b2ξ2

δm2
31

+ aO(ε5) = aO(ε3) ,

λ̄′′′
3X = δm2

31c
2
13 +

b2ξ2

δm2
31

+ aO(ε4) = aO(ε) . (127)

As in the neutrino case, the shifts in the eigenvalues are of order aO(ε3) and their effects

on δλ̄31 = aO(1) and δλ̄21 = aO(1) are negligible. Putting everything together, we evaluate

the sizes of the elements of H̄ ′′′′
X to find

H̄ ′′′′
X = a











O(1) O(ε4) O(ε3)

O(ε4) O(ε3) 0

O(ε3) 0 O(ε)











. (128)

This shows that further diagonalization requires rotations by angles of O(ε3) or smaller,

which we will neglect.
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We have found that when ξ = O(ε2) and δm2
31 > 0 (normal hierarchy), we need an extra

(2, 3)-rotation to diagonalize H̄, and the diagonalization matrix is Ū V̄ W̄ X̄ , which we need

to identify with

∽

U =











1 0 0

0
∽

c23
∽

s23

0 −∽

s23
∽

c23





















∽

c13 0
∽

s13e
−i

∽

δ

0 1 0

−∽

s13e
i
∽

δ 0
∽

c13





















∽

c12
∽

s12 0

−∽

s12
∽

c12 0

0 0 1











. (129)

From Ref. [7], we know that when δm2
31 > 0 and a/|δm2

31| = O(ε−1), identification of
∽

U with

Ū V̄ W̄ yields

∽

θ13 ≈ θ̄′13 ,
∽

θ12 ≈ θ̄′12 ,
∽

θ23 ≈ θ23 ,
∽

δ ≈ 0 , (130)

where θ̄′13 ≡ θ13 + φ̄. (Note that we are considering the δ = 0 case.) Furthermore, in the

range a/|δm2
31| = O(ε−1) we have

θ̄12 =
δm2

21

2a
sin(2θ12) + · · · = O(ε3) ,

θ̄13 =
δm2

31

a
θ13 + · · · = O(ε2) , (131)

which implies

Ū V̄ W̄ ≈











1 0 0

0
∽

c23
∽

s23

0 −∽

s23
∽

c23





















1 0 0

0 1 0

0 0 1





















1 0 0

0 1 0

0 0 1











=











1 0 0

0
∽

c23
∽

s23

0 −∽

s23
∽

c23











. (132)

Since X̄ is an (2, 3)-rotation matrix, multiplying Ū V̄ W̄ from the right with X̄ will only lead

to a shift in
∽

θ23. Therefore,

∽

θ13 ≈ θ̄′13 ,
∽

θ12 ≈ θ̄′12 ,
∽

θ23 ≈ θ23 + χ̄ ,
∽

δ ≈ 0 . (133)
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B4. Third Rotation, δm2
31 < 0 Case

In this case, we diagonalize the (1, 2) submatrix of H̄ ′′′. Define the matrix Ȳ as

Ȳ =











c̄η s̄η 0

−s̄η c̄η 0

0 0 1











, (134)

where

c̄η = cos η̄ , s̄η = sin η̄ , tan 2η̄ ≡ 2(as̄′12s13c13 + bξc̄′12)s̄φ
λ̄′
2 − λ̄′′

1

. (135)

Then,

H̄ ′′′′
Y = Ȳ †H̄ ′′′Ȳ

=











λ̄′′′
1Y 0 (as̄′12s13c13 + bξc̄′12)c̄φs̄η

0 λ̄′′′
2Y −(as̄′12s13c13 + bξc̄′12)c̄φc̄η

(as̄′12s13c13 + bξc̄′12)c̄φs̄η −(as̄′12s13c13 + bξc̄′12)c̄φc̄η λ̄′′
3











,

(136)

where

λ̄′′′
1Y =

λ̄′′
1 c̄

2
η − λ̄′

2s̄
2
η

c̄2η − s̄2η
= λ̄′′′

Y− ,

λ̄′′′
2Y =

λ̄′
2c̄

2
η − λ̄′′

1 s̄
2
η

c̄2η − s̄2η
= λ̄′′′

Y+ , (137)

with

λ̄′′′
Y± ≡

(λ̄′
2 + λ̄′′

1)±
√

(λ̄′
2 − λ̄′′

1)
2 + 4(as̄′12s13c13 + bξc̄′12)

2s̄2φ

2
. (138)

Using

as̄′12s13c13 ≈ a

(

δm2
21

2a
sin(2θ12)

)

s13c13 = aO(ε4) ,

bξc̄′12 ≈ −1

2
ξ = −aO(ε2) ,

λ̄′′
1 ≈ c213δm

2
31 = aO(ε) ,

λ̄′
2 ≈ c212δm

2
21 = aO(ε3) , (139)

and s̄φ ≈ 1, we find

tan 2η̄ =
2(as̄′12s13c13 + bξc̄′12)s̄φ

λ̄′
2 − λ̄′′

1

= − 2bξ

δm2
31

{

1 +O(ε2)
}

. (140)
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Therefore, the angle η̄ is given approximately by

η̄ ≈ − bξ

δm2
31

=
bξ

|δm2
31|

= O(ε) , (141)

from which we can conclude that s̄η = O(ε) and c̄η = O(1). The eigenvalues can also be

expanded in ε and we find

λ̄′′′
1Y = δm2

31c
2
13 +

b2ξ2

δm2
31

+ aO(ε4) = aO(ε) ,

λ̄′′′
2Y = δm2

21c
2
12 −

b2ξ2

δm2
31

+ aO(ε5) = aO(ε3) . (142)

Again, the shifts are negligible. Putting everything together, we evaluate the sizes of the

elements of H̄ ′′′′
Y to find

H̄ ′′′′
Y = a











O(ε) 0 O(ε4)

0 O(ε3) O(ε3)

O(ε4) O(ε3) O(1)











, (143)

which shows that further diagonalization requires rotations by angles of O(ε3) or smaller,

which we will neglect.

Thus, we have found that when ξ = O(ε2) and δm2
31 < 0, the diagonalization of H̄ requires

an extra (1, 2) rotation, and the diagonalization matrix is Ū V̄ W̄ Ȳ . As in the δm2
31 > 0 case,

Ū V̄ W̄ Ȳ must be identified with

∽

U =











1 0 0

0
∽

c23
∽

s23

0 −∽

s23
∽

c23





















∽

c13 0
∽

s13e
−i

∽

δ

0 1 0

−∽

s13e
i
∽

δ 0
∽

c13





















∽

c12
∽

s12 0

−∽

s12
∽

c12 0

0 0 1











. (144)

Again, from Ref. [7], we know that the identification of Ū V̄ W̄ with
∽

U yields

∽

θ13 ≈ θ̄′13 ,
∽

θ12 ≈ c13
c̄′13

(

δm2
21

2a

)

sin(2θ12) ,

∽

θ23 ≈ θ23 −
s̄φ
c̄′13

(

δm2
21

2a

)

sin(2θ12) ,

∽

δ ≈ 0 , (145)

where c̄′13 = cos θ̄′13. Since Ȳ is an (1, 2)-rotation matrix, multiplying Ū V̄ W̄ from the right

by Ȳ will only lead to a shift in
∽

θ12. Therefore,

∽

θ13 ≈ θ̄′13 ,
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δm2
31 > 0 (normal hierarchy) δm2

31 < 0 (inverted hierarchy)

Neutrino
∼
θ12 is shifted by − aξ

2 δm2
31

∼
θ23 is shifted by +

aξ

2|δm2
31|

Anti-neutrino
∽

θ23 is shifted by +
aξ

2 δm2
31

∽

θ12 is shifted by − aξ

2|δm2
31|

TABLE I: Matter effects from neutral current universality violation. The parameter ξ, defined in

Eq. (18), gives the size of the violation.

∽

θ12 ≈ c13
c̄′13

(

δm2
21

2a

)

sin(2θ12) + η̄ ,

∽

θ23 ≈ θ23 −
s̄φ
c̄′13

(

δm2
21

2a

)

sin(2θ12) ,

∽

δ ≈ 0 . (146)

C. Summary of Anti-Neutrino Case

To summarize, in contrast to the neutrino case, the main effect of including the bξ terms

in the effective Hamiltonian for the anti-neutrinos is to shift
∽

θ23 in the δm2
31 > 0 (normal

hierarchy) case, and
∽

θ12 in the δm2
31 < 0 (inverted hierarchy) case. The mixing angle that

is affected depending on the sign of δm2
31 is the exact opposite of the neutrino case. In the

δm2
31 > 0 case, the shift in

∽

θ23 is given by

χ̄ ≈ − bξ

δm2
31

=
aξ

2 δm2
31

, (147)

while for the δm2
31 < 0 case, the shift in

∽

θ12 is given by

η̄ ≈ − bξ

δm2
31

=
bξ

|δm2
31|

= − aξ

2|δm2
31|

. (148)

Listing these results together with those for the neutrino case from the previous section,

we obtain Table I. The accuracy of our approximation will be demonstrated later by com-

paring our conclusions with the exact numerical results. Let us now investigate how these

shifts in the effective mixing angles affect the oscillation probabilities.
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V. THE OSCILLATION PROBABILITIES

The oscillation probability from neutrino flavor να to neutrino flavor νβ in vacuum is

given by

P (να → να) = 1− 4 |Uα2|2
(

1− |Uα2|2
)

sin2 ∆21

2
− 4 |Uα3|2

(

1− |Uα3|2
)

sin2 ∆31

2

+ 2 |Uα2|2|Uα3|2
(

4 sin2 ∆21

2
sin2 ∆31

2
+ sin∆21 sin∆31

)

, (149)

for the α = β case, and

P (να → νβ) = 4 |Uα2|2|Uβ2|2 sin2 ∆21

2
+ 4 |Uα3|2|Uβ3|2 sin2 ∆31

2

+2ℜ(U∗
α3Uβ3Uα2U

∗
β2)

(

4 sin2 ∆21

2
sin2 ∆31

2
+ sin∆21 sin∆31

)

+4 J(α,β)

(

sin2 ∆21

2
sin∆31 − sin2 ∆31

2
sin∆21

)

, (150)

for the α 6= β case, where J(α,β) is the Jarskog invariant,

J(α,β) = +ℑ(U∗
α1Uβ1Uα2U

∗
β2) = +ℑ(U∗

α2Uβ2Uα3U
∗
β3) = +ℑ(U∗

α3Uβ3Uα1U
∗
β1)

= −ℑ(U∗
α2Uβ2Uα1U

∗
β1) = −ℑ(U∗

α1Uβ1Uα3U
∗
β3) = −ℑ(U∗

α3Uβ3Uα2U
∗
β2)

= −J(β,α) , (151)

and

∆ij ≡
δm2

ij

2E
L = 2.534

(δm2
ij /eV

2)

(E /GeV)
(L/km) , δm2

ij ≡ m2
i −m2

j . (152)

The oscillation probabilities for anti-neutrinos can be obtained by replacing U with its

complex conjugate, which amounts to flipping the sign of the CP violating phase δ.

The oscillation probabilities in matter are obtained by making the replacements

Uαi →
∼

Uαi , ∆ij →
∼

∆ij =
λi − λj

2E
L , (153)

for the neutrinos, and

Uαi →
∽

Uαi , ∆ij →
∽

∆ij =
λ̄i − λ̄j

2E
L , (154)

for the anti-neutrinos. For instance, the νµ and ν̄µ survival probabilities in matter are given

by

∼

P (νµ → νµ) = 1− 4 |
∼

Uµ2|2
(

1− |
∼

Uµ2|2
)

sin2

∼

∆21

2
− 4 |

∼

Uµ3|2
(

1− |
∼

Uµ3|2
)

sin2

∼

∆31

2
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+ 2 |
∼

Uµ2|2|
∼

Uµ3|2
(

4 sin2

∼

∆21

2
sin2

∼

∆31

2
+ sin

∼

∆21 sin
∼

∆31

)

, (155)

∽

P (ν̄µ → ν̄µ) = 1− 4 |
∽

Uµ2|2
(

1− |
∽

Uµ2|2
)

sin2

∽

∆21

2
− 4 |

∽

Uµ3|2
(

1− |
∽

Uµ3|2
)

sin2

∽

∆31

2

+ 2 |
∽

Uµ2|2|
∽

Uµ3|2
(

4 sin2

∽

∆21

2
sin2

∽

∆31

2
+ sin

∽

∆21 sin
∽

∆31

)

. (156)

Let us calculate these probabilities in the range a/|δm2
31| = O(ε−1), using the results of the

previous sections.

A. Neutrino Oscillations

A1. δm2
31 > 0 Case

From Eq. (155), we note that we need
∼

Uµ2 and
∼

Uµ3 to calculate
∼

P (νµ → νµ). When

δ = 0, these are given by

∼

Uµ2 =
∼
c12

∼
c23 − ∼

s12
∼
s13

∼
s23 ,

∼

Uµ3 =
∼
c13

∼
s23 . (157)

For the δm2
31 > 0 case, the effective mixing angles in the region a/|δm2

31| = O(ε−1) are well

approximated by [7]

∼

θ13 ≈ π

2
−
(

δm2
31

2a

)

sin(2θ13) =
π

2
−O(ε2) ,

∼

θ12 ≈ π

2
− c13

c′13

(

δm2
21

2a

)

sin(2θ12) + χ =
π

2
− O(ε) ,

∼

θ23 ≈ θ23 +
sφ
c′13

(

δm2
21

2a

)

sin(2θ12) = θ23 +O(ε) . (158)

Using
∼
s13 = 1− O(ε4),

∼
c13 = O(ε2), we find

∼

Uµ2 ≈ ∼
c12

∼
c23 − ∼

s12
∼
s23 = cos(

∼

θ12 +
∼

θ23) ,
∼

Uµ3 ≈ 0 . (159)

Therefore,

∼

P (νµ → νµ) ≈ 1− sin2{2(
∼

θ12 +
∼

θ23)} sin2

∼

∆21

2
.

Note that
∼

θ12 +
∼

θ23 ≈
π

2
+ θ23 +

(

sφ − c13
c′13

)(

δm2
21

2a

)

sin(2θ12) + χ . (160)
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Using s′13 = 1− O(ε4), c′13 = O(ε2), we find

sφ = sin(θ′13 − θ13) = s′13c13 + c′13s13 ≈ c13 , (161)

which shows that the O(ε) terms in
∼

θ12 and
∼

θ23 other than χ cancel (this only happens for

the δ = 0 case considered here) and we can approximate

∼

θ12 +
∼

θ23 ≈
π

2
+ θ23 + χ . (162)

Therefore,

∼

P (νµ → νµ) ≈ 1− sin2{2(θ23 + χ)} sin2

∼

∆21

2
. (163)

A2. δm2
31 < 0 Case

For the δm2
31 < 0 case, the effective mixing angles in the region a/|δm2

31| = O(ε−1) are

well approximated by [7]

∼

θ13 ≈ −
(

δm2
31

a

)

θ13 = O(ε2) ,

∼

θ12 ≈ π

2
−
(

δm2
21

2a

)

sin(2θ12) =
π

2
− O(ε3) ,

∼

θ23 ≈ θ23 − η . (164)

Using
∼
s13 = O(ε2),

∼
c13 = 1−O(ε4),

∼
s12 = 1−O(ε6),

∼
c12 = O(ε3), we find

∼

Uµ2 ≈ 0 ,
∼

Uµ3 ≈ ∼
s23 . (165)

Therefore,

∼

P (νµ → νµ) ≈ 1− sin2(2
∼

θ23) sin
2

∼

∆31

2

≈ 1− sin2{2(θ23 − η)} sin2
∼

∆31

2
. (166)

B. Anti-Neutrino Oscillations

B1. δm2
31 > 0 Case

To calculate the ν̄µ survival probability, we need
∽

Uµ2 and
∽

Uµ3 as can be seen from

Eq. (156). When δ = 0, we have

∽

Uµ2 =
∽

c12
∽

c23 − ∽

s12
∽

s13
∽

s23 ,

33



∽

Uµ3 =
∽

c13
∽

s23 . (167)

For the δm2
31 > 0 case, the effective mixing angles in the region a/|δm2

31| = O(ε−1) are well

approximated by [7]

∽

θ12 ≈ δm2
21

2a
sin(2θ12) = O(ε3) ,

∽

θ13 ≈ δm2
31

a
θ13 = O(ε2) ,

∽

θ23 ≈ θ23 + χ̄ . (168)

Therefore,
∽

s12 = O(ε3),
∽

c12 = 1 − O(ε6),
∽

s13 = O(ε2),
∽

c13 = 1 − O(ε4), and we can

approximate

∽

Uµ2 ≈ ∽

c23 ,
∽

Uµ3 ≈ ∽

s23 , (169)

which yields

∽

P (ν̄µ → ν̄µ) ≈ 1− sin2(2
∽

θ23) sin
2

∽

∆32

2

≈ 1− sin2{2(θ23 + χ̄)} sin2

∽

∆32

2
. (170)

B2. δm2
31 < 0 Case

For the δm2
31 < 0 case, the effective mixing angles in the region a/|δm2

31| = O(ε−1) are

well approximated by [7]

∽

θ13 ≈ π

2
+

(

δm2
31

a

)

θ13 =
π

2
+O(ε2) ,

∽

θ12 ≈ c13
c̄′13

(

δm2
21

2a

)

sin(2θ12) + η̄ = O(ε) ,

∽

θ23 ≈ θ23 −
s̄φ
c̄′13

(

δm2
21

2a

)

sin(2θ12) = θ23 +O(ε) . (171)

Using
∽

s13 = 1− O(ε4),
∽

c13 = O(ε2), we can approximate

∽

Uµ2 ≈ ∽

c12
∽

c23 − ∽

s12
∽

s23 = cos(
∽

θ12 +
∽

θ23) ,
∽

Uµ3 ≈ 0 , (172)

which yields

∽

P (ν̄µ → ν̄µ) ≈ 1− sin2{2(
∽

θ12 +
∽

θ23)} sin2

∽

∆21

2
. (173)
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Note that
∽

θ12 +
∽

θ23 ≈ θ23 −
(

s̄φ − c13
c̄′13

)(

δm2
21

2a

)

sin(2θ12) + η̄ . (174)

Using s̄′13 = 1− O(ε4), c̄′13 = O(ε2), we find

s̄φ = sin(θ̄′13 − θ13) = s̄′13c13 − c̄′13s13 ≈ c13 , (175)

which allows us to approximate

∽

θ12 +
∽

θ23 ≈ θ23 + η̄ . (176)

(Again, the cancellation of the O(ε) terms other than η̄ occurs only for the δ = 0 case

considered here.) Therefore,

∽

P (ν̄µ → ν̄µ) ≈ 1− sin2{2(θ23 + η̄)} sin2

∽

∆21

2
. (177)

C. Summary of Oscillation Probabilities

To summarize what we have found, the νµ and ν̄µ survival probabilities for the δm2
31 > 0

(normal hierarchy) case are given by

∼

P (νµ → νµ) ≈ 1− sin2{2(θ23 − ζ)} sin2

∼

∆21

2
,

∽

P (ν̄µ → ν̄µ) ≈ 1− sin2{2(θ23 + ζ)} sin2
∽

∆32

2
, (178)

while for the δm2
31 < 0 (inverted hierarchy) case, they are given by

∼

P (νµ → νµ) ≈ 1− sin2{2(θ23 + ζ)} sin2
∼

∆31

2
,

∽

P (ν̄µ → ν̄µ) ≈ 1− sin2{2(θ23 − ζ)} sin2

∽

∆21

2
, (179)

where we have defined

ζ ≡ aξ

2|δm2
31|

. (180)

Therefore, though the effect of a non-zero ξ appears in different effective mixing angles

depending on the mass hierarchy, and whether the particle considered is the neutrino or the

anti-neutrino (cf. Table I), the net effect on the νµ and ν̄µ survival probabilities for all cases

is to shift θ23 in the oscillation amplitude.
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Unfortunately, this shift in θ23 may be difficult to observe. The current experimentally

preferred value of sin2(2θatm) ≈ sin2(2θ23) is one, with the 90% lower limit given by [13, 14]

sin2(2θ23) > 0.92 . (181)

Given the shape of the function sin2(2θ23) around θ23 = π/4, sin2(2θ23) is insensitive to small

shifts in θ23. Indeed, because of this, the angle θ23 itself is ill constrained, the above limit

translating into

θ23 = (0.2 ∼ 0.3)π . (182)

However, our knowledge of the value of sin2(2θ23) is to be improved considerably in

the near future. The long baseline neutrino oscillation experiments MINOS [8], T2K [15],

NOνA [16], and others [17–20] will measure sin2(2θatm) = 4|Uµ3|2(1− |Uµ3|2) = 4s223c
2
13(1 −

s223c
2
13) from νµ → νµ to better than 1%, while the reactor neutrino experiments Double-

Chooz [21], KASKA [22], Braidwood [23], etc. [24] are expected to measure sin2(2θrct) =

4|Ue3|2(1 − |Ue3|2) = sin2(2θ13) from ν̄e → ν̄e to an accuracy of ±0.01. These developments

combined will determine sin2(2θ23) to better than 1%, albeit with a two-fold degeneracy.

This degeneracy can be broken, in principle, by determining 4|Uµ3|2|Ue3|2 = s223 sin
2(2θ13)

from the CP non-violating part of the νµ → νe oscillation probability [16, 25–34]. Therefore,

a unique and accurate value of sin2(2θ23), together with whether θ23 is larger or smaller than

π/4, may be known. Furthermore, if the 1-Megaton Hyper-Kamiokande (HyperK) detector

is ever constructed, a JPARC→HyperK long-baseline experiment will improve the limits

even further [10].

Even then, if the central value of sin2(2θ23) is too close to one, then the shift due to ζ

will be invisible. Let us assume, for the sake of argument, that a 1% shift in sin2(2θ23) is

detectable. Since

sin2{2(θ23 ± ζ)} = sin2(2θ23)± 2 sin(4θ23)ζ , (183)

the shift due to ζ would be visible if

|2 sin(4θ23)ζ | > 0.01 . (184)

The size of ζ for ρ = 4.6 g/cm3, E = 17GeV, ξ = 0.025, and |δm2
31| = 2.5 × 10−3 eV2, for

instance, is

ζ = 0.03 . (185)
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For this shift to be visible, we must have

| sin(4θ23)| >
1

6
, (186)

or

sin2(2θ23) < 0.993 . (187)

If we require a 2% shift, the limit will be sin2(2θ23) < 0.97, and a 3% shift would require

sin2(2θ23) < 0.93. Therefore, whether the effect we are considering can be observed or not

depends crucially on the value of sin2(2θ23).

VI. NUMERICAL RESULTS

The discussions up to this point were all based on approximate analytical calculations. To

illustrate the accuracy of our analytical results, we presenting here the results of a numerical

calculation of the effective mass-squared-differences, effective mixing angles, and oscillation

probabilities.

As inputs, we use the following: For θ23, we consider the two cases

sin2(2θ23) = 1 , and sin2(2θ23) = 0.92 with θ23 <
π

4
. (188)

The values of θ23 for these cases are

θ23 =
π

4
, and θ23 = 0.204 π . (189)

For ξ, we compare the two cases

ξ = 0 , and ξ = 0.025 . (190)

ξ = 0.025 corresponds to the central value of the CHARM/CHARM II constraint, Eq. (1).

The remaining parameters are fixed to (see Ref. [7] and references therein) :

δm2
21 = 8.2× 10−5 eV2 ,

|δm2
31| = 2.5× 10−3 eV2 ,

tan2 θ12 = 0.4 ,

sin2(2θ13) = 0.16 ,

δ = 0 ,
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FIG. 1: The effective mass-squared-differences, effective mixing angles, and oscillation probabilities

for the case sin2(2θ23) = 1. The other input parameters are given in Eq. (191). The ξ = 0 case is

plotted with black dashed lines, while the ξ = 0.025 case is plotted with gray solid lines.
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FIG. 2: The effective mass-squared-differences, effective mixing angles, and oscillation probabilities

for the case sin2(2θ23) = 0.92 with θ23 < π/4. The other input parameters are given in Eq. (191).

The ξ = 0 case is plotted with black dashed lines, while the ξ = 0.025 case is plotted with gray

solid lines.
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ρ = 4.6 g/cm3 ,

L = 9120 km. (191)

The baseline length of L = 9120 km is the distance from Fermilab to Kamioka, Japan, and

the mass density of ρ = 4.6 g/cm3 is the average mass density along this baseline calculated

from the Preliminary Earth Reference Model [35].

Figs. 1 and 2 show the energy dependence of the effective mass-squared differences, effec-

tive mixing angles, and oscillation probabilities of the neutrinos: Fig. 1 for the sin2(2θ23) = 1

case, and Fig. 2 for the sin2(2θ23) = 0.92 (θ23 < π/4) case. In the figures, the ξ = 0 case is

plotted in broken black lines while the ξ = 0.025 case is plotted in solid gray lines. As can

be clearly seen from the graphs in the top rows of both figures, the effective mass-squared

differences are little affected by ξ as expected. On the other hand, the graphs in the middle

rows show that of the effective mixing angles,
∼

θ12 is shifted in the negative direction when

δm2
31 > 0 (normal hierarchy), while

∼

θ23 is shifted in the positive direction when δm2
31 < 0

(inverted hierarchy), as tabulated in Table. I. However, the graphs on the bottom rows show

that these shifts in the mixing angles are virtually invisible in the oscillation probabilities

when sin2(2θ23) = 1, but quite visible when sin2(2θ23) = 0.92, again as expected.

Numerical calculations for the anti-neutrino case also confirm the accuracy of our ana-

lytical results, though we will not present them here.

VII. FERMILAB → HYPER-KAMIOKANDE

If the value of sin2(2θ23) is not too close to one, then matter effects due to neutral

current universality violation will lead to shifts in the oscillation probabilities, as shown

in the bottom row of Fig. 2. Let us now ask whether such shifts are observable in long

baseline neutrino oscillation experiments. In the following, we will assume that sin2(2θ23) =

0.92 (θ23 < π/4), which was the value used in Fig. 2, and that it is accurately known.

The effect we would like to see only appears at mass densities and energies at which

|δm2
31| < a =

(

7.6324× 10−5eV2
)

×
(

ρ

g/cm3

)

×
(

E

GeV

)

, (192)

or

(26 ∼ 39) <

(

ρ

g/cm3

)

×
(

E

GeV

)

, (193)
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FIG. 3: The NUMI beam in its high energy mode. The vertical axis gives the number of expected

charged current νµ events at the MINOS site (732 km away from Fermilab) per kiloton of detector

material, per year, per GeV bin without any oscillation.

for |δm2
31| = (2 ∼ 3) × 10−3eV2. Since the mass density of the Earth’s crust and mantle

are 3 ∼ 5 g/cm3 [35], this requires the beam energy to be larger than ∼ 10GeV. At these

energies, the position of the first oscillation peak (dip) is determined by the condition

a

2E
L ∼ π , (194)

which translates to
(

ρ

g/cm3

)

×
(

L

km

)

∼ 3× 104 , (195)

or

L ∼ 104 km . (196)

Therefore, the experiment we need to consider is such that a neutrino beam of energy in

excess of 10 GeV is aimed at a detector about 10,000 km away.

At this point, we note that a νµ beam with the required energies is already available at

Fermilab. Fig. 3 is reproduced from the NUMI Technical Design Handbook [9] and shows

the energy profile of the NUMI beam in its high energy mode. As we can see, the beam has

considerable support in the 5 ∼ 25 GeV range. The vertical axis is the expected number of

charged current νµ events at MINOS per kiloton of detector material, per year, per GeV bin

without any oscillation. If a similar beam were aimed at a detector ∼ 104 km away, which is

more than 10 times the distance from Fermilab to MINOS, the νµ flux will be attenuated by
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at least 2 orders of magnitude from what is available at MINOS. Therefore, a megaton class

detector would be required if the number of observed events is to be statistically significant.

The planned Hyper-Kamiokande (HyperK) [10] is a megaton water-Chrenkov detector

which would be at a distance of L = 9120 km from Fermilab. Aiming a NUMI-like beam

from Fermilab at HyperK (the declination angle is 46 degrees) would provide the necessary

energy, detector mass, and baseline length. So this is the setup we will consider. The average

matter density along the baseline would be 4.6 g/cm3, and the oscillation probability to be

measured will be that shown in Fig. 2.

In Fig. 4, we show the expected number of νµ events at HyperK for 5 years of data taking.

The dotted line indicates the expected numbers without any oscillation, and was obtained

by rescaling the numbers from Fig. 3 to take into account the difference in baseline length,

detector mass, and the number of years of data taking. The solid line indicates the expected

number of events with oscillation taken into account for the normal hierarchy case with ξ = 0.

The input parameters are those listed in Eq. (191) with sin2(2θ23) = 0.92 (θ23 < π/4). The

ξ = +0.025 and ξ = −0.025 cases are shown with dashed, and dot-dashed lines, respectively.

As one can see from the figure, the expected number if events is fairly large even at this

distance, and even with oscillation.

Fig. 5 shows a blowup of Fig. 4. Even at the oscillation dip at 17 GeV, the expected

number of events is in the hundreds. Due to this significant statistics, the ξ = 0 and

ξ = ±0.025 cases are clearly distinguishable as indicated by the error bars on the ξ = 0 case.

Therefore, this experiment can easily detect a violation in neutral current universality if it

is as large as the CHARM/CHARM II central value.

To see what kind of constraint this experiment could place on ξ, we calculate the χ2

between the ξ = 0 and the ξ 6= 0 cases, i.e.

χ2(ξ) ≡
∑

8GeV<i<22GeV

[Ni(ξ)−Ni(0) ]
2

Ni(0)
, (197)

where Ni(ξ) is the expected number of events in the i-th GeV-wide bin, and plot the ξ-

dependence of the χ2(ξ) in Fig. 6. We have restricted the bins that enter into χ2(ξ) to the 8

to 22 GeV range (14 bins), since that is the range in which the expected number of events

fluctuates significantly with ξ. With 5 years of data taking, we can read off from the graph

that the ξ = 0 and ξ = ±0.005 cases are distinguishable at the 99% confidence level. This

corresponds to a limit on universality violation at the 1% level, which will be comparable to
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FIG. 4: The expected number of νµ events at a Fermilab→HyperK experiment with 5 years of data

taking. The dotted line indicates the number of events without any oscillation. The solid, dashed,
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for the ξ = 0, ξ = +0.025, and ξ = −0.025 cases, respectively. The mass hierarchy assumed was

the normal hierarchy, sin2(2θ23) = 0.92 (θ23 < π/4), and the other input parameters were those

listed in Eq. (191).
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the constraints from LEP/SLD [1–3] but completely model independent. For fewer years of

data taking, the limits will be correspondingly weaker.

We emphasize that the conclusions in this section are valid only for the sin2(2θ23) =

0.92 (θ23 < π/4) case. The closer sin2(2θ23) is to one, the more difficult it will be to detect

the presence or absence of ξ.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have considered the matter effect on neutrino oscillations due to neutral

current universality violation. It was shown that the effect of the violation appears domi-

nantly as a shift in the effective value of θ23 at high energies, while the other effective mixing

angles and effective mass-squared-differences are virtually unaffected. As a result, the effect

will manifest itself as changes in the amplitudes of the oscillation probabilities, while the

locations of the oscillation peaks and dips in distance/energy remain the same. However,

since the amplitudes of the νµ and ν̄µ survival probabilities are proportional to sin2(2θ23),

the shift in θ23 would be difficult to detect if sin2(2θ23) is too close to one.

If the value of sin2(2θ23) is as small as 0.92, the current 90% lower bound, then a 5-year

measurement of the νµ survival spectrum by a Fermilab→HyperK experiment could place a

model-independent constraint on neutral current universality violation at the 1% level. This

would be competitive with the model-dependent constraints extracted from LEP/SLD data
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[1–3].

The analysis in this paper was restricted to the δ = 0 case, in which the effective θ23 was

unaffected by charged-current interactions. For the δ 6= 0 cases, one needs to account for the

charged-current shift discussed in Ref. [7], in addition to the neutral-current shift discussed

in this paper, making the analysis somewhat more complicated. However, for the neutrino

case with inverted hierarchy (δm2
31 < 0), and the anti-neutrino case with normal hierarchy

(δm2
31 > 0), charged-current effects are always absent from θ23, regardless of the value of δ.

Therefore, using neutrinos if the hierarchy is inverted, and anti-neutrinos if the hierarchy is

normal, can potentially provide a clean signal.
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